1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1073   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1074   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1075   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1076   Address saved_mark_addr(lock_reg, 0);
1077 
1078   if (PrintBiasedLockingStatistics && counters == NULL) {
1079     counters = BiasedLocking::counters();
1080   }
1081   // Biased locking
1082   // See whether the lock is currently biased toward our thread and
1083   // whether the epoch is still valid
1084   // Note that the runtime guarantees sufficient alignment of JavaThread
1085   // pointers to allow age to be placed into low bits
1086   // First check to see whether biasing is even enabled for this object
1087   Label cas_label;
1088   int null_check_offset = -1;
1089   if (!swap_reg_contains_mark) {
1090     null_check_offset = offset();
1091     movptr(swap_reg, mark_addr);
1092   }
1093   movptr(tmp_reg, swap_reg);
1094   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1095   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1096   jcc(Assembler::notEqual, cas_label);
1097   // The bias pattern is present in the object's header. Need to check
1098   // whether the bias owner and the epoch are both still current.
1099 #ifndef _LP64
1100   // Note that because there is no current thread register on x86_32 we
1101   // need to store off the mark word we read out of the object to
1102   // avoid reloading it and needing to recheck invariants below. This
1103   // store is unfortunate but it makes the overall code shorter and
1104   // simpler.
1105   movptr(saved_mark_addr, swap_reg);
1106 #endif
1107   if (swap_reg_contains_mark) {
1108     null_check_offset = offset();
1109   }
1110   load_prototype_header(tmp_reg, obj_reg);
1111 #ifdef _LP64
1112   orptr(tmp_reg, r15_thread);
1113   xorptr(tmp_reg, swap_reg);
1114   Register header_reg = tmp_reg;
1115 #else
1116   xorptr(tmp_reg, swap_reg);
1117   get_thread(swap_reg);
1118   xorptr(swap_reg, tmp_reg);
1119   Register header_reg = swap_reg;
1120 #endif
1121   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1122   if (counters != NULL) {
1123     cond_inc32(Assembler::zero,
1124                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1125   }
1126   jcc(Assembler::equal, done);
1127 
1128   Label try_revoke_bias;
1129   Label try_rebias;
1130 
1131   // At this point we know that the header has the bias pattern and
1132   // that we are not the bias owner in the current epoch. We need to
1133   // figure out more details about the state of the header in order to
1134   // know what operations can be legally performed on the object's
1135   // header.
1136 
1137   // If the low three bits in the xor result aren't clear, that means
1138   // the prototype header is no longer biased and we have to revoke
1139   // the bias on this object.
1140   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1141   jccb(Assembler::notZero, try_revoke_bias);
1142 
1143   // Biasing is still enabled for this data type. See whether the
1144   // epoch of the current bias is still valid, meaning that the epoch
1145   // bits of the mark word are equal to the epoch bits of the
1146   // prototype header. (Note that the prototype header's epoch bits
1147   // only change at a safepoint.) If not, attempt to rebias the object
1148   // toward the current thread. Note that we must be absolutely sure
1149   // that the current epoch is invalid in order to do this because
1150   // otherwise the manipulations it performs on the mark word are
1151   // illegal.
1152   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1153   jccb(Assembler::notZero, try_rebias);
1154 
1155   // The epoch of the current bias is still valid but we know nothing
1156   // about the owner; it might be set or it might be clear. Try to
1157   // acquire the bias of the object using an atomic operation. If this
1158   // fails we will go in to the runtime to revoke the object's bias.
1159   // Note that we first construct the presumed unbiased header so we
1160   // don't accidentally blow away another thread's valid bias.
1161   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1162   andptr(swap_reg,
1163          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1164 #ifdef _LP64
1165   movptr(tmp_reg, swap_reg);
1166   orptr(tmp_reg, r15_thread);
1167 #else
1168   get_thread(tmp_reg);
1169   orptr(tmp_reg, swap_reg);
1170 #endif
1171   if (os::is_MP()) {
1172     lock();
1173   }
1174   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1175   // If the biasing toward our thread failed, this means that
1176   // another thread succeeded in biasing it toward itself and we
1177   // need to revoke that bias. The revocation will occur in the
1178   // interpreter runtime in the slow case.
1179   if (counters != NULL) {
1180     cond_inc32(Assembler::zero,
1181                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1182   }
1183   if (slow_case != NULL) {
1184     jcc(Assembler::notZero, *slow_case);
1185   }
1186   jmp(done);
1187 
1188   bind(try_rebias);
1189   // At this point we know the epoch has expired, meaning that the
1190   // current "bias owner", if any, is actually invalid. Under these
1191   // circumstances _only_, we are allowed to use the current header's
1192   // value as the comparison value when doing the cas to acquire the
1193   // bias in the current epoch. In other words, we allow transfer of
1194   // the bias from one thread to another directly in this situation.
1195   //
1196   // FIXME: due to a lack of registers we currently blow away the age
1197   // bits in this situation. Should attempt to preserve them.
1198   load_prototype_header(tmp_reg, obj_reg);
1199 #ifdef _LP64
1200   orptr(tmp_reg, r15_thread);
1201 #else
1202   get_thread(swap_reg);
1203   orptr(tmp_reg, swap_reg);
1204   movptr(swap_reg, saved_mark_addr);
1205 #endif
1206   if (os::is_MP()) {
1207     lock();
1208   }
1209   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1210   // If the biasing toward our thread failed, then another thread
1211   // succeeded in biasing it toward itself and we need to revoke that
1212   // bias. The revocation will occur in the runtime in the slow case.
1213   if (counters != NULL) {
1214     cond_inc32(Assembler::zero,
1215                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1216   }
1217   if (slow_case != NULL) {
1218     jcc(Assembler::notZero, *slow_case);
1219   }
1220   jmp(done);
1221 
1222   bind(try_revoke_bias);
1223   // The prototype mark in the klass doesn't have the bias bit set any
1224   // more, indicating that objects of this data type are not supposed
1225   // to be biased any more. We are going to try to reset the mark of
1226   // this object to the prototype value and fall through to the
1227   // CAS-based locking scheme. Note that if our CAS fails, it means
1228   // that another thread raced us for the privilege of revoking the
1229   // bias of this particular object, so it's okay to continue in the
1230   // normal locking code.
1231   //
1232   // FIXME: due to a lack of registers we currently blow away the age
1233   // bits in this situation. Should attempt to preserve them.
1234   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1235   load_prototype_header(tmp_reg, obj_reg);
1236   if (os::is_MP()) {
1237     lock();
1238   }
1239   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1240   // Fall through to the normal CAS-based lock, because no matter what
1241   // the result of the above CAS, some thread must have succeeded in
1242   // removing the bias bit from the object's header.
1243   if (counters != NULL) {
1244     cond_inc32(Assembler::zero,
1245                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1246   }
1247 
1248   bind(cas_label);
1249 
1250   return null_check_offset;
1251 }
1252 
1253 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1254   assert(UseBiasedLocking, "why call this otherwise?");
1255 
1256   // Check for biased locking unlock case, which is a no-op
1257   // Note: we do not have to check the thread ID for two reasons.
1258   // First, the interpreter checks for IllegalMonitorStateException at
1259   // a higher level. Second, if the bias was revoked while we held the
1260   // lock, the object could not be rebiased toward another thread, so
1261   // the bias bit would be clear.
1262   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1263   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1264   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1265   jcc(Assembler::equal, done);
1266 }
1267 
1268 #ifdef COMPILER2
1269 
1270 #if INCLUDE_RTM_OPT
1271 
1272 // Update rtm_counters based on abort status
1273 // input: abort_status
1274 //        rtm_counters (RTMLockingCounters*)
1275 // flags are killed
1276 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1277 
1278   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1279   if (PrintPreciseRTMLockingStatistics) {
1280     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1281       Label check_abort;
1282       testl(abort_status, (1<<i));
1283       jccb(Assembler::equal, check_abort);
1284       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1285       bind(check_abort);
1286     }
1287   }
1288 }
1289 
1290 // Branch if (random & (count-1) != 0), count is 2^n
1291 // tmp, scr and flags are killed
1292 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1293   assert(tmp == rax, "");
1294   assert(scr == rdx, "");
1295   rdtsc(); // modifies EDX:EAX
1296   andptr(tmp, count-1);
1297   jccb(Assembler::notZero, brLabel);
1298 }
1299 
1300 // Perform abort ratio calculation, set no_rtm bit if high ratio
1301 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1302 // tmpReg, rtm_counters_Reg and flags are killed
1303 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1304                                                  Register rtm_counters_Reg,
1305                                                  RTMLockingCounters* rtm_counters,
1306                                                  Metadata* method_data) {
1307   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1308 
1309   if (RTMLockingCalculationDelay > 0) {
1310     // Delay calculation
1311     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1312     testptr(tmpReg, tmpReg);
1313     jccb(Assembler::equal, L_done);
1314   }
1315   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1316   //   Aborted transactions = abort_count * 100
1317   //   All transactions = total_count *  RTMTotalCountIncrRate
1318   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1319 
1320   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1321   cmpptr(tmpReg, RTMAbortThreshold);
1322   jccb(Assembler::below, L_check_always_rtm2);
1323   imulptr(tmpReg, tmpReg, 100);
1324 
1325   Register scrReg = rtm_counters_Reg;
1326   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1327   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1328   imulptr(scrReg, scrReg, RTMAbortRatio);
1329   cmpptr(tmpReg, scrReg);
1330   jccb(Assembler::below, L_check_always_rtm1);
1331   if (method_data != NULL) {
1332     // set rtm_state to "no rtm" in MDO
1333     mov_metadata(tmpReg, method_data);
1334     if (os::is_MP()) {
1335       lock();
1336     }
1337     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1338   }
1339   jmpb(L_done);
1340   bind(L_check_always_rtm1);
1341   // Reload RTMLockingCounters* address
1342   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1343   bind(L_check_always_rtm2);
1344   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1345   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1346   jccb(Assembler::below, L_done);
1347   if (method_data != NULL) {
1348     // set rtm_state to "always rtm" in MDO
1349     mov_metadata(tmpReg, method_data);
1350     if (os::is_MP()) {
1351       lock();
1352     }
1353     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1354   }
1355   bind(L_done);
1356 }
1357 
1358 // Update counters and perform abort ratio calculation
1359 // input:  abort_status_Reg
1360 // rtm_counters_Reg, flags are killed
1361 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1362                                    Register rtm_counters_Reg,
1363                                    RTMLockingCounters* rtm_counters,
1364                                    Metadata* method_data,
1365                                    bool profile_rtm) {
1366 
1367   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1368   // update rtm counters based on rax value at abort
1369   // reads abort_status_Reg, updates flags
1370   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1371   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1372   if (profile_rtm) {
1373     // Save abort status because abort_status_Reg is used by following code.
1374     if (RTMRetryCount > 0) {
1375       push(abort_status_Reg);
1376     }
1377     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1378     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1379     // restore abort status
1380     if (RTMRetryCount > 0) {
1381       pop(abort_status_Reg);
1382     }
1383   }
1384 }
1385 
1386 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1387 // inputs: retry_count_Reg
1388 //       : abort_status_Reg
1389 // output: retry_count_Reg decremented by 1
1390 // flags are killed
1391 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1392   Label doneRetry;
1393   assert(abort_status_Reg == rax, "");
1394   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1395   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1396   // if reason is in 0x6 and retry count != 0 then retry
1397   andptr(abort_status_Reg, 0x6);
1398   jccb(Assembler::zero, doneRetry);
1399   testl(retry_count_Reg, retry_count_Reg);
1400   jccb(Assembler::zero, doneRetry);
1401   pause();
1402   decrementl(retry_count_Reg);
1403   jmp(retryLabel);
1404   bind(doneRetry);
1405 }
1406 
1407 // Spin and retry if lock is busy,
1408 // inputs: box_Reg (monitor address)
1409 //       : retry_count_Reg
1410 // output: retry_count_Reg decremented by 1
1411 //       : clear z flag if retry count exceeded
1412 // tmp_Reg, scr_Reg, flags are killed
1413 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1414                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1415   Label SpinLoop, SpinExit, doneRetry;
1416   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1417 
1418   testl(retry_count_Reg, retry_count_Reg);
1419   jccb(Assembler::zero, doneRetry);
1420   decrementl(retry_count_Reg);
1421   movptr(scr_Reg, RTMSpinLoopCount);
1422 
1423   bind(SpinLoop);
1424   pause();
1425   decrementl(scr_Reg);
1426   jccb(Assembler::lessEqual, SpinExit);
1427   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1428   testptr(tmp_Reg, tmp_Reg);
1429   jccb(Assembler::notZero, SpinLoop);
1430 
1431   bind(SpinExit);
1432   jmp(retryLabel);
1433   bind(doneRetry);
1434   incrementl(retry_count_Reg); // clear z flag
1435 }
1436 
1437 // Use RTM for normal stack locks
1438 // Input: objReg (object to lock)
1439 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1440                                        Register retry_on_abort_count_Reg,
1441                                        RTMLockingCounters* stack_rtm_counters,
1442                                        Metadata* method_data, bool profile_rtm,
1443                                        Label& DONE_LABEL, Label& IsInflated) {
1444   assert(UseRTMForStackLocks, "why call this otherwise?");
1445   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1446   assert(tmpReg == rax, "");
1447   assert(scrReg == rdx, "");
1448   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1449 
1450   if (RTMRetryCount > 0) {
1451     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1452     bind(L_rtm_retry);
1453   }
1454   movptr(tmpReg, Address(objReg, 0));
1455   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1456   jcc(Assembler::notZero, IsInflated);
1457 
1458   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1459     Label L_noincrement;
1460     if (RTMTotalCountIncrRate > 1) {
1461       // tmpReg, scrReg and flags are killed
1462       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1463     }
1464     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1465     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1466     bind(L_noincrement);
1467   }
1468   xbegin(L_on_abort);
1469   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1470   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1471   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1472   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1473 
1474   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1475   if (UseRTMXendForLockBusy) {
1476     xend();
1477     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1478     jmp(L_decrement_retry);
1479   }
1480   else {
1481     xabort(0);
1482   }
1483   bind(L_on_abort);
1484   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1485     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1486   }
1487   bind(L_decrement_retry);
1488   if (RTMRetryCount > 0) {
1489     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1490     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1491   }
1492 }
1493 
1494 // Use RTM for inflating locks
1495 // inputs: objReg (object to lock)
1496 //         boxReg (on-stack box address (displaced header location) - KILLED)
1497 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1498 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1499                                           Register scrReg, Register retry_on_busy_count_Reg,
1500                                           Register retry_on_abort_count_Reg,
1501                                           RTMLockingCounters* rtm_counters,
1502                                           Metadata* method_data, bool profile_rtm,
1503                                           Label& DONE_LABEL) {
1504   assert(UseRTMLocking, "why call this otherwise?");
1505   assert(tmpReg == rax, "");
1506   assert(scrReg == rdx, "");
1507   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1508   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1509 
1510   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1511   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1512   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1513 
1514   if (RTMRetryCount > 0) {
1515     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1516     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1517     bind(L_rtm_retry);
1518   }
1519   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1520     Label L_noincrement;
1521     if (RTMTotalCountIncrRate > 1) {
1522       // tmpReg, scrReg and flags are killed
1523       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1524     }
1525     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1526     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1527     bind(L_noincrement);
1528   }
1529   xbegin(L_on_abort);
1530   movptr(tmpReg, Address(objReg, 0));
1531   movptr(tmpReg, Address(tmpReg, owner_offset));
1532   testptr(tmpReg, tmpReg);
1533   jcc(Assembler::zero, DONE_LABEL);
1534   if (UseRTMXendForLockBusy) {
1535     xend();
1536     jmp(L_decrement_retry);
1537   }
1538   else {
1539     xabort(0);
1540   }
1541   bind(L_on_abort);
1542   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1543   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1544     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1545   }
1546   if (RTMRetryCount > 0) {
1547     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1548     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1549   }
1550 
1551   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1552   testptr(tmpReg, tmpReg) ;
1553   jccb(Assembler::notZero, L_decrement_retry) ;
1554 
1555   // Appears unlocked - try to swing _owner from null to non-null.
1556   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1557 #ifdef _LP64
1558   Register threadReg = r15_thread;
1559 #else
1560   get_thread(scrReg);
1561   Register threadReg = scrReg;
1562 #endif
1563   if (os::is_MP()) {
1564     lock();
1565   }
1566   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1567 
1568   if (RTMRetryCount > 0) {
1569     // success done else retry
1570     jccb(Assembler::equal, DONE_LABEL) ;
1571     bind(L_decrement_retry);
1572     // Spin and retry if lock is busy.
1573     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1574   }
1575   else {
1576     bind(L_decrement_retry);
1577   }
1578 }
1579 
1580 #endif //  INCLUDE_RTM_OPT
1581 
1582 // Fast_Lock and Fast_Unlock used by C2
1583 
1584 // Because the transitions from emitted code to the runtime
1585 // monitorenter/exit helper stubs are so slow it's critical that
1586 // we inline both the stack-locking fast-path and the inflated fast path.
1587 //
1588 // See also: cmpFastLock and cmpFastUnlock.
1589 //
1590 // What follows is a specialized inline transliteration of the code
1591 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1592 // another option would be to emit TrySlowEnter and TrySlowExit methods
1593 // at startup-time.  These methods would accept arguments as
1594 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1595 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1596 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1597 // In practice, however, the # of lock sites is bounded and is usually small.
1598 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1599 // if the processor uses simple bimodal branch predictors keyed by EIP
1600 // Since the helper routines would be called from multiple synchronization
1601 // sites.
1602 //
1603 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1604 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1605 // to those specialized methods.  That'd give us a mostly platform-independent
1606 // implementation that the JITs could optimize and inline at their pleasure.
1607 // Done correctly, the only time we'd need to cross to native could would be
1608 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1609 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1610 // (b) explicit barriers or fence operations.
1611 //
1612 // TODO:
1613 //
1614 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1615 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1616 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1617 //    the lock operators would typically be faster than reifying Self.
1618 //
1619 // *  Ideally I'd define the primitives as:
1620 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1621 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1622 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1623 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1624 //    Furthermore the register assignments are overconstrained, possibly resulting in
1625 //    sub-optimal code near the synchronization site.
1626 //
1627 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1628 //    Alternately, use a better sp-proximity test.
1629 //
1630 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1631 //    Either one is sufficient to uniquely identify a thread.
1632 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1633 //
1634 // *  Intrinsify notify() and notifyAll() for the common cases where the
1635 //    object is locked by the calling thread but the waitlist is empty.
1636 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1637 //
1638 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1639 //    But beware of excessive branch density on AMD Opterons.
1640 //
1641 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1642 //    or failure of the fast-path.  If the fast-path fails then we pass
1643 //    control to the slow-path, typically in C.  In Fast_Lock and
1644 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1645 //    will emit a conditional branch immediately after the node.
1646 //    So we have branches to branches and lots of ICC.ZF games.
1647 //    Instead, it might be better to have C2 pass a "FailureLabel"
1648 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1649 //    will drop through the node.  ICC.ZF is undefined at exit.
1650 //    In the case of failure, the node will branch directly to the
1651 //    FailureLabel
1652 
1653 
1654 // obj: object to lock
1655 // box: on-stack box address (displaced header location) - KILLED
1656 // rax,: tmp -- KILLED
1657 // scr: tmp -- KILLED
1658 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1659                                Register scrReg, Register cx1Reg, Register cx2Reg,
1660                                BiasedLockingCounters* counters,
1661                                RTMLockingCounters* rtm_counters,
1662                                RTMLockingCounters* stack_rtm_counters,
1663                                Metadata* method_data,
1664                                bool use_rtm, bool profile_rtm) {
1665   // Ensure the register assignents are disjoint
1666   assert(tmpReg == rax, "");
1667 
1668   if (use_rtm) {
1669     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1670   } else {
1671     assert(cx1Reg == noreg, "");
1672     assert(cx2Reg == noreg, "");
1673     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1674   }
1675 
1676   if (counters != NULL) {
1677     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1678   }
1679   if (EmitSync & 1) {
1680       // set box->dhw = markOopDesc::unused_mark()
1681       // Force all sync thru slow-path: slow_enter() and slow_exit()
1682       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1683       cmpptr (rsp, (int32_t)NULL_WORD);
1684   } else {
1685     // Possible cases that we'll encounter in fast_lock
1686     // ------------------------------------------------
1687     // * Inflated
1688     //    -- unlocked
1689     //    -- Locked
1690     //       = by self
1691     //       = by other
1692     // * biased
1693     //    -- by Self
1694     //    -- by other
1695     // * neutral
1696     // * stack-locked
1697     //    -- by self
1698     //       = sp-proximity test hits
1699     //       = sp-proximity test generates false-negative
1700     //    -- by other
1701     //
1702 
1703     Label IsInflated, DONE_LABEL;
1704 
1705     // it's stack-locked, biased or neutral
1706     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1707     // order to reduce the number of conditional branches in the most common cases.
1708     // Beware -- there's a subtle invariant that fetch of the markword
1709     // at [FETCH], below, will never observe a biased encoding (*101b).
1710     // If this invariant is not held we risk exclusion (safety) failure.
1711     if (UseBiasedLocking && !UseOptoBiasInlining) {
1712       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1713     }
1714 
1715 #if INCLUDE_RTM_OPT
1716     if (UseRTMForStackLocks && use_rtm) {
1717       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1718                         stack_rtm_counters, method_data, profile_rtm,
1719                         DONE_LABEL, IsInflated);
1720     }
1721 #endif // INCLUDE_RTM_OPT
1722 
1723     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1724     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1725     jccb(Assembler::notZero, IsInflated);
1726 
1727     // Attempt stack-locking ...
1728     orptr (tmpReg, markOopDesc::unlocked_value);
1729     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1730     if (os::is_MP()) {
1731       lock();
1732     }
1733     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1734     if (counters != NULL) {
1735       cond_inc32(Assembler::equal,
1736                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1737     }
1738     jcc(Assembler::equal, DONE_LABEL);           // Success
1739 
1740     // Recursive locking.
1741     // The object is stack-locked: markword contains stack pointer to BasicLock.
1742     // Locked by current thread if difference with current SP is less than one page.
1743     subptr(tmpReg, rsp);
1744     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1745     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1746     movptr(Address(boxReg, 0), tmpReg);
1747     if (counters != NULL) {
1748       cond_inc32(Assembler::equal,
1749                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1750     }
1751     jmp(DONE_LABEL);
1752 
1753     bind(IsInflated);
1754     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1755 
1756 #if INCLUDE_RTM_OPT
1757     // Use the same RTM locking code in 32- and 64-bit VM.
1758     if (use_rtm) {
1759       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1760                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1761     } else {
1762 #endif // INCLUDE_RTM_OPT
1763 
1764 #ifndef _LP64
1765     // The object is inflated.
1766 
1767     // boxReg refers to the on-stack BasicLock in the current frame.
1768     // We'd like to write:
1769     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1770     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1771     // additional latency as we have another ST in the store buffer that must drain.
1772 
1773     if (EmitSync & 8192) {
1774        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1775        get_thread (scrReg);
1776        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1777        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1778        if (os::is_MP()) {
1779          lock();
1780        }
1781        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1782     } else
1783     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1784        movptr(scrReg, boxReg);
1785        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1786 
1787        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1788        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1789           // prefetchw [eax + Offset(_owner)-2]
1790           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1791        }
1792 
1793        if ((EmitSync & 64) == 0) {
1794          // Optimistic form: consider XORL tmpReg,tmpReg
1795          movptr(tmpReg, NULL_WORD);
1796        } else {
1797          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1798          // Test-And-CAS instead of CAS
1799          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1800          testptr(tmpReg, tmpReg);                   // Locked ?
1801          jccb  (Assembler::notZero, DONE_LABEL);
1802        }
1803 
1804        // Appears unlocked - try to swing _owner from null to non-null.
1805        // Ideally, I'd manifest "Self" with get_thread and then attempt
1806        // to CAS the register containing Self into m->Owner.
1807        // But we don't have enough registers, so instead we can either try to CAS
1808        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1809        // we later store "Self" into m->Owner.  Transiently storing a stack address
1810        // (rsp or the address of the box) into  m->owner is harmless.
1811        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1812        if (os::is_MP()) {
1813          lock();
1814        }
1815        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1816        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1817        jccb  (Assembler::notZero, DONE_LABEL);
1818        get_thread (scrReg);                    // beware: clobbers ICCs
1819        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1820        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1821 
1822        // If the CAS fails we can either retry or pass control to the slow-path.
1823        // We use the latter tactic.
1824        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1825        // If the CAS was successful ...
1826        //   Self has acquired the lock
1827        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1828        // Intentional fall-through into DONE_LABEL ...
1829     } else {
1830        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1831        movptr(boxReg, tmpReg);
1832 
1833        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1834        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1835           // prefetchw [eax + Offset(_owner)-2]
1836           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1837        }
1838 
1839        if ((EmitSync & 64) == 0) {
1840          // Optimistic form
1841          xorptr  (tmpReg, tmpReg);
1842        } else {
1843          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1844          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1845          testptr(tmpReg, tmpReg);                   // Locked ?
1846          jccb  (Assembler::notZero, DONE_LABEL);
1847        }
1848 
1849        // Appears unlocked - try to swing _owner from null to non-null.
1850        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1851        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1852        get_thread (scrReg);
1853        if (os::is_MP()) {
1854          lock();
1855        }
1856        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1857 
1858        // If the CAS fails we can either retry or pass control to the slow-path.
1859        // We use the latter tactic.
1860        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1861        // If the CAS was successful ...
1862        //   Self has acquired the lock
1863        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1864        // Intentional fall-through into DONE_LABEL ...
1865     }
1866 #else // _LP64
1867     // It's inflated
1868     movq(scrReg, tmpReg);
1869     xorq(tmpReg, tmpReg);
1870 
1871     if (os::is_MP()) {
1872       lock();
1873     }
1874     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1875     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1876     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1877     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1878     // Intentional fall-through into DONE_LABEL ...
1879     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1880 #endif // _LP64
1881 #if INCLUDE_RTM_OPT
1882     } // use_rtm()
1883 #endif
1884     // DONE_LABEL is a hot target - we'd really like to place it at the
1885     // start of cache line by padding with NOPs.
1886     // See the AMD and Intel software optimization manuals for the
1887     // most efficient "long" NOP encodings.
1888     // Unfortunately none of our alignment mechanisms suffice.
1889     bind(DONE_LABEL);
1890 
1891     // At DONE_LABEL the icc ZFlag is set as follows ...
1892     // Fast_Unlock uses the same protocol.
1893     // ZFlag == 1 -> Success
1894     // ZFlag == 0 -> Failure - force control through the slow-path
1895   }
1896 }
1897 
1898 // obj: object to unlock
1899 // box: box address (displaced header location), killed.  Must be EAX.
1900 // tmp: killed, cannot be obj nor box.
1901 //
1902 // Some commentary on balanced locking:
1903 //
1904 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1905 // Methods that don't have provably balanced locking are forced to run in the
1906 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1907 // The interpreter provides two properties:
1908 // I1:  At return-time the interpreter automatically and quietly unlocks any
1909 //      objects acquired the current activation (frame).  Recall that the
1910 //      interpreter maintains an on-stack list of locks currently held by
1911 //      a frame.
1912 // I2:  If a method attempts to unlock an object that is not held by the
1913 //      the frame the interpreter throws IMSX.
1914 //
1915 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1916 // B() doesn't have provably balanced locking so it runs in the interpreter.
1917 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1918 // is still locked by A().
1919 //
1920 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1921 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1922 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1923 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1924 // Arguably given that the spec legislates the JNI case as undefined our implementation
1925 // could reasonably *avoid* checking owner in Fast_Unlock().
1926 // In the interest of performance we elide m->Owner==Self check in unlock.
1927 // A perfectly viable alternative is to elide the owner check except when
1928 // Xcheck:jni is enabled.
1929 
1930 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1931   assert(boxReg == rax, "");
1932   assert_different_registers(objReg, boxReg, tmpReg);
1933 
1934   if (EmitSync & 4) {
1935     // Disable - inhibit all inlining.  Force control through the slow-path
1936     cmpptr (rsp, 0);
1937   } else {
1938     Label DONE_LABEL, Stacked, CheckSucc;
1939 
1940     // Critically, the biased locking test must have precedence over
1941     // and appear before the (box->dhw == 0) recursive stack-lock test.
1942     if (UseBiasedLocking && !UseOptoBiasInlining) {
1943        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1944     }
1945 
1946 #if INCLUDE_RTM_OPT
1947     if (UseRTMForStackLocks && use_rtm) {
1948       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1949       Label L_regular_unlock;
1950       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1951       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1952       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1953       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1954       xend();                                       // otherwise end...
1955       jmp(DONE_LABEL);                              // ... and we're done
1956       bind(L_regular_unlock);
1957     }
1958 #endif
1959 
1960     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1961     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1962     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1963     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1964     jccb  (Assembler::zero, Stacked);
1965 
1966     // It's inflated.
1967 #if INCLUDE_RTM_OPT
1968     if (use_rtm) {
1969       Label L_regular_inflated_unlock;
1970       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1971       movptr(boxReg, Address(tmpReg, owner_offset));
1972       testptr(boxReg, boxReg);
1973       jccb(Assembler::notZero, L_regular_inflated_unlock);
1974       xend();
1975       jmpb(DONE_LABEL);
1976       bind(L_regular_inflated_unlock);
1977     }
1978 #endif
1979 
1980     // Despite our balanced locking property we still check that m->_owner == Self
1981     // as java routines or native JNI code called by this thread might
1982     // have released the lock.
1983     // Refer to the comments in synchronizer.cpp for how we might encode extra
1984     // state in _succ so we can avoid fetching EntryList|cxq.
1985     //
1986     // I'd like to add more cases in fast_lock() and fast_unlock() --
1987     // such as recursive enter and exit -- but we have to be wary of
1988     // I$ bloat, T$ effects and BP$ effects.
1989     //
1990     // If there's no contention try a 1-0 exit.  That is, exit without
1991     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1992     // we detect and recover from the race that the 1-0 exit admits.
1993     //
1994     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
1995     // before it STs null into _owner, releasing the lock.  Updates
1996     // to data protected by the critical section must be visible before
1997     // we drop the lock (and thus before any other thread could acquire
1998     // the lock and observe the fields protected by the lock).
1999     // IA32's memory-model is SPO, so STs are ordered with respect to
2000     // each other and there's no need for an explicit barrier (fence).
2001     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2002 #ifndef _LP64
2003     get_thread (boxReg);
2004     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2005       // prefetchw [ebx + Offset(_owner)-2]
2006       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2007     }
2008 
2009     // Note that we could employ various encoding schemes to reduce
2010     // the number of loads below (currently 4) to just 2 or 3.
2011     // Refer to the comments in synchronizer.cpp.
2012     // In practice the chain of fetches doesn't seem to impact performance, however.
2013     xorptr(boxReg, boxReg);
2014     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2015        // Attempt to reduce branch density - AMD's branch predictor.
2016        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2017        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2018        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2019        jccb  (Assembler::notZero, DONE_LABEL);
2020        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2021        jmpb  (DONE_LABEL);
2022     } else {
2023        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2024        jccb  (Assembler::notZero, DONE_LABEL);
2025        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2026        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2027        jccb  (Assembler::notZero, CheckSucc);
2028        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2029        jmpb  (DONE_LABEL);
2030     }
2031 
2032     // The Following code fragment (EmitSync & 65536) improves the performance of
2033     // contended applications and contended synchronization microbenchmarks.
2034     // Unfortunately the emission of the code - even though not executed - causes regressions
2035     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2036     // with an equal number of never-executed NOPs results in the same regression.
2037     // We leave it off by default.
2038 
2039     if ((EmitSync & 65536) != 0) {
2040        Label LSuccess, LGoSlowPath ;
2041 
2042        bind  (CheckSucc);
2043 
2044        // Optional pre-test ... it's safe to elide this
2045        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2046        jccb(Assembler::zero, LGoSlowPath);
2047 
2048        // We have a classic Dekker-style idiom:
2049        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2050        // There are a number of ways to implement the barrier:
2051        // (1) lock:andl &m->_owner, 0
2052        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2053        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2054        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2055        // (2) If supported, an explicit MFENCE is appealing.
2056        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2057        //     particularly if the write-buffer is full as might be the case if
2058        //     if stores closely precede the fence or fence-equivalent instruction.
2059        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2060        //     as the situation has changed with Nehalem and Shanghai.
2061        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2062        //     The $lines underlying the top-of-stack should be in M-state.
2063        //     The locked add instruction is serializing, of course.
2064        // (4) Use xchg, which is serializing
2065        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2066        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2067        //     The integer condition codes will tell us if succ was 0.
2068        //     Since _succ and _owner should reside in the same $line and
2069        //     we just stored into _owner, it's likely that the $line
2070        //     remains in M-state for the lock:orl.
2071        //
2072        // We currently use (3), although it's likely that switching to (2)
2073        // is correct for the future.
2074 
2075        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2076        if (os::is_MP()) {
2077          lock(); addptr(Address(rsp, 0), 0);
2078        }
2079        // Ratify _succ remains non-null
2080        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2081        jccb  (Assembler::notZero, LSuccess);
2082 
2083        xorptr(boxReg, boxReg);                  // box is really EAX
2084        if (os::is_MP()) { lock(); }
2085        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2086        jccb  (Assembler::notEqual, LSuccess);
2087        // Since we're low on registers we installed rsp as a placeholding in _owner.
2088        // Now install Self over rsp.  This is safe as we're transitioning from
2089        // non-null to non=null
2090        get_thread (boxReg);
2091        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2092        // Intentional fall-through into LGoSlowPath ...
2093 
2094        bind  (LGoSlowPath);
2095        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2096        jmpb  (DONE_LABEL);
2097 
2098        bind  (LSuccess);
2099        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2100        jmpb  (DONE_LABEL);
2101     }
2102 
2103     bind (Stacked);
2104     // It's not inflated and it's not recursively stack-locked and it's not biased.
2105     // It must be stack-locked.
2106     // Try to reset the header to displaced header.
2107     // The "box" value on the stack is stable, so we can reload
2108     // and be assured we observe the same value as above.
2109     movptr(tmpReg, Address(boxReg, 0));
2110     if (os::is_MP()) {
2111       lock();
2112     }
2113     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2114     // Intention fall-thru into DONE_LABEL
2115 
2116     // DONE_LABEL is a hot target - we'd really like to place it at the
2117     // start of cache line by padding with NOPs.
2118     // See the AMD and Intel software optimization manuals for the
2119     // most efficient "long" NOP encodings.
2120     // Unfortunately none of our alignment mechanisms suffice.
2121     if ((EmitSync & 65536) == 0) {
2122        bind (CheckSucc);
2123     }
2124 #else // _LP64
2125     // It's inflated
2126     if (EmitSync & 1024) {
2127       // Emit code to check that _owner == Self
2128       // We could fold the _owner test into subsequent code more efficiently
2129       // than using a stand-alone check, but since _owner checking is off by
2130       // default we don't bother. We also might consider predicating the
2131       // _owner==Self check on Xcheck:jni or running on a debug build.
2132       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2133       xorptr(boxReg, r15_thread);
2134     } else {
2135       xorptr(boxReg, boxReg);
2136     }
2137     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2138     jccb  (Assembler::notZero, DONE_LABEL);
2139     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2140     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2141     jccb  (Assembler::notZero, CheckSucc);
2142     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2143     jmpb  (DONE_LABEL);
2144 
2145     if ((EmitSync & 65536) == 0) {
2146       // Try to avoid passing control into the slow_path ...
2147       Label LSuccess, LGoSlowPath ;
2148       bind  (CheckSucc);
2149 
2150       // The following optional optimization can be elided if necessary
2151       // Effectively: if (succ == null) goto SlowPath
2152       // The code reduces the window for a race, however,
2153       // and thus benefits performance.
2154       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2155       jccb  (Assembler::zero, LGoSlowPath);
2156 
2157       if ((EmitSync & 16) && os::is_MP()) {
2158         orptr(boxReg, boxReg);
2159         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2160       } else {
2161         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2162         if (os::is_MP()) {
2163           // Memory barrier/fence
2164           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2165           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2166           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2167           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2168           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2169           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2170           lock(); addl(Address(rsp, 0), 0);
2171         }
2172       }
2173       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2174       jccb  (Assembler::notZero, LSuccess);
2175 
2176       // Rare inopportune interleaving - race.
2177       // The successor vanished in the small window above.
2178       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2179       // We need to ensure progress and succession.
2180       // Try to reacquire the lock.
2181       // If that fails then the new owner is responsible for succession and this
2182       // thread needs to take no further action and can exit via the fast path (success).
2183       // If the re-acquire succeeds then pass control into the slow path.
2184       // As implemented, this latter mode is horrible because we generated more
2185       // coherence traffic on the lock *and* artifically extended the critical section
2186       // length while by virtue of passing control into the slow path.
2187 
2188       // box is really RAX -- the following CMPXCHG depends on that binding
2189       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2190       movptr(boxReg, (int32_t)NULL_WORD);
2191       if (os::is_MP()) { lock(); }
2192       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2193       jccb  (Assembler::notEqual, LSuccess);
2194       // Intentional fall-through into slow-path
2195 
2196       bind  (LGoSlowPath);
2197       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2198       jmpb  (DONE_LABEL);
2199 
2200       bind  (LSuccess);
2201       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2202       jmpb  (DONE_LABEL);
2203     }
2204 
2205     bind  (Stacked);
2206     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2207     if (os::is_MP()) { lock(); }
2208     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2209 
2210     if (EmitSync & 65536) {
2211        bind (CheckSucc);
2212     }
2213 #endif
2214     bind(DONE_LABEL);
2215   }
2216 }
2217 #endif // COMPILER2
2218 
2219 void MacroAssembler::c2bool(Register x) {
2220   // implements x == 0 ? 0 : 1
2221   // note: must only look at least-significant byte of x
2222   //       since C-style booleans are stored in one byte
2223   //       only! (was bug)
2224   andl(x, 0xFF);
2225   setb(Assembler::notZero, x);
2226 }
2227 
2228 // Wouldn't need if AddressLiteral version had new name
2229 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2230   Assembler::call(L, rtype);
2231 }
2232 
2233 void MacroAssembler::call(Register entry) {
2234   Assembler::call(entry);
2235 }
2236 
2237 void MacroAssembler::call(AddressLiteral entry) {
2238   if (reachable(entry)) {
2239     Assembler::call_literal(entry.target(), entry.rspec());
2240   } else {
2241     lea(rscratch1, entry);
2242     Assembler::call(rscratch1);
2243   }
2244 }
2245 
2246 void MacroAssembler::ic_call(address entry) {
2247   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2248   movptr(rax, (intptr_t)Universe::non_oop_word());
2249   call(AddressLiteral(entry, rh));
2250 }
2251 
2252 // Implementation of call_VM versions
2253 
2254 void MacroAssembler::call_VM(Register oop_result,
2255                              address entry_point,
2256                              bool check_exceptions) {
2257   Label C, E;
2258   call(C, relocInfo::none);
2259   jmp(E);
2260 
2261   bind(C);
2262   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2263   ret(0);
2264 
2265   bind(E);
2266 }
2267 
2268 void MacroAssembler::call_VM(Register oop_result,
2269                              address entry_point,
2270                              Register arg_1,
2271                              bool check_exceptions) {
2272   Label C, E;
2273   call(C, relocInfo::none);
2274   jmp(E);
2275 
2276   bind(C);
2277   pass_arg1(this, arg_1);
2278   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2279   ret(0);
2280 
2281   bind(E);
2282 }
2283 
2284 void MacroAssembler::call_VM(Register oop_result,
2285                              address entry_point,
2286                              Register arg_1,
2287                              Register arg_2,
2288                              bool check_exceptions) {
2289   Label C, E;
2290   call(C, relocInfo::none);
2291   jmp(E);
2292 
2293   bind(C);
2294 
2295   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2296 
2297   pass_arg2(this, arg_2);
2298   pass_arg1(this, arg_1);
2299   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2300   ret(0);
2301 
2302   bind(E);
2303 }
2304 
2305 void MacroAssembler::call_VM(Register oop_result,
2306                              address entry_point,
2307                              Register arg_1,
2308                              Register arg_2,
2309                              Register arg_3,
2310                              bool check_exceptions) {
2311   Label C, E;
2312   call(C, relocInfo::none);
2313   jmp(E);
2314 
2315   bind(C);
2316 
2317   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2318   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2319   pass_arg3(this, arg_3);
2320 
2321   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2322   pass_arg2(this, arg_2);
2323 
2324   pass_arg1(this, arg_1);
2325   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2326   ret(0);
2327 
2328   bind(E);
2329 }
2330 
2331 void MacroAssembler::call_VM(Register oop_result,
2332                              Register last_java_sp,
2333                              address entry_point,
2334                              int number_of_arguments,
2335                              bool check_exceptions) {
2336   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2337   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2338 }
2339 
2340 void MacroAssembler::call_VM(Register oop_result,
2341                              Register last_java_sp,
2342                              address entry_point,
2343                              Register arg_1,
2344                              bool check_exceptions) {
2345   pass_arg1(this, arg_1);
2346   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2347 }
2348 
2349 void MacroAssembler::call_VM(Register oop_result,
2350                              Register last_java_sp,
2351                              address entry_point,
2352                              Register arg_1,
2353                              Register arg_2,
2354                              bool check_exceptions) {
2355 
2356   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2357   pass_arg2(this, arg_2);
2358   pass_arg1(this, arg_1);
2359   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2360 }
2361 
2362 void MacroAssembler::call_VM(Register oop_result,
2363                              Register last_java_sp,
2364                              address entry_point,
2365                              Register arg_1,
2366                              Register arg_2,
2367                              Register arg_3,
2368                              bool check_exceptions) {
2369   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2370   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2371   pass_arg3(this, arg_3);
2372   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2373   pass_arg2(this, arg_2);
2374   pass_arg1(this, arg_1);
2375   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2376 }
2377 
2378 void MacroAssembler::super_call_VM(Register oop_result,
2379                                    Register last_java_sp,
2380                                    address entry_point,
2381                                    int number_of_arguments,
2382                                    bool check_exceptions) {
2383   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2384   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2385 }
2386 
2387 void MacroAssembler::super_call_VM(Register oop_result,
2388                                    Register last_java_sp,
2389                                    address entry_point,
2390                                    Register arg_1,
2391                                    bool check_exceptions) {
2392   pass_arg1(this, arg_1);
2393   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2394 }
2395 
2396 void MacroAssembler::super_call_VM(Register oop_result,
2397                                    Register last_java_sp,
2398                                    address entry_point,
2399                                    Register arg_1,
2400                                    Register arg_2,
2401                                    bool check_exceptions) {
2402 
2403   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2404   pass_arg2(this, arg_2);
2405   pass_arg1(this, arg_1);
2406   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2407 }
2408 
2409 void MacroAssembler::super_call_VM(Register oop_result,
2410                                    Register last_java_sp,
2411                                    address entry_point,
2412                                    Register arg_1,
2413                                    Register arg_2,
2414                                    Register arg_3,
2415                                    bool check_exceptions) {
2416   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2417   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2418   pass_arg3(this, arg_3);
2419   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2420   pass_arg2(this, arg_2);
2421   pass_arg1(this, arg_1);
2422   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2423 }
2424 
2425 void MacroAssembler::call_VM_base(Register oop_result,
2426                                   Register java_thread,
2427                                   Register last_java_sp,
2428                                   address  entry_point,
2429                                   int      number_of_arguments,
2430                                   bool     check_exceptions) {
2431   // determine java_thread register
2432   if (!java_thread->is_valid()) {
2433 #ifdef _LP64
2434     java_thread = r15_thread;
2435 #else
2436     java_thread = rdi;
2437     get_thread(java_thread);
2438 #endif // LP64
2439   }
2440   // determine last_java_sp register
2441   if (!last_java_sp->is_valid()) {
2442     last_java_sp = rsp;
2443   }
2444   // debugging support
2445   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2446   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2447 #ifdef ASSERT
2448   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2449   // r12 is the heapbase.
2450   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2451 #endif // ASSERT
2452 
2453   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2454   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2455 
2456   // push java thread (becomes first argument of C function)
2457 
2458   NOT_LP64(push(java_thread); number_of_arguments++);
2459   LP64_ONLY(mov(c_rarg0, r15_thread));
2460 
2461   // set last Java frame before call
2462   assert(last_java_sp != rbp, "can't use ebp/rbp");
2463 
2464   // Only interpreter should have to set fp
2465   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2466 
2467   // do the call, remove parameters
2468   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2469 
2470   // restore the thread (cannot use the pushed argument since arguments
2471   // may be overwritten by C code generated by an optimizing compiler);
2472   // however can use the register value directly if it is callee saved.
2473   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2474     // rdi & rsi (also r15) are callee saved -> nothing to do
2475 #ifdef ASSERT
2476     guarantee(java_thread != rax, "change this code");
2477     push(rax);
2478     { Label L;
2479       get_thread(rax);
2480       cmpptr(java_thread, rax);
2481       jcc(Assembler::equal, L);
2482       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2483       bind(L);
2484     }
2485     pop(rax);
2486 #endif
2487   } else {
2488     get_thread(java_thread);
2489   }
2490   // reset last Java frame
2491   // Only interpreter should have to clear fp
2492   reset_last_Java_frame(java_thread, true, false);
2493 
2494 #ifndef CC_INTERP
2495    // C++ interp handles this in the interpreter
2496   check_and_handle_popframe(java_thread);
2497   check_and_handle_earlyret(java_thread);
2498 #endif /* CC_INTERP */
2499 
2500   if (check_exceptions) {
2501     // check for pending exceptions (java_thread is set upon return)
2502     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2503 #ifndef _LP64
2504     jump_cc(Assembler::notEqual,
2505             RuntimeAddress(StubRoutines::forward_exception_entry()));
2506 #else
2507     // This used to conditionally jump to forward_exception however it is
2508     // possible if we relocate that the branch will not reach. So we must jump
2509     // around so we can always reach
2510 
2511     Label ok;
2512     jcc(Assembler::equal, ok);
2513     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2514     bind(ok);
2515 #endif // LP64
2516   }
2517 
2518   // get oop result if there is one and reset the value in the thread
2519   if (oop_result->is_valid()) {
2520     get_vm_result(oop_result, java_thread);
2521   }
2522 }
2523 
2524 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2525 
2526   // Calculate the value for last_Java_sp
2527   // somewhat subtle. call_VM does an intermediate call
2528   // which places a return address on the stack just under the
2529   // stack pointer as the user finsihed with it. This allows
2530   // use to retrieve last_Java_pc from last_Java_sp[-1].
2531   // On 32bit we then have to push additional args on the stack to accomplish
2532   // the actual requested call. On 64bit call_VM only can use register args
2533   // so the only extra space is the return address that call_VM created.
2534   // This hopefully explains the calculations here.
2535 
2536 #ifdef _LP64
2537   // We've pushed one address, correct last_Java_sp
2538   lea(rax, Address(rsp, wordSize));
2539 #else
2540   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2541 #endif // LP64
2542 
2543   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2544 
2545 }
2546 
2547 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2548   call_VM_leaf_base(entry_point, number_of_arguments);
2549 }
2550 
2551 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2552   pass_arg0(this, arg_0);
2553   call_VM_leaf(entry_point, 1);
2554 }
2555 
2556 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2557 
2558   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2559   pass_arg1(this, arg_1);
2560   pass_arg0(this, arg_0);
2561   call_VM_leaf(entry_point, 2);
2562 }
2563 
2564 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2565   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2566   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2567   pass_arg2(this, arg_2);
2568   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2569   pass_arg1(this, arg_1);
2570   pass_arg0(this, arg_0);
2571   call_VM_leaf(entry_point, 3);
2572 }
2573 
2574 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2575   pass_arg0(this, arg_0);
2576   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2577 }
2578 
2579 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2580 
2581   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2582   pass_arg1(this, arg_1);
2583   pass_arg0(this, arg_0);
2584   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2585 }
2586 
2587 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2588   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2589   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2590   pass_arg2(this, arg_2);
2591   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2592   pass_arg1(this, arg_1);
2593   pass_arg0(this, arg_0);
2594   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2595 }
2596 
2597 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2598   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2599   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2600   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2601   pass_arg3(this, arg_3);
2602   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2603   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2604   pass_arg2(this, arg_2);
2605   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2606   pass_arg1(this, arg_1);
2607   pass_arg0(this, arg_0);
2608   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2609 }
2610 
2611 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2612   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2613   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2614   verify_oop(oop_result, "broken oop in call_VM_base");
2615 }
2616 
2617 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2618   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2619   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2620 }
2621 
2622 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2623 }
2624 
2625 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2626 }
2627 
2628 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2629   if (reachable(src1)) {
2630     cmpl(as_Address(src1), imm);
2631   } else {
2632     lea(rscratch1, src1);
2633     cmpl(Address(rscratch1, 0), imm);
2634   }
2635 }
2636 
2637 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2638   assert(!src2.is_lval(), "use cmpptr");
2639   if (reachable(src2)) {
2640     cmpl(src1, as_Address(src2));
2641   } else {
2642     lea(rscratch1, src2);
2643     cmpl(src1, Address(rscratch1, 0));
2644   }
2645 }
2646 
2647 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2648   Assembler::cmpl(src1, imm);
2649 }
2650 
2651 void MacroAssembler::cmp32(Register src1, Address src2) {
2652   Assembler::cmpl(src1, src2);
2653 }
2654 
2655 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2656   ucomisd(opr1, opr2);
2657 
2658   Label L;
2659   if (unordered_is_less) {
2660     movl(dst, -1);
2661     jcc(Assembler::parity, L);
2662     jcc(Assembler::below , L);
2663     movl(dst, 0);
2664     jcc(Assembler::equal , L);
2665     increment(dst);
2666   } else { // unordered is greater
2667     movl(dst, 1);
2668     jcc(Assembler::parity, L);
2669     jcc(Assembler::above , L);
2670     movl(dst, 0);
2671     jcc(Assembler::equal , L);
2672     decrementl(dst);
2673   }
2674   bind(L);
2675 }
2676 
2677 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2678   ucomiss(opr1, opr2);
2679 
2680   Label L;
2681   if (unordered_is_less) {
2682     movl(dst, -1);
2683     jcc(Assembler::parity, L);
2684     jcc(Assembler::below , L);
2685     movl(dst, 0);
2686     jcc(Assembler::equal , L);
2687     increment(dst);
2688   } else { // unordered is greater
2689     movl(dst, 1);
2690     jcc(Assembler::parity, L);
2691     jcc(Assembler::above , L);
2692     movl(dst, 0);
2693     jcc(Assembler::equal , L);
2694     decrementl(dst);
2695   }
2696   bind(L);
2697 }
2698 
2699 
2700 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2701   if (reachable(src1)) {
2702     cmpb(as_Address(src1), imm);
2703   } else {
2704     lea(rscratch1, src1);
2705     cmpb(Address(rscratch1, 0), imm);
2706   }
2707 }
2708 
2709 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2710 #ifdef _LP64
2711   if (src2.is_lval()) {
2712     movptr(rscratch1, src2);
2713     Assembler::cmpq(src1, rscratch1);
2714   } else if (reachable(src2)) {
2715     cmpq(src1, as_Address(src2));
2716   } else {
2717     lea(rscratch1, src2);
2718     Assembler::cmpq(src1, Address(rscratch1, 0));
2719   }
2720 #else
2721   if (src2.is_lval()) {
2722     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2723   } else {
2724     cmpl(src1, as_Address(src2));
2725   }
2726 #endif // _LP64
2727 }
2728 
2729 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2730   assert(src2.is_lval(), "not a mem-mem compare");
2731 #ifdef _LP64
2732   // moves src2's literal address
2733   movptr(rscratch1, src2);
2734   Assembler::cmpq(src1, rscratch1);
2735 #else
2736   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2737 #endif // _LP64
2738 }
2739 
2740 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2741   if (reachable(adr)) {
2742     if (os::is_MP())
2743       lock();
2744     cmpxchgptr(reg, as_Address(adr));
2745   } else {
2746     lea(rscratch1, adr);
2747     if (os::is_MP())
2748       lock();
2749     cmpxchgptr(reg, Address(rscratch1, 0));
2750   }
2751 }
2752 
2753 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2754   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2755 }
2756 
2757 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2758   if (reachable(src)) {
2759     Assembler::comisd(dst, as_Address(src));
2760   } else {
2761     lea(rscratch1, src);
2762     Assembler::comisd(dst, Address(rscratch1, 0));
2763   }
2764 }
2765 
2766 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2767   if (reachable(src)) {
2768     Assembler::comiss(dst, as_Address(src));
2769   } else {
2770     lea(rscratch1, src);
2771     Assembler::comiss(dst, Address(rscratch1, 0));
2772   }
2773 }
2774 
2775 
2776 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2777   Condition negated_cond = negate_condition(cond);
2778   Label L;
2779   jcc(negated_cond, L);
2780   pushf(); // Preserve flags
2781   atomic_incl(counter_addr);
2782   popf();
2783   bind(L);
2784 }
2785 
2786 int MacroAssembler::corrected_idivl(Register reg) {
2787   // Full implementation of Java idiv and irem; checks for
2788   // special case as described in JVM spec., p.243 & p.271.
2789   // The function returns the (pc) offset of the idivl
2790   // instruction - may be needed for implicit exceptions.
2791   //
2792   //         normal case                           special case
2793   //
2794   // input : rax,: dividend                         min_int
2795   //         reg: divisor   (may not be rax,/rdx)   -1
2796   //
2797   // output: rax,: quotient  (= rax, idiv reg)       min_int
2798   //         rdx: remainder (= rax, irem reg)       0
2799   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2800   const int min_int = 0x80000000;
2801   Label normal_case, special_case;
2802 
2803   // check for special case
2804   cmpl(rax, min_int);
2805   jcc(Assembler::notEqual, normal_case);
2806   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2807   cmpl(reg, -1);
2808   jcc(Assembler::equal, special_case);
2809 
2810   // handle normal case
2811   bind(normal_case);
2812   cdql();
2813   int idivl_offset = offset();
2814   idivl(reg);
2815 
2816   // normal and special case exit
2817   bind(special_case);
2818 
2819   return idivl_offset;
2820 }
2821 
2822 
2823 
2824 void MacroAssembler::decrementl(Register reg, int value) {
2825   if (value == min_jint) {subl(reg, value) ; return; }
2826   if (value <  0) { incrementl(reg, -value); return; }
2827   if (value == 0) {                        ; return; }
2828   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2829   /* else */      { subl(reg, value)       ; return; }
2830 }
2831 
2832 void MacroAssembler::decrementl(Address dst, int value) {
2833   if (value == min_jint) {subl(dst, value) ; return; }
2834   if (value <  0) { incrementl(dst, -value); return; }
2835   if (value == 0) {                        ; return; }
2836   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2837   /* else */      { subl(dst, value)       ; return; }
2838 }
2839 
2840 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2841   assert (shift_value > 0, "illegal shift value");
2842   Label _is_positive;
2843   testl (reg, reg);
2844   jcc (Assembler::positive, _is_positive);
2845   int offset = (1 << shift_value) - 1 ;
2846 
2847   if (offset == 1) {
2848     incrementl(reg);
2849   } else {
2850     addl(reg, offset);
2851   }
2852 
2853   bind (_is_positive);
2854   sarl(reg, shift_value);
2855 }
2856 
2857 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2858   if (reachable(src)) {
2859     Assembler::divsd(dst, as_Address(src));
2860   } else {
2861     lea(rscratch1, src);
2862     Assembler::divsd(dst, Address(rscratch1, 0));
2863   }
2864 }
2865 
2866 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2867   if (reachable(src)) {
2868     Assembler::divss(dst, as_Address(src));
2869   } else {
2870     lea(rscratch1, src);
2871     Assembler::divss(dst, Address(rscratch1, 0));
2872   }
2873 }
2874 
2875 // !defined(COMPILER2) is because of stupid core builds
2876 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2877 void MacroAssembler::empty_FPU_stack() {
2878   if (VM_Version::supports_mmx()) {
2879     emms();
2880   } else {
2881     for (int i = 8; i-- > 0; ) ffree(i);
2882   }
2883 }
2884 #endif // !LP64 || C1 || !C2
2885 
2886 
2887 // Defines obj, preserves var_size_in_bytes
2888 void MacroAssembler::eden_allocate(Register obj,
2889                                    Register var_size_in_bytes,
2890                                    int con_size_in_bytes,
2891                                    Register t1,
2892                                    Label& slow_case) {
2893   assert(obj == rax, "obj must be in rax, for cmpxchg");
2894   assert_different_registers(obj, var_size_in_bytes, t1);
2895   if (!Universe::heap()->supports_inline_contig_alloc()) {
2896     jmp(slow_case);
2897   } else {
2898     Register end = t1;
2899     Label retry;
2900     bind(retry);
2901     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2902     movptr(obj, heap_top);
2903     if (var_size_in_bytes == noreg) {
2904       lea(end, Address(obj, con_size_in_bytes));
2905     } else {
2906       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2907     }
2908     // if end < obj then we wrapped around => object too long => slow case
2909     cmpptr(end, obj);
2910     jcc(Assembler::below, slow_case);
2911     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2912     jcc(Assembler::above, slow_case);
2913     // Compare obj with the top addr, and if still equal, store the new top addr in
2914     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2915     // it otherwise. Use lock prefix for atomicity on MPs.
2916     locked_cmpxchgptr(end, heap_top);
2917     jcc(Assembler::notEqual, retry);
2918   }
2919 }
2920 
2921 void MacroAssembler::enter() {
2922   push(rbp);
2923   mov(rbp, rsp);
2924 }
2925 
2926 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2927 void MacroAssembler::fat_nop() {
2928   if (UseAddressNop) {
2929     addr_nop_5();
2930   } else {
2931     emit_int8(0x26); // es:
2932     emit_int8(0x2e); // cs:
2933     emit_int8(0x64); // fs:
2934     emit_int8(0x65); // gs:
2935     emit_int8((unsigned char)0x90);
2936   }
2937 }
2938 
2939 void MacroAssembler::fcmp(Register tmp) {
2940   fcmp(tmp, 1, true, true);
2941 }
2942 
2943 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2944   assert(!pop_right || pop_left, "usage error");
2945   if (VM_Version::supports_cmov()) {
2946     assert(tmp == noreg, "unneeded temp");
2947     if (pop_left) {
2948       fucomip(index);
2949     } else {
2950       fucomi(index);
2951     }
2952     if (pop_right) {
2953       fpop();
2954     }
2955   } else {
2956     assert(tmp != noreg, "need temp");
2957     if (pop_left) {
2958       if (pop_right) {
2959         fcompp();
2960       } else {
2961         fcomp(index);
2962       }
2963     } else {
2964       fcom(index);
2965     }
2966     // convert FPU condition into eflags condition via rax,
2967     save_rax(tmp);
2968     fwait(); fnstsw_ax();
2969     sahf();
2970     restore_rax(tmp);
2971   }
2972   // condition codes set as follows:
2973   //
2974   // CF (corresponds to C0) if x < y
2975   // PF (corresponds to C2) if unordered
2976   // ZF (corresponds to C3) if x = y
2977 }
2978 
2979 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2980   fcmp2int(dst, unordered_is_less, 1, true, true);
2981 }
2982 
2983 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2984   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2985   Label L;
2986   if (unordered_is_less) {
2987     movl(dst, -1);
2988     jcc(Assembler::parity, L);
2989     jcc(Assembler::below , L);
2990     movl(dst, 0);
2991     jcc(Assembler::equal , L);
2992     increment(dst);
2993   } else { // unordered is greater
2994     movl(dst, 1);
2995     jcc(Assembler::parity, L);
2996     jcc(Assembler::above , L);
2997     movl(dst, 0);
2998     jcc(Assembler::equal , L);
2999     decrementl(dst);
3000   }
3001   bind(L);
3002 }
3003 
3004 void MacroAssembler::fld_d(AddressLiteral src) {
3005   fld_d(as_Address(src));
3006 }
3007 
3008 void MacroAssembler::fld_s(AddressLiteral src) {
3009   fld_s(as_Address(src));
3010 }
3011 
3012 void MacroAssembler::fld_x(AddressLiteral src) {
3013   Assembler::fld_x(as_Address(src));
3014 }
3015 
3016 void MacroAssembler::fldcw(AddressLiteral src) {
3017   Assembler::fldcw(as_Address(src));
3018 }
3019 
3020 void MacroAssembler::pow_exp_core_encoding() {
3021   // kills rax, rcx, rdx
3022   subptr(rsp,sizeof(jdouble));
3023   // computes 2^X. Stack: X ...
3024   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3025   // keep it on the thread's stack to compute 2^int(X) later
3026   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3027   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3028   fld_s(0);                 // Stack: X X ...
3029   frndint();                // Stack: int(X) X ...
3030   fsuba(1);                 // Stack: int(X) X-int(X) ...
3031   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3032   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3033   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3034   faddp(1);                 // Stack: 2^(X-int(X))
3035   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3036   // shift int(X)+1023 to exponent position.
3037   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3038   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3039   // values so detect them and set result to NaN.
3040   movl(rax,Address(rsp,0));
3041   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3042   addl(rax, 1023);
3043   movl(rdx,rax);
3044   shll(rax,20);
3045   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3046   addl(rdx,1);
3047   // Check that 1 < int(X)+1023+1 < 2048
3048   // in 3 steps:
3049   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3050   // 2- (int(X)+1023+1)&-2048 != 0
3051   // 3- (int(X)+1023+1)&-2048 != 1
3052   // Do 2- first because addl just updated the flags.
3053   cmov32(Assembler::equal,rax,rcx);
3054   cmpl(rdx,1);
3055   cmov32(Assembler::equal,rax,rcx);
3056   testl(rdx,rcx);
3057   cmov32(Assembler::notEqual,rax,rcx);
3058   movl(Address(rsp,4),rax);
3059   movl(Address(rsp,0),0);
3060   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3061   addptr(rsp,sizeof(jdouble));
3062 }
3063 
3064 void MacroAssembler::increase_precision() {
3065   subptr(rsp, BytesPerWord);
3066   fnstcw(Address(rsp, 0));
3067   movl(rax, Address(rsp, 0));
3068   orl(rax, 0x300);
3069   push(rax);
3070   fldcw(Address(rsp, 0));
3071   pop(rax);
3072 }
3073 
3074 void MacroAssembler::restore_precision() {
3075   fldcw(Address(rsp, 0));
3076   addptr(rsp, BytesPerWord);
3077 }
3078 
3079 void MacroAssembler::fast_pow() {
3080   // computes X^Y = 2^(Y * log2(X))
3081   // if fast computation is not possible, result is NaN. Requires
3082   // fallback from user of this macro.
3083   // increase precision for intermediate steps of the computation
3084   BLOCK_COMMENT("fast_pow {");
3085   increase_precision();
3086   fyl2x();                 // Stack: (Y*log2(X)) ...
3087   pow_exp_core_encoding(); // Stack: exp(X) ...
3088   restore_precision();
3089   BLOCK_COMMENT("} fast_pow");
3090 }
3091 
3092 void MacroAssembler::fast_exp() {
3093   // computes exp(X) = 2^(X * log2(e))
3094   // if fast computation is not possible, result is NaN. Requires
3095   // fallback from user of this macro.
3096   // increase precision for intermediate steps of the computation
3097   increase_precision();
3098   fldl2e();                // Stack: log2(e) X ...
3099   fmulp(1);                // Stack: (X*log2(e)) ...
3100   pow_exp_core_encoding(); // Stack: exp(X) ...
3101   restore_precision();
3102 }
3103 
3104 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3105   // kills rax, rcx, rdx
3106   // pow and exp needs 2 extra registers on the fpu stack.
3107   Label slow_case, done;
3108   Register tmp = noreg;
3109   if (!VM_Version::supports_cmov()) {
3110     // fcmp needs a temporary so preserve rdx,
3111     tmp = rdx;
3112   }
3113   Register tmp2 = rax;
3114   Register tmp3 = rcx;
3115 
3116   if (is_exp) {
3117     // Stack: X
3118     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3119     fast_exp();                 // Stack: exp(X) X
3120     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3121     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3122     jcc(Assembler::parity, slow_case);
3123     // get rid of duplicate argument. Stack: exp(X)
3124     if (num_fpu_regs_in_use > 0) {
3125       fxch();
3126       fpop();
3127     } else {
3128       ffree(1);
3129     }
3130     jmp(done);
3131   } else {
3132     // Stack: X Y
3133     Label x_negative, y_not_2;
3134 
3135     static double two = 2.0;
3136     ExternalAddress two_addr((address)&two);
3137 
3138     // constant maybe too far on 64 bit
3139     lea(tmp2, two_addr);
3140     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3141     fcmp(tmp, 2, true, false);  // Stack: X Y
3142     jcc(Assembler::parity, y_not_2);
3143     jcc(Assembler::notEqual, y_not_2);
3144 
3145     fxch(); fpop();             // Stack: X
3146     fmul(0);                    // Stack: X*X
3147 
3148     jmp(done);
3149 
3150     bind(y_not_2);
3151 
3152     fldz();                     // Stack: 0 X Y
3153     fcmp(tmp, 1, true, false);  // Stack: X Y
3154     jcc(Assembler::above, x_negative);
3155 
3156     // X >= 0
3157 
3158     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3159     fld_s(1);                   // Stack: X Y X Y
3160     fast_pow();                 // Stack: X^Y X Y
3161     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3162     // X^Y not equal to itself: X^Y is NaN go to slow case.
3163     jcc(Assembler::parity, slow_case);
3164     // get rid of duplicate arguments. Stack: X^Y
3165     if (num_fpu_regs_in_use > 0) {
3166       fxch(); fpop();
3167       fxch(); fpop();
3168     } else {
3169       ffree(2);
3170       ffree(1);
3171     }
3172     jmp(done);
3173 
3174     // X <= 0
3175     bind(x_negative);
3176 
3177     fld_s(1);                   // Stack: Y X Y
3178     frndint();                  // Stack: int(Y) X Y
3179     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3180     jcc(Assembler::notEqual, slow_case);
3181 
3182     subptr(rsp, 8);
3183 
3184     // For X^Y, when X < 0, Y has to be an integer and the final
3185     // result depends on whether it's odd or even. We just checked
3186     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3187     // integer to test its parity. If int(Y) is huge and doesn't fit
3188     // in the 64 bit integer range, the integer indefinite value will
3189     // end up in the gp registers. Huge numbers are all even, the
3190     // integer indefinite number is even so it's fine.
3191 
3192 #ifdef ASSERT
3193     // Let's check we don't end up with an integer indefinite number
3194     // when not expected. First test for huge numbers: check whether
3195     // int(Y)+1 == int(Y) which is true for very large numbers and
3196     // those are all even. A 64 bit integer is guaranteed to not
3197     // overflow for numbers where y+1 != y (when precision is set to
3198     // double precision).
3199     Label y_not_huge;
3200 
3201     fld1();                     // Stack: 1 int(Y) X Y
3202     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3203 
3204 #ifdef _LP64
3205     // trip to memory to force the precision down from double extended
3206     // precision
3207     fstp_d(Address(rsp, 0));
3208     fld_d(Address(rsp, 0));
3209 #endif
3210 
3211     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3212 #endif
3213 
3214     // move int(Y) as 64 bit integer to thread's stack
3215     fistp_d(Address(rsp,0));    // Stack: X Y
3216 
3217 #ifdef ASSERT
3218     jcc(Assembler::notEqual, y_not_huge);
3219 
3220     // Y is huge so we know it's even. It may not fit in a 64 bit
3221     // integer and we don't want the debug code below to see the
3222     // integer indefinite value so overwrite int(Y) on the thread's
3223     // stack with 0.
3224     movl(Address(rsp, 0), 0);
3225     movl(Address(rsp, 4), 0);
3226 
3227     bind(y_not_huge);
3228 #endif
3229 
3230     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3231     fld_s(1);                   // Stack: X Y X Y
3232     fabs();                     // Stack: abs(X) Y X Y
3233     fast_pow();                 // Stack: abs(X)^Y X Y
3234     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3235     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3236 
3237     pop(tmp2);
3238     NOT_LP64(pop(tmp3));
3239     jcc(Assembler::parity, slow_case);
3240 
3241 #ifdef ASSERT
3242     // Check that int(Y) is not integer indefinite value (int
3243     // overflow). Shouldn't happen because for values that would
3244     // overflow, 1+int(Y)==Y which was tested earlier.
3245 #ifndef _LP64
3246     {
3247       Label integer;
3248       testl(tmp2, tmp2);
3249       jcc(Assembler::notZero, integer);
3250       cmpl(tmp3, 0x80000000);
3251       jcc(Assembler::notZero, integer);
3252       STOP("integer indefinite value shouldn't be seen here");
3253       bind(integer);
3254     }
3255 #else
3256     {
3257       Label integer;
3258       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3259       shlq(tmp3, 1);
3260       jcc(Assembler::carryClear, integer);
3261       jcc(Assembler::notZero, integer);
3262       STOP("integer indefinite value shouldn't be seen here");
3263       bind(integer);
3264     }
3265 #endif
3266 #endif
3267 
3268     // get rid of duplicate arguments. Stack: X^Y
3269     if (num_fpu_regs_in_use > 0) {
3270       fxch(); fpop();
3271       fxch(); fpop();
3272     } else {
3273       ffree(2);
3274       ffree(1);
3275     }
3276 
3277     testl(tmp2, 1);
3278     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3279     // X <= 0, Y even: X^Y = -abs(X)^Y
3280 
3281     fchs();                     // Stack: -abs(X)^Y Y
3282     jmp(done);
3283   }
3284 
3285   // slow case: runtime call
3286   bind(slow_case);
3287 
3288   fpop();                       // pop incorrect result or int(Y)
3289 
3290   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3291                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3292 
3293   // Come here with result in F-TOS
3294   bind(done);
3295 }
3296 
3297 void MacroAssembler::fpop() {
3298   ffree();
3299   fincstp();
3300 }
3301 
3302 void MacroAssembler::fremr(Register tmp) {
3303   save_rax(tmp);
3304   { Label L;
3305     bind(L);
3306     fprem();
3307     fwait(); fnstsw_ax();
3308 #ifdef _LP64
3309     testl(rax, 0x400);
3310     jcc(Assembler::notEqual, L);
3311 #else
3312     sahf();
3313     jcc(Assembler::parity, L);
3314 #endif // _LP64
3315   }
3316   restore_rax(tmp);
3317   // Result is in ST0.
3318   // Note: fxch & fpop to get rid of ST1
3319   // (otherwise FPU stack could overflow eventually)
3320   fxch(1);
3321   fpop();
3322 }
3323 
3324 
3325 void MacroAssembler::incrementl(AddressLiteral dst) {
3326   if (reachable(dst)) {
3327     incrementl(as_Address(dst));
3328   } else {
3329     lea(rscratch1, dst);
3330     incrementl(Address(rscratch1, 0));
3331   }
3332 }
3333 
3334 void MacroAssembler::incrementl(ArrayAddress dst) {
3335   incrementl(as_Address(dst));
3336 }
3337 
3338 void MacroAssembler::incrementl(Register reg, int value) {
3339   if (value == min_jint) {addl(reg, value) ; return; }
3340   if (value <  0) { decrementl(reg, -value); return; }
3341   if (value == 0) {                        ; return; }
3342   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3343   /* else */      { addl(reg, value)       ; return; }
3344 }
3345 
3346 void MacroAssembler::incrementl(Address dst, int value) {
3347   if (value == min_jint) {addl(dst, value) ; return; }
3348   if (value <  0) { decrementl(dst, -value); return; }
3349   if (value == 0) {                        ; return; }
3350   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3351   /* else */      { addl(dst, value)       ; return; }
3352 }
3353 
3354 void MacroAssembler::jump(AddressLiteral dst) {
3355   if (reachable(dst)) {
3356     jmp_literal(dst.target(), dst.rspec());
3357   } else {
3358     lea(rscratch1, dst);
3359     jmp(rscratch1);
3360   }
3361 }
3362 
3363 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3364   if (reachable(dst)) {
3365     InstructionMark im(this);
3366     relocate(dst.reloc());
3367     const int short_size = 2;
3368     const int long_size = 6;
3369     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3370     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3371       // 0111 tttn #8-bit disp
3372       emit_int8(0x70 | cc);
3373       emit_int8((offs - short_size) & 0xFF);
3374     } else {
3375       // 0000 1111 1000 tttn #32-bit disp
3376       emit_int8(0x0F);
3377       emit_int8((unsigned char)(0x80 | cc));
3378       emit_int32(offs - long_size);
3379     }
3380   } else {
3381 #ifdef ASSERT
3382     warning("reversing conditional branch");
3383 #endif /* ASSERT */
3384     Label skip;
3385     jccb(reverse[cc], skip);
3386     lea(rscratch1, dst);
3387     Assembler::jmp(rscratch1);
3388     bind(skip);
3389   }
3390 }
3391 
3392 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3393   if (reachable(src)) {
3394     Assembler::ldmxcsr(as_Address(src));
3395   } else {
3396     lea(rscratch1, src);
3397     Assembler::ldmxcsr(Address(rscratch1, 0));
3398   }
3399 }
3400 
3401 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3402   int off;
3403   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3404     off = offset();
3405     movsbl(dst, src); // movsxb
3406   } else {
3407     off = load_unsigned_byte(dst, src);
3408     shll(dst, 24);
3409     sarl(dst, 24);
3410   }
3411   return off;
3412 }
3413 
3414 // Note: load_signed_short used to be called load_signed_word.
3415 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3416 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3417 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3418 int MacroAssembler::load_signed_short(Register dst, Address src) {
3419   int off;
3420   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3421     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3422     // version but this is what 64bit has always done. This seems to imply
3423     // that users are only using 32bits worth.
3424     off = offset();
3425     movswl(dst, src); // movsxw
3426   } else {
3427     off = load_unsigned_short(dst, src);
3428     shll(dst, 16);
3429     sarl(dst, 16);
3430   }
3431   return off;
3432 }
3433 
3434 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3435   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3436   // and "3.9 Partial Register Penalties", p. 22).
3437   int off;
3438   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3439     off = offset();
3440     movzbl(dst, src); // movzxb
3441   } else {
3442     xorl(dst, dst);
3443     off = offset();
3444     movb(dst, src);
3445   }
3446   return off;
3447 }
3448 
3449 // Note: load_unsigned_short used to be called load_unsigned_word.
3450 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3451   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3452   // and "3.9 Partial Register Penalties", p. 22).
3453   int off;
3454   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3455     off = offset();
3456     movzwl(dst, src); // movzxw
3457   } else {
3458     xorl(dst, dst);
3459     off = offset();
3460     movw(dst, src);
3461   }
3462   return off;
3463 }
3464 
3465 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3466   switch (size_in_bytes) {
3467 #ifndef _LP64
3468   case  8:
3469     assert(dst2 != noreg, "second dest register required");
3470     movl(dst,  src);
3471     movl(dst2, src.plus_disp(BytesPerInt));
3472     break;
3473 #else
3474   case  8:  movq(dst, src); break;
3475 #endif
3476   case  4:  movl(dst, src); break;
3477   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3478   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3479   default:  ShouldNotReachHere();
3480   }
3481 }
3482 
3483 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3484   switch (size_in_bytes) {
3485 #ifndef _LP64
3486   case  8:
3487     assert(src2 != noreg, "second source register required");
3488     movl(dst,                        src);
3489     movl(dst.plus_disp(BytesPerInt), src2);
3490     break;
3491 #else
3492   case  8:  movq(dst, src); break;
3493 #endif
3494   case  4:  movl(dst, src); break;
3495   case  2:  movw(dst, src); break;
3496   case  1:  movb(dst, src); break;
3497   default:  ShouldNotReachHere();
3498   }
3499 }
3500 
3501 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3502   if (reachable(dst)) {
3503     movl(as_Address(dst), src);
3504   } else {
3505     lea(rscratch1, dst);
3506     movl(Address(rscratch1, 0), src);
3507   }
3508 }
3509 
3510 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3511   if (reachable(src)) {
3512     movl(dst, as_Address(src));
3513   } else {
3514     lea(rscratch1, src);
3515     movl(dst, Address(rscratch1, 0));
3516   }
3517 }
3518 
3519 // C++ bool manipulation
3520 
3521 void MacroAssembler::movbool(Register dst, Address src) {
3522   if(sizeof(bool) == 1)
3523     movb(dst, src);
3524   else if(sizeof(bool) == 2)
3525     movw(dst, src);
3526   else if(sizeof(bool) == 4)
3527     movl(dst, src);
3528   else
3529     // unsupported
3530     ShouldNotReachHere();
3531 }
3532 
3533 void MacroAssembler::movbool(Address dst, bool boolconst) {
3534   if(sizeof(bool) == 1)
3535     movb(dst, (int) boolconst);
3536   else if(sizeof(bool) == 2)
3537     movw(dst, (int) boolconst);
3538   else if(sizeof(bool) == 4)
3539     movl(dst, (int) boolconst);
3540   else
3541     // unsupported
3542     ShouldNotReachHere();
3543 }
3544 
3545 void MacroAssembler::movbool(Address dst, Register src) {
3546   if(sizeof(bool) == 1)
3547     movb(dst, src);
3548   else if(sizeof(bool) == 2)
3549     movw(dst, src);
3550   else if(sizeof(bool) == 4)
3551     movl(dst, src);
3552   else
3553     // unsupported
3554     ShouldNotReachHere();
3555 }
3556 
3557 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3558   movb(as_Address(dst), src);
3559 }
3560 
3561 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3562   if (reachable(src)) {
3563     movdl(dst, as_Address(src));
3564   } else {
3565     lea(rscratch1, src);
3566     movdl(dst, Address(rscratch1, 0));
3567   }
3568 }
3569 
3570 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3571   if (reachable(src)) {
3572     movq(dst, as_Address(src));
3573   } else {
3574     lea(rscratch1, src);
3575     movq(dst, Address(rscratch1, 0));
3576   }
3577 }
3578 
3579 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3580   if (reachable(src)) {
3581     if (UseXmmLoadAndClearUpper) {
3582       movsd (dst, as_Address(src));
3583     } else {
3584       movlpd(dst, as_Address(src));
3585     }
3586   } else {
3587     lea(rscratch1, src);
3588     if (UseXmmLoadAndClearUpper) {
3589       movsd (dst, Address(rscratch1, 0));
3590     } else {
3591       movlpd(dst, Address(rscratch1, 0));
3592     }
3593   }
3594 }
3595 
3596 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3597   if (reachable(src)) {
3598     movss(dst, as_Address(src));
3599   } else {
3600     lea(rscratch1, src);
3601     movss(dst, Address(rscratch1, 0));
3602   }
3603 }
3604 
3605 void MacroAssembler::movptr(Register dst, Register src) {
3606   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3607 }
3608 
3609 void MacroAssembler::movptr(Register dst, Address src) {
3610   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3611 }
3612 
3613 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3614 void MacroAssembler::movptr(Register dst, intptr_t src) {
3615   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3616 }
3617 
3618 void MacroAssembler::movptr(Address dst, Register src) {
3619   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3620 }
3621 
3622 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3623   if (reachable(src)) {
3624     Assembler::movdqu(dst, as_Address(src));
3625   } else {
3626     lea(rscratch1, src);
3627     Assembler::movdqu(dst, Address(rscratch1, 0));
3628   }
3629 }
3630 
3631 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3632   if (reachable(src)) {
3633     Assembler::movdqa(dst, as_Address(src));
3634   } else {
3635     lea(rscratch1, src);
3636     Assembler::movdqa(dst, Address(rscratch1, 0));
3637   }
3638 }
3639 
3640 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3641   if (reachable(src)) {
3642     Assembler::movsd(dst, as_Address(src));
3643   } else {
3644     lea(rscratch1, src);
3645     Assembler::movsd(dst, Address(rscratch1, 0));
3646   }
3647 }
3648 
3649 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3650   if (reachable(src)) {
3651     Assembler::movss(dst, as_Address(src));
3652   } else {
3653     lea(rscratch1, src);
3654     Assembler::movss(dst, Address(rscratch1, 0));
3655   }
3656 }
3657 
3658 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3659   if (reachable(src)) {
3660     Assembler::mulsd(dst, as_Address(src));
3661   } else {
3662     lea(rscratch1, src);
3663     Assembler::mulsd(dst, Address(rscratch1, 0));
3664   }
3665 }
3666 
3667 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3668   if (reachable(src)) {
3669     Assembler::mulss(dst, as_Address(src));
3670   } else {
3671     lea(rscratch1, src);
3672     Assembler::mulss(dst, Address(rscratch1, 0));
3673   }
3674 }
3675 
3676 void MacroAssembler::null_check(Register reg, int offset) {
3677   if (needs_explicit_null_check(offset)) {
3678     // provoke OS NULL exception if reg = NULL by
3679     // accessing M[reg] w/o changing any (non-CC) registers
3680     // NOTE: cmpl is plenty here to provoke a segv
3681     cmpptr(rax, Address(reg, 0));
3682     // Note: should probably use testl(rax, Address(reg, 0));
3683     //       may be shorter code (however, this version of
3684     //       testl needs to be implemented first)
3685   } else {
3686     // nothing to do, (later) access of M[reg + offset]
3687     // will provoke OS NULL exception if reg = NULL
3688   }
3689 }
3690 
3691 void MacroAssembler::os_breakpoint() {
3692   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3693   // (e.g., MSVC can't call ps() otherwise)
3694   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3695 }
3696 
3697 void MacroAssembler::pop_CPU_state() {
3698   pop_FPU_state();
3699   pop_IU_state();
3700 }
3701 
3702 void MacroAssembler::pop_FPU_state() {
3703   NOT_LP64(frstor(Address(rsp, 0));)
3704   LP64_ONLY(fxrstor(Address(rsp, 0));)
3705   addptr(rsp, FPUStateSizeInWords * wordSize);
3706 }
3707 
3708 void MacroAssembler::pop_IU_state() {
3709   popa();
3710   LP64_ONLY(addq(rsp, 8));
3711   popf();
3712 }
3713 
3714 // Save Integer and Float state
3715 // Warning: Stack must be 16 byte aligned (64bit)
3716 void MacroAssembler::push_CPU_state() {
3717   push_IU_state();
3718   push_FPU_state();
3719 }
3720 
3721 void MacroAssembler::push_FPU_state() {
3722   subptr(rsp, FPUStateSizeInWords * wordSize);
3723 #ifndef _LP64
3724   fnsave(Address(rsp, 0));
3725   fwait();
3726 #else
3727   fxsave(Address(rsp, 0));
3728 #endif // LP64
3729 }
3730 
3731 void MacroAssembler::push_IU_state() {
3732   // Push flags first because pusha kills them
3733   pushf();
3734   // Make sure rsp stays 16-byte aligned
3735   LP64_ONLY(subq(rsp, 8));
3736   pusha();
3737 }
3738 
3739 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3740   // determine java_thread register
3741   if (!java_thread->is_valid()) {
3742     java_thread = rdi;
3743     get_thread(java_thread);
3744   }
3745   // we must set sp to zero to clear frame
3746   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3747   if (clear_fp) {
3748     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3749   }
3750 
3751   if (clear_pc)
3752     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3753 
3754 }
3755 
3756 void MacroAssembler::restore_rax(Register tmp) {
3757   if (tmp == noreg) pop(rax);
3758   else if (tmp != rax) mov(rax, tmp);
3759 }
3760 
3761 void MacroAssembler::round_to(Register reg, int modulus) {
3762   addptr(reg, modulus - 1);
3763   andptr(reg, -modulus);
3764 }
3765 
3766 void MacroAssembler::save_rax(Register tmp) {
3767   if (tmp == noreg) push(rax);
3768   else if (tmp != rax) mov(tmp, rax);
3769 }
3770 
3771 // Write serialization page so VM thread can do a pseudo remote membar.
3772 // We use the current thread pointer to calculate a thread specific
3773 // offset to write to within the page. This minimizes bus traffic
3774 // due to cache line collision.
3775 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3776   movl(tmp, thread);
3777   shrl(tmp, os::get_serialize_page_shift_count());
3778   andl(tmp, (os::vm_page_size() - sizeof(int)));
3779 
3780   Address index(noreg, tmp, Address::times_1);
3781   ExternalAddress page(os::get_memory_serialize_page());
3782 
3783   // Size of store must match masking code above
3784   movl(as_Address(ArrayAddress(page, index)), tmp);
3785 }
3786 
3787 // Calls to C land
3788 //
3789 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3790 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3791 // has to be reset to 0. This is required to allow proper stack traversal.
3792 void MacroAssembler::set_last_Java_frame(Register java_thread,
3793                                          Register last_java_sp,
3794                                          Register last_java_fp,
3795                                          address  last_java_pc) {
3796   // determine java_thread register
3797   if (!java_thread->is_valid()) {
3798     java_thread = rdi;
3799     get_thread(java_thread);
3800   }
3801   // determine last_java_sp register
3802   if (!last_java_sp->is_valid()) {
3803     last_java_sp = rsp;
3804   }
3805 
3806   // last_java_fp is optional
3807 
3808   if (last_java_fp->is_valid()) {
3809     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3810   }
3811 
3812   // last_java_pc is optional
3813 
3814   if (last_java_pc != NULL) {
3815     lea(Address(java_thread,
3816                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3817         InternalAddress(last_java_pc));
3818 
3819   }
3820   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3821 }
3822 
3823 void MacroAssembler::shlptr(Register dst, int imm8) {
3824   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3825 }
3826 
3827 void MacroAssembler::shrptr(Register dst, int imm8) {
3828   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3829 }
3830 
3831 void MacroAssembler::sign_extend_byte(Register reg) {
3832   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3833     movsbl(reg, reg); // movsxb
3834   } else {
3835     shll(reg, 24);
3836     sarl(reg, 24);
3837   }
3838 }
3839 
3840 void MacroAssembler::sign_extend_short(Register reg) {
3841   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3842     movswl(reg, reg); // movsxw
3843   } else {
3844     shll(reg, 16);
3845     sarl(reg, 16);
3846   }
3847 }
3848 
3849 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3850   assert(reachable(src), "Address should be reachable");
3851   testl(dst, as_Address(src));
3852 }
3853 
3854 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3855   if (reachable(src)) {
3856     Assembler::sqrtsd(dst, as_Address(src));
3857   } else {
3858     lea(rscratch1, src);
3859     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3860   }
3861 }
3862 
3863 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3864   if (reachable(src)) {
3865     Assembler::sqrtss(dst, as_Address(src));
3866   } else {
3867     lea(rscratch1, src);
3868     Assembler::sqrtss(dst, Address(rscratch1, 0));
3869   }
3870 }
3871 
3872 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3873   if (reachable(src)) {
3874     Assembler::subsd(dst, as_Address(src));
3875   } else {
3876     lea(rscratch1, src);
3877     Assembler::subsd(dst, Address(rscratch1, 0));
3878   }
3879 }
3880 
3881 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3882   if (reachable(src)) {
3883     Assembler::subss(dst, as_Address(src));
3884   } else {
3885     lea(rscratch1, src);
3886     Assembler::subss(dst, Address(rscratch1, 0));
3887   }
3888 }
3889 
3890 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3891   if (reachable(src)) {
3892     Assembler::ucomisd(dst, as_Address(src));
3893   } else {
3894     lea(rscratch1, src);
3895     Assembler::ucomisd(dst, Address(rscratch1, 0));
3896   }
3897 }
3898 
3899 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3900   if (reachable(src)) {
3901     Assembler::ucomiss(dst, as_Address(src));
3902   } else {
3903     lea(rscratch1, src);
3904     Assembler::ucomiss(dst, Address(rscratch1, 0));
3905   }
3906 }
3907 
3908 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3909   // Used in sign-bit flipping with aligned address.
3910   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3911   if (reachable(src)) {
3912     Assembler::xorpd(dst, as_Address(src));
3913   } else {
3914     lea(rscratch1, src);
3915     Assembler::xorpd(dst, Address(rscratch1, 0));
3916   }
3917 }
3918 
3919 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3920   // Used in sign-bit flipping with aligned address.
3921   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3922   if (reachable(src)) {
3923     Assembler::xorps(dst, as_Address(src));
3924   } else {
3925     lea(rscratch1, src);
3926     Assembler::xorps(dst, Address(rscratch1, 0));
3927   }
3928 }
3929 
3930 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3931   // Used in sign-bit flipping with aligned address.
3932   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3933   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3934   if (reachable(src)) {
3935     Assembler::pshufb(dst, as_Address(src));
3936   } else {
3937     lea(rscratch1, src);
3938     Assembler::pshufb(dst, Address(rscratch1, 0));
3939   }
3940 }
3941 
3942 // AVX 3-operands instructions
3943 
3944 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3945   if (reachable(src)) {
3946     vaddsd(dst, nds, as_Address(src));
3947   } else {
3948     lea(rscratch1, src);
3949     vaddsd(dst, nds, Address(rscratch1, 0));
3950   }
3951 }
3952 
3953 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3954   if (reachable(src)) {
3955     vaddss(dst, nds, as_Address(src));
3956   } else {
3957     lea(rscratch1, src);
3958     vaddss(dst, nds, Address(rscratch1, 0));
3959   }
3960 }
3961 
3962 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3963   if (reachable(src)) {
3964     vandpd(dst, nds, as_Address(src), vector_len);
3965   } else {
3966     lea(rscratch1, src);
3967     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
3968   }
3969 }
3970 
3971 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
3972   if (reachable(src)) {
3973     vandps(dst, nds, as_Address(src), vector_len);
3974   } else {
3975     lea(rscratch1, src);
3976     vandps(dst, nds, Address(rscratch1, 0), vector_len);
3977   }
3978 }
3979 
3980 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vdivsd(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vdivsd(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3990   if (reachable(src)) {
3991     vdivss(dst, nds, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     vdivss(dst, nds, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3999   if (reachable(src)) {
4000     vmulsd(dst, nds, as_Address(src));
4001   } else {
4002     lea(rscratch1, src);
4003     vmulsd(dst, nds, Address(rscratch1, 0));
4004   }
4005 }
4006 
4007 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4008   if (reachable(src)) {
4009     vmulss(dst, nds, as_Address(src));
4010   } else {
4011     lea(rscratch1, src);
4012     vmulss(dst, nds, Address(rscratch1, 0));
4013   }
4014 }
4015 
4016 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4017   if (reachable(src)) {
4018     vsubsd(dst, nds, as_Address(src));
4019   } else {
4020     lea(rscratch1, src);
4021     vsubsd(dst, nds, Address(rscratch1, 0));
4022   }
4023 }
4024 
4025 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4026   if (reachable(src)) {
4027     vsubss(dst, nds, as_Address(src));
4028   } else {
4029     lea(rscratch1, src);
4030     vsubss(dst, nds, Address(rscratch1, 0));
4031   }
4032 }
4033 
4034 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4035   if (reachable(src)) {
4036     vxorpd(dst, nds, as_Address(src), vector_len);
4037   } else {
4038     lea(rscratch1, src);
4039     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4040   }
4041 }
4042 
4043 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4044   if (reachable(src)) {
4045     vxorps(dst, nds, as_Address(src), vector_len);
4046   } else {
4047     lea(rscratch1, src);
4048     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4049   }
4050 }
4051 
4052 
4053 //////////////////////////////////////////////////////////////////////////////////
4054 #if INCLUDE_ALL_GCS
4055 
4056 void MacroAssembler::g1_write_barrier_pre(Register obj,
4057                                           Register pre_val,
4058                                           Register thread,
4059                                           Register tmp,
4060                                           bool tosca_live,
4061                                           bool expand_call) {
4062 
4063   // If expand_call is true then we expand the call_VM_leaf macro
4064   // directly to skip generating the check by
4065   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4066 
4067 #ifdef _LP64
4068   assert(thread == r15_thread, "must be");
4069 #endif // _LP64
4070 
4071   Label done;
4072   Label runtime;
4073 
4074   assert(pre_val != noreg, "check this code");
4075 
4076   if (obj != noreg) {
4077     assert_different_registers(obj, pre_val, tmp);
4078     assert(pre_val != rax, "check this code");
4079   }
4080 
4081   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4082                                        PtrQueue::byte_offset_of_active()));
4083   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4084                                        PtrQueue::byte_offset_of_index()));
4085   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4086                                        PtrQueue::byte_offset_of_buf()));
4087 
4088 
4089   // Is marking active?
4090   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4091     cmpl(in_progress, 0);
4092   } else {
4093     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4094     cmpb(in_progress, 0);
4095   }
4096   jcc(Assembler::equal, done);
4097 
4098   // Do we need to load the previous value?
4099   if (obj != noreg) {
4100     load_heap_oop(pre_val, Address(obj, 0));
4101   }
4102 
4103   // Is the previous value null?
4104   cmpptr(pre_val, (int32_t) NULL_WORD);
4105   jcc(Assembler::equal, done);
4106 
4107   // Can we store original value in the thread's buffer?
4108   // Is index == 0?
4109   // (The index field is typed as size_t.)
4110 
4111   movptr(tmp, index);                   // tmp := *index_adr
4112   cmpptr(tmp, 0);                       // tmp == 0?
4113   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4114 
4115   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4116   movptr(index, tmp);                   // *index_adr := tmp
4117   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4118 
4119   // Record the previous value
4120   movptr(Address(tmp, 0), pre_val);
4121   jmp(done);
4122 
4123   bind(runtime);
4124   // save the live input values
4125   if(tosca_live) push(rax);
4126 
4127   if (obj != noreg && obj != rax)
4128     push(obj);
4129 
4130   if (pre_val != rax)
4131     push(pre_val);
4132 
4133   // Calling the runtime using the regular call_VM_leaf mechanism generates
4134   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4135   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4136   //
4137   // If we care generating the pre-barrier without a frame (e.g. in the
4138   // intrinsified Reference.get() routine) then ebp might be pointing to
4139   // the caller frame and so this check will most likely fail at runtime.
4140   //
4141   // Expanding the call directly bypasses the generation of the check.
4142   // So when we do not have have a full interpreter frame on the stack
4143   // expand_call should be passed true.
4144 
4145   NOT_LP64( push(thread); )
4146 
4147   if (expand_call) {
4148     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4149     pass_arg1(this, thread);
4150     pass_arg0(this, pre_val);
4151     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4152   } else {
4153     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4154   }
4155 
4156   NOT_LP64( pop(thread); )
4157 
4158   // save the live input values
4159   if (pre_val != rax)
4160     pop(pre_val);
4161 
4162   if (obj != noreg && obj != rax)
4163     pop(obj);
4164 
4165   if(tosca_live) pop(rax);
4166 
4167   bind(done);
4168 }
4169 
4170 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4171                                            Register new_val,
4172                                            Register thread,
4173                                            Register tmp,
4174                                            Register tmp2) {
4175 #ifdef _LP64
4176   assert(thread == r15_thread, "must be");
4177 #endif // _LP64
4178 
4179   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4180                                        PtrQueue::byte_offset_of_index()));
4181   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4182                                        PtrQueue::byte_offset_of_buf()));
4183 
4184   CardTableModRefBS* ct =
4185     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4186   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4187 
4188   Label done;
4189   Label runtime;
4190 
4191   // Does store cross heap regions?
4192 
4193   movptr(tmp, store_addr);
4194   xorptr(tmp, new_val);
4195   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4196   jcc(Assembler::equal, done);
4197 
4198   // crosses regions, storing NULL?
4199 
4200   cmpptr(new_val, (int32_t) NULL_WORD);
4201   jcc(Assembler::equal, done);
4202 
4203   // storing region crossing non-NULL, is card already dirty?
4204 
4205   const Register card_addr = tmp;
4206   const Register cardtable = tmp2;
4207 
4208   movptr(card_addr, store_addr);
4209   shrptr(card_addr, CardTableModRefBS::card_shift);
4210   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4211   // a valid address and therefore is not properly handled by the relocation code.
4212   movptr(cardtable, (intptr_t)ct->byte_map_base);
4213   addptr(card_addr, cardtable);
4214 
4215   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4216   jcc(Assembler::equal, done);
4217 
4218   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4219   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4220   jcc(Assembler::equal, done);
4221 
4222 
4223   // storing a region crossing, non-NULL oop, card is clean.
4224   // dirty card and log.
4225 
4226   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4227 
4228   cmpl(queue_index, 0);
4229   jcc(Assembler::equal, runtime);
4230   subl(queue_index, wordSize);
4231   movptr(tmp2, buffer);
4232 #ifdef _LP64
4233   movslq(rscratch1, queue_index);
4234   addq(tmp2, rscratch1);
4235   movq(Address(tmp2, 0), card_addr);
4236 #else
4237   addl(tmp2, queue_index);
4238   movl(Address(tmp2, 0), card_addr);
4239 #endif
4240   jmp(done);
4241 
4242   bind(runtime);
4243   // save the live input values
4244   push(store_addr);
4245   push(new_val);
4246 #ifdef _LP64
4247   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4248 #else
4249   push(thread);
4250   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4251   pop(thread);
4252 #endif
4253   pop(new_val);
4254   pop(store_addr);
4255 
4256   bind(done);
4257 }
4258 
4259 #endif // INCLUDE_ALL_GCS
4260 //////////////////////////////////////////////////////////////////////////////////
4261 
4262 
4263 void MacroAssembler::store_check(Register obj, Address dst) {
4264   store_check(obj);
4265 }
4266 
4267 void MacroAssembler::store_check(Register obj) {
4268   // Does a store check for the oop in register obj. The content of
4269   // register obj is destroyed afterwards.
4270 
4271   BarrierSet* bs = Universe::heap()->barrier_set();
4272   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4273 
4274   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4275   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4276 
4277   shrptr(obj, CardTableModRefBS::card_shift);
4278 
4279   Address card_addr;
4280 
4281   // The calculation for byte_map_base is as follows:
4282   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4283   // So this essentially converts an address to a displacement and it will
4284   // never need to be relocated. On 64bit however the value may be too
4285   // large for a 32bit displacement.
4286   intptr_t disp = (intptr_t) ct->byte_map_base;
4287   if (is_simm32(disp)) {
4288     card_addr = Address(noreg, obj, Address::times_1, disp);
4289   } else {
4290     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4291     // displacement and done in a single instruction given favorable mapping and a
4292     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4293     // entry and that entry is not properly handled by the relocation code.
4294     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4295     Address index(noreg, obj, Address::times_1);
4296     card_addr = as_Address(ArrayAddress(cardtable, index));
4297   }
4298 
4299   int dirty = CardTableModRefBS::dirty_card_val();
4300   if (UseCondCardMark) {
4301     Label L_already_dirty;
4302     if (UseConcMarkSweepGC) {
4303       membar(Assembler::StoreLoad);
4304     }
4305     cmpb(card_addr, dirty);
4306     jcc(Assembler::equal, L_already_dirty);
4307     movb(card_addr, dirty);
4308     bind(L_already_dirty);
4309   } else {
4310     movb(card_addr, dirty);
4311   }
4312 }
4313 
4314 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4315   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4316 }
4317 
4318 // Force generation of a 4 byte immediate value even if it fits into 8bit
4319 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4320   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4321 }
4322 
4323 void MacroAssembler::subptr(Register dst, Register src) {
4324   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4325 }
4326 
4327 // C++ bool manipulation
4328 void MacroAssembler::testbool(Register dst) {
4329   if(sizeof(bool) == 1)
4330     testb(dst, 0xff);
4331   else if(sizeof(bool) == 2) {
4332     // testw implementation needed for two byte bools
4333     ShouldNotReachHere();
4334   } else if(sizeof(bool) == 4)
4335     testl(dst, dst);
4336   else
4337     // unsupported
4338     ShouldNotReachHere();
4339 }
4340 
4341 void MacroAssembler::testptr(Register dst, Register src) {
4342   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4343 }
4344 
4345 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4346 void MacroAssembler::tlab_allocate(Register obj,
4347                                    Register var_size_in_bytes,
4348                                    int con_size_in_bytes,
4349                                    Register t1,
4350                                    Register t2,
4351                                    Label& slow_case) {
4352   assert_different_registers(obj, t1, t2);
4353   assert_different_registers(obj, var_size_in_bytes, t1);
4354   Register end = t2;
4355   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4356 
4357   verify_tlab();
4358 
4359   NOT_LP64(get_thread(thread));
4360 
4361   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4362   if (var_size_in_bytes == noreg) {
4363     lea(end, Address(obj, con_size_in_bytes));
4364   } else {
4365     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4366   }
4367   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4368   jcc(Assembler::above, slow_case);
4369 
4370   // update the tlab top pointer
4371   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4372 
4373   // recover var_size_in_bytes if necessary
4374   if (var_size_in_bytes == end) {
4375     subptr(var_size_in_bytes, obj);
4376   }
4377   verify_tlab();
4378 }
4379 
4380 // Preserves rbx, and rdx.
4381 Register MacroAssembler::tlab_refill(Label& retry,
4382                                      Label& try_eden,
4383                                      Label& slow_case) {
4384   Register top = rax;
4385   Register t1  = rcx;
4386   Register t2  = rsi;
4387   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4388   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4389   Label do_refill, discard_tlab;
4390 
4391   if (!Universe::heap()->supports_inline_contig_alloc()) {
4392     // No allocation in the shared eden.
4393     jmp(slow_case);
4394   }
4395 
4396   NOT_LP64(get_thread(thread_reg));
4397 
4398   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4399   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4400 
4401   // calculate amount of free space
4402   subptr(t1, top);
4403   shrptr(t1, LogHeapWordSize);
4404 
4405   // Retain tlab and allocate object in shared space if
4406   // the amount free in the tlab is too large to discard.
4407   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4408   jcc(Assembler::lessEqual, discard_tlab);
4409 
4410   // Retain
4411   // %%% yuck as movptr...
4412   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4413   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4414   if (TLABStats) {
4415     // increment number of slow_allocations
4416     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4417   }
4418   jmp(try_eden);
4419 
4420   bind(discard_tlab);
4421   if (TLABStats) {
4422     // increment number of refills
4423     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4424     // accumulate wastage -- t1 is amount free in tlab
4425     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4426   }
4427 
4428   // if tlab is currently allocated (top or end != null) then
4429   // fill [top, end + alignment_reserve) with array object
4430   testptr(top, top);
4431   jcc(Assembler::zero, do_refill);
4432 
4433   // set up the mark word
4434   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4435   // set the length to the remaining space
4436   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4437   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4438   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4439   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4440   // set klass to intArrayKlass
4441   // dubious reloc why not an oop reloc?
4442   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4443   // store klass last.  concurrent gcs assumes klass length is valid if
4444   // klass field is not null.
4445   store_klass(top, t1);
4446 
4447   movptr(t1, top);
4448   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4449   incr_allocated_bytes(thread_reg, t1, 0);
4450 
4451   // refill the tlab with an eden allocation
4452   bind(do_refill);
4453   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4454   shlptr(t1, LogHeapWordSize);
4455   // allocate new tlab, address returned in top
4456   eden_allocate(top, t1, 0, t2, slow_case);
4457 
4458   // Check that t1 was preserved in eden_allocate.
4459 #ifdef ASSERT
4460   if (UseTLAB) {
4461     Label ok;
4462     Register tsize = rsi;
4463     assert_different_registers(tsize, thread_reg, t1);
4464     push(tsize);
4465     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4466     shlptr(tsize, LogHeapWordSize);
4467     cmpptr(t1, tsize);
4468     jcc(Assembler::equal, ok);
4469     STOP("assert(t1 != tlab size)");
4470     should_not_reach_here();
4471 
4472     bind(ok);
4473     pop(tsize);
4474   }
4475 #endif
4476   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4477   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4478   addptr(top, t1);
4479   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4480   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4481   verify_tlab();
4482   jmp(retry);
4483 
4484   return thread_reg; // for use by caller
4485 }
4486 
4487 void MacroAssembler::incr_allocated_bytes(Register thread,
4488                                           Register var_size_in_bytes,
4489                                           int con_size_in_bytes,
4490                                           Register t1) {
4491   if (!thread->is_valid()) {
4492 #ifdef _LP64
4493     thread = r15_thread;
4494 #else
4495     assert(t1->is_valid(), "need temp reg");
4496     thread = t1;
4497     get_thread(thread);
4498 #endif
4499   }
4500 
4501 #ifdef _LP64
4502   if (var_size_in_bytes->is_valid()) {
4503     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4504   } else {
4505     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4506   }
4507 #else
4508   if (var_size_in_bytes->is_valid()) {
4509     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4510   } else {
4511     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4512   }
4513   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4514 #endif
4515 }
4516 
4517 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4518   pusha();
4519 
4520   // if we are coming from c1, xmm registers may be live
4521   int off = 0;
4522   if (UseSSE == 1)  {
4523     subptr(rsp, sizeof(jdouble)*8);
4524     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4525     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4526     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4527     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4528     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4529     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4530     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4531     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4532   } else if (UseSSE >= 2)  {
4533     if (UseAVX > 2) {
4534       movl(rbx, 0xffff);
4535 #ifdef _LP64
4536       kmovql(k1, rbx);
4537 #else
4538       kmovdl(k1, rbx);
4539 #endif
4540     }
4541 #ifdef COMPILER2
4542     if (MaxVectorSize > 16) {
4543       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4544       // Save upper half of YMM registes
4545       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4546       vextractf128h(Address(rsp,  0),xmm0);
4547       vextractf128h(Address(rsp, 16),xmm1);
4548       vextractf128h(Address(rsp, 32),xmm2);
4549       vextractf128h(Address(rsp, 48),xmm3);
4550       vextractf128h(Address(rsp, 64),xmm4);
4551       vextractf128h(Address(rsp, 80),xmm5);
4552       vextractf128h(Address(rsp, 96),xmm6);
4553       vextractf128h(Address(rsp,112),xmm7);
4554 #ifdef _LP64
4555       vextractf128h(Address(rsp,128),xmm8);
4556       vextractf128h(Address(rsp,144),xmm9);
4557       vextractf128h(Address(rsp,160),xmm10);
4558       vextractf128h(Address(rsp,176),xmm11);
4559       vextractf128h(Address(rsp,192),xmm12);
4560       vextractf128h(Address(rsp,208),xmm13);
4561       vextractf128h(Address(rsp,224),xmm14);
4562       vextractf128h(Address(rsp,240),xmm15);
4563 #endif
4564     }
4565 #endif
4566     // Save whole 128bit (16 bytes) XMM regiters
4567     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4568     movdqu(Address(rsp,off++*16),xmm0);
4569     movdqu(Address(rsp,off++*16),xmm1);
4570     movdqu(Address(rsp,off++*16),xmm2);
4571     movdqu(Address(rsp,off++*16),xmm3);
4572     movdqu(Address(rsp,off++*16),xmm4);
4573     movdqu(Address(rsp,off++*16),xmm5);
4574     movdqu(Address(rsp,off++*16),xmm6);
4575     movdqu(Address(rsp,off++*16),xmm7);
4576 #ifdef _LP64
4577     movdqu(Address(rsp,off++*16),xmm8);
4578     movdqu(Address(rsp,off++*16),xmm9);
4579     movdqu(Address(rsp,off++*16),xmm10);
4580     movdqu(Address(rsp,off++*16),xmm11);
4581     movdqu(Address(rsp,off++*16),xmm12);
4582     movdqu(Address(rsp,off++*16),xmm13);
4583     movdqu(Address(rsp,off++*16),xmm14);
4584     movdqu(Address(rsp,off++*16),xmm15);
4585 #endif
4586   }
4587 
4588   // Preserve registers across runtime call
4589   int incoming_argument_and_return_value_offset = -1;
4590   if (num_fpu_regs_in_use > 1) {
4591     // Must preserve all other FPU regs (could alternatively convert
4592     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4593     // FPU state, but can not trust C compiler)
4594     NEEDS_CLEANUP;
4595     // NOTE that in this case we also push the incoming argument(s) to
4596     // the stack and restore it later; we also use this stack slot to
4597     // hold the return value from dsin, dcos etc.
4598     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4599       subptr(rsp, sizeof(jdouble));
4600       fstp_d(Address(rsp, 0));
4601     }
4602     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4603     for (int i = nb_args-1; i >= 0; i--) {
4604       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4605     }
4606   }
4607 
4608   subptr(rsp, nb_args*sizeof(jdouble));
4609   for (int i = 0; i < nb_args; i++) {
4610     fstp_d(Address(rsp, i*sizeof(jdouble)));
4611   }
4612 
4613 #ifdef _LP64
4614   if (nb_args > 0) {
4615     movdbl(xmm0, Address(rsp, 0));
4616   }
4617   if (nb_args > 1) {
4618     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4619   }
4620   assert(nb_args <= 2, "unsupported number of args");
4621 #endif // _LP64
4622 
4623   // NOTE: we must not use call_VM_leaf here because that requires a
4624   // complete interpreter frame in debug mode -- same bug as 4387334
4625   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4626   // do proper 64bit abi
4627 
4628   NEEDS_CLEANUP;
4629   // Need to add stack banging before this runtime call if it needs to
4630   // be taken; however, there is no generic stack banging routine at
4631   // the MacroAssembler level
4632 
4633   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4634 
4635 #ifdef _LP64
4636   movsd(Address(rsp, 0), xmm0);
4637   fld_d(Address(rsp, 0));
4638 #endif // _LP64
4639   addptr(rsp, sizeof(jdouble) * nb_args);
4640   if (num_fpu_regs_in_use > 1) {
4641     // Must save return value to stack and then restore entire FPU
4642     // stack except incoming arguments
4643     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4644     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4645       fld_d(Address(rsp, 0));
4646       addptr(rsp, sizeof(jdouble));
4647     }
4648     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4649     addptr(rsp, sizeof(jdouble) * nb_args);
4650   }
4651 
4652   off = 0;
4653   if (UseSSE == 1)  {
4654     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4655     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4656     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4657     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4658     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4659     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4660     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4661     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4662     addptr(rsp, sizeof(jdouble)*8);
4663   } else if (UseSSE >= 2)  {
4664     // Restore whole 128bit (16 bytes) XMM regiters
4665     movdqu(xmm0, Address(rsp,off++*16));
4666     movdqu(xmm1, Address(rsp,off++*16));
4667     movdqu(xmm2, Address(rsp,off++*16));
4668     movdqu(xmm3, Address(rsp,off++*16));
4669     movdqu(xmm4, Address(rsp,off++*16));
4670     movdqu(xmm5, Address(rsp,off++*16));
4671     movdqu(xmm6, Address(rsp,off++*16));
4672     movdqu(xmm7, Address(rsp,off++*16));
4673 #ifdef _LP64
4674     movdqu(xmm8, Address(rsp,off++*16));
4675     movdqu(xmm9, Address(rsp,off++*16));
4676     movdqu(xmm10, Address(rsp,off++*16));
4677     movdqu(xmm11, Address(rsp,off++*16));
4678     movdqu(xmm12, Address(rsp,off++*16));
4679     movdqu(xmm13, Address(rsp,off++*16));
4680     movdqu(xmm14, Address(rsp,off++*16));
4681     movdqu(xmm15, Address(rsp,off++*16));
4682 #endif
4683     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4684 #ifdef COMPILER2
4685     if (MaxVectorSize > 16) {
4686       // Restore upper half of YMM registes.
4687       vinsertf128h(xmm0, Address(rsp,  0));
4688       vinsertf128h(xmm1, Address(rsp, 16));
4689       vinsertf128h(xmm2, Address(rsp, 32));
4690       vinsertf128h(xmm3, Address(rsp, 48));
4691       vinsertf128h(xmm4, Address(rsp, 64));
4692       vinsertf128h(xmm5, Address(rsp, 80));
4693       vinsertf128h(xmm6, Address(rsp, 96));
4694       vinsertf128h(xmm7, Address(rsp,112));
4695 #ifdef _LP64
4696       vinsertf128h(xmm8, Address(rsp,128));
4697       vinsertf128h(xmm9, Address(rsp,144));
4698       vinsertf128h(xmm10, Address(rsp,160));
4699       vinsertf128h(xmm11, Address(rsp,176));
4700       vinsertf128h(xmm12, Address(rsp,192));
4701       vinsertf128h(xmm13, Address(rsp,208));
4702       vinsertf128h(xmm14, Address(rsp,224));
4703       vinsertf128h(xmm15, Address(rsp,240));
4704 #endif
4705       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4706     }
4707 #endif
4708   }
4709   popa();
4710 }
4711 
4712 static const double     pi_4 =  0.7853981633974483;
4713 
4714 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4715   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4716   // was attempted in this code; unfortunately it appears that the
4717   // switch to 80-bit precision and back causes this to be
4718   // unprofitable compared with simply performing a runtime call if
4719   // the argument is out of the (-pi/4, pi/4) range.
4720 
4721   Register tmp = noreg;
4722   if (!VM_Version::supports_cmov()) {
4723     // fcmp needs a temporary so preserve rbx,
4724     tmp = rbx;
4725     push(tmp);
4726   }
4727 
4728   Label slow_case, done;
4729 
4730   ExternalAddress pi4_adr = (address)&pi_4;
4731   if (reachable(pi4_adr)) {
4732     // x ?<= pi/4
4733     fld_d(pi4_adr);
4734     fld_s(1);                // Stack:  X  PI/4  X
4735     fabs();                  // Stack: |X| PI/4  X
4736     fcmp(tmp);
4737     jcc(Assembler::above, slow_case);
4738 
4739     // fastest case: -pi/4 <= x <= pi/4
4740     switch(trig) {
4741     case 's':
4742       fsin();
4743       break;
4744     case 'c':
4745       fcos();
4746       break;
4747     case 't':
4748       ftan();
4749       break;
4750     default:
4751       assert(false, "bad intrinsic");
4752       break;
4753     }
4754     jmp(done);
4755   }
4756 
4757   // slow case: runtime call
4758   bind(slow_case);
4759 
4760   switch(trig) {
4761   case 's':
4762     {
4763       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4764     }
4765     break;
4766   case 'c':
4767     {
4768       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4769     }
4770     break;
4771   case 't':
4772     {
4773       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4774     }
4775     break;
4776   default:
4777     assert(false, "bad intrinsic");
4778     break;
4779   }
4780 
4781   // Come here with result in F-TOS
4782   bind(done);
4783 
4784   if (tmp != noreg) {
4785     pop(tmp);
4786   }
4787 }
4788 
4789 
4790 // Look up the method for a megamorphic invokeinterface call.
4791 // The target method is determined by <intf_klass, itable_index>.
4792 // The receiver klass is in recv_klass.
4793 // On success, the result will be in method_result, and execution falls through.
4794 // On failure, execution transfers to the given label.
4795 void MacroAssembler::lookup_interface_method(Register recv_klass,
4796                                              Register intf_klass,
4797                                              RegisterOrConstant itable_index,
4798                                              Register method_result,
4799                                              Register scan_temp,
4800                                              Label& L_no_such_interface) {
4801   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4802   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4803          "caller must use same register for non-constant itable index as for method");
4804 
4805   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4806   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4807   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4808   int scan_step   = itableOffsetEntry::size() * wordSize;
4809   int vte_size    = vtableEntry::size() * wordSize;
4810   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4811   assert(vte_size == wordSize, "else adjust times_vte_scale");
4812 
4813   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4814 
4815   // %%% Could store the aligned, prescaled offset in the klassoop.
4816   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4817   if (HeapWordsPerLong > 1) {
4818     // Round up to align_object_offset boundary
4819     // see code for InstanceKlass::start_of_itable!
4820     round_to(scan_temp, BytesPerLong);
4821   }
4822 
4823   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4824   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4825   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4826 
4827   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4828   //   if (scan->interface() == intf) {
4829   //     result = (klass + scan->offset() + itable_index);
4830   //   }
4831   // }
4832   Label search, found_method;
4833 
4834   for (int peel = 1; peel >= 0; peel--) {
4835     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4836     cmpptr(intf_klass, method_result);
4837 
4838     if (peel) {
4839       jccb(Assembler::equal, found_method);
4840     } else {
4841       jccb(Assembler::notEqual, search);
4842       // (invert the test to fall through to found_method...)
4843     }
4844 
4845     if (!peel)  break;
4846 
4847     bind(search);
4848 
4849     // Check that the previous entry is non-null.  A null entry means that
4850     // the receiver class doesn't implement the interface, and wasn't the
4851     // same as when the caller was compiled.
4852     testptr(method_result, method_result);
4853     jcc(Assembler::zero, L_no_such_interface);
4854     addptr(scan_temp, scan_step);
4855   }
4856 
4857   bind(found_method);
4858 
4859   // Got a hit.
4860   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4861   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4862 }
4863 
4864 
4865 // virtual method calling
4866 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4867                                            RegisterOrConstant vtable_index,
4868                                            Register method_result) {
4869   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4870   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4871   Address vtable_entry_addr(recv_klass,
4872                             vtable_index, Address::times_ptr,
4873                             base + vtableEntry::method_offset_in_bytes());
4874   movptr(method_result, vtable_entry_addr);
4875 }
4876 
4877 
4878 void MacroAssembler::check_klass_subtype(Register sub_klass,
4879                            Register super_klass,
4880                            Register temp_reg,
4881                            Label& L_success) {
4882   Label L_failure;
4883   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4884   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4885   bind(L_failure);
4886 }
4887 
4888 
4889 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4890                                                    Register super_klass,
4891                                                    Register temp_reg,
4892                                                    Label* L_success,
4893                                                    Label* L_failure,
4894                                                    Label* L_slow_path,
4895                                         RegisterOrConstant super_check_offset) {
4896   assert_different_registers(sub_klass, super_klass, temp_reg);
4897   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4898   if (super_check_offset.is_register()) {
4899     assert_different_registers(sub_klass, super_klass,
4900                                super_check_offset.as_register());
4901   } else if (must_load_sco) {
4902     assert(temp_reg != noreg, "supply either a temp or a register offset");
4903   }
4904 
4905   Label L_fallthrough;
4906   int label_nulls = 0;
4907   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4908   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4909   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4910   assert(label_nulls <= 1, "at most one NULL in the batch");
4911 
4912   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4913   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4914   Address super_check_offset_addr(super_klass, sco_offset);
4915 
4916   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4917   // range of a jccb.  If this routine grows larger, reconsider at
4918   // least some of these.
4919 #define local_jcc(assembler_cond, label)                                \
4920   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4921   else                             jcc( assembler_cond, label) /*omit semi*/
4922 
4923   // Hacked jmp, which may only be used just before L_fallthrough.
4924 #define final_jmp(label)                                                \
4925   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4926   else                            jmp(label)                /*omit semi*/
4927 
4928   // If the pointers are equal, we are done (e.g., String[] elements).
4929   // This self-check enables sharing of secondary supertype arrays among
4930   // non-primary types such as array-of-interface.  Otherwise, each such
4931   // type would need its own customized SSA.
4932   // We move this check to the front of the fast path because many
4933   // type checks are in fact trivially successful in this manner,
4934   // so we get a nicely predicted branch right at the start of the check.
4935   cmpptr(sub_klass, super_klass);
4936   local_jcc(Assembler::equal, *L_success);
4937 
4938   // Check the supertype display:
4939   if (must_load_sco) {
4940     // Positive movl does right thing on LP64.
4941     movl(temp_reg, super_check_offset_addr);
4942     super_check_offset = RegisterOrConstant(temp_reg);
4943   }
4944   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4945   cmpptr(super_klass, super_check_addr); // load displayed supertype
4946 
4947   // This check has worked decisively for primary supers.
4948   // Secondary supers are sought in the super_cache ('super_cache_addr').
4949   // (Secondary supers are interfaces and very deeply nested subtypes.)
4950   // This works in the same check above because of a tricky aliasing
4951   // between the super_cache and the primary super display elements.
4952   // (The 'super_check_addr' can address either, as the case requires.)
4953   // Note that the cache is updated below if it does not help us find
4954   // what we need immediately.
4955   // So if it was a primary super, we can just fail immediately.
4956   // Otherwise, it's the slow path for us (no success at this point).
4957 
4958   if (super_check_offset.is_register()) {
4959     local_jcc(Assembler::equal, *L_success);
4960     cmpl(super_check_offset.as_register(), sc_offset);
4961     if (L_failure == &L_fallthrough) {
4962       local_jcc(Assembler::equal, *L_slow_path);
4963     } else {
4964       local_jcc(Assembler::notEqual, *L_failure);
4965       final_jmp(*L_slow_path);
4966     }
4967   } else if (super_check_offset.as_constant() == sc_offset) {
4968     // Need a slow path; fast failure is impossible.
4969     if (L_slow_path == &L_fallthrough) {
4970       local_jcc(Assembler::equal, *L_success);
4971     } else {
4972       local_jcc(Assembler::notEqual, *L_slow_path);
4973       final_jmp(*L_success);
4974     }
4975   } else {
4976     // No slow path; it's a fast decision.
4977     if (L_failure == &L_fallthrough) {
4978       local_jcc(Assembler::equal, *L_success);
4979     } else {
4980       local_jcc(Assembler::notEqual, *L_failure);
4981       final_jmp(*L_success);
4982     }
4983   }
4984 
4985   bind(L_fallthrough);
4986 
4987 #undef local_jcc
4988 #undef final_jmp
4989 }
4990 
4991 
4992 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4993                                                    Register super_klass,
4994                                                    Register temp_reg,
4995                                                    Register temp2_reg,
4996                                                    Label* L_success,
4997                                                    Label* L_failure,
4998                                                    bool set_cond_codes) {
4999   assert_different_registers(sub_klass, super_klass, temp_reg);
5000   if (temp2_reg != noreg)
5001     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5002 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5003 
5004   Label L_fallthrough;
5005   int label_nulls = 0;
5006   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5007   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5008   assert(label_nulls <= 1, "at most one NULL in the batch");
5009 
5010   // a couple of useful fields in sub_klass:
5011   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5012   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5013   Address secondary_supers_addr(sub_klass, ss_offset);
5014   Address super_cache_addr(     sub_klass, sc_offset);
5015 
5016   // Do a linear scan of the secondary super-klass chain.
5017   // This code is rarely used, so simplicity is a virtue here.
5018   // The repne_scan instruction uses fixed registers, which we must spill.
5019   // Don't worry too much about pre-existing connections with the input regs.
5020 
5021   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5022   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5023 
5024   // Get super_klass value into rax (even if it was in rdi or rcx).
5025   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5026   if (super_klass != rax || UseCompressedOops) {
5027     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5028     mov(rax, super_klass);
5029   }
5030   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5031   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5032 
5033 #ifndef PRODUCT
5034   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5035   ExternalAddress pst_counter_addr((address) pst_counter);
5036   NOT_LP64(  incrementl(pst_counter_addr) );
5037   LP64_ONLY( lea(rcx, pst_counter_addr) );
5038   LP64_ONLY( incrementl(Address(rcx, 0)) );
5039 #endif //PRODUCT
5040 
5041   // We will consult the secondary-super array.
5042   movptr(rdi, secondary_supers_addr);
5043   // Load the array length.  (Positive movl does right thing on LP64.)
5044   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5045   // Skip to start of data.
5046   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5047 
5048   // Scan RCX words at [RDI] for an occurrence of RAX.
5049   // Set NZ/Z based on last compare.
5050   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5051   // not change flags (only scas instruction which is repeated sets flags).
5052   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5053 
5054     testptr(rax,rax); // Set Z = 0
5055     repne_scan();
5056 
5057   // Unspill the temp. registers:
5058   if (pushed_rdi)  pop(rdi);
5059   if (pushed_rcx)  pop(rcx);
5060   if (pushed_rax)  pop(rax);
5061 
5062   if (set_cond_codes) {
5063     // Special hack for the AD files:  rdi is guaranteed non-zero.
5064     assert(!pushed_rdi, "rdi must be left non-NULL");
5065     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5066   }
5067 
5068   if (L_failure == &L_fallthrough)
5069         jccb(Assembler::notEqual, *L_failure);
5070   else  jcc(Assembler::notEqual, *L_failure);
5071 
5072   // Success.  Cache the super we found and proceed in triumph.
5073   movptr(super_cache_addr, super_klass);
5074 
5075   if (L_success != &L_fallthrough) {
5076     jmp(*L_success);
5077   }
5078 
5079 #undef IS_A_TEMP
5080 
5081   bind(L_fallthrough);
5082 }
5083 
5084 
5085 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5086   if (VM_Version::supports_cmov()) {
5087     cmovl(cc, dst, src);
5088   } else {
5089     Label L;
5090     jccb(negate_condition(cc), L);
5091     movl(dst, src);
5092     bind(L);
5093   }
5094 }
5095 
5096 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5097   if (VM_Version::supports_cmov()) {
5098     cmovl(cc, dst, src);
5099   } else {
5100     Label L;
5101     jccb(negate_condition(cc), L);
5102     movl(dst, src);
5103     bind(L);
5104   }
5105 }
5106 
5107 void MacroAssembler::verify_oop(Register reg, const char* s) {
5108   if (!VerifyOops) return;
5109 
5110   // Pass register number to verify_oop_subroutine
5111   const char* b = NULL;
5112   {
5113     ResourceMark rm;
5114     stringStream ss;
5115     ss.print("verify_oop: %s: %s", reg->name(), s);
5116     b = code_string(ss.as_string());
5117   }
5118   BLOCK_COMMENT("verify_oop {");
5119 #ifdef _LP64
5120   push(rscratch1);                    // save r10, trashed by movptr()
5121 #endif
5122   push(rax);                          // save rax,
5123   push(reg);                          // pass register argument
5124   ExternalAddress buffer((address) b);
5125   // avoid using pushptr, as it modifies scratch registers
5126   // and our contract is not to modify anything
5127   movptr(rax, buffer.addr());
5128   push(rax);
5129   // call indirectly to solve generation ordering problem
5130   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5131   call(rax);
5132   // Caller pops the arguments (oop, message) and restores rax, r10
5133   BLOCK_COMMENT("} verify_oop");
5134 }
5135 
5136 
5137 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5138                                                       Register tmp,
5139                                                       int offset) {
5140   intptr_t value = *delayed_value_addr;
5141   if (value != 0)
5142     return RegisterOrConstant(value + offset);
5143 
5144   // load indirectly to solve generation ordering problem
5145   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5146 
5147 #ifdef ASSERT
5148   { Label L;
5149     testptr(tmp, tmp);
5150     if (WizardMode) {
5151       const char* buf = NULL;
5152       {
5153         ResourceMark rm;
5154         stringStream ss;
5155         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5156         buf = code_string(ss.as_string());
5157       }
5158       jcc(Assembler::notZero, L);
5159       STOP(buf);
5160     } else {
5161       jccb(Assembler::notZero, L);
5162       hlt();
5163     }
5164     bind(L);
5165   }
5166 #endif
5167 
5168   if (offset != 0)
5169     addptr(tmp, offset);
5170 
5171   return RegisterOrConstant(tmp);
5172 }
5173 
5174 
5175 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5176                                          int extra_slot_offset) {
5177   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5178   int stackElementSize = Interpreter::stackElementSize;
5179   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5180 #ifdef ASSERT
5181   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5182   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5183 #endif
5184   Register             scale_reg    = noreg;
5185   Address::ScaleFactor scale_factor = Address::no_scale;
5186   if (arg_slot.is_constant()) {
5187     offset += arg_slot.as_constant() * stackElementSize;
5188   } else {
5189     scale_reg    = arg_slot.as_register();
5190     scale_factor = Address::times(stackElementSize);
5191   }
5192   offset += wordSize;           // return PC is on stack
5193   return Address(rsp, scale_reg, scale_factor, offset);
5194 }
5195 
5196 
5197 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5198   if (!VerifyOops) return;
5199 
5200   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5201   // Pass register number to verify_oop_subroutine
5202   const char* b = NULL;
5203   {
5204     ResourceMark rm;
5205     stringStream ss;
5206     ss.print("verify_oop_addr: %s", s);
5207     b = code_string(ss.as_string());
5208   }
5209 #ifdef _LP64
5210   push(rscratch1);                    // save r10, trashed by movptr()
5211 #endif
5212   push(rax);                          // save rax,
5213   // addr may contain rsp so we will have to adjust it based on the push
5214   // we just did (and on 64 bit we do two pushes)
5215   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5216   // stores rax into addr which is backwards of what was intended.
5217   if (addr.uses(rsp)) {
5218     lea(rax, addr);
5219     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5220   } else {
5221     pushptr(addr);
5222   }
5223 
5224   ExternalAddress buffer((address) b);
5225   // pass msg argument
5226   // avoid using pushptr, as it modifies scratch registers
5227   // and our contract is not to modify anything
5228   movptr(rax, buffer.addr());
5229   push(rax);
5230 
5231   // call indirectly to solve generation ordering problem
5232   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5233   call(rax);
5234   // Caller pops the arguments (addr, message) and restores rax, r10.
5235 }
5236 
5237 void MacroAssembler::verify_tlab() {
5238 #ifdef ASSERT
5239   if (UseTLAB && VerifyOops) {
5240     Label next, ok;
5241     Register t1 = rsi;
5242     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5243 
5244     push(t1);
5245     NOT_LP64(push(thread_reg));
5246     NOT_LP64(get_thread(thread_reg));
5247 
5248     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5249     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5250     jcc(Assembler::aboveEqual, next);
5251     STOP("assert(top >= start)");
5252     should_not_reach_here();
5253 
5254     bind(next);
5255     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5256     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5257     jcc(Assembler::aboveEqual, ok);
5258     STOP("assert(top <= end)");
5259     should_not_reach_here();
5260 
5261     bind(ok);
5262     NOT_LP64(pop(thread_reg));
5263     pop(t1);
5264   }
5265 #endif
5266 }
5267 
5268 class ControlWord {
5269  public:
5270   int32_t _value;
5271 
5272   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5273   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5274   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5275   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5276   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5277   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5278   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5279   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5280 
5281   void print() const {
5282     // rounding control
5283     const char* rc;
5284     switch (rounding_control()) {
5285       case 0: rc = "round near"; break;
5286       case 1: rc = "round down"; break;
5287       case 2: rc = "round up  "; break;
5288       case 3: rc = "chop      "; break;
5289     };
5290     // precision control
5291     const char* pc;
5292     switch (precision_control()) {
5293       case 0: pc = "24 bits "; break;
5294       case 1: pc = "reserved"; break;
5295       case 2: pc = "53 bits "; break;
5296       case 3: pc = "64 bits "; break;
5297     };
5298     // flags
5299     char f[9];
5300     f[0] = ' ';
5301     f[1] = ' ';
5302     f[2] = (precision   ()) ? 'P' : 'p';
5303     f[3] = (underflow   ()) ? 'U' : 'u';
5304     f[4] = (overflow    ()) ? 'O' : 'o';
5305     f[5] = (zero_divide ()) ? 'Z' : 'z';
5306     f[6] = (denormalized()) ? 'D' : 'd';
5307     f[7] = (invalid     ()) ? 'I' : 'i';
5308     f[8] = '\x0';
5309     // output
5310     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5311   }
5312 
5313 };
5314 
5315 class StatusWord {
5316  public:
5317   int32_t _value;
5318 
5319   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5320   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5321   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5322   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5323   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5324   int  top() const                     { return  (_value >> 11) & 7      ; }
5325   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5326   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5327   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5328   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5329   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5330   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5331   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5332   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5333 
5334   void print() const {
5335     // condition codes
5336     char c[5];
5337     c[0] = (C3()) ? '3' : '-';
5338     c[1] = (C2()) ? '2' : '-';
5339     c[2] = (C1()) ? '1' : '-';
5340     c[3] = (C0()) ? '0' : '-';
5341     c[4] = '\x0';
5342     // flags
5343     char f[9];
5344     f[0] = (error_status()) ? 'E' : '-';
5345     f[1] = (stack_fault ()) ? 'S' : '-';
5346     f[2] = (precision   ()) ? 'P' : '-';
5347     f[3] = (underflow   ()) ? 'U' : '-';
5348     f[4] = (overflow    ()) ? 'O' : '-';
5349     f[5] = (zero_divide ()) ? 'Z' : '-';
5350     f[6] = (denormalized()) ? 'D' : '-';
5351     f[7] = (invalid     ()) ? 'I' : '-';
5352     f[8] = '\x0';
5353     // output
5354     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5355   }
5356 
5357 };
5358 
5359 class TagWord {
5360  public:
5361   int32_t _value;
5362 
5363   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5364 
5365   void print() const {
5366     printf("%04x", _value & 0xFFFF);
5367   }
5368 
5369 };
5370 
5371 class FPU_Register {
5372  public:
5373   int32_t _m0;
5374   int32_t _m1;
5375   int16_t _ex;
5376 
5377   bool is_indefinite() const           {
5378     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5379   }
5380 
5381   void print() const {
5382     char  sign = (_ex < 0) ? '-' : '+';
5383     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5384     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5385   };
5386 
5387 };
5388 
5389 class FPU_State {
5390  public:
5391   enum {
5392     register_size       = 10,
5393     number_of_registers =  8,
5394     register_mask       =  7
5395   };
5396 
5397   ControlWord  _control_word;
5398   StatusWord   _status_word;
5399   TagWord      _tag_word;
5400   int32_t      _error_offset;
5401   int32_t      _error_selector;
5402   int32_t      _data_offset;
5403   int32_t      _data_selector;
5404   int8_t       _register[register_size * number_of_registers];
5405 
5406   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5407   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5408 
5409   const char* tag_as_string(int tag) const {
5410     switch (tag) {
5411       case 0: return "valid";
5412       case 1: return "zero";
5413       case 2: return "special";
5414       case 3: return "empty";
5415     }
5416     ShouldNotReachHere();
5417     return NULL;
5418   }
5419 
5420   void print() const {
5421     // print computation registers
5422     { int t = _status_word.top();
5423       for (int i = 0; i < number_of_registers; i++) {
5424         int j = (i - t) & register_mask;
5425         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5426         st(j)->print();
5427         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5428       }
5429     }
5430     printf("\n");
5431     // print control registers
5432     printf("ctrl = "); _control_word.print(); printf("\n");
5433     printf("stat = "); _status_word .print(); printf("\n");
5434     printf("tags = "); _tag_word    .print(); printf("\n");
5435   }
5436 
5437 };
5438 
5439 class Flag_Register {
5440  public:
5441   int32_t _value;
5442 
5443   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5444   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5445   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5446   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5447   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5448   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5449   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5450 
5451   void print() const {
5452     // flags
5453     char f[8];
5454     f[0] = (overflow       ()) ? 'O' : '-';
5455     f[1] = (direction      ()) ? 'D' : '-';
5456     f[2] = (sign           ()) ? 'S' : '-';
5457     f[3] = (zero           ()) ? 'Z' : '-';
5458     f[4] = (auxiliary_carry()) ? 'A' : '-';
5459     f[5] = (parity         ()) ? 'P' : '-';
5460     f[6] = (carry          ()) ? 'C' : '-';
5461     f[7] = '\x0';
5462     // output
5463     printf("%08x  flags = %s", _value, f);
5464   }
5465 
5466 };
5467 
5468 class IU_Register {
5469  public:
5470   int32_t _value;
5471 
5472   void print() const {
5473     printf("%08x  %11d", _value, _value);
5474   }
5475 
5476 };
5477 
5478 class IU_State {
5479  public:
5480   Flag_Register _eflags;
5481   IU_Register   _rdi;
5482   IU_Register   _rsi;
5483   IU_Register   _rbp;
5484   IU_Register   _rsp;
5485   IU_Register   _rbx;
5486   IU_Register   _rdx;
5487   IU_Register   _rcx;
5488   IU_Register   _rax;
5489 
5490   void print() const {
5491     // computation registers
5492     printf("rax,  = "); _rax.print(); printf("\n");
5493     printf("rbx,  = "); _rbx.print(); printf("\n");
5494     printf("rcx  = "); _rcx.print(); printf("\n");
5495     printf("rdx  = "); _rdx.print(); printf("\n");
5496     printf("rdi  = "); _rdi.print(); printf("\n");
5497     printf("rsi  = "); _rsi.print(); printf("\n");
5498     printf("rbp,  = "); _rbp.print(); printf("\n");
5499     printf("rsp  = "); _rsp.print(); printf("\n");
5500     printf("\n");
5501     // control registers
5502     printf("flgs = "); _eflags.print(); printf("\n");
5503   }
5504 };
5505 
5506 
5507 class CPU_State {
5508  public:
5509   FPU_State _fpu_state;
5510   IU_State  _iu_state;
5511 
5512   void print() const {
5513     printf("--------------------------------------------------\n");
5514     _iu_state .print();
5515     printf("\n");
5516     _fpu_state.print();
5517     printf("--------------------------------------------------\n");
5518   }
5519 
5520 };
5521 
5522 
5523 static void _print_CPU_state(CPU_State* state) {
5524   state->print();
5525 };
5526 
5527 
5528 void MacroAssembler::print_CPU_state() {
5529   push_CPU_state();
5530   push(rsp);                // pass CPU state
5531   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5532   addptr(rsp, wordSize);       // discard argument
5533   pop_CPU_state();
5534 }
5535 
5536 
5537 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5538   static int counter = 0;
5539   FPU_State* fs = &state->_fpu_state;
5540   counter++;
5541   // For leaf calls, only verify that the top few elements remain empty.
5542   // We only need 1 empty at the top for C2 code.
5543   if( stack_depth < 0 ) {
5544     if( fs->tag_for_st(7) != 3 ) {
5545       printf("FPR7 not empty\n");
5546       state->print();
5547       assert(false, "error");
5548       return false;
5549     }
5550     return true;                // All other stack states do not matter
5551   }
5552 
5553   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5554          "bad FPU control word");
5555 
5556   // compute stack depth
5557   int i = 0;
5558   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5559   int d = i;
5560   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5561   // verify findings
5562   if (i != FPU_State::number_of_registers) {
5563     // stack not contiguous
5564     printf("%s: stack not contiguous at ST%d\n", s, i);
5565     state->print();
5566     assert(false, "error");
5567     return false;
5568   }
5569   // check if computed stack depth corresponds to expected stack depth
5570   if (stack_depth < 0) {
5571     // expected stack depth is -stack_depth or less
5572     if (d > -stack_depth) {
5573       // too many elements on the stack
5574       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5575       state->print();
5576       assert(false, "error");
5577       return false;
5578     }
5579   } else {
5580     // expected stack depth is stack_depth
5581     if (d != stack_depth) {
5582       // wrong stack depth
5583       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5584       state->print();
5585       assert(false, "error");
5586       return false;
5587     }
5588   }
5589   // everything is cool
5590   return true;
5591 }
5592 
5593 
5594 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5595   if (!VerifyFPU) return;
5596   push_CPU_state();
5597   push(rsp);                // pass CPU state
5598   ExternalAddress msg((address) s);
5599   // pass message string s
5600   pushptr(msg.addr());
5601   push(stack_depth);        // pass stack depth
5602   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5603   addptr(rsp, 3 * wordSize);   // discard arguments
5604   // check for error
5605   { Label L;
5606     testl(rax, rax);
5607     jcc(Assembler::notZero, L);
5608     int3();                  // break if error condition
5609     bind(L);
5610   }
5611   pop_CPU_state();
5612 }
5613 
5614 void MacroAssembler::restore_cpu_control_state_after_jni() {
5615   // Either restore the MXCSR register after returning from the JNI Call
5616   // or verify that it wasn't changed (with -Xcheck:jni flag).
5617   if (VM_Version::supports_sse()) {
5618     if (RestoreMXCSROnJNICalls) {
5619       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5620     } else if (CheckJNICalls) {
5621       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5622     }
5623   }
5624   if (VM_Version::supports_avx()) {
5625     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5626     vzeroupper();
5627   }
5628 
5629 #ifndef _LP64
5630   // Either restore the x87 floating pointer control word after returning
5631   // from the JNI call or verify that it wasn't changed.
5632   if (CheckJNICalls) {
5633     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5634   }
5635 #endif // _LP64
5636 }
5637 
5638 
5639 void MacroAssembler::load_klass(Register dst, Register src) {
5640 #ifdef _LP64
5641   if (UseCompressedClassPointers) {
5642     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5643     decode_klass_not_null(dst);
5644   } else
5645 #endif
5646     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5647 }
5648 
5649 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5650   load_klass(dst, src);
5651   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5652 }
5653 
5654 void MacroAssembler::store_klass(Register dst, Register src) {
5655 #ifdef _LP64
5656   if (UseCompressedClassPointers) {
5657     encode_klass_not_null(src);
5658     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5659   } else
5660 #endif
5661     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5662 }
5663 
5664 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5665 #ifdef _LP64
5666   // FIXME: Must change all places where we try to load the klass.
5667   if (UseCompressedOops) {
5668     movl(dst, src);
5669     decode_heap_oop(dst);
5670   } else
5671 #endif
5672     movptr(dst, src);
5673 }
5674 
5675 // Doesn't do verfication, generates fixed size code
5676 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5677 #ifdef _LP64
5678   if (UseCompressedOops) {
5679     movl(dst, src);
5680     decode_heap_oop_not_null(dst);
5681   } else
5682 #endif
5683     movptr(dst, src);
5684 }
5685 
5686 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5687 #ifdef _LP64
5688   if (UseCompressedOops) {
5689     assert(!dst.uses(src), "not enough registers");
5690     encode_heap_oop(src);
5691     movl(dst, src);
5692   } else
5693 #endif
5694     movptr(dst, src);
5695 }
5696 
5697 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5698   assert_different_registers(src1, tmp);
5699 #ifdef _LP64
5700   if (UseCompressedOops) {
5701     bool did_push = false;
5702     if (tmp == noreg) {
5703       tmp = rax;
5704       push(tmp);
5705       did_push = true;
5706       assert(!src2.uses(rsp), "can't push");
5707     }
5708     load_heap_oop(tmp, src2);
5709     cmpptr(src1, tmp);
5710     if (did_push)  pop(tmp);
5711   } else
5712 #endif
5713     cmpptr(src1, src2);
5714 }
5715 
5716 // Used for storing NULLs.
5717 void MacroAssembler::store_heap_oop_null(Address dst) {
5718 #ifdef _LP64
5719   if (UseCompressedOops) {
5720     movl(dst, (int32_t)NULL_WORD);
5721   } else {
5722     movslq(dst, (int32_t)NULL_WORD);
5723   }
5724 #else
5725   movl(dst, (int32_t)NULL_WORD);
5726 #endif
5727 }
5728 
5729 #ifdef _LP64
5730 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5731   if (UseCompressedClassPointers) {
5732     // Store to klass gap in destination
5733     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5734   }
5735 }
5736 
5737 #ifdef ASSERT
5738 void MacroAssembler::verify_heapbase(const char* msg) {
5739   assert (UseCompressedOops, "should be compressed");
5740   assert (Universe::heap() != NULL, "java heap should be initialized");
5741   if (CheckCompressedOops) {
5742     Label ok;
5743     push(rscratch1); // cmpptr trashes rscratch1
5744     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5745     jcc(Assembler::equal, ok);
5746     STOP(msg);
5747     bind(ok);
5748     pop(rscratch1);
5749   }
5750 }
5751 #endif
5752 
5753 // Algorithm must match oop.inline.hpp encode_heap_oop.
5754 void MacroAssembler::encode_heap_oop(Register r) {
5755 #ifdef ASSERT
5756   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5757 #endif
5758   verify_oop(r, "broken oop in encode_heap_oop");
5759   if (Universe::narrow_oop_base() == NULL) {
5760     if (Universe::narrow_oop_shift() != 0) {
5761       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5762       shrq(r, LogMinObjAlignmentInBytes);
5763     }
5764     return;
5765   }
5766   testq(r, r);
5767   cmovq(Assembler::equal, r, r12_heapbase);
5768   subq(r, r12_heapbase);
5769   shrq(r, LogMinObjAlignmentInBytes);
5770 }
5771 
5772 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5773 #ifdef ASSERT
5774   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5775   if (CheckCompressedOops) {
5776     Label ok;
5777     testq(r, r);
5778     jcc(Assembler::notEqual, ok);
5779     STOP("null oop passed to encode_heap_oop_not_null");
5780     bind(ok);
5781   }
5782 #endif
5783   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5784   if (Universe::narrow_oop_base() != NULL) {
5785     subq(r, r12_heapbase);
5786   }
5787   if (Universe::narrow_oop_shift() != 0) {
5788     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5789     shrq(r, LogMinObjAlignmentInBytes);
5790   }
5791 }
5792 
5793 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5794 #ifdef ASSERT
5795   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5796   if (CheckCompressedOops) {
5797     Label ok;
5798     testq(src, src);
5799     jcc(Assembler::notEqual, ok);
5800     STOP("null oop passed to encode_heap_oop_not_null2");
5801     bind(ok);
5802   }
5803 #endif
5804   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5805   if (dst != src) {
5806     movq(dst, src);
5807   }
5808   if (Universe::narrow_oop_base() != NULL) {
5809     subq(dst, r12_heapbase);
5810   }
5811   if (Universe::narrow_oop_shift() != 0) {
5812     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5813     shrq(dst, LogMinObjAlignmentInBytes);
5814   }
5815 }
5816 
5817 void  MacroAssembler::decode_heap_oop(Register r) {
5818 #ifdef ASSERT
5819   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5820 #endif
5821   if (Universe::narrow_oop_base() == NULL) {
5822     if (Universe::narrow_oop_shift() != 0) {
5823       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5824       shlq(r, LogMinObjAlignmentInBytes);
5825     }
5826   } else {
5827     Label done;
5828     shlq(r, LogMinObjAlignmentInBytes);
5829     jccb(Assembler::equal, done);
5830     addq(r, r12_heapbase);
5831     bind(done);
5832   }
5833   verify_oop(r, "broken oop in decode_heap_oop");
5834 }
5835 
5836 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5837   // Note: it will change flags
5838   assert (UseCompressedOops, "should only be used for compressed headers");
5839   assert (Universe::heap() != NULL, "java heap should be initialized");
5840   // Cannot assert, unverified entry point counts instructions (see .ad file)
5841   // vtableStubs also counts instructions in pd_code_size_limit.
5842   // Also do not verify_oop as this is called by verify_oop.
5843   if (Universe::narrow_oop_shift() != 0) {
5844     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5845     shlq(r, LogMinObjAlignmentInBytes);
5846     if (Universe::narrow_oop_base() != NULL) {
5847       addq(r, r12_heapbase);
5848     }
5849   } else {
5850     assert (Universe::narrow_oop_base() == NULL, "sanity");
5851   }
5852 }
5853 
5854 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5855   // Note: it will change flags
5856   assert (UseCompressedOops, "should only be used for compressed headers");
5857   assert (Universe::heap() != NULL, "java heap should be initialized");
5858   // Cannot assert, unverified entry point counts instructions (see .ad file)
5859   // vtableStubs also counts instructions in pd_code_size_limit.
5860   // Also do not verify_oop as this is called by verify_oop.
5861   if (Universe::narrow_oop_shift() != 0) {
5862     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5863     if (LogMinObjAlignmentInBytes == Address::times_8) {
5864       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5865     } else {
5866       if (dst != src) {
5867         movq(dst, src);
5868       }
5869       shlq(dst, LogMinObjAlignmentInBytes);
5870       if (Universe::narrow_oop_base() != NULL) {
5871         addq(dst, r12_heapbase);
5872       }
5873     }
5874   } else {
5875     assert (Universe::narrow_oop_base() == NULL, "sanity");
5876     if (dst != src) {
5877       movq(dst, src);
5878     }
5879   }
5880 }
5881 
5882 void MacroAssembler::encode_klass_not_null(Register r) {
5883   if (Universe::narrow_klass_base() != NULL) {
5884     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5885     assert(r != r12_heapbase, "Encoding a klass in r12");
5886     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5887     subq(r, r12_heapbase);
5888   }
5889   if (Universe::narrow_klass_shift() != 0) {
5890     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5891     shrq(r, LogKlassAlignmentInBytes);
5892   }
5893   if (Universe::narrow_klass_base() != NULL) {
5894     reinit_heapbase();
5895   }
5896 }
5897 
5898 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5899   if (dst == src) {
5900     encode_klass_not_null(src);
5901   } else {
5902     if (Universe::narrow_klass_base() != NULL) {
5903       mov64(dst, (int64_t)Universe::narrow_klass_base());
5904       negq(dst);
5905       addq(dst, src);
5906     } else {
5907       movptr(dst, src);
5908     }
5909     if (Universe::narrow_klass_shift() != 0) {
5910       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5911       shrq(dst, LogKlassAlignmentInBytes);
5912     }
5913   }
5914 }
5915 
5916 // Function instr_size_for_decode_klass_not_null() counts the instructions
5917 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5918 // when (Universe::heap() != NULL).  Hence, if the instructions they
5919 // generate change, then this method needs to be updated.
5920 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5921   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5922   if (Universe::narrow_klass_base() != NULL) {
5923     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5924     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5925   } else {
5926     // longest load decode klass function, mov64, leaq
5927     return 16;
5928   }
5929 }
5930 
5931 // !!! If the instructions that get generated here change then function
5932 // instr_size_for_decode_klass_not_null() needs to get updated.
5933 void  MacroAssembler::decode_klass_not_null(Register r) {
5934   // Note: it will change flags
5935   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5936   assert(r != r12_heapbase, "Decoding a klass in r12");
5937   // Cannot assert, unverified entry point counts instructions (see .ad file)
5938   // vtableStubs also counts instructions in pd_code_size_limit.
5939   // Also do not verify_oop as this is called by verify_oop.
5940   if (Universe::narrow_klass_shift() != 0) {
5941     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5942     shlq(r, LogKlassAlignmentInBytes);
5943   }
5944   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5945   if (Universe::narrow_klass_base() != NULL) {
5946     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5947     addq(r, r12_heapbase);
5948     reinit_heapbase();
5949   }
5950 }
5951 
5952 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5953   // Note: it will change flags
5954   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5955   if (dst == src) {
5956     decode_klass_not_null(dst);
5957   } else {
5958     // Cannot assert, unverified entry point counts instructions (see .ad file)
5959     // vtableStubs also counts instructions in pd_code_size_limit.
5960     // Also do not verify_oop as this is called by verify_oop.
5961     mov64(dst, (int64_t)Universe::narrow_klass_base());
5962     if (Universe::narrow_klass_shift() != 0) {
5963       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5964       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5965       leaq(dst, Address(dst, src, Address::times_8, 0));
5966     } else {
5967       addq(dst, src);
5968     }
5969   }
5970 }
5971 
5972 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5973   assert (UseCompressedOops, "should only be used for compressed headers");
5974   assert (Universe::heap() != NULL, "java heap should be initialized");
5975   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5976   int oop_index = oop_recorder()->find_index(obj);
5977   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5978   mov_narrow_oop(dst, oop_index, rspec);
5979 }
5980 
5981 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5982   assert (UseCompressedOops, "should only be used for compressed headers");
5983   assert (Universe::heap() != NULL, "java heap should be initialized");
5984   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5985   int oop_index = oop_recorder()->find_index(obj);
5986   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5987   mov_narrow_oop(dst, oop_index, rspec);
5988 }
5989 
5990 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5991   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5992   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5993   int klass_index = oop_recorder()->find_index(k);
5994   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5995   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
5996 }
5997 
5998 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5999   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6000   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6001   int klass_index = oop_recorder()->find_index(k);
6002   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6003   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6004 }
6005 
6006 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6007   assert (UseCompressedOops, "should only be used for compressed headers");
6008   assert (Universe::heap() != NULL, "java heap should be initialized");
6009   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6010   int oop_index = oop_recorder()->find_index(obj);
6011   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6012   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6013 }
6014 
6015 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6016   assert (UseCompressedOops, "should only be used for compressed headers");
6017   assert (Universe::heap() != NULL, "java heap should be initialized");
6018   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6019   int oop_index = oop_recorder()->find_index(obj);
6020   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6021   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6022 }
6023 
6024 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6025   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6026   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6027   int klass_index = oop_recorder()->find_index(k);
6028   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6029   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6030 }
6031 
6032 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6033   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6034   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6035   int klass_index = oop_recorder()->find_index(k);
6036   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6037   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6038 }
6039 
6040 void MacroAssembler::reinit_heapbase() {
6041   if (UseCompressedOops || UseCompressedClassPointers) {
6042     if (Universe::heap() != NULL) {
6043       if (Universe::narrow_oop_base() == NULL) {
6044         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6045       } else {
6046         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6047       }
6048     } else {
6049       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6050     }
6051   }
6052 }
6053 
6054 #endif // _LP64
6055 
6056 
6057 // C2 compiled method's prolog code.
6058 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6059 
6060   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6061   // NativeJump::patch_verified_entry will be able to patch out the entry
6062   // code safely. The push to verify stack depth is ok at 5 bytes,
6063   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6064   // stack bang then we must use the 6 byte frame allocation even if
6065   // we have no frame. :-(
6066   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6067 
6068   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6069   // Remove word for return addr
6070   framesize -= wordSize;
6071   stack_bang_size -= wordSize;
6072 
6073   // Calls to C2R adapters often do not accept exceptional returns.
6074   // We require that their callers must bang for them.  But be careful, because
6075   // some VM calls (such as call site linkage) can use several kilobytes of
6076   // stack.  But the stack safety zone should account for that.
6077   // See bugs 4446381, 4468289, 4497237.
6078   if (stack_bang_size > 0) {
6079     generate_stack_overflow_check(stack_bang_size);
6080 
6081     // We always push rbp, so that on return to interpreter rbp, will be
6082     // restored correctly and we can correct the stack.
6083     push(rbp);
6084     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6085     if (PreserveFramePointer) {
6086       mov(rbp, rsp);
6087     }
6088     // Remove word for ebp
6089     framesize -= wordSize;
6090 
6091     // Create frame
6092     if (framesize) {
6093       subptr(rsp, framesize);
6094     }
6095   } else {
6096     // Create frame (force generation of a 4 byte immediate value)
6097     subptr_imm32(rsp, framesize);
6098 
6099     // Save RBP register now.
6100     framesize -= wordSize;
6101     movptr(Address(rsp, framesize), rbp);
6102     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6103     if (PreserveFramePointer) {
6104       movptr(rbp, rsp);
6105       addptr(rbp, framesize + wordSize);
6106     }
6107   }
6108 
6109   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6110     framesize -= wordSize;
6111     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6112   }
6113 
6114 #ifndef _LP64
6115   // If method sets FPU control word do it now
6116   if (fp_mode_24b) {
6117     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6118   }
6119   if (UseSSE >= 2 && VerifyFPU) {
6120     verify_FPU(0, "FPU stack must be clean on entry");
6121   }
6122 #endif
6123 
6124 #ifdef ASSERT
6125   if (VerifyStackAtCalls) {
6126     Label L;
6127     push(rax);
6128     mov(rax, rsp);
6129     andptr(rax, StackAlignmentInBytes-1);
6130     cmpptr(rax, StackAlignmentInBytes-wordSize);
6131     pop(rax);
6132     jcc(Assembler::equal, L);
6133     STOP("Stack is not properly aligned!");
6134     bind(L);
6135   }
6136 #endif
6137 
6138 }
6139 
6140 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6141   // cnt - number of qwords (8-byte words).
6142   // base - start address, qword aligned.
6143   assert(base==rdi, "base register must be edi for rep stos");
6144   assert(tmp==rax,   "tmp register must be eax for rep stos");
6145   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6146 
6147   xorptr(tmp, tmp);
6148   if (UseFastStosb) {
6149     shlptr(cnt,3); // convert to number of bytes
6150     rep_stosb();
6151   } else {
6152     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6153     rep_stos();
6154   }
6155 }
6156 
6157 // IndexOf for constant substrings with size >= 8 chars
6158 // which don't need to be loaded through stack.
6159 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6160                                       Register cnt1, Register cnt2,
6161                                       int int_cnt2,  Register result,
6162                                       XMMRegister vec, Register tmp) {
6163   ShortBranchVerifier sbv(this);
6164   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6165 
6166   // This method uses pcmpestri instruction with bound registers
6167   //   inputs:
6168   //     xmm - substring
6169   //     rax - substring length (elements count)
6170   //     mem - scanned string
6171   //     rdx - string length (elements count)
6172   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6173   //   outputs:
6174   //     rcx - matched index in string
6175   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6176 
6177   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6178         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6179         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6180 
6181   // Note, inline_string_indexOf() generates checks:
6182   // if (substr.count > string.count) return -1;
6183   // if (substr.count == 0) return 0;
6184   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6185 
6186   // Load substring.
6187   movdqu(vec, Address(str2, 0));
6188   movl(cnt2, int_cnt2);
6189   movptr(result, str1); // string addr
6190 
6191   if (int_cnt2 > 8) {
6192     jmpb(SCAN_TO_SUBSTR);
6193 
6194     // Reload substr for rescan, this code
6195     // is executed only for large substrings (> 8 chars)
6196     bind(RELOAD_SUBSTR);
6197     movdqu(vec, Address(str2, 0));
6198     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6199 
6200     bind(RELOAD_STR);
6201     // We came here after the beginning of the substring was
6202     // matched but the rest of it was not so we need to search
6203     // again. Start from the next element after the previous match.
6204 
6205     // cnt2 is number of substring reminding elements and
6206     // cnt1 is number of string reminding elements when cmp failed.
6207     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6208     subl(cnt1, cnt2);
6209     addl(cnt1, int_cnt2);
6210     movl(cnt2, int_cnt2); // Now restore cnt2
6211 
6212     decrementl(cnt1);     // Shift to next element
6213     cmpl(cnt1, cnt2);
6214     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6215 
6216     addptr(result, 2);
6217 
6218   } // (int_cnt2 > 8)
6219 
6220   // Scan string for start of substr in 16-byte vectors
6221   bind(SCAN_TO_SUBSTR);
6222   pcmpestri(vec, Address(result, 0), 0x0d);
6223   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6224   subl(cnt1, 8);
6225   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6226   cmpl(cnt1, cnt2);
6227   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6228   addptr(result, 16);
6229   jmpb(SCAN_TO_SUBSTR);
6230 
6231   // Found a potential substr
6232   bind(FOUND_CANDIDATE);
6233   // Matched whole vector if first element matched (tmp(rcx) == 0).
6234   if (int_cnt2 == 8) {
6235     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6236   } else { // int_cnt2 > 8
6237     jccb(Assembler::overflow, FOUND_SUBSTR);
6238   }
6239   // After pcmpestri tmp(rcx) contains matched element index
6240   // Compute start addr of substr
6241   lea(result, Address(result, tmp, Address::times_2));
6242 
6243   // Make sure string is still long enough
6244   subl(cnt1, tmp);
6245   cmpl(cnt1, cnt2);
6246   if (int_cnt2 == 8) {
6247     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6248   } else { // int_cnt2 > 8
6249     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6250   }
6251   // Left less then substring.
6252 
6253   bind(RET_NOT_FOUND);
6254   movl(result, -1);
6255   jmpb(EXIT);
6256 
6257   if (int_cnt2 > 8) {
6258     // This code is optimized for the case when whole substring
6259     // is matched if its head is matched.
6260     bind(MATCH_SUBSTR_HEAD);
6261     pcmpestri(vec, Address(result, 0), 0x0d);
6262     // Reload only string if does not match
6263     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6264 
6265     Label CONT_SCAN_SUBSTR;
6266     // Compare the rest of substring (> 8 chars).
6267     bind(FOUND_SUBSTR);
6268     // First 8 chars are already matched.
6269     negptr(cnt2);
6270     addptr(cnt2, 8);
6271 
6272     bind(SCAN_SUBSTR);
6273     subl(cnt1, 8);
6274     cmpl(cnt2, -8); // Do not read beyond substring
6275     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6276     // Back-up strings to avoid reading beyond substring:
6277     // cnt1 = cnt1 - cnt2 + 8
6278     addl(cnt1, cnt2); // cnt2 is negative
6279     addl(cnt1, 8);
6280     movl(cnt2, 8); negptr(cnt2);
6281     bind(CONT_SCAN_SUBSTR);
6282     if (int_cnt2 < (int)G) {
6283       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6284       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6285     } else {
6286       // calculate index in register to avoid integer overflow (int_cnt2*2)
6287       movl(tmp, int_cnt2);
6288       addptr(tmp, cnt2);
6289       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6290       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6291     }
6292     // Need to reload strings pointers if not matched whole vector
6293     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6294     addptr(cnt2, 8);
6295     jcc(Assembler::negative, SCAN_SUBSTR);
6296     // Fall through if found full substring
6297 
6298   } // (int_cnt2 > 8)
6299 
6300   bind(RET_FOUND);
6301   // Found result if we matched full small substring.
6302   // Compute substr offset
6303   subptr(result, str1);
6304   shrl(result, 1); // index
6305   bind(EXIT);
6306 
6307 } // string_indexofC8
6308 
6309 // Small strings are loaded through stack if they cross page boundary.
6310 void MacroAssembler::string_indexof(Register str1, Register str2,
6311                                     Register cnt1, Register cnt2,
6312                                     int int_cnt2,  Register result,
6313                                     XMMRegister vec, Register tmp) {
6314   ShortBranchVerifier sbv(this);
6315   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6316   //
6317   // int_cnt2 is length of small (< 8 chars) constant substring
6318   // or (-1) for non constant substring in which case its length
6319   // is in cnt2 register.
6320   //
6321   // Note, inline_string_indexOf() generates checks:
6322   // if (substr.count > string.count) return -1;
6323   // if (substr.count == 0) return 0;
6324   //
6325   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6326 
6327   // This method uses pcmpestri instruction with bound registers
6328   //   inputs:
6329   //     xmm - substring
6330   //     rax - substring length (elements count)
6331   //     mem - scanned string
6332   //     rdx - string length (elements count)
6333   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6334   //   outputs:
6335   //     rcx - matched index in string
6336   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6337 
6338   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6339         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6340         FOUND_CANDIDATE;
6341 
6342   { //========================================================
6343     // We don't know where these strings are located
6344     // and we can't read beyond them. Load them through stack.
6345     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6346 
6347     movptr(tmp, rsp); // save old SP
6348 
6349     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6350       if (int_cnt2 == 1) {  // One char
6351         load_unsigned_short(result, Address(str2, 0));
6352         movdl(vec, result); // move 32 bits
6353       } else if (int_cnt2 == 2) { // Two chars
6354         movdl(vec, Address(str2, 0)); // move 32 bits
6355       } else if (int_cnt2 == 4) { // Four chars
6356         movq(vec, Address(str2, 0));  // move 64 bits
6357       } else { // cnt2 = { 3, 5, 6, 7 }
6358         // Array header size is 12 bytes in 32-bit VM
6359         // + 6 bytes for 3 chars == 18 bytes,
6360         // enough space to load vec and shift.
6361         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6362         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6363         psrldq(vec, 16-(int_cnt2*2));
6364       }
6365     } else { // not constant substring
6366       cmpl(cnt2, 8);
6367       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6368 
6369       // We can read beyond string if srt+16 does not cross page boundary
6370       // since heaps are aligned and mapped by pages.
6371       assert(os::vm_page_size() < (int)G, "default page should be small");
6372       movl(result, str2); // We need only low 32 bits
6373       andl(result, (os::vm_page_size()-1));
6374       cmpl(result, (os::vm_page_size()-16));
6375       jccb(Assembler::belowEqual, CHECK_STR);
6376 
6377       // Move small strings to stack to allow load 16 bytes into vec.
6378       subptr(rsp, 16);
6379       int stk_offset = wordSize-2;
6380       push(cnt2);
6381 
6382       bind(COPY_SUBSTR);
6383       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6384       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6385       decrement(cnt2);
6386       jccb(Assembler::notZero, COPY_SUBSTR);
6387 
6388       pop(cnt2);
6389       movptr(str2, rsp);  // New substring address
6390     } // non constant
6391 
6392     bind(CHECK_STR);
6393     cmpl(cnt1, 8);
6394     jccb(Assembler::aboveEqual, BIG_STRINGS);
6395 
6396     // Check cross page boundary.
6397     movl(result, str1); // We need only low 32 bits
6398     andl(result, (os::vm_page_size()-1));
6399     cmpl(result, (os::vm_page_size()-16));
6400     jccb(Assembler::belowEqual, BIG_STRINGS);
6401 
6402     subptr(rsp, 16);
6403     int stk_offset = -2;
6404     if (int_cnt2 < 0) { // not constant
6405       push(cnt2);
6406       stk_offset += wordSize;
6407     }
6408     movl(cnt2, cnt1);
6409 
6410     bind(COPY_STR);
6411     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6412     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6413     decrement(cnt2);
6414     jccb(Assembler::notZero, COPY_STR);
6415 
6416     if (int_cnt2 < 0) { // not constant
6417       pop(cnt2);
6418     }
6419     movptr(str1, rsp);  // New string address
6420 
6421     bind(BIG_STRINGS);
6422     // Load substring.
6423     if (int_cnt2 < 0) { // -1
6424       movdqu(vec, Address(str2, 0));
6425       push(cnt2);       // substr count
6426       push(str2);       // substr addr
6427       push(str1);       // string addr
6428     } else {
6429       // Small (< 8 chars) constant substrings are loaded already.
6430       movl(cnt2, int_cnt2);
6431     }
6432     push(tmp);  // original SP
6433 
6434   } // Finished loading
6435 
6436   //========================================================
6437   // Start search
6438   //
6439 
6440   movptr(result, str1); // string addr
6441 
6442   if (int_cnt2  < 0) {  // Only for non constant substring
6443     jmpb(SCAN_TO_SUBSTR);
6444 
6445     // SP saved at sp+0
6446     // String saved at sp+1*wordSize
6447     // Substr saved at sp+2*wordSize
6448     // Substr count saved at sp+3*wordSize
6449 
6450     // Reload substr for rescan, this code
6451     // is executed only for large substrings (> 8 chars)
6452     bind(RELOAD_SUBSTR);
6453     movptr(str2, Address(rsp, 2*wordSize));
6454     movl(cnt2, Address(rsp, 3*wordSize));
6455     movdqu(vec, Address(str2, 0));
6456     // We came here after the beginning of the substring was
6457     // matched but the rest of it was not so we need to search
6458     // again. Start from the next element after the previous match.
6459     subptr(str1, result); // Restore counter
6460     shrl(str1, 1);
6461     addl(cnt1, str1);
6462     decrementl(cnt1);   // Shift to next element
6463     cmpl(cnt1, cnt2);
6464     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6465 
6466     addptr(result, 2);
6467   } // non constant
6468 
6469   // Scan string for start of substr in 16-byte vectors
6470   bind(SCAN_TO_SUBSTR);
6471   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6472   pcmpestri(vec, Address(result, 0), 0x0d);
6473   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6474   subl(cnt1, 8);
6475   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6476   cmpl(cnt1, cnt2);
6477   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6478   addptr(result, 16);
6479 
6480   bind(ADJUST_STR);
6481   cmpl(cnt1, 8); // Do not read beyond string
6482   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6483   // Back-up string to avoid reading beyond string.
6484   lea(result, Address(result, cnt1, Address::times_2, -16));
6485   movl(cnt1, 8);
6486   jmpb(SCAN_TO_SUBSTR);
6487 
6488   // Found a potential substr
6489   bind(FOUND_CANDIDATE);
6490   // After pcmpestri tmp(rcx) contains matched element index
6491 
6492   // Make sure string is still long enough
6493   subl(cnt1, tmp);
6494   cmpl(cnt1, cnt2);
6495   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6496   // Left less then substring.
6497 
6498   bind(RET_NOT_FOUND);
6499   movl(result, -1);
6500   jmpb(CLEANUP);
6501 
6502   bind(FOUND_SUBSTR);
6503   // Compute start addr of substr
6504   lea(result, Address(result, tmp, Address::times_2));
6505 
6506   if (int_cnt2 > 0) { // Constant substring
6507     // Repeat search for small substring (< 8 chars)
6508     // from new point without reloading substring.
6509     // Have to check that we don't read beyond string.
6510     cmpl(tmp, 8-int_cnt2);
6511     jccb(Assembler::greater, ADJUST_STR);
6512     // Fall through if matched whole substring.
6513   } else { // non constant
6514     assert(int_cnt2 == -1, "should be != 0");
6515 
6516     addl(tmp, cnt2);
6517     // Found result if we matched whole substring.
6518     cmpl(tmp, 8);
6519     jccb(Assembler::lessEqual, RET_FOUND);
6520 
6521     // Repeat search for small substring (<= 8 chars)
6522     // from new point 'str1' without reloading substring.
6523     cmpl(cnt2, 8);
6524     // Have to check that we don't read beyond string.
6525     jccb(Assembler::lessEqual, ADJUST_STR);
6526 
6527     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6528     // Compare the rest of substring (> 8 chars).
6529     movptr(str1, result);
6530 
6531     cmpl(tmp, cnt2);
6532     // First 8 chars are already matched.
6533     jccb(Assembler::equal, CHECK_NEXT);
6534 
6535     bind(SCAN_SUBSTR);
6536     pcmpestri(vec, Address(str1, 0), 0x0d);
6537     // Need to reload strings pointers if not matched whole vector
6538     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6539 
6540     bind(CHECK_NEXT);
6541     subl(cnt2, 8);
6542     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6543     addptr(str1, 16);
6544     addptr(str2, 16);
6545     subl(cnt1, 8);
6546     cmpl(cnt2, 8); // Do not read beyond substring
6547     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6548     // Back-up strings to avoid reading beyond substring.
6549     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6550     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6551     subl(cnt1, cnt2);
6552     movl(cnt2, 8);
6553     addl(cnt1, 8);
6554     bind(CONT_SCAN_SUBSTR);
6555     movdqu(vec, Address(str2, 0));
6556     jmpb(SCAN_SUBSTR);
6557 
6558     bind(RET_FOUND_LONG);
6559     movptr(str1, Address(rsp, wordSize));
6560   } // non constant
6561 
6562   bind(RET_FOUND);
6563   // Compute substr offset
6564   subptr(result, str1);
6565   shrl(result, 1); // index
6566 
6567   bind(CLEANUP);
6568   pop(rsp); // restore SP
6569 
6570 } // string_indexof
6571 
6572 // Compare strings.
6573 void MacroAssembler::string_compare(Register str1, Register str2,
6574                                     Register cnt1, Register cnt2, Register result,
6575                                     XMMRegister vec1) {
6576   ShortBranchVerifier sbv(this);
6577   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6578 
6579   // Compute the minimum of the string lengths and the
6580   // difference of the string lengths (stack).
6581   // Do the conditional move stuff
6582   movl(result, cnt1);
6583   subl(cnt1, cnt2);
6584   push(cnt1);
6585   cmov32(Assembler::lessEqual, cnt2, result);
6586 
6587   // Is the minimum length zero?
6588   testl(cnt2, cnt2);
6589   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6590 
6591   // Compare first characters
6592   load_unsigned_short(result, Address(str1, 0));
6593   load_unsigned_short(cnt1, Address(str2, 0));
6594   subl(result, cnt1);
6595   jcc(Assembler::notZero,  POP_LABEL);
6596   cmpl(cnt2, 1);
6597   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6598 
6599   // Check if the strings start at the same location.
6600   cmpptr(str1, str2);
6601   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6602 
6603   Address::ScaleFactor scale = Address::times_2;
6604   int stride = 8;
6605 
6606   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6607     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6608     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6609     Label COMPARE_TAIL_LONG;
6610     int pcmpmask = 0x19;
6611 
6612     // Setup to compare 16-chars (32-bytes) vectors,
6613     // start from first character again because it has aligned address.
6614     int stride2 = 16;
6615     int adr_stride  = stride  << scale;
6616 
6617     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6618     // rax and rdx are used by pcmpestri as elements counters
6619     movl(result, cnt2);
6620     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6621     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6622 
6623     // fast path : compare first 2 8-char vectors.
6624     bind(COMPARE_16_CHARS);
6625     movdqu(vec1, Address(str1, 0));
6626     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6627     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6628 
6629     movdqu(vec1, Address(str1, adr_stride));
6630     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6631     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6632     addl(cnt1, stride);
6633 
6634     // Compare the characters at index in cnt1
6635     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6636     load_unsigned_short(result, Address(str1, cnt1, scale));
6637     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6638     subl(result, cnt2);
6639     jmp(POP_LABEL);
6640 
6641     // Setup the registers to start vector comparison loop
6642     bind(COMPARE_WIDE_VECTORS);
6643     lea(str1, Address(str1, result, scale));
6644     lea(str2, Address(str2, result, scale));
6645     subl(result, stride2);
6646     subl(cnt2, stride2);
6647     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6648     negptr(result);
6649 
6650     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6651     bind(COMPARE_WIDE_VECTORS_LOOP);
6652     vmovdqu(vec1, Address(str1, result, scale));
6653     vpxor(vec1, Address(str2, result, scale));
6654     vptest(vec1, vec1);
6655     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6656     addptr(result, stride2);
6657     subl(cnt2, stride2);
6658     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6659     // clean upper bits of YMM registers
6660     vpxor(vec1, vec1);
6661 
6662     // compare wide vectors tail
6663     bind(COMPARE_WIDE_TAIL);
6664     testptr(result, result);
6665     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6666 
6667     movl(result, stride2);
6668     movl(cnt2, result);
6669     negptr(result);
6670     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6671 
6672     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6673     bind(VECTOR_NOT_EQUAL);
6674     // clean upper bits of YMM registers
6675     vpxor(vec1, vec1);
6676     lea(str1, Address(str1, result, scale));
6677     lea(str2, Address(str2, result, scale));
6678     jmp(COMPARE_16_CHARS);
6679 
6680     // Compare tail chars, length between 1 to 15 chars
6681     bind(COMPARE_TAIL_LONG);
6682     movl(cnt2, result);
6683     cmpl(cnt2, stride);
6684     jccb(Assembler::less, COMPARE_SMALL_STR);
6685 
6686     movdqu(vec1, Address(str1, 0));
6687     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6688     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6689     subptr(cnt2, stride);
6690     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6691     lea(str1, Address(str1, result, scale));
6692     lea(str2, Address(str2, result, scale));
6693     negptr(cnt2);
6694     jmpb(WHILE_HEAD_LABEL);
6695 
6696     bind(COMPARE_SMALL_STR);
6697   } else if (UseSSE42Intrinsics) {
6698     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6699     int pcmpmask = 0x19;
6700     // Setup to compare 8-char (16-byte) vectors,
6701     // start from first character again because it has aligned address.
6702     movl(result, cnt2);
6703     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6704     jccb(Assembler::zero, COMPARE_TAIL);
6705 
6706     lea(str1, Address(str1, result, scale));
6707     lea(str2, Address(str2, result, scale));
6708     negptr(result);
6709 
6710     // pcmpestri
6711     //   inputs:
6712     //     vec1- substring
6713     //     rax - negative string length (elements count)
6714     //     mem - scanned string
6715     //     rdx - string length (elements count)
6716     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6717     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6718     //   outputs:
6719     //     rcx - first mismatched element index
6720     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6721 
6722     bind(COMPARE_WIDE_VECTORS);
6723     movdqu(vec1, Address(str1, result, scale));
6724     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6725     // After pcmpestri cnt1(rcx) contains mismatched element index
6726 
6727     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6728     addptr(result, stride);
6729     subptr(cnt2, stride);
6730     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6731 
6732     // compare wide vectors tail
6733     testptr(result, result);
6734     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6735 
6736     movl(cnt2, stride);
6737     movl(result, stride);
6738     negptr(result);
6739     movdqu(vec1, Address(str1, result, scale));
6740     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6741     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6742 
6743     // Mismatched characters in the vectors
6744     bind(VECTOR_NOT_EQUAL);
6745     addptr(cnt1, result);
6746     load_unsigned_short(result, Address(str1, cnt1, scale));
6747     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6748     subl(result, cnt2);
6749     jmpb(POP_LABEL);
6750 
6751     bind(COMPARE_TAIL); // limit is zero
6752     movl(cnt2, result);
6753     // Fallthru to tail compare
6754   }
6755   // Shift str2 and str1 to the end of the arrays, negate min
6756   lea(str1, Address(str1, cnt2, scale));
6757   lea(str2, Address(str2, cnt2, scale));
6758   decrementl(cnt2);  // first character was compared already
6759   negptr(cnt2);
6760 
6761   // Compare the rest of the elements
6762   bind(WHILE_HEAD_LABEL);
6763   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6764   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6765   subl(result, cnt1);
6766   jccb(Assembler::notZero, POP_LABEL);
6767   increment(cnt2);
6768   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6769 
6770   // Strings are equal up to min length.  Return the length difference.
6771   bind(LENGTH_DIFF_LABEL);
6772   pop(result);
6773   jmpb(DONE_LABEL);
6774 
6775   // Discard the stored length difference
6776   bind(POP_LABEL);
6777   pop(cnt1);
6778 
6779   // That's it
6780   bind(DONE_LABEL);
6781 }
6782 
6783 // Compare char[] arrays aligned to 4 bytes or substrings.
6784 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6785                                         Register limit, Register result, Register chr,
6786                                         XMMRegister vec1, XMMRegister vec2) {
6787   ShortBranchVerifier sbv(this);
6788   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6789 
6790   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6791   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6792 
6793   // Check the input args
6794   cmpptr(ary1, ary2);
6795   jcc(Assembler::equal, TRUE_LABEL);
6796 
6797   if (is_array_equ) {
6798     // Need additional checks for arrays_equals.
6799     testptr(ary1, ary1);
6800     jcc(Assembler::zero, FALSE_LABEL);
6801     testptr(ary2, ary2);
6802     jcc(Assembler::zero, FALSE_LABEL);
6803 
6804     // Check the lengths
6805     movl(limit, Address(ary1, length_offset));
6806     cmpl(limit, Address(ary2, length_offset));
6807     jcc(Assembler::notEqual, FALSE_LABEL);
6808   }
6809 
6810   // count == 0
6811   testl(limit, limit);
6812   jcc(Assembler::zero, TRUE_LABEL);
6813 
6814   if (is_array_equ) {
6815     // Load array address
6816     lea(ary1, Address(ary1, base_offset));
6817     lea(ary2, Address(ary2, base_offset));
6818   }
6819 
6820   shll(limit, 1);      // byte count != 0
6821   movl(result, limit); // copy
6822 
6823   if (UseAVX >= 2) {
6824     // With AVX2, use 32-byte vector compare
6825     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6826 
6827     // Compare 32-byte vectors
6828     andl(result, 0x0000001e);  //   tail count (in bytes)
6829     andl(limit, 0xffffffe0);   // vector count (in bytes)
6830     jccb(Assembler::zero, COMPARE_TAIL);
6831 
6832     lea(ary1, Address(ary1, limit, Address::times_1));
6833     lea(ary2, Address(ary2, limit, Address::times_1));
6834     negptr(limit);
6835 
6836     bind(COMPARE_WIDE_VECTORS);
6837     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6838     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6839     vpxor(vec1, vec2);
6840 
6841     vptest(vec1, vec1);
6842     jccb(Assembler::notZero, FALSE_LABEL);
6843     addptr(limit, 32);
6844     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6845 
6846     testl(result, result);
6847     jccb(Assembler::zero, TRUE_LABEL);
6848 
6849     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6850     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6851     vpxor(vec1, vec2);
6852 
6853     vptest(vec1, vec1);
6854     jccb(Assembler::notZero, FALSE_LABEL);
6855     jmpb(TRUE_LABEL);
6856 
6857     bind(COMPARE_TAIL); // limit is zero
6858     movl(limit, result);
6859     // Fallthru to tail compare
6860   } else if (UseSSE42Intrinsics) {
6861     // With SSE4.2, use double quad vector compare
6862     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6863 
6864     // Compare 16-byte vectors
6865     andl(result, 0x0000000e);  //   tail count (in bytes)
6866     andl(limit, 0xfffffff0);   // vector count (in bytes)
6867     jccb(Assembler::zero, COMPARE_TAIL);
6868 
6869     lea(ary1, Address(ary1, limit, Address::times_1));
6870     lea(ary2, Address(ary2, limit, Address::times_1));
6871     negptr(limit);
6872 
6873     bind(COMPARE_WIDE_VECTORS);
6874     movdqu(vec1, Address(ary1, limit, Address::times_1));
6875     movdqu(vec2, Address(ary2, limit, Address::times_1));
6876     pxor(vec1, vec2);
6877 
6878     ptest(vec1, vec1);
6879     jccb(Assembler::notZero, FALSE_LABEL);
6880     addptr(limit, 16);
6881     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6882 
6883     testl(result, result);
6884     jccb(Assembler::zero, TRUE_LABEL);
6885 
6886     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6887     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6888     pxor(vec1, vec2);
6889 
6890     ptest(vec1, vec1);
6891     jccb(Assembler::notZero, FALSE_LABEL);
6892     jmpb(TRUE_LABEL);
6893 
6894     bind(COMPARE_TAIL); // limit is zero
6895     movl(limit, result);
6896     // Fallthru to tail compare
6897   }
6898 
6899   // Compare 4-byte vectors
6900   andl(limit, 0xfffffffc); // vector count (in bytes)
6901   jccb(Assembler::zero, COMPARE_CHAR);
6902 
6903   lea(ary1, Address(ary1, limit, Address::times_1));
6904   lea(ary2, Address(ary2, limit, Address::times_1));
6905   negptr(limit);
6906 
6907   bind(COMPARE_VECTORS);
6908   movl(chr, Address(ary1, limit, Address::times_1));
6909   cmpl(chr, Address(ary2, limit, Address::times_1));
6910   jccb(Assembler::notEqual, FALSE_LABEL);
6911   addptr(limit, 4);
6912   jcc(Assembler::notZero, COMPARE_VECTORS);
6913 
6914   // Compare trailing char (final 2 bytes), if any
6915   bind(COMPARE_CHAR);
6916   testl(result, 0x2);   // tail  char
6917   jccb(Assembler::zero, TRUE_LABEL);
6918   load_unsigned_short(chr, Address(ary1, 0));
6919   load_unsigned_short(limit, Address(ary2, 0));
6920   cmpl(chr, limit);
6921   jccb(Assembler::notEqual, FALSE_LABEL);
6922 
6923   bind(TRUE_LABEL);
6924   movl(result, 1);   // return true
6925   jmpb(DONE);
6926 
6927   bind(FALSE_LABEL);
6928   xorl(result, result); // return false
6929 
6930   // That's it
6931   bind(DONE);
6932   if (UseAVX >= 2) {
6933     // clean upper bits of YMM registers
6934     vpxor(vec1, vec1);
6935     vpxor(vec2, vec2);
6936   }
6937 }
6938 
6939 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6940                                    Register to, Register value, Register count,
6941                                    Register rtmp, XMMRegister xtmp) {
6942   ShortBranchVerifier sbv(this);
6943   assert_different_registers(to, value, count, rtmp);
6944   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6945   Label L_fill_2_bytes, L_fill_4_bytes;
6946 
6947   int shift = -1;
6948   switch (t) {
6949     case T_BYTE:
6950       shift = 2;
6951       break;
6952     case T_SHORT:
6953       shift = 1;
6954       break;
6955     case T_INT:
6956       shift = 0;
6957       break;
6958     default: ShouldNotReachHere();
6959   }
6960 
6961   if (t == T_BYTE) {
6962     andl(value, 0xff);
6963     movl(rtmp, value);
6964     shll(rtmp, 8);
6965     orl(value, rtmp);
6966   }
6967   if (t == T_SHORT) {
6968     andl(value, 0xffff);
6969   }
6970   if (t == T_BYTE || t == T_SHORT) {
6971     movl(rtmp, value);
6972     shll(rtmp, 16);
6973     orl(value, rtmp);
6974   }
6975 
6976   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
6977   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
6978   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
6979     // align source address at 4 bytes address boundary
6980     if (t == T_BYTE) {
6981       // One byte misalignment happens only for byte arrays
6982       testptr(to, 1);
6983       jccb(Assembler::zero, L_skip_align1);
6984       movb(Address(to, 0), value);
6985       increment(to);
6986       decrement(count);
6987       BIND(L_skip_align1);
6988     }
6989     // Two bytes misalignment happens only for byte and short (char) arrays
6990     testptr(to, 2);
6991     jccb(Assembler::zero, L_skip_align2);
6992     movw(Address(to, 0), value);
6993     addptr(to, 2);
6994     subl(count, 1<<(shift-1));
6995     BIND(L_skip_align2);
6996   }
6997   if (UseSSE < 2) {
6998     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
6999     // Fill 32-byte chunks
7000     subl(count, 8 << shift);
7001     jcc(Assembler::less, L_check_fill_8_bytes);
7002     align(16);
7003 
7004     BIND(L_fill_32_bytes_loop);
7005 
7006     for (int i = 0; i < 32; i += 4) {
7007       movl(Address(to, i), value);
7008     }
7009 
7010     addptr(to, 32);
7011     subl(count, 8 << shift);
7012     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7013     BIND(L_check_fill_8_bytes);
7014     addl(count, 8 << shift);
7015     jccb(Assembler::zero, L_exit);
7016     jmpb(L_fill_8_bytes);
7017 
7018     //
7019     // length is too short, just fill qwords
7020     //
7021     BIND(L_fill_8_bytes_loop);
7022     movl(Address(to, 0), value);
7023     movl(Address(to, 4), value);
7024     addptr(to, 8);
7025     BIND(L_fill_8_bytes);
7026     subl(count, 1 << (shift + 1));
7027     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7028     // fall through to fill 4 bytes
7029   } else {
7030     Label L_fill_32_bytes;
7031     if (!UseUnalignedLoadStores) {
7032       // align to 8 bytes, we know we are 4 byte aligned to start
7033       testptr(to, 4);
7034       jccb(Assembler::zero, L_fill_32_bytes);
7035       movl(Address(to, 0), value);
7036       addptr(to, 4);
7037       subl(count, 1<<shift);
7038     }
7039     BIND(L_fill_32_bytes);
7040     {
7041       assert( UseSSE >= 2, "supported cpu only" );
7042       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7043       if (UseAVX > 2) {
7044         movl(rtmp, 0xffff);
7045 #ifdef _LP64
7046         kmovql(k1, rtmp);
7047 #else
7048         kmovdl(k1, rtmp);
7049 #endif
7050       }
7051       movdl(xtmp, value);
7052       if (UseAVX > 2 && UseUnalignedLoadStores) {
7053         // Fill 64-byte chunks
7054         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7055         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7056 
7057         subl(count, 16 << shift);
7058         jcc(Assembler::less, L_check_fill_32_bytes);
7059         align(16);
7060 
7061         BIND(L_fill_64_bytes_loop);
7062         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_512bit);
7063         addptr(to, 64);
7064         subl(count, 16 << shift);
7065         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7066 
7067         BIND(L_check_fill_32_bytes);
7068         addl(count, 8 << shift);
7069         jccb(Assembler::less, L_check_fill_8_bytes);
7070         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_256bit);
7071         addptr(to, 32);
7072         subl(count, 8 << shift);
7073 
7074         BIND(L_check_fill_8_bytes);
7075       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7076         // Fill 64-byte chunks
7077         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7078         vpbroadcastd(xtmp, xtmp);
7079 
7080         subl(count, 16 << shift);
7081         jcc(Assembler::less, L_check_fill_32_bytes);
7082         align(16);
7083 
7084         BIND(L_fill_64_bytes_loop);
7085         vmovdqu(Address(to, 0), xtmp);
7086         vmovdqu(Address(to, 32), xtmp);
7087         addptr(to, 64);
7088         subl(count, 16 << shift);
7089         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7090 
7091         BIND(L_check_fill_32_bytes);
7092         addl(count, 8 << shift);
7093         jccb(Assembler::less, L_check_fill_8_bytes);
7094         vmovdqu(Address(to, 0), xtmp);
7095         addptr(to, 32);
7096         subl(count, 8 << shift);
7097 
7098         BIND(L_check_fill_8_bytes);
7099         // clean upper bits of YMM registers
7100         movdl(xtmp, value);
7101         pshufd(xtmp, xtmp, 0);
7102       } else {
7103         // Fill 32-byte chunks
7104         pshufd(xtmp, xtmp, 0);
7105 
7106         subl(count, 8 << shift);
7107         jcc(Assembler::less, L_check_fill_8_bytes);
7108         align(16);
7109 
7110         BIND(L_fill_32_bytes_loop);
7111 
7112         if (UseUnalignedLoadStores) {
7113           movdqu(Address(to, 0), xtmp);
7114           movdqu(Address(to, 16), xtmp);
7115         } else {
7116           movq(Address(to, 0), xtmp);
7117           movq(Address(to, 8), xtmp);
7118           movq(Address(to, 16), xtmp);
7119           movq(Address(to, 24), xtmp);
7120         }
7121 
7122         addptr(to, 32);
7123         subl(count, 8 << shift);
7124         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7125 
7126         BIND(L_check_fill_8_bytes);
7127       }
7128       addl(count, 8 << shift);
7129       jccb(Assembler::zero, L_exit);
7130       jmpb(L_fill_8_bytes);
7131 
7132       //
7133       // length is too short, just fill qwords
7134       //
7135       BIND(L_fill_8_bytes_loop);
7136       movq(Address(to, 0), xtmp);
7137       addptr(to, 8);
7138       BIND(L_fill_8_bytes);
7139       subl(count, 1 << (shift + 1));
7140       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7141     }
7142   }
7143   // fill trailing 4 bytes
7144   BIND(L_fill_4_bytes);
7145   testl(count, 1<<shift);
7146   jccb(Assembler::zero, L_fill_2_bytes);
7147   movl(Address(to, 0), value);
7148   if (t == T_BYTE || t == T_SHORT) {
7149     addptr(to, 4);
7150     BIND(L_fill_2_bytes);
7151     // fill trailing 2 bytes
7152     testl(count, 1<<(shift-1));
7153     jccb(Assembler::zero, L_fill_byte);
7154     movw(Address(to, 0), value);
7155     if (t == T_BYTE) {
7156       addptr(to, 2);
7157       BIND(L_fill_byte);
7158       // fill trailing byte
7159       testl(count, 1);
7160       jccb(Assembler::zero, L_exit);
7161       movb(Address(to, 0), value);
7162     } else {
7163       BIND(L_fill_byte);
7164     }
7165   } else {
7166     BIND(L_fill_2_bytes);
7167   }
7168   BIND(L_exit);
7169 }
7170 
7171 // encode char[] to byte[] in ISO_8859_1
7172 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7173                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7174                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7175                                       Register tmp5, Register result) {
7176   // rsi: src
7177   // rdi: dst
7178   // rdx: len
7179   // rcx: tmp5
7180   // rax: result
7181   ShortBranchVerifier sbv(this);
7182   assert_different_registers(src, dst, len, tmp5, result);
7183   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7184 
7185   // set result
7186   xorl(result, result);
7187   // check for zero length
7188   testl(len, len);
7189   jcc(Assembler::zero, L_done);
7190   movl(result, len);
7191 
7192   // Setup pointers
7193   lea(src, Address(src, len, Address::times_2)); // char[]
7194   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7195   negptr(len);
7196 
7197   if (UseSSE42Intrinsics || UseAVX >= 2) {
7198     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7199     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7200 
7201     if (UseAVX >= 2) {
7202       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7203       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7204       movdl(tmp1Reg, tmp5);
7205       vpbroadcastd(tmp1Reg, tmp1Reg);
7206       jmpb(L_chars_32_check);
7207 
7208       bind(L_copy_32_chars);
7209       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7210       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7211       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7212       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7213       jccb(Assembler::notZero, L_copy_32_chars_exit);
7214       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7215       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7216       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7217 
7218       bind(L_chars_32_check);
7219       addptr(len, 32);
7220       jccb(Assembler::lessEqual, L_copy_32_chars);
7221 
7222       bind(L_copy_32_chars_exit);
7223       subptr(len, 16);
7224       jccb(Assembler::greater, L_copy_16_chars_exit);
7225 
7226     } else if (UseSSE42Intrinsics) {
7227       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7228       movdl(tmp1Reg, tmp5);
7229       pshufd(tmp1Reg, tmp1Reg, 0);
7230       jmpb(L_chars_16_check);
7231     }
7232 
7233     bind(L_copy_16_chars);
7234     if (UseAVX >= 2) {
7235       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7236       vptest(tmp2Reg, tmp1Reg);
7237       jccb(Assembler::notZero, L_copy_16_chars_exit);
7238       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7239       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7240     } else {
7241       if (UseAVX > 0) {
7242         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7243         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7244         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7245       } else {
7246         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7247         por(tmp2Reg, tmp3Reg);
7248         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7249         por(tmp2Reg, tmp4Reg);
7250       }
7251       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7252       jccb(Assembler::notZero, L_copy_16_chars_exit);
7253       packuswb(tmp3Reg, tmp4Reg);
7254     }
7255     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7256 
7257     bind(L_chars_16_check);
7258     addptr(len, 16);
7259     jccb(Assembler::lessEqual, L_copy_16_chars);
7260 
7261     bind(L_copy_16_chars_exit);
7262     if (UseAVX >= 2) {
7263       // clean upper bits of YMM registers
7264       vpxor(tmp2Reg, tmp2Reg);
7265       vpxor(tmp3Reg, tmp3Reg);
7266       vpxor(tmp4Reg, tmp4Reg);
7267       movdl(tmp1Reg, tmp5);
7268       pshufd(tmp1Reg, tmp1Reg, 0);
7269     }
7270     subptr(len, 8);
7271     jccb(Assembler::greater, L_copy_8_chars_exit);
7272 
7273     bind(L_copy_8_chars);
7274     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7275     ptest(tmp3Reg, tmp1Reg);
7276     jccb(Assembler::notZero, L_copy_8_chars_exit);
7277     packuswb(tmp3Reg, tmp1Reg);
7278     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7279     addptr(len, 8);
7280     jccb(Assembler::lessEqual, L_copy_8_chars);
7281 
7282     bind(L_copy_8_chars_exit);
7283     subptr(len, 8);
7284     jccb(Assembler::zero, L_done);
7285   }
7286 
7287   bind(L_copy_1_char);
7288   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7289   testl(tmp5, 0xff00);      // check if Unicode char
7290   jccb(Assembler::notZero, L_copy_1_char_exit);
7291   movb(Address(dst, len, Address::times_1, 0), tmp5);
7292   addptr(len, 1);
7293   jccb(Assembler::less, L_copy_1_char);
7294 
7295   bind(L_copy_1_char_exit);
7296   addptr(result, len); // len is negative count of not processed elements
7297   bind(L_done);
7298 }
7299 
7300 #ifdef _LP64
7301 /**
7302  * Helper for multiply_to_len().
7303  */
7304 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7305   addq(dest_lo, src1);
7306   adcq(dest_hi, 0);
7307   addq(dest_lo, src2);
7308   adcq(dest_hi, 0);
7309 }
7310 
7311 /**
7312  * Multiply 64 bit by 64 bit first loop.
7313  */
7314 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7315                                            Register y, Register y_idx, Register z,
7316                                            Register carry, Register product,
7317                                            Register idx, Register kdx) {
7318   //
7319   //  jlong carry, x[], y[], z[];
7320   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7321   //    huge_128 product = y[idx] * x[xstart] + carry;
7322   //    z[kdx] = (jlong)product;
7323   //    carry  = (jlong)(product >>> 64);
7324   //  }
7325   //  z[xstart] = carry;
7326   //
7327 
7328   Label L_first_loop, L_first_loop_exit;
7329   Label L_one_x, L_one_y, L_multiply;
7330 
7331   decrementl(xstart);
7332   jcc(Assembler::negative, L_one_x);
7333 
7334   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7335   rorq(x_xstart, 32); // convert big-endian to little-endian
7336 
7337   bind(L_first_loop);
7338   decrementl(idx);
7339   jcc(Assembler::negative, L_first_loop_exit);
7340   decrementl(idx);
7341   jcc(Assembler::negative, L_one_y);
7342   movq(y_idx, Address(y, idx, Address::times_4,  0));
7343   rorq(y_idx, 32); // convert big-endian to little-endian
7344   bind(L_multiply);
7345   movq(product, x_xstart);
7346   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7347   addq(product, carry);
7348   adcq(rdx, 0);
7349   subl(kdx, 2);
7350   movl(Address(z, kdx, Address::times_4,  4), product);
7351   shrq(product, 32);
7352   movl(Address(z, kdx, Address::times_4,  0), product);
7353   movq(carry, rdx);
7354   jmp(L_first_loop);
7355 
7356   bind(L_one_y);
7357   movl(y_idx, Address(y,  0));
7358   jmp(L_multiply);
7359 
7360   bind(L_one_x);
7361   movl(x_xstart, Address(x,  0));
7362   jmp(L_first_loop);
7363 
7364   bind(L_first_loop_exit);
7365 }
7366 
7367 /**
7368  * Multiply 64 bit by 64 bit and add 128 bit.
7369  */
7370 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7371                                             Register yz_idx, Register idx,
7372                                             Register carry, Register product, int offset) {
7373   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7374   //     z[kdx] = (jlong)product;
7375 
7376   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7377   rorq(yz_idx, 32); // convert big-endian to little-endian
7378   movq(product, x_xstart);
7379   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7380   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7381   rorq(yz_idx, 32); // convert big-endian to little-endian
7382 
7383   add2_with_carry(rdx, product, carry, yz_idx);
7384 
7385   movl(Address(z, idx, Address::times_4,  offset+4), product);
7386   shrq(product, 32);
7387   movl(Address(z, idx, Address::times_4,  offset), product);
7388 
7389 }
7390 
7391 /**
7392  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7393  */
7394 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7395                                              Register yz_idx, Register idx, Register jdx,
7396                                              Register carry, Register product,
7397                                              Register carry2) {
7398   //   jlong carry, x[], y[], z[];
7399   //   int kdx = ystart+1;
7400   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7401   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7402   //     z[kdx+idx+1] = (jlong)product;
7403   //     jlong carry2  = (jlong)(product >>> 64);
7404   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7405   //     z[kdx+idx] = (jlong)product;
7406   //     carry  = (jlong)(product >>> 64);
7407   //   }
7408   //   idx += 2;
7409   //   if (idx > 0) {
7410   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7411   //     z[kdx+idx] = (jlong)product;
7412   //     carry  = (jlong)(product >>> 64);
7413   //   }
7414   //
7415 
7416   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7417 
7418   movl(jdx, idx);
7419   andl(jdx, 0xFFFFFFFC);
7420   shrl(jdx, 2);
7421 
7422   bind(L_third_loop);
7423   subl(jdx, 1);
7424   jcc(Assembler::negative, L_third_loop_exit);
7425   subl(idx, 4);
7426 
7427   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7428   movq(carry2, rdx);
7429 
7430   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7431   movq(carry, rdx);
7432   jmp(L_third_loop);
7433 
7434   bind (L_third_loop_exit);
7435 
7436   andl (idx, 0x3);
7437   jcc(Assembler::zero, L_post_third_loop_done);
7438 
7439   Label L_check_1;
7440   subl(idx, 2);
7441   jcc(Assembler::negative, L_check_1);
7442 
7443   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7444   movq(carry, rdx);
7445 
7446   bind (L_check_1);
7447   addl (idx, 0x2);
7448   andl (idx, 0x1);
7449   subl(idx, 1);
7450   jcc(Assembler::negative, L_post_third_loop_done);
7451 
7452   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7453   movq(product, x_xstart);
7454   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7455   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7456 
7457   add2_with_carry(rdx, product, yz_idx, carry);
7458 
7459   movl(Address(z, idx, Address::times_4,  0), product);
7460   shrq(product, 32);
7461 
7462   shlq(rdx, 32);
7463   orq(product, rdx);
7464   movq(carry, product);
7465 
7466   bind(L_post_third_loop_done);
7467 }
7468 
7469 /**
7470  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7471  *
7472  */
7473 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7474                                                   Register carry, Register carry2,
7475                                                   Register idx, Register jdx,
7476                                                   Register yz_idx1, Register yz_idx2,
7477                                                   Register tmp, Register tmp3, Register tmp4) {
7478   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7479 
7480   //   jlong carry, x[], y[], z[];
7481   //   int kdx = ystart+1;
7482   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7483   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7484   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7485   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7486   //     carry  = (jlong)(tmp4 >>> 64);
7487   //     z[kdx+idx+1] = (jlong)tmp3;
7488   //     z[kdx+idx] = (jlong)tmp4;
7489   //   }
7490   //   idx += 2;
7491   //   if (idx > 0) {
7492   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7493   //     z[kdx+idx] = (jlong)yz_idx1;
7494   //     carry  = (jlong)(yz_idx1 >>> 64);
7495   //   }
7496   //
7497 
7498   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7499 
7500   movl(jdx, idx);
7501   andl(jdx, 0xFFFFFFFC);
7502   shrl(jdx, 2);
7503 
7504   bind(L_third_loop);
7505   subl(jdx, 1);
7506   jcc(Assembler::negative, L_third_loop_exit);
7507   subl(idx, 4);
7508 
7509   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7510   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7511   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7512   rorxq(yz_idx2, yz_idx2, 32);
7513 
7514   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7515   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7516 
7517   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7518   rorxq(yz_idx1, yz_idx1, 32);
7519   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7520   rorxq(yz_idx2, yz_idx2, 32);
7521 
7522   if (VM_Version::supports_adx()) {
7523     adcxq(tmp3, carry);
7524     adoxq(tmp3, yz_idx1);
7525 
7526     adcxq(tmp4, tmp);
7527     adoxq(tmp4, yz_idx2);
7528 
7529     movl(carry, 0); // does not affect flags
7530     adcxq(carry2, carry);
7531     adoxq(carry2, carry);
7532   } else {
7533     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7534     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7535   }
7536   movq(carry, carry2);
7537 
7538   movl(Address(z, idx, Address::times_4, 12), tmp3);
7539   shrq(tmp3, 32);
7540   movl(Address(z, idx, Address::times_4,  8), tmp3);
7541 
7542   movl(Address(z, idx, Address::times_4,  4), tmp4);
7543   shrq(tmp4, 32);
7544   movl(Address(z, idx, Address::times_4,  0), tmp4);
7545 
7546   jmp(L_third_loop);
7547 
7548   bind (L_third_loop_exit);
7549 
7550   andl (idx, 0x3);
7551   jcc(Assembler::zero, L_post_third_loop_done);
7552 
7553   Label L_check_1;
7554   subl(idx, 2);
7555   jcc(Assembler::negative, L_check_1);
7556 
7557   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7558   rorxq(yz_idx1, yz_idx1, 32);
7559   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7560   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7561   rorxq(yz_idx2, yz_idx2, 32);
7562 
7563   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7564 
7565   movl(Address(z, idx, Address::times_4,  4), tmp3);
7566   shrq(tmp3, 32);
7567   movl(Address(z, idx, Address::times_4,  0), tmp3);
7568   movq(carry, tmp4);
7569 
7570   bind (L_check_1);
7571   addl (idx, 0x2);
7572   andl (idx, 0x1);
7573   subl(idx, 1);
7574   jcc(Assembler::negative, L_post_third_loop_done);
7575   movl(tmp4, Address(y, idx, Address::times_4,  0));
7576   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7577   movl(tmp4, Address(z, idx, Address::times_4,  0));
7578 
7579   add2_with_carry(carry2, tmp3, tmp4, carry);
7580 
7581   movl(Address(z, idx, Address::times_4,  0), tmp3);
7582   shrq(tmp3, 32);
7583 
7584   shlq(carry2, 32);
7585   orq(tmp3, carry2);
7586   movq(carry, tmp3);
7587 
7588   bind(L_post_third_loop_done);
7589 }
7590 
7591 /**
7592  * Code for BigInteger::multiplyToLen() instrinsic.
7593  *
7594  * rdi: x
7595  * rax: xlen
7596  * rsi: y
7597  * rcx: ylen
7598  * r8:  z
7599  * r11: zlen
7600  * r12: tmp1
7601  * r13: tmp2
7602  * r14: tmp3
7603  * r15: tmp4
7604  * rbx: tmp5
7605  *
7606  */
7607 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7608                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7609   ShortBranchVerifier sbv(this);
7610   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7611 
7612   push(tmp1);
7613   push(tmp2);
7614   push(tmp3);
7615   push(tmp4);
7616   push(tmp5);
7617 
7618   push(xlen);
7619   push(zlen);
7620 
7621   const Register idx = tmp1;
7622   const Register kdx = tmp2;
7623   const Register xstart = tmp3;
7624 
7625   const Register y_idx = tmp4;
7626   const Register carry = tmp5;
7627   const Register product  = xlen;
7628   const Register x_xstart = zlen;  // reuse register
7629 
7630   // First Loop.
7631   //
7632   //  final static long LONG_MASK = 0xffffffffL;
7633   //  int xstart = xlen - 1;
7634   //  int ystart = ylen - 1;
7635   //  long carry = 0;
7636   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7637   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7638   //    z[kdx] = (int)product;
7639   //    carry = product >>> 32;
7640   //  }
7641   //  z[xstart] = (int)carry;
7642   //
7643 
7644   movl(idx, ylen);      // idx = ylen;
7645   movl(kdx, zlen);      // kdx = xlen+ylen;
7646   xorq(carry, carry);   // carry = 0;
7647 
7648   Label L_done;
7649 
7650   movl(xstart, xlen);
7651   decrementl(xstart);
7652   jcc(Assembler::negative, L_done);
7653 
7654   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7655 
7656   Label L_second_loop;
7657   testl(kdx, kdx);
7658   jcc(Assembler::zero, L_second_loop);
7659 
7660   Label L_carry;
7661   subl(kdx, 1);
7662   jcc(Assembler::zero, L_carry);
7663 
7664   movl(Address(z, kdx, Address::times_4,  0), carry);
7665   shrq(carry, 32);
7666   subl(kdx, 1);
7667 
7668   bind(L_carry);
7669   movl(Address(z, kdx, Address::times_4,  0), carry);
7670 
7671   // Second and third (nested) loops.
7672   //
7673   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7674   //   carry = 0;
7675   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7676   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7677   //                    (z[k] & LONG_MASK) + carry;
7678   //     z[k] = (int)product;
7679   //     carry = product >>> 32;
7680   //   }
7681   //   z[i] = (int)carry;
7682   // }
7683   //
7684   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7685 
7686   const Register jdx = tmp1;
7687 
7688   bind(L_second_loop);
7689   xorl(carry, carry);    // carry = 0;
7690   movl(jdx, ylen);       // j = ystart+1
7691 
7692   subl(xstart, 1);       // i = xstart-1;
7693   jcc(Assembler::negative, L_done);
7694 
7695   push (z);
7696 
7697   Label L_last_x;
7698   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7699   subl(xstart, 1);       // i = xstart-1;
7700   jcc(Assembler::negative, L_last_x);
7701 
7702   if (UseBMI2Instructions) {
7703     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7704     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7705   } else {
7706     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7707     rorq(x_xstart, 32);  // convert big-endian to little-endian
7708   }
7709 
7710   Label L_third_loop_prologue;
7711   bind(L_third_loop_prologue);
7712 
7713   push (x);
7714   push (xstart);
7715   push (ylen);
7716 
7717 
7718   if (UseBMI2Instructions) {
7719     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7720   } else { // !UseBMI2Instructions
7721     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7722   }
7723 
7724   pop(ylen);
7725   pop(xlen);
7726   pop(x);
7727   pop(z);
7728 
7729   movl(tmp3, xlen);
7730   addl(tmp3, 1);
7731   movl(Address(z, tmp3, Address::times_4,  0), carry);
7732   subl(tmp3, 1);
7733   jccb(Assembler::negative, L_done);
7734 
7735   shrq(carry, 32);
7736   movl(Address(z, tmp3, Address::times_4,  0), carry);
7737   jmp(L_second_loop);
7738 
7739   // Next infrequent code is moved outside loops.
7740   bind(L_last_x);
7741   if (UseBMI2Instructions) {
7742     movl(rdx, Address(x,  0));
7743   } else {
7744     movl(x_xstart, Address(x,  0));
7745   }
7746   jmp(L_third_loop_prologue);
7747 
7748   bind(L_done);
7749 
7750   pop(zlen);
7751   pop(xlen);
7752 
7753   pop(tmp5);
7754   pop(tmp4);
7755   pop(tmp3);
7756   pop(tmp2);
7757   pop(tmp1);
7758 }
7759 
7760 //Helper functions for square_to_len()
7761 
7762 /**
7763  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7764  * Preserves x and z and modifies rest of the registers.
7765  */
7766 
7767 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7768   // Perform square and right shift by 1
7769   // Handle odd xlen case first, then for even xlen do the following
7770   // jlong carry = 0;
7771   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7772   //     huge_128 product = x[j:j+1] * x[j:j+1];
7773   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7774   //     z[i+2:i+3] = (jlong)(product >>> 1);
7775   //     carry = (jlong)product;
7776   // }
7777 
7778   xorq(tmp5, tmp5);     // carry
7779   xorq(rdxReg, rdxReg);
7780   xorl(tmp1, tmp1);     // index for x
7781   xorl(tmp4, tmp4);     // index for z
7782 
7783   Label L_first_loop, L_first_loop_exit;
7784 
7785   testl(xlen, 1);
7786   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7787 
7788   // Square and right shift by 1 the odd element using 32 bit multiply
7789   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7790   imulq(raxReg, raxReg);
7791   shrq(raxReg, 1);
7792   adcq(tmp5, 0);
7793   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7794   incrementl(tmp1);
7795   addl(tmp4, 2);
7796 
7797   // Square and  right shift by 1 the rest using 64 bit multiply
7798   bind(L_first_loop);
7799   cmpptr(tmp1, xlen);
7800   jccb(Assembler::equal, L_first_loop_exit);
7801 
7802   // Square
7803   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7804   rorq(raxReg, 32);    // convert big-endian to little-endian
7805   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7806 
7807   // Right shift by 1 and save carry
7808   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7809   rcrq(rdxReg, 1);
7810   rcrq(raxReg, 1);
7811   adcq(tmp5, 0);
7812 
7813   // Store result in z
7814   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7815   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7816 
7817   // Update indices for x and z
7818   addl(tmp1, 2);
7819   addl(tmp4, 4);
7820   jmp(L_first_loop);
7821 
7822   bind(L_first_loop_exit);
7823 }
7824 
7825 
7826 /**
7827  * Perform the following multiply add operation using BMI2 instructions
7828  * carry:sum = sum + op1*op2 + carry
7829  * op2 should be in rdx
7830  * op2 is preserved, all other registers are modified
7831  */
7832 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7833   // assert op2 is rdx
7834   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7835   addq(sum, carry);
7836   adcq(tmp2, 0);
7837   addq(sum, op1);
7838   adcq(tmp2, 0);
7839   movq(carry, tmp2);
7840 }
7841 
7842 /**
7843  * Perform the following multiply add operation:
7844  * carry:sum = sum + op1*op2 + carry
7845  * Preserves op1, op2 and modifies rest of registers
7846  */
7847 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7848   // rdx:rax = op1 * op2
7849   movq(raxReg, op2);
7850   mulq(op1);
7851 
7852   //  rdx:rax = sum + carry + rdx:rax
7853   addq(sum, carry);
7854   adcq(rdxReg, 0);
7855   addq(sum, raxReg);
7856   adcq(rdxReg, 0);
7857 
7858   // carry:sum = rdx:sum
7859   movq(carry, rdxReg);
7860 }
7861 
7862 /**
7863  * Add 64 bit long carry into z[] with carry propogation.
7864  * Preserves z and carry register values and modifies rest of registers.
7865  *
7866  */
7867 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7868   Label L_fourth_loop, L_fourth_loop_exit;
7869 
7870   movl(tmp1, 1);
7871   subl(zlen, 2);
7872   addq(Address(z, zlen, Address::times_4, 0), carry);
7873 
7874   bind(L_fourth_loop);
7875   jccb(Assembler::carryClear, L_fourth_loop_exit);
7876   subl(zlen, 2);
7877   jccb(Assembler::negative, L_fourth_loop_exit);
7878   addq(Address(z, zlen, Address::times_4, 0), tmp1);
7879   jmp(L_fourth_loop);
7880   bind(L_fourth_loop_exit);
7881 }
7882 
7883 /**
7884  * Shift z[] left by 1 bit.
7885  * Preserves x, len, z and zlen registers and modifies rest of the registers.
7886  *
7887  */
7888 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7889 
7890   Label L_fifth_loop, L_fifth_loop_exit;
7891 
7892   // Fifth loop
7893   // Perform primitiveLeftShift(z, zlen, 1)
7894 
7895   const Register prev_carry = tmp1;
7896   const Register new_carry = tmp4;
7897   const Register value = tmp2;
7898   const Register zidx = tmp3;
7899 
7900   // int zidx, carry;
7901   // long value;
7902   // carry = 0;
7903   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7904   //    (carry:value)  = (z[i] << 1) | carry ;
7905   //    z[i] = value;
7906   // }
7907 
7908   movl(zidx, zlen);
7909   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7910 
7911   bind(L_fifth_loop);
7912   decl(zidx);  // Use decl to preserve carry flag
7913   decl(zidx);
7914   jccb(Assembler::negative, L_fifth_loop_exit);
7915 
7916   if (UseBMI2Instructions) {
7917      movq(value, Address(z, zidx, Address::times_4, 0));
7918      rclq(value, 1);
7919      rorxq(value, value, 32);
7920      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7921   }
7922   else {
7923     // clear new_carry
7924     xorl(new_carry, new_carry);
7925 
7926     // Shift z[i] by 1, or in previous carry and save new carry
7927     movq(value, Address(z, zidx, Address::times_4, 0));
7928     shlq(value, 1);
7929     adcl(new_carry, 0);
7930 
7931     orq(value, prev_carry);
7932     rorq(value, 0x20);
7933     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7934 
7935     // Set previous carry = new carry
7936     movl(prev_carry, new_carry);
7937   }
7938   jmp(L_fifth_loop);
7939 
7940   bind(L_fifth_loop_exit);
7941 }
7942 
7943 
7944 /**
7945  * Code for BigInteger::squareToLen() intrinsic
7946  *
7947  * rdi: x
7948  * rsi: len
7949  * r8:  z
7950  * rcx: zlen
7951  * r12: tmp1
7952  * r13: tmp2
7953  * r14: tmp3
7954  * r15: tmp4
7955  * rbx: tmp5
7956  *
7957  */
7958 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7959 
7960   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
7961   push(tmp1);
7962   push(tmp2);
7963   push(tmp3);
7964   push(tmp4);
7965   push(tmp5);
7966 
7967   // First loop
7968   // Store the squares, right shifted one bit (i.e., divided by 2).
7969   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
7970 
7971   // Add in off-diagonal sums.
7972   //
7973   // Second, third (nested) and fourth loops.
7974   // zlen +=2;
7975   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
7976   //    carry = 0;
7977   //    long op2 = x[xidx:xidx+1];
7978   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
7979   //       k -= 2;
7980   //       long op1 = x[j:j+1];
7981   //       long sum = z[k:k+1];
7982   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
7983   //       z[k:k+1] = sum;
7984   //    }
7985   //    add_one_64(z, k, carry, tmp_regs);
7986   // }
7987 
7988   const Register carry = tmp5;
7989   const Register sum = tmp3;
7990   const Register op1 = tmp4;
7991   Register op2 = tmp2;
7992 
7993   push(zlen);
7994   push(len);
7995   addl(zlen,2);
7996   bind(L_second_loop);
7997   xorq(carry, carry);
7998   subl(zlen, 4);
7999   subl(len, 2);
8000   push(zlen);
8001   push(len);
8002   cmpl(len, 0);
8003   jccb(Assembler::lessEqual, L_second_loop_exit);
8004 
8005   // Multiply an array by one 64 bit long.
8006   if (UseBMI2Instructions) {
8007     op2 = rdxReg;
8008     movq(op2, Address(x, len, Address::times_4,  0));
8009     rorxq(op2, op2, 32);
8010   }
8011   else {
8012     movq(op2, Address(x, len, Address::times_4,  0));
8013     rorq(op2, 32);
8014   }
8015 
8016   bind(L_third_loop);
8017   decrementl(len);
8018   jccb(Assembler::negative, L_third_loop_exit);
8019   decrementl(len);
8020   jccb(Assembler::negative, L_last_x);
8021 
8022   movq(op1, Address(x, len, Address::times_4,  0));
8023   rorq(op1, 32);
8024 
8025   bind(L_multiply);
8026   subl(zlen, 2);
8027   movq(sum, Address(z, zlen, Address::times_4,  0));
8028 
8029   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8030   if (UseBMI2Instructions) {
8031     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8032   }
8033   else {
8034     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8035   }
8036 
8037   movq(Address(z, zlen, Address::times_4, 0), sum);
8038 
8039   jmp(L_third_loop);
8040   bind(L_third_loop_exit);
8041 
8042   // Fourth loop
8043   // Add 64 bit long carry into z with carry propogation.
8044   // Uses offsetted zlen.
8045   add_one_64(z, zlen, carry, tmp1);
8046 
8047   pop(len);
8048   pop(zlen);
8049   jmp(L_second_loop);
8050 
8051   // Next infrequent code is moved outside loops.
8052   bind(L_last_x);
8053   movl(op1, Address(x, 0));
8054   jmp(L_multiply);
8055 
8056   bind(L_second_loop_exit);
8057   pop(len);
8058   pop(zlen);
8059   pop(len);
8060   pop(zlen);
8061 
8062   // Fifth loop
8063   // Shift z left 1 bit.
8064   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8065 
8066   // z[zlen-1] |= x[len-1] & 1;
8067   movl(tmp3, Address(x, len, Address::times_4, -4));
8068   andl(tmp3, 1);
8069   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8070 
8071   pop(tmp5);
8072   pop(tmp4);
8073   pop(tmp3);
8074   pop(tmp2);
8075   pop(tmp1);
8076 }
8077 
8078 /**
8079  * Helper function for mul_add()
8080  * Multiply the in[] by int k and add to out[] starting at offset offs using
8081  * 128 bit by 32 bit multiply and return the carry in tmp5.
8082  * Only quad int aligned length of in[] is operated on in this function.
8083  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8084  * This function preserves out, in and k registers.
8085  * len and offset point to the appropriate index in "in" & "out" correspondingly
8086  * tmp5 has the carry.
8087  * other registers are temporary and are modified.
8088  *
8089  */
8090 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8091   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8092   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8093 
8094   Label L_first_loop, L_first_loop_exit;
8095 
8096   movl(tmp1, len);
8097   shrl(tmp1, 2);
8098 
8099   bind(L_first_loop);
8100   subl(tmp1, 1);
8101   jccb(Assembler::negative, L_first_loop_exit);
8102 
8103   subl(len, 4);
8104   subl(offset, 4);
8105 
8106   Register op2 = tmp2;
8107   const Register sum = tmp3;
8108   const Register op1 = tmp4;
8109   const Register carry = tmp5;
8110 
8111   if (UseBMI2Instructions) {
8112     op2 = rdxReg;
8113   }
8114 
8115   movq(op1, Address(in, len, Address::times_4,  8));
8116   rorq(op1, 32);
8117   movq(sum, Address(out, offset, Address::times_4,  8));
8118   rorq(sum, 32);
8119   if (UseBMI2Instructions) {
8120     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8121   }
8122   else {
8123     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8124   }
8125   // Store back in big endian from little endian
8126   rorq(sum, 0x20);
8127   movq(Address(out, offset, Address::times_4,  8), sum);
8128 
8129   movq(op1, Address(in, len, Address::times_4,  0));
8130   rorq(op1, 32);
8131   movq(sum, Address(out, offset, Address::times_4,  0));
8132   rorq(sum, 32);
8133   if (UseBMI2Instructions) {
8134     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8135   }
8136   else {
8137     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8138   }
8139   // Store back in big endian from little endian
8140   rorq(sum, 0x20);
8141   movq(Address(out, offset, Address::times_4,  0), sum);
8142 
8143   jmp(L_first_loop);
8144   bind(L_first_loop_exit);
8145 }
8146 
8147 /**
8148  * Code for BigInteger::mulAdd() intrinsic
8149  *
8150  * rdi: out
8151  * rsi: in
8152  * r11: offs (out.length - offset)
8153  * rcx: len
8154  * r8:  k
8155  * r12: tmp1
8156  * r13: tmp2
8157  * r14: tmp3
8158  * r15: tmp4
8159  * rbx: tmp5
8160  * Multiply the in[] by word k and add to out[], return the carry in rax
8161  */
8162 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8163    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8164    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8165 
8166   Label L_carry, L_last_in, L_done;
8167 
8168 // carry = 0;
8169 // for (int j=len-1; j >= 0; j--) {
8170 //    long product = (in[j] & LONG_MASK) * kLong +
8171 //                   (out[offs] & LONG_MASK) + carry;
8172 //    out[offs--] = (int)product;
8173 //    carry = product >>> 32;
8174 // }
8175 //
8176   push(tmp1);
8177   push(tmp2);
8178   push(tmp3);
8179   push(tmp4);
8180   push(tmp5);
8181 
8182   Register op2 = tmp2;
8183   const Register sum = tmp3;
8184   const Register op1 = tmp4;
8185   const Register carry =  tmp5;
8186 
8187   if (UseBMI2Instructions) {
8188     op2 = rdxReg;
8189     movl(op2, k);
8190   }
8191   else {
8192     movl(op2, k);
8193   }
8194 
8195   xorq(carry, carry);
8196 
8197   //First loop
8198 
8199   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8200   //The carry is in tmp5
8201   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8202 
8203   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8204   decrementl(len);
8205   jccb(Assembler::negative, L_carry);
8206   decrementl(len);
8207   jccb(Assembler::negative, L_last_in);
8208 
8209   movq(op1, Address(in, len, Address::times_4,  0));
8210   rorq(op1, 32);
8211 
8212   subl(offs, 2);
8213   movq(sum, Address(out, offs, Address::times_4,  0));
8214   rorq(sum, 32);
8215 
8216   if (UseBMI2Instructions) {
8217     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8218   }
8219   else {
8220     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8221   }
8222 
8223   // Store back in big endian from little endian
8224   rorq(sum, 0x20);
8225   movq(Address(out, offs, Address::times_4,  0), sum);
8226 
8227   testl(len, len);
8228   jccb(Assembler::zero, L_carry);
8229 
8230   //Multiply the last in[] entry, if any
8231   bind(L_last_in);
8232   movl(op1, Address(in, 0));
8233   movl(sum, Address(out, offs, Address::times_4,  -4));
8234 
8235   movl(raxReg, k);
8236   mull(op1); //tmp4 * eax -> edx:eax
8237   addl(sum, carry);
8238   adcl(rdxReg, 0);
8239   addl(sum, raxReg);
8240   adcl(rdxReg, 0);
8241   movl(carry, rdxReg);
8242 
8243   movl(Address(out, offs, Address::times_4,  -4), sum);
8244 
8245   bind(L_carry);
8246   //return tmp5/carry as carry in rax
8247   movl(rax, carry);
8248 
8249   bind(L_done);
8250   pop(tmp5);
8251   pop(tmp4);
8252   pop(tmp3);
8253   pop(tmp2);
8254   pop(tmp1);
8255 }
8256 #endif
8257 
8258 /**
8259  * Emits code to update CRC-32 with a byte value according to constants in table
8260  *
8261  * @param [in,out]crc   Register containing the crc.
8262  * @param [in]val       Register containing the byte to fold into the CRC.
8263  * @param [in]table     Register containing the table of crc constants.
8264  *
8265  * uint32_t crc;
8266  * val = crc_table[(val ^ crc) & 0xFF];
8267  * crc = val ^ (crc >> 8);
8268  *
8269  */
8270 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8271   xorl(val, crc);
8272   andl(val, 0xFF);
8273   shrl(crc, 8); // unsigned shift
8274   xorl(crc, Address(table, val, Address::times_4, 0));
8275 }
8276 
8277 /**
8278  * Fold 128-bit data chunk
8279  */
8280 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8281   if (UseAVX > 0) {
8282     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8283     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8284     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8285     pxor(xcrc, xtmp);
8286   } else {
8287     movdqa(xtmp, xcrc);
8288     pclmulhdq(xtmp, xK);   // [123:64]
8289     pclmulldq(xcrc, xK);   // [63:0]
8290     pxor(xcrc, xtmp);
8291     movdqu(xtmp, Address(buf, offset));
8292     pxor(xcrc, xtmp);
8293   }
8294 }
8295 
8296 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8297   if (UseAVX > 0) {
8298     vpclmulhdq(xtmp, xK, xcrc);
8299     vpclmulldq(xcrc, xK, xcrc);
8300     pxor(xcrc, xbuf);
8301     pxor(xcrc, xtmp);
8302   } else {
8303     movdqa(xtmp, xcrc);
8304     pclmulhdq(xtmp, xK);
8305     pclmulldq(xcrc, xK);
8306     pxor(xcrc, xbuf);
8307     pxor(xcrc, xtmp);
8308   }
8309 }
8310 
8311 /**
8312  * 8-bit folds to compute 32-bit CRC
8313  *
8314  * uint64_t xcrc;
8315  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8316  */
8317 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8318   movdl(tmp, xcrc);
8319   andl(tmp, 0xFF);
8320   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8321   psrldq(xcrc, 1); // unsigned shift one byte
8322   pxor(xcrc, xtmp);
8323 }
8324 
8325 /**
8326  * uint32_t crc;
8327  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8328  */
8329 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8330   movl(tmp, crc);
8331   andl(tmp, 0xFF);
8332   shrl(crc, 8);
8333   xorl(crc, Address(table, tmp, Address::times_4, 0));
8334 }
8335 
8336 /**
8337  * @param crc   register containing existing CRC (32-bit)
8338  * @param buf   register pointing to input byte buffer (byte*)
8339  * @param len   register containing number of bytes
8340  * @param table register that will contain address of CRC table
8341  * @param tmp   scratch register
8342  */
8343 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8344   assert_different_registers(crc, buf, len, table, tmp, rax);
8345 
8346   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8347   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8348 
8349   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8350   notl(crc); // ~crc
8351   cmpl(len, 16);
8352   jcc(Assembler::less, L_tail);
8353 
8354   // Align buffer to 16 bytes
8355   movl(tmp, buf);
8356   andl(tmp, 0xF);
8357   jccb(Assembler::zero, L_aligned);
8358   subl(tmp,  16);
8359   addl(len, tmp);
8360 
8361   align(4);
8362   BIND(L_align_loop);
8363   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8364   update_byte_crc32(crc, rax, table);
8365   increment(buf);
8366   incrementl(tmp);
8367   jccb(Assembler::less, L_align_loop);
8368 
8369   BIND(L_aligned);
8370   movl(tmp, len); // save
8371   shrl(len, 4);
8372   jcc(Assembler::zero, L_tail_restore);
8373 
8374   // Fold crc into first bytes of vector
8375   movdqa(xmm1, Address(buf, 0));
8376   movdl(rax, xmm1);
8377   xorl(crc, rax);
8378   pinsrd(xmm1, crc, 0);
8379   addptr(buf, 16);
8380   subl(len, 4); // len > 0
8381   jcc(Assembler::less, L_fold_tail);
8382 
8383   movdqa(xmm2, Address(buf,  0));
8384   movdqa(xmm3, Address(buf, 16));
8385   movdqa(xmm4, Address(buf, 32));
8386   addptr(buf, 48);
8387   subl(len, 3);
8388   jcc(Assembler::lessEqual, L_fold_512b);
8389 
8390   // Fold total 512 bits of polynomial on each iteration,
8391   // 128 bits per each of 4 parallel streams.
8392   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8393 
8394   align(32);
8395   BIND(L_fold_512b_loop);
8396   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8397   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8398   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8399   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8400   addptr(buf, 64);
8401   subl(len, 4);
8402   jcc(Assembler::greater, L_fold_512b_loop);
8403 
8404   // Fold 512 bits to 128 bits.
8405   BIND(L_fold_512b);
8406   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8407   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8408   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8409   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8410 
8411   // Fold the rest of 128 bits data chunks
8412   BIND(L_fold_tail);
8413   addl(len, 3);
8414   jccb(Assembler::lessEqual, L_fold_128b);
8415   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8416 
8417   BIND(L_fold_tail_loop);
8418   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8419   addptr(buf, 16);
8420   decrementl(len);
8421   jccb(Assembler::greater, L_fold_tail_loop);
8422 
8423   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8424   BIND(L_fold_128b);
8425   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8426   if (UseAVX > 0) {
8427     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8428     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8429     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8430   } else {
8431     movdqa(xmm2, xmm0);
8432     pclmulqdq(xmm2, xmm1, 0x1);
8433     movdqa(xmm3, xmm0);
8434     pand(xmm3, xmm2);
8435     pclmulqdq(xmm0, xmm3, 0x1);
8436   }
8437   psrldq(xmm1, 8);
8438   psrldq(xmm2, 4);
8439   pxor(xmm0, xmm1);
8440   pxor(xmm0, xmm2);
8441 
8442   // 8 8-bit folds to compute 32-bit CRC.
8443   for (int j = 0; j < 4; j++) {
8444     fold_8bit_crc32(xmm0, table, xmm1, rax);
8445   }
8446   movdl(crc, xmm0); // mov 32 bits to general register
8447   for (int j = 0; j < 4; j++) {
8448     fold_8bit_crc32(crc, table, rax);
8449   }
8450 
8451   BIND(L_tail_restore);
8452   movl(len, tmp); // restore
8453   BIND(L_tail);
8454   andl(len, 0xf);
8455   jccb(Assembler::zero, L_exit);
8456 
8457   // Fold the rest of bytes
8458   align(4);
8459   BIND(L_tail_loop);
8460   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8461   update_byte_crc32(crc, rax, table);
8462   increment(buf);
8463   decrementl(len);
8464   jccb(Assembler::greater, L_tail_loop);
8465 
8466   BIND(L_exit);
8467   notl(crc); // ~c
8468 }
8469 
8470 #undef BIND
8471 #undef BLOCK_COMMENT
8472 
8473 
8474 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8475   switch (cond) {
8476     // Note some conditions are synonyms for others
8477     case Assembler::zero:         return Assembler::notZero;
8478     case Assembler::notZero:      return Assembler::zero;
8479     case Assembler::less:         return Assembler::greaterEqual;
8480     case Assembler::lessEqual:    return Assembler::greater;
8481     case Assembler::greater:      return Assembler::lessEqual;
8482     case Assembler::greaterEqual: return Assembler::less;
8483     case Assembler::below:        return Assembler::aboveEqual;
8484     case Assembler::belowEqual:   return Assembler::above;
8485     case Assembler::above:        return Assembler::belowEqual;
8486     case Assembler::aboveEqual:   return Assembler::below;
8487     case Assembler::overflow:     return Assembler::noOverflow;
8488     case Assembler::noOverflow:   return Assembler::overflow;
8489     case Assembler::negative:     return Assembler::positive;
8490     case Assembler::positive:     return Assembler::negative;
8491     case Assembler::parity:       return Assembler::noParity;
8492     case Assembler::noParity:     return Assembler::parity;
8493   }
8494   ShouldNotReachHere(); return Assembler::overflow;
8495 }
8496 
8497 SkipIfEqual::SkipIfEqual(
8498     MacroAssembler* masm, const bool* flag_addr, bool value) {
8499   _masm = masm;
8500   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8501   _masm->jcc(Assembler::equal, _label);
8502 }
8503 
8504 SkipIfEqual::~SkipIfEqual() {
8505   _masm->bind(_label);
8506 }