1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1073   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1074   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1075   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1076   Address saved_mark_addr(lock_reg, 0);
1077 
1078   if (PrintBiasedLockingStatistics && counters == NULL) {
1079     counters = BiasedLocking::counters();
1080   }
1081   // Biased locking
1082   // See whether the lock is currently biased toward our thread and
1083   // whether the epoch is still valid
1084   // Note that the runtime guarantees sufficient alignment of JavaThread
1085   // pointers to allow age to be placed into low bits
1086   // First check to see whether biasing is even enabled for this object
1087   Label cas_label;
1088   int null_check_offset = -1;
1089   if (!swap_reg_contains_mark) {
1090     null_check_offset = offset();
1091     movptr(swap_reg, mark_addr);
1092   }
1093   movptr(tmp_reg, swap_reg);
1094   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1095   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1096   jcc(Assembler::notEqual, cas_label);
1097   // The bias pattern is present in the object's header. Need to check
1098   // whether the bias owner and the epoch are both still current.
1099 #ifndef _LP64
1100   // Note that because there is no current thread register on x86_32 we
1101   // need to store off the mark word we read out of the object to
1102   // avoid reloading it and needing to recheck invariants below. This
1103   // store is unfortunate but it makes the overall code shorter and
1104   // simpler.
1105   movptr(saved_mark_addr, swap_reg);
1106 #endif
1107   if (swap_reg_contains_mark) {
1108     null_check_offset = offset();
1109   }
1110   load_prototype_header(tmp_reg, obj_reg);
1111 #ifdef _LP64
1112   orptr(tmp_reg, r15_thread);
1113   xorptr(tmp_reg, swap_reg);
1114   Register header_reg = tmp_reg;
1115 #else
1116   xorptr(tmp_reg, swap_reg);
1117   get_thread(swap_reg);
1118   xorptr(swap_reg, tmp_reg);
1119   Register header_reg = swap_reg;
1120 #endif
1121   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1122   if (counters != NULL) {
1123     cond_inc32(Assembler::zero,
1124                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1125   }
1126   jcc(Assembler::equal, done);
1127 
1128   Label try_revoke_bias;
1129   Label try_rebias;
1130 
1131   // At this point we know that the header has the bias pattern and
1132   // that we are not the bias owner in the current epoch. We need to
1133   // figure out more details about the state of the header in order to
1134   // know what operations can be legally performed on the object's
1135   // header.
1136 
1137   // If the low three bits in the xor result aren't clear, that means
1138   // the prototype header is no longer biased and we have to revoke
1139   // the bias on this object.
1140   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1141   jccb(Assembler::notZero, try_revoke_bias);
1142 
1143   // Biasing is still enabled for this data type. See whether the
1144   // epoch of the current bias is still valid, meaning that the epoch
1145   // bits of the mark word are equal to the epoch bits of the
1146   // prototype header. (Note that the prototype header's epoch bits
1147   // only change at a safepoint.) If not, attempt to rebias the object
1148   // toward the current thread. Note that we must be absolutely sure
1149   // that the current epoch is invalid in order to do this because
1150   // otherwise the manipulations it performs on the mark word are
1151   // illegal.
1152   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1153   jccb(Assembler::notZero, try_rebias);
1154 
1155   // The epoch of the current bias is still valid but we know nothing
1156   // about the owner; it might be set or it might be clear. Try to
1157   // acquire the bias of the object using an atomic operation. If this
1158   // fails we will go in to the runtime to revoke the object's bias.
1159   // Note that we first construct the presumed unbiased header so we
1160   // don't accidentally blow away another thread's valid bias.
1161   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1162   andptr(swap_reg,
1163          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1164 #ifdef _LP64
1165   movptr(tmp_reg, swap_reg);
1166   orptr(tmp_reg, r15_thread);
1167 #else
1168   get_thread(tmp_reg);
1169   orptr(tmp_reg, swap_reg);
1170 #endif
1171   if (os::is_MP()) {
1172     lock();
1173   }
1174   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1175   // If the biasing toward our thread failed, this means that
1176   // another thread succeeded in biasing it toward itself and we
1177   // need to revoke that bias. The revocation will occur in the
1178   // interpreter runtime in the slow case.
1179   if (counters != NULL) {
1180     cond_inc32(Assembler::zero,
1181                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1182   }
1183   if (slow_case != NULL) {
1184     jcc(Assembler::notZero, *slow_case);
1185   }
1186   jmp(done);
1187 
1188   bind(try_rebias);
1189   // At this point we know the epoch has expired, meaning that the
1190   // current "bias owner", if any, is actually invalid. Under these
1191   // circumstances _only_, we are allowed to use the current header's
1192   // value as the comparison value when doing the cas to acquire the
1193   // bias in the current epoch. In other words, we allow transfer of
1194   // the bias from one thread to another directly in this situation.
1195   //
1196   // FIXME: due to a lack of registers we currently blow away the age
1197   // bits in this situation. Should attempt to preserve them.
1198   load_prototype_header(tmp_reg, obj_reg);
1199 #ifdef _LP64
1200   orptr(tmp_reg, r15_thread);
1201 #else
1202   get_thread(swap_reg);
1203   orptr(tmp_reg, swap_reg);
1204   movptr(swap_reg, saved_mark_addr);
1205 #endif
1206   if (os::is_MP()) {
1207     lock();
1208   }
1209   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1210   // If the biasing toward our thread failed, then another thread
1211   // succeeded in biasing it toward itself and we need to revoke that
1212   // bias. The revocation will occur in the runtime in the slow case.
1213   if (counters != NULL) {
1214     cond_inc32(Assembler::zero,
1215                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1216   }
1217   if (slow_case != NULL) {
1218     jcc(Assembler::notZero, *slow_case);
1219   }
1220   jmp(done);
1221 
1222   bind(try_revoke_bias);
1223   // The prototype mark in the klass doesn't have the bias bit set any
1224   // more, indicating that objects of this data type are not supposed
1225   // to be biased any more. We are going to try to reset the mark of
1226   // this object to the prototype value and fall through to the
1227   // CAS-based locking scheme. Note that if our CAS fails, it means
1228   // that another thread raced us for the privilege of revoking the
1229   // bias of this particular object, so it's okay to continue in the
1230   // normal locking code.
1231   //
1232   // FIXME: due to a lack of registers we currently blow away the age
1233   // bits in this situation. Should attempt to preserve them.
1234   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1235   load_prototype_header(tmp_reg, obj_reg);
1236   if (os::is_MP()) {
1237     lock();
1238   }
1239   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1240   // Fall through to the normal CAS-based lock, because no matter what
1241   // the result of the above CAS, some thread must have succeeded in
1242   // removing the bias bit from the object's header.
1243   if (counters != NULL) {
1244     cond_inc32(Assembler::zero,
1245                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1246   }
1247 
1248   bind(cas_label);
1249 
1250   return null_check_offset;
1251 }
1252 
1253 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1254   assert(UseBiasedLocking, "why call this otherwise?");
1255 
1256   // Check for biased locking unlock case, which is a no-op
1257   // Note: we do not have to check the thread ID for two reasons.
1258   // First, the interpreter checks for IllegalMonitorStateException at
1259   // a higher level. Second, if the bias was revoked while we held the
1260   // lock, the object could not be rebiased toward another thread, so
1261   // the bias bit would be clear.
1262   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1263   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1264   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1265   jcc(Assembler::equal, done);
1266 }
1267 
1268 #ifdef COMPILER2
1269 
1270 #if INCLUDE_RTM_OPT
1271 
1272 // Update rtm_counters based on abort status
1273 // input: abort_status
1274 //        rtm_counters (RTMLockingCounters*)
1275 // flags are killed
1276 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1277 
1278   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1279   if (PrintPreciseRTMLockingStatistics) {
1280     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1281       Label check_abort;
1282       testl(abort_status, (1<<i));
1283       jccb(Assembler::equal, check_abort);
1284       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1285       bind(check_abort);
1286     }
1287   }
1288 }
1289 
1290 // Branch if (random & (count-1) != 0), count is 2^n
1291 // tmp, scr and flags are killed
1292 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1293   assert(tmp == rax, "");
1294   assert(scr == rdx, "");
1295   rdtsc(); // modifies EDX:EAX
1296   andptr(tmp, count-1);
1297   jccb(Assembler::notZero, brLabel);
1298 }
1299 
1300 // Perform abort ratio calculation, set no_rtm bit if high ratio
1301 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1302 // tmpReg, rtm_counters_Reg and flags are killed
1303 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1304                                                  Register rtm_counters_Reg,
1305                                                  RTMLockingCounters* rtm_counters,
1306                                                  Metadata* method_data) {
1307   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1308 
1309   if (RTMLockingCalculationDelay > 0) {
1310     // Delay calculation
1311     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1312     testptr(tmpReg, tmpReg);
1313     jccb(Assembler::equal, L_done);
1314   }
1315   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1316   //   Aborted transactions = abort_count * 100
1317   //   All transactions = total_count *  RTMTotalCountIncrRate
1318   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1319 
1320   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1321   cmpptr(tmpReg, RTMAbortThreshold);
1322   jccb(Assembler::below, L_check_always_rtm2);
1323   imulptr(tmpReg, tmpReg, 100);
1324 
1325   Register scrReg = rtm_counters_Reg;
1326   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1327   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1328   imulptr(scrReg, scrReg, RTMAbortRatio);
1329   cmpptr(tmpReg, scrReg);
1330   jccb(Assembler::below, L_check_always_rtm1);
1331   if (method_data != NULL) {
1332     // set rtm_state to "no rtm" in MDO
1333     mov_metadata(tmpReg, method_data);
1334     if (os::is_MP()) {
1335       lock();
1336     }
1337     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1338   }
1339   jmpb(L_done);
1340   bind(L_check_always_rtm1);
1341   // Reload RTMLockingCounters* address
1342   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1343   bind(L_check_always_rtm2);
1344   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1345   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1346   jccb(Assembler::below, L_done);
1347   if (method_data != NULL) {
1348     // set rtm_state to "always rtm" in MDO
1349     mov_metadata(tmpReg, method_data);
1350     if (os::is_MP()) {
1351       lock();
1352     }
1353     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1354   }
1355   bind(L_done);
1356 }
1357 
1358 // Update counters and perform abort ratio calculation
1359 // input:  abort_status_Reg
1360 // rtm_counters_Reg, flags are killed
1361 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1362                                    Register rtm_counters_Reg,
1363                                    RTMLockingCounters* rtm_counters,
1364                                    Metadata* method_data,
1365                                    bool profile_rtm) {
1366 
1367   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1368   // update rtm counters based on rax value at abort
1369   // reads abort_status_Reg, updates flags
1370   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1371   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1372   if (profile_rtm) {
1373     // Save abort status because abort_status_Reg is used by following code.
1374     if (RTMRetryCount > 0) {
1375       push(abort_status_Reg);
1376     }
1377     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1378     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1379     // restore abort status
1380     if (RTMRetryCount > 0) {
1381       pop(abort_status_Reg);
1382     }
1383   }
1384 }
1385 
1386 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1387 // inputs: retry_count_Reg
1388 //       : abort_status_Reg
1389 // output: retry_count_Reg decremented by 1
1390 // flags are killed
1391 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1392   Label doneRetry;
1393   assert(abort_status_Reg == rax, "");
1394   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1395   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1396   // if reason is in 0x6 and retry count != 0 then retry
1397   andptr(abort_status_Reg, 0x6);
1398   jccb(Assembler::zero, doneRetry);
1399   testl(retry_count_Reg, retry_count_Reg);
1400   jccb(Assembler::zero, doneRetry);
1401   pause();
1402   decrementl(retry_count_Reg);
1403   jmp(retryLabel);
1404   bind(doneRetry);
1405 }
1406 
1407 // Spin and retry if lock is busy,
1408 // inputs: box_Reg (monitor address)
1409 //       : retry_count_Reg
1410 // output: retry_count_Reg decremented by 1
1411 //       : clear z flag if retry count exceeded
1412 // tmp_Reg, scr_Reg, flags are killed
1413 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1414                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1415   Label SpinLoop, SpinExit, doneRetry;
1416   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1417 
1418   testl(retry_count_Reg, retry_count_Reg);
1419   jccb(Assembler::zero, doneRetry);
1420   decrementl(retry_count_Reg);
1421   movptr(scr_Reg, RTMSpinLoopCount);
1422 
1423   bind(SpinLoop);
1424   pause();
1425   decrementl(scr_Reg);
1426   jccb(Assembler::lessEqual, SpinExit);
1427   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1428   testptr(tmp_Reg, tmp_Reg);
1429   jccb(Assembler::notZero, SpinLoop);
1430 
1431   bind(SpinExit);
1432   jmp(retryLabel);
1433   bind(doneRetry);
1434   incrementl(retry_count_Reg); // clear z flag
1435 }
1436 
1437 // Use RTM for normal stack locks
1438 // Input: objReg (object to lock)
1439 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1440                                        Register retry_on_abort_count_Reg,
1441                                        RTMLockingCounters* stack_rtm_counters,
1442                                        Metadata* method_data, bool profile_rtm,
1443                                        Label& DONE_LABEL, Label& IsInflated) {
1444   assert(UseRTMForStackLocks, "why call this otherwise?");
1445   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1446   assert(tmpReg == rax, "");
1447   assert(scrReg == rdx, "");
1448   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1449 
1450   if (RTMRetryCount > 0) {
1451     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1452     bind(L_rtm_retry);
1453   }
1454   movptr(tmpReg, Address(objReg, 0));
1455   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1456   jcc(Assembler::notZero, IsInflated);
1457 
1458   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1459     Label L_noincrement;
1460     if (RTMTotalCountIncrRate > 1) {
1461       // tmpReg, scrReg and flags are killed
1462       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1463     }
1464     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1465     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1466     bind(L_noincrement);
1467   }
1468   xbegin(L_on_abort);
1469   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1470   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1471   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1472   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1473 
1474   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1475   if (UseRTMXendForLockBusy) {
1476     xend();
1477     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1478     jmp(L_decrement_retry);
1479   }
1480   else {
1481     xabort(0);
1482   }
1483   bind(L_on_abort);
1484   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1485     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1486   }
1487   bind(L_decrement_retry);
1488   if (RTMRetryCount > 0) {
1489     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1490     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1491   }
1492 }
1493 
1494 // Use RTM for inflating locks
1495 // inputs: objReg (object to lock)
1496 //         boxReg (on-stack box address (displaced header location) - KILLED)
1497 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1498 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1499                                           Register scrReg, Register retry_on_busy_count_Reg,
1500                                           Register retry_on_abort_count_Reg,
1501                                           RTMLockingCounters* rtm_counters,
1502                                           Metadata* method_data, bool profile_rtm,
1503                                           Label& DONE_LABEL) {
1504   assert(UseRTMLocking, "why call this otherwise?");
1505   assert(tmpReg == rax, "");
1506   assert(scrReg == rdx, "");
1507   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1508   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1509 
1510   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1511   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1512   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1513 
1514   if (RTMRetryCount > 0) {
1515     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1516     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1517     bind(L_rtm_retry);
1518   }
1519   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1520     Label L_noincrement;
1521     if (RTMTotalCountIncrRate > 1) {
1522       // tmpReg, scrReg and flags are killed
1523       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1524     }
1525     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1526     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1527     bind(L_noincrement);
1528   }
1529   xbegin(L_on_abort);
1530   movptr(tmpReg, Address(objReg, 0));
1531   movptr(tmpReg, Address(tmpReg, owner_offset));
1532   testptr(tmpReg, tmpReg);
1533   jcc(Assembler::zero, DONE_LABEL);
1534   if (UseRTMXendForLockBusy) {
1535     xend();
1536     jmp(L_decrement_retry);
1537   }
1538   else {
1539     xabort(0);
1540   }
1541   bind(L_on_abort);
1542   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1543   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1544     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1545   }
1546   if (RTMRetryCount > 0) {
1547     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1548     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1549   }
1550 
1551   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1552   testptr(tmpReg, tmpReg) ;
1553   jccb(Assembler::notZero, L_decrement_retry) ;
1554 
1555   // Appears unlocked - try to swing _owner from null to non-null.
1556   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1557 #ifdef _LP64
1558   Register threadReg = r15_thread;
1559 #else
1560   get_thread(scrReg);
1561   Register threadReg = scrReg;
1562 #endif
1563   if (os::is_MP()) {
1564     lock();
1565   }
1566   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1567 
1568   if (RTMRetryCount > 0) {
1569     // success done else retry
1570     jccb(Assembler::equal, DONE_LABEL) ;
1571     bind(L_decrement_retry);
1572     // Spin and retry if lock is busy.
1573     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1574   }
1575   else {
1576     bind(L_decrement_retry);
1577   }
1578 }
1579 
1580 #endif //  INCLUDE_RTM_OPT
1581 
1582 // Fast_Lock and Fast_Unlock used by C2
1583 
1584 // Because the transitions from emitted code to the runtime
1585 // monitorenter/exit helper stubs are so slow it's critical that
1586 // we inline both the stack-locking fast-path and the inflated fast path.
1587 //
1588 // See also: cmpFastLock and cmpFastUnlock.
1589 //
1590 // What follows is a specialized inline transliteration of the code
1591 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1592 // another option would be to emit TrySlowEnter and TrySlowExit methods
1593 // at startup-time.  These methods would accept arguments as
1594 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1595 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1596 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1597 // In practice, however, the # of lock sites is bounded and is usually small.
1598 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1599 // if the processor uses simple bimodal branch predictors keyed by EIP
1600 // Since the helper routines would be called from multiple synchronization
1601 // sites.
1602 //
1603 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1604 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1605 // to those specialized methods.  That'd give us a mostly platform-independent
1606 // implementation that the JITs could optimize and inline at their pleasure.
1607 // Done correctly, the only time we'd need to cross to native could would be
1608 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1609 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1610 // (b) explicit barriers or fence operations.
1611 //
1612 // TODO:
1613 //
1614 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1615 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1616 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1617 //    the lock operators would typically be faster than reifying Self.
1618 //
1619 // *  Ideally I'd define the primitives as:
1620 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1621 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1622 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1623 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1624 //    Furthermore the register assignments are overconstrained, possibly resulting in
1625 //    sub-optimal code near the synchronization site.
1626 //
1627 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1628 //    Alternately, use a better sp-proximity test.
1629 //
1630 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1631 //    Either one is sufficient to uniquely identify a thread.
1632 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1633 //
1634 // *  Intrinsify notify() and notifyAll() for the common cases where the
1635 //    object is locked by the calling thread but the waitlist is empty.
1636 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1637 //
1638 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1639 //    But beware of excessive branch density on AMD Opterons.
1640 //
1641 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1642 //    or failure of the fast-path.  If the fast-path fails then we pass
1643 //    control to the slow-path, typically in C.  In Fast_Lock and
1644 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1645 //    will emit a conditional branch immediately after the node.
1646 //    So we have branches to branches and lots of ICC.ZF games.
1647 //    Instead, it might be better to have C2 pass a "FailureLabel"
1648 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1649 //    will drop through the node.  ICC.ZF is undefined at exit.
1650 //    In the case of failure, the node will branch directly to the
1651 //    FailureLabel
1652 
1653 
1654 // obj: object to lock
1655 // box: on-stack box address (displaced header location) - KILLED
1656 // rax,: tmp -- KILLED
1657 // scr: tmp -- KILLED
1658 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1659                                Register scrReg, Register cx1Reg, Register cx2Reg,
1660                                BiasedLockingCounters* counters,
1661                                RTMLockingCounters* rtm_counters,
1662                                RTMLockingCounters* stack_rtm_counters,
1663                                Metadata* method_data,
1664                                bool use_rtm, bool profile_rtm) {
1665   // Ensure the register assignents are disjoint
1666   assert(tmpReg == rax, "");
1667 
1668   if (use_rtm) {
1669     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1670   } else {
1671     assert(cx1Reg == noreg, "");
1672     assert(cx2Reg == noreg, "");
1673     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1674   }
1675 
1676   if (counters != NULL) {
1677     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1678   }
1679   if (EmitSync & 1) {
1680       // set box->dhw = markOopDesc::unused_mark()
1681       // Force all sync thru slow-path: slow_enter() and slow_exit()
1682       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1683       cmpptr (rsp, (int32_t)NULL_WORD);
1684   } else {
1685     // Possible cases that we'll encounter in fast_lock
1686     // ------------------------------------------------
1687     // * Inflated
1688     //    -- unlocked
1689     //    -- Locked
1690     //       = by self
1691     //       = by other
1692     // * biased
1693     //    -- by Self
1694     //    -- by other
1695     // * neutral
1696     // * stack-locked
1697     //    -- by self
1698     //       = sp-proximity test hits
1699     //       = sp-proximity test generates false-negative
1700     //    -- by other
1701     //
1702 
1703     Label IsInflated, DONE_LABEL;
1704 
1705     // it's stack-locked, biased or neutral
1706     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1707     // order to reduce the number of conditional branches in the most common cases.
1708     // Beware -- there's a subtle invariant that fetch of the markword
1709     // at [FETCH], below, will never observe a biased encoding (*101b).
1710     // If this invariant is not held we risk exclusion (safety) failure.
1711     if (UseBiasedLocking && !UseOptoBiasInlining) {
1712       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1713     }
1714 
1715 #if INCLUDE_RTM_OPT
1716     if (UseRTMForStackLocks && use_rtm) {
1717       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1718                         stack_rtm_counters, method_data, profile_rtm,
1719                         DONE_LABEL, IsInflated);
1720     }
1721 #endif // INCLUDE_RTM_OPT
1722 
1723     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1724     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1725     jccb(Assembler::notZero, IsInflated);
1726 
1727     // Attempt stack-locking ...
1728     orptr (tmpReg, markOopDesc::unlocked_value);
1729     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1730     if (os::is_MP()) {
1731       lock();
1732     }
1733     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1734     if (counters != NULL) {
1735       cond_inc32(Assembler::equal,
1736                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1737     }
1738     jcc(Assembler::equal, DONE_LABEL);           // Success
1739 
1740     // Recursive locking.
1741     // The object is stack-locked: markword contains stack pointer to BasicLock.
1742     // Locked by current thread if difference with current SP is less than one page.
1743     subptr(tmpReg, rsp);
1744     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1745     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1746     movptr(Address(boxReg, 0), tmpReg);
1747     if (counters != NULL) {
1748       cond_inc32(Assembler::equal,
1749                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1750     }
1751     jmp(DONE_LABEL);
1752 
1753     bind(IsInflated);
1754     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1755 
1756 #if INCLUDE_RTM_OPT
1757     // Use the same RTM locking code in 32- and 64-bit VM.
1758     if (use_rtm) {
1759       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1760                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1761     } else {
1762 #endif // INCLUDE_RTM_OPT
1763 
1764 #ifndef _LP64
1765     // The object is inflated.
1766 
1767     // boxReg refers to the on-stack BasicLock in the current frame.
1768     // We'd like to write:
1769     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1770     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1771     // additional latency as we have another ST in the store buffer that must drain.
1772 
1773     if (EmitSync & 8192) {
1774        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1775        get_thread (scrReg);
1776        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1777        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1778        if (os::is_MP()) {
1779          lock();
1780        }
1781        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1782     } else
1783     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1784        // register juggle because we need tmpReg for cmpxchgptr below
1785        movptr(scrReg, boxReg);
1786        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1787 
1788        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1789        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1790           // prefetchw [eax + Offset(_owner)-2]
1791           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1792        }
1793 
1794        if ((EmitSync & 64) == 0) {
1795          // Optimistic form: consider XORL tmpReg,tmpReg
1796          movptr(tmpReg, NULL_WORD);
1797        } else {
1798          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1799          // Test-And-CAS instead of CAS
1800          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1801          testptr(tmpReg, tmpReg);                   // Locked ?
1802          jccb  (Assembler::notZero, DONE_LABEL);
1803        }
1804 
1805        // Appears unlocked - try to swing _owner from null to non-null.
1806        // Ideally, I'd manifest "Self" with get_thread and then attempt
1807        // to CAS the register containing Self into m->Owner.
1808        // But we don't have enough registers, so instead we can either try to CAS
1809        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1810        // we later store "Self" into m->Owner.  Transiently storing a stack address
1811        // (rsp or the address of the box) into  m->owner is harmless.
1812        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1813        if (os::is_MP()) {
1814          lock();
1815        }
1816        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1817        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1818        // If we weren't able to swing _owner from NULL to the BasicLock
1819        // then take the slow path.
1820        jccb  (Assembler::notZero, DONE_LABEL);
1821        // update _owner from BasicLock to thread
1822        get_thread (scrReg);                    // beware: clobbers ICCs
1823        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1824        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1825 
1826        // If the CAS fails we can either retry or pass control to the slow-path.
1827        // We use the latter tactic.
1828        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1829        // If the CAS was successful ...
1830        //   Self has acquired the lock
1831        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1832        // Intentional fall-through into DONE_LABEL ...
1833     } else {
1834        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1835        movptr(boxReg, tmpReg);
1836 
1837        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1838        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1839           // prefetchw [eax + Offset(_owner)-2]
1840           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1841        }
1842 
1843        if ((EmitSync & 64) == 0) {
1844          // Optimistic form
1845          xorptr  (tmpReg, tmpReg);
1846        } else {
1847          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1848          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1849          testptr(tmpReg, tmpReg);                   // Locked ?
1850          jccb  (Assembler::notZero, DONE_LABEL);
1851        }
1852 
1853        // Appears unlocked - try to swing _owner from null to non-null.
1854        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1855        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1856        get_thread (scrReg);
1857        if (os::is_MP()) {
1858          lock();
1859        }
1860        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1861 
1862        // If the CAS fails we can either retry or pass control to the slow-path.
1863        // We use the latter tactic.
1864        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1865        // If the CAS was successful ...
1866        //   Self has acquired the lock
1867        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1868        // Intentional fall-through into DONE_LABEL ...
1869     }
1870 #else // _LP64
1871     // It's inflated
1872     movq(scrReg, tmpReg);
1873     xorq(tmpReg, tmpReg);
1874 
1875     if (os::is_MP()) {
1876       lock();
1877     }
1878     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1879     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1880     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1881     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1882     // Intentional fall-through into DONE_LABEL ...
1883     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1884 #endif // _LP64
1885 #if INCLUDE_RTM_OPT
1886     } // use_rtm()
1887 #endif
1888     // DONE_LABEL is a hot target - we'd really like to place it at the
1889     // start of cache line by padding with NOPs.
1890     // See the AMD and Intel software optimization manuals for the
1891     // most efficient "long" NOP encodings.
1892     // Unfortunately none of our alignment mechanisms suffice.
1893     bind(DONE_LABEL);
1894 
1895     // At DONE_LABEL the icc ZFlag is set as follows ...
1896     // Fast_Unlock uses the same protocol.
1897     // ZFlag == 1 -> Success
1898     // ZFlag == 0 -> Failure - force control through the slow-path
1899   }
1900 }
1901 
1902 // obj: object to unlock
1903 // box: box address (displaced header location), killed.  Must be EAX.
1904 // tmp: killed, cannot be obj nor box.
1905 //
1906 // Some commentary on balanced locking:
1907 //
1908 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1909 // Methods that don't have provably balanced locking are forced to run in the
1910 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1911 // The interpreter provides two properties:
1912 // I1:  At return-time the interpreter automatically and quietly unlocks any
1913 //      objects acquired the current activation (frame).  Recall that the
1914 //      interpreter maintains an on-stack list of locks currently held by
1915 //      a frame.
1916 // I2:  If a method attempts to unlock an object that is not held by the
1917 //      the frame the interpreter throws IMSX.
1918 //
1919 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1920 // B() doesn't have provably balanced locking so it runs in the interpreter.
1921 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1922 // is still locked by A().
1923 //
1924 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1925 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1926 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1927 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1928 // Arguably given that the spec legislates the JNI case as undefined our implementation
1929 // could reasonably *avoid* checking owner in Fast_Unlock().
1930 // In the interest of performance we elide m->Owner==Self check in unlock.
1931 // A perfectly viable alternative is to elide the owner check except when
1932 // Xcheck:jni is enabled.
1933 
1934 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1935   assert(boxReg == rax, "");
1936   assert_different_registers(objReg, boxReg, tmpReg);
1937 
1938   if (EmitSync & 4) {
1939     // Disable - inhibit all inlining.  Force control through the slow-path
1940     cmpptr (rsp, 0);
1941   } else {
1942     Label DONE_LABEL, Stacked, CheckSucc;
1943 
1944     // Critically, the biased locking test must have precedence over
1945     // and appear before the (box->dhw == 0) recursive stack-lock test.
1946     if (UseBiasedLocking && !UseOptoBiasInlining) {
1947        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1948     }
1949 
1950 #if INCLUDE_RTM_OPT
1951     if (UseRTMForStackLocks && use_rtm) {
1952       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1953       Label L_regular_unlock;
1954       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1955       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1956       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1957       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1958       xend();                                       // otherwise end...
1959       jmp(DONE_LABEL);                              // ... and we're done
1960       bind(L_regular_unlock);
1961     }
1962 #endif
1963 
1964     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1965     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1966     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1967     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1968     jccb  (Assembler::zero, Stacked);
1969 
1970     // It's inflated.
1971 #if INCLUDE_RTM_OPT
1972     if (use_rtm) {
1973       Label L_regular_inflated_unlock;
1974       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1975       movptr(boxReg, Address(tmpReg, owner_offset));
1976       testptr(boxReg, boxReg);
1977       jccb(Assembler::notZero, L_regular_inflated_unlock);
1978       xend();
1979       jmpb(DONE_LABEL);
1980       bind(L_regular_inflated_unlock);
1981     }
1982 #endif
1983 
1984     // Despite our balanced locking property we still check that m->_owner == Self
1985     // as java routines or native JNI code called by this thread might
1986     // have released the lock.
1987     // Refer to the comments in synchronizer.cpp for how we might encode extra
1988     // state in _succ so we can avoid fetching EntryList|cxq.
1989     //
1990     // I'd like to add more cases in fast_lock() and fast_unlock() --
1991     // such as recursive enter and exit -- but we have to be wary of
1992     // I$ bloat, T$ effects and BP$ effects.
1993     //
1994     // If there's no contention try a 1-0 exit.  That is, exit without
1995     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1996     // we detect and recover from the race that the 1-0 exit admits.
1997     //
1998     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1999     // before it STs null into _owner, releasing the lock.  Updates
2000     // to data protected by the critical section must be visible before
2001     // we drop the lock (and thus before any other thread could acquire
2002     // the lock and observe the fields protected by the lock).
2003     // IA32's memory-model is SPO, so STs are ordered with respect to
2004     // each other and there's no need for an explicit barrier (fence).
2005     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2006 #ifndef _LP64
2007     get_thread (boxReg);
2008     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2009       // prefetchw [ebx + Offset(_owner)-2]
2010       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2011     }
2012 
2013     // Note that we could employ various encoding schemes to reduce
2014     // the number of loads below (currently 4) to just 2 or 3.
2015     // Refer to the comments in synchronizer.cpp.
2016     // In practice the chain of fetches doesn't seem to impact performance, however.
2017     xorptr(boxReg, boxReg);
2018     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2019        // Attempt to reduce branch density - AMD's branch predictor.
2020        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2021        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2022        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2023        jccb  (Assembler::notZero, DONE_LABEL);
2024        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2025        jmpb  (DONE_LABEL);
2026     } else {
2027        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2028        jccb  (Assembler::notZero, DONE_LABEL);
2029        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2030        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2031        jccb  (Assembler::notZero, CheckSucc);
2032        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2033        jmpb  (DONE_LABEL);
2034     }
2035 
2036     // The Following code fragment (EmitSync & 65536) improves the performance of
2037     // contended applications and contended synchronization microbenchmarks.
2038     // Unfortunately the emission of the code - even though not executed - causes regressions
2039     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2040     // with an equal number of never-executed NOPs results in the same regression.
2041     // We leave it off by default.
2042 
2043     if ((EmitSync & 65536) != 0) {
2044        Label LSuccess, LGoSlowPath ;
2045 
2046        bind  (CheckSucc);
2047 
2048        // Optional pre-test ... it's safe to elide this
2049        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2050        jccb(Assembler::zero, LGoSlowPath);
2051 
2052        // We have a classic Dekker-style idiom:
2053        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2054        // There are a number of ways to implement the barrier:
2055        // (1) lock:andl &m->_owner, 0
2056        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2057        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2058        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2059        // (2) If supported, an explicit MFENCE is appealing.
2060        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2061        //     particularly if the write-buffer is full as might be the case if
2062        //     if stores closely precede the fence or fence-equivalent instruction.
2063        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2064        //     as the situation has changed with Nehalem and Shanghai.
2065        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2066        //     The $lines underlying the top-of-stack should be in M-state.
2067        //     The locked add instruction is serializing, of course.
2068        // (4) Use xchg, which is serializing
2069        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2070        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2071        //     The integer condition codes will tell us if succ was 0.
2072        //     Since _succ and _owner should reside in the same $line and
2073        //     we just stored into _owner, it's likely that the $line
2074        //     remains in M-state for the lock:orl.
2075        //
2076        // We currently use (3), although it's likely that switching to (2)
2077        // is correct for the future.
2078 
2079        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2080        if (os::is_MP()) {
2081          lock(); addptr(Address(rsp, 0), 0);
2082        }
2083        // Ratify _succ remains non-null
2084        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2085        jccb  (Assembler::notZero, LSuccess);
2086 
2087        xorptr(boxReg, boxReg);                  // box is really EAX
2088        if (os::is_MP()) { lock(); }
2089        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2090        // There's no successor so we tried to regrab the lock with the
2091        // placeholder value. If that didn't work, then another thread
2092        // grabbed the lock so we're done (and exit was a success).
2093        jccb  (Assembler::notEqual, LSuccess);
2094        // Since we're low on registers we installed rsp as a placeholding in _owner.
2095        // Now install Self over rsp.  This is safe as we're transitioning from
2096        // non-null to non=null
2097        get_thread (boxReg);
2098        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2099        // Intentional fall-through into LGoSlowPath ...
2100 
2101        bind  (LGoSlowPath);
2102        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2103        jmpb  (DONE_LABEL);
2104 
2105        bind  (LSuccess);
2106        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2107        jmpb  (DONE_LABEL);
2108     }
2109 
2110     bind (Stacked);
2111     // It's not inflated and it's not recursively stack-locked and it's not biased.
2112     // It must be stack-locked.
2113     // Try to reset the header to displaced header.
2114     // The "box" value on the stack is stable, so we can reload
2115     // and be assured we observe the same value as above.
2116     movptr(tmpReg, Address(boxReg, 0));
2117     if (os::is_MP()) {
2118       lock();
2119     }
2120     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2121     // Intention fall-thru into DONE_LABEL
2122 
2123     // DONE_LABEL is a hot target - we'd really like to place it at the
2124     // start of cache line by padding with NOPs.
2125     // See the AMD and Intel software optimization manuals for the
2126     // most efficient "long" NOP encodings.
2127     // Unfortunately none of our alignment mechanisms suffice.
2128     if ((EmitSync & 65536) == 0) {
2129        bind (CheckSucc);
2130     }
2131 #else // _LP64
2132     // It's inflated
2133     if (EmitSync & 1024) {
2134       // Emit code to check that _owner == Self
2135       // We could fold the _owner test into subsequent code more efficiently
2136       // than using a stand-alone check, but since _owner checking is off by
2137       // default we don't bother. We also might consider predicating the
2138       // _owner==Self check on Xcheck:jni or running on a debug build.
2139       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2140       xorptr(boxReg, r15_thread);
2141     } else {
2142       xorptr(boxReg, boxReg);
2143     }
2144     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2145     jccb  (Assembler::notZero, DONE_LABEL);
2146     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2147     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2148     jccb  (Assembler::notZero, CheckSucc);
2149     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2150     jmpb  (DONE_LABEL);
2151 
2152     if ((EmitSync & 65536) == 0) {
2153       // Try to avoid passing control into the slow_path ...
2154       Label LSuccess, LGoSlowPath ;
2155       bind  (CheckSucc);
2156 
2157       // The following optional optimization can be elided if necessary
2158       // Effectively: if (succ == null) goto SlowPath
2159       // The code reduces the window for a race, however,
2160       // and thus benefits performance.
2161       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2162       jccb  (Assembler::zero, LGoSlowPath);
2163 
2164       if ((EmitSync & 16) && os::is_MP()) {
2165         orptr(boxReg, boxReg);
2166         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2167       } else {
2168         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2169         if (os::is_MP()) {
2170           // Memory barrier/fence
2171           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2172           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2173           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2174           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2175           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2176           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2177           lock(); addl(Address(rsp, 0), 0);
2178         }
2179       }
2180       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2181       jccb  (Assembler::notZero, LSuccess);
2182 
2183       // Rare inopportune interleaving - race.
2184       // The successor vanished in the small window above.
2185       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2186       // We need to ensure progress and succession.
2187       // Try to reacquire the lock.
2188       // If that fails then the new owner is responsible for succession and this
2189       // thread needs to take no further action and can exit via the fast path (success).
2190       // If the re-acquire succeeds then pass control into the slow path.
2191       // As implemented, this latter mode is horrible because we generated more
2192       // coherence traffic on the lock *and* artifically extended the critical section
2193       // length while by virtue of passing control into the slow path.
2194 
2195       // box is really RAX -- the following CMPXCHG depends on that binding
2196       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2197       movptr(boxReg, (int32_t)NULL_WORD);
2198       if (os::is_MP()) { lock(); }
2199       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       // There's no successor so we tried to regrab the lock.
2201       // If that didn't work, then another thread grabbed the
2202       // lock so we're done (and exit was a success).
2203       jccb  (Assembler::notEqual, LSuccess);
2204       // Intentional fall-through into slow-path
2205 
2206       bind  (LGoSlowPath);
2207       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2208       jmpb  (DONE_LABEL);
2209 
2210       bind  (LSuccess);
2211       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2212       jmpb  (DONE_LABEL);
2213     }
2214 
2215     bind  (Stacked);
2216     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2217     if (os::is_MP()) { lock(); }
2218     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2219 
2220     if (EmitSync & 65536) {
2221        bind (CheckSucc);
2222     }
2223 #endif
2224     bind(DONE_LABEL);
2225   }
2226 }
2227 #endif // COMPILER2
2228 
2229 void MacroAssembler::c2bool(Register x) {
2230   // implements x == 0 ? 0 : 1
2231   // note: must only look at least-significant byte of x
2232   //       since C-style booleans are stored in one byte
2233   //       only! (was bug)
2234   andl(x, 0xFF);
2235   setb(Assembler::notZero, x);
2236 }
2237 
2238 // Wouldn't need if AddressLiteral version had new name
2239 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2240   Assembler::call(L, rtype);
2241 }
2242 
2243 void MacroAssembler::call(Register entry) {
2244   Assembler::call(entry);
2245 }
2246 
2247 void MacroAssembler::call(AddressLiteral entry) {
2248   if (reachable(entry)) {
2249     Assembler::call_literal(entry.target(), entry.rspec());
2250   } else {
2251     lea(rscratch1, entry);
2252     Assembler::call(rscratch1);
2253   }
2254 }
2255 
2256 void MacroAssembler::ic_call(address entry) {
2257   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2258   movptr(rax, (intptr_t)Universe::non_oop_word());
2259   call(AddressLiteral(entry, rh));
2260 }
2261 
2262 // Implementation of call_VM versions
2263 
2264 void MacroAssembler::call_VM(Register oop_result,
2265                              address entry_point,
2266                              bool check_exceptions) {
2267   Label C, E;
2268   call(C, relocInfo::none);
2269   jmp(E);
2270 
2271   bind(C);
2272   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2273   ret(0);
2274 
2275   bind(E);
2276 }
2277 
2278 void MacroAssembler::call_VM(Register oop_result,
2279                              address entry_point,
2280                              Register arg_1,
2281                              bool check_exceptions) {
2282   Label C, E;
2283   call(C, relocInfo::none);
2284   jmp(E);
2285 
2286   bind(C);
2287   pass_arg1(this, arg_1);
2288   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2289   ret(0);
2290 
2291   bind(E);
2292 }
2293 
2294 void MacroAssembler::call_VM(Register oop_result,
2295                              address entry_point,
2296                              Register arg_1,
2297                              Register arg_2,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304 
2305   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2306 
2307   pass_arg2(this, arg_2);
2308   pass_arg1(this, arg_1);
2309   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2310   ret(0);
2311 
2312   bind(E);
2313 }
2314 
2315 void MacroAssembler::call_VM(Register oop_result,
2316                              address entry_point,
2317                              Register arg_1,
2318                              Register arg_2,
2319                              Register arg_3,
2320                              bool check_exceptions) {
2321   Label C, E;
2322   call(C, relocInfo::none);
2323   jmp(E);
2324 
2325   bind(C);
2326 
2327   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2328   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2329   pass_arg3(this, arg_3);
2330 
2331   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2332   pass_arg2(this, arg_2);
2333 
2334   pass_arg1(this, arg_1);
2335   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2336   ret(0);
2337 
2338   bind(E);
2339 }
2340 
2341 void MacroAssembler::call_VM(Register oop_result,
2342                              Register last_java_sp,
2343                              address entry_point,
2344                              int number_of_arguments,
2345                              bool check_exceptions) {
2346   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2347   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2348 }
2349 
2350 void MacroAssembler::call_VM(Register oop_result,
2351                              Register last_java_sp,
2352                              address entry_point,
2353                              Register arg_1,
2354                              bool check_exceptions) {
2355   pass_arg1(this, arg_1);
2356   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2357 }
2358 
2359 void MacroAssembler::call_VM(Register oop_result,
2360                              Register last_java_sp,
2361                              address entry_point,
2362                              Register arg_1,
2363                              Register arg_2,
2364                              bool check_exceptions) {
2365 
2366   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2367   pass_arg2(this, arg_2);
2368   pass_arg1(this, arg_1);
2369   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2370 }
2371 
2372 void MacroAssembler::call_VM(Register oop_result,
2373                              Register last_java_sp,
2374                              address entry_point,
2375                              Register arg_1,
2376                              Register arg_2,
2377                              Register arg_3,
2378                              bool check_exceptions) {
2379   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2380   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2381   pass_arg3(this, arg_3);
2382   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2383   pass_arg2(this, arg_2);
2384   pass_arg1(this, arg_1);
2385   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2386 }
2387 
2388 void MacroAssembler::super_call_VM(Register oop_result,
2389                                    Register last_java_sp,
2390                                    address entry_point,
2391                                    int number_of_arguments,
2392                                    bool check_exceptions) {
2393   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2394   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2395 }
2396 
2397 void MacroAssembler::super_call_VM(Register oop_result,
2398                                    Register last_java_sp,
2399                                    address entry_point,
2400                                    Register arg_1,
2401                                    bool check_exceptions) {
2402   pass_arg1(this, arg_1);
2403   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2404 }
2405 
2406 void MacroAssembler::super_call_VM(Register oop_result,
2407                                    Register last_java_sp,
2408                                    address entry_point,
2409                                    Register arg_1,
2410                                    Register arg_2,
2411                                    bool check_exceptions) {
2412 
2413   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2414   pass_arg2(this, arg_2);
2415   pass_arg1(this, arg_1);
2416   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2417 }
2418 
2419 void MacroAssembler::super_call_VM(Register oop_result,
2420                                    Register last_java_sp,
2421                                    address entry_point,
2422                                    Register arg_1,
2423                                    Register arg_2,
2424                                    Register arg_3,
2425                                    bool check_exceptions) {
2426   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2427   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2428   pass_arg3(this, arg_3);
2429   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2430   pass_arg2(this, arg_2);
2431   pass_arg1(this, arg_1);
2432   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2433 }
2434 
2435 void MacroAssembler::call_VM_base(Register oop_result,
2436                                   Register java_thread,
2437                                   Register last_java_sp,
2438                                   address  entry_point,
2439                                   int      number_of_arguments,
2440                                   bool     check_exceptions) {
2441   // determine java_thread register
2442   if (!java_thread->is_valid()) {
2443 #ifdef _LP64
2444     java_thread = r15_thread;
2445 #else
2446     java_thread = rdi;
2447     get_thread(java_thread);
2448 #endif // LP64
2449   }
2450   // determine last_java_sp register
2451   if (!last_java_sp->is_valid()) {
2452     last_java_sp = rsp;
2453   }
2454   // debugging support
2455   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2456   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2457 #ifdef ASSERT
2458   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2459   // r12 is the heapbase.
2460   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2461 #endif // ASSERT
2462 
2463   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2464   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2465 
2466   // push java thread (becomes first argument of C function)
2467 
2468   NOT_LP64(push(java_thread); number_of_arguments++);
2469   LP64_ONLY(mov(c_rarg0, r15_thread));
2470 
2471   // set last Java frame before call
2472   assert(last_java_sp != rbp, "can't use ebp/rbp");
2473 
2474   // Only interpreter should have to set fp
2475   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2476 
2477   // do the call, remove parameters
2478   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2479 
2480   // restore the thread (cannot use the pushed argument since arguments
2481   // may be overwritten by C code generated by an optimizing compiler);
2482   // however can use the register value directly if it is callee saved.
2483   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2484     // rdi & rsi (also r15) are callee saved -> nothing to do
2485 #ifdef ASSERT
2486     guarantee(java_thread != rax, "change this code");
2487     push(rax);
2488     { Label L;
2489       get_thread(rax);
2490       cmpptr(java_thread, rax);
2491       jcc(Assembler::equal, L);
2492       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2493       bind(L);
2494     }
2495     pop(rax);
2496 #endif
2497   } else {
2498     get_thread(java_thread);
2499   }
2500   // reset last Java frame
2501   // Only interpreter should have to clear fp
2502   reset_last_Java_frame(java_thread, true, false);
2503 
2504 #ifndef CC_INTERP
2505    // C++ interp handles this in the interpreter
2506   check_and_handle_popframe(java_thread);
2507   check_and_handle_earlyret(java_thread);
2508 #endif /* CC_INTERP */
2509 
2510   if (check_exceptions) {
2511     // check for pending exceptions (java_thread is set upon return)
2512     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2513 #ifndef _LP64
2514     jump_cc(Assembler::notEqual,
2515             RuntimeAddress(StubRoutines::forward_exception_entry()));
2516 #else
2517     // This used to conditionally jump to forward_exception however it is
2518     // possible if we relocate that the branch will not reach. So we must jump
2519     // around so we can always reach
2520 
2521     Label ok;
2522     jcc(Assembler::equal, ok);
2523     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2524     bind(ok);
2525 #endif // LP64
2526   }
2527 
2528   // get oop result if there is one and reset the value in the thread
2529   if (oop_result->is_valid()) {
2530     get_vm_result(oop_result, java_thread);
2531   }
2532 }
2533 
2534 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2535 
2536   // Calculate the value for last_Java_sp
2537   // somewhat subtle. call_VM does an intermediate call
2538   // which places a return address on the stack just under the
2539   // stack pointer as the user finsihed with it. This allows
2540   // use to retrieve last_Java_pc from last_Java_sp[-1].
2541   // On 32bit we then have to push additional args on the stack to accomplish
2542   // the actual requested call. On 64bit call_VM only can use register args
2543   // so the only extra space is the return address that call_VM created.
2544   // This hopefully explains the calculations here.
2545 
2546 #ifdef _LP64
2547   // We've pushed one address, correct last_Java_sp
2548   lea(rax, Address(rsp, wordSize));
2549 #else
2550   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2551 #endif // LP64
2552 
2553   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2554 
2555 }
2556 
2557 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2558   call_VM_leaf_base(entry_point, number_of_arguments);
2559 }
2560 
2561 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2562   pass_arg0(this, arg_0);
2563   call_VM_leaf(entry_point, 1);
2564 }
2565 
2566 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2567 
2568   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2569   pass_arg1(this, arg_1);
2570   pass_arg0(this, arg_0);
2571   call_VM_leaf(entry_point, 2);
2572 }
2573 
2574 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2575   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2576   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2577   pass_arg2(this, arg_2);
2578   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2579   pass_arg1(this, arg_1);
2580   pass_arg0(this, arg_0);
2581   call_VM_leaf(entry_point, 3);
2582 }
2583 
2584 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2585   pass_arg0(this, arg_0);
2586   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2587 }
2588 
2589 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2590 
2591   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2592   pass_arg1(this, arg_1);
2593   pass_arg0(this, arg_0);
2594   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2595 }
2596 
2597 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2598   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2599   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2600   pass_arg2(this, arg_2);
2601   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2602   pass_arg1(this, arg_1);
2603   pass_arg0(this, arg_0);
2604   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2605 }
2606 
2607 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2608   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2609   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2610   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2611   pass_arg3(this, arg_3);
2612   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2613   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2614   pass_arg2(this, arg_2);
2615   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2616   pass_arg1(this, arg_1);
2617   pass_arg0(this, arg_0);
2618   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2619 }
2620 
2621 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2622   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2623   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2624   verify_oop(oop_result, "broken oop in call_VM_base");
2625 }
2626 
2627 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2628   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2629   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2630 }
2631 
2632 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2633 }
2634 
2635 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2636 }
2637 
2638 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2639   if (reachable(src1)) {
2640     cmpl(as_Address(src1), imm);
2641   } else {
2642     lea(rscratch1, src1);
2643     cmpl(Address(rscratch1, 0), imm);
2644   }
2645 }
2646 
2647 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2648   assert(!src2.is_lval(), "use cmpptr");
2649   if (reachable(src2)) {
2650     cmpl(src1, as_Address(src2));
2651   } else {
2652     lea(rscratch1, src2);
2653     cmpl(src1, Address(rscratch1, 0));
2654   }
2655 }
2656 
2657 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2658   Assembler::cmpl(src1, imm);
2659 }
2660 
2661 void MacroAssembler::cmp32(Register src1, Address src2) {
2662   Assembler::cmpl(src1, src2);
2663 }
2664 
2665 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2666   ucomisd(opr1, opr2);
2667 
2668   Label L;
2669   if (unordered_is_less) {
2670     movl(dst, -1);
2671     jcc(Assembler::parity, L);
2672     jcc(Assembler::below , L);
2673     movl(dst, 0);
2674     jcc(Assembler::equal , L);
2675     increment(dst);
2676   } else { // unordered is greater
2677     movl(dst, 1);
2678     jcc(Assembler::parity, L);
2679     jcc(Assembler::above , L);
2680     movl(dst, 0);
2681     jcc(Assembler::equal , L);
2682     decrementl(dst);
2683   }
2684   bind(L);
2685 }
2686 
2687 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2688   ucomiss(opr1, opr2);
2689 
2690   Label L;
2691   if (unordered_is_less) {
2692     movl(dst, -1);
2693     jcc(Assembler::parity, L);
2694     jcc(Assembler::below , L);
2695     movl(dst, 0);
2696     jcc(Assembler::equal , L);
2697     increment(dst);
2698   } else { // unordered is greater
2699     movl(dst, 1);
2700     jcc(Assembler::parity, L);
2701     jcc(Assembler::above , L);
2702     movl(dst, 0);
2703     jcc(Assembler::equal , L);
2704     decrementl(dst);
2705   }
2706   bind(L);
2707 }
2708 
2709 
2710 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2711   if (reachable(src1)) {
2712     cmpb(as_Address(src1), imm);
2713   } else {
2714     lea(rscratch1, src1);
2715     cmpb(Address(rscratch1, 0), imm);
2716   }
2717 }
2718 
2719 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2720 #ifdef _LP64
2721   if (src2.is_lval()) {
2722     movptr(rscratch1, src2);
2723     Assembler::cmpq(src1, rscratch1);
2724   } else if (reachable(src2)) {
2725     cmpq(src1, as_Address(src2));
2726   } else {
2727     lea(rscratch1, src2);
2728     Assembler::cmpq(src1, Address(rscratch1, 0));
2729   }
2730 #else
2731   if (src2.is_lval()) {
2732     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2733   } else {
2734     cmpl(src1, as_Address(src2));
2735   }
2736 #endif // _LP64
2737 }
2738 
2739 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2740   assert(src2.is_lval(), "not a mem-mem compare");
2741 #ifdef _LP64
2742   // moves src2's literal address
2743   movptr(rscratch1, src2);
2744   Assembler::cmpq(src1, rscratch1);
2745 #else
2746   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2747 #endif // _LP64
2748 }
2749 
2750 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2751   if (reachable(adr)) {
2752     if (os::is_MP())
2753       lock();
2754     cmpxchgptr(reg, as_Address(adr));
2755   } else {
2756     lea(rscratch1, adr);
2757     if (os::is_MP())
2758       lock();
2759     cmpxchgptr(reg, Address(rscratch1, 0));
2760   }
2761 }
2762 
2763 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2764   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2765 }
2766 
2767 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2768   if (reachable(src)) {
2769     Assembler::comisd(dst, as_Address(src));
2770   } else {
2771     lea(rscratch1, src);
2772     Assembler::comisd(dst, Address(rscratch1, 0));
2773   }
2774 }
2775 
2776 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2777   if (reachable(src)) {
2778     Assembler::comiss(dst, as_Address(src));
2779   } else {
2780     lea(rscratch1, src);
2781     Assembler::comiss(dst, Address(rscratch1, 0));
2782   }
2783 }
2784 
2785 
2786 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2787   Condition negated_cond = negate_condition(cond);
2788   Label L;
2789   jcc(negated_cond, L);
2790   pushf(); // Preserve flags
2791   atomic_incl(counter_addr);
2792   popf();
2793   bind(L);
2794 }
2795 
2796 int MacroAssembler::corrected_idivl(Register reg) {
2797   // Full implementation of Java idiv and irem; checks for
2798   // special case as described in JVM spec., p.243 & p.271.
2799   // The function returns the (pc) offset of the idivl
2800   // instruction - may be needed for implicit exceptions.
2801   //
2802   //         normal case                           special case
2803   //
2804   // input : rax,: dividend                         min_int
2805   //         reg: divisor   (may not be rax,/rdx)   -1
2806   //
2807   // output: rax,: quotient  (= rax, idiv reg)       min_int
2808   //         rdx: remainder (= rax, irem reg)       0
2809   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2810   const int min_int = 0x80000000;
2811   Label normal_case, special_case;
2812 
2813   // check for special case
2814   cmpl(rax, min_int);
2815   jcc(Assembler::notEqual, normal_case);
2816   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2817   cmpl(reg, -1);
2818   jcc(Assembler::equal, special_case);
2819 
2820   // handle normal case
2821   bind(normal_case);
2822   cdql();
2823   int idivl_offset = offset();
2824   idivl(reg);
2825 
2826   // normal and special case exit
2827   bind(special_case);
2828 
2829   return idivl_offset;
2830 }
2831 
2832 
2833 
2834 void MacroAssembler::decrementl(Register reg, int value) {
2835   if (value == min_jint) {subl(reg, value) ; return; }
2836   if (value <  0) { incrementl(reg, -value); return; }
2837   if (value == 0) {                        ; return; }
2838   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2839   /* else */      { subl(reg, value)       ; return; }
2840 }
2841 
2842 void MacroAssembler::decrementl(Address dst, int value) {
2843   if (value == min_jint) {subl(dst, value) ; return; }
2844   if (value <  0) { incrementl(dst, -value); return; }
2845   if (value == 0) {                        ; return; }
2846   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2847   /* else */      { subl(dst, value)       ; return; }
2848 }
2849 
2850 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2851   assert (shift_value > 0, "illegal shift value");
2852   Label _is_positive;
2853   testl (reg, reg);
2854   jcc (Assembler::positive, _is_positive);
2855   int offset = (1 << shift_value) - 1 ;
2856 
2857   if (offset == 1) {
2858     incrementl(reg);
2859   } else {
2860     addl(reg, offset);
2861   }
2862 
2863   bind (_is_positive);
2864   sarl(reg, shift_value);
2865 }
2866 
2867 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2868   if (reachable(src)) {
2869     Assembler::divsd(dst, as_Address(src));
2870   } else {
2871     lea(rscratch1, src);
2872     Assembler::divsd(dst, Address(rscratch1, 0));
2873   }
2874 }
2875 
2876 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2877   if (reachable(src)) {
2878     Assembler::divss(dst, as_Address(src));
2879   } else {
2880     lea(rscratch1, src);
2881     Assembler::divss(dst, Address(rscratch1, 0));
2882   }
2883 }
2884 
2885 // !defined(COMPILER2) is because of stupid core builds
2886 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2887 void MacroAssembler::empty_FPU_stack() {
2888   if (VM_Version::supports_mmx()) {
2889     emms();
2890   } else {
2891     for (int i = 8; i-- > 0; ) ffree(i);
2892   }
2893 }
2894 #endif // !LP64 || C1 || !C2
2895 
2896 
2897 // Defines obj, preserves var_size_in_bytes
2898 void MacroAssembler::eden_allocate(Register obj,
2899                                    Register var_size_in_bytes,
2900                                    int con_size_in_bytes,
2901                                    Register t1,
2902                                    Label& slow_case) {
2903   assert(obj == rax, "obj must be in rax, for cmpxchg");
2904   assert_different_registers(obj, var_size_in_bytes, t1);
2905   if (!Universe::heap()->supports_inline_contig_alloc()) {
2906     jmp(slow_case);
2907   } else {
2908     Register end = t1;
2909     Label retry;
2910     bind(retry);
2911     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2912     movptr(obj, heap_top);
2913     if (var_size_in_bytes == noreg) {
2914       lea(end, Address(obj, con_size_in_bytes));
2915     } else {
2916       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2917     }
2918     // if end < obj then we wrapped around => object too long => slow case
2919     cmpptr(end, obj);
2920     jcc(Assembler::below, slow_case);
2921     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2922     jcc(Assembler::above, slow_case);
2923     // Compare obj with the top addr, and if still equal, store the new top addr in
2924     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2925     // it otherwise. Use lock prefix for atomicity on MPs.
2926     locked_cmpxchgptr(end, heap_top);
2927     jcc(Assembler::notEqual, retry);
2928   }
2929 }
2930 
2931 void MacroAssembler::enter() {
2932   push(rbp);
2933   mov(rbp, rsp);
2934 }
2935 
2936 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2937 void MacroAssembler::fat_nop() {
2938   if (UseAddressNop) {
2939     addr_nop_5();
2940   } else {
2941     emit_int8(0x26); // es:
2942     emit_int8(0x2e); // cs:
2943     emit_int8(0x64); // fs:
2944     emit_int8(0x65); // gs:
2945     emit_int8((unsigned char)0x90);
2946   }
2947 }
2948 
2949 void MacroAssembler::fcmp(Register tmp) {
2950   fcmp(tmp, 1, true, true);
2951 }
2952 
2953 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2954   assert(!pop_right || pop_left, "usage error");
2955   if (VM_Version::supports_cmov()) {
2956     assert(tmp == noreg, "unneeded temp");
2957     if (pop_left) {
2958       fucomip(index);
2959     } else {
2960       fucomi(index);
2961     }
2962     if (pop_right) {
2963       fpop();
2964     }
2965   } else {
2966     assert(tmp != noreg, "need temp");
2967     if (pop_left) {
2968       if (pop_right) {
2969         fcompp();
2970       } else {
2971         fcomp(index);
2972       }
2973     } else {
2974       fcom(index);
2975     }
2976     // convert FPU condition into eflags condition via rax,
2977     save_rax(tmp);
2978     fwait(); fnstsw_ax();
2979     sahf();
2980     restore_rax(tmp);
2981   }
2982   // condition codes set as follows:
2983   //
2984   // CF (corresponds to C0) if x < y
2985   // PF (corresponds to C2) if unordered
2986   // ZF (corresponds to C3) if x = y
2987 }
2988 
2989 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2990   fcmp2int(dst, unordered_is_less, 1, true, true);
2991 }
2992 
2993 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2994   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2995   Label L;
2996   if (unordered_is_less) {
2997     movl(dst, -1);
2998     jcc(Assembler::parity, L);
2999     jcc(Assembler::below , L);
3000     movl(dst, 0);
3001     jcc(Assembler::equal , L);
3002     increment(dst);
3003   } else { // unordered is greater
3004     movl(dst, 1);
3005     jcc(Assembler::parity, L);
3006     jcc(Assembler::above , L);
3007     movl(dst, 0);
3008     jcc(Assembler::equal , L);
3009     decrementl(dst);
3010   }
3011   bind(L);
3012 }
3013 
3014 void MacroAssembler::fld_d(AddressLiteral src) {
3015   fld_d(as_Address(src));
3016 }
3017 
3018 void MacroAssembler::fld_s(AddressLiteral src) {
3019   fld_s(as_Address(src));
3020 }
3021 
3022 void MacroAssembler::fld_x(AddressLiteral src) {
3023   Assembler::fld_x(as_Address(src));
3024 }
3025 
3026 void MacroAssembler::fldcw(AddressLiteral src) {
3027   Assembler::fldcw(as_Address(src));
3028 }
3029 
3030 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3031   if (reachable(src)) {
3032     Assembler::mulpd(dst, as_Address(src));
3033   } else {
3034     lea(rscratch1, src);
3035     Assembler::mulpd(dst, Address(rscratch1, 0));
3036   }
3037 }
3038 
3039 void MacroAssembler::pow_exp_core_encoding() {
3040   // kills rax, rcx, rdx
3041   subptr(rsp,sizeof(jdouble));
3042   // computes 2^X. Stack: X ...
3043   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3044   // keep it on the thread's stack to compute 2^int(X) later
3045   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3046   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3047   fld_s(0);                 // Stack: X X ...
3048   frndint();                // Stack: int(X) X ...
3049   fsuba(1);                 // Stack: int(X) X-int(X) ...
3050   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3051   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3052   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3053   faddp(1);                 // Stack: 2^(X-int(X))
3054   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3055   // shift int(X)+1023 to exponent position.
3056   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3057   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3058   // values so detect them and set result to NaN.
3059   movl(rax,Address(rsp,0));
3060   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3061   addl(rax, 1023);
3062   movl(rdx,rax);
3063   shll(rax,20);
3064   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3065   addl(rdx,1);
3066   // Check that 1 < int(X)+1023+1 < 2048
3067   // in 3 steps:
3068   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3069   // 2- (int(X)+1023+1)&-2048 != 0
3070   // 3- (int(X)+1023+1)&-2048 != 1
3071   // Do 2- first because addl just updated the flags.
3072   cmov32(Assembler::equal,rax,rcx);
3073   cmpl(rdx,1);
3074   cmov32(Assembler::equal,rax,rcx);
3075   testl(rdx,rcx);
3076   cmov32(Assembler::notEqual,rax,rcx);
3077   movl(Address(rsp,4),rax);
3078   movl(Address(rsp,0),0);
3079   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3080   addptr(rsp,sizeof(jdouble));
3081 }
3082 
3083 void MacroAssembler::increase_precision() {
3084   subptr(rsp, BytesPerWord);
3085   fnstcw(Address(rsp, 0));
3086   movl(rax, Address(rsp, 0));
3087   orl(rax, 0x300);
3088   push(rax);
3089   fldcw(Address(rsp, 0));
3090   pop(rax);
3091 }
3092 
3093 void MacroAssembler::restore_precision() {
3094   fldcw(Address(rsp, 0));
3095   addptr(rsp, BytesPerWord);
3096 }
3097 
3098 void MacroAssembler::fast_pow() {
3099   // computes X^Y = 2^(Y * log2(X))
3100   // if fast computation is not possible, result is NaN. Requires
3101   // fallback from user of this macro.
3102   // increase precision for intermediate steps of the computation
3103   BLOCK_COMMENT("fast_pow {");
3104   increase_precision();
3105   fyl2x();                 // Stack: (Y*log2(X)) ...
3106   pow_exp_core_encoding(); // Stack: exp(X) ...
3107   restore_precision();
3108   BLOCK_COMMENT("} fast_pow");
3109 }
3110 
3111 void MacroAssembler::pow_or_exp(int num_fpu_regs_in_use) {
3112   // kills rax, rcx, rdx
3113   // pow and exp needs 2 extra registers on the fpu stack.
3114   Label slow_case, done;
3115   Register tmp = noreg;
3116   if (!VM_Version::supports_cmov()) {
3117     // fcmp needs a temporary so preserve rdx,
3118     tmp = rdx;
3119   }
3120   Register tmp2 = rax;
3121   Register tmp3 = rcx;
3122 
3123   // Stack: X Y
3124   Label x_negative, y_not_2;
3125 
3126   static double two = 2.0;
3127   ExternalAddress two_addr((address)&two);
3128 
3129   // constant maybe too far on 64 bit
3130   lea(tmp2, two_addr);
3131   fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3132   fcmp(tmp, 2, true, false);  // Stack: X Y
3133   jcc(Assembler::parity, y_not_2);
3134   jcc(Assembler::notEqual, y_not_2);
3135 
3136   fxch(); fpop();             // Stack: X
3137   fmul(0);                    // Stack: X*X
3138 
3139   jmp(done);
3140 
3141   bind(y_not_2);
3142 
3143   fldz();                     // Stack: 0 X Y
3144   fcmp(tmp, 1, true, false);  // Stack: X Y
3145   jcc(Assembler::above, x_negative);
3146 
3147   // X >= 0
3148 
3149   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3150   fld_s(1);                   // Stack: X Y X Y
3151   fast_pow();                 // Stack: X^Y X Y
3152   fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3153   // X^Y not equal to itself: X^Y is NaN go to slow case.
3154   jcc(Assembler::parity, slow_case);
3155   // get rid of duplicate arguments. Stack: X^Y
3156   if (num_fpu_regs_in_use > 0) {
3157     fxch(); fpop();
3158     fxch(); fpop();
3159   } else {
3160     ffree(2);
3161     ffree(1);
3162   }
3163   jmp(done);
3164 
3165   // X <= 0
3166   bind(x_negative);
3167 
3168   fld_s(1);                   // Stack: Y X Y
3169   frndint();                  // Stack: int(Y) X Y
3170   fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3171   jcc(Assembler::notEqual, slow_case);
3172 
3173   subptr(rsp, 8);
3174 
3175   // For X^Y, when X < 0, Y has to be an integer and the final
3176   // result depends on whether it's odd or even. We just checked
3177   // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3178   // integer to test its parity. If int(Y) is huge and doesn't fit
3179   // in the 64 bit integer range, the integer indefinite value will
3180   // end up in the gp registers. Huge numbers are all even, the
3181   // integer indefinite number is even so it's fine.
3182 
3183 #ifdef ASSERT
3184   // Let's check we don't end up with an integer indefinite number
3185   // when not expected. First test for huge numbers: check whether
3186   // int(Y)+1 == int(Y) which is true for very large numbers and
3187   // those are all even. A 64 bit integer is guaranteed to not
3188   // overflow for numbers where y+1 != y (when precision is set to
3189   // double precision).
3190   Label y_not_huge;
3191 
3192   fld1();                     // Stack: 1 int(Y) X Y
3193   fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3194 
3195 #ifdef _LP64
3196   // trip to memory to force the precision down from double extended
3197   // precision
3198   fstp_d(Address(rsp, 0));
3199   fld_d(Address(rsp, 0));
3200 #endif
3201 
3202   fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3203 #endif
3204 
3205   // move int(Y) as 64 bit integer to thread's stack
3206   fistp_d(Address(rsp,0));    // Stack: X Y
3207 
3208 #ifdef ASSERT
3209   jcc(Assembler::notEqual, y_not_huge);
3210 
3211   // Y is huge so we know it's even. It may not fit in a 64 bit
3212   // integer and we don't want the debug code below to see the
3213   // integer indefinite value so overwrite int(Y) on the thread's
3214   // stack with 0.
3215   movl(Address(rsp, 0), 0);
3216   movl(Address(rsp, 4), 0);
3217 
3218   bind(y_not_huge);
3219 #endif
3220 
3221   fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3222   fld_s(1);                   // Stack: X Y X Y
3223   fabs();                     // Stack: abs(X) Y X Y
3224   fast_pow();                 // Stack: abs(X)^Y X Y
3225   fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3226   // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3227 
3228   pop(tmp2);
3229   NOT_LP64(pop(tmp3));
3230   jcc(Assembler::parity, slow_case);
3231 
3232 #ifdef ASSERT
3233   // Check that int(Y) is not integer indefinite value (int
3234   // overflow). Shouldn't happen because for values that would
3235   // overflow, 1+int(Y)==Y which was tested earlier.
3236 #ifndef _LP64
3237   {
3238     Label integer;
3239     testl(tmp2, tmp2);
3240     jcc(Assembler::notZero, integer);
3241     cmpl(tmp3, 0x80000000);
3242     jcc(Assembler::notZero, integer);
3243     STOP("integer indefinite value shouldn't be seen here");
3244     bind(integer);
3245   }
3246 #else
3247   {
3248     Label integer;
3249     mov(tmp3, tmp2); // preserve tmp2 for parity check below
3250     shlq(tmp3, 1);
3251     jcc(Assembler::carryClear, integer);
3252     jcc(Assembler::notZero, integer);
3253     STOP("integer indefinite value shouldn't be seen here");
3254     bind(integer);
3255   }
3256 #endif
3257 #endif
3258 
3259   // get rid of duplicate arguments. Stack: X^Y
3260   if (num_fpu_regs_in_use > 0) {
3261     fxch(); fpop();
3262     fxch(); fpop();
3263   } else {
3264     ffree(2);
3265     ffree(1);
3266   }
3267 
3268   testl(tmp2, 1);
3269   jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3270   // X <= 0, Y even: X^Y = -abs(X)^Y
3271 
3272   fchs();                     // Stack: -abs(X)^Y Y
3273   jmp(done);
3274 
3275   // slow case: runtime call
3276   bind(slow_case);
3277 
3278   fpop();                       // pop incorrect result or int(Y)
3279 
3280   fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), 2, num_fpu_regs_in_use);
3281 
3282   // Come here with result in F-TOS
3283   bind(done);
3284 }
3285 
3286 void MacroAssembler::fpop() {
3287   ffree();
3288   fincstp();
3289 }
3290 
3291 void MacroAssembler::fremr(Register tmp) {
3292   save_rax(tmp);
3293   { Label L;
3294     bind(L);
3295     fprem();
3296     fwait(); fnstsw_ax();
3297 #ifdef _LP64
3298     testl(rax, 0x400);
3299     jcc(Assembler::notEqual, L);
3300 #else
3301     sahf();
3302     jcc(Assembler::parity, L);
3303 #endif // _LP64
3304   }
3305   restore_rax(tmp);
3306   // Result is in ST0.
3307   // Note: fxch & fpop to get rid of ST1
3308   // (otherwise FPU stack could overflow eventually)
3309   fxch(1);
3310   fpop();
3311 }
3312 
3313 
3314 void MacroAssembler::incrementl(AddressLiteral dst) {
3315   if (reachable(dst)) {
3316     incrementl(as_Address(dst));
3317   } else {
3318     lea(rscratch1, dst);
3319     incrementl(Address(rscratch1, 0));
3320   }
3321 }
3322 
3323 void MacroAssembler::incrementl(ArrayAddress dst) {
3324   incrementl(as_Address(dst));
3325 }
3326 
3327 void MacroAssembler::incrementl(Register reg, int value) {
3328   if (value == min_jint) {addl(reg, value) ; return; }
3329   if (value <  0) { decrementl(reg, -value); return; }
3330   if (value == 0) {                        ; return; }
3331   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3332   /* else */      { addl(reg, value)       ; return; }
3333 }
3334 
3335 void MacroAssembler::incrementl(Address dst, int value) {
3336   if (value == min_jint) {addl(dst, value) ; return; }
3337   if (value <  0) { decrementl(dst, -value); return; }
3338   if (value == 0) {                        ; return; }
3339   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3340   /* else */      { addl(dst, value)       ; return; }
3341 }
3342 
3343 void MacroAssembler::jump(AddressLiteral dst) {
3344   if (reachable(dst)) {
3345     jmp_literal(dst.target(), dst.rspec());
3346   } else {
3347     lea(rscratch1, dst);
3348     jmp(rscratch1);
3349   }
3350 }
3351 
3352 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3353   if (reachable(dst)) {
3354     InstructionMark im(this);
3355     relocate(dst.reloc());
3356     const int short_size = 2;
3357     const int long_size = 6;
3358     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3359     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3360       // 0111 tttn #8-bit disp
3361       emit_int8(0x70 | cc);
3362       emit_int8((offs - short_size) & 0xFF);
3363     } else {
3364       // 0000 1111 1000 tttn #32-bit disp
3365       emit_int8(0x0F);
3366       emit_int8((unsigned char)(0x80 | cc));
3367       emit_int32(offs - long_size);
3368     }
3369   } else {
3370 #ifdef ASSERT
3371     warning("reversing conditional branch");
3372 #endif /* ASSERT */
3373     Label skip;
3374     jccb(reverse[cc], skip);
3375     lea(rscratch1, dst);
3376     Assembler::jmp(rscratch1);
3377     bind(skip);
3378   }
3379 }
3380 
3381 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3382   if (reachable(src)) {
3383     Assembler::ldmxcsr(as_Address(src));
3384   } else {
3385     lea(rscratch1, src);
3386     Assembler::ldmxcsr(Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3391   int off;
3392   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3393     off = offset();
3394     movsbl(dst, src); // movsxb
3395   } else {
3396     off = load_unsigned_byte(dst, src);
3397     shll(dst, 24);
3398     sarl(dst, 24);
3399   }
3400   return off;
3401 }
3402 
3403 // Note: load_signed_short used to be called load_signed_word.
3404 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3405 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3406 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3407 int MacroAssembler::load_signed_short(Register dst, Address src) {
3408   int off;
3409   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3410     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3411     // version but this is what 64bit has always done. This seems to imply
3412     // that users are only using 32bits worth.
3413     off = offset();
3414     movswl(dst, src); // movsxw
3415   } else {
3416     off = load_unsigned_short(dst, src);
3417     shll(dst, 16);
3418     sarl(dst, 16);
3419   }
3420   return off;
3421 }
3422 
3423 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3424   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3425   // and "3.9 Partial Register Penalties", p. 22).
3426   int off;
3427   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3428     off = offset();
3429     movzbl(dst, src); // movzxb
3430   } else {
3431     xorl(dst, dst);
3432     off = offset();
3433     movb(dst, src);
3434   }
3435   return off;
3436 }
3437 
3438 // Note: load_unsigned_short used to be called load_unsigned_word.
3439 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3440   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3441   // and "3.9 Partial Register Penalties", p. 22).
3442   int off;
3443   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3444     off = offset();
3445     movzwl(dst, src); // movzxw
3446   } else {
3447     xorl(dst, dst);
3448     off = offset();
3449     movw(dst, src);
3450   }
3451   return off;
3452 }
3453 
3454 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3455   switch (size_in_bytes) {
3456 #ifndef _LP64
3457   case  8:
3458     assert(dst2 != noreg, "second dest register required");
3459     movl(dst,  src);
3460     movl(dst2, src.plus_disp(BytesPerInt));
3461     break;
3462 #else
3463   case  8:  movq(dst, src); break;
3464 #endif
3465   case  4:  movl(dst, src); break;
3466   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3467   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3468   default:  ShouldNotReachHere();
3469   }
3470 }
3471 
3472 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3473   switch (size_in_bytes) {
3474 #ifndef _LP64
3475   case  8:
3476     assert(src2 != noreg, "second source register required");
3477     movl(dst,                        src);
3478     movl(dst.plus_disp(BytesPerInt), src2);
3479     break;
3480 #else
3481   case  8:  movq(dst, src); break;
3482 #endif
3483   case  4:  movl(dst, src); break;
3484   case  2:  movw(dst, src); break;
3485   case  1:  movb(dst, src); break;
3486   default:  ShouldNotReachHere();
3487   }
3488 }
3489 
3490 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3491   if (reachable(dst)) {
3492     movl(as_Address(dst), src);
3493   } else {
3494     lea(rscratch1, dst);
3495     movl(Address(rscratch1, 0), src);
3496   }
3497 }
3498 
3499 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3500   if (reachable(src)) {
3501     movl(dst, as_Address(src));
3502   } else {
3503     lea(rscratch1, src);
3504     movl(dst, Address(rscratch1, 0));
3505   }
3506 }
3507 
3508 // C++ bool manipulation
3509 
3510 void MacroAssembler::movbool(Register dst, Address src) {
3511   if(sizeof(bool) == 1)
3512     movb(dst, src);
3513   else if(sizeof(bool) == 2)
3514     movw(dst, src);
3515   else if(sizeof(bool) == 4)
3516     movl(dst, src);
3517   else
3518     // unsupported
3519     ShouldNotReachHere();
3520 }
3521 
3522 void MacroAssembler::movbool(Address dst, bool boolconst) {
3523   if(sizeof(bool) == 1)
3524     movb(dst, (int) boolconst);
3525   else if(sizeof(bool) == 2)
3526     movw(dst, (int) boolconst);
3527   else if(sizeof(bool) == 4)
3528     movl(dst, (int) boolconst);
3529   else
3530     // unsupported
3531     ShouldNotReachHere();
3532 }
3533 
3534 void MacroAssembler::movbool(Address dst, Register src) {
3535   if(sizeof(bool) == 1)
3536     movb(dst, src);
3537   else if(sizeof(bool) == 2)
3538     movw(dst, src);
3539   else if(sizeof(bool) == 4)
3540     movl(dst, src);
3541   else
3542     // unsupported
3543     ShouldNotReachHere();
3544 }
3545 
3546 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3547   movb(as_Address(dst), src);
3548 }
3549 
3550 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3551   if (reachable(src)) {
3552     movdl(dst, as_Address(src));
3553   } else {
3554     lea(rscratch1, src);
3555     movdl(dst, Address(rscratch1, 0));
3556   }
3557 }
3558 
3559 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3560   if (reachable(src)) {
3561     movq(dst, as_Address(src));
3562   } else {
3563     lea(rscratch1, src);
3564     movq(dst, Address(rscratch1, 0));
3565   }
3566 }
3567 
3568 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3569   if (reachable(src)) {
3570     if (UseXmmLoadAndClearUpper) {
3571       movsd (dst, as_Address(src));
3572     } else {
3573       movlpd(dst, as_Address(src));
3574     }
3575   } else {
3576     lea(rscratch1, src);
3577     if (UseXmmLoadAndClearUpper) {
3578       movsd (dst, Address(rscratch1, 0));
3579     } else {
3580       movlpd(dst, Address(rscratch1, 0));
3581     }
3582   }
3583 }
3584 
3585 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3586   if (reachable(src)) {
3587     movss(dst, as_Address(src));
3588   } else {
3589     lea(rscratch1, src);
3590     movss(dst, Address(rscratch1, 0));
3591   }
3592 }
3593 
3594 void MacroAssembler::movptr(Register dst, Register src) {
3595   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3596 }
3597 
3598 void MacroAssembler::movptr(Register dst, Address src) {
3599   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3600 }
3601 
3602 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3603 void MacroAssembler::movptr(Register dst, intptr_t src) {
3604   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3605 }
3606 
3607 void MacroAssembler::movptr(Address dst, Register src) {
3608   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3609 }
3610 
3611 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3612   if (reachable(src)) {
3613     Assembler::movdqu(dst, as_Address(src));
3614   } else {
3615     lea(rscratch1, src);
3616     Assembler::movdqu(dst, Address(rscratch1, 0));
3617   }
3618 }
3619 
3620 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3621   if (reachable(src)) {
3622     Assembler::movdqa(dst, as_Address(src));
3623   } else {
3624     lea(rscratch1, src);
3625     Assembler::movdqa(dst, Address(rscratch1, 0));
3626   }
3627 }
3628 
3629 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3630   if (reachable(src)) {
3631     Assembler::movsd(dst, as_Address(src));
3632   } else {
3633     lea(rscratch1, src);
3634     Assembler::movsd(dst, Address(rscratch1, 0));
3635   }
3636 }
3637 
3638 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3639   if (reachable(src)) {
3640     Assembler::movss(dst, as_Address(src));
3641   } else {
3642     lea(rscratch1, src);
3643     Assembler::movss(dst, Address(rscratch1, 0));
3644   }
3645 }
3646 
3647 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3648   if (reachable(src)) {
3649     Assembler::mulsd(dst, as_Address(src));
3650   } else {
3651     lea(rscratch1, src);
3652     Assembler::mulsd(dst, Address(rscratch1, 0));
3653   }
3654 }
3655 
3656 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3657   if (reachable(src)) {
3658     Assembler::mulss(dst, as_Address(src));
3659   } else {
3660     lea(rscratch1, src);
3661     Assembler::mulss(dst, Address(rscratch1, 0));
3662   }
3663 }
3664 
3665 void MacroAssembler::null_check(Register reg, int offset) {
3666   if (needs_explicit_null_check(offset)) {
3667     // provoke OS NULL exception if reg = NULL by
3668     // accessing M[reg] w/o changing any (non-CC) registers
3669     // NOTE: cmpl is plenty here to provoke a segv
3670     cmpptr(rax, Address(reg, 0));
3671     // Note: should probably use testl(rax, Address(reg, 0));
3672     //       may be shorter code (however, this version of
3673     //       testl needs to be implemented first)
3674   } else {
3675     // nothing to do, (later) access of M[reg + offset]
3676     // will provoke OS NULL exception if reg = NULL
3677   }
3678 }
3679 
3680 void MacroAssembler::os_breakpoint() {
3681   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3682   // (e.g., MSVC can't call ps() otherwise)
3683   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3684 }
3685 
3686 void MacroAssembler::pop_CPU_state() {
3687   pop_FPU_state();
3688   pop_IU_state();
3689 }
3690 
3691 void MacroAssembler::pop_FPU_state() {
3692   NOT_LP64(frstor(Address(rsp, 0));)
3693   LP64_ONLY(fxrstor(Address(rsp, 0));)
3694   addptr(rsp, FPUStateSizeInWords * wordSize);
3695 }
3696 
3697 void MacroAssembler::pop_IU_state() {
3698   popa();
3699   LP64_ONLY(addq(rsp, 8));
3700   popf();
3701 }
3702 
3703 // Save Integer and Float state
3704 // Warning: Stack must be 16 byte aligned (64bit)
3705 void MacroAssembler::push_CPU_state() {
3706   push_IU_state();
3707   push_FPU_state();
3708 }
3709 
3710 void MacroAssembler::push_FPU_state() {
3711   subptr(rsp, FPUStateSizeInWords * wordSize);
3712 #ifndef _LP64
3713   fnsave(Address(rsp, 0));
3714   fwait();
3715 #else
3716   fxsave(Address(rsp, 0));
3717 #endif // LP64
3718 }
3719 
3720 void MacroAssembler::push_IU_state() {
3721   // Push flags first because pusha kills them
3722   pushf();
3723   // Make sure rsp stays 16-byte aligned
3724   LP64_ONLY(subq(rsp, 8));
3725   pusha();
3726 }
3727 
3728 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3729   // determine java_thread register
3730   if (!java_thread->is_valid()) {
3731     java_thread = rdi;
3732     get_thread(java_thread);
3733   }
3734   // we must set sp to zero to clear frame
3735   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3736   if (clear_fp) {
3737     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3738   }
3739 
3740   if (clear_pc)
3741     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3742 
3743 }
3744 
3745 void MacroAssembler::restore_rax(Register tmp) {
3746   if (tmp == noreg) pop(rax);
3747   else if (tmp != rax) mov(rax, tmp);
3748 }
3749 
3750 void MacroAssembler::round_to(Register reg, int modulus) {
3751   addptr(reg, modulus - 1);
3752   andptr(reg, -modulus);
3753 }
3754 
3755 void MacroAssembler::save_rax(Register tmp) {
3756   if (tmp == noreg) push(rax);
3757   else if (tmp != rax) mov(tmp, rax);
3758 }
3759 
3760 // Write serialization page so VM thread can do a pseudo remote membar.
3761 // We use the current thread pointer to calculate a thread specific
3762 // offset to write to within the page. This minimizes bus traffic
3763 // due to cache line collision.
3764 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3765   movl(tmp, thread);
3766   shrl(tmp, os::get_serialize_page_shift_count());
3767   andl(tmp, (os::vm_page_size() - sizeof(int)));
3768 
3769   Address index(noreg, tmp, Address::times_1);
3770   ExternalAddress page(os::get_memory_serialize_page());
3771 
3772   // Size of store must match masking code above
3773   movl(as_Address(ArrayAddress(page, index)), tmp);
3774 }
3775 
3776 // Calls to C land
3777 //
3778 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3779 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3780 // has to be reset to 0. This is required to allow proper stack traversal.
3781 void MacroAssembler::set_last_Java_frame(Register java_thread,
3782                                          Register last_java_sp,
3783                                          Register last_java_fp,
3784                                          address  last_java_pc) {
3785   // determine java_thread register
3786   if (!java_thread->is_valid()) {
3787     java_thread = rdi;
3788     get_thread(java_thread);
3789   }
3790   // determine last_java_sp register
3791   if (!last_java_sp->is_valid()) {
3792     last_java_sp = rsp;
3793   }
3794 
3795   // last_java_fp is optional
3796 
3797   if (last_java_fp->is_valid()) {
3798     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3799   }
3800 
3801   // last_java_pc is optional
3802 
3803   if (last_java_pc != NULL) {
3804     lea(Address(java_thread,
3805                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3806         InternalAddress(last_java_pc));
3807 
3808   }
3809   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3810 }
3811 
3812 void MacroAssembler::shlptr(Register dst, int imm8) {
3813   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3814 }
3815 
3816 void MacroAssembler::shrptr(Register dst, int imm8) {
3817   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3818 }
3819 
3820 void MacroAssembler::sign_extend_byte(Register reg) {
3821   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3822     movsbl(reg, reg); // movsxb
3823   } else {
3824     shll(reg, 24);
3825     sarl(reg, 24);
3826   }
3827 }
3828 
3829 void MacroAssembler::sign_extend_short(Register reg) {
3830   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3831     movswl(reg, reg); // movsxw
3832   } else {
3833     shll(reg, 16);
3834     sarl(reg, 16);
3835   }
3836 }
3837 
3838 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3839   assert(reachable(src), "Address should be reachable");
3840   testl(dst, as_Address(src));
3841 }
3842 
3843 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3844   if (reachable(src)) {
3845     Assembler::sqrtsd(dst, as_Address(src));
3846   } else {
3847     lea(rscratch1, src);
3848     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3849   }
3850 }
3851 
3852 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3853   if (reachable(src)) {
3854     Assembler::sqrtss(dst, as_Address(src));
3855   } else {
3856     lea(rscratch1, src);
3857     Assembler::sqrtss(dst, Address(rscratch1, 0));
3858   }
3859 }
3860 
3861 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3862   if (reachable(src)) {
3863     Assembler::subsd(dst, as_Address(src));
3864   } else {
3865     lea(rscratch1, src);
3866     Assembler::subsd(dst, Address(rscratch1, 0));
3867   }
3868 }
3869 
3870 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3871   if (reachable(src)) {
3872     Assembler::subss(dst, as_Address(src));
3873   } else {
3874     lea(rscratch1, src);
3875     Assembler::subss(dst, Address(rscratch1, 0));
3876   }
3877 }
3878 
3879 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3880   if (reachable(src)) {
3881     Assembler::ucomisd(dst, as_Address(src));
3882   } else {
3883     lea(rscratch1, src);
3884     Assembler::ucomisd(dst, Address(rscratch1, 0));
3885   }
3886 }
3887 
3888 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3889   if (reachable(src)) {
3890     Assembler::ucomiss(dst, as_Address(src));
3891   } else {
3892     lea(rscratch1, src);
3893     Assembler::ucomiss(dst, Address(rscratch1, 0));
3894   }
3895 }
3896 
3897 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3898   // Used in sign-bit flipping with aligned address.
3899   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3900   if (reachable(src)) {
3901     Assembler::xorpd(dst, as_Address(src));
3902   } else {
3903     lea(rscratch1, src);
3904     Assembler::xorpd(dst, Address(rscratch1, 0));
3905   }
3906 }
3907 
3908 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3909   // Used in sign-bit flipping with aligned address.
3910   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3911   if (reachable(src)) {
3912     Assembler::xorps(dst, as_Address(src));
3913   } else {
3914     lea(rscratch1, src);
3915     Assembler::xorps(dst, Address(rscratch1, 0));
3916   }
3917 }
3918 
3919 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3920   // Used in sign-bit flipping with aligned address.
3921   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3922   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3923   if (reachable(src)) {
3924     Assembler::pshufb(dst, as_Address(src));
3925   } else {
3926     lea(rscratch1, src);
3927     Assembler::pshufb(dst, Address(rscratch1, 0));
3928   }
3929 }
3930 
3931 // AVX 3-operands instructions
3932 
3933 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3934   if (reachable(src)) {
3935     vaddsd(dst, nds, as_Address(src));
3936   } else {
3937     lea(rscratch1, src);
3938     vaddsd(dst, nds, Address(rscratch1, 0));
3939   }
3940 }
3941 
3942 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3943   if (reachable(src)) {
3944     vaddss(dst, nds, as_Address(src));
3945   } else {
3946     lea(rscratch1, src);
3947     vaddss(dst, nds, Address(rscratch1, 0));
3948   }
3949 }
3950 
3951 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3952   if (reachable(src)) {
3953     vandpd(dst, nds, as_Address(src), vector_len);
3954   } else {
3955     lea(rscratch1, src);
3956     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
3957   }
3958 }
3959 
3960 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3961   if (reachable(src)) {
3962     vandps(dst, nds, as_Address(src), vector_len);
3963   } else {
3964     lea(rscratch1, src);
3965     vandps(dst, nds, Address(rscratch1, 0), vector_len);
3966   }
3967 }
3968 
3969 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3970   if (reachable(src)) {
3971     vdivsd(dst, nds, as_Address(src));
3972   } else {
3973     lea(rscratch1, src);
3974     vdivsd(dst, nds, Address(rscratch1, 0));
3975   }
3976 }
3977 
3978 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3979   if (reachable(src)) {
3980     vdivss(dst, nds, as_Address(src));
3981   } else {
3982     lea(rscratch1, src);
3983     vdivss(dst, nds, Address(rscratch1, 0));
3984   }
3985 }
3986 
3987 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3988   if (reachable(src)) {
3989     vmulsd(dst, nds, as_Address(src));
3990   } else {
3991     lea(rscratch1, src);
3992     vmulsd(dst, nds, Address(rscratch1, 0));
3993   }
3994 }
3995 
3996 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3997   if (reachable(src)) {
3998     vmulss(dst, nds, as_Address(src));
3999   } else {
4000     lea(rscratch1, src);
4001     vmulss(dst, nds, Address(rscratch1, 0));
4002   }
4003 }
4004 
4005 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4006   if (reachable(src)) {
4007     vsubsd(dst, nds, as_Address(src));
4008   } else {
4009     lea(rscratch1, src);
4010     vsubsd(dst, nds, Address(rscratch1, 0));
4011   }
4012 }
4013 
4014 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4015   if (reachable(src)) {
4016     vsubss(dst, nds, as_Address(src));
4017   } else {
4018     lea(rscratch1, src);
4019     vsubss(dst, nds, Address(rscratch1, 0));
4020   }
4021 }
4022 
4023 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4024   if (reachable(src)) {
4025     vxorpd(dst, nds, as_Address(src), vector_len);
4026   } else {
4027     lea(rscratch1, src);
4028     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4029   }
4030 }
4031 
4032 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4033   if (reachable(src)) {
4034     vxorps(dst, nds, as_Address(src), vector_len);
4035   } else {
4036     lea(rscratch1, src);
4037     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4038   }
4039 }
4040 
4041 
4042 //////////////////////////////////////////////////////////////////////////////////
4043 #if INCLUDE_ALL_GCS
4044 
4045 void MacroAssembler::g1_write_barrier_pre(Register obj,
4046                                           Register pre_val,
4047                                           Register thread,
4048                                           Register tmp,
4049                                           bool tosca_live,
4050                                           bool expand_call) {
4051 
4052   // If expand_call is true then we expand the call_VM_leaf macro
4053   // directly to skip generating the check by
4054   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4055 
4056 #ifdef _LP64
4057   assert(thread == r15_thread, "must be");
4058 #endif // _LP64
4059 
4060   Label done;
4061   Label runtime;
4062 
4063   assert(pre_val != noreg, "check this code");
4064 
4065   if (obj != noreg) {
4066     assert_different_registers(obj, pre_val, tmp);
4067     assert(pre_val != rax, "check this code");
4068   }
4069 
4070   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4071                                        PtrQueue::byte_offset_of_active()));
4072   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4073                                        PtrQueue::byte_offset_of_index()));
4074   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4075                                        PtrQueue::byte_offset_of_buf()));
4076 
4077 
4078   // Is marking active?
4079   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4080     cmpl(in_progress, 0);
4081   } else {
4082     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4083     cmpb(in_progress, 0);
4084   }
4085   jcc(Assembler::equal, done);
4086 
4087   // Do we need to load the previous value?
4088   if (obj != noreg) {
4089     load_heap_oop(pre_val, Address(obj, 0));
4090   }
4091 
4092   // Is the previous value null?
4093   cmpptr(pre_val, (int32_t) NULL_WORD);
4094   jcc(Assembler::equal, done);
4095 
4096   // Can we store original value in the thread's buffer?
4097   // Is index == 0?
4098   // (The index field is typed as size_t.)
4099 
4100   movptr(tmp, index);                   // tmp := *index_adr
4101   cmpptr(tmp, 0);                       // tmp == 0?
4102   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4103 
4104   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4105   movptr(index, tmp);                   // *index_adr := tmp
4106   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4107 
4108   // Record the previous value
4109   movptr(Address(tmp, 0), pre_val);
4110   jmp(done);
4111 
4112   bind(runtime);
4113   // save the live input values
4114   if(tosca_live) push(rax);
4115 
4116   if (obj != noreg && obj != rax)
4117     push(obj);
4118 
4119   if (pre_val != rax)
4120     push(pre_val);
4121 
4122   // Calling the runtime using the regular call_VM_leaf mechanism generates
4123   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4124   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4125   //
4126   // If we care generating the pre-barrier without a frame (e.g. in the
4127   // intrinsified Reference.get() routine) then ebp might be pointing to
4128   // the caller frame and so this check will most likely fail at runtime.
4129   //
4130   // Expanding the call directly bypasses the generation of the check.
4131   // So when we do not have have a full interpreter frame on the stack
4132   // expand_call should be passed true.
4133 
4134   NOT_LP64( push(thread); )
4135 
4136   if (expand_call) {
4137     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4138     pass_arg1(this, thread);
4139     pass_arg0(this, pre_val);
4140     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4141   } else {
4142     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4143   }
4144 
4145   NOT_LP64( pop(thread); )
4146 
4147   // save the live input values
4148   if (pre_val != rax)
4149     pop(pre_val);
4150 
4151   if (obj != noreg && obj != rax)
4152     pop(obj);
4153 
4154   if(tosca_live) pop(rax);
4155 
4156   bind(done);
4157 }
4158 
4159 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4160                                            Register new_val,
4161                                            Register thread,
4162                                            Register tmp,
4163                                            Register tmp2) {
4164 #ifdef _LP64
4165   assert(thread == r15_thread, "must be");
4166 #endif // _LP64
4167 
4168   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4169                                        PtrQueue::byte_offset_of_index()));
4170   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4171                                        PtrQueue::byte_offset_of_buf()));
4172 
4173   CardTableModRefBS* ct =
4174     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4175   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4176 
4177   Label done;
4178   Label runtime;
4179 
4180   // Does store cross heap regions?
4181 
4182   movptr(tmp, store_addr);
4183   xorptr(tmp, new_val);
4184   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4185   jcc(Assembler::equal, done);
4186 
4187   // crosses regions, storing NULL?
4188 
4189   cmpptr(new_val, (int32_t) NULL_WORD);
4190   jcc(Assembler::equal, done);
4191 
4192   // storing region crossing non-NULL, is card already dirty?
4193 
4194   const Register card_addr = tmp;
4195   const Register cardtable = tmp2;
4196 
4197   movptr(card_addr, store_addr);
4198   shrptr(card_addr, CardTableModRefBS::card_shift);
4199   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4200   // a valid address and therefore is not properly handled by the relocation code.
4201   movptr(cardtable, (intptr_t)ct->byte_map_base);
4202   addptr(card_addr, cardtable);
4203 
4204   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4205   jcc(Assembler::equal, done);
4206 
4207   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4208   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4209   jcc(Assembler::equal, done);
4210 
4211 
4212   // storing a region crossing, non-NULL oop, card is clean.
4213   // dirty card and log.
4214 
4215   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4216 
4217   cmpl(queue_index, 0);
4218   jcc(Assembler::equal, runtime);
4219   subl(queue_index, wordSize);
4220   movptr(tmp2, buffer);
4221 #ifdef _LP64
4222   movslq(rscratch1, queue_index);
4223   addq(tmp2, rscratch1);
4224   movq(Address(tmp2, 0), card_addr);
4225 #else
4226   addl(tmp2, queue_index);
4227   movl(Address(tmp2, 0), card_addr);
4228 #endif
4229   jmp(done);
4230 
4231   bind(runtime);
4232   // save the live input values
4233   push(store_addr);
4234   push(new_val);
4235 #ifdef _LP64
4236   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4237 #else
4238   push(thread);
4239   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4240   pop(thread);
4241 #endif
4242   pop(new_val);
4243   pop(store_addr);
4244 
4245   bind(done);
4246 }
4247 
4248 #endif // INCLUDE_ALL_GCS
4249 //////////////////////////////////////////////////////////////////////////////////
4250 
4251 
4252 void MacroAssembler::store_check(Register obj, Address dst) {
4253   store_check(obj);
4254 }
4255 
4256 void MacroAssembler::store_check(Register obj) {
4257   // Does a store check for the oop in register obj. The content of
4258   // register obj is destroyed afterwards.
4259 
4260   BarrierSet* bs = Universe::heap()->barrier_set();
4261   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4262 
4263   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4264   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4265 
4266   shrptr(obj, CardTableModRefBS::card_shift);
4267 
4268   Address card_addr;
4269 
4270   // The calculation for byte_map_base is as follows:
4271   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4272   // So this essentially converts an address to a displacement and it will
4273   // never need to be relocated. On 64bit however the value may be too
4274   // large for a 32bit displacement.
4275   intptr_t disp = (intptr_t) ct->byte_map_base;
4276   if (is_simm32(disp)) {
4277     card_addr = Address(noreg, obj, Address::times_1, disp);
4278   } else {
4279     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4280     // displacement and done in a single instruction given favorable mapping and a
4281     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4282     // entry and that entry is not properly handled by the relocation code.
4283     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4284     Address index(noreg, obj, Address::times_1);
4285     card_addr = as_Address(ArrayAddress(cardtable, index));
4286   }
4287 
4288   int dirty = CardTableModRefBS::dirty_card_val();
4289   if (UseCondCardMark) {
4290     Label L_already_dirty;
4291     if (UseConcMarkSweepGC) {
4292       membar(Assembler::StoreLoad);
4293     }
4294     cmpb(card_addr, dirty);
4295     jcc(Assembler::equal, L_already_dirty);
4296     movb(card_addr, dirty);
4297     bind(L_already_dirty);
4298   } else {
4299     movb(card_addr, dirty);
4300   }
4301 }
4302 
4303 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4304   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4305 }
4306 
4307 // Force generation of a 4 byte immediate value even if it fits into 8bit
4308 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4309   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4310 }
4311 
4312 void MacroAssembler::subptr(Register dst, Register src) {
4313   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4314 }
4315 
4316 // C++ bool manipulation
4317 void MacroAssembler::testbool(Register dst) {
4318   if(sizeof(bool) == 1)
4319     testb(dst, 0xff);
4320   else if(sizeof(bool) == 2) {
4321     // testw implementation needed for two byte bools
4322     ShouldNotReachHere();
4323   } else if(sizeof(bool) == 4)
4324     testl(dst, dst);
4325   else
4326     // unsupported
4327     ShouldNotReachHere();
4328 }
4329 
4330 void MacroAssembler::testptr(Register dst, Register src) {
4331   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4332 }
4333 
4334 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4335 void MacroAssembler::tlab_allocate(Register obj,
4336                                    Register var_size_in_bytes,
4337                                    int con_size_in_bytes,
4338                                    Register t1,
4339                                    Register t2,
4340                                    Label& slow_case) {
4341   assert_different_registers(obj, t1, t2);
4342   assert_different_registers(obj, var_size_in_bytes, t1);
4343   Register end = t2;
4344   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4345 
4346   verify_tlab();
4347 
4348   NOT_LP64(get_thread(thread));
4349 
4350   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4351   if (var_size_in_bytes == noreg) {
4352     lea(end, Address(obj, con_size_in_bytes));
4353   } else {
4354     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4355   }
4356   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4357   jcc(Assembler::above, slow_case);
4358 
4359   // update the tlab top pointer
4360   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4361 
4362   // recover var_size_in_bytes if necessary
4363   if (var_size_in_bytes == end) {
4364     subptr(var_size_in_bytes, obj);
4365   }
4366   verify_tlab();
4367 }
4368 
4369 // Preserves rbx, and rdx.
4370 Register MacroAssembler::tlab_refill(Label& retry,
4371                                      Label& try_eden,
4372                                      Label& slow_case) {
4373   Register top = rax;
4374   Register t1  = rcx;
4375   Register t2  = rsi;
4376   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4377   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4378   Label do_refill, discard_tlab;
4379 
4380   if (!Universe::heap()->supports_inline_contig_alloc()) {
4381     // No allocation in the shared eden.
4382     jmp(slow_case);
4383   }
4384 
4385   NOT_LP64(get_thread(thread_reg));
4386 
4387   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4388   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4389 
4390   // calculate amount of free space
4391   subptr(t1, top);
4392   shrptr(t1, LogHeapWordSize);
4393 
4394   // Retain tlab and allocate object in shared space if
4395   // the amount free in the tlab is too large to discard.
4396   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4397   jcc(Assembler::lessEqual, discard_tlab);
4398 
4399   // Retain
4400   // %%% yuck as movptr...
4401   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4402   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4403   if (TLABStats) {
4404     // increment number of slow_allocations
4405     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4406   }
4407   jmp(try_eden);
4408 
4409   bind(discard_tlab);
4410   if (TLABStats) {
4411     // increment number of refills
4412     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4413     // accumulate wastage -- t1 is amount free in tlab
4414     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4415   }
4416 
4417   // if tlab is currently allocated (top or end != null) then
4418   // fill [top, end + alignment_reserve) with array object
4419   testptr(top, top);
4420   jcc(Assembler::zero, do_refill);
4421 
4422   // set up the mark word
4423   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4424   // set the length to the remaining space
4425   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4426   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4427   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4428   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4429   // set klass to intArrayKlass
4430   // dubious reloc why not an oop reloc?
4431   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4432   // store klass last.  concurrent gcs assumes klass length is valid if
4433   // klass field is not null.
4434   store_klass(top, t1);
4435 
4436   movptr(t1, top);
4437   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4438   incr_allocated_bytes(thread_reg, t1, 0);
4439 
4440   // refill the tlab with an eden allocation
4441   bind(do_refill);
4442   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4443   shlptr(t1, LogHeapWordSize);
4444   // allocate new tlab, address returned in top
4445   eden_allocate(top, t1, 0, t2, slow_case);
4446 
4447   // Check that t1 was preserved in eden_allocate.
4448 #ifdef ASSERT
4449   if (UseTLAB) {
4450     Label ok;
4451     Register tsize = rsi;
4452     assert_different_registers(tsize, thread_reg, t1);
4453     push(tsize);
4454     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4455     shlptr(tsize, LogHeapWordSize);
4456     cmpptr(t1, tsize);
4457     jcc(Assembler::equal, ok);
4458     STOP("assert(t1 != tlab size)");
4459     should_not_reach_here();
4460 
4461     bind(ok);
4462     pop(tsize);
4463   }
4464 #endif
4465   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4466   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4467   addptr(top, t1);
4468   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4469   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4470   verify_tlab();
4471   jmp(retry);
4472 
4473   return thread_reg; // for use by caller
4474 }
4475 
4476 void MacroAssembler::incr_allocated_bytes(Register thread,
4477                                           Register var_size_in_bytes,
4478                                           int con_size_in_bytes,
4479                                           Register t1) {
4480   if (!thread->is_valid()) {
4481 #ifdef _LP64
4482     thread = r15_thread;
4483 #else
4484     assert(t1->is_valid(), "need temp reg");
4485     thread = t1;
4486     get_thread(thread);
4487 #endif
4488   }
4489 
4490 #ifdef _LP64
4491   if (var_size_in_bytes->is_valid()) {
4492     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4493   } else {
4494     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4495   }
4496 #else
4497   if (var_size_in_bytes->is_valid()) {
4498     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4499   } else {
4500     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4501   }
4502   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4503 #endif
4504 }
4505 
4506 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4507   pusha();
4508 
4509   // if we are coming from c1, xmm registers may be live
4510   int off = 0;
4511   if (UseSSE == 1)  {
4512     subptr(rsp, sizeof(jdouble)*8);
4513     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4514     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4515     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4516     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4517     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4518     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4519     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4520     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4521   } else if (UseSSE >= 2)  {
4522     if (UseAVX > 2) {
4523       movl(rbx, 0xffff);
4524 #ifdef _LP64
4525       kmovql(k1, rbx);
4526 #else
4527       kmovdl(k1, rbx);
4528 #endif
4529     }
4530 #ifdef COMPILER2
4531     if (MaxVectorSize > 16) {
4532       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4533       // Save upper half of YMM registes
4534       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4535       vextractf128h(Address(rsp,  0),xmm0);
4536       vextractf128h(Address(rsp, 16),xmm1);
4537       vextractf128h(Address(rsp, 32),xmm2);
4538       vextractf128h(Address(rsp, 48),xmm3);
4539       vextractf128h(Address(rsp, 64),xmm4);
4540       vextractf128h(Address(rsp, 80),xmm5);
4541       vextractf128h(Address(rsp, 96),xmm6);
4542       vextractf128h(Address(rsp,112),xmm7);
4543 #ifdef _LP64
4544       vextractf128h(Address(rsp,128),xmm8);
4545       vextractf128h(Address(rsp,144),xmm9);
4546       vextractf128h(Address(rsp,160),xmm10);
4547       vextractf128h(Address(rsp,176),xmm11);
4548       vextractf128h(Address(rsp,192),xmm12);
4549       vextractf128h(Address(rsp,208),xmm13);
4550       vextractf128h(Address(rsp,224),xmm14);
4551       vextractf128h(Address(rsp,240),xmm15);
4552 #endif
4553     }
4554 #endif
4555     // Save whole 128bit (16 bytes) XMM regiters
4556     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4557     movdqu(Address(rsp,off++*16),xmm0);
4558     movdqu(Address(rsp,off++*16),xmm1);
4559     movdqu(Address(rsp,off++*16),xmm2);
4560     movdqu(Address(rsp,off++*16),xmm3);
4561     movdqu(Address(rsp,off++*16),xmm4);
4562     movdqu(Address(rsp,off++*16),xmm5);
4563     movdqu(Address(rsp,off++*16),xmm6);
4564     movdqu(Address(rsp,off++*16),xmm7);
4565 #ifdef _LP64
4566     movdqu(Address(rsp,off++*16),xmm8);
4567     movdqu(Address(rsp,off++*16),xmm9);
4568     movdqu(Address(rsp,off++*16),xmm10);
4569     movdqu(Address(rsp,off++*16),xmm11);
4570     movdqu(Address(rsp,off++*16),xmm12);
4571     movdqu(Address(rsp,off++*16),xmm13);
4572     movdqu(Address(rsp,off++*16),xmm14);
4573     movdqu(Address(rsp,off++*16),xmm15);
4574 #endif
4575   }
4576 
4577   // Preserve registers across runtime call
4578   int incoming_argument_and_return_value_offset = -1;
4579   if (num_fpu_regs_in_use > 1) {
4580     // Must preserve all other FPU regs (could alternatively convert
4581     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4582     // FPU state, but can not trust C compiler)
4583     NEEDS_CLEANUP;
4584     // NOTE that in this case we also push the incoming argument(s) to
4585     // the stack and restore it later; we also use this stack slot to
4586     // hold the return value from dsin, dcos etc.
4587     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4588       subptr(rsp, sizeof(jdouble));
4589       fstp_d(Address(rsp, 0));
4590     }
4591     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4592     for (int i = nb_args-1; i >= 0; i--) {
4593       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4594     }
4595   }
4596 
4597   subptr(rsp, nb_args*sizeof(jdouble));
4598   for (int i = 0; i < nb_args; i++) {
4599     fstp_d(Address(rsp, i*sizeof(jdouble)));
4600   }
4601 
4602 #ifdef _LP64
4603   if (nb_args > 0) {
4604     movdbl(xmm0, Address(rsp, 0));
4605   }
4606   if (nb_args > 1) {
4607     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4608   }
4609   assert(nb_args <= 2, "unsupported number of args");
4610 #endif // _LP64
4611 
4612   // NOTE: we must not use call_VM_leaf here because that requires a
4613   // complete interpreter frame in debug mode -- same bug as 4387334
4614   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4615   // do proper 64bit abi
4616 
4617   NEEDS_CLEANUP;
4618   // Need to add stack banging before this runtime call if it needs to
4619   // be taken; however, there is no generic stack banging routine at
4620   // the MacroAssembler level
4621 
4622   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4623 
4624 #ifdef _LP64
4625   movsd(Address(rsp, 0), xmm0);
4626   fld_d(Address(rsp, 0));
4627 #endif // _LP64
4628   addptr(rsp, sizeof(jdouble) * nb_args);
4629   if (num_fpu_regs_in_use > 1) {
4630     // Must save return value to stack and then restore entire FPU
4631     // stack except incoming arguments
4632     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4633     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4634       fld_d(Address(rsp, 0));
4635       addptr(rsp, sizeof(jdouble));
4636     }
4637     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4638     addptr(rsp, sizeof(jdouble) * nb_args);
4639   }
4640 
4641   off = 0;
4642   if (UseSSE == 1)  {
4643     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4644     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4645     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4646     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4647     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4648     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4649     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4650     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4651     addptr(rsp, sizeof(jdouble)*8);
4652   } else if (UseSSE >= 2)  {
4653     // Restore whole 128bit (16 bytes) XMM regiters
4654     movdqu(xmm0, Address(rsp,off++*16));
4655     movdqu(xmm1, Address(rsp,off++*16));
4656     movdqu(xmm2, Address(rsp,off++*16));
4657     movdqu(xmm3, Address(rsp,off++*16));
4658     movdqu(xmm4, Address(rsp,off++*16));
4659     movdqu(xmm5, Address(rsp,off++*16));
4660     movdqu(xmm6, Address(rsp,off++*16));
4661     movdqu(xmm7, Address(rsp,off++*16));
4662 #ifdef _LP64
4663     movdqu(xmm8, Address(rsp,off++*16));
4664     movdqu(xmm9, Address(rsp,off++*16));
4665     movdqu(xmm10, Address(rsp,off++*16));
4666     movdqu(xmm11, Address(rsp,off++*16));
4667     movdqu(xmm12, Address(rsp,off++*16));
4668     movdqu(xmm13, Address(rsp,off++*16));
4669     movdqu(xmm14, Address(rsp,off++*16));
4670     movdqu(xmm15, Address(rsp,off++*16));
4671 #endif
4672     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4673 #ifdef COMPILER2
4674     if (MaxVectorSize > 16) {
4675       // Restore upper half of YMM registes.
4676       vinsertf128h(xmm0, Address(rsp,  0));
4677       vinsertf128h(xmm1, Address(rsp, 16));
4678       vinsertf128h(xmm2, Address(rsp, 32));
4679       vinsertf128h(xmm3, Address(rsp, 48));
4680       vinsertf128h(xmm4, Address(rsp, 64));
4681       vinsertf128h(xmm5, Address(rsp, 80));
4682       vinsertf128h(xmm6, Address(rsp, 96));
4683       vinsertf128h(xmm7, Address(rsp,112));
4684 #ifdef _LP64
4685       vinsertf128h(xmm8, Address(rsp,128));
4686       vinsertf128h(xmm9, Address(rsp,144));
4687       vinsertf128h(xmm10, Address(rsp,160));
4688       vinsertf128h(xmm11, Address(rsp,176));
4689       vinsertf128h(xmm12, Address(rsp,192));
4690       vinsertf128h(xmm13, Address(rsp,208));
4691       vinsertf128h(xmm14, Address(rsp,224));
4692       vinsertf128h(xmm15, Address(rsp,240));
4693 #endif
4694       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4695     }
4696 #endif
4697   }
4698   popa();
4699 }
4700 
4701 static const double     pi_4 =  0.7853981633974483;
4702 
4703 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4704   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4705   // was attempted in this code; unfortunately it appears that the
4706   // switch to 80-bit precision and back causes this to be
4707   // unprofitable compared with simply performing a runtime call if
4708   // the argument is out of the (-pi/4, pi/4) range.
4709 
4710   Register tmp = noreg;
4711   if (!VM_Version::supports_cmov()) {
4712     // fcmp needs a temporary so preserve rbx,
4713     tmp = rbx;
4714     push(tmp);
4715   }
4716 
4717   Label slow_case, done;
4718 
4719   ExternalAddress pi4_adr = (address)&pi_4;
4720   if (reachable(pi4_adr)) {
4721     // x ?<= pi/4
4722     fld_d(pi4_adr);
4723     fld_s(1);                // Stack:  X  PI/4  X
4724     fabs();                  // Stack: |X| PI/4  X
4725     fcmp(tmp);
4726     jcc(Assembler::above, slow_case);
4727 
4728     // fastest case: -pi/4 <= x <= pi/4
4729     switch(trig) {
4730     case 's':
4731       fsin();
4732       break;
4733     case 'c':
4734       fcos();
4735       break;
4736     case 't':
4737       ftan();
4738       break;
4739     default:
4740       assert(false, "bad intrinsic");
4741       break;
4742     }
4743     jmp(done);
4744   }
4745 
4746   // slow case: runtime call
4747   bind(slow_case);
4748 
4749   switch(trig) {
4750   case 's':
4751     {
4752       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4753     }
4754     break;
4755   case 'c':
4756     {
4757       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4758     }
4759     break;
4760   case 't':
4761     {
4762       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4763     }
4764     break;
4765   default:
4766     assert(false, "bad intrinsic");
4767     break;
4768   }
4769 
4770   // Come here with result in F-TOS
4771   bind(done);
4772 
4773   if (tmp != noreg) {
4774     pop(tmp);
4775   }
4776 }
4777 
4778 
4779 // Look up the method for a megamorphic invokeinterface call.
4780 // The target method is determined by <intf_klass, itable_index>.
4781 // The receiver klass is in recv_klass.
4782 // On success, the result will be in method_result, and execution falls through.
4783 // On failure, execution transfers to the given label.
4784 void MacroAssembler::lookup_interface_method(Register recv_klass,
4785                                              Register intf_klass,
4786                                              RegisterOrConstant itable_index,
4787                                              Register method_result,
4788                                              Register scan_temp,
4789                                              Label& L_no_such_interface) {
4790   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4791   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4792          "caller must use same register for non-constant itable index as for method");
4793 
4794   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4795   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4796   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4797   int scan_step   = itableOffsetEntry::size() * wordSize;
4798   int vte_size    = vtableEntry::size() * wordSize;
4799   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4800   assert(vte_size == wordSize, "else adjust times_vte_scale");
4801 
4802   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4803 
4804   // %%% Could store the aligned, prescaled offset in the klassoop.
4805   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4806   if (HeapWordsPerLong > 1) {
4807     // Round up to align_object_offset boundary
4808     // see code for InstanceKlass::start_of_itable!
4809     round_to(scan_temp, BytesPerLong);
4810   }
4811 
4812   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4813   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4814   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4815 
4816   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4817   //   if (scan->interface() == intf) {
4818   //     result = (klass + scan->offset() + itable_index);
4819   //   }
4820   // }
4821   Label search, found_method;
4822 
4823   for (int peel = 1; peel >= 0; peel--) {
4824     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4825     cmpptr(intf_klass, method_result);
4826 
4827     if (peel) {
4828       jccb(Assembler::equal, found_method);
4829     } else {
4830       jccb(Assembler::notEqual, search);
4831       // (invert the test to fall through to found_method...)
4832     }
4833 
4834     if (!peel)  break;
4835 
4836     bind(search);
4837 
4838     // Check that the previous entry is non-null.  A null entry means that
4839     // the receiver class doesn't implement the interface, and wasn't the
4840     // same as when the caller was compiled.
4841     testptr(method_result, method_result);
4842     jcc(Assembler::zero, L_no_such_interface);
4843     addptr(scan_temp, scan_step);
4844   }
4845 
4846   bind(found_method);
4847 
4848   // Got a hit.
4849   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4850   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4851 }
4852 
4853 
4854 // virtual method calling
4855 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4856                                            RegisterOrConstant vtable_index,
4857                                            Register method_result) {
4858   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4859   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4860   Address vtable_entry_addr(recv_klass,
4861                             vtable_index, Address::times_ptr,
4862                             base + vtableEntry::method_offset_in_bytes());
4863   movptr(method_result, vtable_entry_addr);
4864 }
4865 
4866 
4867 void MacroAssembler::check_klass_subtype(Register sub_klass,
4868                            Register super_klass,
4869                            Register temp_reg,
4870                            Label& L_success) {
4871   Label L_failure;
4872   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4873   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4874   bind(L_failure);
4875 }
4876 
4877 
4878 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4879                                                    Register super_klass,
4880                                                    Register temp_reg,
4881                                                    Label* L_success,
4882                                                    Label* L_failure,
4883                                                    Label* L_slow_path,
4884                                         RegisterOrConstant super_check_offset) {
4885   assert_different_registers(sub_klass, super_klass, temp_reg);
4886   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4887   if (super_check_offset.is_register()) {
4888     assert_different_registers(sub_klass, super_klass,
4889                                super_check_offset.as_register());
4890   } else if (must_load_sco) {
4891     assert(temp_reg != noreg, "supply either a temp or a register offset");
4892   }
4893 
4894   Label L_fallthrough;
4895   int label_nulls = 0;
4896   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4897   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4898   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4899   assert(label_nulls <= 1, "at most one NULL in the batch");
4900 
4901   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4902   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4903   Address super_check_offset_addr(super_klass, sco_offset);
4904 
4905   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4906   // range of a jccb.  If this routine grows larger, reconsider at
4907   // least some of these.
4908 #define local_jcc(assembler_cond, label)                                \
4909   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4910   else                             jcc( assembler_cond, label) /*omit semi*/
4911 
4912   // Hacked jmp, which may only be used just before L_fallthrough.
4913 #define final_jmp(label)                                                \
4914   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4915   else                            jmp(label)                /*omit semi*/
4916 
4917   // If the pointers are equal, we are done (e.g., String[] elements).
4918   // This self-check enables sharing of secondary supertype arrays among
4919   // non-primary types such as array-of-interface.  Otherwise, each such
4920   // type would need its own customized SSA.
4921   // We move this check to the front of the fast path because many
4922   // type checks are in fact trivially successful in this manner,
4923   // so we get a nicely predicted branch right at the start of the check.
4924   cmpptr(sub_klass, super_klass);
4925   local_jcc(Assembler::equal, *L_success);
4926 
4927   // Check the supertype display:
4928   if (must_load_sco) {
4929     // Positive movl does right thing on LP64.
4930     movl(temp_reg, super_check_offset_addr);
4931     super_check_offset = RegisterOrConstant(temp_reg);
4932   }
4933   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4934   cmpptr(super_klass, super_check_addr); // load displayed supertype
4935 
4936   // This check has worked decisively for primary supers.
4937   // Secondary supers are sought in the super_cache ('super_cache_addr').
4938   // (Secondary supers are interfaces and very deeply nested subtypes.)
4939   // This works in the same check above because of a tricky aliasing
4940   // between the super_cache and the primary super display elements.
4941   // (The 'super_check_addr' can address either, as the case requires.)
4942   // Note that the cache is updated below if it does not help us find
4943   // what we need immediately.
4944   // So if it was a primary super, we can just fail immediately.
4945   // Otherwise, it's the slow path for us (no success at this point).
4946 
4947   if (super_check_offset.is_register()) {
4948     local_jcc(Assembler::equal, *L_success);
4949     cmpl(super_check_offset.as_register(), sc_offset);
4950     if (L_failure == &L_fallthrough) {
4951       local_jcc(Assembler::equal, *L_slow_path);
4952     } else {
4953       local_jcc(Assembler::notEqual, *L_failure);
4954       final_jmp(*L_slow_path);
4955     }
4956   } else if (super_check_offset.as_constant() == sc_offset) {
4957     // Need a slow path; fast failure is impossible.
4958     if (L_slow_path == &L_fallthrough) {
4959       local_jcc(Assembler::equal, *L_success);
4960     } else {
4961       local_jcc(Assembler::notEqual, *L_slow_path);
4962       final_jmp(*L_success);
4963     }
4964   } else {
4965     // No slow path; it's a fast decision.
4966     if (L_failure == &L_fallthrough) {
4967       local_jcc(Assembler::equal, *L_success);
4968     } else {
4969       local_jcc(Assembler::notEqual, *L_failure);
4970       final_jmp(*L_success);
4971     }
4972   }
4973 
4974   bind(L_fallthrough);
4975 
4976 #undef local_jcc
4977 #undef final_jmp
4978 }
4979 
4980 
4981 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4982                                                    Register super_klass,
4983                                                    Register temp_reg,
4984                                                    Register temp2_reg,
4985                                                    Label* L_success,
4986                                                    Label* L_failure,
4987                                                    bool set_cond_codes) {
4988   assert_different_registers(sub_klass, super_klass, temp_reg);
4989   if (temp2_reg != noreg)
4990     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4991 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4992 
4993   Label L_fallthrough;
4994   int label_nulls = 0;
4995   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4996   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4997   assert(label_nulls <= 1, "at most one NULL in the batch");
4998 
4999   // a couple of useful fields in sub_klass:
5000   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5001   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5002   Address secondary_supers_addr(sub_klass, ss_offset);
5003   Address super_cache_addr(     sub_klass, sc_offset);
5004 
5005   // Do a linear scan of the secondary super-klass chain.
5006   // This code is rarely used, so simplicity is a virtue here.
5007   // The repne_scan instruction uses fixed registers, which we must spill.
5008   // Don't worry too much about pre-existing connections with the input regs.
5009 
5010   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5011   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5012 
5013   // Get super_klass value into rax (even if it was in rdi or rcx).
5014   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5015   if (super_klass != rax || UseCompressedOops) {
5016     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5017     mov(rax, super_klass);
5018   }
5019   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5020   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5021 
5022 #ifndef PRODUCT
5023   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5024   ExternalAddress pst_counter_addr((address) pst_counter);
5025   NOT_LP64(  incrementl(pst_counter_addr) );
5026   LP64_ONLY( lea(rcx, pst_counter_addr) );
5027   LP64_ONLY( incrementl(Address(rcx, 0)) );
5028 #endif //PRODUCT
5029 
5030   // We will consult the secondary-super array.
5031   movptr(rdi, secondary_supers_addr);
5032   // Load the array length.  (Positive movl does right thing on LP64.)
5033   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5034   // Skip to start of data.
5035   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5036 
5037   // Scan RCX words at [RDI] for an occurrence of RAX.
5038   // Set NZ/Z based on last compare.
5039   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5040   // not change flags (only scas instruction which is repeated sets flags).
5041   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5042 
5043     testptr(rax,rax); // Set Z = 0
5044     repne_scan();
5045 
5046   // Unspill the temp. registers:
5047   if (pushed_rdi)  pop(rdi);
5048   if (pushed_rcx)  pop(rcx);
5049   if (pushed_rax)  pop(rax);
5050 
5051   if (set_cond_codes) {
5052     // Special hack for the AD files:  rdi is guaranteed non-zero.
5053     assert(!pushed_rdi, "rdi must be left non-NULL");
5054     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5055   }
5056 
5057   if (L_failure == &L_fallthrough)
5058         jccb(Assembler::notEqual, *L_failure);
5059   else  jcc(Assembler::notEqual, *L_failure);
5060 
5061   // Success.  Cache the super we found and proceed in triumph.
5062   movptr(super_cache_addr, super_klass);
5063 
5064   if (L_success != &L_fallthrough) {
5065     jmp(*L_success);
5066   }
5067 
5068 #undef IS_A_TEMP
5069 
5070   bind(L_fallthrough);
5071 }
5072 
5073 
5074 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5075   if (VM_Version::supports_cmov()) {
5076     cmovl(cc, dst, src);
5077   } else {
5078     Label L;
5079     jccb(negate_condition(cc), L);
5080     movl(dst, src);
5081     bind(L);
5082   }
5083 }
5084 
5085 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5086   if (VM_Version::supports_cmov()) {
5087     cmovl(cc, dst, src);
5088   } else {
5089     Label L;
5090     jccb(negate_condition(cc), L);
5091     movl(dst, src);
5092     bind(L);
5093   }
5094 }
5095 
5096 void MacroAssembler::verify_oop(Register reg, const char* s) {
5097   if (!VerifyOops) return;
5098 
5099   // Pass register number to verify_oop_subroutine
5100   const char* b = NULL;
5101   {
5102     ResourceMark rm;
5103     stringStream ss;
5104     ss.print("verify_oop: %s: %s", reg->name(), s);
5105     b = code_string(ss.as_string());
5106   }
5107   BLOCK_COMMENT("verify_oop {");
5108 #ifdef _LP64
5109   push(rscratch1);                    // save r10, trashed by movptr()
5110 #endif
5111   push(rax);                          // save rax,
5112   push(reg);                          // pass register argument
5113   ExternalAddress buffer((address) b);
5114   // avoid using pushptr, as it modifies scratch registers
5115   // and our contract is not to modify anything
5116   movptr(rax, buffer.addr());
5117   push(rax);
5118   // call indirectly to solve generation ordering problem
5119   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5120   call(rax);
5121   // Caller pops the arguments (oop, message) and restores rax, r10
5122   BLOCK_COMMENT("} verify_oop");
5123 }
5124 
5125 
5126 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5127                                                       Register tmp,
5128                                                       int offset) {
5129   intptr_t value = *delayed_value_addr;
5130   if (value != 0)
5131     return RegisterOrConstant(value + offset);
5132 
5133   // load indirectly to solve generation ordering problem
5134   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5135 
5136 #ifdef ASSERT
5137   { Label L;
5138     testptr(tmp, tmp);
5139     if (WizardMode) {
5140       const char* buf = NULL;
5141       {
5142         ResourceMark rm;
5143         stringStream ss;
5144         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5145         buf = code_string(ss.as_string());
5146       }
5147       jcc(Assembler::notZero, L);
5148       STOP(buf);
5149     } else {
5150       jccb(Assembler::notZero, L);
5151       hlt();
5152     }
5153     bind(L);
5154   }
5155 #endif
5156 
5157   if (offset != 0)
5158     addptr(tmp, offset);
5159 
5160   return RegisterOrConstant(tmp);
5161 }
5162 
5163 
5164 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5165                                          int extra_slot_offset) {
5166   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5167   int stackElementSize = Interpreter::stackElementSize;
5168   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5169 #ifdef ASSERT
5170   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5171   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5172 #endif
5173   Register             scale_reg    = noreg;
5174   Address::ScaleFactor scale_factor = Address::no_scale;
5175   if (arg_slot.is_constant()) {
5176     offset += arg_slot.as_constant() * stackElementSize;
5177   } else {
5178     scale_reg    = arg_slot.as_register();
5179     scale_factor = Address::times(stackElementSize);
5180   }
5181   offset += wordSize;           // return PC is on stack
5182   return Address(rsp, scale_reg, scale_factor, offset);
5183 }
5184 
5185 
5186 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5187   if (!VerifyOops) return;
5188 
5189   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5190   // Pass register number to verify_oop_subroutine
5191   const char* b = NULL;
5192   {
5193     ResourceMark rm;
5194     stringStream ss;
5195     ss.print("verify_oop_addr: %s", s);
5196     b = code_string(ss.as_string());
5197   }
5198 #ifdef _LP64
5199   push(rscratch1);                    // save r10, trashed by movptr()
5200 #endif
5201   push(rax);                          // save rax,
5202   // addr may contain rsp so we will have to adjust it based on the push
5203   // we just did (and on 64 bit we do two pushes)
5204   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5205   // stores rax into addr which is backwards of what was intended.
5206   if (addr.uses(rsp)) {
5207     lea(rax, addr);
5208     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5209   } else {
5210     pushptr(addr);
5211   }
5212 
5213   ExternalAddress buffer((address) b);
5214   // pass msg argument
5215   // avoid using pushptr, as it modifies scratch registers
5216   // and our contract is not to modify anything
5217   movptr(rax, buffer.addr());
5218   push(rax);
5219 
5220   // call indirectly to solve generation ordering problem
5221   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5222   call(rax);
5223   // Caller pops the arguments (addr, message) and restores rax, r10.
5224 }
5225 
5226 void MacroAssembler::verify_tlab() {
5227 #ifdef ASSERT
5228   if (UseTLAB && VerifyOops) {
5229     Label next, ok;
5230     Register t1 = rsi;
5231     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5232 
5233     push(t1);
5234     NOT_LP64(push(thread_reg));
5235     NOT_LP64(get_thread(thread_reg));
5236 
5237     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5238     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5239     jcc(Assembler::aboveEqual, next);
5240     STOP("assert(top >= start)");
5241     should_not_reach_here();
5242 
5243     bind(next);
5244     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5245     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5246     jcc(Assembler::aboveEqual, ok);
5247     STOP("assert(top <= end)");
5248     should_not_reach_here();
5249 
5250     bind(ok);
5251     NOT_LP64(pop(thread_reg));
5252     pop(t1);
5253   }
5254 #endif
5255 }
5256 
5257 class ControlWord {
5258  public:
5259   int32_t _value;
5260 
5261   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5262   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5263   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5264   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5265   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5266   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5267   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5268   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5269 
5270   void print() const {
5271     // rounding control
5272     const char* rc;
5273     switch (rounding_control()) {
5274       case 0: rc = "round near"; break;
5275       case 1: rc = "round down"; break;
5276       case 2: rc = "round up  "; break;
5277       case 3: rc = "chop      "; break;
5278     };
5279     // precision control
5280     const char* pc;
5281     switch (precision_control()) {
5282       case 0: pc = "24 bits "; break;
5283       case 1: pc = "reserved"; break;
5284       case 2: pc = "53 bits "; break;
5285       case 3: pc = "64 bits "; break;
5286     };
5287     // flags
5288     char f[9];
5289     f[0] = ' ';
5290     f[1] = ' ';
5291     f[2] = (precision   ()) ? 'P' : 'p';
5292     f[3] = (underflow   ()) ? 'U' : 'u';
5293     f[4] = (overflow    ()) ? 'O' : 'o';
5294     f[5] = (zero_divide ()) ? 'Z' : 'z';
5295     f[6] = (denormalized()) ? 'D' : 'd';
5296     f[7] = (invalid     ()) ? 'I' : 'i';
5297     f[8] = '\x0';
5298     // output
5299     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5300   }
5301 
5302 };
5303 
5304 class StatusWord {
5305  public:
5306   int32_t _value;
5307 
5308   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5309   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5310   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5311   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5312   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5313   int  top() const                     { return  (_value >> 11) & 7      ; }
5314   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5315   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5316   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5317   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5318   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5319   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5320   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5321   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5322 
5323   void print() const {
5324     // condition codes
5325     char c[5];
5326     c[0] = (C3()) ? '3' : '-';
5327     c[1] = (C2()) ? '2' : '-';
5328     c[2] = (C1()) ? '1' : '-';
5329     c[3] = (C0()) ? '0' : '-';
5330     c[4] = '\x0';
5331     // flags
5332     char f[9];
5333     f[0] = (error_status()) ? 'E' : '-';
5334     f[1] = (stack_fault ()) ? 'S' : '-';
5335     f[2] = (precision   ()) ? 'P' : '-';
5336     f[3] = (underflow   ()) ? 'U' : '-';
5337     f[4] = (overflow    ()) ? 'O' : '-';
5338     f[5] = (zero_divide ()) ? 'Z' : '-';
5339     f[6] = (denormalized()) ? 'D' : '-';
5340     f[7] = (invalid     ()) ? 'I' : '-';
5341     f[8] = '\x0';
5342     // output
5343     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5344   }
5345 
5346 };
5347 
5348 class TagWord {
5349  public:
5350   int32_t _value;
5351 
5352   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5353 
5354   void print() const {
5355     printf("%04x", _value & 0xFFFF);
5356   }
5357 
5358 };
5359 
5360 class FPU_Register {
5361  public:
5362   int32_t _m0;
5363   int32_t _m1;
5364   int16_t _ex;
5365 
5366   bool is_indefinite() const           {
5367     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5368   }
5369 
5370   void print() const {
5371     char  sign = (_ex < 0) ? '-' : '+';
5372     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5373     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5374   };
5375 
5376 };
5377 
5378 class FPU_State {
5379  public:
5380   enum {
5381     register_size       = 10,
5382     number_of_registers =  8,
5383     register_mask       =  7
5384   };
5385 
5386   ControlWord  _control_word;
5387   StatusWord   _status_word;
5388   TagWord      _tag_word;
5389   int32_t      _error_offset;
5390   int32_t      _error_selector;
5391   int32_t      _data_offset;
5392   int32_t      _data_selector;
5393   int8_t       _register[register_size * number_of_registers];
5394 
5395   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5396   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5397 
5398   const char* tag_as_string(int tag) const {
5399     switch (tag) {
5400       case 0: return "valid";
5401       case 1: return "zero";
5402       case 2: return "special";
5403       case 3: return "empty";
5404     }
5405     ShouldNotReachHere();
5406     return NULL;
5407   }
5408 
5409   void print() const {
5410     // print computation registers
5411     { int t = _status_word.top();
5412       for (int i = 0; i < number_of_registers; i++) {
5413         int j = (i - t) & register_mask;
5414         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5415         st(j)->print();
5416         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5417       }
5418     }
5419     printf("\n");
5420     // print control registers
5421     printf("ctrl = "); _control_word.print(); printf("\n");
5422     printf("stat = "); _status_word .print(); printf("\n");
5423     printf("tags = "); _tag_word    .print(); printf("\n");
5424   }
5425 
5426 };
5427 
5428 class Flag_Register {
5429  public:
5430   int32_t _value;
5431 
5432   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5433   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5434   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5435   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5436   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5437   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5438   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5439 
5440   void print() const {
5441     // flags
5442     char f[8];
5443     f[0] = (overflow       ()) ? 'O' : '-';
5444     f[1] = (direction      ()) ? 'D' : '-';
5445     f[2] = (sign           ()) ? 'S' : '-';
5446     f[3] = (zero           ()) ? 'Z' : '-';
5447     f[4] = (auxiliary_carry()) ? 'A' : '-';
5448     f[5] = (parity         ()) ? 'P' : '-';
5449     f[6] = (carry          ()) ? 'C' : '-';
5450     f[7] = '\x0';
5451     // output
5452     printf("%08x  flags = %s", _value, f);
5453   }
5454 
5455 };
5456 
5457 class IU_Register {
5458  public:
5459   int32_t _value;
5460 
5461   void print() const {
5462     printf("%08x  %11d", _value, _value);
5463   }
5464 
5465 };
5466 
5467 class IU_State {
5468  public:
5469   Flag_Register _eflags;
5470   IU_Register   _rdi;
5471   IU_Register   _rsi;
5472   IU_Register   _rbp;
5473   IU_Register   _rsp;
5474   IU_Register   _rbx;
5475   IU_Register   _rdx;
5476   IU_Register   _rcx;
5477   IU_Register   _rax;
5478 
5479   void print() const {
5480     // computation registers
5481     printf("rax,  = "); _rax.print(); printf("\n");
5482     printf("rbx,  = "); _rbx.print(); printf("\n");
5483     printf("rcx  = "); _rcx.print(); printf("\n");
5484     printf("rdx  = "); _rdx.print(); printf("\n");
5485     printf("rdi  = "); _rdi.print(); printf("\n");
5486     printf("rsi  = "); _rsi.print(); printf("\n");
5487     printf("rbp,  = "); _rbp.print(); printf("\n");
5488     printf("rsp  = "); _rsp.print(); printf("\n");
5489     printf("\n");
5490     // control registers
5491     printf("flgs = "); _eflags.print(); printf("\n");
5492   }
5493 };
5494 
5495 
5496 class CPU_State {
5497  public:
5498   FPU_State _fpu_state;
5499   IU_State  _iu_state;
5500 
5501   void print() const {
5502     printf("--------------------------------------------------\n");
5503     _iu_state .print();
5504     printf("\n");
5505     _fpu_state.print();
5506     printf("--------------------------------------------------\n");
5507   }
5508 
5509 };
5510 
5511 
5512 static void _print_CPU_state(CPU_State* state) {
5513   state->print();
5514 };
5515 
5516 
5517 void MacroAssembler::print_CPU_state() {
5518   push_CPU_state();
5519   push(rsp);                // pass CPU state
5520   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5521   addptr(rsp, wordSize);       // discard argument
5522   pop_CPU_state();
5523 }
5524 
5525 
5526 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5527   static int counter = 0;
5528   FPU_State* fs = &state->_fpu_state;
5529   counter++;
5530   // For leaf calls, only verify that the top few elements remain empty.
5531   // We only need 1 empty at the top for C2 code.
5532   if( stack_depth < 0 ) {
5533     if( fs->tag_for_st(7) != 3 ) {
5534       printf("FPR7 not empty\n");
5535       state->print();
5536       assert(false, "error");
5537       return false;
5538     }
5539     return true;                // All other stack states do not matter
5540   }
5541 
5542   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5543          "bad FPU control word");
5544 
5545   // compute stack depth
5546   int i = 0;
5547   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5548   int d = i;
5549   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5550   // verify findings
5551   if (i != FPU_State::number_of_registers) {
5552     // stack not contiguous
5553     printf("%s: stack not contiguous at ST%d\n", s, i);
5554     state->print();
5555     assert(false, "error");
5556     return false;
5557   }
5558   // check if computed stack depth corresponds to expected stack depth
5559   if (stack_depth < 0) {
5560     // expected stack depth is -stack_depth or less
5561     if (d > -stack_depth) {
5562       // too many elements on the stack
5563       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5564       state->print();
5565       assert(false, "error");
5566       return false;
5567     }
5568   } else {
5569     // expected stack depth is stack_depth
5570     if (d != stack_depth) {
5571       // wrong stack depth
5572       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5573       state->print();
5574       assert(false, "error");
5575       return false;
5576     }
5577   }
5578   // everything is cool
5579   return true;
5580 }
5581 
5582 
5583 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5584   if (!VerifyFPU) return;
5585   push_CPU_state();
5586   push(rsp);                // pass CPU state
5587   ExternalAddress msg((address) s);
5588   // pass message string s
5589   pushptr(msg.addr());
5590   push(stack_depth);        // pass stack depth
5591   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5592   addptr(rsp, 3 * wordSize);   // discard arguments
5593   // check for error
5594   { Label L;
5595     testl(rax, rax);
5596     jcc(Assembler::notZero, L);
5597     int3();                  // break if error condition
5598     bind(L);
5599   }
5600   pop_CPU_state();
5601 }
5602 
5603 void MacroAssembler::restore_cpu_control_state_after_jni() {
5604   // Either restore the MXCSR register after returning from the JNI Call
5605   // or verify that it wasn't changed (with -Xcheck:jni flag).
5606   if (VM_Version::supports_sse()) {
5607     if (RestoreMXCSROnJNICalls) {
5608       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5609     } else if (CheckJNICalls) {
5610       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5611     }
5612   }
5613   if (VM_Version::supports_avx()) {
5614     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5615     vzeroupper();
5616   }
5617 
5618 #ifndef _LP64
5619   // Either restore the x87 floating pointer control word after returning
5620   // from the JNI call or verify that it wasn't changed.
5621   if (CheckJNICalls) {
5622     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5623   }
5624 #endif // _LP64
5625 }
5626 
5627 
5628 void MacroAssembler::load_klass(Register dst, Register src) {
5629 #ifdef _LP64
5630   if (UseCompressedClassPointers) {
5631     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5632     decode_klass_not_null(dst);
5633   } else
5634 #endif
5635     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5636 }
5637 
5638 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5639   load_klass(dst, src);
5640   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5641 }
5642 
5643 void MacroAssembler::store_klass(Register dst, Register src) {
5644 #ifdef _LP64
5645   if (UseCompressedClassPointers) {
5646     encode_klass_not_null(src);
5647     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5648   } else
5649 #endif
5650     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5651 }
5652 
5653 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5654 #ifdef _LP64
5655   // FIXME: Must change all places where we try to load the klass.
5656   if (UseCompressedOops) {
5657     movl(dst, src);
5658     decode_heap_oop(dst);
5659   } else
5660 #endif
5661     movptr(dst, src);
5662 }
5663 
5664 // Doesn't do verfication, generates fixed size code
5665 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5666 #ifdef _LP64
5667   if (UseCompressedOops) {
5668     movl(dst, src);
5669     decode_heap_oop_not_null(dst);
5670   } else
5671 #endif
5672     movptr(dst, src);
5673 }
5674 
5675 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5676 #ifdef _LP64
5677   if (UseCompressedOops) {
5678     assert(!dst.uses(src), "not enough registers");
5679     encode_heap_oop(src);
5680     movl(dst, src);
5681   } else
5682 #endif
5683     movptr(dst, src);
5684 }
5685 
5686 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5687   assert_different_registers(src1, tmp);
5688 #ifdef _LP64
5689   if (UseCompressedOops) {
5690     bool did_push = false;
5691     if (tmp == noreg) {
5692       tmp = rax;
5693       push(tmp);
5694       did_push = true;
5695       assert(!src2.uses(rsp), "can't push");
5696     }
5697     load_heap_oop(tmp, src2);
5698     cmpptr(src1, tmp);
5699     if (did_push)  pop(tmp);
5700   } else
5701 #endif
5702     cmpptr(src1, src2);
5703 }
5704 
5705 // Used for storing NULLs.
5706 void MacroAssembler::store_heap_oop_null(Address dst) {
5707 #ifdef _LP64
5708   if (UseCompressedOops) {
5709     movl(dst, (int32_t)NULL_WORD);
5710   } else {
5711     movslq(dst, (int32_t)NULL_WORD);
5712   }
5713 #else
5714   movl(dst, (int32_t)NULL_WORD);
5715 #endif
5716 }
5717 
5718 #ifdef _LP64
5719 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5720   if (UseCompressedClassPointers) {
5721     // Store to klass gap in destination
5722     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5723   }
5724 }
5725 
5726 #ifdef ASSERT
5727 void MacroAssembler::verify_heapbase(const char* msg) {
5728   assert (UseCompressedOops, "should be compressed");
5729   assert (Universe::heap() != NULL, "java heap should be initialized");
5730   if (CheckCompressedOops) {
5731     Label ok;
5732     push(rscratch1); // cmpptr trashes rscratch1
5733     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5734     jcc(Assembler::equal, ok);
5735     STOP(msg);
5736     bind(ok);
5737     pop(rscratch1);
5738   }
5739 }
5740 #endif
5741 
5742 // Algorithm must match oop.inline.hpp encode_heap_oop.
5743 void MacroAssembler::encode_heap_oop(Register r) {
5744 #ifdef ASSERT
5745   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5746 #endif
5747   verify_oop(r, "broken oop in encode_heap_oop");
5748   if (Universe::narrow_oop_base() == NULL) {
5749     if (Universe::narrow_oop_shift() != 0) {
5750       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5751       shrq(r, LogMinObjAlignmentInBytes);
5752     }
5753     return;
5754   }
5755   testq(r, r);
5756   cmovq(Assembler::equal, r, r12_heapbase);
5757   subq(r, r12_heapbase);
5758   shrq(r, LogMinObjAlignmentInBytes);
5759 }
5760 
5761 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5762 #ifdef ASSERT
5763   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5764   if (CheckCompressedOops) {
5765     Label ok;
5766     testq(r, r);
5767     jcc(Assembler::notEqual, ok);
5768     STOP("null oop passed to encode_heap_oop_not_null");
5769     bind(ok);
5770   }
5771 #endif
5772   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5773   if (Universe::narrow_oop_base() != NULL) {
5774     subq(r, r12_heapbase);
5775   }
5776   if (Universe::narrow_oop_shift() != 0) {
5777     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5778     shrq(r, LogMinObjAlignmentInBytes);
5779   }
5780 }
5781 
5782 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5783 #ifdef ASSERT
5784   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5785   if (CheckCompressedOops) {
5786     Label ok;
5787     testq(src, src);
5788     jcc(Assembler::notEqual, ok);
5789     STOP("null oop passed to encode_heap_oop_not_null2");
5790     bind(ok);
5791   }
5792 #endif
5793   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5794   if (dst != src) {
5795     movq(dst, src);
5796   }
5797   if (Universe::narrow_oop_base() != NULL) {
5798     subq(dst, r12_heapbase);
5799   }
5800   if (Universe::narrow_oop_shift() != 0) {
5801     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5802     shrq(dst, LogMinObjAlignmentInBytes);
5803   }
5804 }
5805 
5806 void  MacroAssembler::decode_heap_oop(Register r) {
5807 #ifdef ASSERT
5808   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5809 #endif
5810   if (Universe::narrow_oop_base() == NULL) {
5811     if (Universe::narrow_oop_shift() != 0) {
5812       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5813       shlq(r, LogMinObjAlignmentInBytes);
5814     }
5815   } else {
5816     Label done;
5817     shlq(r, LogMinObjAlignmentInBytes);
5818     jccb(Assembler::equal, done);
5819     addq(r, r12_heapbase);
5820     bind(done);
5821   }
5822   verify_oop(r, "broken oop in decode_heap_oop");
5823 }
5824 
5825 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5826   // Note: it will change flags
5827   assert (UseCompressedOops, "should only be used for compressed headers");
5828   assert (Universe::heap() != NULL, "java heap should be initialized");
5829   // Cannot assert, unverified entry point counts instructions (see .ad file)
5830   // vtableStubs also counts instructions in pd_code_size_limit.
5831   // Also do not verify_oop as this is called by verify_oop.
5832   if (Universe::narrow_oop_shift() != 0) {
5833     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5834     shlq(r, LogMinObjAlignmentInBytes);
5835     if (Universe::narrow_oop_base() != NULL) {
5836       addq(r, r12_heapbase);
5837     }
5838   } else {
5839     assert (Universe::narrow_oop_base() == NULL, "sanity");
5840   }
5841 }
5842 
5843 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5844   // Note: it will change flags
5845   assert (UseCompressedOops, "should only be used for compressed headers");
5846   assert (Universe::heap() != NULL, "java heap should be initialized");
5847   // Cannot assert, unverified entry point counts instructions (see .ad file)
5848   // vtableStubs also counts instructions in pd_code_size_limit.
5849   // Also do not verify_oop as this is called by verify_oop.
5850   if (Universe::narrow_oop_shift() != 0) {
5851     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5852     if (LogMinObjAlignmentInBytes == Address::times_8) {
5853       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5854     } else {
5855       if (dst != src) {
5856         movq(dst, src);
5857       }
5858       shlq(dst, LogMinObjAlignmentInBytes);
5859       if (Universe::narrow_oop_base() != NULL) {
5860         addq(dst, r12_heapbase);
5861       }
5862     }
5863   } else {
5864     assert (Universe::narrow_oop_base() == NULL, "sanity");
5865     if (dst != src) {
5866       movq(dst, src);
5867     }
5868   }
5869 }
5870 
5871 void MacroAssembler::encode_klass_not_null(Register r) {
5872   if (Universe::narrow_klass_base() != NULL) {
5873     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5874     assert(r != r12_heapbase, "Encoding a klass in r12");
5875     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5876     subq(r, r12_heapbase);
5877   }
5878   if (Universe::narrow_klass_shift() != 0) {
5879     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5880     shrq(r, LogKlassAlignmentInBytes);
5881   }
5882   if (Universe::narrow_klass_base() != NULL) {
5883     reinit_heapbase();
5884   }
5885 }
5886 
5887 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5888   if (dst == src) {
5889     encode_klass_not_null(src);
5890   } else {
5891     if (Universe::narrow_klass_base() != NULL) {
5892       mov64(dst, (int64_t)Universe::narrow_klass_base());
5893       negq(dst);
5894       addq(dst, src);
5895     } else {
5896       movptr(dst, src);
5897     }
5898     if (Universe::narrow_klass_shift() != 0) {
5899       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5900       shrq(dst, LogKlassAlignmentInBytes);
5901     }
5902   }
5903 }
5904 
5905 // Function instr_size_for_decode_klass_not_null() counts the instructions
5906 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5907 // when (Universe::heap() != NULL).  Hence, if the instructions they
5908 // generate change, then this method needs to be updated.
5909 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5910   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5911   if (Universe::narrow_klass_base() != NULL) {
5912     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5913     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5914   } else {
5915     // longest load decode klass function, mov64, leaq
5916     return 16;
5917   }
5918 }
5919 
5920 // !!! If the instructions that get generated here change then function
5921 // instr_size_for_decode_klass_not_null() needs to get updated.
5922 void  MacroAssembler::decode_klass_not_null(Register r) {
5923   // Note: it will change flags
5924   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5925   assert(r != r12_heapbase, "Decoding a klass in r12");
5926   // Cannot assert, unverified entry point counts instructions (see .ad file)
5927   // vtableStubs also counts instructions in pd_code_size_limit.
5928   // Also do not verify_oop as this is called by verify_oop.
5929   if (Universe::narrow_klass_shift() != 0) {
5930     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5931     shlq(r, LogKlassAlignmentInBytes);
5932   }
5933   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5934   if (Universe::narrow_klass_base() != NULL) {
5935     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5936     addq(r, r12_heapbase);
5937     reinit_heapbase();
5938   }
5939 }
5940 
5941 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5942   // Note: it will change flags
5943   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5944   if (dst == src) {
5945     decode_klass_not_null(dst);
5946   } else {
5947     // Cannot assert, unverified entry point counts instructions (see .ad file)
5948     // vtableStubs also counts instructions in pd_code_size_limit.
5949     // Also do not verify_oop as this is called by verify_oop.
5950     mov64(dst, (int64_t)Universe::narrow_klass_base());
5951     if (Universe::narrow_klass_shift() != 0) {
5952       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5953       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5954       leaq(dst, Address(dst, src, Address::times_8, 0));
5955     } else {
5956       addq(dst, src);
5957     }
5958   }
5959 }
5960 
5961 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5962   assert (UseCompressedOops, "should only be used for compressed headers");
5963   assert (Universe::heap() != NULL, "java heap should be initialized");
5964   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5965   int oop_index = oop_recorder()->find_index(obj);
5966   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5967   mov_narrow_oop(dst, oop_index, rspec);
5968 }
5969 
5970 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5971   assert (UseCompressedOops, "should only be used for compressed headers");
5972   assert (Universe::heap() != NULL, "java heap should be initialized");
5973   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5974   int oop_index = oop_recorder()->find_index(obj);
5975   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5976   mov_narrow_oop(dst, oop_index, rspec);
5977 }
5978 
5979 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5980   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5981   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5982   int klass_index = oop_recorder()->find_index(k);
5983   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5984   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5985 }
5986 
5987 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5988   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5989   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5990   int klass_index = oop_recorder()->find_index(k);
5991   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5992   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5993 }
5994 
5995 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5996   assert (UseCompressedOops, "should only be used for compressed headers");
5997   assert (Universe::heap() != NULL, "java heap should be initialized");
5998   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5999   int oop_index = oop_recorder()->find_index(obj);
6000   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6001   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6002 }
6003 
6004 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6005   assert (UseCompressedOops, "should only be used for compressed headers");
6006   assert (Universe::heap() != NULL, "java heap should be initialized");
6007   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6008   int oop_index = oop_recorder()->find_index(obj);
6009   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6010   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6011 }
6012 
6013 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6014   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6015   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6016   int klass_index = oop_recorder()->find_index(k);
6017   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6018   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6019 }
6020 
6021 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6022   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6023   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6024   int klass_index = oop_recorder()->find_index(k);
6025   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6026   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6027 }
6028 
6029 void MacroAssembler::reinit_heapbase() {
6030   if (UseCompressedOops || UseCompressedClassPointers) {
6031     if (Universe::heap() != NULL) {
6032       if (Universe::narrow_oop_base() == NULL) {
6033         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6034       } else {
6035         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6036       }
6037     } else {
6038       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6039     }
6040   }
6041 }
6042 
6043 #endif // _LP64
6044 
6045 
6046 // C2 compiled method's prolog code.
6047 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6048 
6049   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6050   // NativeJump::patch_verified_entry will be able to patch out the entry
6051   // code safely. The push to verify stack depth is ok at 5 bytes,
6052   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6053   // stack bang then we must use the 6 byte frame allocation even if
6054   // we have no frame. :-(
6055   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6056 
6057   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6058   // Remove word for return addr
6059   framesize -= wordSize;
6060   stack_bang_size -= wordSize;
6061 
6062   // Calls to C2R adapters often do not accept exceptional returns.
6063   // We require that their callers must bang for them.  But be careful, because
6064   // some VM calls (such as call site linkage) can use several kilobytes of
6065   // stack.  But the stack safety zone should account for that.
6066   // See bugs 4446381, 4468289, 4497237.
6067   if (stack_bang_size > 0) {
6068     generate_stack_overflow_check(stack_bang_size);
6069 
6070     // We always push rbp, so that on return to interpreter rbp, will be
6071     // restored correctly and we can correct the stack.
6072     push(rbp);
6073     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6074     if (PreserveFramePointer) {
6075       mov(rbp, rsp);
6076     }
6077     // Remove word for ebp
6078     framesize -= wordSize;
6079 
6080     // Create frame
6081     if (framesize) {
6082       subptr(rsp, framesize);
6083     }
6084   } else {
6085     // Create frame (force generation of a 4 byte immediate value)
6086     subptr_imm32(rsp, framesize);
6087 
6088     // Save RBP register now.
6089     framesize -= wordSize;
6090     movptr(Address(rsp, framesize), rbp);
6091     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6092     if (PreserveFramePointer) {
6093       movptr(rbp, rsp);
6094       addptr(rbp, framesize + wordSize);
6095     }
6096   }
6097 
6098   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6099     framesize -= wordSize;
6100     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6101   }
6102 
6103 #ifndef _LP64
6104   // If method sets FPU control word do it now
6105   if (fp_mode_24b) {
6106     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6107   }
6108   if (UseSSE >= 2 && VerifyFPU) {
6109     verify_FPU(0, "FPU stack must be clean on entry");
6110   }
6111 #endif
6112 
6113 #ifdef ASSERT
6114   if (VerifyStackAtCalls) {
6115     Label L;
6116     push(rax);
6117     mov(rax, rsp);
6118     andptr(rax, StackAlignmentInBytes-1);
6119     cmpptr(rax, StackAlignmentInBytes-wordSize);
6120     pop(rax);
6121     jcc(Assembler::equal, L);
6122     STOP("Stack is not properly aligned!");
6123     bind(L);
6124   }
6125 #endif
6126 
6127 }
6128 
6129 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6130   // cnt - number of qwords (8-byte words).
6131   // base - start address, qword aligned.
6132   assert(base==rdi, "base register must be edi for rep stos");
6133   assert(tmp==rax,   "tmp register must be eax for rep stos");
6134   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6135 
6136   xorptr(tmp, tmp);
6137   if (UseFastStosb) {
6138     shlptr(cnt,3); // convert to number of bytes
6139     rep_stosb();
6140   } else {
6141     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6142     rep_stos();
6143   }
6144 }
6145 
6146 // IndexOf for constant substrings with size >= 8 chars
6147 // which don't need to be loaded through stack.
6148 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6149                                       Register cnt1, Register cnt2,
6150                                       int int_cnt2,  Register result,
6151                                       XMMRegister vec, Register tmp) {
6152   ShortBranchVerifier sbv(this);
6153   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6154 
6155   // This method uses pcmpestri instruction with bound registers
6156   //   inputs:
6157   //     xmm - substring
6158   //     rax - substring length (elements count)
6159   //     mem - scanned string
6160   //     rdx - string length (elements count)
6161   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6162   //   outputs:
6163   //     rcx - matched index in string
6164   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6165 
6166   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6167         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6168         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6169 
6170   // Note, inline_string_indexOf() generates checks:
6171   // if (substr.count > string.count) return -1;
6172   // if (substr.count == 0) return 0;
6173   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6174 
6175   // Load substring.
6176   movdqu(vec, Address(str2, 0));
6177   movl(cnt2, int_cnt2);
6178   movptr(result, str1); // string addr
6179 
6180   if (int_cnt2 > 8) {
6181     jmpb(SCAN_TO_SUBSTR);
6182 
6183     // Reload substr for rescan, this code
6184     // is executed only for large substrings (> 8 chars)
6185     bind(RELOAD_SUBSTR);
6186     movdqu(vec, Address(str2, 0));
6187     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6188 
6189     bind(RELOAD_STR);
6190     // We came here after the beginning of the substring was
6191     // matched but the rest of it was not so we need to search
6192     // again. Start from the next element after the previous match.
6193 
6194     // cnt2 is number of substring reminding elements and
6195     // cnt1 is number of string reminding elements when cmp failed.
6196     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6197     subl(cnt1, cnt2);
6198     addl(cnt1, int_cnt2);
6199     movl(cnt2, int_cnt2); // Now restore cnt2
6200 
6201     decrementl(cnt1);     // Shift to next element
6202     cmpl(cnt1, cnt2);
6203     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6204 
6205     addptr(result, 2);
6206 
6207   } // (int_cnt2 > 8)
6208 
6209   // Scan string for start of substr in 16-byte vectors
6210   bind(SCAN_TO_SUBSTR);
6211   pcmpestri(vec, Address(result, 0), 0x0d);
6212   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6213   subl(cnt1, 8);
6214   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6215   cmpl(cnt1, cnt2);
6216   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6217   addptr(result, 16);
6218   jmpb(SCAN_TO_SUBSTR);
6219 
6220   // Found a potential substr
6221   bind(FOUND_CANDIDATE);
6222   // Matched whole vector if first element matched (tmp(rcx) == 0).
6223   if (int_cnt2 == 8) {
6224     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6225   } else { // int_cnt2 > 8
6226     jccb(Assembler::overflow, FOUND_SUBSTR);
6227   }
6228   // After pcmpestri tmp(rcx) contains matched element index
6229   // Compute start addr of substr
6230   lea(result, Address(result, tmp, Address::times_2));
6231 
6232   // Make sure string is still long enough
6233   subl(cnt1, tmp);
6234   cmpl(cnt1, cnt2);
6235   if (int_cnt2 == 8) {
6236     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6237   } else { // int_cnt2 > 8
6238     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6239   }
6240   // Left less then substring.
6241 
6242   bind(RET_NOT_FOUND);
6243   movl(result, -1);
6244   jmpb(EXIT);
6245 
6246   if (int_cnt2 > 8) {
6247     // This code is optimized for the case when whole substring
6248     // is matched if its head is matched.
6249     bind(MATCH_SUBSTR_HEAD);
6250     pcmpestri(vec, Address(result, 0), 0x0d);
6251     // Reload only string if does not match
6252     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6253 
6254     Label CONT_SCAN_SUBSTR;
6255     // Compare the rest of substring (> 8 chars).
6256     bind(FOUND_SUBSTR);
6257     // First 8 chars are already matched.
6258     negptr(cnt2);
6259     addptr(cnt2, 8);
6260 
6261     bind(SCAN_SUBSTR);
6262     subl(cnt1, 8);
6263     cmpl(cnt2, -8); // Do not read beyond substring
6264     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6265     // Back-up strings to avoid reading beyond substring:
6266     // cnt1 = cnt1 - cnt2 + 8
6267     addl(cnt1, cnt2); // cnt2 is negative
6268     addl(cnt1, 8);
6269     movl(cnt2, 8); negptr(cnt2);
6270     bind(CONT_SCAN_SUBSTR);
6271     if (int_cnt2 < (int)G) {
6272       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6273       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6274     } else {
6275       // calculate index in register to avoid integer overflow (int_cnt2*2)
6276       movl(tmp, int_cnt2);
6277       addptr(tmp, cnt2);
6278       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6279       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6280     }
6281     // Need to reload strings pointers if not matched whole vector
6282     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6283     addptr(cnt2, 8);
6284     jcc(Assembler::negative, SCAN_SUBSTR);
6285     // Fall through if found full substring
6286 
6287   } // (int_cnt2 > 8)
6288 
6289   bind(RET_FOUND);
6290   // Found result if we matched full small substring.
6291   // Compute substr offset
6292   subptr(result, str1);
6293   shrl(result, 1); // index
6294   bind(EXIT);
6295 
6296 } // string_indexofC8
6297 
6298 // Small strings are loaded through stack if they cross page boundary.
6299 void MacroAssembler::string_indexof(Register str1, Register str2,
6300                                     Register cnt1, Register cnt2,
6301                                     int int_cnt2,  Register result,
6302                                     XMMRegister vec, Register tmp) {
6303   ShortBranchVerifier sbv(this);
6304   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6305   //
6306   // int_cnt2 is length of small (< 8 chars) constant substring
6307   // or (-1) for non constant substring in which case its length
6308   // is in cnt2 register.
6309   //
6310   // Note, inline_string_indexOf() generates checks:
6311   // if (substr.count > string.count) return -1;
6312   // if (substr.count == 0) return 0;
6313   //
6314   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6315 
6316   // This method uses pcmpestri instruction with bound registers
6317   //   inputs:
6318   //     xmm - substring
6319   //     rax - substring length (elements count)
6320   //     mem - scanned string
6321   //     rdx - string length (elements count)
6322   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6323   //   outputs:
6324   //     rcx - matched index in string
6325   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6326 
6327   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6328         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6329         FOUND_CANDIDATE;
6330 
6331   { //========================================================
6332     // We don't know where these strings are located
6333     // and we can't read beyond them. Load them through stack.
6334     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6335 
6336     movptr(tmp, rsp); // save old SP
6337 
6338     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6339       if (int_cnt2 == 1) {  // One char
6340         load_unsigned_short(result, Address(str2, 0));
6341         movdl(vec, result); // move 32 bits
6342       } else if (int_cnt2 == 2) { // Two chars
6343         movdl(vec, Address(str2, 0)); // move 32 bits
6344       } else if (int_cnt2 == 4) { // Four chars
6345         movq(vec, Address(str2, 0));  // move 64 bits
6346       } else { // cnt2 = { 3, 5, 6, 7 }
6347         // Array header size is 12 bytes in 32-bit VM
6348         // + 6 bytes for 3 chars == 18 bytes,
6349         // enough space to load vec and shift.
6350         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6351         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6352         psrldq(vec, 16-(int_cnt2*2));
6353       }
6354     } else { // not constant substring
6355       cmpl(cnt2, 8);
6356       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6357 
6358       // We can read beyond string if srt+16 does not cross page boundary
6359       // since heaps are aligned and mapped by pages.
6360       assert(os::vm_page_size() < (int)G, "default page should be small");
6361       movl(result, str2); // We need only low 32 bits
6362       andl(result, (os::vm_page_size()-1));
6363       cmpl(result, (os::vm_page_size()-16));
6364       jccb(Assembler::belowEqual, CHECK_STR);
6365 
6366       // Move small strings to stack to allow load 16 bytes into vec.
6367       subptr(rsp, 16);
6368       int stk_offset = wordSize-2;
6369       push(cnt2);
6370 
6371       bind(COPY_SUBSTR);
6372       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6373       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6374       decrement(cnt2);
6375       jccb(Assembler::notZero, COPY_SUBSTR);
6376 
6377       pop(cnt2);
6378       movptr(str2, rsp);  // New substring address
6379     } // non constant
6380 
6381     bind(CHECK_STR);
6382     cmpl(cnt1, 8);
6383     jccb(Assembler::aboveEqual, BIG_STRINGS);
6384 
6385     // Check cross page boundary.
6386     movl(result, str1); // We need only low 32 bits
6387     andl(result, (os::vm_page_size()-1));
6388     cmpl(result, (os::vm_page_size()-16));
6389     jccb(Assembler::belowEqual, BIG_STRINGS);
6390 
6391     subptr(rsp, 16);
6392     int stk_offset = -2;
6393     if (int_cnt2 < 0) { // not constant
6394       push(cnt2);
6395       stk_offset += wordSize;
6396     }
6397     movl(cnt2, cnt1);
6398 
6399     bind(COPY_STR);
6400     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6401     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6402     decrement(cnt2);
6403     jccb(Assembler::notZero, COPY_STR);
6404 
6405     if (int_cnt2 < 0) { // not constant
6406       pop(cnt2);
6407     }
6408     movptr(str1, rsp);  // New string address
6409 
6410     bind(BIG_STRINGS);
6411     // Load substring.
6412     if (int_cnt2 < 0) { // -1
6413       movdqu(vec, Address(str2, 0));
6414       push(cnt2);       // substr count
6415       push(str2);       // substr addr
6416       push(str1);       // string addr
6417     } else {
6418       // Small (< 8 chars) constant substrings are loaded already.
6419       movl(cnt2, int_cnt2);
6420     }
6421     push(tmp);  // original SP
6422 
6423   } // Finished loading
6424 
6425   //========================================================
6426   // Start search
6427   //
6428 
6429   movptr(result, str1); // string addr
6430 
6431   if (int_cnt2  < 0) {  // Only for non constant substring
6432     jmpb(SCAN_TO_SUBSTR);
6433 
6434     // SP saved at sp+0
6435     // String saved at sp+1*wordSize
6436     // Substr saved at sp+2*wordSize
6437     // Substr count saved at sp+3*wordSize
6438 
6439     // Reload substr for rescan, this code
6440     // is executed only for large substrings (> 8 chars)
6441     bind(RELOAD_SUBSTR);
6442     movptr(str2, Address(rsp, 2*wordSize));
6443     movl(cnt2, Address(rsp, 3*wordSize));
6444     movdqu(vec, Address(str2, 0));
6445     // We came here after the beginning of the substring was
6446     // matched but the rest of it was not so we need to search
6447     // again. Start from the next element after the previous match.
6448     subptr(str1, result); // Restore counter
6449     shrl(str1, 1);
6450     addl(cnt1, str1);
6451     decrementl(cnt1);   // Shift to next element
6452     cmpl(cnt1, cnt2);
6453     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6454 
6455     addptr(result, 2);
6456   } // non constant
6457 
6458   // Scan string for start of substr in 16-byte vectors
6459   bind(SCAN_TO_SUBSTR);
6460   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6461   pcmpestri(vec, Address(result, 0), 0x0d);
6462   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6463   subl(cnt1, 8);
6464   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6465   cmpl(cnt1, cnt2);
6466   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6467   addptr(result, 16);
6468 
6469   bind(ADJUST_STR);
6470   cmpl(cnt1, 8); // Do not read beyond string
6471   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6472   // Back-up string to avoid reading beyond string.
6473   lea(result, Address(result, cnt1, Address::times_2, -16));
6474   movl(cnt1, 8);
6475   jmpb(SCAN_TO_SUBSTR);
6476 
6477   // Found a potential substr
6478   bind(FOUND_CANDIDATE);
6479   // After pcmpestri tmp(rcx) contains matched element index
6480 
6481   // Make sure string is still long enough
6482   subl(cnt1, tmp);
6483   cmpl(cnt1, cnt2);
6484   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6485   // Left less then substring.
6486 
6487   bind(RET_NOT_FOUND);
6488   movl(result, -1);
6489   jmpb(CLEANUP);
6490 
6491   bind(FOUND_SUBSTR);
6492   // Compute start addr of substr
6493   lea(result, Address(result, tmp, Address::times_2));
6494 
6495   if (int_cnt2 > 0) { // Constant substring
6496     // Repeat search for small substring (< 8 chars)
6497     // from new point without reloading substring.
6498     // Have to check that we don't read beyond string.
6499     cmpl(tmp, 8-int_cnt2);
6500     jccb(Assembler::greater, ADJUST_STR);
6501     // Fall through if matched whole substring.
6502   } else { // non constant
6503     assert(int_cnt2 == -1, "should be != 0");
6504 
6505     addl(tmp, cnt2);
6506     // Found result if we matched whole substring.
6507     cmpl(tmp, 8);
6508     jccb(Assembler::lessEqual, RET_FOUND);
6509 
6510     // Repeat search for small substring (<= 8 chars)
6511     // from new point 'str1' without reloading substring.
6512     cmpl(cnt2, 8);
6513     // Have to check that we don't read beyond string.
6514     jccb(Assembler::lessEqual, ADJUST_STR);
6515 
6516     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6517     // Compare the rest of substring (> 8 chars).
6518     movptr(str1, result);
6519 
6520     cmpl(tmp, cnt2);
6521     // First 8 chars are already matched.
6522     jccb(Assembler::equal, CHECK_NEXT);
6523 
6524     bind(SCAN_SUBSTR);
6525     pcmpestri(vec, Address(str1, 0), 0x0d);
6526     // Need to reload strings pointers if not matched whole vector
6527     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6528 
6529     bind(CHECK_NEXT);
6530     subl(cnt2, 8);
6531     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6532     addptr(str1, 16);
6533     addptr(str2, 16);
6534     subl(cnt1, 8);
6535     cmpl(cnt2, 8); // Do not read beyond substring
6536     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6537     // Back-up strings to avoid reading beyond substring.
6538     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6539     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6540     subl(cnt1, cnt2);
6541     movl(cnt2, 8);
6542     addl(cnt1, 8);
6543     bind(CONT_SCAN_SUBSTR);
6544     movdqu(vec, Address(str2, 0));
6545     jmpb(SCAN_SUBSTR);
6546 
6547     bind(RET_FOUND_LONG);
6548     movptr(str1, Address(rsp, wordSize));
6549   } // non constant
6550 
6551   bind(RET_FOUND);
6552   // Compute substr offset
6553   subptr(result, str1);
6554   shrl(result, 1); // index
6555 
6556   bind(CLEANUP);
6557   pop(rsp); // restore SP
6558 
6559 } // string_indexof
6560 
6561 // Compare strings.
6562 void MacroAssembler::string_compare(Register str1, Register str2,
6563                                     Register cnt1, Register cnt2, Register result,
6564                                     XMMRegister vec1) {
6565   ShortBranchVerifier sbv(this);
6566   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6567 
6568   // Compute the minimum of the string lengths and the
6569   // difference of the string lengths (stack).
6570   // Do the conditional move stuff
6571   movl(result, cnt1);
6572   subl(cnt1, cnt2);
6573   push(cnt1);
6574   cmov32(Assembler::lessEqual, cnt2, result);
6575 
6576   // Is the minimum length zero?
6577   testl(cnt2, cnt2);
6578   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6579 
6580   // Compare first characters
6581   load_unsigned_short(result, Address(str1, 0));
6582   load_unsigned_short(cnt1, Address(str2, 0));
6583   subl(result, cnt1);
6584   jcc(Assembler::notZero,  POP_LABEL);
6585   cmpl(cnt2, 1);
6586   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6587 
6588   // Check if the strings start at the same location.
6589   cmpptr(str1, str2);
6590   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6591 
6592   Address::ScaleFactor scale = Address::times_2;
6593   int stride = 8;
6594 
6595   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6596     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6597     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6598     Label COMPARE_TAIL_LONG;
6599     int pcmpmask = 0x19;
6600 
6601     // Setup to compare 16-chars (32-bytes) vectors,
6602     // start from first character again because it has aligned address.
6603     int stride2 = 16;
6604     int adr_stride  = stride  << scale;
6605 
6606     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6607     // rax and rdx are used by pcmpestri as elements counters
6608     movl(result, cnt2);
6609     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6610     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6611 
6612     // fast path : compare first 2 8-char vectors.
6613     bind(COMPARE_16_CHARS);
6614     movdqu(vec1, Address(str1, 0));
6615     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6616     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6617 
6618     movdqu(vec1, Address(str1, adr_stride));
6619     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6620     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6621     addl(cnt1, stride);
6622 
6623     // Compare the characters at index in cnt1
6624     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6625     load_unsigned_short(result, Address(str1, cnt1, scale));
6626     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6627     subl(result, cnt2);
6628     jmp(POP_LABEL);
6629 
6630     // Setup the registers to start vector comparison loop
6631     bind(COMPARE_WIDE_VECTORS);
6632     lea(str1, Address(str1, result, scale));
6633     lea(str2, Address(str2, result, scale));
6634     subl(result, stride2);
6635     subl(cnt2, stride2);
6636     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6637     negptr(result);
6638 
6639     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6640     bind(COMPARE_WIDE_VECTORS_LOOP);
6641     vmovdqu(vec1, Address(str1, result, scale));
6642     vpxor(vec1, Address(str2, result, scale));
6643     vptest(vec1, vec1);
6644     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6645     addptr(result, stride2);
6646     subl(cnt2, stride2);
6647     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6648     // clean upper bits of YMM registers
6649     vpxor(vec1, vec1);
6650 
6651     // compare wide vectors tail
6652     bind(COMPARE_WIDE_TAIL);
6653     testptr(result, result);
6654     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6655 
6656     movl(result, stride2);
6657     movl(cnt2, result);
6658     negptr(result);
6659     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6660 
6661     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6662     bind(VECTOR_NOT_EQUAL);
6663     // clean upper bits of YMM registers
6664     vpxor(vec1, vec1);
6665     lea(str1, Address(str1, result, scale));
6666     lea(str2, Address(str2, result, scale));
6667     jmp(COMPARE_16_CHARS);
6668 
6669     // Compare tail chars, length between 1 to 15 chars
6670     bind(COMPARE_TAIL_LONG);
6671     movl(cnt2, result);
6672     cmpl(cnt2, stride);
6673     jccb(Assembler::less, COMPARE_SMALL_STR);
6674 
6675     movdqu(vec1, Address(str1, 0));
6676     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6677     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6678     subptr(cnt2, stride);
6679     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6680     lea(str1, Address(str1, result, scale));
6681     lea(str2, Address(str2, result, scale));
6682     negptr(cnt2);
6683     jmpb(WHILE_HEAD_LABEL);
6684 
6685     bind(COMPARE_SMALL_STR);
6686   } else if (UseSSE42Intrinsics) {
6687     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6688     int pcmpmask = 0x19;
6689     // Setup to compare 8-char (16-byte) vectors,
6690     // start from first character again because it has aligned address.
6691     movl(result, cnt2);
6692     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6693     jccb(Assembler::zero, COMPARE_TAIL);
6694 
6695     lea(str1, Address(str1, result, scale));
6696     lea(str2, Address(str2, result, scale));
6697     negptr(result);
6698 
6699     // pcmpestri
6700     //   inputs:
6701     //     vec1- substring
6702     //     rax - negative string length (elements count)
6703     //     mem - scanned string
6704     //     rdx - string length (elements count)
6705     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6706     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6707     //   outputs:
6708     //     rcx - first mismatched element index
6709     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6710 
6711     bind(COMPARE_WIDE_VECTORS);
6712     movdqu(vec1, Address(str1, result, scale));
6713     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6714     // After pcmpestri cnt1(rcx) contains mismatched element index
6715 
6716     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6717     addptr(result, stride);
6718     subptr(cnt2, stride);
6719     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6720 
6721     // compare wide vectors tail
6722     testptr(result, result);
6723     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6724 
6725     movl(cnt2, stride);
6726     movl(result, stride);
6727     negptr(result);
6728     movdqu(vec1, Address(str1, result, scale));
6729     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6730     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6731 
6732     // Mismatched characters in the vectors
6733     bind(VECTOR_NOT_EQUAL);
6734     addptr(cnt1, result);
6735     load_unsigned_short(result, Address(str1, cnt1, scale));
6736     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6737     subl(result, cnt2);
6738     jmpb(POP_LABEL);
6739 
6740     bind(COMPARE_TAIL); // limit is zero
6741     movl(cnt2, result);
6742     // Fallthru to tail compare
6743   }
6744   // Shift str2 and str1 to the end of the arrays, negate min
6745   lea(str1, Address(str1, cnt2, scale));
6746   lea(str2, Address(str2, cnt2, scale));
6747   decrementl(cnt2);  // first character was compared already
6748   negptr(cnt2);
6749 
6750   // Compare the rest of the elements
6751   bind(WHILE_HEAD_LABEL);
6752   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6753   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6754   subl(result, cnt1);
6755   jccb(Assembler::notZero, POP_LABEL);
6756   increment(cnt2);
6757   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6758 
6759   // Strings are equal up to min length.  Return the length difference.
6760   bind(LENGTH_DIFF_LABEL);
6761   pop(result);
6762   jmpb(DONE_LABEL);
6763 
6764   // Discard the stored length difference
6765   bind(POP_LABEL);
6766   pop(cnt1);
6767 
6768   // That's it
6769   bind(DONE_LABEL);
6770 }
6771 
6772 // Compare char[] arrays aligned to 4 bytes or substrings.
6773 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6774                                         Register limit, Register result, Register chr,
6775                                         XMMRegister vec1, XMMRegister vec2) {
6776   ShortBranchVerifier sbv(this);
6777   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6778 
6779   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6780   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6781 
6782   // Check the input args
6783   cmpptr(ary1, ary2);
6784   jcc(Assembler::equal, TRUE_LABEL);
6785 
6786   if (is_array_equ) {
6787     // Need additional checks for arrays_equals.
6788     testptr(ary1, ary1);
6789     jcc(Assembler::zero, FALSE_LABEL);
6790     testptr(ary2, ary2);
6791     jcc(Assembler::zero, FALSE_LABEL);
6792 
6793     // Check the lengths
6794     movl(limit, Address(ary1, length_offset));
6795     cmpl(limit, Address(ary2, length_offset));
6796     jcc(Assembler::notEqual, FALSE_LABEL);
6797   }
6798 
6799   // count == 0
6800   testl(limit, limit);
6801   jcc(Assembler::zero, TRUE_LABEL);
6802 
6803   if (is_array_equ) {
6804     // Load array address
6805     lea(ary1, Address(ary1, base_offset));
6806     lea(ary2, Address(ary2, base_offset));
6807   }
6808 
6809   shll(limit, 1);      // byte count != 0
6810   movl(result, limit); // copy
6811 
6812   if (UseAVX >= 2) {
6813     // With AVX2, use 32-byte vector compare
6814     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6815 
6816     // Compare 32-byte vectors
6817     andl(result, 0x0000001e);  //   tail count (in bytes)
6818     andl(limit, 0xffffffe0);   // vector count (in bytes)
6819     jccb(Assembler::zero, COMPARE_TAIL);
6820 
6821     lea(ary1, Address(ary1, limit, Address::times_1));
6822     lea(ary2, Address(ary2, limit, Address::times_1));
6823     negptr(limit);
6824 
6825     bind(COMPARE_WIDE_VECTORS);
6826     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6827     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6828     vpxor(vec1, vec2);
6829 
6830     vptest(vec1, vec1);
6831     jccb(Assembler::notZero, FALSE_LABEL);
6832     addptr(limit, 32);
6833     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6834 
6835     testl(result, result);
6836     jccb(Assembler::zero, TRUE_LABEL);
6837 
6838     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6839     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6840     vpxor(vec1, vec2);
6841 
6842     vptest(vec1, vec1);
6843     jccb(Assembler::notZero, FALSE_LABEL);
6844     jmpb(TRUE_LABEL);
6845 
6846     bind(COMPARE_TAIL); // limit is zero
6847     movl(limit, result);
6848     // Fallthru to tail compare
6849   } else if (UseSSE42Intrinsics) {
6850     // With SSE4.2, use double quad vector compare
6851     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6852 
6853     // Compare 16-byte vectors
6854     andl(result, 0x0000000e);  //   tail count (in bytes)
6855     andl(limit, 0xfffffff0);   // vector count (in bytes)
6856     jccb(Assembler::zero, COMPARE_TAIL);
6857 
6858     lea(ary1, Address(ary1, limit, Address::times_1));
6859     lea(ary2, Address(ary2, limit, Address::times_1));
6860     negptr(limit);
6861 
6862     bind(COMPARE_WIDE_VECTORS);
6863     movdqu(vec1, Address(ary1, limit, Address::times_1));
6864     movdqu(vec2, Address(ary2, limit, Address::times_1));
6865     pxor(vec1, vec2);
6866 
6867     ptest(vec1, vec1);
6868     jccb(Assembler::notZero, FALSE_LABEL);
6869     addptr(limit, 16);
6870     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6871 
6872     testl(result, result);
6873     jccb(Assembler::zero, TRUE_LABEL);
6874 
6875     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6876     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6877     pxor(vec1, vec2);
6878 
6879     ptest(vec1, vec1);
6880     jccb(Assembler::notZero, FALSE_LABEL);
6881     jmpb(TRUE_LABEL);
6882 
6883     bind(COMPARE_TAIL); // limit is zero
6884     movl(limit, result);
6885     // Fallthru to tail compare
6886   }
6887 
6888   // Compare 4-byte vectors
6889   andl(limit, 0xfffffffc); // vector count (in bytes)
6890   jccb(Assembler::zero, COMPARE_CHAR);
6891 
6892   lea(ary1, Address(ary1, limit, Address::times_1));
6893   lea(ary2, Address(ary2, limit, Address::times_1));
6894   negptr(limit);
6895 
6896   bind(COMPARE_VECTORS);
6897   movl(chr, Address(ary1, limit, Address::times_1));
6898   cmpl(chr, Address(ary2, limit, Address::times_1));
6899   jccb(Assembler::notEqual, FALSE_LABEL);
6900   addptr(limit, 4);
6901   jcc(Assembler::notZero, COMPARE_VECTORS);
6902 
6903   // Compare trailing char (final 2 bytes), if any
6904   bind(COMPARE_CHAR);
6905   testl(result, 0x2);   // tail  char
6906   jccb(Assembler::zero, TRUE_LABEL);
6907   load_unsigned_short(chr, Address(ary1, 0));
6908   load_unsigned_short(limit, Address(ary2, 0));
6909   cmpl(chr, limit);
6910   jccb(Assembler::notEqual, FALSE_LABEL);
6911 
6912   bind(TRUE_LABEL);
6913   movl(result, 1);   // return true
6914   jmpb(DONE);
6915 
6916   bind(FALSE_LABEL);
6917   xorl(result, result); // return false
6918 
6919   // That's it
6920   bind(DONE);
6921   if (UseAVX >= 2) {
6922     // clean upper bits of YMM registers
6923     vpxor(vec1, vec1);
6924     vpxor(vec2, vec2);
6925   }
6926 }
6927 
6928 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6929                                    Register to, Register value, Register count,
6930                                    Register rtmp, XMMRegister xtmp) {
6931   ShortBranchVerifier sbv(this);
6932   assert_different_registers(to, value, count, rtmp);
6933   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6934   Label L_fill_2_bytes, L_fill_4_bytes;
6935 
6936   int shift = -1;
6937   switch (t) {
6938     case T_BYTE:
6939       shift = 2;
6940       break;
6941     case T_SHORT:
6942       shift = 1;
6943       break;
6944     case T_INT:
6945       shift = 0;
6946       break;
6947     default: ShouldNotReachHere();
6948   }
6949 
6950   if (t == T_BYTE) {
6951     andl(value, 0xff);
6952     movl(rtmp, value);
6953     shll(rtmp, 8);
6954     orl(value, rtmp);
6955   }
6956   if (t == T_SHORT) {
6957     andl(value, 0xffff);
6958   }
6959   if (t == T_BYTE || t == T_SHORT) {
6960     movl(rtmp, value);
6961     shll(rtmp, 16);
6962     orl(value, rtmp);
6963   }
6964 
6965   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
6966   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
6967   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
6968     // align source address at 4 bytes address boundary
6969     if (t == T_BYTE) {
6970       // One byte misalignment happens only for byte arrays
6971       testptr(to, 1);
6972       jccb(Assembler::zero, L_skip_align1);
6973       movb(Address(to, 0), value);
6974       increment(to);
6975       decrement(count);
6976       BIND(L_skip_align1);
6977     }
6978     // Two bytes misalignment happens only for byte and short (char) arrays
6979     testptr(to, 2);
6980     jccb(Assembler::zero, L_skip_align2);
6981     movw(Address(to, 0), value);
6982     addptr(to, 2);
6983     subl(count, 1<<(shift-1));
6984     BIND(L_skip_align2);
6985   }
6986   if (UseSSE < 2) {
6987     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
6988     // Fill 32-byte chunks
6989     subl(count, 8 << shift);
6990     jcc(Assembler::less, L_check_fill_8_bytes);
6991     align(16);
6992 
6993     BIND(L_fill_32_bytes_loop);
6994 
6995     for (int i = 0; i < 32; i += 4) {
6996       movl(Address(to, i), value);
6997     }
6998 
6999     addptr(to, 32);
7000     subl(count, 8 << shift);
7001     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7002     BIND(L_check_fill_8_bytes);
7003     addl(count, 8 << shift);
7004     jccb(Assembler::zero, L_exit);
7005     jmpb(L_fill_8_bytes);
7006 
7007     //
7008     // length is too short, just fill qwords
7009     //
7010     BIND(L_fill_8_bytes_loop);
7011     movl(Address(to, 0), value);
7012     movl(Address(to, 4), value);
7013     addptr(to, 8);
7014     BIND(L_fill_8_bytes);
7015     subl(count, 1 << (shift + 1));
7016     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7017     // fall through to fill 4 bytes
7018   } else {
7019     Label L_fill_32_bytes;
7020     if (!UseUnalignedLoadStores) {
7021       // align to 8 bytes, we know we are 4 byte aligned to start
7022       testptr(to, 4);
7023       jccb(Assembler::zero, L_fill_32_bytes);
7024       movl(Address(to, 0), value);
7025       addptr(to, 4);
7026       subl(count, 1<<shift);
7027     }
7028     BIND(L_fill_32_bytes);
7029     {
7030       assert( UseSSE >= 2, "supported cpu only" );
7031       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7032       if (UseAVX > 2) {
7033         movl(rtmp, 0xffff);
7034 #ifdef _LP64
7035         kmovql(k1, rtmp);
7036 #else
7037         kmovdl(k1, rtmp);
7038 #endif
7039       }
7040       movdl(xtmp, value);
7041       if (UseAVX > 2 && UseUnalignedLoadStores) {
7042         // Fill 64-byte chunks
7043         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7044         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7045 
7046         subl(count, 16 << shift);
7047         jcc(Assembler::less, L_check_fill_32_bytes);
7048         align(16);
7049 
7050         BIND(L_fill_64_bytes_loop);
7051         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_512bit);
7052         addptr(to, 64);
7053         subl(count, 16 << shift);
7054         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7055 
7056         BIND(L_check_fill_32_bytes);
7057         addl(count, 8 << shift);
7058         jccb(Assembler::less, L_check_fill_8_bytes);
7059         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_256bit);
7060         addptr(to, 32);
7061         subl(count, 8 << shift);
7062 
7063         BIND(L_check_fill_8_bytes);
7064       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7065         // Fill 64-byte chunks
7066         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7067         vpbroadcastd(xtmp, xtmp);
7068 
7069         subl(count, 16 << shift);
7070         jcc(Assembler::less, L_check_fill_32_bytes);
7071         align(16);
7072 
7073         BIND(L_fill_64_bytes_loop);
7074         vmovdqu(Address(to, 0), xtmp);
7075         vmovdqu(Address(to, 32), xtmp);
7076         addptr(to, 64);
7077         subl(count, 16 << shift);
7078         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7079 
7080         BIND(L_check_fill_32_bytes);
7081         addl(count, 8 << shift);
7082         jccb(Assembler::less, L_check_fill_8_bytes);
7083         vmovdqu(Address(to, 0), xtmp);
7084         addptr(to, 32);
7085         subl(count, 8 << shift);
7086 
7087         BIND(L_check_fill_8_bytes);
7088         // clean upper bits of YMM registers
7089         movdl(xtmp, value);
7090         pshufd(xtmp, xtmp, 0);
7091       } else {
7092         // Fill 32-byte chunks
7093         pshufd(xtmp, xtmp, 0);
7094 
7095         subl(count, 8 << shift);
7096         jcc(Assembler::less, L_check_fill_8_bytes);
7097         align(16);
7098 
7099         BIND(L_fill_32_bytes_loop);
7100 
7101         if (UseUnalignedLoadStores) {
7102           movdqu(Address(to, 0), xtmp);
7103           movdqu(Address(to, 16), xtmp);
7104         } else {
7105           movq(Address(to, 0), xtmp);
7106           movq(Address(to, 8), xtmp);
7107           movq(Address(to, 16), xtmp);
7108           movq(Address(to, 24), xtmp);
7109         }
7110 
7111         addptr(to, 32);
7112         subl(count, 8 << shift);
7113         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7114 
7115         BIND(L_check_fill_8_bytes);
7116       }
7117       addl(count, 8 << shift);
7118       jccb(Assembler::zero, L_exit);
7119       jmpb(L_fill_8_bytes);
7120 
7121       //
7122       // length is too short, just fill qwords
7123       //
7124       BIND(L_fill_8_bytes_loop);
7125       movq(Address(to, 0), xtmp);
7126       addptr(to, 8);
7127       BIND(L_fill_8_bytes);
7128       subl(count, 1 << (shift + 1));
7129       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7130     }
7131   }
7132   // fill trailing 4 bytes
7133   BIND(L_fill_4_bytes);
7134   testl(count, 1<<shift);
7135   jccb(Assembler::zero, L_fill_2_bytes);
7136   movl(Address(to, 0), value);
7137   if (t == T_BYTE || t == T_SHORT) {
7138     addptr(to, 4);
7139     BIND(L_fill_2_bytes);
7140     // fill trailing 2 bytes
7141     testl(count, 1<<(shift-1));
7142     jccb(Assembler::zero, L_fill_byte);
7143     movw(Address(to, 0), value);
7144     if (t == T_BYTE) {
7145       addptr(to, 2);
7146       BIND(L_fill_byte);
7147       // fill trailing byte
7148       testl(count, 1);
7149       jccb(Assembler::zero, L_exit);
7150       movb(Address(to, 0), value);
7151     } else {
7152       BIND(L_fill_byte);
7153     }
7154   } else {
7155     BIND(L_fill_2_bytes);
7156   }
7157   BIND(L_exit);
7158 }
7159 
7160 // encode char[] to byte[] in ISO_8859_1
7161 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7162                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7163                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7164                                       Register tmp5, Register result) {
7165   // rsi: src
7166   // rdi: dst
7167   // rdx: len
7168   // rcx: tmp5
7169   // rax: result
7170   ShortBranchVerifier sbv(this);
7171   assert_different_registers(src, dst, len, tmp5, result);
7172   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7173 
7174   // set result
7175   xorl(result, result);
7176   // check for zero length
7177   testl(len, len);
7178   jcc(Assembler::zero, L_done);
7179   movl(result, len);
7180 
7181   // Setup pointers
7182   lea(src, Address(src, len, Address::times_2)); // char[]
7183   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7184   negptr(len);
7185 
7186   if (UseSSE42Intrinsics || UseAVX >= 2) {
7187     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7188     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7189 
7190     if (UseAVX >= 2) {
7191       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7192       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7193       movdl(tmp1Reg, tmp5);
7194       vpbroadcastd(tmp1Reg, tmp1Reg);
7195       jmpb(L_chars_32_check);
7196 
7197       bind(L_copy_32_chars);
7198       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7199       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7200       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7201       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7202       jccb(Assembler::notZero, L_copy_32_chars_exit);
7203       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7204       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7205       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7206 
7207       bind(L_chars_32_check);
7208       addptr(len, 32);
7209       jccb(Assembler::lessEqual, L_copy_32_chars);
7210 
7211       bind(L_copy_32_chars_exit);
7212       subptr(len, 16);
7213       jccb(Assembler::greater, L_copy_16_chars_exit);
7214 
7215     } else if (UseSSE42Intrinsics) {
7216       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7217       movdl(tmp1Reg, tmp5);
7218       pshufd(tmp1Reg, tmp1Reg, 0);
7219       jmpb(L_chars_16_check);
7220     }
7221 
7222     bind(L_copy_16_chars);
7223     if (UseAVX >= 2) {
7224       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7225       vptest(tmp2Reg, tmp1Reg);
7226       jccb(Assembler::notZero, L_copy_16_chars_exit);
7227       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7228       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7229     } else {
7230       if (UseAVX > 0) {
7231         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7232         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7233         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7234       } else {
7235         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7236         por(tmp2Reg, tmp3Reg);
7237         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7238         por(tmp2Reg, tmp4Reg);
7239       }
7240       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7241       jccb(Assembler::notZero, L_copy_16_chars_exit);
7242       packuswb(tmp3Reg, tmp4Reg);
7243     }
7244     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7245 
7246     bind(L_chars_16_check);
7247     addptr(len, 16);
7248     jccb(Assembler::lessEqual, L_copy_16_chars);
7249 
7250     bind(L_copy_16_chars_exit);
7251     if (UseAVX >= 2) {
7252       // clean upper bits of YMM registers
7253       vpxor(tmp2Reg, tmp2Reg);
7254       vpxor(tmp3Reg, tmp3Reg);
7255       vpxor(tmp4Reg, tmp4Reg);
7256       movdl(tmp1Reg, tmp5);
7257       pshufd(tmp1Reg, tmp1Reg, 0);
7258     }
7259     subptr(len, 8);
7260     jccb(Assembler::greater, L_copy_8_chars_exit);
7261 
7262     bind(L_copy_8_chars);
7263     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7264     ptest(tmp3Reg, tmp1Reg);
7265     jccb(Assembler::notZero, L_copy_8_chars_exit);
7266     packuswb(tmp3Reg, tmp1Reg);
7267     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7268     addptr(len, 8);
7269     jccb(Assembler::lessEqual, L_copy_8_chars);
7270 
7271     bind(L_copy_8_chars_exit);
7272     subptr(len, 8);
7273     jccb(Assembler::zero, L_done);
7274   }
7275 
7276   bind(L_copy_1_char);
7277   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7278   testl(tmp5, 0xff00);      // check if Unicode char
7279   jccb(Assembler::notZero, L_copy_1_char_exit);
7280   movb(Address(dst, len, Address::times_1, 0), tmp5);
7281   addptr(len, 1);
7282   jccb(Assembler::less, L_copy_1_char);
7283 
7284   bind(L_copy_1_char_exit);
7285   addptr(result, len); // len is negative count of not processed elements
7286   bind(L_done);
7287 }
7288 
7289 #ifdef _LP64
7290 /**
7291  * Helper for multiply_to_len().
7292  */
7293 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7294   addq(dest_lo, src1);
7295   adcq(dest_hi, 0);
7296   addq(dest_lo, src2);
7297   adcq(dest_hi, 0);
7298 }
7299 
7300 /**
7301  * Multiply 64 bit by 64 bit first loop.
7302  */
7303 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7304                                            Register y, Register y_idx, Register z,
7305                                            Register carry, Register product,
7306                                            Register idx, Register kdx) {
7307   //
7308   //  jlong carry, x[], y[], z[];
7309   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7310   //    huge_128 product = y[idx] * x[xstart] + carry;
7311   //    z[kdx] = (jlong)product;
7312   //    carry  = (jlong)(product >>> 64);
7313   //  }
7314   //  z[xstart] = carry;
7315   //
7316 
7317   Label L_first_loop, L_first_loop_exit;
7318   Label L_one_x, L_one_y, L_multiply;
7319 
7320   decrementl(xstart);
7321   jcc(Assembler::negative, L_one_x);
7322 
7323   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7324   rorq(x_xstart, 32); // convert big-endian to little-endian
7325 
7326   bind(L_first_loop);
7327   decrementl(idx);
7328   jcc(Assembler::negative, L_first_loop_exit);
7329   decrementl(idx);
7330   jcc(Assembler::negative, L_one_y);
7331   movq(y_idx, Address(y, idx, Address::times_4,  0));
7332   rorq(y_idx, 32); // convert big-endian to little-endian
7333   bind(L_multiply);
7334   movq(product, x_xstart);
7335   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7336   addq(product, carry);
7337   adcq(rdx, 0);
7338   subl(kdx, 2);
7339   movl(Address(z, kdx, Address::times_4,  4), product);
7340   shrq(product, 32);
7341   movl(Address(z, kdx, Address::times_4,  0), product);
7342   movq(carry, rdx);
7343   jmp(L_first_loop);
7344 
7345   bind(L_one_y);
7346   movl(y_idx, Address(y,  0));
7347   jmp(L_multiply);
7348 
7349   bind(L_one_x);
7350   movl(x_xstart, Address(x,  0));
7351   jmp(L_first_loop);
7352 
7353   bind(L_first_loop_exit);
7354 }
7355 
7356 /**
7357  * Multiply 64 bit by 64 bit and add 128 bit.
7358  */
7359 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7360                                             Register yz_idx, Register idx,
7361                                             Register carry, Register product, int offset) {
7362   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7363   //     z[kdx] = (jlong)product;
7364 
7365   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7366   rorq(yz_idx, 32); // convert big-endian to little-endian
7367   movq(product, x_xstart);
7368   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7369   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7370   rorq(yz_idx, 32); // convert big-endian to little-endian
7371 
7372   add2_with_carry(rdx, product, carry, yz_idx);
7373 
7374   movl(Address(z, idx, Address::times_4,  offset+4), product);
7375   shrq(product, 32);
7376   movl(Address(z, idx, Address::times_4,  offset), product);
7377 
7378 }
7379 
7380 /**
7381  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7382  */
7383 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7384                                              Register yz_idx, Register idx, Register jdx,
7385                                              Register carry, Register product,
7386                                              Register carry2) {
7387   //   jlong carry, x[], y[], z[];
7388   //   int kdx = ystart+1;
7389   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7390   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7391   //     z[kdx+idx+1] = (jlong)product;
7392   //     jlong carry2  = (jlong)(product >>> 64);
7393   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7394   //     z[kdx+idx] = (jlong)product;
7395   //     carry  = (jlong)(product >>> 64);
7396   //   }
7397   //   idx += 2;
7398   //   if (idx > 0) {
7399   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7400   //     z[kdx+idx] = (jlong)product;
7401   //     carry  = (jlong)(product >>> 64);
7402   //   }
7403   //
7404 
7405   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7406 
7407   movl(jdx, idx);
7408   andl(jdx, 0xFFFFFFFC);
7409   shrl(jdx, 2);
7410 
7411   bind(L_third_loop);
7412   subl(jdx, 1);
7413   jcc(Assembler::negative, L_third_loop_exit);
7414   subl(idx, 4);
7415 
7416   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7417   movq(carry2, rdx);
7418 
7419   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7420   movq(carry, rdx);
7421   jmp(L_third_loop);
7422 
7423   bind (L_third_loop_exit);
7424 
7425   andl (idx, 0x3);
7426   jcc(Assembler::zero, L_post_third_loop_done);
7427 
7428   Label L_check_1;
7429   subl(idx, 2);
7430   jcc(Assembler::negative, L_check_1);
7431 
7432   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7433   movq(carry, rdx);
7434 
7435   bind (L_check_1);
7436   addl (idx, 0x2);
7437   andl (idx, 0x1);
7438   subl(idx, 1);
7439   jcc(Assembler::negative, L_post_third_loop_done);
7440 
7441   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7442   movq(product, x_xstart);
7443   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7444   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7445 
7446   add2_with_carry(rdx, product, yz_idx, carry);
7447 
7448   movl(Address(z, idx, Address::times_4,  0), product);
7449   shrq(product, 32);
7450 
7451   shlq(rdx, 32);
7452   orq(product, rdx);
7453   movq(carry, product);
7454 
7455   bind(L_post_third_loop_done);
7456 }
7457 
7458 /**
7459  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7460  *
7461  */
7462 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7463                                                   Register carry, Register carry2,
7464                                                   Register idx, Register jdx,
7465                                                   Register yz_idx1, Register yz_idx2,
7466                                                   Register tmp, Register tmp3, Register tmp4) {
7467   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7468 
7469   //   jlong carry, x[], y[], z[];
7470   //   int kdx = ystart+1;
7471   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7472   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7473   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7474   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7475   //     carry  = (jlong)(tmp4 >>> 64);
7476   //     z[kdx+idx+1] = (jlong)tmp3;
7477   //     z[kdx+idx] = (jlong)tmp4;
7478   //   }
7479   //   idx += 2;
7480   //   if (idx > 0) {
7481   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7482   //     z[kdx+idx] = (jlong)yz_idx1;
7483   //     carry  = (jlong)(yz_idx1 >>> 64);
7484   //   }
7485   //
7486 
7487   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7488 
7489   movl(jdx, idx);
7490   andl(jdx, 0xFFFFFFFC);
7491   shrl(jdx, 2);
7492 
7493   bind(L_third_loop);
7494   subl(jdx, 1);
7495   jcc(Assembler::negative, L_third_loop_exit);
7496   subl(idx, 4);
7497 
7498   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7499   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7500   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7501   rorxq(yz_idx2, yz_idx2, 32);
7502 
7503   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7504   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7505 
7506   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7507   rorxq(yz_idx1, yz_idx1, 32);
7508   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7509   rorxq(yz_idx2, yz_idx2, 32);
7510 
7511   if (VM_Version::supports_adx()) {
7512     adcxq(tmp3, carry);
7513     adoxq(tmp3, yz_idx1);
7514 
7515     adcxq(tmp4, tmp);
7516     adoxq(tmp4, yz_idx2);
7517 
7518     movl(carry, 0); // does not affect flags
7519     adcxq(carry2, carry);
7520     adoxq(carry2, carry);
7521   } else {
7522     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7523     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7524   }
7525   movq(carry, carry2);
7526 
7527   movl(Address(z, idx, Address::times_4, 12), tmp3);
7528   shrq(tmp3, 32);
7529   movl(Address(z, idx, Address::times_4,  8), tmp3);
7530 
7531   movl(Address(z, idx, Address::times_4,  4), tmp4);
7532   shrq(tmp4, 32);
7533   movl(Address(z, idx, Address::times_4,  0), tmp4);
7534 
7535   jmp(L_third_loop);
7536 
7537   bind (L_third_loop_exit);
7538 
7539   andl (idx, 0x3);
7540   jcc(Assembler::zero, L_post_third_loop_done);
7541 
7542   Label L_check_1;
7543   subl(idx, 2);
7544   jcc(Assembler::negative, L_check_1);
7545 
7546   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7547   rorxq(yz_idx1, yz_idx1, 32);
7548   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7549   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7550   rorxq(yz_idx2, yz_idx2, 32);
7551 
7552   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7553 
7554   movl(Address(z, idx, Address::times_4,  4), tmp3);
7555   shrq(tmp3, 32);
7556   movl(Address(z, idx, Address::times_4,  0), tmp3);
7557   movq(carry, tmp4);
7558 
7559   bind (L_check_1);
7560   addl (idx, 0x2);
7561   andl (idx, 0x1);
7562   subl(idx, 1);
7563   jcc(Assembler::negative, L_post_third_loop_done);
7564   movl(tmp4, Address(y, idx, Address::times_4,  0));
7565   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7566   movl(tmp4, Address(z, idx, Address::times_4,  0));
7567 
7568   add2_with_carry(carry2, tmp3, tmp4, carry);
7569 
7570   movl(Address(z, idx, Address::times_4,  0), tmp3);
7571   shrq(tmp3, 32);
7572 
7573   shlq(carry2, 32);
7574   orq(tmp3, carry2);
7575   movq(carry, tmp3);
7576 
7577   bind(L_post_third_loop_done);
7578 }
7579 
7580 /**
7581  * Code for BigInteger::multiplyToLen() instrinsic.
7582  *
7583  * rdi: x
7584  * rax: xlen
7585  * rsi: y
7586  * rcx: ylen
7587  * r8:  z
7588  * r11: zlen
7589  * r12: tmp1
7590  * r13: tmp2
7591  * r14: tmp3
7592  * r15: tmp4
7593  * rbx: tmp5
7594  *
7595  */
7596 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7597                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7598   ShortBranchVerifier sbv(this);
7599   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7600 
7601   push(tmp1);
7602   push(tmp2);
7603   push(tmp3);
7604   push(tmp4);
7605   push(tmp5);
7606 
7607   push(xlen);
7608   push(zlen);
7609 
7610   const Register idx = tmp1;
7611   const Register kdx = tmp2;
7612   const Register xstart = tmp3;
7613 
7614   const Register y_idx = tmp4;
7615   const Register carry = tmp5;
7616   const Register product  = xlen;
7617   const Register x_xstart = zlen;  // reuse register
7618 
7619   // First Loop.
7620   //
7621   //  final static long LONG_MASK = 0xffffffffL;
7622   //  int xstart = xlen - 1;
7623   //  int ystart = ylen - 1;
7624   //  long carry = 0;
7625   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7626   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7627   //    z[kdx] = (int)product;
7628   //    carry = product >>> 32;
7629   //  }
7630   //  z[xstart] = (int)carry;
7631   //
7632 
7633   movl(idx, ylen);      // idx = ylen;
7634   movl(kdx, zlen);      // kdx = xlen+ylen;
7635   xorq(carry, carry);   // carry = 0;
7636 
7637   Label L_done;
7638 
7639   movl(xstart, xlen);
7640   decrementl(xstart);
7641   jcc(Assembler::negative, L_done);
7642 
7643   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7644 
7645   Label L_second_loop;
7646   testl(kdx, kdx);
7647   jcc(Assembler::zero, L_second_loop);
7648 
7649   Label L_carry;
7650   subl(kdx, 1);
7651   jcc(Assembler::zero, L_carry);
7652 
7653   movl(Address(z, kdx, Address::times_4,  0), carry);
7654   shrq(carry, 32);
7655   subl(kdx, 1);
7656 
7657   bind(L_carry);
7658   movl(Address(z, kdx, Address::times_4,  0), carry);
7659 
7660   // Second and third (nested) loops.
7661   //
7662   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7663   //   carry = 0;
7664   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7665   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7666   //                    (z[k] & LONG_MASK) + carry;
7667   //     z[k] = (int)product;
7668   //     carry = product >>> 32;
7669   //   }
7670   //   z[i] = (int)carry;
7671   // }
7672   //
7673   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7674 
7675   const Register jdx = tmp1;
7676 
7677   bind(L_second_loop);
7678   xorl(carry, carry);    // carry = 0;
7679   movl(jdx, ylen);       // j = ystart+1
7680 
7681   subl(xstart, 1);       // i = xstart-1;
7682   jcc(Assembler::negative, L_done);
7683 
7684   push (z);
7685 
7686   Label L_last_x;
7687   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7688   subl(xstart, 1);       // i = xstart-1;
7689   jcc(Assembler::negative, L_last_x);
7690 
7691   if (UseBMI2Instructions) {
7692     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7693     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7694   } else {
7695     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7696     rorq(x_xstart, 32);  // convert big-endian to little-endian
7697   }
7698 
7699   Label L_third_loop_prologue;
7700   bind(L_third_loop_prologue);
7701 
7702   push (x);
7703   push (xstart);
7704   push (ylen);
7705 
7706 
7707   if (UseBMI2Instructions) {
7708     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7709   } else { // !UseBMI2Instructions
7710     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7711   }
7712 
7713   pop(ylen);
7714   pop(xlen);
7715   pop(x);
7716   pop(z);
7717 
7718   movl(tmp3, xlen);
7719   addl(tmp3, 1);
7720   movl(Address(z, tmp3, Address::times_4,  0), carry);
7721   subl(tmp3, 1);
7722   jccb(Assembler::negative, L_done);
7723 
7724   shrq(carry, 32);
7725   movl(Address(z, tmp3, Address::times_4,  0), carry);
7726   jmp(L_second_loop);
7727 
7728   // Next infrequent code is moved outside loops.
7729   bind(L_last_x);
7730   if (UseBMI2Instructions) {
7731     movl(rdx, Address(x,  0));
7732   } else {
7733     movl(x_xstart, Address(x,  0));
7734   }
7735   jmp(L_third_loop_prologue);
7736 
7737   bind(L_done);
7738 
7739   pop(zlen);
7740   pop(xlen);
7741 
7742   pop(tmp5);
7743   pop(tmp4);
7744   pop(tmp3);
7745   pop(tmp2);
7746   pop(tmp1);
7747 }
7748 
7749 //Helper functions for square_to_len()
7750 
7751 /**
7752  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7753  * Preserves x and z and modifies rest of the registers.
7754  */
7755 
7756 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7757   // Perform square and right shift by 1
7758   // Handle odd xlen case first, then for even xlen do the following
7759   // jlong carry = 0;
7760   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7761   //     huge_128 product = x[j:j+1] * x[j:j+1];
7762   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7763   //     z[i+2:i+3] = (jlong)(product >>> 1);
7764   //     carry = (jlong)product;
7765   // }
7766 
7767   xorq(tmp5, tmp5);     // carry
7768   xorq(rdxReg, rdxReg);
7769   xorl(tmp1, tmp1);     // index for x
7770   xorl(tmp4, tmp4);     // index for z
7771 
7772   Label L_first_loop, L_first_loop_exit;
7773 
7774   testl(xlen, 1);
7775   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7776 
7777   // Square and right shift by 1 the odd element using 32 bit multiply
7778   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7779   imulq(raxReg, raxReg);
7780   shrq(raxReg, 1);
7781   adcq(tmp5, 0);
7782   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7783   incrementl(tmp1);
7784   addl(tmp4, 2);
7785 
7786   // Square and  right shift by 1 the rest using 64 bit multiply
7787   bind(L_first_loop);
7788   cmpptr(tmp1, xlen);
7789   jccb(Assembler::equal, L_first_loop_exit);
7790 
7791   // Square
7792   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7793   rorq(raxReg, 32);    // convert big-endian to little-endian
7794   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7795 
7796   // Right shift by 1 and save carry
7797   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7798   rcrq(rdxReg, 1);
7799   rcrq(raxReg, 1);
7800   adcq(tmp5, 0);
7801 
7802   // Store result in z
7803   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7804   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7805 
7806   // Update indices for x and z
7807   addl(tmp1, 2);
7808   addl(tmp4, 4);
7809   jmp(L_first_loop);
7810 
7811   bind(L_first_loop_exit);
7812 }
7813 
7814 
7815 /**
7816  * Perform the following multiply add operation using BMI2 instructions
7817  * carry:sum = sum + op1*op2 + carry
7818  * op2 should be in rdx
7819  * op2 is preserved, all other registers are modified
7820  */
7821 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7822   // assert op2 is rdx
7823   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7824   addq(sum, carry);
7825   adcq(tmp2, 0);
7826   addq(sum, op1);
7827   adcq(tmp2, 0);
7828   movq(carry, tmp2);
7829 }
7830 
7831 /**
7832  * Perform the following multiply add operation:
7833  * carry:sum = sum + op1*op2 + carry
7834  * Preserves op1, op2 and modifies rest of registers
7835  */
7836 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7837   // rdx:rax = op1 * op2
7838   movq(raxReg, op2);
7839   mulq(op1);
7840 
7841   //  rdx:rax = sum + carry + rdx:rax
7842   addq(sum, carry);
7843   adcq(rdxReg, 0);
7844   addq(sum, raxReg);
7845   adcq(rdxReg, 0);
7846 
7847   // carry:sum = rdx:sum
7848   movq(carry, rdxReg);
7849 }
7850 
7851 /**
7852  * Add 64 bit long carry into z[] with carry propogation.
7853  * Preserves z and carry register values and modifies rest of registers.
7854  *
7855  */
7856 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7857   Label L_fourth_loop, L_fourth_loop_exit;
7858 
7859   movl(tmp1, 1);
7860   subl(zlen, 2);
7861   addq(Address(z, zlen, Address::times_4, 0), carry);
7862 
7863   bind(L_fourth_loop);
7864   jccb(Assembler::carryClear, L_fourth_loop_exit);
7865   subl(zlen, 2);
7866   jccb(Assembler::negative, L_fourth_loop_exit);
7867   addq(Address(z, zlen, Address::times_4, 0), tmp1);
7868   jmp(L_fourth_loop);
7869   bind(L_fourth_loop_exit);
7870 }
7871 
7872 /**
7873  * Shift z[] left by 1 bit.
7874  * Preserves x, len, z and zlen registers and modifies rest of the registers.
7875  *
7876  */
7877 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7878 
7879   Label L_fifth_loop, L_fifth_loop_exit;
7880 
7881   // Fifth loop
7882   // Perform primitiveLeftShift(z, zlen, 1)
7883 
7884   const Register prev_carry = tmp1;
7885   const Register new_carry = tmp4;
7886   const Register value = tmp2;
7887   const Register zidx = tmp3;
7888 
7889   // int zidx, carry;
7890   // long value;
7891   // carry = 0;
7892   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7893   //    (carry:value)  = (z[i] << 1) | carry ;
7894   //    z[i] = value;
7895   // }
7896 
7897   movl(zidx, zlen);
7898   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7899 
7900   bind(L_fifth_loop);
7901   decl(zidx);  // Use decl to preserve carry flag
7902   decl(zidx);
7903   jccb(Assembler::negative, L_fifth_loop_exit);
7904 
7905   if (UseBMI2Instructions) {
7906      movq(value, Address(z, zidx, Address::times_4, 0));
7907      rclq(value, 1);
7908      rorxq(value, value, 32);
7909      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7910   }
7911   else {
7912     // clear new_carry
7913     xorl(new_carry, new_carry);
7914 
7915     // Shift z[i] by 1, or in previous carry and save new carry
7916     movq(value, Address(z, zidx, Address::times_4, 0));
7917     shlq(value, 1);
7918     adcl(new_carry, 0);
7919 
7920     orq(value, prev_carry);
7921     rorq(value, 0x20);
7922     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7923 
7924     // Set previous carry = new carry
7925     movl(prev_carry, new_carry);
7926   }
7927   jmp(L_fifth_loop);
7928 
7929   bind(L_fifth_loop_exit);
7930 }
7931 
7932 
7933 /**
7934  * Code for BigInteger::squareToLen() intrinsic
7935  *
7936  * rdi: x
7937  * rsi: len
7938  * r8:  z
7939  * rcx: zlen
7940  * r12: tmp1
7941  * r13: tmp2
7942  * r14: tmp3
7943  * r15: tmp4
7944  * rbx: tmp5
7945  *
7946  */
7947 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7948 
7949   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
7950   push(tmp1);
7951   push(tmp2);
7952   push(tmp3);
7953   push(tmp4);
7954   push(tmp5);
7955 
7956   // First loop
7957   // Store the squares, right shifted one bit (i.e., divided by 2).
7958   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
7959 
7960   // Add in off-diagonal sums.
7961   //
7962   // Second, third (nested) and fourth loops.
7963   // zlen +=2;
7964   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
7965   //    carry = 0;
7966   //    long op2 = x[xidx:xidx+1];
7967   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
7968   //       k -= 2;
7969   //       long op1 = x[j:j+1];
7970   //       long sum = z[k:k+1];
7971   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
7972   //       z[k:k+1] = sum;
7973   //    }
7974   //    add_one_64(z, k, carry, tmp_regs);
7975   // }
7976 
7977   const Register carry = tmp5;
7978   const Register sum = tmp3;
7979   const Register op1 = tmp4;
7980   Register op2 = tmp2;
7981 
7982   push(zlen);
7983   push(len);
7984   addl(zlen,2);
7985   bind(L_second_loop);
7986   xorq(carry, carry);
7987   subl(zlen, 4);
7988   subl(len, 2);
7989   push(zlen);
7990   push(len);
7991   cmpl(len, 0);
7992   jccb(Assembler::lessEqual, L_second_loop_exit);
7993 
7994   // Multiply an array by one 64 bit long.
7995   if (UseBMI2Instructions) {
7996     op2 = rdxReg;
7997     movq(op2, Address(x, len, Address::times_4,  0));
7998     rorxq(op2, op2, 32);
7999   }
8000   else {
8001     movq(op2, Address(x, len, Address::times_4,  0));
8002     rorq(op2, 32);
8003   }
8004 
8005   bind(L_third_loop);
8006   decrementl(len);
8007   jccb(Assembler::negative, L_third_loop_exit);
8008   decrementl(len);
8009   jccb(Assembler::negative, L_last_x);
8010 
8011   movq(op1, Address(x, len, Address::times_4,  0));
8012   rorq(op1, 32);
8013 
8014   bind(L_multiply);
8015   subl(zlen, 2);
8016   movq(sum, Address(z, zlen, Address::times_4,  0));
8017 
8018   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8019   if (UseBMI2Instructions) {
8020     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8021   }
8022   else {
8023     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8024   }
8025 
8026   movq(Address(z, zlen, Address::times_4, 0), sum);
8027 
8028   jmp(L_third_loop);
8029   bind(L_third_loop_exit);
8030 
8031   // Fourth loop
8032   // Add 64 bit long carry into z with carry propogation.
8033   // Uses offsetted zlen.
8034   add_one_64(z, zlen, carry, tmp1);
8035 
8036   pop(len);
8037   pop(zlen);
8038   jmp(L_second_loop);
8039 
8040   // Next infrequent code is moved outside loops.
8041   bind(L_last_x);
8042   movl(op1, Address(x, 0));
8043   jmp(L_multiply);
8044 
8045   bind(L_second_loop_exit);
8046   pop(len);
8047   pop(zlen);
8048   pop(len);
8049   pop(zlen);
8050 
8051   // Fifth loop
8052   // Shift z left 1 bit.
8053   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8054 
8055   // z[zlen-1] |= x[len-1] & 1;
8056   movl(tmp3, Address(x, len, Address::times_4, -4));
8057   andl(tmp3, 1);
8058   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8059 
8060   pop(tmp5);
8061   pop(tmp4);
8062   pop(tmp3);
8063   pop(tmp2);
8064   pop(tmp1);
8065 }
8066 
8067 /**
8068  * Helper function for mul_add()
8069  * Multiply the in[] by int k and add to out[] starting at offset offs using
8070  * 128 bit by 32 bit multiply and return the carry in tmp5.
8071  * Only quad int aligned length of in[] is operated on in this function.
8072  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8073  * This function preserves out, in and k registers.
8074  * len and offset point to the appropriate index in "in" & "out" correspondingly
8075  * tmp5 has the carry.
8076  * other registers are temporary and are modified.
8077  *
8078  */
8079 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8080   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8081   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8082 
8083   Label L_first_loop, L_first_loop_exit;
8084 
8085   movl(tmp1, len);
8086   shrl(tmp1, 2);
8087 
8088   bind(L_first_loop);
8089   subl(tmp1, 1);
8090   jccb(Assembler::negative, L_first_loop_exit);
8091 
8092   subl(len, 4);
8093   subl(offset, 4);
8094 
8095   Register op2 = tmp2;
8096   const Register sum = tmp3;
8097   const Register op1 = tmp4;
8098   const Register carry = tmp5;
8099 
8100   if (UseBMI2Instructions) {
8101     op2 = rdxReg;
8102   }
8103 
8104   movq(op1, Address(in, len, Address::times_4,  8));
8105   rorq(op1, 32);
8106   movq(sum, Address(out, offset, Address::times_4,  8));
8107   rorq(sum, 32);
8108   if (UseBMI2Instructions) {
8109     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8110   }
8111   else {
8112     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8113   }
8114   // Store back in big endian from little endian
8115   rorq(sum, 0x20);
8116   movq(Address(out, offset, Address::times_4,  8), sum);
8117 
8118   movq(op1, Address(in, len, Address::times_4,  0));
8119   rorq(op1, 32);
8120   movq(sum, Address(out, offset, Address::times_4,  0));
8121   rorq(sum, 32);
8122   if (UseBMI2Instructions) {
8123     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8124   }
8125   else {
8126     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8127   }
8128   // Store back in big endian from little endian
8129   rorq(sum, 0x20);
8130   movq(Address(out, offset, Address::times_4,  0), sum);
8131 
8132   jmp(L_first_loop);
8133   bind(L_first_loop_exit);
8134 }
8135 
8136 /**
8137  * Code for BigInteger::mulAdd() intrinsic
8138  *
8139  * rdi: out
8140  * rsi: in
8141  * r11: offs (out.length - offset)
8142  * rcx: len
8143  * r8:  k
8144  * r12: tmp1
8145  * r13: tmp2
8146  * r14: tmp3
8147  * r15: tmp4
8148  * rbx: tmp5
8149  * Multiply the in[] by word k and add to out[], return the carry in rax
8150  */
8151 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8152    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8153    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8154 
8155   Label L_carry, L_last_in, L_done;
8156 
8157 // carry = 0;
8158 // for (int j=len-1; j >= 0; j--) {
8159 //    long product = (in[j] & LONG_MASK) * kLong +
8160 //                   (out[offs] & LONG_MASK) + carry;
8161 //    out[offs--] = (int)product;
8162 //    carry = product >>> 32;
8163 // }
8164 //
8165   push(tmp1);
8166   push(tmp2);
8167   push(tmp3);
8168   push(tmp4);
8169   push(tmp5);
8170 
8171   Register op2 = tmp2;
8172   const Register sum = tmp3;
8173   const Register op1 = tmp4;
8174   const Register carry =  tmp5;
8175 
8176   if (UseBMI2Instructions) {
8177     op2 = rdxReg;
8178     movl(op2, k);
8179   }
8180   else {
8181     movl(op2, k);
8182   }
8183 
8184   xorq(carry, carry);
8185 
8186   //First loop
8187 
8188   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8189   //The carry is in tmp5
8190   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8191 
8192   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8193   decrementl(len);
8194   jccb(Assembler::negative, L_carry);
8195   decrementl(len);
8196   jccb(Assembler::negative, L_last_in);
8197 
8198   movq(op1, Address(in, len, Address::times_4,  0));
8199   rorq(op1, 32);
8200 
8201   subl(offs, 2);
8202   movq(sum, Address(out, offs, Address::times_4,  0));
8203   rorq(sum, 32);
8204 
8205   if (UseBMI2Instructions) {
8206     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8207   }
8208   else {
8209     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8210   }
8211 
8212   // Store back in big endian from little endian
8213   rorq(sum, 0x20);
8214   movq(Address(out, offs, Address::times_4,  0), sum);
8215 
8216   testl(len, len);
8217   jccb(Assembler::zero, L_carry);
8218 
8219   //Multiply the last in[] entry, if any
8220   bind(L_last_in);
8221   movl(op1, Address(in, 0));
8222   movl(sum, Address(out, offs, Address::times_4,  -4));
8223 
8224   movl(raxReg, k);
8225   mull(op1); //tmp4 * eax -> edx:eax
8226   addl(sum, carry);
8227   adcl(rdxReg, 0);
8228   addl(sum, raxReg);
8229   adcl(rdxReg, 0);
8230   movl(carry, rdxReg);
8231 
8232   movl(Address(out, offs, Address::times_4,  -4), sum);
8233 
8234   bind(L_carry);
8235   //return tmp5/carry as carry in rax
8236   movl(rax, carry);
8237 
8238   bind(L_done);
8239   pop(tmp5);
8240   pop(tmp4);
8241   pop(tmp3);
8242   pop(tmp2);
8243   pop(tmp1);
8244 }
8245 #endif
8246 
8247 /**
8248  * Emits code to update CRC-32 with a byte value according to constants in table
8249  *
8250  * @param [in,out]crc   Register containing the crc.
8251  * @param [in]val       Register containing the byte to fold into the CRC.
8252  * @param [in]table     Register containing the table of crc constants.
8253  *
8254  * uint32_t crc;
8255  * val = crc_table[(val ^ crc) & 0xFF];
8256  * crc = val ^ (crc >> 8);
8257  *
8258  */
8259 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8260   xorl(val, crc);
8261   andl(val, 0xFF);
8262   shrl(crc, 8); // unsigned shift
8263   xorl(crc, Address(table, val, Address::times_4, 0));
8264 }
8265 
8266 /**
8267  * Fold 128-bit data chunk
8268  */
8269 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8270   if (UseAVX > 0) {
8271     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8272     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8273     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8274     pxor(xcrc, xtmp);
8275   } else {
8276     movdqa(xtmp, xcrc);
8277     pclmulhdq(xtmp, xK);   // [123:64]
8278     pclmulldq(xcrc, xK);   // [63:0]
8279     pxor(xcrc, xtmp);
8280     movdqu(xtmp, Address(buf, offset));
8281     pxor(xcrc, xtmp);
8282   }
8283 }
8284 
8285 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8286   if (UseAVX > 0) {
8287     vpclmulhdq(xtmp, xK, xcrc);
8288     vpclmulldq(xcrc, xK, xcrc);
8289     pxor(xcrc, xbuf);
8290     pxor(xcrc, xtmp);
8291   } else {
8292     movdqa(xtmp, xcrc);
8293     pclmulhdq(xtmp, xK);
8294     pclmulldq(xcrc, xK);
8295     pxor(xcrc, xbuf);
8296     pxor(xcrc, xtmp);
8297   }
8298 }
8299 
8300 /**
8301  * 8-bit folds to compute 32-bit CRC
8302  *
8303  * uint64_t xcrc;
8304  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8305  */
8306 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8307   movdl(tmp, xcrc);
8308   andl(tmp, 0xFF);
8309   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8310   psrldq(xcrc, 1); // unsigned shift one byte
8311   pxor(xcrc, xtmp);
8312 }
8313 
8314 /**
8315  * uint32_t crc;
8316  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8317  */
8318 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8319   movl(tmp, crc);
8320   andl(tmp, 0xFF);
8321   shrl(crc, 8);
8322   xorl(crc, Address(table, tmp, Address::times_4, 0));
8323 }
8324 
8325 /**
8326  * @param crc   register containing existing CRC (32-bit)
8327  * @param buf   register pointing to input byte buffer (byte*)
8328  * @param len   register containing number of bytes
8329  * @param table register that will contain address of CRC table
8330  * @param tmp   scratch register
8331  */
8332 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8333   assert_different_registers(crc, buf, len, table, tmp, rax);
8334 
8335   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8336   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8337 
8338   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8339   notl(crc); // ~crc
8340   cmpl(len, 16);
8341   jcc(Assembler::less, L_tail);
8342 
8343   // Align buffer to 16 bytes
8344   movl(tmp, buf);
8345   andl(tmp, 0xF);
8346   jccb(Assembler::zero, L_aligned);
8347   subl(tmp,  16);
8348   addl(len, tmp);
8349 
8350   align(4);
8351   BIND(L_align_loop);
8352   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8353   update_byte_crc32(crc, rax, table);
8354   increment(buf);
8355   incrementl(tmp);
8356   jccb(Assembler::less, L_align_loop);
8357 
8358   BIND(L_aligned);
8359   movl(tmp, len); // save
8360   shrl(len, 4);
8361   jcc(Assembler::zero, L_tail_restore);
8362 
8363   // Fold crc into first bytes of vector
8364   movdqa(xmm1, Address(buf, 0));
8365   movdl(rax, xmm1);
8366   xorl(crc, rax);
8367   pinsrd(xmm1, crc, 0);
8368   addptr(buf, 16);
8369   subl(len, 4); // len > 0
8370   jcc(Assembler::less, L_fold_tail);
8371 
8372   movdqa(xmm2, Address(buf,  0));
8373   movdqa(xmm3, Address(buf, 16));
8374   movdqa(xmm4, Address(buf, 32));
8375   addptr(buf, 48);
8376   subl(len, 3);
8377   jcc(Assembler::lessEqual, L_fold_512b);
8378 
8379   // Fold total 512 bits of polynomial on each iteration,
8380   // 128 bits per each of 4 parallel streams.
8381   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8382 
8383   align(32);
8384   BIND(L_fold_512b_loop);
8385   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8386   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8387   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8388   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8389   addptr(buf, 64);
8390   subl(len, 4);
8391   jcc(Assembler::greater, L_fold_512b_loop);
8392 
8393   // Fold 512 bits to 128 bits.
8394   BIND(L_fold_512b);
8395   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8396   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8397   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8398   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8399 
8400   // Fold the rest of 128 bits data chunks
8401   BIND(L_fold_tail);
8402   addl(len, 3);
8403   jccb(Assembler::lessEqual, L_fold_128b);
8404   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8405 
8406   BIND(L_fold_tail_loop);
8407   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8408   addptr(buf, 16);
8409   decrementl(len);
8410   jccb(Assembler::greater, L_fold_tail_loop);
8411 
8412   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8413   BIND(L_fold_128b);
8414   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8415   if (UseAVX > 0) {
8416     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8417     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8418     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8419   } else {
8420     movdqa(xmm2, xmm0);
8421     pclmulqdq(xmm2, xmm1, 0x1);
8422     movdqa(xmm3, xmm0);
8423     pand(xmm3, xmm2);
8424     pclmulqdq(xmm0, xmm3, 0x1);
8425   }
8426   psrldq(xmm1, 8);
8427   psrldq(xmm2, 4);
8428   pxor(xmm0, xmm1);
8429   pxor(xmm0, xmm2);
8430 
8431   // 8 8-bit folds to compute 32-bit CRC.
8432   for (int j = 0; j < 4; j++) {
8433     fold_8bit_crc32(xmm0, table, xmm1, rax);
8434   }
8435   movdl(crc, xmm0); // mov 32 bits to general register
8436   for (int j = 0; j < 4; j++) {
8437     fold_8bit_crc32(crc, table, rax);
8438   }
8439 
8440   BIND(L_tail_restore);
8441   movl(len, tmp); // restore
8442   BIND(L_tail);
8443   andl(len, 0xf);
8444   jccb(Assembler::zero, L_exit);
8445 
8446   // Fold the rest of bytes
8447   align(4);
8448   BIND(L_tail_loop);
8449   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8450   update_byte_crc32(crc, rax, table);
8451   increment(buf);
8452   decrementl(len);
8453   jccb(Assembler::greater, L_tail_loop);
8454 
8455   BIND(L_exit);
8456   notl(crc); // ~c
8457 }
8458 
8459 #undef BIND
8460 #undef BLOCK_COMMENT
8461 
8462 
8463 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8464   switch (cond) {
8465     // Note some conditions are synonyms for others
8466     case Assembler::zero:         return Assembler::notZero;
8467     case Assembler::notZero:      return Assembler::zero;
8468     case Assembler::less:         return Assembler::greaterEqual;
8469     case Assembler::lessEqual:    return Assembler::greater;
8470     case Assembler::greater:      return Assembler::lessEqual;
8471     case Assembler::greaterEqual: return Assembler::less;
8472     case Assembler::below:        return Assembler::aboveEqual;
8473     case Assembler::belowEqual:   return Assembler::above;
8474     case Assembler::above:        return Assembler::belowEqual;
8475     case Assembler::aboveEqual:   return Assembler::below;
8476     case Assembler::overflow:     return Assembler::noOverflow;
8477     case Assembler::noOverflow:   return Assembler::overflow;
8478     case Assembler::negative:     return Assembler::positive;
8479     case Assembler::positive:     return Assembler::negative;
8480     case Assembler::parity:       return Assembler::noParity;
8481     case Assembler::noParity:     return Assembler::parity;
8482   }
8483   ShouldNotReachHere(); return Assembler::overflow;
8484 }
8485 
8486 SkipIfEqual::SkipIfEqual(
8487     MacroAssembler* masm, const bool* flag_addr, bool value) {
8488   _masm = masm;
8489   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8490   _masm->jcc(Assembler::equal, _label);
8491 }
8492 
8493 SkipIfEqual::~SkipIfEqual() {
8494   _masm->bind(_label);
8495 }