1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 #include "vm_version_x86.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Contains all the definitions needed for x86 assembly code generation.
  34 
  35 // Calling convention
  36 class Argument VALUE_OBJ_CLASS_SPEC {
  37  public:
  38   enum {
  39 #ifdef _LP64
  40 #ifdef _WIN64
  41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  43 #else
  44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  46 #endif // _WIN64
  47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  49 #else
  50     n_register_parameters = 0   // 0 registers used to pass arguments
  51 #endif // _LP64
  52   };
  53 };
  54 
  55 
  56 #ifdef _LP64
  57 // Symbolically name the register arguments used by the c calling convention.
  58 // Windows is different from linux/solaris. So much for standards...
  59 
  60 #ifdef _WIN64
  61 
  62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  64 REGISTER_DECLARATION(Register, c_rarg2, r8);
  65 REGISTER_DECLARATION(Register, c_rarg3, r9);
  66 
  67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  71 
  72 #else
  73 
  74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  78 REGISTER_DECLARATION(Register, c_rarg4, r8);
  79 REGISTER_DECLARATION(Register, c_rarg5, r9);
  80 
  81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  89 
  90 #endif // _WIN64
  91 
  92 // Symbolically name the register arguments used by the Java calling convention.
  93 // We have control over the convention for java so we can do what we please.
  94 // What pleases us is to offset the java calling convention so that when
  95 // we call a suitable jni method the arguments are lined up and we don't
  96 // have to do little shuffling. A suitable jni method is non-static and a
  97 // small number of arguments (two fewer args on windows)
  98 //
  99 //        |-------------------------------------------------------|
 100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 101 //        |-------------------------------------------------------|
 102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 104 //        |-------------------------------------------------------|
 105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 106 //        |-------------------------------------------------------|
 107 
 108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 111 // Windows runs out of register args here
 112 #ifdef _WIN64
 113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 115 #else
 116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 118 #endif /* _WIN64 */
 119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 120 
 121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 129 
 130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 132 
 133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 135 
 136 #else
 137 // rscratch1 will apear in 32bit code that is dead but of course must compile
 138 // Using noreg ensures if the dead code is incorrectly live and executed it
 139 // will cause an assertion failure
 140 #define rscratch1 noreg
 141 #define rscratch2 noreg
 142 
 143 #endif // _LP64
 144 
 145 // JSR 292
 146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 149 
 150 // Address is an abstraction used to represent a memory location
 151 // using any of the amd64 addressing modes with one object.
 152 //
 153 // Note: A register location is represented via a Register, not
 154 //       via an address for efficiency & simplicity reasons.
 155 
 156 class ArrayAddress;
 157 
 158 class Address VALUE_OBJ_CLASS_SPEC {
 159  public:
 160   enum ScaleFactor {
 161     no_scale = -1,
 162     times_1  =  0,
 163     times_2  =  1,
 164     times_4  =  2,
 165     times_8  =  3,
 166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 167   };
 168   static ScaleFactor times(int size) {
 169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 170     if (size == 8)  return times_8;
 171     if (size == 4)  return times_4;
 172     if (size == 2)  return times_2;
 173     return times_1;
 174   }
 175   static int scale_size(ScaleFactor scale) {
 176     assert(scale != no_scale, "");
 177     assert(((1 << (int)times_1) == 1 &&
 178             (1 << (int)times_2) == 2 &&
 179             (1 << (int)times_4) == 4 &&
 180             (1 << (int)times_8) == 8), "");
 181     return (1 << (int)scale);
 182   }
 183 
 184  private:
 185   Register         _base;
 186   Register         _index;
 187   ScaleFactor      _scale;
 188   int              _disp;
 189   RelocationHolder _rspec;
 190 
 191   // Easily misused constructors make them private
 192   // %%% can we make these go away?
 193   NOT_LP64(Address(address loc, RelocationHolder spec);)
 194   Address(int disp, address loc, relocInfo::relocType rtype);
 195   Address(int disp, address loc, RelocationHolder spec);
 196 
 197  public:
 198 
 199  int disp() { return _disp; }
 200   // creation
 201   Address()
 202     : _base(noreg),
 203       _index(noreg),
 204       _scale(no_scale),
 205       _disp(0) {
 206   }
 207 
 208   // No default displacement otherwise Register can be implicitly
 209   // converted to 0(Register) which is quite a different animal.
 210 
 211   Address(Register base, int disp)
 212     : _base(base),
 213       _index(noreg),
 214       _scale(no_scale),
 215       _disp(disp) {
 216   }
 217 
 218   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 219     : _base (base),
 220       _index(index),
 221       _scale(scale),
 222       _disp (disp) {
 223     assert(!index->is_valid() == (scale == Address::no_scale),
 224            "inconsistent address");
 225   }
 226 
 227   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 228     : _base (base),
 229       _index(index.register_or_noreg()),
 230       _scale(scale),
 231       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 232     if (!index.is_register())  scale = Address::no_scale;
 233     assert(!_index->is_valid() == (scale == Address::no_scale),
 234            "inconsistent address");
 235   }
 236 
 237   Address plus_disp(int disp) const {
 238     Address a = (*this);
 239     a._disp += disp;
 240     return a;
 241   }
 242   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 243     Address a = (*this);
 244     a._disp += disp.constant_or_zero() * scale_size(scale);
 245     if (disp.is_register()) {
 246       assert(!a.index()->is_valid(), "competing indexes");
 247       a._index = disp.as_register();
 248       a._scale = scale;
 249     }
 250     return a;
 251   }
 252   bool is_same_address(Address a) const {
 253     // disregard _rspec
 254     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 255   }
 256 
 257   // The following two overloads are used in connection with the
 258   // ByteSize type (see sizes.hpp).  They simplify the use of
 259   // ByteSize'd arguments in assembly code. Note that their equivalent
 260   // for the optimized build are the member functions with int disp
 261   // argument since ByteSize is mapped to an int type in that case.
 262   //
 263   // Note: DO NOT introduce similar overloaded functions for WordSize
 264   // arguments as in the optimized mode, both ByteSize and WordSize
 265   // are mapped to the same type and thus the compiler cannot make a
 266   // distinction anymore (=> compiler errors).
 267 
 268 #ifdef ASSERT
 269   Address(Register base, ByteSize disp)
 270     : _base(base),
 271       _index(noreg),
 272       _scale(no_scale),
 273       _disp(in_bytes(disp)) {
 274   }
 275 
 276   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 277     : _base(base),
 278       _index(index),
 279       _scale(scale),
 280       _disp(in_bytes(disp)) {
 281     assert(!index->is_valid() == (scale == Address::no_scale),
 282            "inconsistent address");
 283   }
 284 
 285   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 286     : _base (base),
 287       _index(index.register_or_noreg()),
 288       _scale(scale),
 289       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 290     if (!index.is_register())  scale = Address::no_scale;
 291     assert(!_index->is_valid() == (scale == Address::no_scale),
 292            "inconsistent address");
 293   }
 294 
 295 #endif // ASSERT
 296 
 297   // accessors
 298   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 299   Register    base()             const { return _base;  }
 300   Register    index()            const { return _index; }
 301   ScaleFactor scale()            const { return _scale; }
 302   int         disp()             const { return _disp;  }
 303 
 304   // Convert the raw encoding form into the form expected by the constructor for
 305   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 306   // that to noreg for the Address constructor.
 307   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 308 
 309   static Address make_array(ArrayAddress);
 310 
 311  private:
 312   bool base_needs_rex() const {
 313     return _base != noreg && _base->encoding() >= 8;
 314   }
 315 
 316   bool index_needs_rex() const {
 317     return _index != noreg &&_index->encoding() >= 8;
 318   }
 319 
 320   relocInfo::relocType reloc() const { return _rspec.type(); }
 321 
 322   friend class Assembler;
 323   friend class MacroAssembler;
 324   friend class LIR_Assembler; // base/index/scale/disp
 325 };
 326 
 327 //
 328 // AddressLiteral has been split out from Address because operands of this type
 329 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 330 // the few instructions that need to deal with address literals are unique and the
 331 // MacroAssembler does not have to implement every instruction in the Assembler
 332 // in order to search for address literals that may need special handling depending
 333 // on the instruction and the platform. As small step on the way to merging i486/amd64
 334 // directories.
 335 //
 336 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 337   friend class ArrayAddress;
 338   RelocationHolder _rspec;
 339   // Typically we use AddressLiterals we want to use their rval
 340   // However in some situations we want the lval (effect address) of the item.
 341   // We provide a special factory for making those lvals.
 342   bool _is_lval;
 343 
 344   // If the target is far we'll need to load the ea of this to
 345   // a register to reach it. Otherwise if near we can do rip
 346   // relative addressing.
 347 
 348   address          _target;
 349 
 350  protected:
 351   // creation
 352   AddressLiteral()
 353     : _is_lval(false),
 354       _target(NULL)
 355   {}
 356 
 357   public:
 358 
 359 
 360   AddressLiteral(address target, relocInfo::relocType rtype);
 361 
 362   AddressLiteral(address target, RelocationHolder const& rspec)
 363     : _rspec(rspec),
 364       _is_lval(false),
 365       _target(target)
 366   {}
 367 
 368   AddressLiteral addr() {
 369     AddressLiteral ret = *this;
 370     ret._is_lval = true;
 371     return ret;
 372   }
 373 
 374 
 375  private:
 376 
 377   address target() { return _target; }
 378   bool is_lval() { return _is_lval; }
 379 
 380   relocInfo::relocType reloc() const { return _rspec.type(); }
 381   const RelocationHolder& rspec() const { return _rspec; }
 382 
 383   friend class Assembler;
 384   friend class MacroAssembler;
 385   friend class Address;
 386   friend class LIR_Assembler;
 387 };
 388 
 389 // Convience classes
 390 class RuntimeAddress: public AddressLiteral {
 391 
 392   public:
 393 
 394   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 395 
 396 };
 397 
 398 class ExternalAddress: public AddressLiteral {
 399  private:
 400   static relocInfo::relocType reloc_for_target(address target) {
 401     // Sometimes ExternalAddress is used for values which aren't
 402     // exactly addresses, like the card table base.
 403     // external_word_type can't be used for values in the first page
 404     // so just skip the reloc in that case.
 405     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 406   }
 407 
 408  public:
 409 
 410   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 411 
 412 };
 413 
 414 class InternalAddress: public AddressLiteral {
 415 
 416   public:
 417 
 418   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 419 
 420 };
 421 
 422 // x86 can do array addressing as a single operation since disp can be an absolute
 423 // address amd64 can't. We create a class that expresses the concept but does extra
 424 // magic on amd64 to get the final result
 425 
 426 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 427   private:
 428 
 429   AddressLiteral _base;
 430   Address        _index;
 431 
 432   public:
 433 
 434   ArrayAddress() {};
 435   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 436   AddressLiteral base() { return _base; }
 437   Address index() { return _index; }
 438 
 439 };
 440 
 441 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512*2 / wordSize);
 442 
 443 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 444 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 445 // is what you get. The Assembler is generating code into a CodeBuffer.
 446 
 447 class Assembler : public AbstractAssembler  {
 448   friend class AbstractAssembler; // for the non-virtual hack
 449   friend class LIR_Assembler; // as_Address()
 450   friend class StubGenerator;
 451 
 452  public:
 453   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 454     zero          = 0x4,
 455     notZero       = 0x5,
 456     equal         = 0x4,
 457     notEqual      = 0x5,
 458     less          = 0xc,
 459     lessEqual     = 0xe,
 460     greater       = 0xf,
 461     greaterEqual  = 0xd,
 462     below         = 0x2,
 463     belowEqual    = 0x6,
 464     above         = 0x7,
 465     aboveEqual    = 0x3,
 466     overflow      = 0x0,
 467     noOverflow    = 0x1,
 468     carrySet      = 0x2,
 469     carryClear    = 0x3,
 470     negative      = 0x8,
 471     positive      = 0x9,
 472     parity        = 0xa,
 473     noParity      = 0xb
 474   };
 475 
 476   enum Prefix {
 477     // segment overrides
 478     CS_segment = 0x2e,
 479     SS_segment = 0x36,
 480     DS_segment = 0x3e,
 481     ES_segment = 0x26,
 482     FS_segment = 0x64,
 483     GS_segment = 0x65,
 484 
 485     REX        = 0x40,
 486 
 487     REX_B      = 0x41,
 488     REX_X      = 0x42,
 489     REX_XB     = 0x43,
 490     REX_R      = 0x44,
 491     REX_RB     = 0x45,
 492     REX_RX     = 0x46,
 493     REX_RXB    = 0x47,
 494 
 495     REX_W      = 0x48,
 496 
 497     REX_WB     = 0x49,
 498     REX_WX     = 0x4A,
 499     REX_WXB    = 0x4B,
 500     REX_WR     = 0x4C,
 501     REX_WRB    = 0x4D,
 502     REX_WRX    = 0x4E,
 503     REX_WRXB   = 0x4F,
 504 
 505     VEX_3bytes = 0xC4,
 506     VEX_2bytes = 0xC5,
 507     EVEX_4bytes = 0x62
 508   };
 509 
 510   enum VexPrefix {
 511     VEX_B = 0x20,
 512     VEX_X = 0x40,
 513     VEX_R = 0x80,
 514     VEX_W = 0x80
 515   };
 516 
 517   enum ExexPrefix {
 518     EVEX_F  = 0x04,
 519     EVEX_V  = 0x08,
 520     EVEX_Rb = 0x10,
 521     EVEX_X  = 0x40,
 522     EVEX_Z  = 0x80
 523   };
 524 
 525   enum VexSimdPrefix {
 526     VEX_SIMD_NONE = 0x0,
 527     VEX_SIMD_66   = 0x1,
 528     VEX_SIMD_F3   = 0x2,
 529     VEX_SIMD_F2   = 0x3
 530   };
 531 
 532   enum VexOpcode {
 533     VEX_OPCODE_NONE  = 0x0,
 534     VEX_OPCODE_0F    = 0x1,
 535     VEX_OPCODE_0F_38 = 0x2,
 536     VEX_OPCODE_0F_3A = 0x3
 537   };
 538 
 539   enum AvxVectorLen {
 540     AVX_128bit = 0x0,
 541     AVX_256bit = 0x1,
 542     AVX_512bit = 0x2,
 543     AVX_NoVec  = 0x4
 544   };
 545 
 546   enum EvexTupleType {
 547     EVEX_FV   = 0,
 548     EVEX_HV   = 4,
 549     EVEX_FVM  = 6,
 550     EVEX_T1S  = 7,
 551     EVEX_T1F  = 11,
 552     EVEX_T2   = 13,
 553     EVEX_T4   = 15,
 554     EVEX_T8   = 17,
 555     EVEX_HVM  = 18,
 556     EVEX_QVM  = 19,
 557     EVEX_OVM  = 20,
 558     EVEX_M128 = 21,
 559     EVEX_DUP  = 22,
 560     EVEX_ETUP = 23
 561   };
 562 
 563   enum EvexInputSizeInBits {
 564     EVEX_8bit  = 0,
 565     EVEX_16bit = 1,
 566     EVEX_32bit = 2,
 567     EVEX_64bit = 3
 568   };
 569 
 570   enum WhichOperand {
 571     // input to locate_operand, and format code for relocations
 572     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 573     disp32_operand = 1,          // embedded 32-bit displacement or address
 574     call32_operand = 2,          // embedded 32-bit self-relative displacement
 575 #ifndef _LP64
 576     _WhichOperand_limit = 3
 577 #else
 578      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 579     _WhichOperand_limit = 4
 580 #endif
 581   };
 582 
 583 
 584 
 585   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 586   // of instructions are freely declared without the need for wrapping them an ifdef.
 587   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 588   // In the .cpp file the implementations are wrapped so that they are dropped out
 589   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 590   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 591   //
 592   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 593   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 594 
 595 private:
 596 
 597   int evex_encoding;
 598   int input_size_in_bits;
 599   int avx_vector_len;
 600   int tuple_type;
 601   bool is_evex_instruction;
 602 
 603   // 64bit prefixes
 604   int prefix_and_encode(int reg_enc, bool byteinst = false);
 605   int prefixq_and_encode(int reg_enc);
 606 
 607   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 608   int prefixq_and_encode(int dst_enc, int src_enc);
 609 
 610   void prefix(Register reg);
 611   void prefix(Address adr);
 612   void prefixq(Address adr);
 613 
 614   void prefix(Address adr, Register reg,  bool byteinst = false);
 615   void prefix(Address adr, XMMRegister reg);
 616   void prefixq(Address adr, Register reg);
 617   void prefixq(Address adr, XMMRegister reg);
 618 
 619   void prefetch_prefix(Address src);
 620 
 621   void rex_prefix(Address adr, XMMRegister xreg,
 622                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 623   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 624                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 625 
 626   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 627                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 628                   int vector_len);
 629 
 630   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
 631                    int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 632                    bool is_extended_context, bool is_merge_context,
 633                    int vector_len, bool no_mask_reg );
 634 
 635   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 636                   VexSimdPrefix pre, VexOpcode opc,
 637                   bool vex_w, int vector_len,
 638                   bool legacy_mode = false, bool no_mask_reg = false);
 639 
 640   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 641                   VexSimdPrefix pre, int vector_len = AVX_128bit,
 642                   bool no_mask_reg = false, bool legacy_mode = false) {
 643     int dst_enc = dst->encoding();
 644     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 645     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector_len, legacy_mode, no_mask_reg);
 646   }
 647 
 648   void vex_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 649                     VexSimdPrefix pre, int vector_len = AVX_128bit,
 650                     bool no_mask_reg = false) {
 651     int dst_enc = dst->encoding();
 652     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 653     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
 654   }
 655 
 656   void vex_prefix_0F38(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 657     bool vex_w = false;
 658     int vector_len = AVX_128bit;
 659     vex_prefix(src, nds->encoding(), dst->encoding(),
 660                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 661                vector_len, no_mask_reg);
 662   }
 663 
 664   void vex_prefix_0F38_legacy(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 665     bool vex_w = false;
 666     int vector_len = AVX_128bit;
 667     vex_prefix(src, nds->encoding(), dst->encoding(),
 668                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 669                vector_len, true, no_mask_reg);
 670   }
 671 
 672   void vex_prefix_0F38_q(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 673     bool vex_w = true;
 674     int vector_len = AVX_128bit;
 675     vex_prefix(src, nds->encoding(), dst->encoding(),
 676                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 677                vector_len, no_mask_reg);
 678   }
 679 
 680   void vex_prefix_0F38_q_legacy(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 681     bool vex_w = true;
 682     int vector_len = AVX_128bit;
 683     vex_prefix(src, nds->encoding(), dst->encoding(),
 684                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 685                vector_len, true, no_mask_reg);
 686   }
 687 
 688   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 689                              VexSimdPrefix pre, VexOpcode opc,
 690                              bool vex_w, int vector_len,
 691                              bool legacy_mode, bool no_mask_reg);
 692 
 693   int  vex_prefix_0F38_and_encode(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 694     bool vex_w = false;
 695     int vector_len = AVX_128bit;
 696     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 697                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 698                                  false, no_mask_reg);
 699   }
 700 
 701   int  vex_prefix_0F38_and_encode_legacy(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 702     bool vex_w = false;
 703     int vector_len = AVX_128bit;
 704     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 705       VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 706       true, no_mask_reg);
 707   }
 708 
 709   int  vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 710     bool vex_w = true;
 711     int vector_len = AVX_128bit;
 712     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 713                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 714                                  false, no_mask_reg);
 715   }
 716 
 717   int  vex_prefix_0F38_and_encode_q_legacy(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 718     bool vex_w = true;
 719     int vector_len = AVX_128bit;
 720     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 721                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 722                                  true, no_mask_reg);
 723   }
 724 
 725   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 726                              VexSimdPrefix pre, int vector_len = AVX_128bit,
 727                              VexOpcode opc = VEX_OPCODE_0F, bool legacy_mode = false,
 728                              bool no_mask_reg = false) {
 729     int src_enc = src->encoding();
 730     int dst_enc = dst->encoding();
 731     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 732     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector_len, legacy_mode, no_mask_reg);
 733   }
 734 
 735   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 736                    VexSimdPrefix pre, bool no_mask_reg, VexOpcode opc = VEX_OPCODE_0F,
 737                    bool rex_w = false, int vector_len = AVX_128bit, bool legacy_mode = false);
 738 
 739   void simd_prefix(XMMRegister dst, Address src, VexSimdPrefix pre,
 740                    bool no_mask_reg, VexOpcode opc = VEX_OPCODE_0F) {
 741     simd_prefix(dst, xnoreg, src, pre, no_mask_reg, opc);
 742   }
 743 
 744   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
 745     simd_prefix(src, dst, pre, no_mask_reg);
 746   }
 747   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 748                      VexSimdPrefix pre, bool no_mask_reg = false) {
 749     bool rex_w = true;
 750     simd_prefix(dst, nds, src, pre, no_mask_reg, VEX_OPCODE_0F, rex_w);
 751   }
 752 
 753   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 754                              VexSimdPrefix pre, bool no_mask_reg,
 755                              VexOpcode opc = VEX_OPCODE_0F,
 756                              bool rex_w = false, int vector_len = AVX_128bit,
 757                              bool legacy_mode = false);
 758 
 759   int kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src,
 760                              VexSimdPrefix pre, bool no_mask_reg,
 761                              VexOpcode opc = VEX_OPCODE_0F,
 762                              bool rex_w = false, int vector_len = AVX_128bit);
 763 
 764   int kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src,
 765                              VexSimdPrefix pre, bool no_mask_reg,
 766                              VexOpcode opc = VEX_OPCODE_0F,
 767                              bool rex_w = false, int vector_len = AVX_128bit);
 768 
 769   // Move/convert 32-bit integer value.
 770   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 771                              VexSimdPrefix pre, bool no_mask_reg) {
 772     // It is OK to cast from Register to XMMRegister to pass argument here
 773     // since only encoding is used in simd_prefix_and_encode() and number of
 774     // Gen and Xmm registers are the same.
 775     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, no_mask_reg, VEX_OPCODE_0F);
 776   }
 777   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre, bool no_mask_reg) {
 778     return simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg);
 779   }
 780   int simd_prefix_and_encode(Register dst, XMMRegister src,
 781                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 782                              bool no_mask_reg = false) {
 783     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, no_mask_reg, opc);
 784   }
 785 
 786   // Move/convert 64-bit integer value.
 787   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 788                                VexSimdPrefix pre, bool no_mask_reg = false) {
 789     bool rex_w = true;
 790     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, no_mask_reg, VEX_OPCODE_0F, rex_w);
 791   }
 792   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre, bool no_mask_reg) {
 793     return simd_prefix_and_encode_q(dst, xnoreg, src, pre, no_mask_reg);
 794   }
 795   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 796                                VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 797                                bool no_mask_reg = false) {
 798     bool rex_w = true;
 799     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, no_mask_reg, opc, rex_w);
 800   }
 801 
 802   // Helper functions for groups of instructions
 803   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 804 
 805   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 806   // Force generation of a 4 byte immediate value even if it fits into 8bit
 807   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 808   void emit_arith(int op1, int op2, Register dst, Register src);
 809 
 810   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 811   void emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 812   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 813   void emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false);
 814   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 815   void emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 816   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 817   void emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false);
 818   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 819                       Address src, VexSimdPrefix pre, int vector_len,
 820                       bool no_mask_reg = false, bool legacy_mode = false);
 821   void emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
 822                         Address src, VexSimdPrefix pre, int vector_len,
 823                         bool no_mask_reg = false);
 824   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 825                       XMMRegister src, VexSimdPrefix pre, int vector_len,
 826                       bool no_mask_reg = false, bool legacy_mode = false);
 827   void emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
 828                         XMMRegister src, VexSimdPrefix pre, int vector_len,
 829                         bool no_mask_reg = false);
 830 
 831   bool emit_compressed_disp_byte(int &disp);
 832 
 833   void emit_operand(Register reg,
 834                     Register base, Register index, Address::ScaleFactor scale,
 835                     int disp,
 836                     RelocationHolder const& rspec,
 837                     int rip_relative_correction = 0);
 838 
 839   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 840 
 841   // operands that only take the original 32bit registers
 842   void emit_operand32(Register reg, Address adr);
 843 
 844   void emit_operand(XMMRegister reg,
 845                     Register base, Register index, Address::ScaleFactor scale,
 846                     int disp,
 847                     RelocationHolder const& rspec);
 848 
 849   void emit_operand(XMMRegister reg, Address adr);
 850 
 851   void emit_operand(MMXRegister reg, Address adr);
 852 
 853   // workaround gcc (3.2.1-7) bug
 854   void emit_operand(Address adr, MMXRegister reg);
 855 
 856 
 857   // Immediate-to-memory forms
 858   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 859 
 860   void emit_farith(int b1, int b2, int i);
 861 
 862 
 863  protected:
 864   #ifdef ASSERT
 865   void check_relocation(RelocationHolder const& rspec, int format);
 866   #endif
 867 
 868   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 869   void emit_data(jint data, RelocationHolder const& rspec, int format);
 870   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 871   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 872 
 873   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 874 
 875   // These are all easily abused and hence protected
 876 
 877   // 32BIT ONLY SECTION
 878 #ifndef _LP64
 879   // Make these disappear in 64bit mode since they would never be correct
 880   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 881   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 882 
 883   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 884   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 885 
 886   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 887 #else
 888   // 64BIT ONLY SECTION
 889   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 890 
 891   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 892   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 893 
 894   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 895   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 896 #endif // _LP64
 897 
 898   // These are unique in that we are ensured by the caller that the 32bit
 899   // relative in these instructions will always be able to reach the potentially
 900   // 64bit address described by entry. Since they can take a 64bit address they
 901   // don't have the 32 suffix like the other instructions in this class.
 902 
 903   void call_literal(address entry, RelocationHolder const& rspec);
 904   void jmp_literal(address entry, RelocationHolder const& rspec);
 905 
 906   // Avoid using directly section
 907   // Instructions in this section are actually usable by anyone without danger
 908   // of failure but have performance issues that are addressed my enhanced
 909   // instructions which will do the proper thing base on the particular cpu.
 910   // We protect them because we don't trust you...
 911 
 912   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 913   // could cause a partial flag stall since they don't set CF flag.
 914   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 915   // which call inc() & dec() or add() & sub() in accordance with
 916   // the product flag UseIncDec value.
 917 
 918   void decl(Register dst);
 919   void decl(Address dst);
 920   void decq(Register dst);
 921   void decq(Address dst);
 922 
 923   void incl(Register dst);
 924   void incl(Address dst);
 925   void incq(Register dst);
 926   void incq(Address dst);
 927 
 928   // New cpus require use of movsd and movss to avoid partial register stall
 929   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 930   // The selection is done in MacroAssembler::movdbl() and movflt().
 931 
 932   // Move Scalar Single-Precision Floating-Point Values
 933   void movss(XMMRegister dst, Address src);
 934   void movss(XMMRegister dst, XMMRegister src);
 935   void movss(Address dst, XMMRegister src);
 936 
 937   // Move Scalar Double-Precision Floating-Point Values
 938   void movsd(XMMRegister dst, Address src);
 939   void movsd(XMMRegister dst, XMMRegister src);
 940   void movsd(Address dst, XMMRegister src);
 941   void movlpd(XMMRegister dst, Address src);
 942 
 943   // New cpus require use of movaps and movapd to avoid partial register stall
 944   // when moving between registers.
 945   void movaps(XMMRegister dst, XMMRegister src);
 946   void movapd(XMMRegister dst, XMMRegister src);
 947 
 948   // End avoid using directly
 949 
 950 
 951   // Instruction prefixes
 952   void prefix(Prefix p);
 953 
 954   public:
 955 
 956   // Creation
 957   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 958     init_attributes();
 959   }
 960 
 961   // Decoding
 962   static address locate_operand(address inst, WhichOperand which);
 963   static address locate_next_instruction(address inst);
 964 
 965   // Utilities
 966   static bool is_polling_page_far() NOT_LP64({ return false;});
 967   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 968                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
 969 
 970   // Generic instructions
 971   // Does 32bit or 64bit as needed for the platform. In some sense these
 972   // belong in macro assembler but there is no need for both varieties to exist
 973 
 974   void init_attributes(void) {
 975     evex_encoding = 0;
 976     input_size_in_bits = 0;
 977     avx_vector_len = AVX_NoVec;
 978     tuple_type = EVEX_ETUP;
 979     is_evex_instruction = false;
 980   }
 981 
 982   void lea(Register dst, Address src);
 983 
 984   void mov(Register dst, Register src);
 985 
 986   void pusha();
 987   void popa();
 988 
 989   void pushf();
 990   void popf();
 991 
 992   void push(int32_t imm32);
 993 
 994   void push(Register src);
 995 
 996   void pop(Register dst);
 997 
 998   // These are dummies to prevent surprise implicit conversions to Register
 999   void push(void* v);
1000   void pop(void* v);
1001 
1002   // These do register sized moves/scans
1003   void rep_mov();
1004   void rep_stos();
1005   void rep_stosb();
1006   void repne_scan();
1007 #ifdef _LP64
1008   void repne_scanl();
1009 #endif
1010 
1011   // Vanilla instructions in lexical order
1012 
1013   void adcl(Address dst, int32_t imm32);
1014   void adcl(Address dst, Register src);
1015   void adcl(Register dst, int32_t imm32);
1016   void adcl(Register dst, Address src);
1017   void adcl(Register dst, Register src);
1018 
1019   void adcq(Register dst, int32_t imm32);
1020   void adcq(Register dst, Address src);
1021   void adcq(Register dst, Register src);
1022 
1023   void addl(Address dst, int32_t imm32);
1024   void addl(Address dst, Register src);
1025   void addl(Register dst, int32_t imm32);
1026   void addl(Register dst, Address src);
1027   void addl(Register dst, Register src);
1028 
1029   void addq(Address dst, int32_t imm32);
1030   void addq(Address dst, Register src);
1031   void addq(Register dst, int32_t imm32);
1032   void addq(Register dst, Address src);
1033   void addq(Register dst, Register src);
1034 
1035 #ifdef _LP64
1036  //Add Unsigned Integers with Carry Flag
1037   void adcxq(Register dst, Register src);
1038 
1039  //Add Unsigned Integers with Overflow Flag
1040   void adoxq(Register dst, Register src);
1041 #endif
1042 
1043   void addr_nop_4();
1044   void addr_nop_5();
1045   void addr_nop_7();
1046   void addr_nop_8();
1047 
1048   // Add Scalar Double-Precision Floating-Point Values
1049   void addsd(XMMRegister dst, Address src);
1050   void addsd(XMMRegister dst, XMMRegister src);
1051 
1052   // Add Scalar Single-Precision Floating-Point Values
1053   void addss(XMMRegister dst, Address src);
1054   void addss(XMMRegister dst, XMMRegister src);
1055 
1056   // AES instructions
1057   void aesdec(XMMRegister dst, Address src);
1058   void aesdec(XMMRegister dst, XMMRegister src);
1059   void aesdeclast(XMMRegister dst, Address src);
1060   void aesdeclast(XMMRegister dst, XMMRegister src);
1061   void aesenc(XMMRegister dst, Address src);
1062   void aesenc(XMMRegister dst, XMMRegister src);
1063   void aesenclast(XMMRegister dst, Address src);
1064   void aesenclast(XMMRegister dst, XMMRegister src);
1065 
1066 
1067   void andl(Address  dst, int32_t imm32);
1068   void andl(Register dst, int32_t imm32);
1069   void andl(Register dst, Address src);
1070   void andl(Register dst, Register src);
1071 
1072   void andq(Address  dst, int32_t imm32);
1073   void andq(Register dst, int32_t imm32);
1074   void andq(Register dst, Address src);
1075   void andq(Register dst, Register src);
1076 
1077   // BMI instructions
1078   void andnl(Register dst, Register src1, Register src2);
1079   void andnl(Register dst, Register src1, Address src2);
1080   void andnq(Register dst, Register src1, Register src2);
1081   void andnq(Register dst, Register src1, Address src2);
1082 
1083   void blsil(Register dst, Register src);
1084   void blsil(Register dst, Address src);
1085   void blsiq(Register dst, Register src);
1086   void blsiq(Register dst, Address src);
1087 
1088   void blsmskl(Register dst, Register src);
1089   void blsmskl(Register dst, Address src);
1090   void blsmskq(Register dst, Register src);
1091   void blsmskq(Register dst, Address src);
1092 
1093   void blsrl(Register dst, Register src);
1094   void blsrl(Register dst, Address src);
1095   void blsrq(Register dst, Register src);
1096   void blsrq(Register dst, Address src);
1097 
1098   void bsfl(Register dst, Register src);
1099   void bsrl(Register dst, Register src);
1100 
1101 #ifdef _LP64
1102   void bsfq(Register dst, Register src);
1103   void bsrq(Register dst, Register src);
1104 #endif
1105 
1106   void bswapl(Register reg);
1107 
1108   void bswapq(Register reg);
1109 
1110   void call(Label& L, relocInfo::relocType rtype);
1111   void call(Register reg);  // push pc; pc <- reg
1112   void call(Address adr);   // push pc; pc <- adr
1113 
1114   void cdql();
1115 
1116   void cdqq();
1117 
1118   void cld();
1119 
1120   void clflush(Address adr);
1121 
1122   void cmovl(Condition cc, Register dst, Register src);
1123   void cmovl(Condition cc, Register dst, Address src);
1124 
1125   void cmovq(Condition cc, Register dst, Register src);
1126   void cmovq(Condition cc, Register dst, Address src);
1127 
1128 
1129   void cmpb(Address dst, int imm8);
1130 
1131   void cmpl(Address dst, int32_t imm32);
1132 
1133   void cmpl(Register dst, int32_t imm32);
1134   void cmpl(Register dst, Register src);
1135   void cmpl(Register dst, Address src);
1136 
1137   void cmpq(Address dst, int32_t imm32);
1138   void cmpq(Address dst, Register src);
1139 
1140   void cmpq(Register dst, int32_t imm32);
1141   void cmpq(Register dst, Register src);
1142   void cmpq(Register dst, Address src);
1143 
1144   // these are dummies used to catch attempting to convert NULL to Register
1145   void cmpl(Register dst, void* junk); // dummy
1146   void cmpq(Register dst, void* junk); // dummy
1147 
1148   void cmpw(Address dst, int imm16);
1149 
1150   void cmpxchg8 (Address adr);
1151 
1152   void cmpxchgb(Register reg, Address adr);
1153   void cmpxchgl(Register reg, Address adr);
1154 
1155   void cmpxchgq(Register reg, Address adr);
1156 
1157   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1158   void comisd(XMMRegister dst, Address src);
1159   void comisd(XMMRegister dst, XMMRegister src);
1160 
1161   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1162   void comiss(XMMRegister dst, Address src);
1163   void comiss(XMMRegister dst, XMMRegister src);
1164 
1165   // Identify processor type and features
1166   void cpuid();
1167 
1168   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1169   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1170   void cvtsd2ss(XMMRegister dst, Address src);
1171 
1172   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1173   void cvtsi2sdl(XMMRegister dst, Register src);
1174   void cvtsi2sdl(XMMRegister dst, Address src);
1175   void cvtsi2sdq(XMMRegister dst, Register src);
1176   void cvtsi2sdq(XMMRegister dst, Address src);
1177 
1178   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1179   void cvtsi2ssl(XMMRegister dst, Register src);
1180   void cvtsi2ssl(XMMRegister dst, Address src);
1181   void cvtsi2ssq(XMMRegister dst, Register src);
1182   void cvtsi2ssq(XMMRegister dst, Address src);
1183 
1184   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1185   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1186 
1187   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1188   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1189 
1190   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1191   void cvtss2sd(XMMRegister dst, XMMRegister src);
1192   void cvtss2sd(XMMRegister dst, Address src);
1193 
1194   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1195   void cvttsd2sil(Register dst, Address src);
1196   void cvttsd2sil(Register dst, XMMRegister src);
1197   void cvttsd2siq(Register dst, XMMRegister src);
1198 
1199   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1200   void cvttss2sil(Register dst, XMMRegister src);
1201   void cvttss2siq(Register dst, XMMRegister src);
1202 
1203   // Divide Scalar Double-Precision Floating-Point Values
1204   void divsd(XMMRegister dst, Address src);
1205   void divsd(XMMRegister dst, XMMRegister src);
1206 
1207   // Divide Scalar Single-Precision Floating-Point Values
1208   void divss(XMMRegister dst, Address src);
1209   void divss(XMMRegister dst, XMMRegister src);
1210 
1211   void emms();
1212 
1213   void fabs();
1214 
1215   void fadd(int i);
1216 
1217   void fadd_d(Address src);
1218   void fadd_s(Address src);
1219 
1220   // "Alternate" versions of x87 instructions place result down in FPU
1221   // stack instead of on TOS
1222 
1223   void fadda(int i); // "alternate" fadd
1224   void faddp(int i = 1);
1225 
1226   void fchs();
1227 
1228   void fcom(int i);
1229 
1230   void fcomp(int i = 1);
1231   void fcomp_d(Address src);
1232   void fcomp_s(Address src);
1233 
1234   void fcompp();
1235 
1236   void fcos();
1237 
1238   void fdecstp();
1239 
1240   void fdiv(int i);
1241   void fdiv_d(Address src);
1242   void fdivr_s(Address src);
1243   void fdiva(int i);  // "alternate" fdiv
1244   void fdivp(int i = 1);
1245 
1246   void fdivr(int i);
1247   void fdivr_d(Address src);
1248   void fdiv_s(Address src);
1249 
1250   void fdivra(int i); // "alternate" reversed fdiv
1251 
1252   void fdivrp(int i = 1);
1253 
1254   void ffree(int i = 0);
1255 
1256   void fild_d(Address adr);
1257   void fild_s(Address adr);
1258 
1259   void fincstp();
1260 
1261   void finit();
1262 
1263   void fist_s (Address adr);
1264   void fistp_d(Address adr);
1265   void fistp_s(Address adr);
1266 
1267   void fld1();
1268 
1269   void fld_d(Address adr);
1270   void fld_s(Address adr);
1271   void fld_s(int index);
1272   void fld_x(Address adr);  // extended-precision (80-bit) format
1273 
1274   void fldcw(Address src);
1275 
1276   void fldenv(Address src);
1277 
1278   void fldlg2();
1279 
1280   void fldln2();
1281 
1282   void fldz();
1283 
1284   void flog();
1285   void flog10();
1286 
1287   void fmul(int i);
1288 
1289   void fmul_d(Address src);
1290   void fmul_s(Address src);
1291 
1292   void fmula(int i);  // "alternate" fmul
1293 
1294   void fmulp(int i = 1);
1295 
1296   void fnsave(Address dst);
1297 
1298   void fnstcw(Address src);
1299 
1300   void fnstsw_ax();
1301 
1302   void fprem();
1303   void fprem1();
1304 
1305   void frstor(Address src);
1306 
1307   void fsin();
1308 
1309   void fsqrt();
1310 
1311   void fst_d(Address adr);
1312   void fst_s(Address adr);
1313 
1314   void fstp_d(Address adr);
1315   void fstp_d(int index);
1316   void fstp_s(Address adr);
1317   void fstp_x(Address adr); // extended-precision (80-bit) format
1318 
1319   void fsub(int i);
1320   void fsub_d(Address src);
1321   void fsub_s(Address src);
1322 
1323   void fsuba(int i);  // "alternate" fsub
1324 
1325   void fsubp(int i = 1);
1326 
1327   void fsubr(int i);
1328   void fsubr_d(Address src);
1329   void fsubr_s(Address src);
1330 
1331   void fsubra(int i); // "alternate" reversed fsub
1332 
1333   void fsubrp(int i = 1);
1334 
1335   void ftan();
1336 
1337   void ftst();
1338 
1339   void fucomi(int i = 1);
1340   void fucomip(int i = 1);
1341 
1342   void fwait();
1343 
1344   void fxch(int i = 1);
1345 
1346   void fxrstor(Address src);
1347 
1348   void fxsave(Address dst);
1349 
1350   void fyl2x();
1351   void frndint();
1352   void f2xm1();
1353   void fldl2e();
1354 
1355   void hlt();
1356 
1357   void idivl(Register src);
1358   void divl(Register src); // Unsigned division
1359 
1360 #ifdef _LP64
1361   void idivq(Register src);
1362 #endif
1363 
1364   void imull(Register dst, Register src);
1365   void imull(Register dst, Register src, int value);
1366   void imull(Register dst, Address src);
1367 
1368 #ifdef _LP64
1369   void imulq(Register dst, Register src);
1370   void imulq(Register dst, Register src, int value);
1371   void imulq(Register dst, Address src);
1372 #endif
1373 
1374   // jcc is the generic conditional branch generator to run-
1375   // time routines, jcc is used for branches to labels. jcc
1376   // takes a branch opcode (cc) and a label (L) and generates
1377   // either a backward branch or a forward branch and links it
1378   // to the label fixup chain. Usage:
1379   //
1380   // Label L;      // unbound label
1381   // jcc(cc, L);   // forward branch to unbound label
1382   // bind(L);      // bind label to the current pc
1383   // jcc(cc, L);   // backward branch to bound label
1384   // bind(L);      // illegal: a label may be bound only once
1385   //
1386   // Note: The same Label can be used for forward and backward branches
1387   // but it may be bound only once.
1388 
1389   void jcc(Condition cc, Label& L, bool maybe_short = true);
1390 
1391   // Conditional jump to a 8-bit offset to L.
1392   // WARNING: be very careful using this for forward jumps.  If the label is
1393   // not bound within an 8-bit offset of this instruction, a run-time error
1394   // will occur.
1395   void jccb(Condition cc, Label& L);
1396 
1397   void jmp(Address entry);    // pc <- entry
1398 
1399   // Label operations & relative jumps (PPUM Appendix D)
1400   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1401 
1402   void jmp(Register entry); // pc <- entry
1403 
1404   // Unconditional 8-bit offset jump to L.
1405   // WARNING: be very careful using this for forward jumps.  If the label is
1406   // not bound within an 8-bit offset of this instruction, a run-time error
1407   // will occur.
1408   void jmpb(Label& L);
1409 
1410   void ldmxcsr( Address src );
1411 
1412   void leal(Register dst, Address src);
1413 
1414   void leaq(Register dst, Address src);
1415 
1416   void lfence();
1417 
1418   void lock();
1419 
1420   void lzcntl(Register dst, Register src);
1421 
1422 #ifdef _LP64
1423   void lzcntq(Register dst, Register src);
1424 #endif
1425 
1426   enum Membar_mask_bits {
1427     StoreStore = 1 << 3,
1428     LoadStore  = 1 << 2,
1429     StoreLoad  = 1 << 1,
1430     LoadLoad   = 1 << 0
1431   };
1432 
1433   // Serializes memory and blows flags
1434   void membar(Membar_mask_bits order_constraint) {
1435     if (os::is_MP()) {
1436       // We only have to handle StoreLoad
1437       if (order_constraint & StoreLoad) {
1438         // All usable chips support "locked" instructions which suffice
1439         // as barriers, and are much faster than the alternative of
1440         // using cpuid instruction. We use here a locked add [esp-C],0.
1441         // This is conveniently otherwise a no-op except for blowing
1442         // flags, and introducing a false dependency on target memory
1443         // location. We can't do anything with flags, but we can avoid
1444         // memory dependencies in the current method by locked-adding
1445         // somewhere else on the stack. Doing [esp+C] will collide with
1446         // something on stack in current method, hence we go for [esp-C].
1447         // It is convenient since it is almost always in data cache, for
1448         // any small C.  We need to step back from SP to avoid data
1449         // dependencies with other things on below SP (callee-saves, for
1450         // example). Without a clear way to figure out the minimal safe
1451         // distance from SP, it makes sense to step back the complete
1452         // cache line, as this will also avoid possible second-order effects
1453         // with locked ops against the cache line. Our choice of offset
1454         // is bounded by x86 operand encoding, which should stay within
1455         // [-128; +127] to have the 8-byte displacement encoding.
1456         //
1457         // Any change to this code may need to revisit other places in
1458         // the code where this idiom is used, in particular the
1459         // orderAccess code.
1460 
1461         int offset = -VM_Version::L1_line_size();
1462         if (offset < -128) {
1463           offset = -128;
1464         }
1465 
1466         lock();
1467         addl(Address(rsp, offset), 0);// Assert the lock# signal here
1468       }
1469     }
1470   }
1471 
1472   void mfence();
1473 
1474   // Moves
1475 
1476   void mov64(Register dst, int64_t imm64);
1477 
1478   void movb(Address dst, Register src);
1479   void movb(Address dst, int imm8);
1480   void movb(Register dst, Address src);
1481 
1482   void kmovq(KRegister dst, KRegister src);
1483   void kmovql(KRegister dst, Register src);
1484   void kmovdl(KRegister dst, Register src);
1485   void kmovq(Address dst, KRegister src);
1486   void kmovq(KRegister dst, Address src);
1487 
1488   void movdl(XMMRegister dst, Register src);
1489   void movdl(Register dst, XMMRegister src);
1490   void movdl(XMMRegister dst, Address src);
1491   void movdl(Address dst, XMMRegister src);
1492 
1493   // Move Double Quadword
1494   void movdq(XMMRegister dst, Register src);
1495   void movdq(Register dst, XMMRegister src);
1496 
1497   // Move Aligned Double Quadword
1498   void movdqa(XMMRegister dst, XMMRegister src);
1499   void movdqa(XMMRegister dst, Address src);
1500 
1501   // Move Unaligned Double Quadword
1502   void movdqu(Address     dst, XMMRegister src);
1503   void movdqu(XMMRegister dst, Address src);
1504   void movdqu(XMMRegister dst, XMMRegister src);
1505 
1506   // Move Unaligned 256bit Vector
1507   void vmovdqu(Address dst, XMMRegister src);
1508   void vmovdqu(XMMRegister dst, Address src);
1509   void vmovdqu(XMMRegister dst, XMMRegister src);
1510 
1511    // Move Unaligned 512bit Vector
1512   void evmovdqu(Address dst, XMMRegister src, int vector_len);
1513   void evmovdqu(XMMRegister dst, Address src, int vector_len);
1514   void evmovdqu(XMMRegister dst, XMMRegister src, int vector_len);
1515 
1516   // Move lower 64bit to high 64bit in 128bit register
1517   void movlhps(XMMRegister dst, XMMRegister src);
1518 
1519   void movl(Register dst, int32_t imm32);
1520   void movl(Address dst, int32_t imm32);
1521   void movl(Register dst, Register src);
1522   void movl(Register dst, Address src);
1523   void movl(Address dst, Register src);
1524 
1525   // These dummies prevent using movl from converting a zero (like NULL) into Register
1526   // by giving the compiler two choices it can't resolve
1527 
1528   void movl(Address  dst, void* junk);
1529   void movl(Register dst, void* junk);
1530 
1531 #ifdef _LP64
1532   void movq(Register dst, Register src);
1533   void movq(Register dst, Address src);
1534   void movq(Address  dst, Register src);
1535 #endif
1536 
1537   void movq(Address     dst, MMXRegister src );
1538   void movq(MMXRegister dst, Address src );
1539 
1540 #ifdef _LP64
1541   // These dummies prevent using movq from converting a zero (like NULL) into Register
1542   // by giving the compiler two choices it can't resolve
1543 
1544   void movq(Address  dst, void* dummy);
1545   void movq(Register dst, void* dummy);
1546 #endif
1547 
1548   // Move Quadword
1549   void movq(Address     dst, XMMRegister src);
1550   void movq(XMMRegister dst, Address src);
1551 
1552   void movsbl(Register dst, Address src);
1553   void movsbl(Register dst, Register src);
1554 
1555 #ifdef _LP64
1556   void movsbq(Register dst, Address src);
1557   void movsbq(Register dst, Register src);
1558 
1559   // Move signed 32bit immediate to 64bit extending sign
1560   void movslq(Address  dst, int32_t imm64);
1561   void movslq(Register dst, int32_t imm64);
1562 
1563   void movslq(Register dst, Address src);
1564   void movslq(Register dst, Register src);
1565   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1566 #endif
1567 
1568   void movswl(Register dst, Address src);
1569   void movswl(Register dst, Register src);
1570 
1571 #ifdef _LP64
1572   void movswq(Register dst, Address src);
1573   void movswq(Register dst, Register src);
1574 #endif
1575 
1576   void movw(Address dst, int imm16);
1577   void movw(Register dst, Address src);
1578   void movw(Address dst, Register src);
1579 
1580   void movzbl(Register dst, Address src);
1581   void movzbl(Register dst, Register src);
1582 
1583 #ifdef _LP64
1584   void movzbq(Register dst, Address src);
1585   void movzbq(Register dst, Register src);
1586 #endif
1587 
1588   void movzwl(Register dst, Address src);
1589   void movzwl(Register dst, Register src);
1590 
1591 #ifdef _LP64
1592   void movzwq(Register dst, Address src);
1593   void movzwq(Register dst, Register src);
1594 #endif
1595 
1596   // Unsigned multiply with RAX destination register
1597   void mull(Address src);
1598   void mull(Register src);
1599 
1600 #ifdef _LP64
1601   void mulq(Address src);
1602   void mulq(Register src);
1603   void mulxq(Register dst1, Register dst2, Register src);
1604 #endif
1605 
1606   // Multiply Scalar Double-Precision Floating-Point Values
1607   void mulsd(XMMRegister dst, Address src);
1608   void mulsd(XMMRegister dst, XMMRegister src);
1609 
1610   // Multiply Scalar Single-Precision Floating-Point Values
1611   void mulss(XMMRegister dst, Address src);
1612   void mulss(XMMRegister dst, XMMRegister src);
1613 
1614   void negl(Register dst);
1615 
1616 #ifdef _LP64
1617   void negq(Register dst);
1618 #endif
1619 
1620   void nop(int i = 1);
1621 
1622   void notl(Register dst);
1623 
1624 #ifdef _LP64
1625   void notq(Register dst);
1626 #endif
1627 
1628   void orl(Address dst, int32_t imm32);
1629   void orl(Register dst, int32_t imm32);
1630   void orl(Register dst, Address src);
1631   void orl(Register dst, Register src);
1632   void orl(Address dst, Register src);
1633 
1634   void orq(Address dst, int32_t imm32);
1635   void orq(Register dst, int32_t imm32);
1636   void orq(Register dst, Address src);
1637   void orq(Register dst, Register src);
1638 
1639   // Pack with unsigned saturation
1640   void packuswb(XMMRegister dst, XMMRegister src);
1641   void packuswb(XMMRegister dst, Address src);
1642   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1643 
1644   // Pemutation of 64bit words
1645   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1646 
1647   void pause();
1648 
1649   // SSE4.2 string instructions
1650   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1651   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1652 
1653   // SSE 4.1 extract
1654   void pextrd(Register dst, XMMRegister src, int imm8);
1655   void pextrq(Register dst, XMMRegister src, int imm8);
1656 
1657   // SSE 4.1 insert
1658   void pinsrd(XMMRegister dst, Register src, int imm8);
1659   void pinsrq(XMMRegister dst, Register src, int imm8);
1660 
1661   // SSE4.1 packed move
1662   void pmovzxbw(XMMRegister dst, XMMRegister src);
1663   void pmovzxbw(XMMRegister dst, Address src);
1664 
1665 #ifndef _LP64 // no 32bit push/pop on amd64
1666   void popl(Address dst);
1667 #endif
1668 
1669 #ifdef _LP64
1670   void popq(Address dst);
1671 #endif
1672 
1673   void popcntl(Register dst, Address src);
1674   void popcntl(Register dst, Register src);
1675 
1676 #ifdef _LP64
1677   void popcntq(Register dst, Address src);
1678   void popcntq(Register dst, Register src);
1679 #endif
1680 
1681   // Prefetches (SSE, SSE2, 3DNOW only)
1682 
1683   void prefetchnta(Address src);
1684   void prefetchr(Address src);
1685   void prefetcht0(Address src);
1686   void prefetcht1(Address src);
1687   void prefetcht2(Address src);
1688   void prefetchw(Address src);
1689 
1690   // Shuffle Bytes
1691   void pshufb(XMMRegister dst, XMMRegister src);
1692   void pshufb(XMMRegister dst, Address src);
1693 
1694   // Shuffle Packed Doublewords
1695   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1696   void pshufd(XMMRegister dst, Address src,     int mode);
1697 
1698   // Shuffle Packed Low Words
1699   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1700   void pshuflw(XMMRegister dst, Address src,     int mode);
1701 
1702   // Shift Right by bytes Logical DoubleQuadword Immediate
1703   void psrldq(XMMRegister dst, int shift);
1704   // Shift Left by bytes Logical DoubleQuadword Immediate
1705   void pslldq(XMMRegister dst, int shift);
1706 
1707   // Logical Compare 128bit
1708   void ptest(XMMRegister dst, XMMRegister src);
1709   void ptest(XMMRegister dst, Address src);
1710   // Logical Compare 256bit
1711   void vptest(XMMRegister dst, XMMRegister src);
1712   void vptest(XMMRegister dst, Address src);
1713 
1714   // Interleave Low Bytes
1715   void punpcklbw(XMMRegister dst, XMMRegister src);
1716   void punpcklbw(XMMRegister dst, Address src);
1717 
1718   // Interleave Low Doublewords
1719   void punpckldq(XMMRegister dst, XMMRegister src);
1720   void punpckldq(XMMRegister dst, Address src);
1721 
1722   // Interleave Low Quadwords
1723   void punpcklqdq(XMMRegister dst, XMMRegister src);
1724 
1725 #ifndef _LP64 // no 32bit push/pop on amd64
1726   void pushl(Address src);
1727 #endif
1728 
1729   void pushq(Address src);
1730 
1731   void rcll(Register dst, int imm8);
1732 
1733   void rclq(Register dst, int imm8);
1734 
1735   void rcrq(Register dst, int imm8);
1736 
1737   void rdtsc();
1738 
1739   void ret(int imm16);
1740 
1741 #ifdef _LP64
1742   void rorq(Register dst, int imm8);
1743   void rorxq(Register dst, Register src, int imm8);
1744 #endif
1745 
1746   void sahf();
1747 
1748   void sarl(Register dst, int imm8);
1749   void sarl(Register dst);
1750 
1751   void sarq(Register dst, int imm8);
1752   void sarq(Register dst);
1753 
1754   void sbbl(Address dst, int32_t imm32);
1755   void sbbl(Register dst, int32_t imm32);
1756   void sbbl(Register dst, Address src);
1757   void sbbl(Register dst, Register src);
1758 
1759   void sbbq(Address dst, int32_t imm32);
1760   void sbbq(Register dst, int32_t imm32);
1761   void sbbq(Register dst, Address src);
1762   void sbbq(Register dst, Register src);
1763 
1764   void setb(Condition cc, Register dst);
1765 
1766   void shldl(Register dst, Register src);
1767 
1768   void shll(Register dst, int imm8);
1769   void shll(Register dst);
1770 
1771   void shlq(Register dst, int imm8);
1772   void shlq(Register dst);
1773 
1774   void shrdl(Register dst, Register src);
1775 
1776   void shrl(Register dst, int imm8);
1777   void shrl(Register dst);
1778 
1779   void shrq(Register dst, int imm8);
1780   void shrq(Register dst);
1781 
1782   void smovl(); // QQQ generic?
1783 
1784   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1785   void sqrtsd(XMMRegister dst, Address src);
1786   void sqrtsd(XMMRegister dst, XMMRegister src);
1787 
1788   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1789   void sqrtss(XMMRegister dst, Address src);
1790   void sqrtss(XMMRegister dst, XMMRegister src);
1791 
1792   void std();
1793 
1794   void stmxcsr( Address dst );
1795 
1796   void subl(Address dst, int32_t imm32);
1797   void subl(Address dst, Register src);
1798   void subl(Register dst, int32_t imm32);
1799   void subl(Register dst, Address src);
1800   void subl(Register dst, Register src);
1801 
1802   void subq(Address dst, int32_t imm32);
1803   void subq(Address dst, Register src);
1804   void subq(Register dst, int32_t imm32);
1805   void subq(Register dst, Address src);
1806   void subq(Register dst, Register src);
1807 
1808   // Force generation of a 4 byte immediate value even if it fits into 8bit
1809   void subl_imm32(Register dst, int32_t imm32);
1810   void subq_imm32(Register dst, int32_t imm32);
1811 
1812   // Subtract Scalar Double-Precision Floating-Point Values
1813   void subsd(XMMRegister dst, Address src);
1814   void subsd(XMMRegister dst, XMMRegister src);
1815 
1816   // Subtract Scalar Single-Precision Floating-Point Values
1817   void subss(XMMRegister dst, Address src);
1818   void subss(XMMRegister dst, XMMRegister src);
1819 
1820   void testb(Register dst, int imm8);
1821 
1822   void testl(Register dst, int32_t imm32);
1823   void testl(Register dst, Register src);
1824   void testl(Register dst, Address src);
1825 
1826   void testq(Register dst, int32_t imm32);
1827   void testq(Register dst, Register src);
1828 
1829   // BMI - count trailing zeros
1830   void tzcntl(Register dst, Register src);
1831   void tzcntq(Register dst, Register src);
1832 
1833   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1834   void ucomisd(XMMRegister dst, Address src);
1835   void ucomisd(XMMRegister dst, XMMRegister src);
1836 
1837   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1838   void ucomiss(XMMRegister dst, Address src);
1839   void ucomiss(XMMRegister dst, XMMRegister src);
1840 
1841   void xabort(int8_t imm8);
1842 
1843   void xaddl(Address dst, Register src);
1844 
1845   void xaddq(Address dst, Register src);
1846 
1847   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1848 
1849   void xchgl(Register reg, Address adr);
1850   void xchgl(Register dst, Register src);
1851 
1852   void xchgq(Register reg, Address adr);
1853   void xchgq(Register dst, Register src);
1854 
1855   void xend();
1856 
1857   // Get Value of Extended Control Register
1858   void xgetbv();
1859 
1860   void xorl(Register dst, int32_t imm32);
1861   void xorl(Register dst, Address src);
1862   void xorl(Register dst, Register src);
1863 
1864   void xorq(Register dst, Address src);
1865   void xorq(Register dst, Register src);
1866 
1867   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1868 
1869   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1870 
1871   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1872   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1873   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1874   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1875   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1876   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1877   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1878   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1879   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1880   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1881   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1882   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1883   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1884   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1885   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1886   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1887 
1888 
1889   //====================VECTOR ARITHMETIC=====================================
1890 
1891   // Add Packed Floating-Point Values
1892   void addpd(XMMRegister dst, XMMRegister src);
1893   void addps(XMMRegister dst, XMMRegister src);
1894   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1895   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1896   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1897   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1898 
1899   // Subtract Packed Floating-Point Values
1900   void subpd(XMMRegister dst, XMMRegister src);
1901   void subps(XMMRegister dst, XMMRegister src);
1902   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1903   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1904   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1905   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1906 
1907   // Multiply Packed Floating-Point Values
1908   void mulpd(XMMRegister dst, XMMRegister src);
1909   void mulps(XMMRegister dst, XMMRegister src);
1910   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1911   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1912   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1913   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1914 
1915   // Divide Packed Floating-Point Values
1916   void divpd(XMMRegister dst, XMMRegister src);
1917   void divps(XMMRegister dst, XMMRegister src);
1918   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1919   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1920   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1921   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1922 
1923   // Bitwise Logical AND of Packed Floating-Point Values
1924   void andpd(XMMRegister dst, XMMRegister src);
1925   void andps(XMMRegister dst, XMMRegister src);
1926   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1927   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1928   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1929   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1930 
1931   // Bitwise Logical XOR of Packed Floating-Point Values
1932   void xorpd(XMMRegister dst, XMMRegister src);
1933   void xorps(XMMRegister dst, XMMRegister src);
1934   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1935   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1936   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1937   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1938 
1939   // Add horizontal packed integers
1940   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1941   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1942   void phaddw(XMMRegister dst, XMMRegister src);
1943   void phaddd(XMMRegister dst, XMMRegister src);
1944 
1945   // Add packed integers
1946   void paddb(XMMRegister dst, XMMRegister src);
1947   void paddw(XMMRegister dst, XMMRegister src);
1948   void paddd(XMMRegister dst, XMMRegister src);
1949   void paddq(XMMRegister dst, XMMRegister src);
1950   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1951   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1952   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1953   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1954   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1955   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1956   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1957   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1958 
1959   // Sub packed integers
1960   void psubb(XMMRegister dst, XMMRegister src);
1961   void psubw(XMMRegister dst, XMMRegister src);
1962   void psubd(XMMRegister dst, XMMRegister src);
1963   void psubq(XMMRegister dst, XMMRegister src);
1964   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1965   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1966   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1967   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1968   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1969   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1970   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1971   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1972 
1973   // Multiply packed integers (only shorts and ints)
1974   void pmullw(XMMRegister dst, XMMRegister src);
1975   void pmulld(XMMRegister dst, XMMRegister src);
1976   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1977   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1978   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1979   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1980   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1981   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1982 
1983   // Shift left packed integers
1984   void psllw(XMMRegister dst, int shift);
1985   void pslld(XMMRegister dst, int shift);
1986   void psllq(XMMRegister dst, int shift);
1987   void psllw(XMMRegister dst, XMMRegister shift);
1988   void pslld(XMMRegister dst, XMMRegister shift);
1989   void psllq(XMMRegister dst, XMMRegister shift);
1990   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1991   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1992   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1993   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1994   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1995   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
1996 
1997   // Logical shift right packed integers
1998   void psrlw(XMMRegister dst, int shift);
1999   void psrld(XMMRegister dst, int shift);
2000   void psrlq(XMMRegister dst, int shift);
2001   void psrlw(XMMRegister dst, XMMRegister shift);
2002   void psrld(XMMRegister dst, XMMRegister shift);
2003   void psrlq(XMMRegister dst, XMMRegister shift);
2004   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2005   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2006   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2007   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2008   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2009   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2010 
2011   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
2012   void psraw(XMMRegister dst, int shift);
2013   void psrad(XMMRegister dst, int shift);
2014   void psraw(XMMRegister dst, XMMRegister shift);
2015   void psrad(XMMRegister dst, XMMRegister shift);
2016   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2017   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2018   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2019   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2020 
2021   // And packed integers
2022   void pand(XMMRegister dst, XMMRegister src);
2023   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2024   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2025 
2026   // Or packed integers
2027   void por(XMMRegister dst, XMMRegister src);
2028   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2029   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2030 
2031   // Xor packed integers
2032   void pxor(XMMRegister dst, XMMRegister src);
2033   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2034   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2035 
2036   // Copy low 128bit into high 128bit of YMM registers.
2037   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2038   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2039   void vextractf128h(XMMRegister dst, XMMRegister src);
2040   void vextracti128h(XMMRegister dst, XMMRegister src);
2041 
2042   // Load/store high 128bit of YMM registers which does not destroy other half.
2043   void vinsertf128h(XMMRegister dst, Address src);
2044   void vinserti128h(XMMRegister dst, Address src);
2045   void vextractf128h(Address dst, XMMRegister src);
2046   void vextracti128h(Address dst, XMMRegister src);
2047 
2048   // Copy low 256bit into high 256bit of ZMM registers.
2049   void vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2050   void vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2051   void vextracti64x4h(XMMRegister dst, XMMRegister src);
2052   void vextractf64x4h(XMMRegister dst, XMMRegister src);
2053   void vextractf64x4h(Address dst, XMMRegister src);
2054   void vinsertf64x4h(XMMRegister dst, Address src);
2055 
2056   // Copy targeted 128bit segments of the ZMM registers
2057   void vextracti64x2h(XMMRegister dst, XMMRegister src, int value);
2058   void vextractf64x2h(XMMRegister dst, XMMRegister src, int value);
2059   void vextractf32x4h(XMMRegister dst, XMMRegister src, int value);
2060 
2061   // duplicate 4-bytes integer data from src into 8 locations in dest
2062   void vpbroadcastd(XMMRegister dst, XMMRegister src);
2063 
2064   // duplicate n-bytes integer data from src into vector_len locations in dest
2065   void evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2066   void evpbroadcastb(XMMRegister dst, Address src, int vector_len);
2067   void evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2068   void evpbroadcastw(XMMRegister dst, Address src, int vector_len);
2069   void evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2070   void evpbroadcastd(XMMRegister dst, Address src, int vector_len);
2071   void evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2072   void evpbroadcastq(XMMRegister dst, Address src, int vector_len);
2073 
2074   void evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2075   void evpbroadcastss(XMMRegister dst, Address src, int vector_len);
2076   void evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2077   void evpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2078 
2079   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2080   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2081   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2082   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2083 
2084   // Carry-Less Multiplication Quadword
2085   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2086   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2087 
2088   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2089   // to avoid transaction penalty between AVX and SSE states. There is no
2090   // penalty if legacy SSE instructions are encoded using VEX prefix because
2091   // they always clear upper 128 bits. It should be used before calling
2092   // runtime code and native libraries.
2093   void vzeroupper();
2094 
2095  protected:
2096   // Next instructions require address alignment 16 bytes SSE mode.
2097   // They should be called only from corresponding MacroAssembler instructions.
2098   void andpd(XMMRegister dst, Address src);
2099   void andps(XMMRegister dst, Address src);
2100   void xorpd(XMMRegister dst, Address src);
2101   void xorps(XMMRegister dst, Address src);
2102 
2103 };
2104 
2105 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP