1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 
  32 class BlockBegin;
  33 class BlockList;
  34 class LIR_Assembler;
  35 class CodeEmitInfo;
  36 class CodeStub;
  37 class CodeStubList;
  38 class ArrayCopyStub;
  39 class LIR_Op;
  40 class ciType;
  41 class ValueType;
  42 class LIR_OpVisitState;
  43 class FpuStackSim;
  44 
  45 //---------------------------------------------------------------------
  46 //                 LIR Operands
  47 //  LIR_OprDesc
  48 //    LIR_OprPtr
  49 //      LIR_Const
  50 //      LIR_Address
  51 //---------------------------------------------------------------------
  52 class LIR_OprDesc;
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 
  58 
  59 typedef LIR_OprDesc* LIR_Opr;
  60 typedef int          RegNr;
  61 
  62 define_array(LIR_OprArray, LIR_Opr)
  63 define_stack(LIR_OprList, LIR_OprArray)
  64 
  65 define_array(LIR_OprRefArray, LIR_Opr*)
  66 define_stack(LIR_OprRefList, LIR_OprRefArray)
  67 
  68 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  69 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  70 
  71 define_array(LIR_OpArray, LIR_Op*)
  72 define_stack(LIR_OpList, LIR_OpArray)
  73 
  74 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  75 class LIR_OprPtr: public CompilationResourceObj {
  76  public:
  77   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  78   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  79 
  80   virtual LIR_Const*  as_constant()              { return NULL; }
  81   virtual LIR_Address* as_address()              { return NULL; }
  82   virtual BasicType type() const                 = 0;
  83   virtual void print_value_on(outputStream* out) const = 0;
  84 };
  85 
  86 
  87 
  88 // LIR constants
  89 class LIR_Const: public LIR_OprPtr {
  90  private:
  91   JavaValue _value;
  92 
  93   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  94   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  95   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  96 
  97  public:
  98   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  99   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
 100   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 101   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 102   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 103   LIR_Const(void* p) {
 104 #ifdef _LP64
 105     assert(sizeof(jlong) >= sizeof(p), "too small");;
 106     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 107 #else
 108     assert(sizeof(jint) >= sizeof(p), "too small");;
 109     _value.set_type(T_INT);     _value.set_jint((jint)p);
 110 #endif
 111   }
 112   LIR_Const(Metadata* m) {
 113     _value.set_type(T_METADATA);
 114 #ifdef _LP64
 115     _value.set_jlong((jlong)m);
 116 #else
 117     _value.set_jint((jint)m);
 118 #endif // _LP64
 119   }
 120 
 121   virtual BasicType type()       const { return _value.get_type(); }
 122   virtual LIR_Const* as_constant()     { return this; }
 123 
 124   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 126   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 127   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 128   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 129   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 130   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 131 
 132 #ifdef _LP64
 133   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 134   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 135 #else
 136   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 137   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 138 #endif
 139 
 140 
 141   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 142   jint      as_jint_lo_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return low(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_lo();
 147     }
 148   }
 149   jint      as_jint_hi_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return high(jlong_cast(_value.get_jdouble()));
 152     } else {
 153       return as_jint_hi();
 154     }
 155   }
 156   jlong      as_jlong_bits() const    {
 157     if (type() == T_DOUBLE) {
 158       return jlong_cast(_value.get_jdouble());
 159     } else {
 160       return as_jlong();
 161     }
 162   }
 163 
 164   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 165 
 166 
 167   bool is_zero_float() {
 168     jfloat f = as_jfloat();
 169     jfloat ok = 0.0f;
 170     return jint_cast(f) == jint_cast(ok);
 171   }
 172 
 173   bool is_one_float() {
 174     jfloat f = as_jfloat();
 175     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 176   }
 177 
 178   bool is_zero_double() {
 179     jdouble d = as_jdouble();
 180     jdouble ok = 0.0;
 181     return jlong_cast(d) == jlong_cast(ok);
 182   }
 183 
 184   bool is_one_double() {
 185     jdouble d = as_jdouble();
 186     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 187   }
 188 };
 189 
 190 
 191 //---------------------LIR Operand descriptor------------------------------------
 192 //
 193 // The class LIR_OprDesc represents a LIR instruction operand;
 194 // it can be a register (ALU/FPU), stack location or a constant;
 195 // Constants and addresses are represented as resource area allocated
 196 // structures (see above).
 197 // Registers and stack locations are inlined into the this pointer
 198 // (see value function).
 199 
 200 class LIR_OprDesc: public CompilationResourceObj {
 201  public:
 202   // value structure:
 203   //     data       opr-type opr-kind
 204   // +--------------+-------+-------+
 205   // [max...........|7 6 5 4|3 2 1 0]
 206   //                             ^
 207   //                    is_pointer bit
 208   //
 209   // lowest bit cleared, means it is a structure pointer
 210   // we need  4 bits to represent types
 211 
 212  private:
 213   friend class LIR_OprFact;
 214 
 215   // Conversion
 216   intptr_t value() const                         { return (intptr_t) this; }
 217 
 218   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 219     return (value() & mask) == masked_value;
 220   }
 221 
 222   enum OprKind {
 223       pointer_value      = 0
 224     , stack_value        = 1
 225     , cpu_register       = 3
 226     , fpu_register       = 5
 227     , illegal_value      = 7
 228   };
 229 
 230   enum OprBits {
 231       pointer_bits   = 1
 232     , kind_bits      = 3
 233     , type_bits      = 4
 234     , size_bits      = 2
 235     , destroys_bits  = 1
 236     , virtual_bits   = 1
 237     , is_xmm_bits    = 1
 238     , last_use_bits  = 1
 239     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 240     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 241                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 242     , data_bits      = BitsPerInt - non_data_bits
 243     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 244   };
 245 
 246   enum OprShift {
 247       kind_shift     = 0
 248     , type_shift     = kind_shift     + kind_bits
 249     , size_shift     = type_shift     + type_bits
 250     , destroys_shift = size_shift     + size_bits
 251     , last_use_shift = destroys_shift + destroys_bits
 252     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 253     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 254     , is_xmm_shift   = virtual_shift + virtual_bits
 255     , data_shift     = is_xmm_shift + is_xmm_bits
 256     , reg1_shift = data_shift
 257     , reg2_shift = data_shift + reg_bits
 258 
 259   };
 260 
 261   enum OprSize {
 262       single_size = 0 << size_shift
 263     , double_size = 1 << size_shift
 264   };
 265 
 266   enum OprMask {
 267       kind_mask      = right_n_bits(kind_bits)
 268     , type_mask      = right_n_bits(type_bits) << type_shift
 269     , size_mask      = right_n_bits(size_bits) << size_shift
 270     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 271     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 272     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 273     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 274     , pointer_mask   = right_n_bits(pointer_bits)
 275     , lower_reg_mask = right_n_bits(reg_bits)
 276     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 277   };
 278 
 279   uintptr_t data() const                         { return value() >> data_shift; }
 280   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 281   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 282   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 283   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 284 
 285   static char type_char(BasicType t);
 286 
 287  public:
 288   enum {
 289     vreg_base = ConcreteRegisterImpl::number_of_registers,
 290     vreg_max = (1 << data_bits) - 1
 291   };
 292 
 293   static inline LIR_Opr illegalOpr();
 294 
 295   enum OprType {
 296       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 297     , int_type      = 1 << type_shift
 298     , long_type     = 2 << type_shift
 299     , object_type   = 3 << type_shift
 300     , address_type  = 4 << type_shift
 301     , float_type    = 5 << type_shift
 302     , double_type   = 6 << type_shift
 303     , metadata_type = 7 << type_shift
 304   };
 305   friend OprType as_OprType(BasicType t);
 306   friend BasicType as_BasicType(OprType t);
 307 
 308   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 309   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 310 
 311   static OprSize size_for(BasicType t) {
 312     switch (t) {
 313       case T_LONG:
 314       case T_DOUBLE:
 315         return double_size;
 316         break;
 317 
 318       case T_FLOAT:
 319       case T_BOOLEAN:
 320       case T_CHAR:
 321       case T_BYTE:
 322       case T_SHORT:
 323       case T_INT:
 324       case T_ADDRESS:
 325       case T_OBJECT:
 326       case T_ARRAY:
 327       case T_METADATA:
 328         return single_size;
 329         break;
 330 
 331       default:
 332         ShouldNotReachHere();
 333         return single_size;
 334       }
 335   }
 336 
 337 
 338   void validate_type() const PRODUCT_RETURN;
 339 
 340   BasicType type() const {
 341     if (is_pointer()) {
 342       return pointer()->type();
 343     }
 344     return as_BasicType(type_field());
 345   }
 346 
 347 
 348   ValueType* value_type() const                  { return as_ValueType(type()); }
 349 
 350   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 351 
 352   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 353   // checks whether types are same
 354   bool is_same_type(LIR_Opr opr) const     {
 355     assert(type_field() != unknown_type &&
 356            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 357     return type_field() == opr->type_field();
 358   }
 359   bool is_same_register(LIR_Opr opr) {
 360     return (is_register() && opr->is_register() &&
 361             kind_field() == opr->kind_field() &&
 362             (value() & no_type_mask) == (opr->value() & no_type_mask));
 363   }
 364 
 365   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 366   bool is_illegal() const      { return kind_field() == illegal_value; }
 367   bool is_valid() const        { return kind_field() != illegal_value; }
 368 
 369   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 370   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 371 
 372   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 373   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 374 
 375   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 376   bool is_oop() const;
 377 
 378   // semantic for fpu- and xmm-registers:
 379   // * is_float and is_double return true for xmm_registers
 380   //   (so is_single_fpu and is_single_xmm are true)
 381   // * So you must always check for is_???_xmm prior to is_???_fpu to
 382   //   distinguish between fpu- and xmm-registers
 383 
 384   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 385   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 386   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 387 
 388   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 389   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 390   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 391   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 392   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 393 
 394   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 395   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 396   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 397   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 398   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 399 
 400   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 401   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 402   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 403 
 404   // fast accessor functions for special bits that do not work for pointers
 405   // (in this functions, the check for is_pointer() is omitted)
 406   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 407   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 408   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 409   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 410   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 411 
 412   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 413   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 414   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 415   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 416 
 417 
 418   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 420   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 424   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 425   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 426   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 427   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 428   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 429   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 430 
 431   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 432   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 433   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 434 
 435   Register as_register()    const;
 436   Register as_register_lo() const;
 437   Register as_register_hi() const;
 438 
 439   Register as_pointer_register() {
 440 #ifdef _LP64
 441     if (is_double_cpu()) {
 442       assert(as_register_lo() == as_register_hi(), "should be a single register");
 443       return as_register_lo();
 444     }
 445 #endif
 446     return as_register();
 447   }
 448 
 449 #ifdef X86
 450   XMMRegister as_xmm_float_reg() const;
 451   XMMRegister as_xmm_double_reg() const;
 452   // for compatibility with RInfo
 453   int fpu () const                                  { return lo_reg_half(); }
 454 #endif
 455 #if defined(SPARC) || defined(ARM) || defined(PPC) || defined(AARCH64)
 456   FloatRegister as_float_reg   () const;
 457   FloatRegister as_double_reg  () const;
 458 #endif
 459 
 460   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 461   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 462   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 463   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 464   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 465 
 466   void print() const PRODUCT_RETURN;
 467   void print(outputStream* out) const PRODUCT_RETURN;
 468 };
 469 
 470 
 471 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 472   switch (type) {
 473   case T_INT:      return LIR_OprDesc::int_type;
 474   case T_LONG:     return LIR_OprDesc::long_type;
 475   case T_FLOAT:    return LIR_OprDesc::float_type;
 476   case T_DOUBLE:   return LIR_OprDesc::double_type;
 477   case T_OBJECT:
 478   case T_ARRAY:    return LIR_OprDesc::object_type;
 479   case T_ADDRESS:  return LIR_OprDesc::address_type;
 480   case T_METADATA: return LIR_OprDesc::metadata_type;
 481   case T_ILLEGAL:  // fall through
 482   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 483   }
 484 }
 485 
 486 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 487   switch (t) {
 488   case LIR_OprDesc::int_type:     return T_INT;
 489   case LIR_OprDesc::long_type:    return T_LONG;
 490   case LIR_OprDesc::float_type:   return T_FLOAT;
 491   case LIR_OprDesc::double_type:  return T_DOUBLE;
 492   case LIR_OprDesc::object_type:  return T_OBJECT;
 493   case LIR_OprDesc::address_type: return T_ADDRESS;
 494   case LIR_OprDesc::metadata_type:return T_METADATA;
 495   case LIR_OprDesc::unknown_type: // fall through
 496   default: ShouldNotReachHere();  return T_ILLEGAL;
 497   }
 498 }
 499 
 500 
 501 // LIR_Address
 502 class LIR_Address: public LIR_OprPtr {
 503  friend class LIR_OpVisitState;
 504 
 505  public:
 506   // NOTE: currently these must be the log2 of the scale factor (and
 507   // must also be equivalent to the ScaleFactor enum in
 508   // assembler_i486.hpp)
 509   enum Scale {
 510     times_1  =  0,
 511     times_2  =  1,
 512     times_4  =  2,
 513     times_8  =  3
 514   };
 515 
 516  private:
 517   LIR_Opr   _base;
 518   LIR_Opr   _index;
 519   Scale     _scale;
 520   intx      _disp;
 521   BasicType _type;
 522 
 523  public:
 524   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 525        _base(base)
 526      , _index(index)
 527      , _scale(times_1)
 528      , _type(type)
 529      , _disp(0) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _type(type)
 536      , _disp(disp) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, BasicType type):
 539        _base(base)
 540      , _index(LIR_OprDesc::illegalOpr())
 541      , _scale(times_1)
 542      , _type(type)
 543      , _disp(0) { verify(); }
 544 
 545 #if defined(X86) || defined(ARM) || defined(AARCH64)
 546   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 547        _base(base)
 548      , _index(index)
 549      , _scale(scale)
 550      , _type(type)
 551      , _disp(disp) { verify(); }
 552 #endif // X86 || ARM
 553 
 554   LIR_Opr base()  const                          { return _base;  }
 555   LIR_Opr index() const                          { return _index; }
 556   Scale   scale() const                          { return _scale; }
 557   intx    disp()  const                          { return _disp;  }
 558 
 559   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 560 
 561   virtual LIR_Address* as_address()              { return this;   }
 562   virtual BasicType type() const                 { return _type; }
 563   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 564 
 565   void verify0() const PRODUCT_RETURN;
 566 #if defined(LIR_ADDRESS_PD_VERIFY) && !defined(PRODUCT)
 567   void pd_verify() const;
 568   void verify() const { pd_verify(); }
 569 #else
 570   void verify() const { verify0(); }
 571 #endif
 572 
 573   static Scale scale(BasicType type);
 574 };
 575 
 576 
 577 // operand factory
 578 class LIR_OprFact: public AllStatic {
 579  public:
 580 
 581   static LIR_Opr illegalOpr;
 582 
 583   static LIR_Opr single_cpu(int reg) {
 584     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 585                                LIR_OprDesc::int_type             |
 586                                LIR_OprDesc::cpu_register         |
 587                                LIR_OprDesc::single_size);
 588   }
 589   static LIR_Opr single_cpu_oop(int reg) {
 590     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 591                                LIR_OprDesc::object_type          |
 592                                LIR_OprDesc::cpu_register         |
 593                                LIR_OprDesc::single_size);
 594   }
 595   static LIR_Opr single_cpu_address(int reg) {
 596     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 597                                LIR_OprDesc::address_type         |
 598                                LIR_OprDesc::cpu_register         |
 599                                LIR_OprDesc::single_size);
 600   }
 601   static LIR_Opr single_cpu_metadata(int reg) {
 602     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 603                                LIR_OprDesc::metadata_type        |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::single_size);
 606   }
 607   static LIR_Opr double_cpu(int reg1, int reg2) {
 608     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 609     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 610                                (reg2 << LIR_OprDesc::reg2_shift) |
 611                                LIR_OprDesc::long_type            |
 612                                LIR_OprDesc::cpu_register         |
 613                                LIR_OprDesc::double_size);
 614   }
 615 
 616   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 617                                                                              LIR_OprDesc::float_type           |
 618                                                                              LIR_OprDesc::fpu_register         |
 619                                                                              LIR_OprDesc::single_size); }
 620 #if defined(ARM32)
 621   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 622   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 623   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 624 #endif
 625 #ifdef SPARC
 626   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 627                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 628                                                                              LIR_OprDesc::double_type          |
 629                                                                              LIR_OprDesc::fpu_register         |
 630                                                                              LIR_OprDesc::double_size); }
 631 #endif
 632 #if defined(X86) || defined(AARCH64)
 633   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 634                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 635                                                                              LIR_OprDesc::double_type          |
 636                                                                              LIR_OprDesc::fpu_register         |
 637                                                                              LIR_OprDesc::double_size); }
 638 
 639   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 640                                                                              LIR_OprDesc::float_type           |
 641                                                                              LIR_OprDesc::fpu_register         |
 642                                                                              LIR_OprDesc::single_size          |
 643                                                                              LIR_OprDesc::is_xmm_mask); }
 644   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 645                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 646                                                                              LIR_OprDesc::double_type          |
 647                                                                              LIR_OprDesc::fpu_register         |
 648                                                                              LIR_OprDesc::double_size          |
 649                                                                              LIR_OprDesc::is_xmm_mask); }
 650 #endif // X86
 651 #ifdef PPC
 652   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 653                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 654                                                                              LIR_OprDesc::double_type          |
 655                                                                              LIR_OprDesc::fpu_register         |
 656                                                                              LIR_OprDesc::double_size); }
 657   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 658                                                                              LIR_OprDesc::float_type           |
 659                                                                              LIR_OprDesc::cpu_register         |
 660                                                                              LIR_OprDesc::single_size); }
 661   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 662                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 663                                                                              LIR_OprDesc::double_type          |
 664                                                                              LIR_OprDesc::cpu_register         |
 665                                                                              LIR_OprDesc::double_size); }
 666 #endif // PPC
 667 
 668   static LIR_Opr virtual_register(int index, BasicType type) {
 669     LIR_Opr res;
 670     switch (type) {
 671       case T_OBJECT: // fall through
 672       case T_ARRAY:
 673         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 674                                             LIR_OprDesc::object_type  |
 675                                             LIR_OprDesc::cpu_register |
 676                                             LIR_OprDesc::single_size  |
 677                                             LIR_OprDesc::virtual_mask);
 678         break;
 679 
 680       case T_METADATA:
 681         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 682                                             LIR_OprDesc::metadata_type|
 683                                             LIR_OprDesc::cpu_register |
 684                                             LIR_OprDesc::single_size  |
 685                                             LIR_OprDesc::virtual_mask);
 686         break;
 687 
 688       case T_INT:
 689         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 690                                   LIR_OprDesc::int_type              |
 691                                   LIR_OprDesc::cpu_register          |
 692                                   LIR_OprDesc::single_size           |
 693                                   LIR_OprDesc::virtual_mask);
 694         break;
 695 
 696       case T_ADDRESS:
 697         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 698                                   LIR_OprDesc::address_type          |
 699                                   LIR_OprDesc::cpu_register          |
 700                                   LIR_OprDesc::single_size           |
 701                                   LIR_OprDesc::virtual_mask);
 702         break;
 703 
 704       case T_LONG:
 705         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 706                                   LIR_OprDesc::long_type             |
 707                                   LIR_OprDesc::cpu_register          |
 708                                   LIR_OprDesc::double_size           |
 709                                   LIR_OprDesc::virtual_mask);
 710         break;
 711 
 712 #ifdef __SOFTFP__
 713       case T_FLOAT:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::float_type  |
 716                                   LIR_OprDesc::cpu_register |
 717                                   LIR_OprDesc::single_size |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720       case T_DOUBLE:
 721         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 722                                   LIR_OprDesc::double_type |
 723                                   LIR_OprDesc::cpu_register |
 724                                   LIR_OprDesc::double_size |
 725                                   LIR_OprDesc::virtual_mask);
 726         break;
 727 #else // __SOFTFP__
 728       case T_FLOAT:
 729         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 730                                   LIR_OprDesc::float_type           |
 731                                   LIR_OprDesc::fpu_register         |
 732                                   LIR_OprDesc::single_size          |
 733                                   LIR_OprDesc::virtual_mask);
 734         break;
 735 
 736       case
 737         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 738                                             LIR_OprDesc::double_type           |
 739                                             LIR_OprDesc::fpu_register          |
 740                                             LIR_OprDesc::double_size           |
 741                                             LIR_OprDesc::virtual_mask);
 742         break;
 743 #endif // __SOFTFP__
 744       default:       ShouldNotReachHere(); res = illegalOpr;
 745     }
 746 
 747 #ifdef ASSERT
 748     res->validate_type();
 749     assert(res->vreg_number() == index, "conversion check");
 750     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 751     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 752 
 753     // old-style calculation; check if old and new method are equal
 754     LIR_OprDesc::OprType t = as_OprType(type);
 755 #ifdef __SOFTFP__
 756     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 757                                t |
 758                                LIR_OprDesc::cpu_register |
 759                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 760 #else // __SOFTFP__
 761     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 762                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 763                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 764     assert(res == old_res, "old and new method not equal");
 765 #endif // __SOFTFP__
 766 #endif // ASSERT
 767 
 768     return res;
 769   }
 770 
 771   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 772   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 773   // index 2.
 774   static LIR_Opr stack(int index, BasicType type) {
 775     LIR_Opr res;
 776     switch (type) {
 777       case T_OBJECT: // fall through
 778       case T_ARRAY:
 779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 780                                   LIR_OprDesc::object_type           |
 781                                   LIR_OprDesc::stack_value           |
 782                                   LIR_OprDesc::single_size);
 783         break;
 784 
 785       case T_METADATA:
 786         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 787                                   LIR_OprDesc::metadata_type         |
 788                                   LIR_OprDesc::stack_value           |
 789                                   LIR_OprDesc::single_size);
 790         break;
 791       case T_INT:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::int_type              |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::single_size);
 796         break;
 797 
 798       case T_ADDRESS:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::address_type          |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::single_size);
 803         break;
 804 
 805       case T_LONG:
 806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 807                                   LIR_OprDesc::long_type             |
 808                                   LIR_OprDesc::stack_value           |
 809                                   LIR_OprDesc::double_size);
 810         break;
 811 
 812       case T_FLOAT:
 813         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 814                                   LIR_OprDesc::float_type            |
 815                                   LIR_OprDesc::stack_value           |
 816                                   LIR_OprDesc::single_size);
 817         break;
 818       case T_DOUBLE:
 819         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 820                                   LIR_OprDesc::double_type           |
 821                                   LIR_OprDesc::stack_value           |
 822                                   LIR_OprDesc::double_size);
 823         break;
 824 
 825       default:       ShouldNotReachHere(); res = illegalOpr;
 826     }
 827 
 828 #ifdef ASSERT
 829     assert(index >= 0, "index must be positive");
 830     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 831 
 832     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 833                                           LIR_OprDesc::stack_value           |
 834                                           as_OprType(type)                   |
 835                                           LIR_OprDesc::size_for(type));
 836     assert(res == old_res, "old and new method not equal");
 837 #endif
 838 
 839     return res;
 840   }
 841 
 842   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 843   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 844   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 845   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 846   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 847   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 848   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 849   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 850   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 851   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 852   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 853 
 854   static LIR_Opr value_type(ValueType* type);
 855   static LIR_Opr dummy_value_type(ValueType* type);
 856 };
 857 
 858 
 859 //-------------------------------------------------------------------------------
 860 //                   LIR Instructions
 861 //-------------------------------------------------------------------------------
 862 //
 863 // Note:
 864 //  - every instruction has a result operand
 865 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 866 //  - every instruction has a LIR_OpCode operand
 867 //  - LIR_OpN, means an instruction that has N input operands
 868 //
 869 // class hierarchy:
 870 //
 871 class  LIR_Op;
 872 class    LIR_Op0;
 873 class      LIR_OpLabel;
 874 class    LIR_Op1;
 875 class      LIR_OpBranch;
 876 class      LIR_OpConvert;
 877 class      LIR_OpAllocObj;
 878 class      LIR_OpRoundFP;
 879 class    LIR_Op2;
 880 class    LIR_OpDelay;
 881 class    LIR_Op3;
 882 class      LIR_OpAllocArray;
 883 class    LIR_OpCall;
 884 class      LIR_OpJavaCall;
 885 class      LIR_OpRTCall;
 886 class    LIR_OpArrayCopy;
 887 class    LIR_OpUpdateCRC32;
 888 class    LIR_OpLock;
 889 class    LIR_OpTypeCheck;
 890 class    LIR_OpCompareAndSwap;
 891 class    LIR_OpProfileCall;
 892 class    LIR_OpProfileType;
 893 #ifdef ASSERT
 894 class    LIR_OpAssert;
 895 #endif
 896 
 897 // LIR operation codes
 898 enum LIR_Code {
 899     lir_none
 900   , begin_op0
 901       , lir_word_align
 902       , lir_label
 903       , lir_nop
 904       , lir_backwardbranch_target
 905       , lir_std_entry
 906       , lir_osr_entry
 907       , lir_build_frame
 908       , lir_fpop_raw
 909       , lir_24bit_FPU
 910       , lir_reset_FPU
 911       , lir_breakpoint
 912       , lir_rtcall
 913       , lir_membar
 914       , lir_membar_acquire
 915       , lir_membar_release
 916       , lir_membar_loadload
 917       , lir_membar_storestore
 918       , lir_membar_loadstore
 919       , lir_membar_storeload
 920       , lir_get_thread
 921   , end_op0
 922   , begin_op1
 923       , lir_fxch
 924       , lir_fld
 925       , lir_ffree
 926       , lir_push
 927       , lir_pop
 928       , lir_null_check
 929       , lir_return
 930       , lir_leal
 931       , lir_neg
 932       , lir_branch
 933       , lir_cond_float_branch
 934       , lir_move
 935       , lir_convert
 936       , lir_alloc_object
 937       , lir_monaddr
 938       , lir_roundfp
 939       , lir_safepoint
 940       , lir_pack64
 941       , lir_unpack64
 942       , lir_unwind
 943   , end_op1
 944   , begin_op2
 945       , lir_cmp
 946       , lir_cmp_l2i
 947       , lir_ucmp_fd2i
 948       , lir_cmp_fd2i
 949       , lir_cmove
 950       , lir_add
 951       , lir_sub
 952       , lir_mul
 953       , lir_mul_strictfp
 954       , lir_div
 955       , lir_div_strictfp
 956       , lir_rem
 957       , lir_sqrt
 958       , lir_abs
 959       , lir_sin
 960       , lir_cos
 961       , lir_tan
 962       , lir_log
 963       , lir_log10
 964       , lir_exp
 965       , lir_pow
 966       , lir_logic_and
 967       , lir_logic_or
 968       , lir_logic_xor
 969       , lir_shl
 970       , lir_shr
 971       , lir_ushr
 972       , lir_alloc_array
 973       , lir_throw
 974       , lir_compare_to
 975       , lir_xadd
 976       , lir_xchg
 977   , end_op2
 978   , begin_op3
 979       , lir_idiv
 980       , lir_irem
 981   , end_op3
 982   , begin_opJavaCall
 983       , lir_static_call
 984       , lir_optvirtual_call
 985       , lir_icvirtual_call
 986       , lir_virtual_call
 987       , lir_dynamic_call
 988   , end_opJavaCall
 989   , begin_opArrayCopy
 990       , lir_arraycopy
 991   , end_opArrayCopy
 992   , begin_opUpdateCRC32
 993       , lir_updatecrc32
 994   , end_opUpdateCRC32
 995   , begin_opLock
 996     , lir_lock
 997     , lir_unlock
 998   , end_opLock
 999   , begin_delay_slot
1000     , lir_delay_slot
1001   , end_delay_slot
1002   , begin_opTypeCheck
1003     , lir_instanceof
1004     , lir_checkcast
1005     , lir_store_check
1006   , end_opTypeCheck
1007   , begin_opCompareAndSwap
1008     , lir_cas_long
1009     , lir_cas_obj
1010     , lir_cas_int
1011   , end_opCompareAndSwap
1012   , begin_opMDOProfile
1013     , lir_profile_call
1014     , lir_profile_type
1015   , end_opMDOProfile
1016   , begin_opAssert
1017     , lir_assert
1018   , end_opAssert
1019 };
1020 
1021 
1022 enum LIR_Condition {
1023     lir_cond_equal
1024   , lir_cond_notEqual
1025   , lir_cond_less
1026   , lir_cond_lessEqual
1027   , lir_cond_greaterEqual
1028   , lir_cond_greater
1029   , lir_cond_belowEqual
1030   , lir_cond_aboveEqual
1031   , lir_cond_always
1032   , lir_cond_unknown = -1
1033 };
1034 
1035 
1036 enum LIR_PatchCode {
1037   lir_patch_none,
1038   lir_patch_low,
1039   lir_patch_high,
1040   lir_patch_normal
1041 };
1042 
1043 
1044 enum LIR_MoveKind {
1045   lir_move_normal,
1046   lir_move_volatile,
1047   lir_move_unaligned,
1048   lir_move_wide,
1049   lir_move_max_flag
1050 };
1051 
1052 
1053 // --------------------------------------------------
1054 // LIR_Op
1055 // --------------------------------------------------
1056 class LIR_Op: public CompilationResourceObj {
1057  friend class LIR_OpVisitState;
1058 
1059 #ifdef ASSERT
1060  private:
1061   const char *  _file;
1062   int           _line;
1063 #endif
1064 
1065  protected:
1066   LIR_Opr       _result;
1067   unsigned short _code;
1068   unsigned short _flags;
1069   CodeEmitInfo* _info;
1070   int           _id;     // value id for register allocation
1071   int           _fpu_pop_count;
1072   Instruction*  _source; // for debugging
1073 
1074   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1075 
1076  protected:
1077   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1078 
1079  public:
1080   LIR_Op()
1081     : _result(LIR_OprFact::illegalOpr)
1082     , _code(lir_none)
1083     , _flags(0)
1084     , _info(NULL)
1085 #ifdef ASSERT
1086     , _file(NULL)
1087     , _line(0)
1088 #endif
1089     , _fpu_pop_count(0)
1090     , _source(NULL)
1091     , _id(-1)                             {}
1092 
1093   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1094     : _result(result)
1095     , _code(code)
1096     , _flags(0)
1097     , _info(info)
1098 #ifdef ASSERT
1099     , _file(NULL)
1100     , _line(0)
1101 #endif
1102     , _fpu_pop_count(0)
1103     , _source(NULL)
1104     , _id(-1)                             {}
1105 
1106   CodeEmitInfo* info() const                  { return _info;   }
1107   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1108   LIR_Opr result_opr() const                  { return _result; }
1109   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1110 
1111 #ifdef ASSERT
1112   void set_file_and_line(const char * file, int line) {
1113     _file = file;
1114     _line = line;
1115   }
1116 #endif
1117 
1118   virtual const char * name() const PRODUCT_RETURN0;
1119 
1120   int id()             const                  { return _id;     }
1121   void set_id(int id)                         { _id = id; }
1122 
1123   // FPU stack simulation helpers -- only used on Intel
1124   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1125   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1126   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1127 
1128   Instruction* source() const                 { return _source; }
1129   void set_source(Instruction* ins)           { _source = ins; }
1130 
1131   virtual void emit_code(LIR_Assembler* masm) = 0;
1132   virtual void print_instr(outputStream* out) const   = 0;
1133   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1134 
1135   virtual bool is_patching() { return false; }
1136   virtual LIR_OpCall* as_OpCall() { return NULL; }
1137   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1138   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1139   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1140   virtual LIR_OpLock* as_OpLock() { return NULL; }
1141   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1142   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1143   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1144   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1145   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1146   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1147   virtual LIR_Op0* as_Op0() { return NULL; }
1148   virtual LIR_Op1* as_Op1() { return NULL; }
1149   virtual LIR_Op2* as_Op2() { return NULL; }
1150   virtual LIR_Op3* as_Op3() { return NULL; }
1151   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1152   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1153   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1154   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1155   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1156   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1157 #ifdef ASSERT
1158   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1159 #endif
1160 
1161   virtual void verify() const {}
1162 };
1163 
1164 // for calls
1165 class LIR_OpCall: public LIR_Op {
1166  friend class LIR_OpVisitState;
1167 
1168  protected:
1169   address      _addr;
1170   LIR_OprList* _arguments;
1171  protected:
1172   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1173              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1174     : LIR_Op(code, result, info)
1175     , _arguments(arguments)
1176     , _addr(addr) {}
1177 
1178  public:
1179   address addr() const                           { return _addr; }
1180   const LIR_OprList* arguments() const           { return _arguments; }
1181   virtual LIR_OpCall* as_OpCall()                { return this; }
1182 };
1183 
1184 
1185 // --------------------------------------------------
1186 // LIR_OpJavaCall
1187 // --------------------------------------------------
1188 class LIR_OpJavaCall: public LIR_OpCall {
1189  friend class LIR_OpVisitState;
1190 
1191  private:
1192   ciMethod* _method;
1193   LIR_Opr   _receiver;
1194   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1195 
1196  public:
1197   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1198                  LIR_Opr receiver, LIR_Opr result,
1199                  address addr, LIR_OprList* arguments,
1200                  CodeEmitInfo* info)
1201   : LIR_OpCall(code, addr, result, arguments, info)
1202   , _receiver(receiver)
1203   , _method(method)
1204   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1205   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1206 
1207   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1208                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1209                  LIR_OprList* arguments, CodeEmitInfo* info)
1210   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1211   , _receiver(receiver)
1212   , _method(method)
1213   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1214   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1215 
1216   LIR_Opr receiver() const                       { return _receiver; }
1217   ciMethod* method() const                       { return _method;   }
1218 
1219   // JSR 292 support.
1220   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1221   bool is_method_handle_invoke() const {
1222     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1223            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1224   }
1225 
1226   intptr_t vtable_offset() const {
1227     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1228     return (intptr_t) addr();
1229   }
1230 
1231   virtual void emit_code(LIR_Assembler* masm);
1232   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1233   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1234 };
1235 
1236 // --------------------------------------------------
1237 // LIR_OpLabel
1238 // --------------------------------------------------
1239 // Location where a branch can continue
1240 class LIR_OpLabel: public LIR_Op {
1241  friend class LIR_OpVisitState;
1242 
1243  private:
1244   Label* _label;
1245  public:
1246   LIR_OpLabel(Label* lbl)
1247    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1248    , _label(lbl)                                 {}
1249   Label* label() const                           { return _label; }
1250 
1251   virtual void emit_code(LIR_Assembler* masm);
1252   virtual LIR_OpLabel* as_OpLabel() { return this; }
1253   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1254 };
1255 
1256 // LIR_OpArrayCopy
1257 class LIR_OpArrayCopy: public LIR_Op {
1258  friend class LIR_OpVisitState;
1259 
1260  private:
1261   ArrayCopyStub*  _stub;
1262   LIR_Opr   _src;
1263   LIR_Opr   _src_pos;
1264   LIR_Opr   _dst;
1265   LIR_Opr   _dst_pos;
1266   LIR_Opr   _length;
1267   LIR_Opr   _tmp;
1268   ciArrayKlass* _expected_type;
1269   int       _flags;
1270 
1271 public:
1272   enum Flags {
1273     src_null_check         = 1 << 0,
1274     dst_null_check         = 1 << 1,
1275     src_pos_positive_check = 1 << 2,
1276     dst_pos_positive_check = 1 << 3,
1277     length_positive_check  = 1 << 4,
1278     src_range_check        = 1 << 5,
1279     dst_range_check        = 1 << 6,
1280     type_check             = 1 << 7,
1281     overlapping            = 1 << 8,
1282     unaligned              = 1 << 9,
1283     src_objarray           = 1 << 10,
1284     dst_objarray           = 1 << 11,
1285     all_flags              = (1 << 12) - 1
1286   };
1287 
1288   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1289                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1290 
1291   LIR_Opr src() const                            { return _src; }
1292   LIR_Opr src_pos() const                        { return _src_pos; }
1293   LIR_Opr dst() const                            { return _dst; }
1294   LIR_Opr dst_pos() const                        { return _dst_pos; }
1295   LIR_Opr length() const                         { return _length; }
1296   LIR_Opr tmp() const                            { return _tmp; }
1297   int flags() const                              { return _flags; }
1298   ciArrayKlass* expected_type() const            { return _expected_type; }
1299   ArrayCopyStub* stub() const                    { return _stub; }
1300 
1301   virtual void emit_code(LIR_Assembler* masm);
1302   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1303   void print_instr(outputStream* out) const PRODUCT_RETURN;
1304 };
1305 
1306 // LIR_OpUpdateCRC32
1307 class LIR_OpUpdateCRC32: public LIR_Op {
1308   friend class LIR_OpVisitState;
1309 
1310 private:
1311   LIR_Opr   _crc;
1312   LIR_Opr   _val;
1313 
1314 public:
1315 
1316   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1317 
1318   LIR_Opr crc() const                            { return _crc; }
1319   LIR_Opr val() const                            { return _val; }
1320 
1321   virtual void emit_code(LIR_Assembler* masm);
1322   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1323   void print_instr(outputStream* out) const PRODUCT_RETURN;
1324 };
1325 
1326 // --------------------------------------------------
1327 // LIR_Op0
1328 // --------------------------------------------------
1329 class LIR_Op0: public LIR_Op {
1330  friend class LIR_OpVisitState;
1331 
1332  public:
1333   LIR_Op0(LIR_Code code)
1334    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1335   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1336    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1337 
1338   virtual void emit_code(LIR_Assembler* masm);
1339   virtual LIR_Op0* as_Op0() { return this; }
1340   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1341 };
1342 
1343 
1344 // --------------------------------------------------
1345 // LIR_Op1
1346 // --------------------------------------------------
1347 
1348 class LIR_Op1: public LIR_Op {
1349  friend class LIR_OpVisitState;
1350 
1351  protected:
1352   LIR_Opr         _opr;   // input operand
1353   BasicType       _type;  // Operand types
1354   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1355 
1356   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1357 
1358   void set_kind(LIR_MoveKind kind) {
1359     assert(code() == lir_move, "must be");
1360     _flags = kind;
1361   }
1362 
1363  public:
1364   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1365     : LIR_Op(code, result, info)
1366     , _opr(opr)
1367     , _patch(patch)
1368     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1369 
1370   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1371     : LIR_Op(code, result, info)
1372     , _opr(opr)
1373     , _patch(patch)
1374     , _type(type)                      {
1375     assert(code == lir_move, "must be");
1376     set_kind(kind);
1377   }
1378 
1379   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1380     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1381     , _opr(opr)
1382     , _patch(lir_patch_none)
1383     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1384 
1385   LIR_Opr in_opr()           const               { return _opr;   }
1386   LIR_PatchCode patch_code() const               { return _patch; }
1387   BasicType type()           const               { return _type;  }
1388 
1389   LIR_MoveKind move_kind() const {
1390     assert(code() == lir_move, "must be");
1391     return (LIR_MoveKind)_flags;
1392   }
1393 
1394   virtual bool is_patching() { return _patch != lir_patch_none; }
1395   virtual void emit_code(LIR_Assembler* masm);
1396   virtual LIR_Op1* as_Op1() { return this; }
1397   virtual const char * name() const PRODUCT_RETURN0;
1398 
1399   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1400 
1401   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1402   virtual void verify() const;
1403 };
1404 
1405 
1406 // for runtime calls
1407 class LIR_OpRTCall: public LIR_OpCall {
1408  friend class LIR_OpVisitState;
1409 
1410  private:
1411   LIR_Opr _tmp;
1412  public:
1413   LIR_OpRTCall(address addr, LIR_Opr tmp,
1414                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1415     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1416     , _tmp(tmp) {}
1417 
1418   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1419   virtual void emit_code(LIR_Assembler* masm);
1420   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1421 
1422   LIR_Opr tmp() const                            { return _tmp; }
1423 
1424   virtual void verify() const;
1425 };
1426 
1427 
1428 class LIR_OpBranch: public LIR_Op {
1429  friend class LIR_OpVisitState;
1430 
1431  private:
1432   LIR_Condition _cond;
1433   BasicType     _type;
1434   Label*        _label;
1435   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1436   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1437   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1438 
1439  public:
1440   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1441     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1442     , _cond(cond)
1443     , _type(type)
1444     , _label(lbl)
1445     , _block(NULL)
1446     , _ublock(NULL)
1447     , _stub(NULL) { }
1448 
1449   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1450   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1451 
1452   // for unordered comparisons
1453   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1454 
1455   LIR_Condition cond()        const              { return _cond;        }
1456   BasicType     type()        const              { return _type;        }
1457   Label*        label()       const              { return _label;       }
1458   BlockBegin*   block()       const              { return _block;       }
1459   BlockBegin*   ublock()      const              { return _ublock;      }
1460   CodeStub*     stub()        const              { return _stub;       }
1461 
1462   void          change_block(BlockBegin* b);
1463   void          change_ublock(BlockBegin* b);
1464   void          negate_cond();
1465 
1466   virtual void emit_code(LIR_Assembler* masm);
1467   virtual LIR_OpBranch* as_OpBranch() { return this; }
1468   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1469 };
1470 
1471 
1472 class ConversionStub;
1473 
1474 class LIR_OpConvert: public LIR_Op1 {
1475  friend class LIR_OpVisitState;
1476 
1477  private:
1478    Bytecodes::Code _bytecode;
1479    ConversionStub* _stub;
1480 #ifdef PPC
1481   LIR_Opr _tmp1;
1482   LIR_Opr _tmp2;
1483 #endif
1484 
1485  public:
1486    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1487      : LIR_Op1(lir_convert, opr, result)
1488      , _stub(stub)
1489 #ifdef PPC
1490      , _tmp1(LIR_OprDesc::illegalOpr())
1491      , _tmp2(LIR_OprDesc::illegalOpr())
1492 #endif
1493      , _bytecode(code)                           {}
1494 
1495 #ifdef PPC
1496    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1497                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1498      : LIR_Op1(lir_convert, opr, result)
1499      , _stub(stub)
1500      , _tmp1(tmp1)
1501      , _tmp2(tmp2)
1502      , _bytecode(code)                           {}
1503 #endif
1504 
1505   Bytecodes::Code bytecode() const               { return _bytecode; }
1506   ConversionStub* stub() const                   { return _stub; }
1507 #ifdef PPC
1508   LIR_Opr tmp1() const                           { return _tmp1; }
1509   LIR_Opr tmp2() const                           { return _tmp2; }
1510 #endif
1511 
1512   virtual void emit_code(LIR_Assembler* masm);
1513   virtual LIR_OpConvert* as_OpConvert() { return this; }
1514   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1515 
1516   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1517 };
1518 
1519 
1520 // LIR_OpAllocObj
1521 class LIR_OpAllocObj : public LIR_Op1 {
1522  friend class LIR_OpVisitState;
1523 
1524  private:
1525   LIR_Opr _tmp1;
1526   LIR_Opr _tmp2;
1527   LIR_Opr _tmp3;
1528   LIR_Opr _tmp4;
1529   int     _hdr_size;
1530   int     _obj_size;
1531   CodeStub* _stub;
1532   bool    _init_check;
1533 
1534  public:
1535   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1536                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1537                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1538     : LIR_Op1(lir_alloc_object, klass, result)
1539     , _tmp1(t1)
1540     , _tmp2(t2)
1541     , _tmp3(t3)
1542     , _tmp4(t4)
1543     , _hdr_size(hdr_size)
1544     , _obj_size(obj_size)
1545     , _init_check(init_check)
1546     , _stub(stub)                                { }
1547 
1548   LIR_Opr klass()        const                   { return in_opr();     }
1549   LIR_Opr obj()          const                   { return result_opr(); }
1550   LIR_Opr tmp1()         const                   { return _tmp1;        }
1551   LIR_Opr tmp2()         const                   { return _tmp2;        }
1552   LIR_Opr tmp3()         const                   { return _tmp3;        }
1553   LIR_Opr tmp4()         const                   { return _tmp4;        }
1554   int     header_size()  const                   { return _hdr_size;    }
1555   int     object_size()  const                   { return _obj_size;    }
1556   bool    init_check()   const                   { return _init_check;  }
1557   CodeStub* stub()       const                   { return _stub;        }
1558 
1559   virtual void emit_code(LIR_Assembler* masm);
1560   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1561   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1562 };
1563 
1564 
1565 // LIR_OpRoundFP
1566 class LIR_OpRoundFP : public LIR_Op1 {
1567  friend class LIR_OpVisitState;
1568 
1569  private:
1570   LIR_Opr _tmp;
1571 
1572  public:
1573   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1574     : LIR_Op1(lir_roundfp, reg, result)
1575     , _tmp(stack_loc_temp) {}
1576 
1577   LIR_Opr tmp() const                            { return _tmp; }
1578   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1579   void print_instr(outputStream* out) const PRODUCT_RETURN;
1580 };
1581 
1582 // LIR_OpTypeCheck
1583 class LIR_OpTypeCheck: public LIR_Op {
1584  friend class LIR_OpVisitState;
1585 
1586  private:
1587   LIR_Opr       _object;
1588   LIR_Opr       _array;
1589   ciKlass*      _klass;
1590   LIR_Opr       _tmp1;
1591   LIR_Opr       _tmp2;
1592   LIR_Opr       _tmp3;
1593   bool          _fast_check;
1594   CodeEmitInfo* _info_for_patch;
1595   CodeEmitInfo* _info_for_exception;
1596   CodeStub*     _stub;
1597   ciMethod*     _profiled_method;
1598   int           _profiled_bci;
1599   bool          _should_profile;
1600 
1601 public:
1602   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1603                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1604                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1605   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1606                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1607 
1608   LIR_Opr object() const                         { return _object;         }
1609   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1610   LIR_Opr tmp1() const                           { return _tmp1;           }
1611   LIR_Opr tmp2() const                           { return _tmp2;           }
1612   LIR_Opr tmp3() const                           { return _tmp3;           }
1613   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1614   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1615   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1616   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1617   CodeStub* stub() const                         { return _stub;           }
1618 
1619   // MethodData* profiling
1620   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1621   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1622   void set_should_profile(bool b)                { _should_profile = b;       }
1623   ciMethod* profiled_method() const              { return _profiled_method;   }
1624   int       profiled_bci() const                 { return _profiled_bci;      }
1625   bool      should_profile() const               { return _should_profile;    }
1626 
1627   virtual bool is_patching() { return _info_for_patch != NULL; }
1628   virtual void emit_code(LIR_Assembler* masm);
1629   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1630   void print_instr(outputStream* out) const PRODUCT_RETURN;
1631 };
1632 
1633 // LIR_Op2
1634 class LIR_Op2: public LIR_Op {
1635  friend class LIR_OpVisitState;
1636 
1637   int  _fpu_stack_size; // for sin/cos implementation on Intel
1638 
1639  protected:
1640   LIR_Opr   _opr1;
1641   LIR_Opr   _opr2;
1642   BasicType _type;
1643   LIR_Opr   _tmp1;
1644   LIR_Opr   _tmp2;
1645   LIR_Opr   _tmp3;
1646   LIR_Opr   _tmp4;
1647   LIR_Opr   _tmp5;
1648   LIR_Condition _condition;
1649 
1650   void verify() const;
1651 
1652  public:
1653   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1654     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1655     , _opr1(opr1)
1656     , _opr2(opr2)
1657     , _type(T_ILLEGAL)
1658     , _condition(condition)
1659     , _fpu_stack_size(0)
1660     , _tmp1(LIR_OprFact::illegalOpr)
1661     , _tmp2(LIR_OprFact::illegalOpr)
1662     , _tmp3(LIR_OprFact::illegalOpr)
1663     , _tmp4(LIR_OprFact::illegalOpr)
1664     , _tmp5(LIR_OprFact::illegalOpr) {
1665     assert(code == lir_cmp || code == lir_assert, "code check");
1666   }
1667 
1668   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1669     : LIR_Op(code, result, NULL)
1670     , _opr1(opr1)
1671     , _opr2(opr2)
1672     , _type(type)
1673     , _condition(condition)
1674     , _fpu_stack_size(0)
1675     , _tmp1(LIR_OprFact::illegalOpr)
1676     , _tmp2(LIR_OprFact::illegalOpr)
1677     , _tmp3(LIR_OprFact::illegalOpr)
1678     , _tmp4(LIR_OprFact::illegalOpr)
1679     , _tmp5(LIR_OprFact::illegalOpr) {
1680     assert(code == lir_cmove, "code check");
1681     assert(type != T_ILLEGAL, "cmove should have type");
1682   }
1683 
1684   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1685           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1686     : LIR_Op(code, result, info)
1687     , _opr1(opr1)
1688     , _opr2(opr2)
1689     , _type(type)
1690     , _condition(lir_cond_unknown)
1691     , _fpu_stack_size(0)
1692     , _tmp1(LIR_OprFact::illegalOpr)
1693     , _tmp2(LIR_OprFact::illegalOpr)
1694     , _tmp3(LIR_OprFact::illegalOpr)
1695     , _tmp4(LIR_OprFact::illegalOpr)
1696     , _tmp5(LIR_OprFact::illegalOpr) {
1697     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1698   }
1699 
1700   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1701           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1702     : LIR_Op(code, result, NULL)
1703     , _opr1(opr1)
1704     , _opr2(opr2)
1705     , _type(T_ILLEGAL)
1706     , _condition(lir_cond_unknown)
1707     , _fpu_stack_size(0)
1708     , _tmp1(tmp1)
1709     , _tmp2(tmp2)
1710     , _tmp3(tmp3)
1711     , _tmp4(tmp4)
1712     , _tmp5(tmp5) {
1713     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1714   }
1715 
1716   LIR_Opr in_opr1() const                        { return _opr1; }
1717   LIR_Opr in_opr2() const                        { return _opr2; }
1718   BasicType type()  const                        { return _type; }
1719   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1720   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1721   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1722   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1723   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1724   LIR_Condition condition() const  {
1725     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1726   }
1727   void set_condition(LIR_Condition condition) {
1728     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1729   }
1730 
1731   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1732   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1733 
1734   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1735   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1736 
1737   virtual void emit_code(LIR_Assembler* masm);
1738   virtual LIR_Op2* as_Op2() { return this; }
1739   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1740 };
1741 
1742 class LIR_OpAllocArray : public LIR_Op {
1743  friend class LIR_OpVisitState;
1744 
1745  private:
1746   LIR_Opr   _klass;
1747   LIR_Opr   _len;
1748   LIR_Opr   _tmp1;
1749   LIR_Opr   _tmp2;
1750   LIR_Opr   _tmp3;
1751   LIR_Opr   _tmp4;
1752   BasicType _type;
1753   CodeStub* _stub;
1754 
1755  public:
1756   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1757     : LIR_Op(lir_alloc_array, result, NULL)
1758     , _klass(klass)
1759     , _len(len)
1760     , _tmp1(t1)
1761     , _tmp2(t2)
1762     , _tmp3(t3)
1763     , _tmp4(t4)
1764     , _type(type)
1765     , _stub(stub) {}
1766 
1767   LIR_Opr   klass()   const                      { return _klass;       }
1768   LIR_Opr   len()     const                      { return _len;         }
1769   LIR_Opr   obj()     const                      { return result_opr(); }
1770   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1771   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1772   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1773   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1774   BasicType type()    const                      { return _type;        }
1775   CodeStub* stub()    const                      { return _stub;        }
1776 
1777   virtual void emit_code(LIR_Assembler* masm);
1778   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1779   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1780 };
1781 
1782 
1783 class LIR_Op3: public LIR_Op {
1784  friend class LIR_OpVisitState;
1785 
1786  private:
1787   LIR_Opr _opr1;
1788   LIR_Opr _opr2;
1789   LIR_Opr _opr3;
1790  public:
1791   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1792     : LIR_Op(code, result, info)
1793     , _opr1(opr1)
1794     , _opr2(opr2)
1795     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1796   LIR_Opr in_opr1() const                        { return _opr1; }
1797   LIR_Opr in_opr2() const                        { return _opr2; }
1798   LIR_Opr in_opr3() const                        { return _opr3; }
1799 
1800   virtual void emit_code(LIR_Assembler* masm);
1801   virtual LIR_Op3* as_Op3() { return this; }
1802   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1803 };
1804 
1805 
1806 //--------------------------------
1807 class LabelObj: public CompilationResourceObj {
1808  private:
1809   Label _label;
1810  public:
1811   LabelObj()                                     {}
1812   Label* label()                                 { return &_label; }
1813 };
1814 
1815 
1816 class LIR_OpLock: public LIR_Op {
1817  friend class LIR_OpVisitState;
1818 
1819  private:
1820   LIR_Opr _hdr;
1821   LIR_Opr _obj;
1822   LIR_Opr _lock;
1823   LIR_Opr _scratch;
1824   CodeStub* _stub;
1825  public:
1826   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1827     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1828     , _hdr(hdr)
1829     , _obj(obj)
1830     , _lock(lock)
1831     , _scratch(scratch)
1832     , _stub(stub)                      {}
1833 
1834   LIR_Opr hdr_opr() const                        { return _hdr; }
1835   LIR_Opr obj_opr() const                        { return _obj; }
1836   LIR_Opr lock_opr() const                       { return _lock; }
1837   LIR_Opr scratch_opr() const                    { return _scratch; }
1838   CodeStub* stub() const                         { return _stub; }
1839 
1840   virtual void emit_code(LIR_Assembler* masm);
1841   virtual LIR_OpLock* as_OpLock() { return this; }
1842   void print_instr(outputStream* out) const PRODUCT_RETURN;
1843 };
1844 
1845 
1846 class LIR_OpDelay: public LIR_Op {
1847  friend class LIR_OpVisitState;
1848 
1849  private:
1850   LIR_Op* _op;
1851 
1852  public:
1853   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1854     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1855     _op(op) {
1856     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1857   }
1858   virtual void emit_code(LIR_Assembler* masm);
1859   virtual LIR_OpDelay* as_OpDelay() { return this; }
1860   void print_instr(outputStream* out) const PRODUCT_RETURN;
1861   LIR_Op* delay_op() const { return _op; }
1862   CodeEmitInfo* call_info() const { return info(); }
1863 };
1864 
1865 #ifdef ASSERT
1866 // LIR_OpAssert
1867 class LIR_OpAssert : public LIR_Op2 {
1868  friend class LIR_OpVisitState;
1869 
1870  private:
1871   const char* _msg;
1872   bool        _halt;
1873 
1874  public:
1875   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1876     : LIR_Op2(lir_assert, condition, opr1, opr2)
1877     , _halt(halt)
1878     , _msg(msg) {
1879   }
1880 
1881   const char* msg() const                        { return _msg; }
1882   bool        halt() const                       { return _halt; }
1883 
1884   virtual void emit_code(LIR_Assembler* masm);
1885   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1886   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1887 };
1888 #endif
1889 
1890 // LIR_OpCompareAndSwap
1891 class LIR_OpCompareAndSwap : public LIR_Op {
1892  friend class LIR_OpVisitState;
1893 
1894  private:
1895   LIR_Opr _addr;
1896   LIR_Opr _cmp_value;
1897   LIR_Opr _new_value;
1898   LIR_Opr _tmp1;
1899   LIR_Opr _tmp2;
1900 
1901  public:
1902   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1903                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1904     : LIR_Op(code, result, NULL)  // no result, no info
1905     , _addr(addr)
1906     , _cmp_value(cmp_value)
1907     , _new_value(new_value)
1908     , _tmp1(t1)
1909     , _tmp2(t2)                                  { }
1910 
1911   LIR_Opr addr()        const                    { return _addr;  }
1912   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1913   LIR_Opr new_value()   const                    { return _new_value; }
1914   LIR_Opr tmp1()        const                    { return _tmp1;      }
1915   LIR_Opr tmp2()        const                    { return _tmp2;      }
1916 
1917   virtual void emit_code(LIR_Assembler* masm);
1918   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1919   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1920 };
1921 
1922 // LIR_OpProfileCall
1923 class LIR_OpProfileCall : public LIR_Op {
1924  friend class LIR_OpVisitState;
1925 
1926  private:
1927   ciMethod* _profiled_method;
1928   int       _profiled_bci;
1929   ciMethod* _profiled_callee;
1930   LIR_Opr   _mdo;
1931   LIR_Opr   _recv;
1932   LIR_Opr   _tmp1;
1933   ciKlass*  _known_holder;
1934 
1935  public:
1936   // Destroys recv
1937   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1938     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1939     , _profiled_method(profiled_method)
1940     , _profiled_bci(profiled_bci)
1941     , _profiled_callee(profiled_callee)
1942     , _mdo(mdo)
1943     , _recv(recv)
1944     , _tmp1(t1)
1945     , _known_holder(known_holder)                { }
1946 
1947   ciMethod* profiled_method() const              { return _profiled_method;  }
1948   int       profiled_bci()    const              { return _profiled_bci;     }
1949   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1950   LIR_Opr   mdo()             const              { return _mdo;              }
1951   LIR_Opr   recv()            const              { return _recv;             }
1952   LIR_Opr   tmp1()            const              { return _tmp1;             }
1953   ciKlass*  known_holder()    const              { return _known_holder;     }
1954 
1955   virtual void emit_code(LIR_Assembler* masm);
1956   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1957   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1958 };
1959 
1960 // LIR_OpProfileType
1961 class LIR_OpProfileType : public LIR_Op {
1962  friend class LIR_OpVisitState;
1963 
1964  private:
1965   LIR_Opr      _mdp;
1966   LIR_Opr      _obj;
1967   LIR_Opr      _tmp;
1968   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1969   intptr_t     _current_klass; // what the profiling currently reports
1970   bool         _not_null;      // true if we know statically that _obj cannot be null
1971   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1972                                // _exact_klass it the only possible type for this parameter in any context.
1973 
1974  public:
1975   // Destroys recv
1976   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1977     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1978     , _mdp(mdp)
1979     , _obj(obj)
1980     , _exact_klass(exact_klass)
1981     , _current_klass(current_klass)
1982     , _tmp(tmp)
1983     , _not_null(not_null)
1984     , _no_conflict(no_conflict) { }
1985 
1986   LIR_Opr      mdp()              const             { return _mdp;              }
1987   LIR_Opr      obj()              const             { return _obj;              }
1988   LIR_Opr      tmp()              const             { return _tmp;              }
1989   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1990   intptr_t     current_klass()    const             { return _current_klass;    }
1991   bool         not_null()         const             { return _not_null;         }
1992   bool         no_conflict()      const             { return _no_conflict;      }
1993 
1994   virtual void emit_code(LIR_Assembler* masm);
1995   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1996   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1997 };
1998 
1999 class LIR_InsertionBuffer;
2000 
2001 //--------------------------------LIR_List---------------------------------------------------
2002 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2003 // The LIR instructions are appended by the LIR_List class itself;
2004 //
2005 // Notes:
2006 // - all offsets are(should be) in bytes
2007 // - local positions are specified with an offset, with offset 0 being local 0
2008 
2009 class LIR_List: public CompilationResourceObj {
2010  private:
2011   LIR_OpList  _operations;
2012 
2013   Compilation*  _compilation;
2014 #ifndef PRODUCT
2015   BlockBegin*   _block;
2016 #endif
2017 #ifdef ASSERT
2018   const char *  _file;
2019   int           _line;
2020 #endif
2021 
2022   void append(LIR_Op* op) {
2023     if (op->source() == NULL)
2024       op->set_source(_compilation->current_instruction());
2025 #ifndef PRODUCT
2026     if (PrintIRWithLIR) {
2027       _compilation->maybe_print_current_instruction();
2028       op->print(); tty->cr();
2029     }
2030 #endif // PRODUCT
2031 
2032     _operations.append(op);
2033 
2034 #ifdef ASSERT
2035     op->verify();
2036     op->set_file_and_line(_file, _line);
2037     _file = NULL;
2038     _line = 0;
2039 #endif
2040   }
2041 
2042  public:
2043   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2044 
2045 #ifdef ASSERT
2046   void set_file_and_line(const char * file, int line);
2047 #endif
2048 
2049   //---------- accessors ---------------
2050   LIR_OpList* instructions_list()                { return &_operations; }
2051   int         length() const                     { return _operations.length(); }
2052   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2053 
2054   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2055 
2056   // insert LIR_Ops in buffer to right places in LIR_List
2057   void append(LIR_InsertionBuffer* buffer);
2058 
2059   //---------- mutators ---------------
2060   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2061   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2062   void remove_at(int i)                          { _operations.remove_at(i); }
2063 
2064   //---------- printing -------------
2065   void print_instructions() PRODUCT_RETURN;
2066 
2067 
2068   //---------- instructions -------------
2069   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2070                         address dest, LIR_OprList* arguments,
2071                         CodeEmitInfo* info) {
2072     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2073   }
2074   void call_static(ciMethod* method, LIR_Opr result,
2075                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2076     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2077   }
2078   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2079                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2080     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2081   }
2082   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2083                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2084     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2085   }
2086   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2087                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2088     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2089   }
2090 
2091   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2092   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2093   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2094   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2095   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2096   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2097   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2098   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2099   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2100 
2101   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2102   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2103 
2104   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2105   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2106 
2107   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2108 
2109   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2110   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2111 
2112   // result is a stack location for old backend and vreg for UseLinearScan
2113   // stack_loc_temp is an illegal register for old backend
2114   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2115   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2116   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2117   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2118   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2119   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2120   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2121   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2122     if (UseCompressedOops) {
2123       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2124     } else {
2125       move(src, dst, info);
2126     }
2127   }
2128   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2129     if (UseCompressedOops) {
2130       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2131     } else {
2132       move(src, dst, info);
2133     }
2134   }
2135   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2136 
2137   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2138   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2139 
2140   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2141   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2142 
2143   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2144 
2145   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2146 
2147 #ifdef PPC
2148   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2149 #endif
2150   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2151 
2152   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2153   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2154   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2155 
2156   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2157   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2158 
2159   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2160   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2161     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2162   }
2163   void unwind_exception(LIR_Opr exceptionOop) {
2164     append(new LIR_Op1(lir_unwind, exceptionOop));
2165   }
2166 
2167   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2168     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2169   }
2170 
2171   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2172   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2173 
2174   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2175     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2176   }
2177   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2178     cmp(condition, left, LIR_OprFact::intConst(right), info);
2179   }
2180 
2181   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2182   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2183 
2184   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2185     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2186   }
2187 
2188   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2189                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2190   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2191                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2192   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2193                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2194 
2195   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2196   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2197   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
2198   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2199   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
2200   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
2201   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2202   void exp (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5)                { append(new LIR_Op2(lir_exp , from, tmp1, to, tmp2, tmp3, tmp4, tmp5)); }
2203   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2204 
2205   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2206   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2207   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2208   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2209   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2210   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2211   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2212 
2213   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2214   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2215 
2216   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2217 
2218   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2219   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2220   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2221   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2222   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2223 
2224   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2225   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2226   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2227   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2228 
2229   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2230   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2231 
2232   // jump is an unconditional branch
2233   void jump(BlockBegin* block) {
2234     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2235   }
2236   void jump(CodeStub* stub) {
2237     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2238   }
2239   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2240   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2241     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2242     append(new LIR_OpBranch(cond, type, block));
2243   }
2244   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2245     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2246     append(new LIR_OpBranch(cond, type, stub));
2247   }
2248   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2249     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2250     append(new LIR_OpBranch(cond, type, block, unordered));
2251   }
2252 
2253   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2254   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2255   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2256 
2257   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2258   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2259   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2260 
2261   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2262   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2263 
2264   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2265     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2266   }
2267 
2268   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2269                     LIR_OprList* arguments, CodeEmitInfo* info) {
2270     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2271   }
2272 
2273   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2274   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2275   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2276 
2277   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2278   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2279   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2280 
2281   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2282 
2283   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2284 
2285   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2286 
2287   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2288   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2289 
2290   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2291                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2292                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2293                   ciMethod* profiled_method, int profiled_bci);
2294   // MethodData* profiling
2295   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2296     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2297   }
2298   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2299     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2300   }
2301 
2302   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2303   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2304 #ifdef ASSERT
2305   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2306 #endif
2307 };
2308 
2309 void print_LIR(BlockList* blocks);
2310 
2311 class LIR_InsertionBuffer : public CompilationResourceObj {
2312  private:
2313   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2314 
2315   // list of insertion points. index and count are stored alternately:
2316   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2317   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2318   intStack    _index_and_count;
2319 
2320   // the LIR_Ops to be inserted
2321   LIR_OpList  _ops;
2322 
2323   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2324   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2325   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2326 
2327 #ifdef ASSERT
2328   void verify();
2329 #endif
2330  public:
2331   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2332 
2333   // must be called before using the insertion buffer
2334   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2335   bool initialized() const  { return _lir != NULL; }
2336   // called automatically when the buffer is appended to the LIR_List
2337   void finish()             { _lir = NULL; }
2338 
2339   // accessors
2340   LIR_List*  lir_list() const             { return _lir; }
2341   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2342   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2343   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2344 
2345   int number_of_ops() const               { return _ops.length(); }
2346   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2347 
2348   // append an instruction to the buffer
2349   void append(int index, LIR_Op* op);
2350 
2351   // instruction
2352   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2353 };
2354 
2355 
2356 //
2357 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2358 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2359 // information about the input, output and temporaries used by the
2360 // op to be recorded.  It also records whether the op has call semantics
2361 // and also records all the CodeEmitInfos used by this op.
2362 //
2363 
2364 
2365 class LIR_OpVisitState: public StackObj {
2366  public:
2367   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2368 
2369   enum {
2370     maxNumberOfOperands = 20,
2371     maxNumberOfInfos = 4
2372   };
2373 
2374  private:
2375   LIR_Op*          _op;
2376 
2377   // optimization: the operands and infos are not stored in a variable-length
2378   //               list, but in a fixed-size array to save time of size checks and resizing
2379   int              _oprs_len[numModes];
2380   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2381   int _info_len;
2382   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2383 
2384   bool             _has_call;
2385   bool             _has_slow_case;
2386 
2387 
2388   // only include register operands
2389   // addresses are decomposed to the base and index registers
2390   // constants and stack operands are ignored
2391   void append(LIR_Opr& opr, OprMode mode) {
2392     assert(opr->is_valid(), "should not call this otherwise");
2393     assert(mode >= 0 && mode < numModes, "bad mode");
2394 
2395     if (opr->is_register()) {
2396        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2397       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2398 
2399     } else if (opr->is_pointer()) {
2400       LIR_Address* address = opr->as_address_ptr();
2401       if (address != NULL) {
2402         // special handling for addresses: add base and index register of the address
2403         // both are always input operands or temp if we want to extend
2404         // their liveness!
2405         if (mode == outputMode) {
2406           mode = inputMode;
2407         }
2408         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2409         if (address->_base->is_valid()) {
2410           assert(address->_base->is_register(), "must be");
2411           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2412           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2413         }
2414         if (address->_index->is_valid()) {
2415           assert(address->_index->is_register(), "must be");
2416           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2417           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2418         }
2419 
2420       } else {
2421         assert(opr->is_constant(), "constant operands are not processed");
2422       }
2423     } else {
2424       assert(opr->is_stack(), "stack operands are not processed");
2425     }
2426   }
2427 
2428   void append(CodeEmitInfo* info) {
2429     assert(info != NULL, "should not call this otherwise");
2430     assert(_info_len < maxNumberOfInfos, "array overflow");
2431     _info_new[_info_len++] = info;
2432   }
2433 
2434  public:
2435   LIR_OpVisitState()         { reset(); }
2436 
2437   LIR_Op* op() const         { return _op; }
2438   void set_op(LIR_Op* op)    { reset(); _op = op; }
2439 
2440   bool has_call() const      { return _has_call; }
2441   bool has_slow_case() const { return _has_slow_case; }
2442 
2443   void reset() {
2444     _op = NULL;
2445     _has_call = false;
2446     _has_slow_case = false;
2447 
2448     _oprs_len[inputMode] = 0;
2449     _oprs_len[tempMode] = 0;
2450     _oprs_len[outputMode] = 0;
2451     _info_len = 0;
2452   }
2453 
2454 
2455   int opr_count(OprMode mode) const {
2456     assert(mode >= 0 && mode < numModes, "bad mode");
2457     return _oprs_len[mode];
2458   }
2459 
2460   LIR_Opr opr_at(OprMode mode, int index) const {
2461     assert(mode >= 0 && mode < numModes, "bad mode");
2462     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2463     return *_oprs_new[mode][index];
2464   }
2465 
2466   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2467     assert(mode >= 0 && mode < numModes, "bad mode");
2468     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2469     *_oprs_new[mode][index] = opr;
2470   }
2471 
2472   int info_count() const {
2473     return _info_len;
2474   }
2475 
2476   CodeEmitInfo* info_at(int index) const {
2477     assert(index < _info_len, "index out of bounds");
2478     return _info_new[index];
2479   }
2480 
2481   XHandlers* all_xhandler();
2482 
2483   // collects all register operands of the instruction
2484   void visit(LIR_Op* op);
2485 
2486 #ifdef ASSERT
2487   // check that an operation has no operands
2488   bool no_operands(LIR_Op* op);
2489 #endif
2490 
2491   // LIR_Op visitor functions use these to fill in the state
2492   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2493   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2494   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2495   void do_info(CodeEmitInfo* info)        { append(info); }
2496 
2497   void do_stub(CodeStub* stub);
2498   void do_call()                          { _has_call = true; }
2499   void do_slow_case()                     { _has_slow_case = true; }
2500   void do_slow_case(CodeEmitInfo* info) {
2501     _has_slow_case = true;
2502     append(info);
2503   }
2504 };
2505 
2506 
2507 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2508 
2509 #endif // SHARE_VM_C1_C1_LIR_HPP