1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 #include "crc32c.h"
  49 
  50 #ifdef PRODUCT
  51 #define BLOCK_COMMENT(str) /* nothing */
  52 #define STOP(error) stop(error)
  53 #else
  54 #define BLOCK_COMMENT(str) block_comment(str)
  55 #define STOP(error) block_comment(error); stop(error)
  56 #endif
  57 
  58 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  59 
  60 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  61 
  62 #ifdef ASSERT
  63 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  64 #endif
  65 
  66 static Assembler::Condition reverse[] = {
  67     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  68     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  69     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  70     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  71     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  72     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  73     Assembler::above          /* belowEqual    = 0x6 */ ,
  74     Assembler::belowEqual     /* above         = 0x7 */ ,
  75     Assembler::positive       /* negative      = 0x8 */ ,
  76     Assembler::negative       /* positive      = 0x9 */ ,
  77     Assembler::noParity       /* parity        = 0xa */ ,
  78     Assembler::parity         /* noParity      = 0xb */ ,
  79     Assembler::greaterEqual   /* less          = 0xc */ ,
  80     Assembler::less           /* greaterEqual  = 0xd */ ,
  81     Assembler::greater        /* lessEqual     = 0xe */ ,
  82     Assembler::lessEqual      /* greater       = 0xf, */
  83 
  84 };
  85 
  86 
  87 // Implementation of MacroAssembler
  88 
  89 // First all the versions that have distinct versions depending on 32/64 bit
  90 // Unless the difference is trivial (1 line or so).
  91 
  92 #ifndef _LP64
  93 
  94 // 32bit versions
  95 
  96 Address MacroAssembler::as_Address(AddressLiteral adr) {
  97   return Address(adr.target(), adr.rspec());
  98 }
  99 
 100 Address MacroAssembler::as_Address(ArrayAddress adr) {
 101   return Address::make_array(adr);
 102 }
 103 
 104 void MacroAssembler::call_VM_leaf_base(address entry_point,
 105                                        int number_of_arguments) {
 106   call(RuntimeAddress(entry_point));
 107   increment(rsp, number_of_arguments * wordSize);
 108 }
 109 
 110 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 111   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 112 }
 113 
 114 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 119   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::extend_sign(Register hi, Register lo) {
 127   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 128   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 129     cdql();
 130   } else {
 131     movl(hi, lo);
 132     sarl(hi, 31);
 133   }
 134 }
 135 
 136 void MacroAssembler::jC2(Register tmp, Label& L) {
 137   // set parity bit if FPU flag C2 is set (via rax)
 138   save_rax(tmp);
 139   fwait(); fnstsw_ax();
 140   sahf();
 141   restore_rax(tmp);
 142   // branch
 143   jcc(Assembler::parity, L);
 144 }
 145 
 146 void MacroAssembler::jnC2(Register tmp, Label& L) {
 147   // set parity bit if FPU flag C2 is set (via rax)
 148   save_rax(tmp);
 149   fwait(); fnstsw_ax();
 150   sahf();
 151   restore_rax(tmp);
 152   // branch
 153   jcc(Assembler::noParity, L);
 154 }
 155 
 156 // 32bit can do a case table jump in one instruction but we no longer allow the base
 157 // to be installed in the Address class
 158 void MacroAssembler::jump(ArrayAddress entry) {
 159   jmp(as_Address(entry));
 160 }
 161 
 162 // Note: y_lo will be destroyed
 163 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 164   // Long compare for Java (semantics as described in JVM spec.)
 165   Label high, low, done;
 166 
 167   cmpl(x_hi, y_hi);
 168   jcc(Assembler::less, low);
 169   jcc(Assembler::greater, high);
 170   // x_hi is the return register
 171   xorl(x_hi, x_hi);
 172   cmpl(x_lo, y_lo);
 173   jcc(Assembler::below, low);
 174   jcc(Assembler::equal, done);
 175 
 176   bind(high);
 177   xorl(x_hi, x_hi);
 178   increment(x_hi);
 179   jmp(done);
 180 
 181   bind(low);
 182   xorl(x_hi, x_hi);
 183   decrementl(x_hi);
 184 
 185   bind(done);
 186 }
 187 
 188 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 189     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 190 }
 191 
 192 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 193   // leal(dst, as_Address(adr));
 194   // see note in movl as to why we must use a move
 195   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 196 }
 197 
 198 void MacroAssembler::leave() {
 199   mov(rsp, rbp);
 200   pop(rbp);
 201 }
 202 
 203 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 204   // Multiplication of two Java long values stored on the stack
 205   // as illustrated below. Result is in rdx:rax.
 206   //
 207   // rsp ---> [  ??  ] \               \
 208   //            ....    | y_rsp_offset  |
 209   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 210   //          [ y_hi ]                  | (in bytes)
 211   //            ....                    |
 212   //          [ x_lo ]                 /
 213   //          [ x_hi ]
 214   //            ....
 215   //
 216   // Basic idea: lo(result) = lo(x_lo * y_lo)
 217   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 218   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 219   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 220   Label quick;
 221   // load x_hi, y_hi and check if quick
 222   // multiplication is possible
 223   movl(rbx, x_hi);
 224   movl(rcx, y_hi);
 225   movl(rax, rbx);
 226   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 227   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 228   // do full multiplication
 229   // 1st step
 230   mull(y_lo);                                    // x_hi * y_lo
 231   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 232   // 2nd step
 233   movl(rax, x_lo);
 234   mull(rcx);                                     // x_lo * y_hi
 235   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 236   // 3rd step
 237   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 238   movl(rax, x_lo);
 239   mull(y_lo);                                    // x_lo * y_lo
 240   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 241 }
 242 
 243 void MacroAssembler::lneg(Register hi, Register lo) {
 244   negl(lo);
 245   adcl(hi, 0);
 246   negl(hi);
 247 }
 248 
 249 void MacroAssembler::lshl(Register hi, Register lo) {
 250   // Java shift left long support (semantics as described in JVM spec., p.305)
 251   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 252   // shift value is in rcx !
 253   assert(hi != rcx, "must not use rcx");
 254   assert(lo != rcx, "must not use rcx");
 255   const Register s = rcx;                        // shift count
 256   const int      n = BitsPerWord;
 257   Label L;
 258   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 259   cmpl(s, n);                                    // if (s < n)
 260   jcc(Assembler::less, L);                       // else (s >= n)
 261   movl(hi, lo);                                  // x := x << n
 262   xorl(lo, lo);
 263   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 264   bind(L);                                       // s (mod n) < n
 265   shldl(hi, lo);                                 // x := x << s
 266   shll(lo);
 267 }
 268 
 269 
 270 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 271   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 272   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 273   assert(hi != rcx, "must not use rcx");
 274   assert(lo != rcx, "must not use rcx");
 275   const Register s = rcx;                        // shift count
 276   const int      n = BitsPerWord;
 277   Label L;
 278   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 279   cmpl(s, n);                                    // if (s < n)
 280   jcc(Assembler::less, L);                       // else (s >= n)
 281   movl(lo, hi);                                  // x := x >> n
 282   if (sign_extension) sarl(hi, 31);
 283   else                xorl(hi, hi);
 284   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 285   bind(L);                                       // s (mod n) < n
 286   shrdl(lo, hi);                                 // x := x >> s
 287   if (sign_extension) sarl(hi);
 288   else                shrl(hi);
 289 }
 290 
 291 void MacroAssembler::movoop(Register dst, jobject obj) {
 292   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 293 }
 294 
 295 void MacroAssembler::movoop(Address dst, jobject obj) {
 296   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 297 }
 298 
 299 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 300   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 301 }
 302 
 303 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 304   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 305 }
 306 
 307 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 308   // scratch register is not used,
 309   // it is defined to match parameters of 64-bit version of this method.
 310   if (src.is_lval()) {
 311     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 312   } else {
 313     movl(dst, as_Address(src));
 314   }
 315 }
 316 
 317 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 318   movl(as_Address(dst), src);
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 322   movl(dst, as_Address(src));
 323 }
 324 
 325 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 326 void MacroAssembler::movptr(Address dst, intptr_t src) {
 327   movl(dst, src);
 328 }
 329 
 330 
 331 void MacroAssembler::pop_callee_saved_registers() {
 332   pop(rcx);
 333   pop(rdx);
 334   pop(rdi);
 335   pop(rsi);
 336 }
 337 
 338 void MacroAssembler::pop_fTOS() {
 339   fld_d(Address(rsp, 0));
 340   addl(rsp, 2 * wordSize);
 341 }
 342 
 343 void MacroAssembler::push_callee_saved_registers() {
 344   push(rsi);
 345   push(rdi);
 346   push(rdx);
 347   push(rcx);
 348 }
 349 
 350 void MacroAssembler::push_fTOS() {
 351   subl(rsp, 2 * wordSize);
 352   fstp_d(Address(rsp, 0));
 353 }
 354 
 355 
 356 void MacroAssembler::pushoop(jobject obj) {
 357   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 358 }
 359 
 360 void MacroAssembler::pushklass(Metadata* obj) {
 361   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 362 }
 363 
 364 void MacroAssembler::pushptr(AddressLiteral src) {
 365   if (src.is_lval()) {
 366     push_literal32((int32_t)src.target(), src.rspec());
 367   } else {
 368     pushl(as_Address(src));
 369   }
 370 }
 371 
 372 void MacroAssembler::set_word_if_not_zero(Register dst) {
 373   xorl(dst, dst);
 374   set_byte_if_not_zero(dst);
 375 }
 376 
 377 static void pass_arg0(MacroAssembler* masm, Register arg) {
 378   masm->push(arg);
 379 }
 380 
 381 static void pass_arg1(MacroAssembler* masm, Register arg) {
 382   masm->push(arg);
 383 }
 384 
 385 static void pass_arg2(MacroAssembler* masm, Register arg) {
 386   masm->push(arg);
 387 }
 388 
 389 static void pass_arg3(MacroAssembler* masm, Register arg) {
 390   masm->push(arg);
 391 }
 392 
 393 #ifndef PRODUCT
 394 extern "C" void findpc(intptr_t x);
 395 #endif
 396 
 397 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 398   // In order to get locks to work, we need to fake a in_VM state
 399   JavaThread* thread = JavaThread::current();
 400   JavaThreadState saved_state = thread->thread_state();
 401   thread->set_thread_state(_thread_in_vm);
 402   if (ShowMessageBoxOnError) {
 403     JavaThread* thread = JavaThread::current();
 404     JavaThreadState saved_state = thread->thread_state();
 405     thread->set_thread_state(_thread_in_vm);
 406     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 407       ttyLocker ttyl;
 408       BytecodeCounter::print();
 409     }
 410     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 411     // This is the value of eip which points to where verify_oop will return.
 412     if (os::message_box(msg, "Execution stopped, print registers?")) {
 413       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 414       BREAKPOINT;
 415     }
 416   } else {
 417     ttyLocker ttyl;
 418     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 419   }
 420   // Don't assert holding the ttyLock
 421     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 422   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 423 }
 424 
 425 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 426   ttyLocker ttyl;
 427   FlagSetting fs(Debugging, true);
 428   tty->print_cr("eip = 0x%08x", eip);
 429 #ifndef PRODUCT
 430   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 431     tty->cr();
 432     findpc(eip);
 433     tty->cr();
 434   }
 435 #endif
 436 #define PRINT_REG(rax) \
 437   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 438   PRINT_REG(rax);
 439   PRINT_REG(rbx);
 440   PRINT_REG(rcx);
 441   PRINT_REG(rdx);
 442   PRINT_REG(rdi);
 443   PRINT_REG(rsi);
 444   PRINT_REG(rbp);
 445   PRINT_REG(rsp);
 446 #undef PRINT_REG
 447   // Print some words near top of staack.
 448   int* dump_sp = (int*) rsp;
 449   for (int col1 = 0; col1 < 8; col1++) {
 450     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 451     os::print_location(tty, *dump_sp++);
 452   }
 453   for (int row = 0; row < 16; row++) {
 454     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 455     for (int col = 0; col < 8; col++) {
 456       tty->print(" 0x%08x", *dump_sp++);
 457     }
 458     tty->cr();
 459   }
 460   // Print some instructions around pc:
 461   Disassembler::decode((address)eip-64, (address)eip);
 462   tty->print_cr("--------");
 463   Disassembler::decode((address)eip, (address)eip+32);
 464 }
 465 
 466 void MacroAssembler::stop(const char* msg) {
 467   ExternalAddress message((address)msg);
 468   // push address of message
 469   pushptr(message.addr());
 470   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 471   pusha();                                            // push registers
 472   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 473   hlt();
 474 }
 475 
 476 void MacroAssembler::warn(const char* msg) {
 477   push_CPU_state();
 478 
 479   ExternalAddress message((address) msg);
 480   // push address of message
 481   pushptr(message.addr());
 482 
 483   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 484   addl(rsp, wordSize);       // discard argument
 485   pop_CPU_state();
 486 }
 487 
 488 void MacroAssembler::print_state() {
 489   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 490   pusha();                                            // push registers
 491 
 492   push_CPU_state();
 493   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 494   pop_CPU_state();
 495 
 496   popa();
 497   addl(rsp, wordSize);
 498 }
 499 
 500 #else // _LP64
 501 
 502 // 64 bit versions
 503 
 504 Address MacroAssembler::as_Address(AddressLiteral adr) {
 505   // amd64 always does this as a pc-rel
 506   // we can be absolute or disp based on the instruction type
 507   // jmp/call are displacements others are absolute
 508   assert(!adr.is_lval(), "must be rval");
 509   assert(reachable(adr), "must be");
 510   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 511 
 512 }
 513 
 514 Address MacroAssembler::as_Address(ArrayAddress adr) {
 515   AddressLiteral base = adr.base();
 516   lea(rscratch1, base);
 517   Address index = adr.index();
 518   assert(index._disp == 0, "must not have disp"); // maybe it can?
 519   Address array(rscratch1, index._index, index._scale, index._disp);
 520   return array;
 521 }
 522 
 523 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 524   Label L, E;
 525 
 526 #ifdef _WIN64
 527   // Windows always allocates space for it's register args
 528   assert(num_args <= 4, "only register arguments supported");
 529   subq(rsp,  frame::arg_reg_save_area_bytes);
 530 #endif
 531 
 532   // Align stack if necessary
 533   testl(rsp, 15);
 534   jcc(Assembler::zero, L);
 535 
 536   subq(rsp, 8);
 537   {
 538     call(RuntimeAddress(entry_point));
 539   }
 540   addq(rsp, 8);
 541   jmp(E);
 542 
 543   bind(L);
 544   {
 545     call(RuntimeAddress(entry_point));
 546   }
 547 
 548   bind(E);
 549 
 550 #ifdef _WIN64
 551   // restore stack pointer
 552   addq(rsp, frame::arg_reg_save_area_bytes);
 553 #endif
 554 
 555 }
 556 
 557 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 558   assert(!src2.is_lval(), "should use cmpptr");
 559 
 560   if (reachable(src2)) {
 561     cmpq(src1, as_Address(src2));
 562   } else {
 563     lea(rscratch1, src2);
 564     Assembler::cmpq(src1, Address(rscratch1, 0));
 565   }
 566 }
 567 
 568 int MacroAssembler::corrected_idivq(Register reg) {
 569   // Full implementation of Java ldiv and lrem; checks for special
 570   // case as described in JVM spec., p.243 & p.271.  The function
 571   // returns the (pc) offset of the idivl instruction - may be needed
 572   // for implicit exceptions.
 573   //
 574   //         normal case                           special case
 575   //
 576   // input : rax: dividend                         min_long
 577   //         reg: divisor   (may not be eax/edx)   -1
 578   //
 579   // output: rax: quotient  (= rax idiv reg)       min_long
 580   //         rdx: remainder (= rax irem reg)       0
 581   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 582   static const int64_t min_long = 0x8000000000000000;
 583   Label normal_case, special_case;
 584 
 585   // check for special case
 586   cmp64(rax, ExternalAddress((address) &min_long));
 587   jcc(Assembler::notEqual, normal_case);
 588   xorl(rdx, rdx); // prepare rdx for possible special case (where
 589                   // remainder = 0)
 590   cmpq(reg, -1);
 591   jcc(Assembler::equal, special_case);
 592 
 593   // handle normal case
 594   bind(normal_case);
 595   cdqq();
 596   int idivq_offset = offset();
 597   idivq(reg);
 598 
 599   // normal and special case exit
 600   bind(special_case);
 601 
 602   return idivq_offset;
 603 }
 604 
 605 void MacroAssembler::decrementq(Register reg, int value) {
 606   if (value == min_jint) { subq(reg, value); return; }
 607   if (value <  0) { incrementq(reg, -value); return; }
 608   if (value == 0) {                        ; return; }
 609   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 610   /* else */      { subq(reg, value)       ; return; }
 611 }
 612 
 613 void MacroAssembler::decrementq(Address dst, int value) {
 614   if (value == min_jint) { subq(dst, value); return; }
 615   if (value <  0) { incrementq(dst, -value); return; }
 616   if (value == 0) {                        ; return; }
 617   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 618   /* else */      { subq(dst, value)       ; return; }
 619 }
 620 
 621 void MacroAssembler::incrementq(AddressLiteral dst) {
 622   if (reachable(dst)) {
 623     incrementq(as_Address(dst));
 624   } else {
 625     lea(rscratch1, dst);
 626     incrementq(Address(rscratch1, 0));
 627   }
 628 }
 629 
 630 void MacroAssembler::incrementq(Register reg, int value) {
 631   if (value == min_jint) { addq(reg, value); return; }
 632   if (value <  0) { decrementq(reg, -value); return; }
 633   if (value == 0) {                        ; return; }
 634   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 635   /* else */      { addq(reg, value)       ; return; }
 636 }
 637 
 638 void MacroAssembler::incrementq(Address dst, int value) {
 639   if (value == min_jint) { addq(dst, value); return; }
 640   if (value <  0) { decrementq(dst, -value); return; }
 641   if (value == 0) {                        ; return; }
 642   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 643   /* else */      { addq(dst, value)       ; return; }
 644 }
 645 
 646 // 32bit can do a case table jump in one instruction but we no longer allow the base
 647 // to be installed in the Address class
 648 void MacroAssembler::jump(ArrayAddress entry) {
 649   lea(rscratch1, entry.base());
 650   Address dispatch = entry.index();
 651   assert(dispatch._base == noreg, "must be");
 652   dispatch._base = rscratch1;
 653   jmp(dispatch);
 654 }
 655 
 656 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 657   ShouldNotReachHere(); // 64bit doesn't use two regs
 658   cmpq(x_lo, y_lo);
 659 }
 660 
 661 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 662     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 663 }
 664 
 665 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 666   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 667   movptr(dst, rscratch1);
 668 }
 669 
 670 void MacroAssembler::leave() {
 671   // %%% is this really better? Why not on 32bit too?
 672   emit_int8((unsigned char)0xC9); // LEAVE
 673 }
 674 
 675 void MacroAssembler::lneg(Register hi, Register lo) {
 676   ShouldNotReachHere(); // 64bit doesn't use two regs
 677   negq(lo);
 678 }
 679 
 680 void MacroAssembler::movoop(Register dst, jobject obj) {
 681   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 682 }
 683 
 684 void MacroAssembler::movoop(Address dst, jobject obj) {
 685   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 686   movq(dst, rscratch1);
 687 }
 688 
 689 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 690   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 699   if (src.is_lval()) {
 700     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 701   } else {
 702     if (reachable(src)) {
 703       movq(dst, as_Address(src));
 704     } else {
 705       lea(scratch, src);
 706       movq(dst, Address(scratch, 0));
 707     }
 708   }
 709 }
 710 
 711 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 712   movq(as_Address(dst), src);
 713 }
 714 
 715 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 716   movq(dst, as_Address(src));
 717 }
 718 
 719 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 720 void MacroAssembler::movptr(Address dst, intptr_t src) {
 721   mov64(rscratch1, src);
 722   movq(dst, rscratch1);
 723 }
 724 
 725 // These are mostly for initializing NULL
 726 void MacroAssembler::movptr(Address dst, int32_t src) {
 727   movslq(dst, src);
 728 }
 729 
 730 void MacroAssembler::movptr(Register dst, int32_t src) {
 731   mov64(dst, (intptr_t)src);
 732 }
 733 
 734 void MacroAssembler::pushoop(jobject obj) {
 735   movoop(rscratch1, obj);
 736   push(rscratch1);
 737 }
 738 
 739 void MacroAssembler::pushklass(Metadata* obj) {
 740   mov_metadata(rscratch1, obj);
 741   push(rscratch1);
 742 }
 743 
 744 void MacroAssembler::pushptr(AddressLiteral src) {
 745   lea(rscratch1, src);
 746   if (src.is_lval()) {
 747     push(rscratch1);
 748   } else {
 749     pushq(Address(rscratch1, 0));
 750   }
 751 }
 752 
 753 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 754                                            bool clear_pc) {
 755   // we must set sp to zero to clear frame
 756   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 757   // must clear fp, so that compiled frames are not confused; it is
 758   // possible that we need it only for debugging
 759   if (clear_fp) {
 760     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 761   }
 762 
 763   if (clear_pc) {
 764     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 765   }
 766 }
 767 
 768 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 769                                          Register last_java_fp,
 770                                          address  last_java_pc) {
 771   // determine last_java_sp register
 772   if (!last_java_sp->is_valid()) {
 773     last_java_sp = rsp;
 774   }
 775 
 776   // last_java_fp is optional
 777   if (last_java_fp->is_valid()) {
 778     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 779            last_java_fp);
 780   }
 781 
 782   // last_java_pc is optional
 783   if (last_java_pc != NULL) {
 784     Address java_pc(r15_thread,
 785                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 786     lea(rscratch1, InternalAddress(last_java_pc));
 787     movptr(java_pc, rscratch1);
 788   }
 789 
 790   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 791 }
 792 
 793 static void pass_arg0(MacroAssembler* masm, Register arg) {
 794   if (c_rarg0 != arg ) {
 795     masm->mov(c_rarg0, arg);
 796   }
 797 }
 798 
 799 static void pass_arg1(MacroAssembler* masm, Register arg) {
 800   if (c_rarg1 != arg ) {
 801     masm->mov(c_rarg1, arg);
 802   }
 803 }
 804 
 805 static void pass_arg2(MacroAssembler* masm, Register arg) {
 806   if (c_rarg2 != arg ) {
 807     masm->mov(c_rarg2, arg);
 808   }
 809 }
 810 
 811 static void pass_arg3(MacroAssembler* masm, Register arg) {
 812   if (c_rarg3 != arg ) {
 813     masm->mov(c_rarg3, arg);
 814   }
 815 }
 816 
 817 void MacroAssembler::stop(const char* msg) {
 818   address rip = pc();
 819   pusha(); // get regs on stack
 820   lea(c_rarg0, ExternalAddress((address) msg));
 821   lea(c_rarg1, InternalAddress(rip));
 822   movq(c_rarg2, rsp); // pass pointer to regs array
 823   andq(rsp, -16); // align stack as required by ABI
 824   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 825   hlt();
 826 }
 827 
 828 void MacroAssembler::warn(const char* msg) {
 829   push(rbp);
 830   movq(rbp, rsp);
 831   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 832   push_CPU_state();   // keeps alignment at 16 bytes
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 835   pop_CPU_state();
 836   mov(rsp, rbp);
 837   pop(rbp);
 838 }
 839 
 840 void MacroAssembler::print_state() {
 841   address rip = pc();
 842   pusha();            // get regs on stack
 843   push(rbp);
 844   movq(rbp, rsp);
 845   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 846   push_CPU_state();   // keeps alignment at 16 bytes
 847 
 848   lea(c_rarg0, InternalAddress(rip));
 849   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 850   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 851 
 852   pop_CPU_state();
 853   mov(rsp, rbp);
 854   pop(rbp);
 855   popa();
 856 }
 857 
 858 #ifndef PRODUCT
 859 extern "C" void findpc(intptr_t x);
 860 #endif
 861 
 862 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 863   // In order to get locks to work, we need to fake a in_VM state
 864   if (ShowMessageBoxOnError) {
 865     JavaThread* thread = JavaThread::current();
 866     JavaThreadState saved_state = thread->thread_state();
 867     thread->set_thread_state(_thread_in_vm);
 868 #ifndef PRODUCT
 869     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 870       ttyLocker ttyl;
 871       BytecodeCounter::print();
 872     }
 873 #endif
 874     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 875     // XXX correct this offset for amd64
 876     // This is the value of eip which points to where verify_oop will return.
 877     if (os::message_box(msg, "Execution stopped, print registers?")) {
 878       print_state64(pc, regs);
 879       BREAKPOINT;
 880       assert(false, "start up GDB");
 881     }
 882     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 883   } else {
 884     ttyLocker ttyl;
 885     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 886                     msg);
 887     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 888   }
 889 }
 890 
 891 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 892   ttyLocker ttyl;
 893   FlagSetting fs(Debugging, true);
 894   tty->print_cr("rip = 0x%016lx", pc);
 895 #ifndef PRODUCT
 896   tty->cr();
 897   findpc(pc);
 898   tty->cr();
 899 #endif
 900 #define PRINT_REG(rax, value) \
 901   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 902   PRINT_REG(rax, regs[15]);
 903   PRINT_REG(rbx, regs[12]);
 904   PRINT_REG(rcx, regs[14]);
 905   PRINT_REG(rdx, regs[13]);
 906   PRINT_REG(rdi, regs[8]);
 907   PRINT_REG(rsi, regs[9]);
 908   PRINT_REG(rbp, regs[10]);
 909   PRINT_REG(rsp, regs[11]);
 910   PRINT_REG(r8 , regs[7]);
 911   PRINT_REG(r9 , regs[6]);
 912   PRINT_REG(r10, regs[5]);
 913   PRINT_REG(r11, regs[4]);
 914   PRINT_REG(r12, regs[3]);
 915   PRINT_REG(r13, regs[2]);
 916   PRINT_REG(r14, regs[1]);
 917   PRINT_REG(r15, regs[0]);
 918 #undef PRINT_REG
 919   // Print some words near top of staack.
 920   int64_t* rsp = (int64_t*) regs[11];
 921   int64_t* dump_sp = rsp;
 922   for (int col1 = 0; col1 < 8; col1++) {
 923     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 924     os::print_location(tty, *dump_sp++);
 925   }
 926   for (int row = 0; row < 25; row++) {
 927     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 928     for (int col = 0; col < 4; col++) {
 929       tty->print(" 0x%016lx", *dump_sp++);
 930     }
 931     tty->cr();
 932   }
 933   // Print some instructions around pc:
 934   Disassembler::decode((address)pc-64, (address)pc);
 935   tty->print_cr("--------");
 936   Disassembler::decode((address)pc, (address)pc+32);
 937 }
 938 
 939 #endif // _LP64
 940 
 941 // Now versions that are common to 32/64 bit
 942 
 943 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 944   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 945 }
 946 
 947 void MacroAssembler::addptr(Register dst, Register src) {
 948   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 949 }
 950 
 951 void MacroAssembler::addptr(Address dst, Register src) {
 952   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 953 }
 954 
 955 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 956   if (reachable(src)) {
 957     Assembler::addsd(dst, as_Address(src));
 958   } else {
 959     lea(rscratch1, src);
 960     Assembler::addsd(dst, Address(rscratch1, 0));
 961   }
 962 }
 963 
 964 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 965   if (reachable(src)) {
 966     addss(dst, as_Address(src));
 967   } else {
 968     lea(rscratch1, src);
 969     addss(dst, Address(rscratch1, 0));
 970   }
 971 }
 972 
 973 void MacroAssembler::align(int modulus) {
 974   align(modulus, offset());
 975 }
 976 
 977 void MacroAssembler::align(int modulus, int target) {
 978   if (target % modulus != 0) {
 979     nop(modulus - (target % modulus));
 980   }
 981 }
 982 
 983 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 984   // Used in sign-masking with aligned address.
 985   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 986   if (reachable(src)) {
 987     Assembler::andpd(dst, as_Address(src));
 988   } else {
 989     lea(rscratch1, src);
 990     Assembler::andpd(dst, Address(rscratch1, 0));
 991   }
 992 }
 993 
 994 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andps(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andps(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1006   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1007 }
1008 
1009 void MacroAssembler::atomic_incl(Address counter_addr) {
1010   if (os::is_MP())
1011     lock();
1012   incrementl(counter_addr);
1013 }
1014 
1015 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1016   if (reachable(counter_addr)) {
1017     atomic_incl(as_Address(counter_addr));
1018   } else {
1019     lea(scr, counter_addr);
1020     atomic_incl(Address(scr, 0));
1021   }
1022 }
1023 
1024 #ifdef _LP64
1025 void MacroAssembler::atomic_incq(Address counter_addr) {
1026   if (os::is_MP())
1027     lock();
1028   incrementq(counter_addr);
1029 }
1030 
1031 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1032   if (reachable(counter_addr)) {
1033     atomic_incq(as_Address(counter_addr));
1034   } else {
1035     lea(scr, counter_addr);
1036     atomic_incq(Address(scr, 0));
1037   }
1038 }
1039 #endif
1040 
1041 // Writes to stack successive pages until offset reached to check for
1042 // stack overflow + shadow pages.  This clobbers tmp.
1043 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1044   movptr(tmp, rsp);
1045   // Bang stack for total size given plus shadow page size.
1046   // Bang one page at a time because large size can bang beyond yellow and
1047   // red zones.
1048   Label loop;
1049   bind(loop);
1050   movl(Address(tmp, (-os::vm_page_size())), size );
1051   subptr(tmp, os::vm_page_size());
1052   subl(size, os::vm_page_size());
1053   jcc(Assembler::greater, loop);
1054 
1055   // Bang down shadow pages too.
1056   // At this point, (tmp-0) is the last address touched, so don't
1057   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1058   // was post-decremented.)  Skip this address by starting at i=1, and
1059   // touch a few more pages below.  N.B.  It is important to touch all
1060   // the way down to and including i=StackShadowPages.
1061   for (int i = 1; i < StackShadowPages; i++) {
1062     // this could be any sized move but this is can be a debugging crumb
1063     // so the bigger the better.
1064     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1065   }
1066 }
1067 
1068 int MacroAssembler::biased_locking_enter(Register lock_reg,
1069                                          Register obj_reg,
1070                                          Register swap_reg,
1071                                          Register tmp_reg,
1072                                          bool swap_reg_contains_mark,
1073                                          Label& done,
1074                                          Label* slow_case,
1075                                          BiasedLockingCounters* counters) {
1076   assert(UseBiasedLocking, "why call this otherwise?");
1077   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1078   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1079   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1081   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1082   Address saved_mark_addr(lock_reg, 0);
1083 
1084   if (PrintBiasedLockingStatistics && counters == NULL) {
1085     counters = BiasedLocking::counters();
1086   }
1087   // Biased locking
1088   // See whether the lock is currently biased toward our thread and
1089   // whether the epoch is still valid
1090   // Note that the runtime guarantees sufficient alignment of JavaThread
1091   // pointers to allow age to be placed into low bits
1092   // First check to see whether biasing is even enabled for this object
1093   Label cas_label;
1094   int null_check_offset = -1;
1095   if (!swap_reg_contains_mark) {
1096     null_check_offset = offset();
1097     movptr(swap_reg, mark_addr);
1098   }
1099   movptr(tmp_reg, swap_reg);
1100   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1101   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1102   jcc(Assembler::notEqual, cas_label);
1103   // The bias pattern is present in the object's header. Need to check
1104   // whether the bias owner and the epoch are both still current.
1105 #ifndef _LP64
1106   // Note that because there is no current thread register on x86_32 we
1107   // need to store off the mark word we read out of the object to
1108   // avoid reloading it and needing to recheck invariants below. This
1109   // store is unfortunate but it makes the overall code shorter and
1110   // simpler.
1111   movptr(saved_mark_addr, swap_reg);
1112 #endif
1113   if (swap_reg_contains_mark) {
1114     null_check_offset = offset();
1115   }
1116   load_prototype_header(tmp_reg, obj_reg);
1117 #ifdef _LP64
1118   orptr(tmp_reg, r15_thread);
1119   xorptr(tmp_reg, swap_reg);
1120   Register header_reg = tmp_reg;
1121 #else
1122   xorptr(tmp_reg, swap_reg);
1123   get_thread(swap_reg);
1124   xorptr(swap_reg, tmp_reg);
1125   Register header_reg = swap_reg;
1126 #endif
1127   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1128   if (counters != NULL) {
1129     cond_inc32(Assembler::zero,
1130                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1131   }
1132   jcc(Assembler::equal, done);
1133 
1134   Label try_revoke_bias;
1135   Label try_rebias;
1136 
1137   // At this point we know that the header has the bias pattern and
1138   // that we are not the bias owner in the current epoch. We need to
1139   // figure out more details about the state of the header in order to
1140   // know what operations can be legally performed on the object's
1141   // header.
1142 
1143   // If the low three bits in the xor result aren't clear, that means
1144   // the prototype header is no longer biased and we have to revoke
1145   // the bias on this object.
1146   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1147   jccb(Assembler::notZero, try_revoke_bias);
1148 
1149   // Biasing is still enabled for this data type. See whether the
1150   // epoch of the current bias is still valid, meaning that the epoch
1151   // bits of the mark word are equal to the epoch bits of the
1152   // prototype header. (Note that the prototype header's epoch bits
1153   // only change at a safepoint.) If not, attempt to rebias the object
1154   // toward the current thread. Note that we must be absolutely sure
1155   // that the current epoch is invalid in order to do this because
1156   // otherwise the manipulations it performs on the mark word are
1157   // illegal.
1158   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1159   jccb(Assembler::notZero, try_rebias);
1160 
1161   // The epoch of the current bias is still valid but we know nothing
1162   // about the owner; it might be set or it might be clear. Try to
1163   // acquire the bias of the object using an atomic operation. If this
1164   // fails we will go in to the runtime to revoke the object's bias.
1165   // Note that we first construct the presumed unbiased header so we
1166   // don't accidentally blow away another thread's valid bias.
1167   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1168   andptr(swap_reg,
1169          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1170 #ifdef _LP64
1171   movptr(tmp_reg, swap_reg);
1172   orptr(tmp_reg, r15_thread);
1173 #else
1174   get_thread(tmp_reg);
1175   orptr(tmp_reg, swap_reg);
1176 #endif
1177   if (os::is_MP()) {
1178     lock();
1179   }
1180   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1181   // If the biasing toward our thread failed, this means that
1182   // another thread succeeded in biasing it toward itself and we
1183   // need to revoke that bias. The revocation will occur in the
1184   // interpreter runtime in the slow case.
1185   if (counters != NULL) {
1186     cond_inc32(Assembler::zero,
1187                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1188   }
1189   if (slow_case != NULL) {
1190     jcc(Assembler::notZero, *slow_case);
1191   }
1192   jmp(done);
1193 
1194   bind(try_rebias);
1195   // At this point we know the epoch has expired, meaning that the
1196   // current "bias owner", if any, is actually invalid. Under these
1197   // circumstances _only_, we are allowed to use the current header's
1198   // value as the comparison value when doing the cas to acquire the
1199   // bias in the current epoch. In other words, we allow transfer of
1200   // the bias from one thread to another directly in this situation.
1201   //
1202   // FIXME: due to a lack of registers we currently blow away the age
1203   // bits in this situation. Should attempt to preserve them.
1204   load_prototype_header(tmp_reg, obj_reg);
1205 #ifdef _LP64
1206   orptr(tmp_reg, r15_thread);
1207 #else
1208   get_thread(swap_reg);
1209   orptr(tmp_reg, swap_reg);
1210   movptr(swap_reg, saved_mark_addr);
1211 #endif
1212   if (os::is_MP()) {
1213     lock();
1214   }
1215   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1216   // If the biasing toward our thread failed, then another thread
1217   // succeeded in biasing it toward itself and we need to revoke that
1218   // bias. The revocation will occur in the runtime in the slow case.
1219   if (counters != NULL) {
1220     cond_inc32(Assembler::zero,
1221                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1222   }
1223   if (slow_case != NULL) {
1224     jcc(Assembler::notZero, *slow_case);
1225   }
1226   jmp(done);
1227 
1228   bind(try_revoke_bias);
1229   // The prototype mark in the klass doesn't have the bias bit set any
1230   // more, indicating that objects of this data type are not supposed
1231   // to be biased any more. We are going to try to reset the mark of
1232   // this object to the prototype value and fall through to the
1233   // CAS-based locking scheme. Note that if our CAS fails, it means
1234   // that another thread raced us for the privilege of revoking the
1235   // bias of this particular object, so it's okay to continue in the
1236   // normal locking code.
1237   //
1238   // FIXME: due to a lack of registers we currently blow away the age
1239   // bits in this situation. Should attempt to preserve them.
1240   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1241   load_prototype_header(tmp_reg, obj_reg);
1242   if (os::is_MP()) {
1243     lock();
1244   }
1245   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1246   // Fall through to the normal CAS-based lock, because no matter what
1247   // the result of the above CAS, some thread must have succeeded in
1248   // removing the bias bit from the object's header.
1249   if (counters != NULL) {
1250     cond_inc32(Assembler::zero,
1251                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1252   }
1253 
1254   bind(cas_label);
1255 
1256   return null_check_offset;
1257 }
1258 
1259 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1260   assert(UseBiasedLocking, "why call this otherwise?");
1261 
1262   // Check for biased locking unlock case, which is a no-op
1263   // Note: we do not have to check the thread ID for two reasons.
1264   // First, the interpreter checks for IllegalMonitorStateException at
1265   // a higher level. Second, if the bias was revoked while we held the
1266   // lock, the object could not be rebiased toward another thread, so
1267   // the bias bit would be clear.
1268   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1269   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1270   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1271   jcc(Assembler::equal, done);
1272 }
1273 
1274 #ifdef COMPILER2
1275 
1276 #if INCLUDE_RTM_OPT
1277 
1278 // Update rtm_counters based on abort status
1279 // input: abort_status
1280 //        rtm_counters (RTMLockingCounters*)
1281 // flags are killed
1282 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1283 
1284   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1285   if (PrintPreciseRTMLockingStatistics) {
1286     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1287       Label check_abort;
1288       testl(abort_status, (1<<i));
1289       jccb(Assembler::equal, check_abort);
1290       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1291       bind(check_abort);
1292     }
1293   }
1294 }
1295 
1296 // Branch if (random & (count-1) != 0), count is 2^n
1297 // tmp, scr and flags are killed
1298 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1299   assert(tmp == rax, "");
1300   assert(scr == rdx, "");
1301   rdtsc(); // modifies EDX:EAX
1302   andptr(tmp, count-1);
1303   jccb(Assembler::notZero, brLabel);
1304 }
1305 
1306 // Perform abort ratio calculation, set no_rtm bit if high ratio
1307 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1308 // tmpReg, rtm_counters_Reg and flags are killed
1309 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1310                                                  Register rtm_counters_Reg,
1311                                                  RTMLockingCounters* rtm_counters,
1312                                                  Metadata* method_data) {
1313   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1314 
1315   if (RTMLockingCalculationDelay > 0) {
1316     // Delay calculation
1317     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1318     testptr(tmpReg, tmpReg);
1319     jccb(Assembler::equal, L_done);
1320   }
1321   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1322   //   Aborted transactions = abort_count * 100
1323   //   All transactions = total_count *  RTMTotalCountIncrRate
1324   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1325 
1326   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1327   cmpptr(tmpReg, RTMAbortThreshold);
1328   jccb(Assembler::below, L_check_always_rtm2);
1329   imulptr(tmpReg, tmpReg, 100);
1330 
1331   Register scrReg = rtm_counters_Reg;
1332   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1333   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1334   imulptr(scrReg, scrReg, RTMAbortRatio);
1335   cmpptr(tmpReg, scrReg);
1336   jccb(Assembler::below, L_check_always_rtm1);
1337   if (method_data != NULL) {
1338     // set rtm_state to "no rtm" in MDO
1339     mov_metadata(tmpReg, method_data);
1340     if (os::is_MP()) {
1341       lock();
1342     }
1343     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1344   }
1345   jmpb(L_done);
1346   bind(L_check_always_rtm1);
1347   // Reload RTMLockingCounters* address
1348   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1349   bind(L_check_always_rtm2);
1350   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1351   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1352   jccb(Assembler::below, L_done);
1353   if (method_data != NULL) {
1354     // set rtm_state to "always rtm" in MDO
1355     mov_metadata(tmpReg, method_data);
1356     if (os::is_MP()) {
1357       lock();
1358     }
1359     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1360   }
1361   bind(L_done);
1362 }
1363 
1364 // Update counters and perform abort ratio calculation
1365 // input:  abort_status_Reg
1366 // rtm_counters_Reg, flags are killed
1367 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1368                                    Register rtm_counters_Reg,
1369                                    RTMLockingCounters* rtm_counters,
1370                                    Metadata* method_data,
1371                                    bool profile_rtm) {
1372 
1373   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1374   // update rtm counters based on rax value at abort
1375   // reads abort_status_Reg, updates flags
1376   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1377   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1378   if (profile_rtm) {
1379     // Save abort status because abort_status_Reg is used by following code.
1380     if (RTMRetryCount > 0) {
1381       push(abort_status_Reg);
1382     }
1383     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1384     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1385     // restore abort status
1386     if (RTMRetryCount > 0) {
1387       pop(abort_status_Reg);
1388     }
1389   }
1390 }
1391 
1392 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1393 // inputs: retry_count_Reg
1394 //       : abort_status_Reg
1395 // output: retry_count_Reg decremented by 1
1396 // flags are killed
1397 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1398   Label doneRetry;
1399   assert(abort_status_Reg == rax, "");
1400   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1401   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1402   // if reason is in 0x6 and retry count != 0 then retry
1403   andptr(abort_status_Reg, 0x6);
1404   jccb(Assembler::zero, doneRetry);
1405   testl(retry_count_Reg, retry_count_Reg);
1406   jccb(Assembler::zero, doneRetry);
1407   pause();
1408   decrementl(retry_count_Reg);
1409   jmp(retryLabel);
1410   bind(doneRetry);
1411 }
1412 
1413 // Spin and retry if lock is busy,
1414 // inputs: box_Reg (monitor address)
1415 //       : retry_count_Reg
1416 // output: retry_count_Reg decremented by 1
1417 //       : clear z flag if retry count exceeded
1418 // tmp_Reg, scr_Reg, flags are killed
1419 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1420                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1421   Label SpinLoop, SpinExit, doneRetry;
1422   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1423 
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   decrementl(retry_count_Reg);
1427   movptr(scr_Reg, RTMSpinLoopCount);
1428 
1429   bind(SpinLoop);
1430   pause();
1431   decrementl(scr_Reg);
1432   jccb(Assembler::lessEqual, SpinExit);
1433   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1434   testptr(tmp_Reg, tmp_Reg);
1435   jccb(Assembler::notZero, SpinLoop);
1436 
1437   bind(SpinExit);
1438   jmp(retryLabel);
1439   bind(doneRetry);
1440   incrementl(retry_count_Reg); // clear z flag
1441 }
1442 
1443 // Use RTM for normal stack locks
1444 // Input: objReg (object to lock)
1445 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1446                                        Register retry_on_abort_count_Reg,
1447                                        RTMLockingCounters* stack_rtm_counters,
1448                                        Metadata* method_data, bool profile_rtm,
1449                                        Label& DONE_LABEL, Label& IsInflated) {
1450   assert(UseRTMForStackLocks, "why call this otherwise?");
1451   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1452   assert(tmpReg == rax, "");
1453   assert(scrReg == rdx, "");
1454   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1455 
1456   if (RTMRetryCount > 0) {
1457     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1458     bind(L_rtm_retry);
1459   }
1460   movptr(tmpReg, Address(objReg, 0));
1461   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1462   jcc(Assembler::notZero, IsInflated);
1463 
1464   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1465     Label L_noincrement;
1466     if (RTMTotalCountIncrRate > 1) {
1467       // tmpReg, scrReg and flags are killed
1468       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1469     }
1470     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1471     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1472     bind(L_noincrement);
1473   }
1474   xbegin(L_on_abort);
1475   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1476   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1477   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1478   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1479 
1480   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1481   if (UseRTMXendForLockBusy) {
1482     xend();
1483     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1484     jmp(L_decrement_retry);
1485   }
1486   else {
1487     xabort(0);
1488   }
1489   bind(L_on_abort);
1490   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1491     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1492   }
1493   bind(L_decrement_retry);
1494   if (RTMRetryCount > 0) {
1495     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1496     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1497   }
1498 }
1499 
1500 // Use RTM for inflating locks
1501 // inputs: objReg (object to lock)
1502 //         boxReg (on-stack box address (displaced header location) - KILLED)
1503 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1504 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1505                                           Register scrReg, Register retry_on_busy_count_Reg,
1506                                           Register retry_on_abort_count_Reg,
1507                                           RTMLockingCounters* rtm_counters,
1508                                           Metadata* method_data, bool profile_rtm,
1509                                           Label& DONE_LABEL) {
1510   assert(UseRTMLocking, "why call this otherwise?");
1511   assert(tmpReg == rax, "");
1512   assert(scrReg == rdx, "");
1513   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1514   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1515 
1516   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1517   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1518   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1519 
1520   if (RTMRetryCount > 0) {
1521     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1522     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1523     bind(L_rtm_retry);
1524   }
1525   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1526     Label L_noincrement;
1527     if (RTMTotalCountIncrRate > 1) {
1528       // tmpReg, scrReg and flags are killed
1529       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1530     }
1531     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1532     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1533     bind(L_noincrement);
1534   }
1535   xbegin(L_on_abort);
1536   movptr(tmpReg, Address(objReg, 0));
1537   movptr(tmpReg, Address(tmpReg, owner_offset));
1538   testptr(tmpReg, tmpReg);
1539   jcc(Assembler::zero, DONE_LABEL);
1540   if (UseRTMXendForLockBusy) {
1541     xend();
1542     jmp(L_decrement_retry);
1543   }
1544   else {
1545     xabort(0);
1546   }
1547   bind(L_on_abort);
1548   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1549   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1550     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1551   }
1552   if (RTMRetryCount > 0) {
1553     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1554     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1555   }
1556 
1557   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1558   testptr(tmpReg, tmpReg) ;
1559   jccb(Assembler::notZero, L_decrement_retry) ;
1560 
1561   // Appears unlocked - try to swing _owner from null to non-null.
1562   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1563 #ifdef _LP64
1564   Register threadReg = r15_thread;
1565 #else
1566   get_thread(scrReg);
1567   Register threadReg = scrReg;
1568 #endif
1569   if (os::is_MP()) {
1570     lock();
1571   }
1572   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1573 
1574   if (RTMRetryCount > 0) {
1575     // success done else retry
1576     jccb(Assembler::equal, DONE_LABEL) ;
1577     bind(L_decrement_retry);
1578     // Spin and retry if lock is busy.
1579     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1580   }
1581   else {
1582     bind(L_decrement_retry);
1583   }
1584 }
1585 
1586 #endif //  INCLUDE_RTM_OPT
1587 
1588 // Fast_Lock and Fast_Unlock used by C2
1589 
1590 // Because the transitions from emitted code to the runtime
1591 // monitorenter/exit helper stubs are so slow it's critical that
1592 // we inline both the stack-locking fast-path and the inflated fast path.
1593 //
1594 // See also: cmpFastLock and cmpFastUnlock.
1595 //
1596 // What follows is a specialized inline transliteration of the code
1597 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1598 // another option would be to emit TrySlowEnter and TrySlowExit methods
1599 // at startup-time.  These methods would accept arguments as
1600 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1601 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1602 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1603 // In practice, however, the # of lock sites is bounded and is usually small.
1604 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1605 // if the processor uses simple bimodal branch predictors keyed by EIP
1606 // Since the helper routines would be called from multiple synchronization
1607 // sites.
1608 //
1609 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1610 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1611 // to those specialized methods.  That'd give us a mostly platform-independent
1612 // implementation that the JITs could optimize and inline at their pleasure.
1613 // Done correctly, the only time we'd need to cross to native could would be
1614 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1615 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1616 // (b) explicit barriers or fence operations.
1617 //
1618 // TODO:
1619 //
1620 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1621 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1622 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1623 //    the lock operators would typically be faster than reifying Self.
1624 //
1625 // *  Ideally I'd define the primitives as:
1626 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1627 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1628 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1629 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1630 //    Furthermore the register assignments are overconstrained, possibly resulting in
1631 //    sub-optimal code near the synchronization site.
1632 //
1633 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1634 //    Alternately, use a better sp-proximity test.
1635 //
1636 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1637 //    Either one is sufficient to uniquely identify a thread.
1638 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1639 //
1640 // *  Intrinsify notify() and notifyAll() for the common cases where the
1641 //    object is locked by the calling thread but the waitlist is empty.
1642 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1643 //
1644 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1645 //    But beware of excessive branch density on AMD Opterons.
1646 //
1647 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1648 //    or failure of the fast-path.  If the fast-path fails then we pass
1649 //    control to the slow-path, typically in C.  In Fast_Lock and
1650 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1651 //    will emit a conditional branch immediately after the node.
1652 //    So we have branches to branches and lots of ICC.ZF games.
1653 //    Instead, it might be better to have C2 pass a "FailureLabel"
1654 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1655 //    will drop through the node.  ICC.ZF is undefined at exit.
1656 //    In the case of failure, the node will branch directly to the
1657 //    FailureLabel
1658 
1659 
1660 // obj: object to lock
1661 // box: on-stack box address (displaced header location) - KILLED
1662 // rax,: tmp -- KILLED
1663 // scr: tmp -- KILLED
1664 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1665                                Register scrReg, Register cx1Reg, Register cx2Reg,
1666                                BiasedLockingCounters* counters,
1667                                RTMLockingCounters* rtm_counters,
1668                                RTMLockingCounters* stack_rtm_counters,
1669                                Metadata* method_data,
1670                                bool use_rtm, bool profile_rtm) {
1671   // Ensure the register assignents are disjoint
1672   assert(tmpReg == rax, "");
1673 
1674   if (use_rtm) {
1675     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1676   } else {
1677     assert(cx1Reg == noreg, "");
1678     assert(cx2Reg == noreg, "");
1679     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1680   }
1681 
1682   if (counters != NULL) {
1683     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1684   }
1685   if (EmitSync & 1) {
1686       // set box->dhw = markOopDesc::unused_mark()
1687       // Force all sync thru slow-path: slow_enter() and slow_exit()
1688       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1689       cmpptr (rsp, (int32_t)NULL_WORD);
1690   } else {
1691     // Possible cases that we'll encounter in fast_lock
1692     // ------------------------------------------------
1693     // * Inflated
1694     //    -- unlocked
1695     //    -- Locked
1696     //       = by self
1697     //       = by other
1698     // * biased
1699     //    -- by Self
1700     //    -- by other
1701     // * neutral
1702     // * stack-locked
1703     //    -- by self
1704     //       = sp-proximity test hits
1705     //       = sp-proximity test generates false-negative
1706     //    -- by other
1707     //
1708 
1709     Label IsInflated, DONE_LABEL;
1710 
1711     // it's stack-locked, biased or neutral
1712     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1713     // order to reduce the number of conditional branches in the most common cases.
1714     // Beware -- there's a subtle invariant that fetch of the markword
1715     // at [FETCH], below, will never observe a biased encoding (*101b).
1716     // If this invariant is not held we risk exclusion (safety) failure.
1717     if (UseBiasedLocking && !UseOptoBiasInlining) {
1718       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1719     }
1720 
1721 #if INCLUDE_RTM_OPT
1722     if (UseRTMForStackLocks && use_rtm) {
1723       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1724                         stack_rtm_counters, method_data, profile_rtm,
1725                         DONE_LABEL, IsInflated);
1726     }
1727 #endif // INCLUDE_RTM_OPT
1728 
1729     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1730     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1731     jccb(Assembler::notZero, IsInflated);
1732 
1733     // Attempt stack-locking ...
1734     orptr (tmpReg, markOopDesc::unlocked_value);
1735     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1736     if (os::is_MP()) {
1737       lock();
1738     }
1739     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1740     if (counters != NULL) {
1741       cond_inc32(Assembler::equal,
1742                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1743     }
1744     jcc(Assembler::equal, DONE_LABEL);           // Success
1745 
1746     // Recursive locking.
1747     // The object is stack-locked: markword contains stack pointer to BasicLock.
1748     // Locked by current thread if difference with current SP is less than one page.
1749     subptr(tmpReg, rsp);
1750     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1751     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1752     movptr(Address(boxReg, 0), tmpReg);
1753     if (counters != NULL) {
1754       cond_inc32(Assembler::equal,
1755                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1756     }
1757     jmp(DONE_LABEL);
1758 
1759     bind(IsInflated);
1760     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1761 
1762 #if INCLUDE_RTM_OPT
1763     // Use the same RTM locking code in 32- and 64-bit VM.
1764     if (use_rtm) {
1765       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1766                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1767     } else {
1768 #endif // INCLUDE_RTM_OPT
1769 
1770 #ifndef _LP64
1771     // The object is inflated.
1772 
1773     // boxReg refers to the on-stack BasicLock in the current frame.
1774     // We'd like to write:
1775     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1776     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1777     // additional latency as we have another ST in the store buffer that must drain.
1778 
1779     if (EmitSync & 8192) {
1780        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1781        get_thread (scrReg);
1782        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1783        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1784        if (os::is_MP()) {
1785          lock();
1786        }
1787        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1788     } else
1789     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1790        // register juggle because we need tmpReg for cmpxchgptr below
1791        movptr(scrReg, boxReg);
1792        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1795        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1796           // prefetchw [eax + Offset(_owner)-2]
1797           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1798        }
1799 
1800        if ((EmitSync & 64) == 0) {
1801          // Optimistic form: consider XORL tmpReg,tmpReg
1802          movptr(tmpReg, NULL_WORD);
1803        } else {
1804          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1805          // Test-And-CAS instead of CAS
1806          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1807          testptr(tmpReg, tmpReg);                   // Locked ?
1808          jccb  (Assembler::notZero, DONE_LABEL);
1809        }
1810 
1811        // Appears unlocked - try to swing _owner from null to non-null.
1812        // Ideally, I'd manifest "Self" with get_thread and then attempt
1813        // to CAS the register containing Self into m->Owner.
1814        // But we don't have enough registers, so instead we can either try to CAS
1815        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1816        // we later store "Self" into m->Owner.  Transiently storing a stack address
1817        // (rsp or the address of the box) into  m->owner is harmless.
1818        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1819        if (os::is_MP()) {
1820          lock();
1821        }
1822        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1823        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1824        // If we weren't able to swing _owner from NULL to the BasicLock
1825        // then take the slow path.
1826        jccb  (Assembler::notZero, DONE_LABEL);
1827        // update _owner from BasicLock to thread
1828        get_thread (scrReg);                    // beware: clobbers ICCs
1829        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1830        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1831 
1832        // If the CAS fails we can either retry or pass control to the slow-path.
1833        // We use the latter tactic.
1834        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1835        // If the CAS was successful ...
1836        //   Self has acquired the lock
1837        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1838        // Intentional fall-through into DONE_LABEL ...
1839     } else {
1840        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1841        movptr(boxReg, tmpReg);
1842 
1843        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1844        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1845           // prefetchw [eax + Offset(_owner)-2]
1846           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1847        }
1848 
1849        if ((EmitSync & 64) == 0) {
1850          // Optimistic form
1851          xorptr  (tmpReg, tmpReg);
1852        } else {
1853          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1854          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1855          testptr(tmpReg, tmpReg);                   // Locked ?
1856          jccb  (Assembler::notZero, DONE_LABEL);
1857        }
1858 
1859        // Appears unlocked - try to swing _owner from null to non-null.
1860        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1861        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1862        get_thread (scrReg);
1863        if (os::is_MP()) {
1864          lock();
1865        }
1866        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1867 
1868        // If the CAS fails we can either retry or pass control to the slow-path.
1869        // We use the latter tactic.
1870        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1871        // If the CAS was successful ...
1872        //   Self has acquired the lock
1873        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1874        // Intentional fall-through into DONE_LABEL ...
1875     }
1876 #else // _LP64
1877     // It's inflated
1878     movq(scrReg, tmpReg);
1879     xorq(tmpReg, tmpReg);
1880 
1881     if (os::is_MP()) {
1882       lock();
1883     }
1884     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1885     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1886     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1887     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1888     // Intentional fall-through into DONE_LABEL ...
1889     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1890 #endif // _LP64
1891 #if INCLUDE_RTM_OPT
1892     } // use_rtm()
1893 #endif
1894     // DONE_LABEL is a hot target - we'd really like to place it at the
1895     // start of cache line by padding with NOPs.
1896     // See the AMD and Intel software optimization manuals for the
1897     // most efficient "long" NOP encodings.
1898     // Unfortunately none of our alignment mechanisms suffice.
1899     bind(DONE_LABEL);
1900 
1901     // At DONE_LABEL the icc ZFlag is set as follows ...
1902     // Fast_Unlock uses the same protocol.
1903     // ZFlag == 1 -> Success
1904     // ZFlag == 0 -> Failure - force control through the slow-path
1905   }
1906 }
1907 
1908 // obj: object to unlock
1909 // box: box address (displaced header location), killed.  Must be EAX.
1910 // tmp: killed, cannot be obj nor box.
1911 //
1912 // Some commentary on balanced locking:
1913 //
1914 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1915 // Methods that don't have provably balanced locking are forced to run in the
1916 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1917 // The interpreter provides two properties:
1918 // I1:  At return-time the interpreter automatically and quietly unlocks any
1919 //      objects acquired the current activation (frame).  Recall that the
1920 //      interpreter maintains an on-stack list of locks currently held by
1921 //      a frame.
1922 // I2:  If a method attempts to unlock an object that is not held by the
1923 //      the frame the interpreter throws IMSX.
1924 //
1925 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1926 // B() doesn't have provably balanced locking so it runs in the interpreter.
1927 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1928 // is still locked by A().
1929 //
1930 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1931 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1932 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1933 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1934 // Arguably given that the spec legislates the JNI case as undefined our implementation
1935 // could reasonably *avoid* checking owner in Fast_Unlock().
1936 // In the interest of performance we elide m->Owner==Self check in unlock.
1937 // A perfectly viable alternative is to elide the owner check except when
1938 // Xcheck:jni is enabled.
1939 
1940 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1941   assert(boxReg == rax, "");
1942   assert_different_registers(objReg, boxReg, tmpReg);
1943 
1944   if (EmitSync & 4) {
1945     // Disable - inhibit all inlining.  Force control through the slow-path
1946     cmpptr (rsp, 0);
1947   } else {
1948     Label DONE_LABEL, Stacked, CheckSucc;
1949 
1950     // Critically, the biased locking test must have precedence over
1951     // and appear before the (box->dhw == 0) recursive stack-lock test.
1952     if (UseBiasedLocking && !UseOptoBiasInlining) {
1953        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1954     }
1955 
1956 #if INCLUDE_RTM_OPT
1957     if (UseRTMForStackLocks && use_rtm) {
1958       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1959       Label L_regular_unlock;
1960       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1961       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1962       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1963       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1964       xend();                                       // otherwise end...
1965       jmp(DONE_LABEL);                              // ... and we're done
1966       bind(L_regular_unlock);
1967     }
1968 #endif
1969 
1970     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1971     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1972     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1973     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1974     jccb  (Assembler::zero, Stacked);
1975 
1976     // It's inflated.
1977 #if INCLUDE_RTM_OPT
1978     if (use_rtm) {
1979       Label L_regular_inflated_unlock;
1980       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1981       movptr(boxReg, Address(tmpReg, owner_offset));
1982       testptr(boxReg, boxReg);
1983       jccb(Assembler::notZero, L_regular_inflated_unlock);
1984       xend();
1985       jmpb(DONE_LABEL);
1986       bind(L_regular_inflated_unlock);
1987     }
1988 #endif
1989 
1990     // Despite our balanced locking property we still check that m->_owner == Self
1991     // as java routines or native JNI code called by this thread might
1992     // have released the lock.
1993     // Refer to the comments in synchronizer.cpp for how we might encode extra
1994     // state in _succ so we can avoid fetching EntryList|cxq.
1995     //
1996     // I'd like to add more cases in fast_lock() and fast_unlock() --
1997     // such as recursive enter and exit -- but we have to be wary of
1998     // I$ bloat, T$ effects and BP$ effects.
1999     //
2000     // If there's no contention try a 1-0 exit.  That is, exit without
2001     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2002     // we detect and recover from the race that the 1-0 exit admits.
2003     //
2004     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2005     // before it STs null into _owner, releasing the lock.  Updates
2006     // to data protected by the critical section must be visible before
2007     // we drop the lock (and thus before any other thread could acquire
2008     // the lock and observe the fields protected by the lock).
2009     // IA32's memory-model is SPO, so STs are ordered with respect to
2010     // each other and there's no need for an explicit barrier (fence).
2011     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2012 #ifndef _LP64
2013     get_thread (boxReg);
2014     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2015       // prefetchw [ebx + Offset(_owner)-2]
2016       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2017     }
2018 
2019     // Note that we could employ various encoding schemes to reduce
2020     // the number of loads below (currently 4) to just 2 or 3.
2021     // Refer to the comments in synchronizer.cpp.
2022     // In practice the chain of fetches doesn't seem to impact performance, however.
2023     xorptr(boxReg, boxReg);
2024     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2025        // Attempt to reduce branch density - AMD's branch predictor.
2026        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2027        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2028        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2029        jccb  (Assembler::notZero, DONE_LABEL);
2030        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2031        jmpb  (DONE_LABEL);
2032     } else {
2033        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2034        jccb  (Assembler::notZero, DONE_LABEL);
2035        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2036        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2037        jccb  (Assembler::notZero, CheckSucc);
2038        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2039        jmpb  (DONE_LABEL);
2040     }
2041 
2042     // The Following code fragment (EmitSync & 65536) improves the performance of
2043     // contended applications and contended synchronization microbenchmarks.
2044     // Unfortunately the emission of the code - even though not executed - causes regressions
2045     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2046     // with an equal number of never-executed NOPs results in the same regression.
2047     // We leave it off by default.
2048 
2049     if ((EmitSync & 65536) != 0) {
2050        Label LSuccess, LGoSlowPath ;
2051 
2052        bind  (CheckSucc);
2053 
2054        // Optional pre-test ... it's safe to elide this
2055        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2056        jccb(Assembler::zero, LGoSlowPath);
2057 
2058        // We have a classic Dekker-style idiom:
2059        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2060        // There are a number of ways to implement the barrier:
2061        // (1) lock:andl &m->_owner, 0
2062        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2063        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2064        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2065        // (2) If supported, an explicit MFENCE is appealing.
2066        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2067        //     particularly if the write-buffer is full as might be the case if
2068        //     if stores closely precede the fence or fence-equivalent instruction.
2069        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2070        //     as the situation has changed with Nehalem and Shanghai.
2071        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2072        //     The $lines underlying the top-of-stack should be in M-state.
2073        //     The locked add instruction is serializing, of course.
2074        // (4) Use xchg, which is serializing
2075        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2076        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2077        //     The integer condition codes will tell us if succ was 0.
2078        //     Since _succ and _owner should reside in the same $line and
2079        //     we just stored into _owner, it's likely that the $line
2080        //     remains in M-state for the lock:orl.
2081        //
2082        // We currently use (3), although it's likely that switching to (2)
2083        // is correct for the future.
2084 
2085        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2086        if (os::is_MP()) {
2087          lock(); addptr(Address(rsp, 0), 0);
2088        }
2089        // Ratify _succ remains non-null
2090        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2091        jccb  (Assembler::notZero, LSuccess);
2092 
2093        xorptr(boxReg, boxReg);                  // box is really EAX
2094        if (os::is_MP()) { lock(); }
2095        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2096        // There's no successor so we tried to regrab the lock with the
2097        // placeholder value. If that didn't work, then another thread
2098        // grabbed the lock so we're done (and exit was a success).
2099        jccb  (Assembler::notEqual, LSuccess);
2100        // Since we're low on registers we installed rsp as a placeholding in _owner.
2101        // Now install Self over rsp.  This is safe as we're transitioning from
2102        // non-null to non=null
2103        get_thread (boxReg);
2104        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2105        // Intentional fall-through into LGoSlowPath ...
2106 
2107        bind  (LGoSlowPath);
2108        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2109        jmpb  (DONE_LABEL);
2110 
2111        bind  (LSuccess);
2112        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2113        jmpb  (DONE_LABEL);
2114     }
2115 
2116     bind (Stacked);
2117     // It's not inflated and it's not recursively stack-locked and it's not biased.
2118     // It must be stack-locked.
2119     // Try to reset the header to displaced header.
2120     // The "box" value on the stack is stable, so we can reload
2121     // and be assured we observe the same value as above.
2122     movptr(tmpReg, Address(boxReg, 0));
2123     if (os::is_MP()) {
2124       lock();
2125     }
2126     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2127     // Intention fall-thru into DONE_LABEL
2128 
2129     // DONE_LABEL is a hot target - we'd really like to place it at the
2130     // start of cache line by padding with NOPs.
2131     // See the AMD and Intel software optimization manuals for the
2132     // most efficient "long" NOP encodings.
2133     // Unfortunately none of our alignment mechanisms suffice.
2134     if ((EmitSync & 65536) == 0) {
2135        bind (CheckSucc);
2136     }
2137 #else // _LP64
2138     // It's inflated
2139     if (EmitSync & 1024) {
2140       // Emit code to check that _owner == Self
2141       // We could fold the _owner test into subsequent code more efficiently
2142       // than using a stand-alone check, but since _owner checking is off by
2143       // default we don't bother. We also might consider predicating the
2144       // _owner==Self check on Xcheck:jni or running on a debug build.
2145       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2146       xorptr(boxReg, r15_thread);
2147     } else {
2148       xorptr(boxReg, boxReg);
2149     }
2150     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2151     jccb  (Assembler::notZero, DONE_LABEL);
2152     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2153     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2154     jccb  (Assembler::notZero, CheckSucc);
2155     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2156     jmpb  (DONE_LABEL);
2157 
2158     if ((EmitSync & 65536) == 0) {
2159       // Try to avoid passing control into the slow_path ...
2160       Label LSuccess, LGoSlowPath ;
2161       bind  (CheckSucc);
2162 
2163       // The following optional optimization can be elided if necessary
2164       // Effectively: if (succ == null) goto SlowPath
2165       // The code reduces the window for a race, however,
2166       // and thus benefits performance.
2167       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2168       jccb  (Assembler::zero, LGoSlowPath);
2169 
2170       if ((EmitSync & 16) && os::is_MP()) {
2171         orptr(boxReg, boxReg);
2172         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       } else {
2174         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2175         if (os::is_MP()) {
2176           // Memory barrier/fence
2177           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2178           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2179           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2180           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2181           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2182           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2183           lock(); addl(Address(rsp, 0), 0);
2184         }
2185       }
2186       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2187       jccb  (Assembler::notZero, LSuccess);
2188 
2189       // Rare inopportune interleaving - race.
2190       // The successor vanished in the small window above.
2191       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2192       // We need to ensure progress and succession.
2193       // Try to reacquire the lock.
2194       // If that fails then the new owner is responsible for succession and this
2195       // thread needs to take no further action and can exit via the fast path (success).
2196       // If the re-acquire succeeds then pass control into the slow path.
2197       // As implemented, this latter mode is horrible because we generated more
2198       // coherence traffic on the lock *and* artifically extended the critical section
2199       // length while by virtue of passing control into the slow path.
2200 
2201       // box is really RAX -- the following CMPXCHG depends on that binding
2202       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2203       movptr(boxReg, (int32_t)NULL_WORD);
2204       if (os::is_MP()) { lock(); }
2205       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2206       // There's no successor so we tried to regrab the lock.
2207       // If that didn't work, then another thread grabbed the
2208       // lock so we're done (and exit was a success).
2209       jccb  (Assembler::notEqual, LSuccess);
2210       // Intentional fall-through into slow-path
2211 
2212       bind  (LGoSlowPath);
2213       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2214       jmpb  (DONE_LABEL);
2215 
2216       bind  (LSuccess);
2217       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2218       jmpb  (DONE_LABEL);
2219     }
2220 
2221     bind  (Stacked);
2222     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2223     if (os::is_MP()) { lock(); }
2224     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2225 
2226     if (EmitSync & 65536) {
2227        bind (CheckSucc);
2228     }
2229 #endif
2230     bind(DONE_LABEL);
2231   }
2232 }
2233 #endif // COMPILER2
2234 
2235 void MacroAssembler::c2bool(Register x) {
2236   // implements x == 0 ? 0 : 1
2237   // note: must only look at least-significant byte of x
2238   //       since C-style booleans are stored in one byte
2239   //       only! (was bug)
2240   andl(x, 0xFF);
2241   setb(Assembler::notZero, x);
2242 }
2243 
2244 // Wouldn't need if AddressLiteral version had new name
2245 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2246   Assembler::call(L, rtype);
2247 }
2248 
2249 void MacroAssembler::call(Register entry) {
2250   Assembler::call(entry);
2251 }
2252 
2253 void MacroAssembler::call(AddressLiteral entry) {
2254   if (reachable(entry)) {
2255     Assembler::call_literal(entry.target(), entry.rspec());
2256   } else {
2257     lea(rscratch1, entry);
2258     Assembler::call(rscratch1);
2259   }
2260 }
2261 
2262 void MacroAssembler::ic_call(address entry) {
2263   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2264   movptr(rax, (intptr_t)Universe::non_oop_word());
2265   call(AddressLiteral(entry, rh));
2266 }
2267 
2268 // Implementation of call_VM versions
2269 
2270 void MacroAssembler::call_VM(Register oop_result,
2271                              address entry_point,
2272                              bool check_exceptions) {
2273   Label C, E;
2274   call(C, relocInfo::none);
2275   jmp(E);
2276 
2277   bind(C);
2278   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2279   ret(0);
2280 
2281   bind(E);
2282 }
2283 
2284 void MacroAssembler::call_VM(Register oop_result,
2285                              address entry_point,
2286                              Register arg_1,
2287                              bool check_exceptions) {
2288   Label C, E;
2289   call(C, relocInfo::none);
2290   jmp(E);
2291 
2292   bind(C);
2293   pass_arg1(this, arg_1);
2294   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2295   ret(0);
2296 
2297   bind(E);
2298 }
2299 
2300 void MacroAssembler::call_VM(Register oop_result,
2301                              address entry_point,
2302                              Register arg_1,
2303                              Register arg_2,
2304                              bool check_exceptions) {
2305   Label C, E;
2306   call(C, relocInfo::none);
2307   jmp(E);
2308 
2309   bind(C);
2310 
2311   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2312 
2313   pass_arg2(this, arg_2);
2314   pass_arg1(this, arg_1);
2315   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2316   ret(0);
2317 
2318   bind(E);
2319 }
2320 
2321 void MacroAssembler::call_VM(Register oop_result,
2322                              address entry_point,
2323                              Register arg_1,
2324                              Register arg_2,
2325                              Register arg_3,
2326                              bool check_exceptions) {
2327   Label C, E;
2328   call(C, relocInfo::none);
2329   jmp(E);
2330 
2331   bind(C);
2332 
2333   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2334   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2335   pass_arg3(this, arg_3);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338   pass_arg2(this, arg_2);
2339 
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              Register last_java_sp,
2349                              address entry_point,
2350                              int number_of_arguments,
2351                              bool check_exceptions) {
2352   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2353   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2354 }
2355 
2356 void MacroAssembler::call_VM(Register oop_result,
2357                              Register last_java_sp,
2358                              address entry_point,
2359                              Register arg_1,
2360                              bool check_exceptions) {
2361   pass_arg1(this, arg_1);
2362   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2363 }
2364 
2365 void MacroAssembler::call_VM(Register oop_result,
2366                              Register last_java_sp,
2367                              address entry_point,
2368                              Register arg_1,
2369                              Register arg_2,
2370                              bool check_exceptions) {
2371 
2372   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2373   pass_arg2(this, arg_2);
2374   pass_arg1(this, arg_1);
2375   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2376 }
2377 
2378 void MacroAssembler::call_VM(Register oop_result,
2379                              Register last_java_sp,
2380                              address entry_point,
2381                              Register arg_1,
2382                              Register arg_2,
2383                              Register arg_3,
2384                              bool check_exceptions) {
2385   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2386   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2387   pass_arg3(this, arg_3);
2388   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2389   pass_arg2(this, arg_2);
2390   pass_arg1(this, arg_1);
2391   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2392 }
2393 
2394 void MacroAssembler::super_call_VM(Register oop_result,
2395                                    Register last_java_sp,
2396                                    address entry_point,
2397                                    int number_of_arguments,
2398                                    bool check_exceptions) {
2399   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2400   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2401 }
2402 
2403 void MacroAssembler::super_call_VM(Register oop_result,
2404                                    Register last_java_sp,
2405                                    address entry_point,
2406                                    Register arg_1,
2407                                    bool check_exceptions) {
2408   pass_arg1(this, arg_1);
2409   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2410 }
2411 
2412 void MacroAssembler::super_call_VM(Register oop_result,
2413                                    Register last_java_sp,
2414                                    address entry_point,
2415                                    Register arg_1,
2416                                    Register arg_2,
2417                                    bool check_exceptions) {
2418 
2419   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2420   pass_arg2(this, arg_2);
2421   pass_arg1(this, arg_1);
2422   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2423 }
2424 
2425 void MacroAssembler::super_call_VM(Register oop_result,
2426                                    Register last_java_sp,
2427                                    address entry_point,
2428                                    Register arg_1,
2429                                    Register arg_2,
2430                                    Register arg_3,
2431                                    bool check_exceptions) {
2432   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2433   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2434   pass_arg3(this, arg_3);
2435   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2436   pass_arg2(this, arg_2);
2437   pass_arg1(this, arg_1);
2438   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2439 }
2440 
2441 void MacroAssembler::call_VM_base(Register oop_result,
2442                                   Register java_thread,
2443                                   Register last_java_sp,
2444                                   address  entry_point,
2445                                   int      number_of_arguments,
2446                                   bool     check_exceptions) {
2447   // determine java_thread register
2448   if (!java_thread->is_valid()) {
2449 #ifdef _LP64
2450     java_thread = r15_thread;
2451 #else
2452     java_thread = rdi;
2453     get_thread(java_thread);
2454 #endif // LP64
2455   }
2456   // determine last_java_sp register
2457   if (!last_java_sp->is_valid()) {
2458     last_java_sp = rsp;
2459   }
2460   // debugging support
2461   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2462   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2463 #ifdef ASSERT
2464   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2465   // r12 is the heapbase.
2466   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2467 #endif // ASSERT
2468 
2469   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2470   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2471 
2472   // push java thread (becomes first argument of C function)
2473 
2474   NOT_LP64(push(java_thread); number_of_arguments++);
2475   LP64_ONLY(mov(c_rarg0, r15_thread));
2476 
2477   // set last Java frame before call
2478   assert(last_java_sp != rbp, "can't use ebp/rbp");
2479 
2480   // Only interpreter should have to set fp
2481   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2482 
2483   // do the call, remove parameters
2484   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2485 
2486   // restore the thread (cannot use the pushed argument since arguments
2487   // may be overwritten by C code generated by an optimizing compiler);
2488   // however can use the register value directly if it is callee saved.
2489   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2490     // rdi & rsi (also r15) are callee saved -> nothing to do
2491 #ifdef ASSERT
2492     guarantee(java_thread != rax, "change this code");
2493     push(rax);
2494     { Label L;
2495       get_thread(rax);
2496       cmpptr(java_thread, rax);
2497       jcc(Assembler::equal, L);
2498       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2499       bind(L);
2500     }
2501     pop(rax);
2502 #endif
2503   } else {
2504     get_thread(java_thread);
2505   }
2506   // reset last Java frame
2507   // Only interpreter should have to clear fp
2508   reset_last_Java_frame(java_thread, true, false);
2509 
2510 #ifndef CC_INTERP
2511    // C++ interp handles this in the interpreter
2512   check_and_handle_popframe(java_thread);
2513   check_and_handle_earlyret(java_thread);
2514 #endif /* CC_INTERP */
2515 
2516   if (check_exceptions) {
2517     // check for pending exceptions (java_thread is set upon return)
2518     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2519 #ifndef _LP64
2520     jump_cc(Assembler::notEqual,
2521             RuntimeAddress(StubRoutines::forward_exception_entry()));
2522 #else
2523     // This used to conditionally jump to forward_exception however it is
2524     // possible if we relocate that the branch will not reach. So we must jump
2525     // around so we can always reach
2526 
2527     Label ok;
2528     jcc(Assembler::equal, ok);
2529     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2530     bind(ok);
2531 #endif // LP64
2532   }
2533 
2534   // get oop result if there is one and reset the value in the thread
2535   if (oop_result->is_valid()) {
2536     get_vm_result(oop_result, java_thread);
2537   }
2538 }
2539 
2540 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2541 
2542   // Calculate the value for last_Java_sp
2543   // somewhat subtle. call_VM does an intermediate call
2544   // which places a return address on the stack just under the
2545   // stack pointer as the user finsihed with it. This allows
2546   // use to retrieve last_Java_pc from last_Java_sp[-1].
2547   // On 32bit we then have to push additional args on the stack to accomplish
2548   // the actual requested call. On 64bit call_VM only can use register args
2549   // so the only extra space is the return address that call_VM created.
2550   // This hopefully explains the calculations here.
2551 
2552 #ifdef _LP64
2553   // We've pushed one address, correct last_Java_sp
2554   lea(rax, Address(rsp, wordSize));
2555 #else
2556   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2557 #endif // LP64
2558 
2559   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2560 
2561 }
2562 
2563 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2564   call_VM_leaf_base(entry_point, number_of_arguments);
2565 }
2566 
2567 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2568   pass_arg0(this, arg_0);
2569   call_VM_leaf(entry_point, 1);
2570 }
2571 
2572 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2573 
2574   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2575   pass_arg1(this, arg_1);
2576   pass_arg0(this, arg_0);
2577   call_VM_leaf(entry_point, 2);
2578 }
2579 
2580 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2581   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2582   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2583   pass_arg2(this, arg_2);
2584   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2585   pass_arg1(this, arg_1);
2586   pass_arg0(this, arg_0);
2587   call_VM_leaf(entry_point, 3);
2588 }
2589 
2590 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2591   pass_arg0(this, arg_0);
2592   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2593 }
2594 
2595 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2596 
2597   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2598   pass_arg1(this, arg_1);
2599   pass_arg0(this, arg_0);
2600   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2601 }
2602 
2603 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2604   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2605   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2606   pass_arg2(this, arg_2);
2607   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2608   pass_arg1(this, arg_1);
2609   pass_arg0(this, arg_0);
2610   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2611 }
2612 
2613 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2614   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2615   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2616   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2617   pass_arg3(this, arg_3);
2618   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2619   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2620   pass_arg2(this, arg_2);
2621   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2622   pass_arg1(this, arg_1);
2623   pass_arg0(this, arg_0);
2624   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2625 }
2626 
2627 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2628   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2629   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2630   verify_oop(oop_result, "broken oop in call_VM_base");
2631 }
2632 
2633 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2634   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2635   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2636 }
2637 
2638 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2639 }
2640 
2641 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2642 }
2643 
2644 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2645   if (reachable(src1)) {
2646     cmpl(as_Address(src1), imm);
2647   } else {
2648     lea(rscratch1, src1);
2649     cmpl(Address(rscratch1, 0), imm);
2650   }
2651 }
2652 
2653 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2654   assert(!src2.is_lval(), "use cmpptr");
2655   if (reachable(src2)) {
2656     cmpl(src1, as_Address(src2));
2657   } else {
2658     lea(rscratch1, src2);
2659     cmpl(src1, Address(rscratch1, 0));
2660   }
2661 }
2662 
2663 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2664   Assembler::cmpl(src1, imm);
2665 }
2666 
2667 void MacroAssembler::cmp32(Register src1, Address src2) {
2668   Assembler::cmpl(src1, src2);
2669 }
2670 
2671 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2672   ucomisd(opr1, opr2);
2673 
2674   Label L;
2675   if (unordered_is_less) {
2676     movl(dst, -1);
2677     jcc(Assembler::parity, L);
2678     jcc(Assembler::below , L);
2679     movl(dst, 0);
2680     jcc(Assembler::equal , L);
2681     increment(dst);
2682   } else { // unordered is greater
2683     movl(dst, 1);
2684     jcc(Assembler::parity, L);
2685     jcc(Assembler::above , L);
2686     movl(dst, 0);
2687     jcc(Assembler::equal , L);
2688     decrementl(dst);
2689   }
2690   bind(L);
2691 }
2692 
2693 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2694   ucomiss(opr1, opr2);
2695 
2696   Label L;
2697   if (unordered_is_less) {
2698     movl(dst, -1);
2699     jcc(Assembler::parity, L);
2700     jcc(Assembler::below , L);
2701     movl(dst, 0);
2702     jcc(Assembler::equal , L);
2703     increment(dst);
2704   } else { // unordered is greater
2705     movl(dst, 1);
2706     jcc(Assembler::parity, L);
2707     jcc(Assembler::above , L);
2708     movl(dst, 0);
2709     jcc(Assembler::equal , L);
2710     decrementl(dst);
2711   }
2712   bind(L);
2713 }
2714 
2715 
2716 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2717   if (reachable(src1)) {
2718     cmpb(as_Address(src1), imm);
2719   } else {
2720     lea(rscratch1, src1);
2721     cmpb(Address(rscratch1, 0), imm);
2722   }
2723 }
2724 
2725 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2726 #ifdef _LP64
2727   if (src2.is_lval()) {
2728     movptr(rscratch1, src2);
2729     Assembler::cmpq(src1, rscratch1);
2730   } else if (reachable(src2)) {
2731     cmpq(src1, as_Address(src2));
2732   } else {
2733     lea(rscratch1, src2);
2734     Assembler::cmpq(src1, Address(rscratch1, 0));
2735   }
2736 #else
2737   if (src2.is_lval()) {
2738     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2739   } else {
2740     cmpl(src1, as_Address(src2));
2741   }
2742 #endif // _LP64
2743 }
2744 
2745 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2746   assert(src2.is_lval(), "not a mem-mem compare");
2747 #ifdef _LP64
2748   // moves src2's literal address
2749   movptr(rscratch1, src2);
2750   Assembler::cmpq(src1, rscratch1);
2751 #else
2752   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2753 #endif // _LP64
2754 }
2755 
2756 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2757   if (reachable(adr)) {
2758     if (os::is_MP())
2759       lock();
2760     cmpxchgptr(reg, as_Address(adr));
2761   } else {
2762     lea(rscratch1, adr);
2763     if (os::is_MP())
2764       lock();
2765     cmpxchgptr(reg, Address(rscratch1, 0));
2766   }
2767 }
2768 
2769 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2770   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2771 }
2772 
2773 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2774   if (reachable(src)) {
2775     Assembler::comisd(dst, as_Address(src));
2776   } else {
2777     lea(rscratch1, src);
2778     Assembler::comisd(dst, Address(rscratch1, 0));
2779   }
2780 }
2781 
2782 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2783   if (reachable(src)) {
2784     Assembler::comiss(dst, as_Address(src));
2785   } else {
2786     lea(rscratch1, src);
2787     Assembler::comiss(dst, Address(rscratch1, 0));
2788   }
2789 }
2790 
2791 
2792 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2793   Condition negated_cond = negate_condition(cond);
2794   Label L;
2795   jcc(negated_cond, L);
2796   pushf(); // Preserve flags
2797   atomic_incl(counter_addr);
2798   popf();
2799   bind(L);
2800 }
2801 
2802 int MacroAssembler::corrected_idivl(Register reg) {
2803   // Full implementation of Java idiv and irem; checks for
2804   // special case as described in JVM spec., p.243 & p.271.
2805   // The function returns the (pc) offset of the idivl
2806   // instruction - may be needed for implicit exceptions.
2807   //
2808   //         normal case                           special case
2809   //
2810   // input : rax,: dividend                         min_int
2811   //         reg: divisor   (may not be rax,/rdx)   -1
2812   //
2813   // output: rax,: quotient  (= rax, idiv reg)       min_int
2814   //         rdx: remainder (= rax, irem reg)       0
2815   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2816   const int min_int = 0x80000000;
2817   Label normal_case, special_case;
2818 
2819   // check for special case
2820   cmpl(rax, min_int);
2821   jcc(Assembler::notEqual, normal_case);
2822   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2823   cmpl(reg, -1);
2824   jcc(Assembler::equal, special_case);
2825 
2826   // handle normal case
2827   bind(normal_case);
2828   cdql();
2829   int idivl_offset = offset();
2830   idivl(reg);
2831 
2832   // normal and special case exit
2833   bind(special_case);
2834 
2835   return idivl_offset;
2836 }
2837 
2838 
2839 
2840 void MacroAssembler::decrementl(Register reg, int value) {
2841   if (value == min_jint) {subl(reg, value) ; return; }
2842   if (value <  0) { incrementl(reg, -value); return; }
2843   if (value == 0) {                        ; return; }
2844   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2845   /* else */      { subl(reg, value)       ; return; }
2846 }
2847 
2848 void MacroAssembler::decrementl(Address dst, int value) {
2849   if (value == min_jint) {subl(dst, value) ; return; }
2850   if (value <  0) { incrementl(dst, -value); return; }
2851   if (value == 0) {                        ; return; }
2852   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2853   /* else */      { subl(dst, value)       ; return; }
2854 }
2855 
2856 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2857   assert (shift_value > 0, "illegal shift value");
2858   Label _is_positive;
2859   testl (reg, reg);
2860   jcc (Assembler::positive, _is_positive);
2861   int offset = (1 << shift_value) - 1 ;
2862 
2863   if (offset == 1) {
2864     incrementl(reg);
2865   } else {
2866     addl(reg, offset);
2867   }
2868 
2869   bind (_is_positive);
2870   sarl(reg, shift_value);
2871 }
2872 
2873 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2874   if (reachable(src)) {
2875     Assembler::divsd(dst, as_Address(src));
2876   } else {
2877     lea(rscratch1, src);
2878     Assembler::divsd(dst, Address(rscratch1, 0));
2879   }
2880 }
2881 
2882 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2883   if (reachable(src)) {
2884     Assembler::divss(dst, as_Address(src));
2885   } else {
2886     lea(rscratch1, src);
2887     Assembler::divss(dst, Address(rscratch1, 0));
2888   }
2889 }
2890 
2891 // !defined(COMPILER2) is because of stupid core builds
2892 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2893 void MacroAssembler::empty_FPU_stack() {
2894   if (VM_Version::supports_mmx()) {
2895     emms();
2896   } else {
2897     for (int i = 8; i-- > 0; ) ffree(i);
2898   }
2899 }
2900 #endif // !LP64 || C1 || !C2
2901 
2902 
2903 // Defines obj, preserves var_size_in_bytes
2904 void MacroAssembler::eden_allocate(Register obj,
2905                                    Register var_size_in_bytes,
2906                                    int con_size_in_bytes,
2907                                    Register t1,
2908                                    Label& slow_case) {
2909   assert(obj == rax, "obj must be in rax, for cmpxchg");
2910   assert_different_registers(obj, var_size_in_bytes, t1);
2911   if (!Universe::heap()->supports_inline_contig_alloc()) {
2912     jmp(slow_case);
2913   } else {
2914     Register end = t1;
2915     Label retry;
2916     bind(retry);
2917     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2918     movptr(obj, heap_top);
2919     if (var_size_in_bytes == noreg) {
2920       lea(end, Address(obj, con_size_in_bytes));
2921     } else {
2922       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2923     }
2924     // if end < obj then we wrapped around => object too long => slow case
2925     cmpptr(end, obj);
2926     jcc(Assembler::below, slow_case);
2927     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2928     jcc(Assembler::above, slow_case);
2929     // Compare obj with the top addr, and if still equal, store the new top addr in
2930     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2931     // it otherwise. Use lock prefix for atomicity on MPs.
2932     locked_cmpxchgptr(end, heap_top);
2933     jcc(Assembler::notEqual, retry);
2934   }
2935 }
2936 
2937 void MacroAssembler::enter() {
2938   push(rbp);
2939   mov(rbp, rsp);
2940 }
2941 
2942 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2943 void MacroAssembler::fat_nop() {
2944   if (UseAddressNop) {
2945     addr_nop_5();
2946   } else {
2947     emit_int8(0x26); // es:
2948     emit_int8(0x2e); // cs:
2949     emit_int8(0x64); // fs:
2950     emit_int8(0x65); // gs:
2951     emit_int8((unsigned char)0x90);
2952   }
2953 }
2954 
2955 void MacroAssembler::fcmp(Register tmp) {
2956   fcmp(tmp, 1, true, true);
2957 }
2958 
2959 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2960   assert(!pop_right || pop_left, "usage error");
2961   if (VM_Version::supports_cmov()) {
2962     assert(tmp == noreg, "unneeded temp");
2963     if (pop_left) {
2964       fucomip(index);
2965     } else {
2966       fucomi(index);
2967     }
2968     if (pop_right) {
2969       fpop();
2970     }
2971   } else {
2972     assert(tmp != noreg, "need temp");
2973     if (pop_left) {
2974       if (pop_right) {
2975         fcompp();
2976       } else {
2977         fcomp(index);
2978       }
2979     } else {
2980       fcom(index);
2981     }
2982     // convert FPU condition into eflags condition via rax,
2983     save_rax(tmp);
2984     fwait(); fnstsw_ax();
2985     sahf();
2986     restore_rax(tmp);
2987   }
2988   // condition codes set as follows:
2989   //
2990   // CF (corresponds to C0) if x < y
2991   // PF (corresponds to C2) if unordered
2992   // ZF (corresponds to C3) if x = y
2993 }
2994 
2995 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2996   fcmp2int(dst, unordered_is_less, 1, true, true);
2997 }
2998 
2999 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3000   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3001   Label L;
3002   if (unordered_is_less) {
3003     movl(dst, -1);
3004     jcc(Assembler::parity, L);
3005     jcc(Assembler::below , L);
3006     movl(dst, 0);
3007     jcc(Assembler::equal , L);
3008     increment(dst);
3009   } else { // unordered is greater
3010     movl(dst, 1);
3011     jcc(Assembler::parity, L);
3012     jcc(Assembler::above , L);
3013     movl(dst, 0);
3014     jcc(Assembler::equal , L);
3015     decrementl(dst);
3016   }
3017   bind(L);
3018 }
3019 
3020 void MacroAssembler::fld_d(AddressLiteral src) {
3021   fld_d(as_Address(src));
3022 }
3023 
3024 void MacroAssembler::fld_s(AddressLiteral src) {
3025   fld_s(as_Address(src));
3026 }
3027 
3028 void MacroAssembler::fld_x(AddressLiteral src) {
3029   Assembler::fld_x(as_Address(src));
3030 }
3031 
3032 void MacroAssembler::fldcw(AddressLiteral src) {
3033   Assembler::fldcw(as_Address(src));
3034 }
3035 
3036 void MacroAssembler::pow_exp_core_encoding() {
3037   // kills rax, rcx, rdx
3038   subptr(rsp,sizeof(jdouble));
3039   // computes 2^X. Stack: X ...
3040   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3041   // keep it on the thread's stack to compute 2^int(X) later
3042   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3043   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3044   fld_s(0);                 // Stack: X X ...
3045   frndint();                // Stack: int(X) X ...
3046   fsuba(1);                 // Stack: int(X) X-int(X) ...
3047   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3048   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3049   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3050   faddp(1);                 // Stack: 2^(X-int(X))
3051   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3052   // shift int(X)+1023 to exponent position.
3053   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3054   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3055   // values so detect them and set result to NaN.
3056   movl(rax,Address(rsp,0));
3057   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3058   addl(rax, 1023);
3059   movl(rdx,rax);
3060   shll(rax,20);
3061   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3062   addl(rdx,1);
3063   // Check that 1 < int(X)+1023+1 < 2048
3064   // in 3 steps:
3065   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3066   // 2- (int(X)+1023+1)&-2048 != 0
3067   // 3- (int(X)+1023+1)&-2048 != 1
3068   // Do 2- first because addl just updated the flags.
3069   cmov32(Assembler::equal,rax,rcx);
3070   cmpl(rdx,1);
3071   cmov32(Assembler::equal,rax,rcx);
3072   testl(rdx,rcx);
3073   cmov32(Assembler::notEqual,rax,rcx);
3074   movl(Address(rsp,4),rax);
3075   movl(Address(rsp,0),0);
3076   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3077   addptr(rsp,sizeof(jdouble));
3078 }
3079 
3080 void MacroAssembler::increase_precision() {
3081   subptr(rsp, BytesPerWord);
3082   fnstcw(Address(rsp, 0));
3083   movl(rax, Address(rsp, 0));
3084   orl(rax, 0x300);
3085   push(rax);
3086   fldcw(Address(rsp, 0));
3087   pop(rax);
3088 }
3089 
3090 void MacroAssembler::restore_precision() {
3091   fldcw(Address(rsp, 0));
3092   addptr(rsp, BytesPerWord);
3093 }
3094 
3095 void MacroAssembler::fast_pow() {
3096   // computes X^Y = 2^(Y * log2(X))
3097   // if fast computation is not possible, result is NaN. Requires
3098   // fallback from user of this macro.
3099   // increase precision for intermediate steps of the computation
3100   BLOCK_COMMENT("fast_pow {");
3101   increase_precision();
3102   fyl2x();                 // Stack: (Y*log2(X)) ...
3103   pow_exp_core_encoding(); // Stack: exp(X) ...
3104   restore_precision();
3105   BLOCK_COMMENT("} fast_pow");
3106 }
3107 
3108 void MacroAssembler::fast_exp() {
3109   // computes exp(X) = 2^(X * log2(e))
3110   // if fast computation is not possible, result is NaN. Requires
3111   // fallback from user of this macro.
3112   // increase precision for intermediate steps of the computation
3113   increase_precision();
3114   fldl2e();                // Stack: log2(e) X ...
3115   fmulp(1);                // Stack: (X*log2(e)) ...
3116   pow_exp_core_encoding(); // Stack: exp(X) ...
3117   restore_precision();
3118 }
3119 
3120 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3121   // kills rax, rcx, rdx
3122   // pow and exp needs 2 extra registers on the fpu stack.
3123   Label slow_case, done;
3124   Register tmp = noreg;
3125   if (!VM_Version::supports_cmov()) {
3126     // fcmp needs a temporary so preserve rdx,
3127     tmp = rdx;
3128   }
3129   Register tmp2 = rax;
3130   Register tmp3 = rcx;
3131 
3132   if (is_exp) {
3133     // Stack: X
3134     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3135     fast_exp();                 // Stack: exp(X) X
3136     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3137     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3138     jcc(Assembler::parity, slow_case);
3139     // get rid of duplicate argument. Stack: exp(X)
3140     if (num_fpu_regs_in_use > 0) {
3141       fxch();
3142       fpop();
3143     } else {
3144       ffree(1);
3145     }
3146     jmp(done);
3147   } else {
3148     // Stack: X Y
3149     Label x_negative, y_not_2;
3150 
3151     static double two = 2.0;
3152     ExternalAddress two_addr((address)&two);
3153 
3154     // constant maybe too far on 64 bit
3155     lea(tmp2, two_addr);
3156     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3157     fcmp(tmp, 2, true, false);  // Stack: X Y
3158     jcc(Assembler::parity, y_not_2);
3159     jcc(Assembler::notEqual, y_not_2);
3160 
3161     fxch(); fpop();             // Stack: X
3162     fmul(0);                    // Stack: X*X
3163 
3164     jmp(done);
3165 
3166     bind(y_not_2);
3167 
3168     fldz();                     // Stack: 0 X Y
3169     fcmp(tmp, 1, true, false);  // Stack: X Y
3170     jcc(Assembler::above, x_negative);
3171 
3172     // X >= 0
3173 
3174     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3175     fld_s(1);                   // Stack: X Y X Y
3176     fast_pow();                 // Stack: X^Y X Y
3177     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3178     // X^Y not equal to itself: X^Y is NaN go to slow case.
3179     jcc(Assembler::parity, slow_case);
3180     // get rid of duplicate arguments. Stack: X^Y
3181     if (num_fpu_regs_in_use > 0) {
3182       fxch(); fpop();
3183       fxch(); fpop();
3184     } else {
3185       ffree(2);
3186       ffree(1);
3187     }
3188     jmp(done);
3189 
3190     // X <= 0
3191     bind(x_negative);
3192 
3193     fld_s(1);                   // Stack: Y X Y
3194     frndint();                  // Stack: int(Y) X Y
3195     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3196     jcc(Assembler::notEqual, slow_case);
3197 
3198     subptr(rsp, 8);
3199 
3200     // For X^Y, when X < 0, Y has to be an integer and the final
3201     // result depends on whether it's odd or even. We just checked
3202     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3203     // integer to test its parity. If int(Y) is huge and doesn't fit
3204     // in the 64 bit integer range, the integer indefinite value will
3205     // end up in the gp registers. Huge numbers are all even, the
3206     // integer indefinite number is even so it's fine.
3207 
3208 #ifdef ASSERT
3209     // Let's check we don't end up with an integer indefinite number
3210     // when not expected. First test for huge numbers: check whether
3211     // int(Y)+1 == int(Y) which is true for very large numbers and
3212     // those are all even. A 64 bit integer is guaranteed to not
3213     // overflow for numbers where y+1 != y (when precision is set to
3214     // double precision).
3215     Label y_not_huge;
3216 
3217     fld1();                     // Stack: 1 int(Y) X Y
3218     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3219 
3220 #ifdef _LP64
3221     // trip to memory to force the precision down from double extended
3222     // precision
3223     fstp_d(Address(rsp, 0));
3224     fld_d(Address(rsp, 0));
3225 #endif
3226 
3227     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3228 #endif
3229 
3230     // move int(Y) as 64 bit integer to thread's stack
3231     fistp_d(Address(rsp,0));    // Stack: X Y
3232 
3233 #ifdef ASSERT
3234     jcc(Assembler::notEqual, y_not_huge);
3235 
3236     // Y is huge so we know it's even. It may not fit in a 64 bit
3237     // integer and we don't want the debug code below to see the
3238     // integer indefinite value so overwrite int(Y) on the thread's
3239     // stack with 0.
3240     movl(Address(rsp, 0), 0);
3241     movl(Address(rsp, 4), 0);
3242 
3243     bind(y_not_huge);
3244 #endif
3245 
3246     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3247     fld_s(1);                   // Stack: X Y X Y
3248     fabs();                     // Stack: abs(X) Y X Y
3249     fast_pow();                 // Stack: abs(X)^Y X Y
3250     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3251     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3252 
3253     pop(tmp2);
3254     NOT_LP64(pop(tmp3));
3255     jcc(Assembler::parity, slow_case);
3256 
3257 #ifdef ASSERT
3258     // Check that int(Y) is not integer indefinite value (int
3259     // overflow). Shouldn't happen because for values that would
3260     // overflow, 1+int(Y)==Y which was tested earlier.
3261 #ifndef _LP64
3262     {
3263       Label integer;
3264       testl(tmp2, tmp2);
3265       jcc(Assembler::notZero, integer);
3266       cmpl(tmp3, 0x80000000);
3267       jcc(Assembler::notZero, integer);
3268       STOP("integer indefinite value shouldn't be seen here");
3269       bind(integer);
3270     }
3271 #else
3272     {
3273       Label integer;
3274       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3275       shlq(tmp3, 1);
3276       jcc(Assembler::carryClear, integer);
3277       jcc(Assembler::notZero, integer);
3278       STOP("integer indefinite value shouldn't be seen here");
3279       bind(integer);
3280     }
3281 #endif
3282 #endif
3283 
3284     // get rid of duplicate arguments. Stack: X^Y
3285     if (num_fpu_regs_in_use > 0) {
3286       fxch(); fpop();
3287       fxch(); fpop();
3288     } else {
3289       ffree(2);
3290       ffree(1);
3291     }
3292 
3293     testl(tmp2, 1);
3294     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3295     // X <= 0, Y even: X^Y = -abs(X)^Y
3296 
3297     fchs();                     // Stack: -abs(X)^Y Y
3298     jmp(done);
3299   }
3300 
3301   // slow case: runtime call
3302   bind(slow_case);
3303 
3304   fpop();                       // pop incorrect result or int(Y)
3305 
3306   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3307                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3308 
3309   // Come here with result in F-TOS
3310   bind(done);
3311 }
3312 
3313 void MacroAssembler::fpop() {
3314   ffree();
3315   fincstp();
3316 }
3317 
3318 void MacroAssembler::load_float(Address src) {
3319   if (UseSSE >= 1) {
3320     movflt(xmm0, src);
3321   } else {
3322     LP64_ONLY(ShouldNotReachHere());
3323     NOT_LP64(fld_s(src));
3324   }
3325 }
3326 
3327 void MacroAssembler::store_float(Address dst) {
3328   if (UseSSE >= 1) {
3329     movflt(dst, xmm0);
3330   } else {
3331     LP64_ONLY(ShouldNotReachHere());
3332     NOT_LP64(fstp_s(dst));
3333   }
3334 }
3335 
3336 void MacroAssembler::load_double(Address src) {
3337   if (UseSSE >= 2) {
3338     movdbl(xmm0, src);
3339   } else {
3340     LP64_ONLY(ShouldNotReachHere());
3341     NOT_LP64(fld_d(src));
3342   }
3343 }
3344 
3345 void MacroAssembler::store_double(Address dst) {
3346   if (UseSSE >= 2) {
3347     movdbl(dst, xmm0);
3348   } else {
3349     LP64_ONLY(ShouldNotReachHere());
3350     NOT_LP64(fstp_d(dst));
3351   }
3352 }
3353 
3354 void MacroAssembler::fremr(Register tmp) {
3355   save_rax(tmp);
3356   { Label L;
3357     bind(L);
3358     fprem();
3359     fwait(); fnstsw_ax();
3360 #ifdef _LP64
3361     testl(rax, 0x400);
3362     jcc(Assembler::notEqual, L);
3363 #else
3364     sahf();
3365     jcc(Assembler::parity, L);
3366 #endif // _LP64
3367   }
3368   restore_rax(tmp);
3369   // Result is in ST0.
3370   // Note: fxch & fpop to get rid of ST1
3371   // (otherwise FPU stack could overflow eventually)
3372   fxch(1);
3373   fpop();
3374 }
3375 
3376 
3377 void MacroAssembler::incrementl(AddressLiteral dst) {
3378   if (reachable(dst)) {
3379     incrementl(as_Address(dst));
3380   } else {
3381     lea(rscratch1, dst);
3382     incrementl(Address(rscratch1, 0));
3383   }
3384 }
3385 
3386 void MacroAssembler::incrementl(ArrayAddress dst) {
3387   incrementl(as_Address(dst));
3388 }
3389 
3390 void MacroAssembler::incrementl(Register reg, int value) {
3391   if (value == min_jint) {addl(reg, value) ; return; }
3392   if (value <  0) { decrementl(reg, -value); return; }
3393   if (value == 0) {                        ; return; }
3394   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3395   /* else */      { addl(reg, value)       ; return; }
3396 }
3397 
3398 void MacroAssembler::incrementl(Address dst, int value) {
3399   if (value == min_jint) {addl(dst, value) ; return; }
3400   if (value <  0) { decrementl(dst, -value); return; }
3401   if (value == 0) {                        ; return; }
3402   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3403   /* else */      { addl(dst, value)       ; return; }
3404 }
3405 
3406 void MacroAssembler::jump(AddressLiteral dst) {
3407   if (reachable(dst)) {
3408     jmp_literal(dst.target(), dst.rspec());
3409   } else {
3410     lea(rscratch1, dst);
3411     jmp(rscratch1);
3412   }
3413 }
3414 
3415 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3416   if (reachable(dst)) {
3417     InstructionMark im(this);
3418     relocate(dst.reloc());
3419     const int short_size = 2;
3420     const int long_size = 6;
3421     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3422     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3423       // 0111 tttn #8-bit disp
3424       emit_int8(0x70 | cc);
3425       emit_int8((offs - short_size) & 0xFF);
3426     } else {
3427       // 0000 1111 1000 tttn #32-bit disp
3428       emit_int8(0x0F);
3429       emit_int8((unsigned char)(0x80 | cc));
3430       emit_int32(offs - long_size);
3431     }
3432   } else {
3433 #ifdef ASSERT
3434     warning("reversing conditional branch");
3435 #endif /* ASSERT */
3436     Label skip;
3437     jccb(reverse[cc], skip);
3438     lea(rscratch1, dst);
3439     Assembler::jmp(rscratch1);
3440     bind(skip);
3441   }
3442 }
3443 
3444 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3445   if (reachable(src)) {
3446     Assembler::ldmxcsr(as_Address(src));
3447   } else {
3448     lea(rscratch1, src);
3449     Assembler::ldmxcsr(Address(rscratch1, 0));
3450   }
3451 }
3452 
3453 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3454   int off;
3455   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3456     off = offset();
3457     movsbl(dst, src); // movsxb
3458   } else {
3459     off = load_unsigned_byte(dst, src);
3460     shll(dst, 24);
3461     sarl(dst, 24);
3462   }
3463   return off;
3464 }
3465 
3466 // Note: load_signed_short used to be called load_signed_word.
3467 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3468 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3469 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3470 int MacroAssembler::load_signed_short(Register dst, Address src) {
3471   int off;
3472   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3473     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3474     // version but this is what 64bit has always done. This seems to imply
3475     // that users are only using 32bits worth.
3476     off = offset();
3477     movswl(dst, src); // movsxw
3478   } else {
3479     off = load_unsigned_short(dst, src);
3480     shll(dst, 16);
3481     sarl(dst, 16);
3482   }
3483   return off;
3484 }
3485 
3486 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3487   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3488   // and "3.9 Partial Register Penalties", p. 22).
3489   int off;
3490   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3491     off = offset();
3492     movzbl(dst, src); // movzxb
3493   } else {
3494     xorl(dst, dst);
3495     off = offset();
3496     movb(dst, src);
3497   }
3498   return off;
3499 }
3500 
3501 // Note: load_unsigned_short used to be called load_unsigned_word.
3502 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3503   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3504   // and "3.9 Partial Register Penalties", p. 22).
3505   int off;
3506   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3507     off = offset();
3508     movzwl(dst, src); // movzxw
3509   } else {
3510     xorl(dst, dst);
3511     off = offset();
3512     movw(dst, src);
3513   }
3514   return off;
3515 }
3516 
3517 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3518   switch (size_in_bytes) {
3519 #ifndef _LP64
3520   case  8:
3521     assert(dst2 != noreg, "second dest register required");
3522     movl(dst,  src);
3523     movl(dst2, src.plus_disp(BytesPerInt));
3524     break;
3525 #else
3526   case  8:  movq(dst, src); break;
3527 #endif
3528   case  4:  movl(dst, src); break;
3529   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3530   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3531   default:  ShouldNotReachHere();
3532   }
3533 }
3534 
3535 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3536   switch (size_in_bytes) {
3537 #ifndef _LP64
3538   case  8:
3539     assert(src2 != noreg, "second source register required");
3540     movl(dst,                        src);
3541     movl(dst.plus_disp(BytesPerInt), src2);
3542     break;
3543 #else
3544   case  8:  movq(dst, src); break;
3545 #endif
3546   case  4:  movl(dst, src); break;
3547   case  2:  movw(dst, src); break;
3548   case  1:  movb(dst, src); break;
3549   default:  ShouldNotReachHere();
3550   }
3551 }
3552 
3553 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3554   if (reachable(dst)) {
3555     movl(as_Address(dst), src);
3556   } else {
3557     lea(rscratch1, dst);
3558     movl(Address(rscratch1, 0), src);
3559   }
3560 }
3561 
3562 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3563   if (reachable(src)) {
3564     movl(dst, as_Address(src));
3565   } else {
3566     lea(rscratch1, src);
3567     movl(dst, Address(rscratch1, 0));
3568   }
3569 }
3570 
3571 // C++ bool manipulation
3572 
3573 void MacroAssembler::movbool(Register dst, Address src) {
3574   if(sizeof(bool) == 1)
3575     movb(dst, src);
3576   else if(sizeof(bool) == 2)
3577     movw(dst, src);
3578   else if(sizeof(bool) == 4)
3579     movl(dst, src);
3580   else
3581     // unsupported
3582     ShouldNotReachHere();
3583 }
3584 
3585 void MacroAssembler::movbool(Address dst, bool boolconst) {
3586   if(sizeof(bool) == 1)
3587     movb(dst, (int) boolconst);
3588   else if(sizeof(bool) == 2)
3589     movw(dst, (int) boolconst);
3590   else if(sizeof(bool) == 4)
3591     movl(dst, (int) boolconst);
3592   else
3593     // unsupported
3594     ShouldNotReachHere();
3595 }
3596 
3597 void MacroAssembler::movbool(Address dst, Register src) {
3598   if(sizeof(bool) == 1)
3599     movb(dst, src);
3600   else if(sizeof(bool) == 2)
3601     movw(dst, src);
3602   else if(sizeof(bool) == 4)
3603     movl(dst, src);
3604   else
3605     // unsupported
3606     ShouldNotReachHere();
3607 }
3608 
3609 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3610   movb(as_Address(dst), src);
3611 }
3612 
3613 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3614   if (reachable(src)) {
3615     movdl(dst, as_Address(src));
3616   } else {
3617     lea(rscratch1, src);
3618     movdl(dst, Address(rscratch1, 0));
3619   }
3620 }
3621 
3622 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3623   if (reachable(src)) {
3624     movq(dst, as_Address(src));
3625   } else {
3626     lea(rscratch1, src);
3627     movq(dst, Address(rscratch1, 0));
3628   }
3629 }
3630 
3631 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3632   if (reachable(src)) {
3633     if (UseXmmLoadAndClearUpper) {
3634       movsd (dst, as_Address(src));
3635     } else {
3636       movlpd(dst, as_Address(src));
3637     }
3638   } else {
3639     lea(rscratch1, src);
3640     if (UseXmmLoadAndClearUpper) {
3641       movsd (dst, Address(rscratch1, 0));
3642     } else {
3643       movlpd(dst, Address(rscratch1, 0));
3644     }
3645   }
3646 }
3647 
3648 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3649   if (reachable(src)) {
3650     movss(dst, as_Address(src));
3651   } else {
3652     lea(rscratch1, src);
3653     movss(dst, Address(rscratch1, 0));
3654   }
3655 }
3656 
3657 void MacroAssembler::movptr(Register dst, Register src) {
3658   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3659 }
3660 
3661 void MacroAssembler::movptr(Register dst, Address src) {
3662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3663 }
3664 
3665 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3666 void MacroAssembler::movptr(Register dst, intptr_t src) {
3667   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3668 }
3669 
3670 void MacroAssembler::movptr(Address dst, Register src) {
3671   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3672 }
3673 
3674 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3675   if (reachable(src)) {
3676     Assembler::movdqu(dst, as_Address(src));
3677   } else {
3678     lea(rscratch1, src);
3679     Assembler::movdqu(dst, Address(rscratch1, 0));
3680   }
3681 }
3682 
3683 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3684   if (reachable(src)) {
3685     Assembler::movdqa(dst, as_Address(src));
3686   } else {
3687     lea(rscratch1, src);
3688     Assembler::movdqa(dst, Address(rscratch1, 0));
3689   }
3690 }
3691 
3692 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3693   if (reachable(src)) {
3694     Assembler::movsd(dst, as_Address(src));
3695   } else {
3696     lea(rscratch1, src);
3697     Assembler::movsd(dst, Address(rscratch1, 0));
3698   }
3699 }
3700 
3701 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3702   if (reachable(src)) {
3703     Assembler::movss(dst, as_Address(src));
3704   } else {
3705     lea(rscratch1, src);
3706     Assembler::movss(dst, Address(rscratch1, 0));
3707   }
3708 }
3709 
3710 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3711   if (reachable(src)) {
3712     Assembler::mulsd(dst, as_Address(src));
3713   } else {
3714     lea(rscratch1, src);
3715     Assembler::mulsd(dst, Address(rscratch1, 0));
3716   }
3717 }
3718 
3719 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3720   if (reachable(src)) {
3721     Assembler::mulss(dst, as_Address(src));
3722   } else {
3723     lea(rscratch1, src);
3724     Assembler::mulss(dst, Address(rscratch1, 0));
3725   }
3726 }
3727 
3728 void MacroAssembler::null_check(Register reg, int offset) {
3729   if (needs_explicit_null_check(offset)) {
3730     // provoke OS NULL exception if reg = NULL by
3731     // accessing M[reg] w/o changing any (non-CC) registers
3732     // NOTE: cmpl is plenty here to provoke a segv
3733     cmpptr(rax, Address(reg, 0));
3734     // Note: should probably use testl(rax, Address(reg, 0));
3735     //       may be shorter code (however, this version of
3736     //       testl needs to be implemented first)
3737   } else {
3738     // nothing to do, (later) access of M[reg + offset]
3739     // will provoke OS NULL exception if reg = NULL
3740   }
3741 }
3742 
3743 void MacroAssembler::os_breakpoint() {
3744   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3745   // (e.g., MSVC can't call ps() otherwise)
3746   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3747 }
3748 
3749 void MacroAssembler::pop_CPU_state() {
3750   pop_FPU_state();
3751   pop_IU_state();
3752 }
3753 
3754 void MacroAssembler::pop_FPU_state() {
3755   NOT_LP64(frstor(Address(rsp, 0));)
3756   LP64_ONLY(fxrstor(Address(rsp, 0));)
3757   addptr(rsp, FPUStateSizeInWords * wordSize);
3758 }
3759 
3760 void MacroAssembler::pop_IU_state() {
3761   popa();
3762   LP64_ONLY(addq(rsp, 8));
3763   popf();
3764 }
3765 
3766 // Save Integer and Float state
3767 // Warning: Stack must be 16 byte aligned (64bit)
3768 void MacroAssembler::push_CPU_state() {
3769   push_IU_state();
3770   push_FPU_state();
3771 }
3772 
3773 void MacroAssembler::push_FPU_state() {
3774   subptr(rsp, FPUStateSizeInWords * wordSize);
3775 #ifndef _LP64
3776   fnsave(Address(rsp, 0));
3777   fwait();
3778 #else
3779   fxsave(Address(rsp, 0));
3780 #endif // LP64
3781 }
3782 
3783 void MacroAssembler::push_IU_state() {
3784   // Push flags first because pusha kills them
3785   pushf();
3786   // Make sure rsp stays 16-byte aligned
3787   LP64_ONLY(subq(rsp, 8));
3788   pusha();
3789 }
3790 
3791 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3792   // determine java_thread register
3793   if (!java_thread->is_valid()) {
3794     java_thread = rdi;
3795     get_thread(java_thread);
3796   }
3797   // we must set sp to zero to clear frame
3798   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3799   if (clear_fp) {
3800     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3801   }
3802 
3803   if (clear_pc)
3804     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3805 
3806 }
3807 
3808 void MacroAssembler::restore_rax(Register tmp) {
3809   if (tmp == noreg) pop(rax);
3810   else if (tmp != rax) mov(rax, tmp);
3811 }
3812 
3813 void MacroAssembler::round_to(Register reg, int modulus) {
3814   addptr(reg, modulus - 1);
3815   andptr(reg, -modulus);
3816 }
3817 
3818 void MacroAssembler::save_rax(Register tmp) {
3819   if (tmp == noreg) push(rax);
3820   else if (tmp != rax) mov(tmp, rax);
3821 }
3822 
3823 // Write serialization page so VM thread can do a pseudo remote membar.
3824 // We use the current thread pointer to calculate a thread specific
3825 // offset to write to within the page. This minimizes bus traffic
3826 // due to cache line collision.
3827 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3828   movl(tmp, thread);
3829   shrl(tmp, os::get_serialize_page_shift_count());
3830   andl(tmp, (os::vm_page_size() - sizeof(int)));
3831 
3832   Address index(noreg, tmp, Address::times_1);
3833   ExternalAddress page(os::get_memory_serialize_page());
3834 
3835   // Size of store must match masking code above
3836   movl(as_Address(ArrayAddress(page, index)), tmp);
3837 }
3838 
3839 // Calls to C land
3840 //
3841 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3842 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3843 // has to be reset to 0. This is required to allow proper stack traversal.
3844 void MacroAssembler::set_last_Java_frame(Register java_thread,
3845                                          Register last_java_sp,
3846                                          Register last_java_fp,
3847                                          address  last_java_pc) {
3848   // determine java_thread register
3849   if (!java_thread->is_valid()) {
3850     java_thread = rdi;
3851     get_thread(java_thread);
3852   }
3853   // determine last_java_sp register
3854   if (!last_java_sp->is_valid()) {
3855     last_java_sp = rsp;
3856   }
3857 
3858   // last_java_fp is optional
3859 
3860   if (last_java_fp->is_valid()) {
3861     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3862   }
3863 
3864   // last_java_pc is optional
3865 
3866   if (last_java_pc != NULL) {
3867     lea(Address(java_thread,
3868                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3869         InternalAddress(last_java_pc));
3870 
3871   }
3872   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3873 }
3874 
3875 void MacroAssembler::shlptr(Register dst, int imm8) {
3876   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3877 }
3878 
3879 void MacroAssembler::shrptr(Register dst, int imm8) {
3880   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3881 }
3882 
3883 void MacroAssembler::sign_extend_byte(Register reg) {
3884   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3885     movsbl(reg, reg); // movsxb
3886   } else {
3887     shll(reg, 24);
3888     sarl(reg, 24);
3889   }
3890 }
3891 
3892 void MacroAssembler::sign_extend_short(Register reg) {
3893   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3894     movswl(reg, reg); // movsxw
3895   } else {
3896     shll(reg, 16);
3897     sarl(reg, 16);
3898   }
3899 }
3900 
3901 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3902   assert(reachable(src), "Address should be reachable");
3903   testl(dst, as_Address(src));
3904 }
3905 
3906 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3907   if (reachable(src)) {
3908     Assembler::sqrtsd(dst, as_Address(src));
3909   } else {
3910     lea(rscratch1, src);
3911     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3912   }
3913 }
3914 
3915 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3916   if (reachable(src)) {
3917     Assembler::sqrtss(dst, as_Address(src));
3918   } else {
3919     lea(rscratch1, src);
3920     Assembler::sqrtss(dst, Address(rscratch1, 0));
3921   }
3922 }
3923 
3924 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3925   if (reachable(src)) {
3926     Assembler::subsd(dst, as_Address(src));
3927   } else {
3928     lea(rscratch1, src);
3929     Assembler::subsd(dst, Address(rscratch1, 0));
3930   }
3931 }
3932 
3933 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3934   if (reachable(src)) {
3935     Assembler::subss(dst, as_Address(src));
3936   } else {
3937     lea(rscratch1, src);
3938     Assembler::subss(dst, Address(rscratch1, 0));
3939   }
3940 }
3941 
3942 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3943   if (reachable(src)) {
3944     Assembler::ucomisd(dst, as_Address(src));
3945   } else {
3946     lea(rscratch1, src);
3947     Assembler::ucomisd(dst, Address(rscratch1, 0));
3948   }
3949 }
3950 
3951 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3952   if (reachable(src)) {
3953     Assembler::ucomiss(dst, as_Address(src));
3954   } else {
3955     lea(rscratch1, src);
3956     Assembler::ucomiss(dst, Address(rscratch1, 0));
3957   }
3958 }
3959 
3960 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3961   // Used in sign-bit flipping with aligned address.
3962   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3963   if (reachable(src)) {
3964     Assembler::xorpd(dst, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     Assembler::xorpd(dst, Address(rscratch1, 0));
3968   }
3969 }
3970 
3971 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3972   // Used in sign-bit flipping with aligned address.
3973   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3974   if (reachable(src)) {
3975     Assembler::xorps(dst, as_Address(src));
3976   } else {
3977     lea(rscratch1, src);
3978     Assembler::xorps(dst, Address(rscratch1, 0));
3979   }
3980 }
3981 
3982 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3983   // Used in sign-bit flipping with aligned address.
3984   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3985   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3986   if (reachable(src)) {
3987     Assembler::pshufb(dst, as_Address(src));
3988   } else {
3989     lea(rscratch1, src);
3990     Assembler::pshufb(dst, Address(rscratch1, 0));
3991   }
3992 }
3993 
3994 // AVX 3-operands instructions
3995 
3996 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3997   if (reachable(src)) {
3998     vaddsd(dst, nds, as_Address(src));
3999   } else {
4000     lea(rscratch1, src);
4001     vaddsd(dst, nds, Address(rscratch1, 0));
4002   }
4003 }
4004 
4005 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4006   if (reachable(src)) {
4007     vaddss(dst, nds, as_Address(src));
4008   } else {
4009     lea(rscratch1, src);
4010     vaddss(dst, nds, Address(rscratch1, 0));
4011   }
4012 }
4013 
4014 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4015   if (reachable(src)) {
4016     vandpd(dst, nds, as_Address(src), vector_len);
4017   } else {
4018     lea(rscratch1, src);
4019     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
4020   }
4021 }
4022 
4023 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4024   if (reachable(src)) {
4025     vandps(dst, nds, as_Address(src), vector_len);
4026   } else {
4027     lea(rscratch1, src);
4028     vandps(dst, nds, Address(rscratch1, 0), vector_len);
4029   }
4030 }
4031 
4032 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4033   if (reachable(src)) {
4034     vdivsd(dst, nds, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     vdivsd(dst, nds, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4042   if (reachable(src)) {
4043     vdivss(dst, nds, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     vdivss(dst, nds, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4051   if (reachable(src)) {
4052     vmulsd(dst, nds, as_Address(src));
4053   } else {
4054     lea(rscratch1, src);
4055     vmulsd(dst, nds, Address(rscratch1, 0));
4056   }
4057 }
4058 
4059 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4060   if (reachable(src)) {
4061     vmulss(dst, nds, as_Address(src));
4062   } else {
4063     lea(rscratch1, src);
4064     vmulss(dst, nds, Address(rscratch1, 0));
4065   }
4066 }
4067 
4068 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4069   if (reachable(src)) {
4070     vsubsd(dst, nds, as_Address(src));
4071   } else {
4072     lea(rscratch1, src);
4073     vsubsd(dst, nds, Address(rscratch1, 0));
4074   }
4075 }
4076 
4077 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4078   if (reachable(src)) {
4079     vsubss(dst, nds, as_Address(src));
4080   } else {
4081     lea(rscratch1, src);
4082     vsubss(dst, nds, Address(rscratch1, 0));
4083   }
4084 }
4085 
4086 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4087   if (reachable(src)) {
4088     vxorpd(dst, nds, as_Address(src), vector_len);
4089   } else {
4090     lea(rscratch1, src);
4091     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
4092   }
4093 }
4094 
4095 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4096   if (reachable(src)) {
4097     vxorps(dst, nds, as_Address(src), vector_len);
4098   } else {
4099     lea(rscratch1, src);
4100     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
4101   }
4102 }
4103 
4104 
4105 //////////////////////////////////////////////////////////////////////////////////
4106 #if INCLUDE_ALL_GCS
4107 
4108 void MacroAssembler::g1_write_barrier_pre(Register obj,
4109                                           Register pre_val,
4110                                           Register thread,
4111                                           Register tmp,
4112                                           bool tosca_live,
4113                                           bool expand_call) {
4114 
4115   // If expand_call is true then we expand the call_VM_leaf macro
4116   // directly to skip generating the check by
4117   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4118 
4119 #ifdef _LP64
4120   assert(thread == r15_thread, "must be");
4121 #endif // _LP64
4122 
4123   Label done;
4124   Label runtime;
4125 
4126   assert(pre_val != noreg, "check this code");
4127 
4128   if (obj != noreg) {
4129     assert_different_registers(obj, pre_val, tmp);
4130     assert(pre_val != rax, "check this code");
4131   }
4132 
4133   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4134                                        PtrQueue::byte_offset_of_active()));
4135   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4136                                        PtrQueue::byte_offset_of_index()));
4137   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4138                                        PtrQueue::byte_offset_of_buf()));
4139 
4140 
4141   // Is marking active?
4142   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4143     cmpl(in_progress, 0);
4144   } else {
4145     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4146     cmpb(in_progress, 0);
4147   }
4148   jcc(Assembler::equal, done);
4149 
4150   // Do we need to load the previous value?
4151   if (obj != noreg) {
4152     load_heap_oop(pre_val, Address(obj, 0));
4153   }
4154 
4155   // Is the previous value null?
4156   cmpptr(pre_val, (int32_t) NULL_WORD);
4157   jcc(Assembler::equal, done);
4158 
4159   // Can we store original value in the thread's buffer?
4160   // Is index == 0?
4161   // (The index field is typed as size_t.)
4162 
4163   movptr(tmp, index);                   // tmp := *index_adr
4164   cmpptr(tmp, 0);                       // tmp == 0?
4165   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4166 
4167   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4168   movptr(index, tmp);                   // *index_adr := tmp
4169   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4170 
4171   // Record the previous value
4172   movptr(Address(tmp, 0), pre_val);
4173   jmp(done);
4174 
4175   bind(runtime);
4176   // save the live input values
4177   if(tosca_live) push(rax);
4178 
4179   if (obj != noreg && obj != rax)
4180     push(obj);
4181 
4182   if (pre_val != rax)
4183     push(pre_val);
4184 
4185   // Calling the runtime using the regular call_VM_leaf mechanism generates
4186   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4187   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4188   //
4189   // If we care generating the pre-barrier without a frame (e.g. in the
4190   // intrinsified Reference.get() routine) then ebp might be pointing to
4191   // the caller frame and so this check will most likely fail at runtime.
4192   //
4193   // Expanding the call directly bypasses the generation of the check.
4194   // So when we do not have have a full interpreter frame on the stack
4195   // expand_call should be passed true.
4196 
4197   NOT_LP64( push(thread); )
4198 
4199   if (expand_call) {
4200     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4201     pass_arg1(this, thread);
4202     pass_arg0(this, pre_val);
4203     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4204   } else {
4205     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4206   }
4207 
4208   NOT_LP64( pop(thread); )
4209 
4210   // save the live input values
4211   if (pre_val != rax)
4212     pop(pre_val);
4213 
4214   if (obj != noreg && obj != rax)
4215     pop(obj);
4216 
4217   if(tosca_live) pop(rax);
4218 
4219   bind(done);
4220 }
4221 
4222 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4223                                            Register new_val,
4224                                            Register thread,
4225                                            Register tmp,
4226                                            Register tmp2) {
4227 #ifdef _LP64
4228   assert(thread == r15_thread, "must be");
4229 #endif // _LP64
4230 
4231   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4232                                        PtrQueue::byte_offset_of_index()));
4233   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4234                                        PtrQueue::byte_offset_of_buf()));
4235 
4236   CardTableModRefBS* ct =
4237     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4238   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4239 
4240   Label done;
4241   Label runtime;
4242 
4243   // Does store cross heap regions?
4244 
4245   movptr(tmp, store_addr);
4246   xorptr(tmp, new_val);
4247   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4248   jcc(Assembler::equal, done);
4249 
4250   // crosses regions, storing NULL?
4251 
4252   cmpptr(new_val, (int32_t) NULL_WORD);
4253   jcc(Assembler::equal, done);
4254 
4255   // storing region crossing non-NULL, is card already dirty?
4256 
4257   const Register card_addr = tmp;
4258   const Register cardtable = tmp2;
4259 
4260   movptr(card_addr, store_addr);
4261   shrptr(card_addr, CardTableModRefBS::card_shift);
4262   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4263   // a valid address and therefore is not properly handled by the relocation code.
4264   movptr(cardtable, (intptr_t)ct->byte_map_base);
4265   addptr(card_addr, cardtable);
4266 
4267   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4268   jcc(Assembler::equal, done);
4269 
4270   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4271   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4272   jcc(Assembler::equal, done);
4273 
4274 
4275   // storing a region crossing, non-NULL oop, card is clean.
4276   // dirty card and log.
4277 
4278   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4279 
4280   cmpl(queue_index, 0);
4281   jcc(Assembler::equal, runtime);
4282   subl(queue_index, wordSize);
4283   movptr(tmp2, buffer);
4284 #ifdef _LP64
4285   movslq(rscratch1, queue_index);
4286   addq(tmp2, rscratch1);
4287   movq(Address(tmp2, 0), card_addr);
4288 #else
4289   addl(tmp2, queue_index);
4290   movl(Address(tmp2, 0), card_addr);
4291 #endif
4292   jmp(done);
4293 
4294   bind(runtime);
4295   // save the live input values
4296   push(store_addr);
4297   push(new_val);
4298 #ifdef _LP64
4299   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4300 #else
4301   push(thread);
4302   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4303   pop(thread);
4304 #endif
4305   pop(new_val);
4306   pop(store_addr);
4307 
4308   bind(done);
4309 }
4310 
4311 #endif // INCLUDE_ALL_GCS
4312 //////////////////////////////////////////////////////////////////////////////////
4313 
4314 
4315 void MacroAssembler::store_check(Register obj, Address dst) {
4316   store_check(obj);
4317 }
4318 
4319 void MacroAssembler::store_check(Register obj) {
4320   // Does a store check for the oop in register obj. The content of
4321   // register obj is destroyed afterwards.
4322 
4323   BarrierSet* bs = Universe::heap()->barrier_set();
4324   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4325 
4326   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4327   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4328 
4329   shrptr(obj, CardTableModRefBS::card_shift);
4330 
4331   Address card_addr;
4332 
4333   // The calculation for byte_map_base is as follows:
4334   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4335   // So this essentially converts an address to a displacement and it will
4336   // never need to be relocated. On 64bit however the value may be too
4337   // large for a 32bit displacement.
4338   intptr_t disp = (intptr_t) ct->byte_map_base;
4339   if (is_simm32(disp)) {
4340     card_addr = Address(noreg, obj, Address::times_1, disp);
4341   } else {
4342     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4343     // displacement and done in a single instruction given favorable mapping and a
4344     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4345     // entry and that entry is not properly handled by the relocation code.
4346     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4347     Address index(noreg, obj, Address::times_1);
4348     card_addr = as_Address(ArrayAddress(cardtable, index));
4349   }
4350 
4351   int dirty = CardTableModRefBS::dirty_card_val();
4352   if (UseCondCardMark) {
4353     Label L_already_dirty;
4354     if (UseConcMarkSweepGC) {
4355       membar(Assembler::StoreLoad);
4356     }
4357     cmpb(card_addr, dirty);
4358     jcc(Assembler::equal, L_already_dirty);
4359     movb(card_addr, dirty);
4360     bind(L_already_dirty);
4361   } else {
4362     movb(card_addr, dirty);
4363   }
4364 }
4365 
4366 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4367   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4368 }
4369 
4370 // Force generation of a 4 byte immediate value even if it fits into 8bit
4371 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4372   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4373 }
4374 
4375 void MacroAssembler::subptr(Register dst, Register src) {
4376   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4377 }
4378 
4379 // C++ bool manipulation
4380 void MacroAssembler::testbool(Register dst) {
4381   if(sizeof(bool) == 1)
4382     testb(dst, 0xff);
4383   else if(sizeof(bool) == 2) {
4384     // testw implementation needed for two byte bools
4385     ShouldNotReachHere();
4386   } else if(sizeof(bool) == 4)
4387     testl(dst, dst);
4388   else
4389     // unsupported
4390     ShouldNotReachHere();
4391 }
4392 
4393 void MacroAssembler::testptr(Register dst, Register src) {
4394   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4395 }
4396 
4397 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4398 void MacroAssembler::tlab_allocate(Register obj,
4399                                    Register var_size_in_bytes,
4400                                    int con_size_in_bytes,
4401                                    Register t1,
4402                                    Register t2,
4403                                    Label& slow_case) {
4404   assert_different_registers(obj, t1, t2);
4405   assert_different_registers(obj, var_size_in_bytes, t1);
4406   Register end = t2;
4407   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4408 
4409   verify_tlab();
4410 
4411   NOT_LP64(get_thread(thread));
4412 
4413   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4414   if (var_size_in_bytes == noreg) {
4415     lea(end, Address(obj, con_size_in_bytes));
4416   } else {
4417     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4418   }
4419   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4420   jcc(Assembler::above, slow_case);
4421 
4422   // update the tlab top pointer
4423   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4424 
4425   // recover var_size_in_bytes if necessary
4426   if (var_size_in_bytes == end) {
4427     subptr(var_size_in_bytes, obj);
4428   }
4429   verify_tlab();
4430 }
4431 
4432 // Preserves rbx, and rdx.
4433 Register MacroAssembler::tlab_refill(Label& retry,
4434                                      Label& try_eden,
4435                                      Label& slow_case) {
4436   Register top = rax;
4437   Register t1  = rcx;
4438   Register t2  = rsi;
4439   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4440   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4441   Label do_refill, discard_tlab;
4442 
4443   if (!Universe::heap()->supports_inline_contig_alloc()) {
4444     // No allocation in the shared eden.
4445     jmp(slow_case);
4446   }
4447 
4448   NOT_LP64(get_thread(thread_reg));
4449 
4450   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4451   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4452 
4453   // calculate amount of free space
4454   subptr(t1, top);
4455   shrptr(t1, LogHeapWordSize);
4456 
4457   // Retain tlab and allocate object in shared space if
4458   // the amount free in the tlab is too large to discard.
4459   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4460   jcc(Assembler::lessEqual, discard_tlab);
4461 
4462   // Retain
4463   // %%% yuck as movptr...
4464   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4465   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4466   if (TLABStats) {
4467     // increment number of slow_allocations
4468     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4469   }
4470   jmp(try_eden);
4471 
4472   bind(discard_tlab);
4473   if (TLABStats) {
4474     // increment number of refills
4475     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4476     // accumulate wastage -- t1 is amount free in tlab
4477     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4478   }
4479 
4480   // if tlab is currently allocated (top or end != null) then
4481   // fill [top, end + alignment_reserve) with array object
4482   testptr(top, top);
4483   jcc(Assembler::zero, do_refill);
4484 
4485   // set up the mark word
4486   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4487   // set the length to the remaining space
4488   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4489   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4490   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4491   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4492   // set klass to intArrayKlass
4493   // dubious reloc why not an oop reloc?
4494   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4495   // store klass last.  concurrent gcs assumes klass length is valid if
4496   // klass field is not null.
4497   store_klass(top, t1);
4498 
4499   movptr(t1, top);
4500   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4501   incr_allocated_bytes(thread_reg, t1, 0);
4502 
4503   // refill the tlab with an eden allocation
4504   bind(do_refill);
4505   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4506   shlptr(t1, LogHeapWordSize);
4507   // allocate new tlab, address returned in top
4508   eden_allocate(top, t1, 0, t2, slow_case);
4509 
4510   // Check that t1 was preserved in eden_allocate.
4511 #ifdef ASSERT
4512   if (UseTLAB) {
4513     Label ok;
4514     Register tsize = rsi;
4515     assert_different_registers(tsize, thread_reg, t1);
4516     push(tsize);
4517     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4518     shlptr(tsize, LogHeapWordSize);
4519     cmpptr(t1, tsize);
4520     jcc(Assembler::equal, ok);
4521     STOP("assert(t1 != tlab size)");
4522     should_not_reach_here();
4523 
4524     bind(ok);
4525     pop(tsize);
4526   }
4527 #endif
4528   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4529   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4530   addptr(top, t1);
4531   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4532   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4533   verify_tlab();
4534   jmp(retry);
4535 
4536   return thread_reg; // for use by caller
4537 }
4538 
4539 void MacroAssembler::incr_allocated_bytes(Register thread,
4540                                           Register var_size_in_bytes,
4541                                           int con_size_in_bytes,
4542                                           Register t1) {
4543   if (!thread->is_valid()) {
4544 #ifdef _LP64
4545     thread = r15_thread;
4546 #else
4547     assert(t1->is_valid(), "need temp reg");
4548     thread = t1;
4549     get_thread(thread);
4550 #endif
4551   }
4552 
4553 #ifdef _LP64
4554   if (var_size_in_bytes->is_valid()) {
4555     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4556   } else {
4557     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4558   }
4559 #else
4560   if (var_size_in_bytes->is_valid()) {
4561     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4562   } else {
4563     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4564   }
4565   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4566 #endif
4567 }
4568 
4569 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4570   pusha();
4571 
4572   // if we are coming from c1, xmm registers may be live
4573   int off = 0;
4574   if (UseSSE == 1)  {
4575     subptr(rsp, sizeof(jdouble)*8);
4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4578     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4579     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4580     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4581     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4582     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4583     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4584   } else if (UseSSE >= 2)  {
4585     if (UseAVX > 2) {
4586       movl(rbx, 0xffff);
4587 #ifdef _LP64
4588       kmovql(k1, rbx);
4589 #else
4590       kmovdl(k1, rbx);
4591 #endif
4592     }
4593 #ifdef COMPILER2
4594     if (MaxVectorSize > 16) {
4595       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4596       // Save upper half of YMM registes
4597       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4598       vextractf128h(Address(rsp,  0),xmm0);
4599       vextractf128h(Address(rsp, 16),xmm1);
4600       vextractf128h(Address(rsp, 32),xmm2);
4601       vextractf128h(Address(rsp, 48),xmm3);
4602       vextractf128h(Address(rsp, 64),xmm4);
4603       vextractf128h(Address(rsp, 80),xmm5);
4604       vextractf128h(Address(rsp, 96),xmm6);
4605       vextractf128h(Address(rsp,112),xmm7);
4606 #ifdef _LP64
4607       vextractf128h(Address(rsp,128),xmm8);
4608       vextractf128h(Address(rsp,144),xmm9);
4609       vextractf128h(Address(rsp,160),xmm10);
4610       vextractf128h(Address(rsp,176),xmm11);
4611       vextractf128h(Address(rsp,192),xmm12);
4612       vextractf128h(Address(rsp,208),xmm13);
4613       vextractf128h(Address(rsp,224),xmm14);
4614       vextractf128h(Address(rsp,240),xmm15);
4615 #endif
4616     }
4617 #endif
4618     // Save whole 128bit (16 bytes) XMM regiters
4619     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4620     movdqu(Address(rsp,off++*16),xmm0);
4621     movdqu(Address(rsp,off++*16),xmm1);
4622     movdqu(Address(rsp,off++*16),xmm2);
4623     movdqu(Address(rsp,off++*16),xmm3);
4624     movdqu(Address(rsp,off++*16),xmm4);
4625     movdqu(Address(rsp,off++*16),xmm5);
4626     movdqu(Address(rsp,off++*16),xmm6);
4627     movdqu(Address(rsp,off++*16),xmm7);
4628 #ifdef _LP64
4629     movdqu(Address(rsp,off++*16),xmm8);
4630     movdqu(Address(rsp,off++*16),xmm9);
4631     movdqu(Address(rsp,off++*16),xmm10);
4632     movdqu(Address(rsp,off++*16),xmm11);
4633     movdqu(Address(rsp,off++*16),xmm12);
4634     movdqu(Address(rsp,off++*16),xmm13);
4635     movdqu(Address(rsp,off++*16),xmm14);
4636     movdqu(Address(rsp,off++*16),xmm15);
4637 #endif
4638   }
4639 
4640   // Preserve registers across runtime call
4641   int incoming_argument_and_return_value_offset = -1;
4642   if (num_fpu_regs_in_use > 1) {
4643     // Must preserve all other FPU regs (could alternatively convert
4644     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4645     // FPU state, but can not trust C compiler)
4646     NEEDS_CLEANUP;
4647     // NOTE that in this case we also push the incoming argument(s) to
4648     // the stack and restore it later; we also use this stack slot to
4649     // hold the return value from dsin, dcos etc.
4650     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4651       subptr(rsp, sizeof(jdouble));
4652       fstp_d(Address(rsp, 0));
4653     }
4654     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4655     for (int i = nb_args-1; i >= 0; i--) {
4656       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4657     }
4658   }
4659 
4660   subptr(rsp, nb_args*sizeof(jdouble));
4661   for (int i = 0; i < nb_args; i++) {
4662     fstp_d(Address(rsp, i*sizeof(jdouble)));
4663   }
4664 
4665 #ifdef _LP64
4666   if (nb_args > 0) {
4667     movdbl(xmm0, Address(rsp, 0));
4668   }
4669   if (nb_args > 1) {
4670     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4671   }
4672   assert(nb_args <= 2, "unsupported number of args");
4673 #endif // _LP64
4674 
4675   // NOTE: we must not use call_VM_leaf here because that requires a
4676   // complete interpreter frame in debug mode -- same bug as 4387334
4677   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4678   // do proper 64bit abi
4679 
4680   NEEDS_CLEANUP;
4681   // Need to add stack banging before this runtime call if it needs to
4682   // be taken; however, there is no generic stack banging routine at
4683   // the MacroAssembler level
4684 
4685   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4686 
4687 #ifdef _LP64
4688   movsd(Address(rsp, 0), xmm0);
4689   fld_d(Address(rsp, 0));
4690 #endif // _LP64
4691   addptr(rsp, sizeof(jdouble) * nb_args);
4692   if (num_fpu_regs_in_use > 1) {
4693     // Must save return value to stack and then restore entire FPU
4694     // stack except incoming arguments
4695     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4696     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4697       fld_d(Address(rsp, 0));
4698       addptr(rsp, sizeof(jdouble));
4699     }
4700     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4701     addptr(rsp, sizeof(jdouble) * nb_args);
4702   }
4703 
4704   off = 0;
4705   if (UseSSE == 1)  {
4706     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4707     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4708     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4709     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4710     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4711     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4712     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4713     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4714     addptr(rsp, sizeof(jdouble)*8);
4715   } else if (UseSSE >= 2)  {
4716     // Restore whole 128bit (16 bytes) XMM regiters
4717     movdqu(xmm0, Address(rsp,off++*16));
4718     movdqu(xmm1, Address(rsp,off++*16));
4719     movdqu(xmm2, Address(rsp,off++*16));
4720     movdqu(xmm3, Address(rsp,off++*16));
4721     movdqu(xmm4, Address(rsp,off++*16));
4722     movdqu(xmm5, Address(rsp,off++*16));
4723     movdqu(xmm6, Address(rsp,off++*16));
4724     movdqu(xmm7, Address(rsp,off++*16));
4725 #ifdef _LP64
4726     movdqu(xmm8, Address(rsp,off++*16));
4727     movdqu(xmm9, Address(rsp,off++*16));
4728     movdqu(xmm10, Address(rsp,off++*16));
4729     movdqu(xmm11, Address(rsp,off++*16));
4730     movdqu(xmm12, Address(rsp,off++*16));
4731     movdqu(xmm13, Address(rsp,off++*16));
4732     movdqu(xmm14, Address(rsp,off++*16));
4733     movdqu(xmm15, Address(rsp,off++*16));
4734 #endif
4735     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4736 #ifdef COMPILER2
4737     if (MaxVectorSize > 16) {
4738       // Restore upper half of YMM registes.
4739       vinsertf128h(xmm0, Address(rsp,  0));
4740       vinsertf128h(xmm1, Address(rsp, 16));
4741       vinsertf128h(xmm2, Address(rsp, 32));
4742       vinsertf128h(xmm3, Address(rsp, 48));
4743       vinsertf128h(xmm4, Address(rsp, 64));
4744       vinsertf128h(xmm5, Address(rsp, 80));
4745       vinsertf128h(xmm6, Address(rsp, 96));
4746       vinsertf128h(xmm7, Address(rsp,112));
4747 #ifdef _LP64
4748       vinsertf128h(xmm8, Address(rsp,128));
4749       vinsertf128h(xmm9, Address(rsp,144));
4750       vinsertf128h(xmm10, Address(rsp,160));
4751       vinsertf128h(xmm11, Address(rsp,176));
4752       vinsertf128h(xmm12, Address(rsp,192));
4753       vinsertf128h(xmm13, Address(rsp,208));
4754       vinsertf128h(xmm14, Address(rsp,224));
4755       vinsertf128h(xmm15, Address(rsp,240));
4756 #endif
4757       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4758     }
4759 #endif
4760   }
4761   popa();
4762 }
4763 
4764 static const double     pi_4 =  0.7853981633974483;
4765 
4766 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4767   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4768   // was attempted in this code; unfortunately it appears that the
4769   // switch to 80-bit precision and back causes this to be
4770   // unprofitable compared with simply performing a runtime call if
4771   // the argument is out of the (-pi/4, pi/4) range.
4772 
4773   Register tmp = noreg;
4774   if (!VM_Version::supports_cmov()) {
4775     // fcmp needs a temporary so preserve rbx,
4776     tmp = rbx;
4777     push(tmp);
4778   }
4779 
4780   Label slow_case, done;
4781 
4782   ExternalAddress pi4_adr = (address)&pi_4;
4783   if (reachable(pi4_adr)) {
4784     // x ?<= pi/4
4785     fld_d(pi4_adr);
4786     fld_s(1);                // Stack:  X  PI/4  X
4787     fabs();                  // Stack: |X| PI/4  X
4788     fcmp(tmp);
4789     jcc(Assembler::above, slow_case);
4790 
4791     // fastest case: -pi/4 <= x <= pi/4
4792     switch(trig) {
4793     case 's':
4794       fsin();
4795       break;
4796     case 'c':
4797       fcos();
4798       break;
4799     case 't':
4800       ftan();
4801       break;
4802     default:
4803       assert(false, "bad intrinsic");
4804       break;
4805     }
4806     jmp(done);
4807   }
4808 
4809   // slow case: runtime call
4810   bind(slow_case);
4811 
4812   switch(trig) {
4813   case 's':
4814     {
4815       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4816     }
4817     break;
4818   case 'c':
4819     {
4820       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4821     }
4822     break;
4823   case 't':
4824     {
4825       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4826     }
4827     break;
4828   default:
4829     assert(false, "bad intrinsic");
4830     break;
4831   }
4832 
4833   // Come here with result in F-TOS
4834   bind(done);
4835 
4836   if (tmp != noreg) {
4837     pop(tmp);
4838   }
4839 }
4840 
4841 
4842 // Look up the method for a megamorphic invokeinterface call.
4843 // The target method is determined by <intf_klass, itable_index>.
4844 // The receiver klass is in recv_klass.
4845 // On success, the result will be in method_result, and execution falls through.
4846 // On failure, execution transfers to the given label.
4847 void MacroAssembler::lookup_interface_method(Register recv_klass,
4848                                              Register intf_klass,
4849                                              RegisterOrConstant itable_index,
4850                                              Register method_result,
4851                                              Register scan_temp,
4852                                              Label& L_no_such_interface) {
4853   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4854   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4855          "caller must use same register for non-constant itable index as for method");
4856 
4857   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4858   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4859   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4860   int scan_step   = itableOffsetEntry::size() * wordSize;
4861   int vte_size    = vtableEntry::size() * wordSize;
4862   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4863   assert(vte_size == wordSize, "else adjust times_vte_scale");
4864 
4865   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4866 
4867   // %%% Could store the aligned, prescaled offset in the klassoop.
4868   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4869   if (HeapWordsPerLong > 1) {
4870     // Round up to align_object_offset boundary
4871     // see code for InstanceKlass::start_of_itable!
4872     round_to(scan_temp, BytesPerLong);
4873   }
4874 
4875   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4876   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4877   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4878 
4879   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4880   //   if (scan->interface() == intf) {
4881   //     result = (klass + scan->offset() + itable_index);
4882   //   }
4883   // }
4884   Label search, found_method;
4885 
4886   for (int peel = 1; peel >= 0; peel--) {
4887     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4888     cmpptr(intf_klass, method_result);
4889 
4890     if (peel) {
4891       jccb(Assembler::equal, found_method);
4892     } else {
4893       jccb(Assembler::notEqual, search);
4894       // (invert the test to fall through to found_method...)
4895     }
4896 
4897     if (!peel)  break;
4898 
4899     bind(search);
4900 
4901     // Check that the previous entry is non-null.  A null entry means that
4902     // the receiver class doesn't implement the interface, and wasn't the
4903     // same as when the caller was compiled.
4904     testptr(method_result, method_result);
4905     jcc(Assembler::zero, L_no_such_interface);
4906     addptr(scan_temp, scan_step);
4907   }
4908 
4909   bind(found_method);
4910 
4911   // Got a hit.
4912   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4913   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4914 }
4915 
4916 
4917 // virtual method calling
4918 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4919                                            RegisterOrConstant vtable_index,
4920                                            Register method_result) {
4921   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4922   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4923   Address vtable_entry_addr(recv_klass,
4924                             vtable_index, Address::times_ptr,
4925                             base + vtableEntry::method_offset_in_bytes());
4926   movptr(method_result, vtable_entry_addr);
4927 }
4928 
4929 
4930 void MacroAssembler::check_klass_subtype(Register sub_klass,
4931                            Register super_klass,
4932                            Register temp_reg,
4933                            Label& L_success) {
4934   Label L_failure;
4935   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4936   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4937   bind(L_failure);
4938 }
4939 
4940 
4941 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4942                                                    Register super_klass,
4943                                                    Register temp_reg,
4944                                                    Label* L_success,
4945                                                    Label* L_failure,
4946                                                    Label* L_slow_path,
4947                                         RegisterOrConstant super_check_offset) {
4948   assert_different_registers(sub_klass, super_klass, temp_reg);
4949   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4950   if (super_check_offset.is_register()) {
4951     assert_different_registers(sub_klass, super_klass,
4952                                super_check_offset.as_register());
4953   } else if (must_load_sco) {
4954     assert(temp_reg != noreg, "supply either a temp or a register offset");
4955   }
4956 
4957   Label L_fallthrough;
4958   int label_nulls = 0;
4959   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4960   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4961   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4962   assert(label_nulls <= 1, "at most one NULL in the batch");
4963 
4964   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4965   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4966   Address super_check_offset_addr(super_klass, sco_offset);
4967 
4968   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4969   // range of a jccb.  If this routine grows larger, reconsider at
4970   // least some of these.
4971 #define local_jcc(assembler_cond, label)                                \
4972   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4973   else                             jcc( assembler_cond, label) /*omit semi*/
4974 
4975   // Hacked jmp, which may only be used just before L_fallthrough.
4976 #define final_jmp(label)                                                \
4977   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4978   else                            jmp(label)                /*omit semi*/
4979 
4980   // If the pointers are equal, we are done (e.g., String[] elements).
4981   // This self-check enables sharing of secondary supertype arrays among
4982   // non-primary types such as array-of-interface.  Otherwise, each such
4983   // type would need its own customized SSA.
4984   // We move this check to the front of the fast path because many
4985   // type checks are in fact trivially successful in this manner,
4986   // so we get a nicely predicted branch right at the start of the check.
4987   cmpptr(sub_klass, super_klass);
4988   local_jcc(Assembler::equal, *L_success);
4989 
4990   // Check the supertype display:
4991   if (must_load_sco) {
4992     // Positive movl does right thing on LP64.
4993     movl(temp_reg, super_check_offset_addr);
4994     super_check_offset = RegisterOrConstant(temp_reg);
4995   }
4996   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4997   cmpptr(super_klass, super_check_addr); // load displayed supertype
4998 
4999   // This check has worked decisively for primary supers.
5000   // Secondary supers are sought in the super_cache ('super_cache_addr').
5001   // (Secondary supers are interfaces and very deeply nested subtypes.)
5002   // This works in the same check above because of a tricky aliasing
5003   // between the super_cache and the primary super display elements.
5004   // (The 'super_check_addr' can address either, as the case requires.)
5005   // Note that the cache is updated below if it does not help us find
5006   // what we need immediately.
5007   // So if it was a primary super, we can just fail immediately.
5008   // Otherwise, it's the slow path for us (no success at this point).
5009 
5010   if (super_check_offset.is_register()) {
5011     local_jcc(Assembler::equal, *L_success);
5012     cmpl(super_check_offset.as_register(), sc_offset);
5013     if (L_failure == &L_fallthrough) {
5014       local_jcc(Assembler::equal, *L_slow_path);
5015     } else {
5016       local_jcc(Assembler::notEqual, *L_failure);
5017       final_jmp(*L_slow_path);
5018     }
5019   } else if (super_check_offset.as_constant() == sc_offset) {
5020     // Need a slow path; fast failure is impossible.
5021     if (L_slow_path == &L_fallthrough) {
5022       local_jcc(Assembler::equal, *L_success);
5023     } else {
5024       local_jcc(Assembler::notEqual, *L_slow_path);
5025       final_jmp(*L_success);
5026     }
5027   } else {
5028     // No slow path; it's a fast decision.
5029     if (L_failure == &L_fallthrough) {
5030       local_jcc(Assembler::equal, *L_success);
5031     } else {
5032       local_jcc(Assembler::notEqual, *L_failure);
5033       final_jmp(*L_success);
5034     }
5035   }
5036 
5037   bind(L_fallthrough);
5038 
5039 #undef local_jcc
5040 #undef final_jmp
5041 }
5042 
5043 
5044 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5045                                                    Register super_klass,
5046                                                    Register temp_reg,
5047                                                    Register temp2_reg,
5048                                                    Label* L_success,
5049                                                    Label* L_failure,
5050                                                    bool set_cond_codes) {
5051   assert_different_registers(sub_klass, super_klass, temp_reg);
5052   if (temp2_reg != noreg)
5053     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5054 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5055 
5056   Label L_fallthrough;
5057   int label_nulls = 0;
5058   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5059   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5060   assert(label_nulls <= 1, "at most one NULL in the batch");
5061 
5062   // a couple of useful fields in sub_klass:
5063   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5064   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5065   Address secondary_supers_addr(sub_klass, ss_offset);
5066   Address super_cache_addr(     sub_klass, sc_offset);
5067 
5068   // Do a linear scan of the secondary super-klass chain.
5069   // This code is rarely used, so simplicity is a virtue here.
5070   // The repne_scan instruction uses fixed registers, which we must spill.
5071   // Don't worry too much about pre-existing connections with the input regs.
5072 
5073   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5074   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5075 
5076   // Get super_klass value into rax (even if it was in rdi or rcx).
5077   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5078   if (super_klass != rax || UseCompressedOops) {
5079     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5080     mov(rax, super_klass);
5081   }
5082   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5083   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5084 
5085 #ifndef PRODUCT
5086   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5087   ExternalAddress pst_counter_addr((address) pst_counter);
5088   NOT_LP64(  incrementl(pst_counter_addr) );
5089   LP64_ONLY( lea(rcx, pst_counter_addr) );
5090   LP64_ONLY( incrementl(Address(rcx, 0)) );
5091 #endif //PRODUCT
5092 
5093   // We will consult the secondary-super array.
5094   movptr(rdi, secondary_supers_addr);
5095   // Load the array length.  (Positive movl does right thing on LP64.)
5096   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5097   // Skip to start of data.
5098   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5099 
5100   // Scan RCX words at [RDI] for an occurrence of RAX.
5101   // Set NZ/Z based on last compare.
5102   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5103   // not change flags (only scas instruction which is repeated sets flags).
5104   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5105 
5106     testptr(rax,rax); // Set Z = 0
5107     repne_scan();
5108 
5109   // Unspill the temp. registers:
5110   if (pushed_rdi)  pop(rdi);
5111   if (pushed_rcx)  pop(rcx);
5112   if (pushed_rax)  pop(rax);
5113 
5114   if (set_cond_codes) {
5115     // Special hack for the AD files:  rdi is guaranteed non-zero.
5116     assert(!pushed_rdi, "rdi must be left non-NULL");
5117     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5118   }
5119 
5120   if (L_failure == &L_fallthrough)
5121         jccb(Assembler::notEqual, *L_failure);
5122   else  jcc(Assembler::notEqual, *L_failure);
5123 
5124   // Success.  Cache the super we found and proceed in triumph.
5125   movptr(super_cache_addr, super_klass);
5126 
5127   if (L_success != &L_fallthrough) {
5128     jmp(*L_success);
5129   }
5130 
5131 #undef IS_A_TEMP
5132 
5133   bind(L_fallthrough);
5134 }
5135 
5136 
5137 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5138   if (VM_Version::supports_cmov()) {
5139     cmovl(cc, dst, src);
5140   } else {
5141     Label L;
5142     jccb(negate_condition(cc), L);
5143     movl(dst, src);
5144     bind(L);
5145   }
5146 }
5147 
5148 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5149   if (VM_Version::supports_cmov()) {
5150     cmovl(cc, dst, src);
5151   } else {
5152     Label L;
5153     jccb(negate_condition(cc), L);
5154     movl(dst, src);
5155     bind(L);
5156   }
5157 }
5158 
5159 void MacroAssembler::verify_oop(Register reg, const char* s) {
5160   if (!VerifyOops) return;
5161 
5162   // Pass register number to verify_oop_subroutine
5163   const char* b = NULL;
5164   {
5165     ResourceMark rm;
5166     stringStream ss;
5167     ss.print("verify_oop: %s: %s", reg->name(), s);
5168     b = code_string(ss.as_string());
5169   }
5170   BLOCK_COMMENT("verify_oop {");
5171 #ifdef _LP64
5172   push(rscratch1);                    // save r10, trashed by movptr()
5173 #endif
5174   push(rax);                          // save rax,
5175   push(reg);                          // pass register argument
5176   ExternalAddress buffer((address) b);
5177   // avoid using pushptr, as it modifies scratch registers
5178   // and our contract is not to modify anything
5179   movptr(rax, buffer.addr());
5180   push(rax);
5181   // call indirectly to solve generation ordering problem
5182   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5183   call(rax);
5184   // Caller pops the arguments (oop, message) and restores rax, r10
5185   BLOCK_COMMENT("} verify_oop");
5186 }
5187 
5188 
5189 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5190                                                       Register tmp,
5191                                                       int offset) {
5192   intptr_t value = *delayed_value_addr;
5193   if (value != 0)
5194     return RegisterOrConstant(value + offset);
5195 
5196   // load indirectly to solve generation ordering problem
5197   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5198 
5199 #ifdef ASSERT
5200   { Label L;
5201     testptr(tmp, tmp);
5202     if (WizardMode) {
5203       const char* buf = NULL;
5204       {
5205         ResourceMark rm;
5206         stringStream ss;
5207         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
5208         buf = code_string(ss.as_string());
5209       }
5210       jcc(Assembler::notZero, L);
5211       STOP(buf);
5212     } else {
5213       jccb(Assembler::notZero, L);
5214       hlt();
5215     }
5216     bind(L);
5217   }
5218 #endif
5219 
5220   if (offset != 0)
5221     addptr(tmp, offset);
5222 
5223   return RegisterOrConstant(tmp);
5224 }
5225 
5226 
5227 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5228                                          int extra_slot_offset) {
5229   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5230   int stackElementSize = Interpreter::stackElementSize;
5231   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5232 #ifdef ASSERT
5233   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5234   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5235 #endif
5236   Register             scale_reg    = noreg;
5237   Address::ScaleFactor scale_factor = Address::no_scale;
5238   if (arg_slot.is_constant()) {
5239     offset += arg_slot.as_constant() * stackElementSize;
5240   } else {
5241     scale_reg    = arg_slot.as_register();
5242     scale_factor = Address::times(stackElementSize);
5243   }
5244   offset += wordSize;           // return PC is on stack
5245   return Address(rsp, scale_reg, scale_factor, offset);
5246 }
5247 
5248 
5249 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5250   if (!VerifyOops) return;
5251 
5252   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5253   // Pass register number to verify_oop_subroutine
5254   const char* b = NULL;
5255   {
5256     ResourceMark rm;
5257     stringStream ss;
5258     ss.print("verify_oop_addr: %s", s);
5259     b = code_string(ss.as_string());
5260   }
5261 #ifdef _LP64
5262   push(rscratch1);                    // save r10, trashed by movptr()
5263 #endif
5264   push(rax);                          // save rax,
5265   // addr may contain rsp so we will have to adjust it based on the push
5266   // we just did (and on 64 bit we do two pushes)
5267   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5268   // stores rax into addr which is backwards of what was intended.
5269   if (addr.uses(rsp)) {
5270     lea(rax, addr);
5271     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5272   } else {
5273     pushptr(addr);
5274   }
5275 
5276   ExternalAddress buffer((address) b);
5277   // pass msg argument
5278   // avoid using pushptr, as it modifies scratch registers
5279   // and our contract is not to modify anything
5280   movptr(rax, buffer.addr());
5281   push(rax);
5282 
5283   // call indirectly to solve generation ordering problem
5284   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5285   call(rax);
5286   // Caller pops the arguments (addr, message) and restores rax, r10.
5287 }
5288 
5289 void MacroAssembler::verify_tlab() {
5290 #ifdef ASSERT
5291   if (UseTLAB && VerifyOops) {
5292     Label next, ok;
5293     Register t1 = rsi;
5294     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5295 
5296     push(t1);
5297     NOT_LP64(push(thread_reg));
5298     NOT_LP64(get_thread(thread_reg));
5299 
5300     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5301     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5302     jcc(Assembler::aboveEqual, next);
5303     STOP("assert(top >= start)");
5304     should_not_reach_here();
5305 
5306     bind(next);
5307     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5308     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5309     jcc(Assembler::aboveEqual, ok);
5310     STOP("assert(top <= end)");
5311     should_not_reach_here();
5312 
5313     bind(ok);
5314     NOT_LP64(pop(thread_reg));
5315     pop(t1);
5316   }
5317 #endif
5318 }
5319 
5320 class ControlWord {
5321  public:
5322   int32_t _value;
5323 
5324   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5325   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5326   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5327   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5328   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5329   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5330   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5331   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5332 
5333   void print() const {
5334     // rounding control
5335     const char* rc;
5336     switch (rounding_control()) {
5337       case 0: rc = "round near"; break;
5338       case 1: rc = "round down"; break;
5339       case 2: rc = "round up  "; break;
5340       case 3: rc = "chop      "; break;
5341     };
5342     // precision control
5343     const char* pc;
5344     switch (precision_control()) {
5345       case 0: pc = "24 bits "; break;
5346       case 1: pc = "reserved"; break;
5347       case 2: pc = "53 bits "; break;
5348       case 3: pc = "64 bits "; break;
5349     };
5350     // flags
5351     char f[9];
5352     f[0] = ' ';
5353     f[1] = ' ';
5354     f[2] = (precision   ()) ? 'P' : 'p';
5355     f[3] = (underflow   ()) ? 'U' : 'u';
5356     f[4] = (overflow    ()) ? 'O' : 'o';
5357     f[5] = (zero_divide ()) ? 'Z' : 'z';
5358     f[6] = (denormalized()) ? 'D' : 'd';
5359     f[7] = (invalid     ()) ? 'I' : 'i';
5360     f[8] = '\x0';
5361     // output
5362     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5363   }
5364 
5365 };
5366 
5367 class StatusWord {
5368  public:
5369   int32_t _value;
5370 
5371   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5372   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5373   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5374   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5375   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5376   int  top() const                     { return  (_value >> 11) & 7      ; }
5377   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5378   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5379   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5380   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5381   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5382   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5383   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5384   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5385 
5386   void print() const {
5387     // condition codes
5388     char c[5];
5389     c[0] = (C3()) ? '3' : '-';
5390     c[1] = (C2()) ? '2' : '-';
5391     c[2] = (C1()) ? '1' : '-';
5392     c[3] = (C0()) ? '0' : '-';
5393     c[4] = '\x0';
5394     // flags
5395     char f[9];
5396     f[0] = (error_status()) ? 'E' : '-';
5397     f[1] = (stack_fault ()) ? 'S' : '-';
5398     f[2] = (precision   ()) ? 'P' : '-';
5399     f[3] = (underflow   ()) ? 'U' : '-';
5400     f[4] = (overflow    ()) ? 'O' : '-';
5401     f[5] = (zero_divide ()) ? 'Z' : '-';
5402     f[6] = (denormalized()) ? 'D' : '-';
5403     f[7] = (invalid     ()) ? 'I' : '-';
5404     f[8] = '\x0';
5405     // output
5406     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5407   }
5408 
5409 };
5410 
5411 class TagWord {
5412  public:
5413   int32_t _value;
5414 
5415   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5416 
5417   void print() const {
5418     printf("%04x", _value & 0xFFFF);
5419   }
5420 
5421 };
5422 
5423 class FPU_Register {
5424  public:
5425   int32_t _m0;
5426   int32_t _m1;
5427   int16_t _ex;
5428 
5429   bool is_indefinite() const           {
5430     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5431   }
5432 
5433   void print() const {
5434     char  sign = (_ex < 0) ? '-' : '+';
5435     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5436     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5437   };
5438 
5439 };
5440 
5441 class FPU_State {
5442  public:
5443   enum {
5444     register_size       = 10,
5445     number_of_registers =  8,
5446     register_mask       =  7
5447   };
5448 
5449   ControlWord  _control_word;
5450   StatusWord   _status_word;
5451   TagWord      _tag_word;
5452   int32_t      _error_offset;
5453   int32_t      _error_selector;
5454   int32_t      _data_offset;
5455   int32_t      _data_selector;
5456   int8_t       _register[register_size * number_of_registers];
5457 
5458   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5459   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5460 
5461   const char* tag_as_string(int tag) const {
5462     switch (tag) {
5463       case 0: return "valid";
5464       case 1: return "zero";
5465       case 2: return "special";
5466       case 3: return "empty";
5467     }
5468     ShouldNotReachHere();
5469     return NULL;
5470   }
5471 
5472   void print() const {
5473     // print computation registers
5474     { int t = _status_word.top();
5475       for (int i = 0; i < number_of_registers; i++) {
5476         int j = (i - t) & register_mask;
5477         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5478         st(j)->print();
5479         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5480       }
5481     }
5482     printf("\n");
5483     // print control registers
5484     printf("ctrl = "); _control_word.print(); printf("\n");
5485     printf("stat = "); _status_word .print(); printf("\n");
5486     printf("tags = "); _tag_word    .print(); printf("\n");
5487   }
5488 
5489 };
5490 
5491 class Flag_Register {
5492  public:
5493   int32_t _value;
5494 
5495   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5496   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5497   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5498   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5499   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5500   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5501   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5502 
5503   void print() const {
5504     // flags
5505     char f[8];
5506     f[0] = (overflow       ()) ? 'O' : '-';
5507     f[1] = (direction      ()) ? 'D' : '-';
5508     f[2] = (sign           ()) ? 'S' : '-';
5509     f[3] = (zero           ()) ? 'Z' : '-';
5510     f[4] = (auxiliary_carry()) ? 'A' : '-';
5511     f[5] = (parity         ()) ? 'P' : '-';
5512     f[6] = (carry          ()) ? 'C' : '-';
5513     f[7] = '\x0';
5514     // output
5515     printf("%08x  flags = %s", _value, f);
5516   }
5517 
5518 };
5519 
5520 class IU_Register {
5521  public:
5522   int32_t _value;
5523 
5524   void print() const {
5525     printf("%08x  %11d", _value, _value);
5526   }
5527 
5528 };
5529 
5530 class IU_State {
5531  public:
5532   Flag_Register _eflags;
5533   IU_Register   _rdi;
5534   IU_Register   _rsi;
5535   IU_Register   _rbp;
5536   IU_Register   _rsp;
5537   IU_Register   _rbx;
5538   IU_Register   _rdx;
5539   IU_Register   _rcx;
5540   IU_Register   _rax;
5541 
5542   void print() const {
5543     // computation registers
5544     printf("rax,  = "); _rax.print(); printf("\n");
5545     printf("rbx,  = "); _rbx.print(); printf("\n");
5546     printf("rcx  = "); _rcx.print(); printf("\n");
5547     printf("rdx  = "); _rdx.print(); printf("\n");
5548     printf("rdi  = "); _rdi.print(); printf("\n");
5549     printf("rsi  = "); _rsi.print(); printf("\n");
5550     printf("rbp,  = "); _rbp.print(); printf("\n");
5551     printf("rsp  = "); _rsp.print(); printf("\n");
5552     printf("\n");
5553     // control registers
5554     printf("flgs = "); _eflags.print(); printf("\n");
5555   }
5556 };
5557 
5558 
5559 class CPU_State {
5560  public:
5561   FPU_State _fpu_state;
5562   IU_State  _iu_state;
5563 
5564   void print() const {
5565     printf("--------------------------------------------------\n");
5566     _iu_state .print();
5567     printf("\n");
5568     _fpu_state.print();
5569     printf("--------------------------------------------------\n");
5570   }
5571 
5572 };
5573 
5574 
5575 static void _print_CPU_state(CPU_State* state) {
5576   state->print();
5577 };
5578 
5579 
5580 void MacroAssembler::print_CPU_state() {
5581   push_CPU_state();
5582   push(rsp);                // pass CPU state
5583   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5584   addptr(rsp, wordSize);       // discard argument
5585   pop_CPU_state();
5586 }
5587 
5588 
5589 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5590   static int counter = 0;
5591   FPU_State* fs = &state->_fpu_state;
5592   counter++;
5593   // For leaf calls, only verify that the top few elements remain empty.
5594   // We only need 1 empty at the top for C2 code.
5595   if( stack_depth < 0 ) {
5596     if( fs->tag_for_st(7) != 3 ) {
5597       printf("FPR7 not empty\n");
5598       state->print();
5599       assert(false, "error");
5600       return false;
5601     }
5602     return true;                // All other stack states do not matter
5603   }
5604 
5605   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5606          "bad FPU control word");
5607 
5608   // compute stack depth
5609   int i = 0;
5610   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5611   int d = i;
5612   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5613   // verify findings
5614   if (i != FPU_State::number_of_registers) {
5615     // stack not contiguous
5616     printf("%s: stack not contiguous at ST%d\n", s, i);
5617     state->print();
5618     assert(false, "error");
5619     return false;
5620   }
5621   // check if computed stack depth corresponds to expected stack depth
5622   if (stack_depth < 0) {
5623     // expected stack depth is -stack_depth or less
5624     if (d > -stack_depth) {
5625       // too many elements on the stack
5626       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5627       state->print();
5628       assert(false, "error");
5629       return false;
5630     }
5631   } else {
5632     // expected stack depth is stack_depth
5633     if (d != stack_depth) {
5634       // wrong stack depth
5635       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5636       state->print();
5637       assert(false, "error");
5638       return false;
5639     }
5640   }
5641   // everything is cool
5642   return true;
5643 }
5644 
5645 
5646 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5647   if (!VerifyFPU) return;
5648   push_CPU_state();
5649   push(rsp);                // pass CPU state
5650   ExternalAddress msg((address) s);
5651   // pass message string s
5652   pushptr(msg.addr());
5653   push(stack_depth);        // pass stack depth
5654   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5655   addptr(rsp, 3 * wordSize);   // discard arguments
5656   // check for error
5657   { Label L;
5658     testl(rax, rax);
5659     jcc(Assembler::notZero, L);
5660     int3();                  // break if error condition
5661     bind(L);
5662   }
5663   pop_CPU_state();
5664 }
5665 
5666 void MacroAssembler::restore_cpu_control_state_after_jni() {
5667   // Either restore the MXCSR register after returning from the JNI Call
5668   // or verify that it wasn't changed (with -Xcheck:jni flag).
5669   if (VM_Version::supports_sse()) {
5670     if (RestoreMXCSROnJNICalls) {
5671       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5672     } else if (CheckJNICalls) {
5673       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5674     }
5675   }
5676   if (VM_Version::supports_avx()) {
5677     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5678     vzeroupper();
5679   }
5680 
5681 #ifndef _LP64
5682   // Either restore the x87 floating pointer control word after returning
5683   // from the JNI call or verify that it wasn't changed.
5684   if (CheckJNICalls) {
5685     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5686   }
5687 #endif // _LP64
5688 }
5689 
5690 
5691 void MacroAssembler::load_klass(Register dst, Register src) {
5692 #ifdef _LP64
5693   if (UseCompressedClassPointers) {
5694     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5695     decode_klass_not_null(dst);
5696   } else
5697 #endif
5698     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5699 }
5700 
5701 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5702   load_klass(dst, src);
5703   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5704 }
5705 
5706 void MacroAssembler::store_klass(Register dst, Register src) {
5707 #ifdef _LP64
5708   if (UseCompressedClassPointers) {
5709     encode_klass_not_null(src);
5710     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5711   } else
5712 #endif
5713     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5714 }
5715 
5716 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5717 #ifdef _LP64
5718   // FIXME: Must change all places where we try to load the klass.
5719   if (UseCompressedOops) {
5720     movl(dst, src);
5721     decode_heap_oop(dst);
5722   } else
5723 #endif
5724     movptr(dst, src);
5725 }
5726 
5727 // Doesn't do verfication, generates fixed size code
5728 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5729 #ifdef _LP64
5730   if (UseCompressedOops) {
5731     movl(dst, src);
5732     decode_heap_oop_not_null(dst);
5733   } else
5734 #endif
5735     movptr(dst, src);
5736 }
5737 
5738 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5739 #ifdef _LP64
5740   if (UseCompressedOops) {
5741     assert(!dst.uses(src), "not enough registers");
5742     encode_heap_oop(src);
5743     movl(dst, src);
5744   } else
5745 #endif
5746     movptr(dst, src);
5747 }
5748 
5749 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5750   assert_different_registers(src1, tmp);
5751 #ifdef _LP64
5752   if (UseCompressedOops) {
5753     bool did_push = false;
5754     if (tmp == noreg) {
5755       tmp = rax;
5756       push(tmp);
5757       did_push = true;
5758       assert(!src2.uses(rsp), "can't push");
5759     }
5760     load_heap_oop(tmp, src2);
5761     cmpptr(src1, tmp);
5762     if (did_push)  pop(tmp);
5763   } else
5764 #endif
5765     cmpptr(src1, src2);
5766 }
5767 
5768 // Used for storing NULLs.
5769 void MacroAssembler::store_heap_oop_null(Address dst) {
5770 #ifdef _LP64
5771   if (UseCompressedOops) {
5772     movl(dst, (int32_t)NULL_WORD);
5773   } else {
5774     movslq(dst, (int32_t)NULL_WORD);
5775   }
5776 #else
5777   movl(dst, (int32_t)NULL_WORD);
5778 #endif
5779 }
5780 
5781 #ifdef _LP64
5782 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5783   if (UseCompressedClassPointers) {
5784     // Store to klass gap in destination
5785     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5786   }
5787 }
5788 
5789 #ifdef ASSERT
5790 void MacroAssembler::verify_heapbase(const char* msg) {
5791   assert (UseCompressedOops, "should be compressed");
5792   assert (Universe::heap() != NULL, "java heap should be initialized");
5793   if (CheckCompressedOops) {
5794     Label ok;
5795     push(rscratch1); // cmpptr trashes rscratch1
5796     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5797     jcc(Assembler::equal, ok);
5798     STOP(msg);
5799     bind(ok);
5800     pop(rscratch1);
5801   }
5802 }
5803 #endif
5804 
5805 // Algorithm must match oop.inline.hpp encode_heap_oop.
5806 void MacroAssembler::encode_heap_oop(Register r) {
5807 #ifdef ASSERT
5808   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5809 #endif
5810   verify_oop(r, "broken oop in encode_heap_oop");
5811   if (Universe::narrow_oop_base() == NULL) {
5812     if (Universe::narrow_oop_shift() != 0) {
5813       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5814       shrq(r, LogMinObjAlignmentInBytes);
5815     }
5816     return;
5817   }
5818   testq(r, r);
5819   cmovq(Assembler::equal, r, r12_heapbase);
5820   subq(r, r12_heapbase);
5821   shrq(r, LogMinObjAlignmentInBytes);
5822 }
5823 
5824 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5825 #ifdef ASSERT
5826   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5827   if (CheckCompressedOops) {
5828     Label ok;
5829     testq(r, r);
5830     jcc(Assembler::notEqual, ok);
5831     STOP("null oop passed to encode_heap_oop_not_null");
5832     bind(ok);
5833   }
5834 #endif
5835   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5836   if (Universe::narrow_oop_base() != NULL) {
5837     subq(r, r12_heapbase);
5838   }
5839   if (Universe::narrow_oop_shift() != 0) {
5840     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5841     shrq(r, LogMinObjAlignmentInBytes);
5842   }
5843 }
5844 
5845 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5846 #ifdef ASSERT
5847   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5848   if (CheckCompressedOops) {
5849     Label ok;
5850     testq(src, src);
5851     jcc(Assembler::notEqual, ok);
5852     STOP("null oop passed to encode_heap_oop_not_null2");
5853     bind(ok);
5854   }
5855 #endif
5856   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5857   if (dst != src) {
5858     movq(dst, src);
5859   }
5860   if (Universe::narrow_oop_base() != NULL) {
5861     subq(dst, r12_heapbase);
5862   }
5863   if (Universe::narrow_oop_shift() != 0) {
5864     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5865     shrq(dst, LogMinObjAlignmentInBytes);
5866   }
5867 }
5868 
5869 void  MacroAssembler::decode_heap_oop(Register r) {
5870 #ifdef ASSERT
5871   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5872 #endif
5873   if (Universe::narrow_oop_base() == NULL) {
5874     if (Universe::narrow_oop_shift() != 0) {
5875       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5876       shlq(r, LogMinObjAlignmentInBytes);
5877     }
5878   } else {
5879     Label done;
5880     shlq(r, LogMinObjAlignmentInBytes);
5881     jccb(Assembler::equal, done);
5882     addq(r, r12_heapbase);
5883     bind(done);
5884   }
5885   verify_oop(r, "broken oop in decode_heap_oop");
5886 }
5887 
5888 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5889   // Note: it will change flags
5890   assert (UseCompressedOops, "should only be used for compressed headers");
5891   assert (Universe::heap() != NULL, "java heap should be initialized");
5892   // Cannot assert, unverified entry point counts instructions (see .ad file)
5893   // vtableStubs also counts instructions in pd_code_size_limit.
5894   // Also do not verify_oop as this is called by verify_oop.
5895   if (Universe::narrow_oop_shift() != 0) {
5896     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5897     shlq(r, LogMinObjAlignmentInBytes);
5898     if (Universe::narrow_oop_base() != NULL) {
5899       addq(r, r12_heapbase);
5900     }
5901   } else {
5902     assert (Universe::narrow_oop_base() == NULL, "sanity");
5903   }
5904 }
5905 
5906 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5907   // Note: it will change flags
5908   assert (UseCompressedOops, "should only be used for compressed headers");
5909   assert (Universe::heap() != NULL, "java heap should be initialized");
5910   // Cannot assert, unverified entry point counts instructions (see .ad file)
5911   // vtableStubs also counts instructions in pd_code_size_limit.
5912   // Also do not verify_oop as this is called by verify_oop.
5913   if (Universe::narrow_oop_shift() != 0) {
5914     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5915     if (LogMinObjAlignmentInBytes == Address::times_8) {
5916       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5917     } else {
5918       if (dst != src) {
5919         movq(dst, src);
5920       }
5921       shlq(dst, LogMinObjAlignmentInBytes);
5922       if (Universe::narrow_oop_base() != NULL) {
5923         addq(dst, r12_heapbase);
5924       }
5925     }
5926   } else {
5927     assert (Universe::narrow_oop_base() == NULL, "sanity");
5928     if (dst != src) {
5929       movq(dst, src);
5930     }
5931   }
5932 }
5933 
5934 void MacroAssembler::encode_klass_not_null(Register r) {
5935   if (Universe::narrow_klass_base() != NULL) {
5936     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5937     assert(r != r12_heapbase, "Encoding a klass in r12");
5938     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5939     subq(r, r12_heapbase);
5940   }
5941   if (Universe::narrow_klass_shift() != 0) {
5942     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5943     shrq(r, LogKlassAlignmentInBytes);
5944   }
5945   if (Universe::narrow_klass_base() != NULL) {
5946     reinit_heapbase();
5947   }
5948 }
5949 
5950 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5951   if (dst == src) {
5952     encode_klass_not_null(src);
5953   } else {
5954     if (Universe::narrow_klass_base() != NULL) {
5955       mov64(dst, (int64_t)Universe::narrow_klass_base());
5956       negq(dst);
5957       addq(dst, src);
5958     } else {
5959       movptr(dst, src);
5960     }
5961     if (Universe::narrow_klass_shift() != 0) {
5962       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5963       shrq(dst, LogKlassAlignmentInBytes);
5964     }
5965   }
5966 }
5967 
5968 // Function instr_size_for_decode_klass_not_null() counts the instructions
5969 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5970 // when (Universe::heap() != NULL).  Hence, if the instructions they
5971 // generate change, then this method needs to be updated.
5972 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5973   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5974   if (Universe::narrow_klass_base() != NULL) {
5975     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5976     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5977   } else {
5978     // longest load decode klass function, mov64, leaq
5979     return 16;
5980   }
5981 }
5982 
5983 // !!! If the instructions that get generated here change then function
5984 // instr_size_for_decode_klass_not_null() needs to get updated.
5985 void  MacroAssembler::decode_klass_not_null(Register r) {
5986   // Note: it will change flags
5987   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5988   assert(r != r12_heapbase, "Decoding a klass in r12");
5989   // Cannot assert, unverified entry point counts instructions (see .ad file)
5990   // vtableStubs also counts instructions in pd_code_size_limit.
5991   // Also do not verify_oop as this is called by verify_oop.
5992   if (Universe::narrow_klass_shift() != 0) {
5993     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5994     shlq(r, LogKlassAlignmentInBytes);
5995   }
5996   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5997   if (Universe::narrow_klass_base() != NULL) {
5998     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5999     addq(r, r12_heapbase);
6000     reinit_heapbase();
6001   }
6002 }
6003 
6004 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6005   // Note: it will change flags
6006   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6007   if (dst == src) {
6008     decode_klass_not_null(dst);
6009   } else {
6010     // Cannot assert, unverified entry point counts instructions (see .ad file)
6011     // vtableStubs also counts instructions in pd_code_size_limit.
6012     // Also do not verify_oop as this is called by verify_oop.
6013     mov64(dst, (int64_t)Universe::narrow_klass_base());
6014     if (Universe::narrow_klass_shift() != 0) {
6015       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6016       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6017       leaq(dst, Address(dst, src, Address::times_8, 0));
6018     } else {
6019       addq(dst, src);
6020     }
6021   }
6022 }
6023 
6024 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6025   assert (UseCompressedOops, "should only be used for compressed headers");
6026   assert (Universe::heap() != NULL, "java heap should be initialized");
6027   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6028   int oop_index = oop_recorder()->find_index(obj);
6029   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6030   mov_narrow_oop(dst, oop_index, rspec);
6031 }
6032 
6033 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6034   assert (UseCompressedOops, "should only be used for compressed headers");
6035   assert (Universe::heap() != NULL, "java heap should be initialized");
6036   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6037   int oop_index = oop_recorder()->find_index(obj);
6038   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6039   mov_narrow_oop(dst, oop_index, rspec);
6040 }
6041 
6042 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6043   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6044   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6045   int klass_index = oop_recorder()->find_index(k);
6046   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6047   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6048 }
6049 
6050 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6051   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6052   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6053   int klass_index = oop_recorder()->find_index(k);
6054   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6055   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6056 }
6057 
6058 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6059   assert (UseCompressedOops, "should only be used for compressed headers");
6060   assert (Universe::heap() != NULL, "java heap should be initialized");
6061   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6062   int oop_index = oop_recorder()->find_index(obj);
6063   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6064   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6065 }
6066 
6067 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6068   assert (UseCompressedOops, "should only be used for compressed headers");
6069   assert (Universe::heap() != NULL, "java heap should be initialized");
6070   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6071   int oop_index = oop_recorder()->find_index(obj);
6072   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6073   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6074 }
6075 
6076 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6077   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6078   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6079   int klass_index = oop_recorder()->find_index(k);
6080   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6081   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6082 }
6083 
6084 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6085   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6086   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6087   int klass_index = oop_recorder()->find_index(k);
6088   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6089   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6090 }
6091 
6092 void MacroAssembler::reinit_heapbase() {
6093   if (UseCompressedOops || UseCompressedClassPointers) {
6094     if (Universe::heap() != NULL) {
6095       if (Universe::narrow_oop_base() == NULL) {
6096         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6097       } else {
6098         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6099       }
6100     } else {
6101       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6102     }
6103   }
6104 }
6105 
6106 #endif // _LP64
6107 
6108 
6109 // C2 compiled method's prolog code.
6110 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6111 
6112   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6113   // NativeJump::patch_verified_entry will be able to patch out the entry
6114   // code safely. The push to verify stack depth is ok at 5 bytes,
6115   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6116   // stack bang then we must use the 6 byte frame allocation even if
6117   // we have no frame. :-(
6118   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6119 
6120   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6121   // Remove word for return addr
6122   framesize -= wordSize;
6123   stack_bang_size -= wordSize;
6124 
6125   // Calls to C2R adapters often do not accept exceptional returns.
6126   // We require that their callers must bang for them.  But be careful, because
6127   // some VM calls (such as call site linkage) can use several kilobytes of
6128   // stack.  But the stack safety zone should account for that.
6129   // See bugs 4446381, 4468289, 4497237.
6130   if (stack_bang_size > 0) {
6131     generate_stack_overflow_check(stack_bang_size);
6132 
6133     // We always push rbp, so that on return to interpreter rbp, will be
6134     // restored correctly and we can correct the stack.
6135     push(rbp);
6136     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6137     if (PreserveFramePointer) {
6138       mov(rbp, rsp);
6139     }
6140     // Remove word for ebp
6141     framesize -= wordSize;
6142 
6143     // Create frame
6144     if (framesize) {
6145       subptr(rsp, framesize);
6146     }
6147   } else {
6148     // Create frame (force generation of a 4 byte immediate value)
6149     subptr_imm32(rsp, framesize);
6150 
6151     // Save RBP register now.
6152     framesize -= wordSize;
6153     movptr(Address(rsp, framesize), rbp);
6154     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6155     if (PreserveFramePointer) {
6156       movptr(rbp, rsp);
6157       addptr(rbp, framesize + wordSize);
6158     }
6159   }
6160 
6161   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6162     framesize -= wordSize;
6163     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6164   }
6165 
6166 #ifndef _LP64
6167   // If method sets FPU control word do it now
6168   if (fp_mode_24b) {
6169     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6170   }
6171   if (UseSSE >= 2 && VerifyFPU) {
6172     verify_FPU(0, "FPU stack must be clean on entry");
6173   }
6174 #endif
6175 
6176 #ifdef ASSERT
6177   if (VerifyStackAtCalls) {
6178     Label L;
6179     push(rax);
6180     mov(rax, rsp);
6181     andptr(rax, StackAlignmentInBytes-1);
6182     cmpptr(rax, StackAlignmentInBytes-wordSize);
6183     pop(rax);
6184     jcc(Assembler::equal, L);
6185     STOP("Stack is not properly aligned!");
6186     bind(L);
6187   }
6188 #endif
6189 
6190 }
6191 
6192 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6193   // cnt - number of qwords (8-byte words).
6194   // base - start address, qword aligned.
6195   assert(base==rdi, "base register must be edi for rep stos");
6196   assert(tmp==rax,   "tmp register must be eax for rep stos");
6197   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6198 
6199   xorptr(tmp, tmp);
6200   if (UseFastStosb) {
6201     shlptr(cnt,3); // convert to number of bytes
6202     rep_stosb();
6203   } else {
6204     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6205     rep_stos();
6206   }
6207 }
6208 
6209 // IndexOf for constant substrings with size >= 8 chars
6210 // which don't need to be loaded through stack.
6211 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6212                                       Register cnt1, Register cnt2,
6213                                       int int_cnt2,  Register result,
6214                                       XMMRegister vec, Register tmp) {
6215   ShortBranchVerifier sbv(this);
6216   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6217 
6218   // This method uses pcmpestri instruction with bound registers
6219   //   inputs:
6220   //     xmm - substring
6221   //     rax - substring length (elements count)
6222   //     mem - scanned string
6223   //     rdx - string length (elements count)
6224   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6225   //   outputs:
6226   //     rcx - matched index in string
6227   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6228 
6229   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6230         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6231         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6232 
6233   // Note, inline_string_indexOf() generates checks:
6234   // if (substr.count > string.count) return -1;
6235   // if (substr.count == 0) return 0;
6236   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6237 
6238   // Load substring.
6239   movdqu(vec, Address(str2, 0));
6240   movl(cnt2, int_cnt2);
6241   movptr(result, str1); // string addr
6242 
6243   if (int_cnt2 > 8) {
6244     jmpb(SCAN_TO_SUBSTR);
6245 
6246     // Reload substr for rescan, this code
6247     // is executed only for large substrings (> 8 chars)
6248     bind(RELOAD_SUBSTR);
6249     movdqu(vec, Address(str2, 0));
6250     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6251 
6252     bind(RELOAD_STR);
6253     // We came here after the beginning of the substring was
6254     // matched but the rest of it was not so we need to search
6255     // again. Start from the next element after the previous match.
6256 
6257     // cnt2 is number of substring reminding elements and
6258     // cnt1 is number of string reminding elements when cmp failed.
6259     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6260     subl(cnt1, cnt2);
6261     addl(cnt1, int_cnt2);
6262     movl(cnt2, int_cnt2); // Now restore cnt2
6263 
6264     decrementl(cnt1);     // Shift to next element
6265     cmpl(cnt1, cnt2);
6266     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6267 
6268     addptr(result, 2);
6269 
6270   } // (int_cnt2 > 8)
6271 
6272   // Scan string for start of substr in 16-byte vectors
6273   bind(SCAN_TO_SUBSTR);
6274   pcmpestri(vec, Address(result, 0), 0x0d);
6275   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6276   subl(cnt1, 8);
6277   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6278   cmpl(cnt1, cnt2);
6279   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6280   addptr(result, 16);
6281   jmpb(SCAN_TO_SUBSTR);
6282 
6283   // Found a potential substr
6284   bind(FOUND_CANDIDATE);
6285   // Matched whole vector if first element matched (tmp(rcx) == 0).
6286   if (int_cnt2 == 8) {
6287     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6288   } else { // int_cnt2 > 8
6289     jccb(Assembler::overflow, FOUND_SUBSTR);
6290   }
6291   // After pcmpestri tmp(rcx) contains matched element index
6292   // Compute start addr of substr
6293   lea(result, Address(result, tmp, Address::times_2));
6294 
6295   // Make sure string is still long enough
6296   subl(cnt1, tmp);
6297   cmpl(cnt1, cnt2);
6298   if (int_cnt2 == 8) {
6299     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6300   } else { // int_cnt2 > 8
6301     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6302   }
6303   // Left less then substring.
6304 
6305   bind(RET_NOT_FOUND);
6306   movl(result, -1);
6307   jmpb(EXIT);
6308 
6309   if (int_cnt2 > 8) {
6310     // This code is optimized for the case when whole substring
6311     // is matched if its head is matched.
6312     bind(MATCH_SUBSTR_HEAD);
6313     pcmpestri(vec, Address(result, 0), 0x0d);
6314     // Reload only string if does not match
6315     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6316 
6317     Label CONT_SCAN_SUBSTR;
6318     // Compare the rest of substring (> 8 chars).
6319     bind(FOUND_SUBSTR);
6320     // First 8 chars are already matched.
6321     negptr(cnt2);
6322     addptr(cnt2, 8);
6323 
6324     bind(SCAN_SUBSTR);
6325     subl(cnt1, 8);
6326     cmpl(cnt2, -8); // Do not read beyond substring
6327     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6328     // Back-up strings to avoid reading beyond substring:
6329     // cnt1 = cnt1 - cnt2 + 8
6330     addl(cnt1, cnt2); // cnt2 is negative
6331     addl(cnt1, 8);
6332     movl(cnt2, 8); negptr(cnt2);
6333     bind(CONT_SCAN_SUBSTR);
6334     if (int_cnt2 < (int)G) {
6335       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6336       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6337     } else {
6338       // calculate index in register to avoid integer overflow (int_cnt2*2)
6339       movl(tmp, int_cnt2);
6340       addptr(tmp, cnt2);
6341       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6342       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6343     }
6344     // Need to reload strings pointers if not matched whole vector
6345     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6346     addptr(cnt2, 8);
6347     jcc(Assembler::negative, SCAN_SUBSTR);
6348     // Fall through if found full substring
6349 
6350   } // (int_cnt2 > 8)
6351 
6352   bind(RET_FOUND);
6353   // Found result if we matched full small substring.
6354   // Compute substr offset
6355   subptr(result, str1);
6356   shrl(result, 1); // index
6357   bind(EXIT);
6358 
6359 } // string_indexofC8
6360 
6361 // Small strings are loaded through stack if they cross page boundary.
6362 void MacroAssembler::string_indexof(Register str1, Register str2,
6363                                     Register cnt1, Register cnt2,
6364                                     int int_cnt2,  Register result,
6365                                     XMMRegister vec, Register tmp) {
6366   ShortBranchVerifier sbv(this);
6367   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6368   //
6369   // int_cnt2 is length of small (< 8 chars) constant substring
6370   // or (-1) for non constant substring in which case its length
6371   // is in cnt2 register.
6372   //
6373   // Note, inline_string_indexOf() generates checks:
6374   // if (substr.count > string.count) return -1;
6375   // if (substr.count == 0) return 0;
6376   //
6377   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6378 
6379   // This method uses pcmpestri instruction with bound registers
6380   //   inputs:
6381   //     xmm - substring
6382   //     rax - substring length (elements count)
6383   //     mem - scanned string
6384   //     rdx - string length (elements count)
6385   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6386   //   outputs:
6387   //     rcx - matched index in string
6388   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6389 
6390   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6391         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6392         FOUND_CANDIDATE;
6393 
6394   { //========================================================
6395     // We don't know where these strings are located
6396     // and we can't read beyond them. Load them through stack.
6397     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6398 
6399     movptr(tmp, rsp); // save old SP
6400 
6401     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6402       if (int_cnt2 == 1) {  // One char
6403         load_unsigned_short(result, Address(str2, 0));
6404         movdl(vec, result); // move 32 bits
6405       } else if (int_cnt2 == 2) { // Two chars
6406         movdl(vec, Address(str2, 0)); // move 32 bits
6407       } else if (int_cnt2 == 4) { // Four chars
6408         movq(vec, Address(str2, 0));  // move 64 bits
6409       } else { // cnt2 = { 3, 5, 6, 7 }
6410         // Array header size is 12 bytes in 32-bit VM
6411         // + 6 bytes for 3 chars == 18 bytes,
6412         // enough space to load vec and shift.
6413         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6414         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6415         psrldq(vec, 16-(int_cnt2*2));
6416       }
6417     } else { // not constant substring
6418       cmpl(cnt2, 8);
6419       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6420 
6421       // We can read beyond string if srt+16 does not cross page boundary
6422       // since heaps are aligned and mapped by pages.
6423       assert(os::vm_page_size() < (int)G, "default page should be small");
6424       movl(result, str2); // We need only low 32 bits
6425       andl(result, (os::vm_page_size()-1));
6426       cmpl(result, (os::vm_page_size()-16));
6427       jccb(Assembler::belowEqual, CHECK_STR);
6428 
6429       // Move small strings to stack to allow load 16 bytes into vec.
6430       subptr(rsp, 16);
6431       int stk_offset = wordSize-2;
6432       push(cnt2);
6433 
6434       bind(COPY_SUBSTR);
6435       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6436       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6437       decrement(cnt2);
6438       jccb(Assembler::notZero, COPY_SUBSTR);
6439 
6440       pop(cnt2);
6441       movptr(str2, rsp);  // New substring address
6442     } // non constant
6443 
6444     bind(CHECK_STR);
6445     cmpl(cnt1, 8);
6446     jccb(Assembler::aboveEqual, BIG_STRINGS);
6447 
6448     // Check cross page boundary.
6449     movl(result, str1); // We need only low 32 bits
6450     andl(result, (os::vm_page_size()-1));
6451     cmpl(result, (os::vm_page_size()-16));
6452     jccb(Assembler::belowEqual, BIG_STRINGS);
6453 
6454     subptr(rsp, 16);
6455     int stk_offset = -2;
6456     if (int_cnt2 < 0) { // not constant
6457       push(cnt2);
6458       stk_offset += wordSize;
6459     }
6460     movl(cnt2, cnt1);
6461 
6462     bind(COPY_STR);
6463     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6464     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6465     decrement(cnt2);
6466     jccb(Assembler::notZero, COPY_STR);
6467 
6468     if (int_cnt2 < 0) { // not constant
6469       pop(cnt2);
6470     }
6471     movptr(str1, rsp);  // New string address
6472 
6473     bind(BIG_STRINGS);
6474     // Load substring.
6475     if (int_cnt2 < 0) { // -1
6476       movdqu(vec, Address(str2, 0));
6477       push(cnt2);       // substr count
6478       push(str2);       // substr addr
6479       push(str1);       // string addr
6480     } else {
6481       // Small (< 8 chars) constant substrings are loaded already.
6482       movl(cnt2, int_cnt2);
6483     }
6484     push(tmp);  // original SP
6485 
6486   } // Finished loading
6487 
6488   //========================================================
6489   // Start search
6490   //
6491 
6492   movptr(result, str1); // string addr
6493 
6494   if (int_cnt2  < 0) {  // Only for non constant substring
6495     jmpb(SCAN_TO_SUBSTR);
6496 
6497     // SP saved at sp+0
6498     // String saved at sp+1*wordSize
6499     // Substr saved at sp+2*wordSize
6500     // Substr count saved at sp+3*wordSize
6501 
6502     // Reload substr for rescan, this code
6503     // is executed only for large substrings (> 8 chars)
6504     bind(RELOAD_SUBSTR);
6505     movptr(str2, Address(rsp, 2*wordSize));
6506     movl(cnt2, Address(rsp, 3*wordSize));
6507     movdqu(vec, Address(str2, 0));
6508     // We came here after the beginning of the substring was
6509     // matched but the rest of it was not so we need to search
6510     // again. Start from the next element after the previous match.
6511     subptr(str1, result); // Restore counter
6512     shrl(str1, 1);
6513     addl(cnt1, str1);
6514     decrementl(cnt1);   // Shift to next element
6515     cmpl(cnt1, cnt2);
6516     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6517 
6518     addptr(result, 2);
6519   } // non constant
6520 
6521   // Scan string for start of substr in 16-byte vectors
6522   bind(SCAN_TO_SUBSTR);
6523   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6524   pcmpestri(vec, Address(result, 0), 0x0d);
6525   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6526   subl(cnt1, 8);
6527   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6528   cmpl(cnt1, cnt2);
6529   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6530   addptr(result, 16);
6531 
6532   bind(ADJUST_STR);
6533   cmpl(cnt1, 8); // Do not read beyond string
6534   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6535   // Back-up string to avoid reading beyond string.
6536   lea(result, Address(result, cnt1, Address::times_2, -16));
6537   movl(cnt1, 8);
6538   jmpb(SCAN_TO_SUBSTR);
6539 
6540   // Found a potential substr
6541   bind(FOUND_CANDIDATE);
6542   // After pcmpestri tmp(rcx) contains matched element index
6543 
6544   // Make sure string is still long enough
6545   subl(cnt1, tmp);
6546   cmpl(cnt1, cnt2);
6547   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6548   // Left less then substring.
6549 
6550   bind(RET_NOT_FOUND);
6551   movl(result, -1);
6552   jmpb(CLEANUP);
6553 
6554   bind(FOUND_SUBSTR);
6555   // Compute start addr of substr
6556   lea(result, Address(result, tmp, Address::times_2));
6557 
6558   if (int_cnt2 > 0) { // Constant substring
6559     // Repeat search for small substring (< 8 chars)
6560     // from new point without reloading substring.
6561     // Have to check that we don't read beyond string.
6562     cmpl(tmp, 8-int_cnt2);
6563     jccb(Assembler::greater, ADJUST_STR);
6564     // Fall through if matched whole substring.
6565   } else { // non constant
6566     assert(int_cnt2 == -1, "should be != 0");
6567 
6568     addl(tmp, cnt2);
6569     // Found result if we matched whole substring.
6570     cmpl(tmp, 8);
6571     jccb(Assembler::lessEqual, RET_FOUND);
6572 
6573     // Repeat search for small substring (<= 8 chars)
6574     // from new point 'str1' without reloading substring.
6575     cmpl(cnt2, 8);
6576     // Have to check that we don't read beyond string.
6577     jccb(Assembler::lessEqual, ADJUST_STR);
6578 
6579     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6580     // Compare the rest of substring (> 8 chars).
6581     movptr(str1, result);
6582 
6583     cmpl(tmp, cnt2);
6584     // First 8 chars are already matched.
6585     jccb(Assembler::equal, CHECK_NEXT);
6586 
6587     bind(SCAN_SUBSTR);
6588     pcmpestri(vec, Address(str1, 0), 0x0d);
6589     // Need to reload strings pointers if not matched whole vector
6590     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6591 
6592     bind(CHECK_NEXT);
6593     subl(cnt2, 8);
6594     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6595     addptr(str1, 16);
6596     addptr(str2, 16);
6597     subl(cnt1, 8);
6598     cmpl(cnt2, 8); // Do not read beyond substring
6599     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6600     // Back-up strings to avoid reading beyond substring.
6601     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6602     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6603     subl(cnt1, cnt2);
6604     movl(cnt2, 8);
6605     addl(cnt1, 8);
6606     bind(CONT_SCAN_SUBSTR);
6607     movdqu(vec, Address(str2, 0));
6608     jmpb(SCAN_SUBSTR);
6609 
6610     bind(RET_FOUND_LONG);
6611     movptr(str1, Address(rsp, wordSize));
6612   } // non constant
6613 
6614   bind(RET_FOUND);
6615   // Compute substr offset
6616   subptr(result, str1);
6617   shrl(result, 1); // index
6618 
6619   bind(CLEANUP);
6620   pop(rsp); // restore SP
6621 
6622 } // string_indexof
6623 
6624 // Compare strings.
6625 void MacroAssembler::string_compare(Register str1, Register str2,
6626                                     Register cnt1, Register cnt2, Register result,
6627                                     XMMRegister vec1) {
6628   ShortBranchVerifier sbv(this);
6629   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6630 
6631   // Compute the minimum of the string lengths and the
6632   // difference of the string lengths (stack).
6633   // Do the conditional move stuff
6634   movl(result, cnt1);
6635   subl(cnt1, cnt2);
6636   push(cnt1);
6637   cmov32(Assembler::lessEqual, cnt2, result);
6638 
6639   // Is the minimum length zero?
6640   testl(cnt2, cnt2);
6641   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6642 
6643   // Compare first characters
6644   load_unsigned_short(result, Address(str1, 0));
6645   load_unsigned_short(cnt1, Address(str2, 0));
6646   subl(result, cnt1);
6647   jcc(Assembler::notZero,  POP_LABEL);
6648   cmpl(cnt2, 1);
6649   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6650 
6651   // Check if the strings start at the same location.
6652   cmpptr(str1, str2);
6653   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6654 
6655   Address::ScaleFactor scale = Address::times_2;
6656   int stride = 8;
6657 
6658   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6659     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6660     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6661     Label COMPARE_TAIL_LONG;
6662     int pcmpmask = 0x19;
6663 
6664     // Setup to compare 16-chars (32-bytes) vectors,
6665     // start from first character again because it has aligned address.
6666     int stride2 = 16;
6667     int adr_stride  = stride  << scale;
6668 
6669     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6670     // rax and rdx are used by pcmpestri as elements counters
6671     movl(result, cnt2);
6672     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6673     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6674 
6675     // fast path : compare first 2 8-char vectors.
6676     bind(COMPARE_16_CHARS);
6677     movdqu(vec1, Address(str1, 0));
6678     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6679     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6680 
6681     movdqu(vec1, Address(str1, adr_stride));
6682     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6683     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6684     addl(cnt1, stride);
6685 
6686     // Compare the characters at index in cnt1
6687     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6688     load_unsigned_short(result, Address(str1, cnt1, scale));
6689     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6690     subl(result, cnt2);
6691     jmp(POP_LABEL);
6692 
6693     // Setup the registers to start vector comparison loop
6694     bind(COMPARE_WIDE_VECTORS);
6695     lea(str1, Address(str1, result, scale));
6696     lea(str2, Address(str2, result, scale));
6697     subl(result, stride2);
6698     subl(cnt2, stride2);
6699     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6700     negptr(result);
6701 
6702     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6703     bind(COMPARE_WIDE_VECTORS_LOOP);
6704     vmovdqu(vec1, Address(str1, result, scale));
6705     vpxor(vec1, Address(str2, result, scale));
6706     vptest(vec1, vec1);
6707     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6708     addptr(result, stride2);
6709     subl(cnt2, stride2);
6710     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6711     // clean upper bits of YMM registers
6712     vpxor(vec1, vec1);
6713 
6714     // compare wide vectors tail
6715     bind(COMPARE_WIDE_TAIL);
6716     testptr(result, result);
6717     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6718 
6719     movl(result, stride2);
6720     movl(cnt2, result);
6721     negptr(result);
6722     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6723 
6724     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6725     bind(VECTOR_NOT_EQUAL);
6726     // clean upper bits of YMM registers
6727     vpxor(vec1, vec1);
6728     lea(str1, Address(str1, result, scale));
6729     lea(str2, Address(str2, result, scale));
6730     jmp(COMPARE_16_CHARS);
6731 
6732     // Compare tail chars, length between 1 to 15 chars
6733     bind(COMPARE_TAIL_LONG);
6734     movl(cnt2, result);
6735     cmpl(cnt2, stride);
6736     jccb(Assembler::less, COMPARE_SMALL_STR);
6737 
6738     movdqu(vec1, Address(str1, 0));
6739     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6740     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6741     subptr(cnt2, stride);
6742     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6743     lea(str1, Address(str1, result, scale));
6744     lea(str2, Address(str2, result, scale));
6745     negptr(cnt2);
6746     jmpb(WHILE_HEAD_LABEL);
6747 
6748     bind(COMPARE_SMALL_STR);
6749   } else if (UseSSE42Intrinsics) {
6750     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6751     int pcmpmask = 0x19;
6752     // Setup to compare 8-char (16-byte) vectors,
6753     // start from first character again because it has aligned address.
6754     movl(result, cnt2);
6755     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6756     jccb(Assembler::zero, COMPARE_TAIL);
6757 
6758     lea(str1, Address(str1, result, scale));
6759     lea(str2, Address(str2, result, scale));
6760     negptr(result);
6761 
6762     // pcmpestri
6763     //   inputs:
6764     //     vec1- substring
6765     //     rax - negative string length (elements count)
6766     //     mem - scanned string
6767     //     rdx - string length (elements count)
6768     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6769     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6770     //   outputs:
6771     //     rcx - first mismatched element index
6772     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6773 
6774     bind(COMPARE_WIDE_VECTORS);
6775     movdqu(vec1, Address(str1, result, scale));
6776     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6777     // After pcmpestri cnt1(rcx) contains mismatched element index
6778 
6779     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6780     addptr(result, stride);
6781     subptr(cnt2, stride);
6782     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6783 
6784     // compare wide vectors tail
6785     testptr(result, result);
6786     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6787 
6788     movl(cnt2, stride);
6789     movl(result, stride);
6790     negptr(result);
6791     movdqu(vec1, Address(str1, result, scale));
6792     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6793     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6794 
6795     // Mismatched characters in the vectors
6796     bind(VECTOR_NOT_EQUAL);
6797     addptr(cnt1, result);
6798     load_unsigned_short(result, Address(str1, cnt1, scale));
6799     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6800     subl(result, cnt2);
6801     jmpb(POP_LABEL);
6802 
6803     bind(COMPARE_TAIL); // limit is zero
6804     movl(cnt2, result);
6805     // Fallthru to tail compare
6806   }
6807   // Shift str2 and str1 to the end of the arrays, negate min
6808   lea(str1, Address(str1, cnt2, scale));
6809   lea(str2, Address(str2, cnt2, scale));
6810   decrementl(cnt2);  // first character was compared already
6811   negptr(cnt2);
6812 
6813   // Compare the rest of the elements
6814   bind(WHILE_HEAD_LABEL);
6815   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6816   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6817   subl(result, cnt1);
6818   jccb(Assembler::notZero, POP_LABEL);
6819   increment(cnt2);
6820   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6821 
6822   // Strings are equal up to min length.  Return the length difference.
6823   bind(LENGTH_DIFF_LABEL);
6824   pop(result);
6825   jmpb(DONE_LABEL);
6826 
6827   // Discard the stored length difference
6828   bind(POP_LABEL);
6829   pop(cnt1);
6830 
6831   // That's it
6832   bind(DONE_LABEL);
6833 }
6834 
6835 // Compare char[] arrays aligned to 4 bytes or substrings.
6836 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6837                                         Register limit, Register result, Register chr,
6838                                         XMMRegister vec1, XMMRegister vec2) {
6839   ShortBranchVerifier sbv(this);
6840   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6841 
6842   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6843   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6844 
6845   // Check the input args
6846   cmpptr(ary1, ary2);
6847   jcc(Assembler::equal, TRUE_LABEL);
6848 
6849   if (is_array_equ) {
6850     // Need additional checks for arrays_equals.
6851     testptr(ary1, ary1);
6852     jcc(Assembler::zero, FALSE_LABEL);
6853     testptr(ary2, ary2);
6854     jcc(Assembler::zero, FALSE_LABEL);
6855 
6856     // Check the lengths
6857     movl(limit, Address(ary1, length_offset));
6858     cmpl(limit, Address(ary2, length_offset));
6859     jcc(Assembler::notEqual, FALSE_LABEL);
6860   }
6861 
6862   // count == 0
6863   testl(limit, limit);
6864   jcc(Assembler::zero, TRUE_LABEL);
6865 
6866   if (is_array_equ) {
6867     // Load array address
6868     lea(ary1, Address(ary1, base_offset));
6869     lea(ary2, Address(ary2, base_offset));
6870   }
6871 
6872   shll(limit, 1);      // byte count != 0
6873   movl(result, limit); // copy
6874 
6875   if (UseAVX >= 2) {
6876     // With AVX2, use 32-byte vector compare
6877     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6878 
6879     // Compare 32-byte vectors
6880     andl(result, 0x0000001e);  //   tail count (in bytes)
6881     andl(limit, 0xffffffe0);   // vector count (in bytes)
6882     jccb(Assembler::zero, COMPARE_TAIL);
6883 
6884     lea(ary1, Address(ary1, limit, Address::times_1));
6885     lea(ary2, Address(ary2, limit, Address::times_1));
6886     negptr(limit);
6887 
6888     bind(COMPARE_WIDE_VECTORS);
6889     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6890     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6891     vpxor(vec1, vec2);
6892 
6893     vptest(vec1, vec1);
6894     jccb(Assembler::notZero, FALSE_LABEL);
6895     addptr(limit, 32);
6896     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6897 
6898     testl(result, result);
6899     jccb(Assembler::zero, TRUE_LABEL);
6900 
6901     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6902     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6903     vpxor(vec1, vec2);
6904 
6905     vptest(vec1, vec1);
6906     jccb(Assembler::notZero, FALSE_LABEL);
6907     jmpb(TRUE_LABEL);
6908 
6909     bind(COMPARE_TAIL); // limit is zero
6910     movl(limit, result);
6911     // Fallthru to tail compare
6912   } else if (UseSSE42Intrinsics) {
6913     // With SSE4.2, use double quad vector compare
6914     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6915 
6916     // Compare 16-byte vectors
6917     andl(result, 0x0000000e);  //   tail count (in bytes)
6918     andl(limit, 0xfffffff0);   // vector count (in bytes)
6919     jccb(Assembler::zero, COMPARE_TAIL);
6920 
6921     lea(ary1, Address(ary1, limit, Address::times_1));
6922     lea(ary2, Address(ary2, limit, Address::times_1));
6923     negptr(limit);
6924 
6925     bind(COMPARE_WIDE_VECTORS);
6926     movdqu(vec1, Address(ary1, limit, Address::times_1));
6927     movdqu(vec2, Address(ary2, limit, Address::times_1));
6928     pxor(vec1, vec2);
6929 
6930     ptest(vec1, vec1);
6931     jccb(Assembler::notZero, FALSE_LABEL);
6932     addptr(limit, 16);
6933     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6934 
6935     testl(result, result);
6936     jccb(Assembler::zero, TRUE_LABEL);
6937 
6938     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6939     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6940     pxor(vec1, vec2);
6941 
6942     ptest(vec1, vec1);
6943     jccb(Assembler::notZero, FALSE_LABEL);
6944     jmpb(TRUE_LABEL);
6945 
6946     bind(COMPARE_TAIL); // limit is zero
6947     movl(limit, result);
6948     // Fallthru to tail compare
6949   }
6950 
6951   // Compare 4-byte vectors
6952   andl(limit, 0xfffffffc); // vector count (in bytes)
6953   jccb(Assembler::zero, COMPARE_CHAR);
6954 
6955   lea(ary1, Address(ary1, limit, Address::times_1));
6956   lea(ary2, Address(ary2, limit, Address::times_1));
6957   negptr(limit);
6958 
6959   bind(COMPARE_VECTORS);
6960   movl(chr, Address(ary1, limit, Address::times_1));
6961   cmpl(chr, Address(ary2, limit, Address::times_1));
6962   jccb(Assembler::notEqual, FALSE_LABEL);
6963   addptr(limit, 4);
6964   jcc(Assembler::notZero, COMPARE_VECTORS);
6965 
6966   // Compare trailing char (final 2 bytes), if any
6967   bind(COMPARE_CHAR);
6968   testl(result, 0x2);   // tail  char
6969   jccb(Assembler::zero, TRUE_LABEL);
6970   load_unsigned_short(chr, Address(ary1, 0));
6971   load_unsigned_short(limit, Address(ary2, 0));
6972   cmpl(chr, limit);
6973   jccb(Assembler::notEqual, FALSE_LABEL);
6974 
6975   bind(TRUE_LABEL);
6976   movl(result, 1);   // return true
6977   jmpb(DONE);
6978 
6979   bind(FALSE_LABEL);
6980   xorl(result, result); // return false
6981 
6982   // That's it
6983   bind(DONE);
6984   if (UseAVX >= 2) {
6985     // clean upper bits of YMM registers
6986     vpxor(vec1, vec1);
6987     vpxor(vec2, vec2);
6988   }
6989 }
6990 
6991 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6992                                    Register to, Register value, Register count,
6993                                    Register rtmp, XMMRegister xtmp) {
6994   ShortBranchVerifier sbv(this);
6995   assert_different_registers(to, value, count, rtmp);
6996   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6997   Label L_fill_2_bytes, L_fill_4_bytes;
6998 
6999   int shift = -1;
7000   switch (t) {
7001     case T_BYTE:
7002       shift = 2;
7003       break;
7004     case T_SHORT:
7005       shift = 1;
7006       break;
7007     case T_INT:
7008       shift = 0;
7009       break;
7010     default: ShouldNotReachHere();
7011   }
7012 
7013   if (t == T_BYTE) {
7014     andl(value, 0xff);
7015     movl(rtmp, value);
7016     shll(rtmp, 8);
7017     orl(value, rtmp);
7018   }
7019   if (t == T_SHORT) {
7020     andl(value, 0xffff);
7021   }
7022   if (t == T_BYTE || t == T_SHORT) {
7023     movl(rtmp, value);
7024     shll(rtmp, 16);
7025     orl(value, rtmp);
7026   }
7027 
7028   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7029   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7030   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7031     // align source address at 4 bytes address boundary
7032     if (t == T_BYTE) {
7033       // One byte misalignment happens only for byte arrays
7034       testptr(to, 1);
7035       jccb(Assembler::zero, L_skip_align1);
7036       movb(Address(to, 0), value);
7037       increment(to);
7038       decrement(count);
7039       BIND(L_skip_align1);
7040     }
7041     // Two bytes misalignment happens only for byte and short (char) arrays
7042     testptr(to, 2);
7043     jccb(Assembler::zero, L_skip_align2);
7044     movw(Address(to, 0), value);
7045     addptr(to, 2);
7046     subl(count, 1<<(shift-1));
7047     BIND(L_skip_align2);
7048   }
7049   if (UseSSE < 2) {
7050     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7051     // Fill 32-byte chunks
7052     subl(count, 8 << shift);
7053     jcc(Assembler::less, L_check_fill_8_bytes);
7054     align(16);
7055 
7056     BIND(L_fill_32_bytes_loop);
7057 
7058     for (int i = 0; i < 32; i += 4) {
7059       movl(Address(to, i), value);
7060     }
7061 
7062     addptr(to, 32);
7063     subl(count, 8 << shift);
7064     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7065     BIND(L_check_fill_8_bytes);
7066     addl(count, 8 << shift);
7067     jccb(Assembler::zero, L_exit);
7068     jmpb(L_fill_8_bytes);
7069 
7070     //
7071     // length is too short, just fill qwords
7072     //
7073     BIND(L_fill_8_bytes_loop);
7074     movl(Address(to, 0), value);
7075     movl(Address(to, 4), value);
7076     addptr(to, 8);
7077     BIND(L_fill_8_bytes);
7078     subl(count, 1 << (shift + 1));
7079     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7080     // fall through to fill 4 bytes
7081   } else {
7082     Label L_fill_32_bytes;
7083     if (!UseUnalignedLoadStores) {
7084       // align to 8 bytes, we know we are 4 byte aligned to start
7085       testptr(to, 4);
7086       jccb(Assembler::zero, L_fill_32_bytes);
7087       movl(Address(to, 0), value);
7088       addptr(to, 4);
7089       subl(count, 1<<shift);
7090     }
7091     BIND(L_fill_32_bytes);
7092     {
7093       assert( UseSSE >= 2, "supported cpu only" );
7094       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7095       if (UseAVX > 2) {
7096         movl(rtmp, 0xffff);
7097 #ifdef _LP64
7098         kmovql(k1, rtmp);
7099 #else
7100         kmovdl(k1, rtmp);
7101 #endif
7102       }
7103       movdl(xtmp, value);
7104       if (UseAVX > 2 && UseUnalignedLoadStores) {
7105         // Fill 64-byte chunks
7106         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7107         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7108 
7109         subl(count, 16 << shift);
7110         jcc(Assembler::less, L_check_fill_32_bytes);
7111         align(16);
7112 
7113         BIND(L_fill_64_bytes_loop);
7114         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_512bit);
7115         addptr(to, 64);
7116         subl(count, 16 << shift);
7117         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7118 
7119         BIND(L_check_fill_32_bytes);
7120         addl(count, 8 << shift);
7121         jccb(Assembler::less, L_check_fill_8_bytes);
7122         evmovdqu(Address(to, 0), xtmp, Assembler::AVX_256bit);
7123         addptr(to, 32);
7124         subl(count, 8 << shift);
7125 
7126         BIND(L_check_fill_8_bytes);
7127       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
7128         // Fill 64-byte chunks
7129         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7130         vpbroadcastd(xtmp, xtmp);
7131 
7132         subl(count, 16 << shift);
7133         jcc(Assembler::less, L_check_fill_32_bytes);
7134         align(16);
7135 
7136         BIND(L_fill_64_bytes_loop);
7137         vmovdqu(Address(to, 0), xtmp);
7138         vmovdqu(Address(to, 32), xtmp);
7139         addptr(to, 64);
7140         subl(count, 16 << shift);
7141         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7142 
7143         BIND(L_check_fill_32_bytes);
7144         addl(count, 8 << shift);
7145         jccb(Assembler::less, L_check_fill_8_bytes);
7146         vmovdqu(Address(to, 0), xtmp);
7147         addptr(to, 32);
7148         subl(count, 8 << shift);
7149 
7150         BIND(L_check_fill_8_bytes);
7151         // clean upper bits of YMM registers
7152         movdl(xtmp, value);
7153         pshufd(xtmp, xtmp, 0);
7154       } else {
7155         // Fill 32-byte chunks
7156         pshufd(xtmp, xtmp, 0);
7157 
7158         subl(count, 8 << shift);
7159         jcc(Assembler::less, L_check_fill_8_bytes);
7160         align(16);
7161 
7162         BIND(L_fill_32_bytes_loop);
7163 
7164         if (UseUnalignedLoadStores) {
7165           movdqu(Address(to, 0), xtmp);
7166           movdqu(Address(to, 16), xtmp);
7167         } else {
7168           movq(Address(to, 0), xtmp);
7169           movq(Address(to, 8), xtmp);
7170           movq(Address(to, 16), xtmp);
7171           movq(Address(to, 24), xtmp);
7172         }
7173 
7174         addptr(to, 32);
7175         subl(count, 8 << shift);
7176         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7177 
7178         BIND(L_check_fill_8_bytes);
7179       }
7180       addl(count, 8 << shift);
7181       jccb(Assembler::zero, L_exit);
7182       jmpb(L_fill_8_bytes);
7183 
7184       //
7185       // length is too short, just fill qwords
7186       //
7187       BIND(L_fill_8_bytes_loop);
7188       movq(Address(to, 0), xtmp);
7189       addptr(to, 8);
7190       BIND(L_fill_8_bytes);
7191       subl(count, 1 << (shift + 1));
7192       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7193     }
7194   }
7195   // fill trailing 4 bytes
7196   BIND(L_fill_4_bytes);
7197   testl(count, 1<<shift);
7198   jccb(Assembler::zero, L_fill_2_bytes);
7199   movl(Address(to, 0), value);
7200   if (t == T_BYTE || t == T_SHORT) {
7201     addptr(to, 4);
7202     BIND(L_fill_2_bytes);
7203     // fill trailing 2 bytes
7204     testl(count, 1<<(shift-1));
7205     jccb(Assembler::zero, L_fill_byte);
7206     movw(Address(to, 0), value);
7207     if (t == T_BYTE) {
7208       addptr(to, 2);
7209       BIND(L_fill_byte);
7210       // fill trailing byte
7211       testl(count, 1);
7212       jccb(Assembler::zero, L_exit);
7213       movb(Address(to, 0), value);
7214     } else {
7215       BIND(L_fill_byte);
7216     }
7217   } else {
7218     BIND(L_fill_2_bytes);
7219   }
7220   BIND(L_exit);
7221 }
7222 
7223 // encode char[] to byte[] in ISO_8859_1
7224 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7225                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7226                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7227                                       Register tmp5, Register result) {
7228   // rsi: src
7229   // rdi: dst
7230   // rdx: len
7231   // rcx: tmp5
7232   // rax: result
7233   ShortBranchVerifier sbv(this);
7234   assert_different_registers(src, dst, len, tmp5, result);
7235   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7236 
7237   // set result
7238   xorl(result, result);
7239   // check for zero length
7240   testl(len, len);
7241   jcc(Assembler::zero, L_done);
7242   movl(result, len);
7243 
7244   // Setup pointers
7245   lea(src, Address(src, len, Address::times_2)); // char[]
7246   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7247   negptr(len);
7248 
7249   if (UseSSE42Intrinsics || UseAVX >= 2) {
7250     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7251     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7252 
7253     if (UseAVX >= 2) {
7254       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7255       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7256       movdl(tmp1Reg, tmp5);
7257       vpbroadcastd(tmp1Reg, tmp1Reg);
7258       jmpb(L_chars_32_check);
7259 
7260       bind(L_copy_32_chars);
7261       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7262       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7263       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7264       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7265       jccb(Assembler::notZero, L_copy_32_chars_exit);
7266       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7267       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7268       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7269 
7270       bind(L_chars_32_check);
7271       addptr(len, 32);
7272       jccb(Assembler::lessEqual, L_copy_32_chars);
7273 
7274       bind(L_copy_32_chars_exit);
7275       subptr(len, 16);
7276       jccb(Assembler::greater, L_copy_16_chars_exit);
7277 
7278     } else if (UseSSE42Intrinsics) {
7279       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7280       movdl(tmp1Reg, tmp5);
7281       pshufd(tmp1Reg, tmp1Reg, 0);
7282       jmpb(L_chars_16_check);
7283     }
7284 
7285     bind(L_copy_16_chars);
7286     if (UseAVX >= 2) {
7287       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7288       vptest(tmp2Reg, tmp1Reg);
7289       jccb(Assembler::notZero, L_copy_16_chars_exit);
7290       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7291       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7292     } else {
7293       if (UseAVX > 0) {
7294         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7295         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7296         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7297       } else {
7298         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7299         por(tmp2Reg, tmp3Reg);
7300         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7301         por(tmp2Reg, tmp4Reg);
7302       }
7303       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7304       jccb(Assembler::notZero, L_copy_16_chars_exit);
7305       packuswb(tmp3Reg, tmp4Reg);
7306     }
7307     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7308 
7309     bind(L_chars_16_check);
7310     addptr(len, 16);
7311     jccb(Assembler::lessEqual, L_copy_16_chars);
7312 
7313     bind(L_copy_16_chars_exit);
7314     if (UseAVX >= 2) {
7315       // clean upper bits of YMM registers
7316       vpxor(tmp2Reg, tmp2Reg);
7317       vpxor(tmp3Reg, tmp3Reg);
7318       vpxor(tmp4Reg, tmp4Reg);
7319       movdl(tmp1Reg, tmp5);
7320       pshufd(tmp1Reg, tmp1Reg, 0);
7321     }
7322     subptr(len, 8);
7323     jccb(Assembler::greater, L_copy_8_chars_exit);
7324 
7325     bind(L_copy_8_chars);
7326     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7327     ptest(tmp3Reg, tmp1Reg);
7328     jccb(Assembler::notZero, L_copy_8_chars_exit);
7329     packuswb(tmp3Reg, tmp1Reg);
7330     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7331     addptr(len, 8);
7332     jccb(Assembler::lessEqual, L_copy_8_chars);
7333 
7334     bind(L_copy_8_chars_exit);
7335     subptr(len, 8);
7336     jccb(Assembler::zero, L_done);
7337   }
7338 
7339   bind(L_copy_1_char);
7340   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7341   testl(tmp5, 0xff00);      // check if Unicode char
7342   jccb(Assembler::notZero, L_copy_1_char_exit);
7343   movb(Address(dst, len, Address::times_1, 0), tmp5);
7344   addptr(len, 1);
7345   jccb(Assembler::less, L_copy_1_char);
7346 
7347   bind(L_copy_1_char_exit);
7348   addptr(result, len); // len is negative count of not processed elements
7349   bind(L_done);
7350 }
7351 
7352 #ifdef _LP64
7353 /**
7354  * Helper for multiply_to_len().
7355  */
7356 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7357   addq(dest_lo, src1);
7358   adcq(dest_hi, 0);
7359   addq(dest_lo, src2);
7360   adcq(dest_hi, 0);
7361 }
7362 
7363 /**
7364  * Multiply 64 bit by 64 bit first loop.
7365  */
7366 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7367                                            Register y, Register y_idx, Register z,
7368                                            Register carry, Register product,
7369                                            Register idx, Register kdx) {
7370   //
7371   //  jlong carry, x[], y[], z[];
7372   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7373   //    huge_128 product = y[idx] * x[xstart] + carry;
7374   //    z[kdx] = (jlong)product;
7375   //    carry  = (jlong)(product >>> 64);
7376   //  }
7377   //  z[xstart] = carry;
7378   //
7379 
7380   Label L_first_loop, L_first_loop_exit;
7381   Label L_one_x, L_one_y, L_multiply;
7382 
7383   decrementl(xstart);
7384   jcc(Assembler::negative, L_one_x);
7385 
7386   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7387   rorq(x_xstart, 32); // convert big-endian to little-endian
7388 
7389   bind(L_first_loop);
7390   decrementl(idx);
7391   jcc(Assembler::negative, L_first_loop_exit);
7392   decrementl(idx);
7393   jcc(Assembler::negative, L_one_y);
7394   movq(y_idx, Address(y, idx, Address::times_4,  0));
7395   rorq(y_idx, 32); // convert big-endian to little-endian
7396   bind(L_multiply);
7397   movq(product, x_xstart);
7398   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7399   addq(product, carry);
7400   adcq(rdx, 0);
7401   subl(kdx, 2);
7402   movl(Address(z, kdx, Address::times_4,  4), product);
7403   shrq(product, 32);
7404   movl(Address(z, kdx, Address::times_4,  0), product);
7405   movq(carry, rdx);
7406   jmp(L_first_loop);
7407 
7408   bind(L_one_y);
7409   movl(y_idx, Address(y,  0));
7410   jmp(L_multiply);
7411 
7412   bind(L_one_x);
7413   movl(x_xstart, Address(x,  0));
7414   jmp(L_first_loop);
7415 
7416   bind(L_first_loop_exit);
7417 }
7418 
7419 /**
7420  * Multiply 64 bit by 64 bit and add 128 bit.
7421  */
7422 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7423                                             Register yz_idx, Register idx,
7424                                             Register carry, Register product, int offset) {
7425   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7426   //     z[kdx] = (jlong)product;
7427 
7428   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7429   rorq(yz_idx, 32); // convert big-endian to little-endian
7430   movq(product, x_xstart);
7431   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7432   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7433   rorq(yz_idx, 32); // convert big-endian to little-endian
7434 
7435   add2_with_carry(rdx, product, carry, yz_idx);
7436 
7437   movl(Address(z, idx, Address::times_4,  offset+4), product);
7438   shrq(product, 32);
7439   movl(Address(z, idx, Address::times_4,  offset), product);
7440 
7441 }
7442 
7443 /**
7444  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7445  */
7446 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7447                                              Register yz_idx, Register idx, Register jdx,
7448                                              Register carry, Register product,
7449                                              Register carry2) {
7450   //   jlong carry, x[], y[], z[];
7451   //   int kdx = ystart+1;
7452   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7453   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7454   //     z[kdx+idx+1] = (jlong)product;
7455   //     jlong carry2  = (jlong)(product >>> 64);
7456   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7457   //     z[kdx+idx] = (jlong)product;
7458   //     carry  = (jlong)(product >>> 64);
7459   //   }
7460   //   idx += 2;
7461   //   if (idx > 0) {
7462   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7463   //     z[kdx+idx] = (jlong)product;
7464   //     carry  = (jlong)(product >>> 64);
7465   //   }
7466   //
7467 
7468   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7469 
7470   movl(jdx, idx);
7471   andl(jdx, 0xFFFFFFFC);
7472   shrl(jdx, 2);
7473 
7474   bind(L_third_loop);
7475   subl(jdx, 1);
7476   jcc(Assembler::negative, L_third_loop_exit);
7477   subl(idx, 4);
7478 
7479   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7480   movq(carry2, rdx);
7481 
7482   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7483   movq(carry, rdx);
7484   jmp(L_third_loop);
7485 
7486   bind (L_third_loop_exit);
7487 
7488   andl (idx, 0x3);
7489   jcc(Assembler::zero, L_post_third_loop_done);
7490 
7491   Label L_check_1;
7492   subl(idx, 2);
7493   jcc(Assembler::negative, L_check_1);
7494 
7495   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7496   movq(carry, rdx);
7497 
7498   bind (L_check_1);
7499   addl (idx, 0x2);
7500   andl (idx, 0x1);
7501   subl(idx, 1);
7502   jcc(Assembler::negative, L_post_third_loop_done);
7503 
7504   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7505   movq(product, x_xstart);
7506   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7507   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7508 
7509   add2_with_carry(rdx, product, yz_idx, carry);
7510 
7511   movl(Address(z, idx, Address::times_4,  0), product);
7512   shrq(product, 32);
7513 
7514   shlq(rdx, 32);
7515   orq(product, rdx);
7516   movq(carry, product);
7517 
7518   bind(L_post_third_loop_done);
7519 }
7520 
7521 /**
7522  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7523  *
7524  */
7525 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7526                                                   Register carry, Register carry2,
7527                                                   Register idx, Register jdx,
7528                                                   Register yz_idx1, Register yz_idx2,
7529                                                   Register tmp, Register tmp3, Register tmp4) {
7530   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7531 
7532   //   jlong carry, x[], y[], z[];
7533   //   int kdx = ystart+1;
7534   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7535   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7536   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7537   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7538   //     carry  = (jlong)(tmp4 >>> 64);
7539   //     z[kdx+idx+1] = (jlong)tmp3;
7540   //     z[kdx+idx] = (jlong)tmp4;
7541   //   }
7542   //   idx += 2;
7543   //   if (idx > 0) {
7544   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7545   //     z[kdx+idx] = (jlong)yz_idx1;
7546   //     carry  = (jlong)(yz_idx1 >>> 64);
7547   //   }
7548   //
7549 
7550   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7551 
7552   movl(jdx, idx);
7553   andl(jdx, 0xFFFFFFFC);
7554   shrl(jdx, 2);
7555 
7556   bind(L_third_loop);
7557   subl(jdx, 1);
7558   jcc(Assembler::negative, L_third_loop_exit);
7559   subl(idx, 4);
7560 
7561   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7562   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7563   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7564   rorxq(yz_idx2, yz_idx2, 32);
7565 
7566   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7567   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7568 
7569   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7570   rorxq(yz_idx1, yz_idx1, 32);
7571   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7572   rorxq(yz_idx2, yz_idx2, 32);
7573 
7574   if (VM_Version::supports_adx()) {
7575     adcxq(tmp3, carry);
7576     adoxq(tmp3, yz_idx1);
7577 
7578     adcxq(tmp4, tmp);
7579     adoxq(tmp4, yz_idx2);
7580 
7581     movl(carry, 0); // does not affect flags
7582     adcxq(carry2, carry);
7583     adoxq(carry2, carry);
7584   } else {
7585     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7586     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7587   }
7588   movq(carry, carry2);
7589 
7590   movl(Address(z, idx, Address::times_4, 12), tmp3);
7591   shrq(tmp3, 32);
7592   movl(Address(z, idx, Address::times_4,  8), tmp3);
7593 
7594   movl(Address(z, idx, Address::times_4,  4), tmp4);
7595   shrq(tmp4, 32);
7596   movl(Address(z, idx, Address::times_4,  0), tmp4);
7597 
7598   jmp(L_third_loop);
7599 
7600   bind (L_third_loop_exit);
7601 
7602   andl (idx, 0x3);
7603   jcc(Assembler::zero, L_post_third_loop_done);
7604 
7605   Label L_check_1;
7606   subl(idx, 2);
7607   jcc(Assembler::negative, L_check_1);
7608 
7609   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7610   rorxq(yz_idx1, yz_idx1, 32);
7611   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7612   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7613   rorxq(yz_idx2, yz_idx2, 32);
7614 
7615   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7616 
7617   movl(Address(z, idx, Address::times_4,  4), tmp3);
7618   shrq(tmp3, 32);
7619   movl(Address(z, idx, Address::times_4,  0), tmp3);
7620   movq(carry, tmp4);
7621 
7622   bind (L_check_1);
7623   addl (idx, 0x2);
7624   andl (idx, 0x1);
7625   subl(idx, 1);
7626   jcc(Assembler::negative, L_post_third_loop_done);
7627   movl(tmp4, Address(y, idx, Address::times_4,  0));
7628   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7629   movl(tmp4, Address(z, idx, Address::times_4,  0));
7630 
7631   add2_with_carry(carry2, tmp3, tmp4, carry);
7632 
7633   movl(Address(z, idx, Address::times_4,  0), tmp3);
7634   shrq(tmp3, 32);
7635 
7636   shlq(carry2, 32);
7637   orq(tmp3, carry2);
7638   movq(carry, tmp3);
7639 
7640   bind(L_post_third_loop_done);
7641 }
7642 
7643 /**
7644  * Code for BigInteger::multiplyToLen() instrinsic.
7645  *
7646  * rdi: x
7647  * rax: xlen
7648  * rsi: y
7649  * rcx: ylen
7650  * r8:  z
7651  * r11: zlen
7652  * r12: tmp1
7653  * r13: tmp2
7654  * r14: tmp3
7655  * r15: tmp4
7656  * rbx: tmp5
7657  *
7658  */
7659 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7660                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7661   ShortBranchVerifier sbv(this);
7662   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7663 
7664   push(tmp1);
7665   push(tmp2);
7666   push(tmp3);
7667   push(tmp4);
7668   push(tmp5);
7669 
7670   push(xlen);
7671   push(zlen);
7672 
7673   const Register idx = tmp1;
7674   const Register kdx = tmp2;
7675   const Register xstart = tmp3;
7676 
7677   const Register y_idx = tmp4;
7678   const Register carry = tmp5;
7679   const Register product  = xlen;
7680   const Register x_xstart = zlen;  // reuse register
7681 
7682   // First Loop.
7683   //
7684   //  final static long LONG_MASK = 0xffffffffL;
7685   //  int xstart = xlen - 1;
7686   //  int ystart = ylen - 1;
7687   //  long carry = 0;
7688   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7689   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7690   //    z[kdx] = (int)product;
7691   //    carry = product >>> 32;
7692   //  }
7693   //  z[xstart] = (int)carry;
7694   //
7695 
7696   movl(idx, ylen);      // idx = ylen;
7697   movl(kdx, zlen);      // kdx = xlen+ylen;
7698   xorq(carry, carry);   // carry = 0;
7699 
7700   Label L_done;
7701 
7702   movl(xstart, xlen);
7703   decrementl(xstart);
7704   jcc(Assembler::negative, L_done);
7705 
7706   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7707 
7708   Label L_second_loop;
7709   testl(kdx, kdx);
7710   jcc(Assembler::zero, L_second_loop);
7711 
7712   Label L_carry;
7713   subl(kdx, 1);
7714   jcc(Assembler::zero, L_carry);
7715 
7716   movl(Address(z, kdx, Address::times_4,  0), carry);
7717   shrq(carry, 32);
7718   subl(kdx, 1);
7719 
7720   bind(L_carry);
7721   movl(Address(z, kdx, Address::times_4,  0), carry);
7722 
7723   // Second and third (nested) loops.
7724   //
7725   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7726   //   carry = 0;
7727   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7728   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7729   //                    (z[k] & LONG_MASK) + carry;
7730   //     z[k] = (int)product;
7731   //     carry = product >>> 32;
7732   //   }
7733   //   z[i] = (int)carry;
7734   // }
7735   //
7736   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7737 
7738   const Register jdx = tmp1;
7739 
7740   bind(L_second_loop);
7741   xorl(carry, carry);    // carry = 0;
7742   movl(jdx, ylen);       // j = ystart+1
7743 
7744   subl(xstart, 1);       // i = xstart-1;
7745   jcc(Assembler::negative, L_done);
7746 
7747   push (z);
7748 
7749   Label L_last_x;
7750   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7751   subl(xstart, 1);       // i = xstart-1;
7752   jcc(Assembler::negative, L_last_x);
7753 
7754   if (UseBMI2Instructions) {
7755     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7756     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7757   } else {
7758     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7759     rorq(x_xstart, 32);  // convert big-endian to little-endian
7760   }
7761 
7762   Label L_third_loop_prologue;
7763   bind(L_third_loop_prologue);
7764 
7765   push (x);
7766   push (xstart);
7767   push (ylen);
7768 
7769 
7770   if (UseBMI2Instructions) {
7771     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7772   } else { // !UseBMI2Instructions
7773     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7774   }
7775 
7776   pop(ylen);
7777   pop(xlen);
7778   pop(x);
7779   pop(z);
7780 
7781   movl(tmp3, xlen);
7782   addl(tmp3, 1);
7783   movl(Address(z, tmp3, Address::times_4,  0), carry);
7784   subl(tmp3, 1);
7785   jccb(Assembler::negative, L_done);
7786 
7787   shrq(carry, 32);
7788   movl(Address(z, tmp3, Address::times_4,  0), carry);
7789   jmp(L_second_loop);
7790 
7791   // Next infrequent code is moved outside loops.
7792   bind(L_last_x);
7793   if (UseBMI2Instructions) {
7794     movl(rdx, Address(x,  0));
7795   } else {
7796     movl(x_xstart, Address(x,  0));
7797   }
7798   jmp(L_third_loop_prologue);
7799 
7800   bind(L_done);
7801 
7802   pop(zlen);
7803   pop(xlen);
7804 
7805   pop(tmp5);
7806   pop(tmp4);
7807   pop(tmp3);
7808   pop(tmp2);
7809   pop(tmp1);
7810 }
7811 
7812 //Helper functions for square_to_len()
7813 
7814 /**
7815  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
7816  * Preserves x and z and modifies rest of the registers.
7817  */
7818 
7819 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
7820   // Perform square and right shift by 1
7821   // Handle odd xlen case first, then for even xlen do the following
7822   // jlong carry = 0;
7823   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
7824   //     huge_128 product = x[j:j+1] * x[j:j+1];
7825   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
7826   //     z[i+2:i+3] = (jlong)(product >>> 1);
7827   //     carry = (jlong)product;
7828   // }
7829 
7830   xorq(tmp5, tmp5);     // carry
7831   xorq(rdxReg, rdxReg);
7832   xorl(tmp1, tmp1);     // index for x
7833   xorl(tmp4, tmp4);     // index for z
7834 
7835   Label L_first_loop, L_first_loop_exit;
7836 
7837   testl(xlen, 1);
7838   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
7839 
7840   // Square and right shift by 1 the odd element using 32 bit multiply
7841   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
7842   imulq(raxReg, raxReg);
7843   shrq(raxReg, 1);
7844   adcq(tmp5, 0);
7845   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
7846   incrementl(tmp1);
7847   addl(tmp4, 2);
7848 
7849   // Square and  right shift by 1 the rest using 64 bit multiply
7850   bind(L_first_loop);
7851   cmpptr(tmp1, xlen);
7852   jccb(Assembler::equal, L_first_loop_exit);
7853 
7854   // Square
7855   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
7856   rorq(raxReg, 32);    // convert big-endian to little-endian
7857   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
7858 
7859   // Right shift by 1 and save carry
7860   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
7861   rcrq(rdxReg, 1);
7862   rcrq(raxReg, 1);
7863   adcq(tmp5, 0);
7864 
7865   // Store result in z
7866   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
7867   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
7868 
7869   // Update indices for x and z
7870   addl(tmp1, 2);
7871   addl(tmp4, 4);
7872   jmp(L_first_loop);
7873 
7874   bind(L_first_loop_exit);
7875 }
7876 
7877 
7878 /**
7879  * Perform the following multiply add operation using BMI2 instructions
7880  * carry:sum = sum + op1*op2 + carry
7881  * op2 should be in rdx
7882  * op2 is preserved, all other registers are modified
7883  */
7884 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
7885   // assert op2 is rdx
7886   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
7887   addq(sum, carry);
7888   adcq(tmp2, 0);
7889   addq(sum, op1);
7890   adcq(tmp2, 0);
7891   movq(carry, tmp2);
7892 }
7893 
7894 /**
7895  * Perform the following multiply add operation:
7896  * carry:sum = sum + op1*op2 + carry
7897  * Preserves op1, op2 and modifies rest of registers
7898  */
7899 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
7900   // rdx:rax = op1 * op2
7901   movq(raxReg, op2);
7902   mulq(op1);
7903 
7904   //  rdx:rax = sum + carry + rdx:rax
7905   addq(sum, carry);
7906   adcq(rdxReg, 0);
7907   addq(sum, raxReg);
7908   adcq(rdxReg, 0);
7909 
7910   // carry:sum = rdx:sum
7911   movq(carry, rdxReg);
7912 }
7913 
7914 /**
7915  * Add 64 bit long carry into z[] with carry propogation.
7916  * Preserves z and carry register values and modifies rest of registers.
7917  *
7918  */
7919 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
7920   Label L_fourth_loop, L_fourth_loop_exit;
7921 
7922   movl(tmp1, 1);
7923   subl(zlen, 2);
7924   addq(Address(z, zlen, Address::times_4, 0), carry);
7925 
7926   bind(L_fourth_loop);
7927   jccb(Assembler::carryClear, L_fourth_loop_exit);
7928   subl(zlen, 2);
7929   jccb(Assembler::negative, L_fourth_loop_exit);
7930   addq(Address(z, zlen, Address::times_4, 0), tmp1);
7931   jmp(L_fourth_loop);
7932   bind(L_fourth_loop_exit);
7933 }
7934 
7935 /**
7936  * Shift z[] left by 1 bit.
7937  * Preserves x, len, z and zlen registers and modifies rest of the registers.
7938  *
7939  */
7940 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
7941 
7942   Label L_fifth_loop, L_fifth_loop_exit;
7943 
7944   // Fifth loop
7945   // Perform primitiveLeftShift(z, zlen, 1)
7946 
7947   const Register prev_carry = tmp1;
7948   const Register new_carry = tmp4;
7949   const Register value = tmp2;
7950   const Register zidx = tmp3;
7951 
7952   // int zidx, carry;
7953   // long value;
7954   // carry = 0;
7955   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
7956   //    (carry:value)  = (z[i] << 1) | carry ;
7957   //    z[i] = value;
7958   // }
7959 
7960   movl(zidx, zlen);
7961   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
7962 
7963   bind(L_fifth_loop);
7964   decl(zidx);  // Use decl to preserve carry flag
7965   decl(zidx);
7966   jccb(Assembler::negative, L_fifth_loop_exit);
7967 
7968   if (UseBMI2Instructions) {
7969      movq(value, Address(z, zidx, Address::times_4, 0));
7970      rclq(value, 1);
7971      rorxq(value, value, 32);
7972      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7973   }
7974   else {
7975     // clear new_carry
7976     xorl(new_carry, new_carry);
7977 
7978     // Shift z[i] by 1, or in previous carry and save new carry
7979     movq(value, Address(z, zidx, Address::times_4, 0));
7980     shlq(value, 1);
7981     adcl(new_carry, 0);
7982 
7983     orq(value, prev_carry);
7984     rorq(value, 0x20);
7985     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
7986 
7987     // Set previous carry = new carry
7988     movl(prev_carry, new_carry);
7989   }
7990   jmp(L_fifth_loop);
7991 
7992   bind(L_fifth_loop_exit);
7993 }
7994 
7995 
7996 /**
7997  * Code for BigInteger::squareToLen() intrinsic
7998  *
7999  * rdi: x
8000  * rsi: len
8001  * r8:  z
8002  * rcx: zlen
8003  * r12: tmp1
8004  * r13: tmp2
8005  * r14: tmp3
8006  * r15: tmp4
8007  * rbx: tmp5
8008  *
8009  */
8010 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8011 
8012   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
8013   push(tmp1);
8014   push(tmp2);
8015   push(tmp3);
8016   push(tmp4);
8017   push(tmp5);
8018 
8019   // First loop
8020   // Store the squares, right shifted one bit (i.e., divided by 2).
8021   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8022 
8023   // Add in off-diagonal sums.
8024   //
8025   // Second, third (nested) and fourth loops.
8026   // zlen +=2;
8027   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8028   //    carry = 0;
8029   //    long op2 = x[xidx:xidx+1];
8030   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8031   //       k -= 2;
8032   //       long op1 = x[j:j+1];
8033   //       long sum = z[k:k+1];
8034   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8035   //       z[k:k+1] = sum;
8036   //    }
8037   //    add_one_64(z, k, carry, tmp_regs);
8038   // }
8039 
8040   const Register carry = tmp5;
8041   const Register sum = tmp3;
8042   const Register op1 = tmp4;
8043   Register op2 = tmp2;
8044 
8045   push(zlen);
8046   push(len);
8047   addl(zlen,2);
8048   bind(L_second_loop);
8049   xorq(carry, carry);
8050   subl(zlen, 4);
8051   subl(len, 2);
8052   push(zlen);
8053   push(len);
8054   cmpl(len, 0);
8055   jccb(Assembler::lessEqual, L_second_loop_exit);
8056 
8057   // Multiply an array by one 64 bit long.
8058   if (UseBMI2Instructions) {
8059     op2 = rdxReg;
8060     movq(op2, Address(x, len, Address::times_4,  0));
8061     rorxq(op2, op2, 32);
8062   }
8063   else {
8064     movq(op2, Address(x, len, Address::times_4,  0));
8065     rorq(op2, 32);
8066   }
8067 
8068   bind(L_third_loop);
8069   decrementl(len);
8070   jccb(Assembler::negative, L_third_loop_exit);
8071   decrementl(len);
8072   jccb(Assembler::negative, L_last_x);
8073 
8074   movq(op1, Address(x, len, Address::times_4,  0));
8075   rorq(op1, 32);
8076 
8077   bind(L_multiply);
8078   subl(zlen, 2);
8079   movq(sum, Address(z, zlen, Address::times_4,  0));
8080 
8081   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8082   if (UseBMI2Instructions) {
8083     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8084   }
8085   else {
8086     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8087   }
8088 
8089   movq(Address(z, zlen, Address::times_4, 0), sum);
8090 
8091   jmp(L_third_loop);
8092   bind(L_third_loop_exit);
8093 
8094   // Fourth loop
8095   // Add 64 bit long carry into z with carry propogation.
8096   // Uses offsetted zlen.
8097   add_one_64(z, zlen, carry, tmp1);
8098 
8099   pop(len);
8100   pop(zlen);
8101   jmp(L_second_loop);
8102 
8103   // Next infrequent code is moved outside loops.
8104   bind(L_last_x);
8105   movl(op1, Address(x, 0));
8106   jmp(L_multiply);
8107 
8108   bind(L_second_loop_exit);
8109   pop(len);
8110   pop(zlen);
8111   pop(len);
8112   pop(zlen);
8113 
8114   // Fifth loop
8115   // Shift z left 1 bit.
8116   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8117 
8118   // z[zlen-1] |= x[len-1] & 1;
8119   movl(tmp3, Address(x, len, Address::times_4, -4));
8120   andl(tmp3, 1);
8121   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8122 
8123   pop(tmp5);
8124   pop(tmp4);
8125   pop(tmp3);
8126   pop(tmp2);
8127   pop(tmp1);
8128 }
8129 
8130 /**
8131  * Helper function for mul_add()
8132  * Multiply the in[] by int k and add to out[] starting at offset offs using
8133  * 128 bit by 32 bit multiply and return the carry in tmp5.
8134  * Only quad int aligned length of in[] is operated on in this function.
8135  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8136  * This function preserves out, in and k registers.
8137  * len and offset point to the appropriate index in "in" & "out" correspondingly
8138  * tmp5 has the carry.
8139  * other registers are temporary and are modified.
8140  *
8141  */
8142 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8143   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8144   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8145 
8146   Label L_first_loop, L_first_loop_exit;
8147 
8148   movl(tmp1, len);
8149   shrl(tmp1, 2);
8150 
8151   bind(L_first_loop);
8152   subl(tmp1, 1);
8153   jccb(Assembler::negative, L_first_loop_exit);
8154 
8155   subl(len, 4);
8156   subl(offset, 4);
8157 
8158   Register op2 = tmp2;
8159   const Register sum = tmp3;
8160   const Register op1 = tmp4;
8161   const Register carry = tmp5;
8162 
8163   if (UseBMI2Instructions) {
8164     op2 = rdxReg;
8165   }
8166 
8167   movq(op1, Address(in, len, Address::times_4,  8));
8168   rorq(op1, 32);
8169   movq(sum, Address(out, offset, Address::times_4,  8));
8170   rorq(sum, 32);
8171   if (UseBMI2Instructions) {
8172     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8173   }
8174   else {
8175     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8176   }
8177   // Store back in big endian from little endian
8178   rorq(sum, 0x20);
8179   movq(Address(out, offset, Address::times_4,  8), sum);
8180 
8181   movq(op1, Address(in, len, Address::times_4,  0));
8182   rorq(op1, 32);
8183   movq(sum, Address(out, offset, Address::times_4,  0));
8184   rorq(sum, 32);
8185   if (UseBMI2Instructions) {
8186     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8187   }
8188   else {
8189     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8190   }
8191   // Store back in big endian from little endian
8192   rorq(sum, 0x20);
8193   movq(Address(out, offset, Address::times_4,  0), sum);
8194 
8195   jmp(L_first_loop);
8196   bind(L_first_loop_exit);
8197 }
8198 
8199 /**
8200  * Code for BigInteger::mulAdd() intrinsic
8201  *
8202  * rdi: out
8203  * rsi: in
8204  * r11: offs (out.length - offset)
8205  * rcx: len
8206  * r8:  k
8207  * r12: tmp1
8208  * r13: tmp2
8209  * r14: tmp3
8210  * r15: tmp4
8211  * rbx: tmp5
8212  * Multiply the in[] by word k and add to out[], return the carry in rax
8213  */
8214 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8215    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8216    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8217 
8218   Label L_carry, L_last_in, L_done;
8219 
8220 // carry = 0;
8221 // for (int j=len-1; j >= 0; j--) {
8222 //    long product = (in[j] & LONG_MASK) * kLong +
8223 //                   (out[offs] & LONG_MASK) + carry;
8224 //    out[offs--] = (int)product;
8225 //    carry = product >>> 32;
8226 // }
8227 //
8228   push(tmp1);
8229   push(tmp2);
8230   push(tmp3);
8231   push(tmp4);
8232   push(tmp5);
8233 
8234   Register op2 = tmp2;
8235   const Register sum = tmp3;
8236   const Register op1 = tmp4;
8237   const Register carry =  tmp5;
8238 
8239   if (UseBMI2Instructions) {
8240     op2 = rdxReg;
8241     movl(op2, k);
8242   }
8243   else {
8244     movl(op2, k);
8245   }
8246 
8247   xorq(carry, carry);
8248 
8249   //First loop
8250 
8251   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8252   //The carry is in tmp5
8253   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8254 
8255   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8256   decrementl(len);
8257   jccb(Assembler::negative, L_carry);
8258   decrementl(len);
8259   jccb(Assembler::negative, L_last_in);
8260 
8261   movq(op1, Address(in, len, Address::times_4,  0));
8262   rorq(op1, 32);
8263 
8264   subl(offs, 2);
8265   movq(sum, Address(out, offs, Address::times_4,  0));
8266   rorq(sum, 32);
8267 
8268   if (UseBMI2Instructions) {
8269     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8270   }
8271   else {
8272     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8273   }
8274 
8275   // Store back in big endian from little endian
8276   rorq(sum, 0x20);
8277   movq(Address(out, offs, Address::times_4,  0), sum);
8278 
8279   testl(len, len);
8280   jccb(Assembler::zero, L_carry);
8281 
8282   //Multiply the last in[] entry, if any
8283   bind(L_last_in);
8284   movl(op1, Address(in, 0));
8285   movl(sum, Address(out, offs, Address::times_4,  -4));
8286 
8287   movl(raxReg, k);
8288   mull(op1); //tmp4 * eax -> edx:eax
8289   addl(sum, carry);
8290   adcl(rdxReg, 0);
8291   addl(sum, raxReg);
8292   adcl(rdxReg, 0);
8293   movl(carry, rdxReg);
8294 
8295   movl(Address(out, offs, Address::times_4,  -4), sum);
8296 
8297   bind(L_carry);
8298   //return tmp5/carry as carry in rax
8299   movl(rax, carry);
8300 
8301   bind(L_done);
8302   pop(tmp5);
8303   pop(tmp4);
8304   pop(tmp3);
8305   pop(tmp2);
8306   pop(tmp1);
8307 }
8308 #endif
8309 
8310 /**
8311  * Emits code to update CRC-32 with a byte value according to constants in table
8312  *
8313  * @param [in,out]crc   Register containing the crc.
8314  * @param [in]val       Register containing the byte to fold into the CRC.
8315  * @param [in]table     Register containing the table of crc constants.
8316  *
8317  * uint32_t crc;
8318  * val = crc_table[(val ^ crc) & 0xFF];
8319  * crc = val ^ (crc >> 8);
8320  *
8321  */
8322 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8323   xorl(val, crc);
8324   andl(val, 0xFF);
8325   shrl(crc, 8); // unsigned shift
8326   xorl(crc, Address(table, val, Address::times_4, 0));
8327 }
8328 
8329 /**
8330  * Fold 128-bit data chunk
8331  */
8332 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8333   if (UseAVX > 0) {
8334     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8335     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8336     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8337     pxor(xcrc, xtmp);
8338   } else {
8339     movdqa(xtmp, xcrc);
8340     pclmulhdq(xtmp, xK);   // [123:64]
8341     pclmulldq(xcrc, xK);   // [63:0]
8342     pxor(xcrc, xtmp);
8343     movdqu(xtmp, Address(buf, offset));
8344     pxor(xcrc, xtmp);
8345   }
8346 }
8347 
8348 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8349   if (UseAVX > 0) {
8350     vpclmulhdq(xtmp, xK, xcrc);
8351     vpclmulldq(xcrc, xK, xcrc);
8352     pxor(xcrc, xbuf);
8353     pxor(xcrc, xtmp);
8354   } else {
8355     movdqa(xtmp, xcrc);
8356     pclmulhdq(xtmp, xK);
8357     pclmulldq(xcrc, xK);
8358     pxor(xcrc, xbuf);
8359     pxor(xcrc, xtmp);
8360   }
8361 }
8362 
8363 /**
8364  * 8-bit folds to compute 32-bit CRC
8365  *
8366  * uint64_t xcrc;
8367  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8368  */
8369 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8370   movdl(tmp, xcrc);
8371   andl(tmp, 0xFF);
8372   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8373   psrldq(xcrc, 1); // unsigned shift one byte
8374   pxor(xcrc, xtmp);
8375 }
8376 
8377 /**
8378  * uint32_t crc;
8379  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8380  */
8381 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8382   movl(tmp, crc);
8383   andl(tmp, 0xFF);
8384   shrl(crc, 8);
8385   xorl(crc, Address(table, tmp, Address::times_4, 0));
8386 }
8387 
8388 /**
8389  * @param crc   register containing existing CRC (32-bit)
8390  * @param buf   register pointing to input byte buffer (byte*)
8391  * @param len   register containing number of bytes
8392  * @param table register that will contain address of CRC table
8393  * @param tmp   scratch register
8394  */
8395 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8396   assert_different_registers(crc, buf, len, table, tmp, rax);
8397 
8398   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8399   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8400 
8401   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8402   notl(crc); // ~crc
8403   cmpl(len, 16);
8404   jcc(Assembler::less, L_tail);
8405 
8406   // Align buffer to 16 bytes
8407   movl(tmp, buf);
8408   andl(tmp, 0xF);
8409   jccb(Assembler::zero, L_aligned);
8410   subl(tmp,  16);
8411   addl(len, tmp);
8412 
8413   align(4);
8414   BIND(L_align_loop);
8415   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8416   update_byte_crc32(crc, rax, table);
8417   increment(buf);
8418   incrementl(tmp);
8419   jccb(Assembler::less, L_align_loop);
8420 
8421   BIND(L_aligned);
8422   movl(tmp, len); // save
8423   shrl(len, 4);
8424   jcc(Assembler::zero, L_tail_restore);
8425 
8426   // Fold crc into first bytes of vector
8427   movdqa(xmm1, Address(buf, 0));
8428   movdl(rax, xmm1);
8429   xorl(crc, rax);
8430   pinsrd(xmm1, crc, 0);
8431   addptr(buf, 16);
8432   subl(len, 4); // len > 0
8433   jcc(Assembler::less, L_fold_tail);
8434 
8435   movdqa(xmm2, Address(buf,  0));
8436   movdqa(xmm3, Address(buf, 16));
8437   movdqa(xmm4, Address(buf, 32));
8438   addptr(buf, 48);
8439   subl(len, 3);
8440   jcc(Assembler::lessEqual, L_fold_512b);
8441 
8442   // Fold total 512 bits of polynomial on each iteration,
8443   // 128 bits per each of 4 parallel streams.
8444   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8445 
8446   align(32);
8447   BIND(L_fold_512b_loop);
8448   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8449   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
8450   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
8451   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
8452   addptr(buf, 64);
8453   subl(len, 4);
8454   jcc(Assembler::greater, L_fold_512b_loop);
8455 
8456   // Fold 512 bits to 128 bits.
8457   BIND(L_fold_512b);
8458   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8459   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
8460   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
8461   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
8462 
8463   // Fold the rest of 128 bits data chunks
8464   BIND(L_fold_tail);
8465   addl(len, 3);
8466   jccb(Assembler::lessEqual, L_fold_128b);
8467   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
8468 
8469   BIND(L_fold_tail_loop);
8470   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
8471   addptr(buf, 16);
8472   decrementl(len);
8473   jccb(Assembler::greater, L_fold_tail_loop);
8474 
8475   // Fold 128 bits in xmm1 down into 32 bits in crc register.
8476   BIND(L_fold_128b);
8477   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
8478   if (UseAVX > 0) {
8479     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
8480     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
8481     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
8482   } else {
8483     movdqa(xmm2, xmm0);
8484     pclmulqdq(xmm2, xmm1, 0x1);
8485     movdqa(xmm3, xmm0);
8486     pand(xmm3, xmm2);
8487     pclmulqdq(xmm0, xmm3, 0x1);
8488   }
8489   psrldq(xmm1, 8);
8490   psrldq(xmm2, 4);
8491   pxor(xmm0, xmm1);
8492   pxor(xmm0, xmm2);
8493 
8494   // 8 8-bit folds to compute 32-bit CRC.
8495   for (int j = 0; j < 4; j++) {
8496     fold_8bit_crc32(xmm0, table, xmm1, rax);
8497   }
8498   movdl(crc, xmm0); // mov 32 bits to general register
8499   for (int j = 0; j < 4; j++) {
8500     fold_8bit_crc32(crc, table, rax);
8501   }
8502 
8503   BIND(L_tail_restore);
8504   movl(len, tmp); // restore
8505   BIND(L_tail);
8506   andl(len, 0xf);
8507   jccb(Assembler::zero, L_exit);
8508 
8509   // Fold the rest of bytes
8510   align(4);
8511   BIND(L_tail_loop);
8512   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8513   update_byte_crc32(crc, rax, table);
8514   increment(buf);
8515   decrementl(len);
8516   jccb(Assembler::greater, L_tail_loop);
8517 
8518   BIND(L_exit);
8519   notl(crc); // ~c
8520 }
8521 
8522 #ifdef _LP64
8523 // S. Gueron / Information Processing Letters 112 (2012) 184
8524 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
8525 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
8526 // Output: the 64-bit carry-less product of B * CONST
8527 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
8528                                      Register tmp1, Register tmp2, Register tmp3) {
8529   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8530   if (n > 0) {
8531     addq(tmp3, n * 256 * 8);
8532   }
8533   //    Q1 = TABLEExt[n][B & 0xFF];
8534   movl(tmp1, in);
8535   andl(tmp1, 0x000000FF);
8536   shll(tmp1, 3);
8537   addq(tmp1, tmp3);
8538   movq(tmp1, Address(tmp1, 0));
8539 
8540   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8541   movl(tmp2, in);
8542   shrl(tmp2, 8);
8543   andl(tmp2, 0x000000FF);
8544   shll(tmp2, 3);
8545   addq(tmp2, tmp3);
8546   movq(tmp2, Address(tmp2, 0));
8547 
8548   shlq(tmp2, 8);
8549   xorq(tmp1, tmp2);
8550 
8551   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8552   movl(tmp2, in);
8553   shrl(tmp2, 16);
8554   andl(tmp2, 0x000000FF);
8555   shll(tmp2, 3);
8556   addq(tmp2, tmp3);
8557   movq(tmp2, Address(tmp2, 0));
8558 
8559   shlq(tmp2, 16);
8560   xorq(tmp1, tmp2);
8561 
8562   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8563   shrl(in, 24);
8564   andl(in, 0x000000FF);
8565   shll(in, 3);
8566   addq(in, tmp3);
8567   movq(in, Address(in, 0));
8568  
8569   shlq(in, 24);
8570   xorq(in, tmp1);
8571   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8572 }
8573 
8574 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8575                                       Register in_out,
8576                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8577                                       XMMRegister w_xtmp2,
8578                                       Register tmp1,
8579                                       Register n_tmp2, Register n_tmp3) {
8580   if (is_pclmulqdq_supported) {
8581     movdl(w_xtmp1, in_out); // modified blindly
8582 
8583     movl(tmp1, const_or_pre_comp_const_index);
8584     movdl(w_xtmp2, tmp1);
8585     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8586 
8587     movdq(in_out, w_xtmp1);
8588   } else {
8589     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
8590   }
8591 }
8592 
8593 // Recombination Alternative 2: No bit-reflections
8594 // T1 = (CRC_A * U1) << 1
8595 // T2 = (CRC_B * U2) << 1
8596 // C1 = T1 >> 32
8597 // C2 = T2 >> 32
8598 // T1 = T1 & 0xFFFFFFFF
8599 // T2 = T2 & 0xFFFFFFFF
8600 // T1 = CRC32(0, T1)
8601 // T2 = CRC32(0, T2)
8602 // C1 = C1 ^ T1
8603 // C2 = C2 ^ T2
8604 // CRC = C1 ^ C2 ^ CRC_C
8605 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8606                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8607                                      Register tmp1, Register tmp2,
8608                                      Register n_tmp3) {
8609   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8610   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8611   shlq(in_out, 1);
8612   movl(tmp1, in_out);
8613   shrq(in_out, 32);
8614   xorl(tmp2, tmp2);
8615   crc32(tmp2, tmp1, 4);
8616   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
8617   shlq(in1, 1);
8618   movl(tmp1, in1);
8619   shrq(in1, 32);
8620   xorl(tmp2, tmp2);
8621   crc32(tmp2, tmp1, 4);
8622   xorl(in1, tmp2);
8623   xorl(in_out, in1);
8624   xorl(in_out, in2);
8625 }
8626 
8627 // Set N to predefined value
8628 // Subtract from a lenght of a buffer
8629 // execute in a loop:
8630 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
8631 // for i = 1 to N do
8632 //  CRC_A = CRC32(CRC_A, A[i])
8633 //  CRC_B = CRC32(CRC_B, B[i])
8634 //  CRC_C = CRC32(CRC_C, C[i])
8635 // end for
8636 // Recombine
8637 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8638                                        Register in_out1, Register in_out2, Register in_out3,
8639                                        Register tmp1, Register tmp2, Register tmp3, 
8640                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8641                                        Register tmp4, Register tmp5, 
8642                                        Register n_tmp6) {
8643   Label L_processPartitions;
8644   Label L_processPartition;
8645   Label L_exit;
8646     
8647   bind(L_processPartitions);
8648   cmpl(in_out1, 3 * size);
8649   jcc(Assembler::less, L_exit);
8650     xorl(tmp1, tmp1);
8651     xorl(tmp2, tmp2);
8652     movq(tmp3, in_out2);
8653     addq(tmp3, size);
8654 
8655     bind(L_processPartition);
8656       crc32(in_out3, Address(in_out2, 0), 8);
8657       crc32(tmp1, Address(in_out2, size), 8);
8658       crc32(tmp2, Address(in_out2, size * 2), 8);
8659       addq(in_out2, 8);
8660       cmpq(in_out2, tmp3);
8661       jcc(Assembler::less, L_processPartition);
8662     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8663             w_xtmp1, w_xtmp2, w_xtmp3,
8664             tmp4, tmp5,
8665             n_tmp6);
8666     addq(in_out2, 2 * size);
8667     subl(in_out1, 3 * size);
8668     jmp(L_processPartitions);
8669 
8670   bind(L_exit);
8671 }
8672 #else
8673 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
8674                                      Register tmp1, Register tmp2, Register tmp3,
8675                                      XMMRegister xtmp1, XMMRegister xtmp2) {
8676   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
8677   if (n > 0) {
8678     addl(tmp3, n * 256 * 8);
8679   }
8680   //    Q1 = TABLEExt[n][B & 0xFF];
8681   movl(tmp1, in_out);
8682   andl(tmp1, 0x000000FF);
8683   shll(tmp1, 3);
8684   addl(tmp1, tmp3);
8685   movq(xtmp1, Address(tmp1, 0));
8686 
8687   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
8688   movl(tmp2, in_out);
8689   shrl(tmp2, 8);
8690   andl(tmp2, 0x000000FF);
8691   shll(tmp2, 3);
8692   addl(tmp2, tmp3);
8693   movq(xtmp2, Address(tmp2, 0));
8694 
8695   psllq(xtmp2, 8);
8696   pxor(xtmp1, xtmp2);
8697 
8698   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
8699   movl(tmp2, in_out);
8700   shrl(tmp2, 16);
8701   andl(tmp2, 0x000000FF);
8702   shll(tmp2, 3);
8703   addl(tmp2, tmp3);
8704   movq(xtmp2, Address(tmp2, 0));
8705 
8706   psllq(xtmp2, 16);
8707   pxor(xtmp1, xtmp2);
8708 
8709   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
8710   shrl(in_out, 24);
8711   andl(in_out, 0x000000FF);
8712   shll(in_out, 3);
8713   addl(in_out, tmp3);
8714   movq(xtmp2, Address(in_out, 0));
8715 
8716   psllq(xtmp2, 24);
8717   pxor(xtmp1, xtmp2); // Result in CXMM
8718   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
8719 }
8720 
8721 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
8722                                       Register in_out,
8723                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
8724                                       XMMRegister w_xtmp2,
8725                                       Register tmp1,
8726                                       Register n_tmp2, Register n_tmp3) {
8727   if (is_pclmulqdq_supported) {
8728     movdl(w_xtmp1, in_out);
8729 
8730     movl(tmp1, const_or_pre_comp_const_index);
8731     movdl(w_xtmp2, tmp1);
8732     pclmulqdq(w_xtmp1, w_xtmp2, 0);
8733     // Keep result in XMM since GPR is 32 bit in length
8734   } else {
8735     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
8736   }
8737 }
8738 
8739 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
8740                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8741                                      Register tmp1, Register tmp2,
8742                                      Register n_tmp3) {
8743   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8744   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
8745   
8746   psllq(w_xtmp1, 1);
8747   movdl(tmp1, w_xtmp1);
8748   psrlq(w_xtmp1, 32);
8749   movdl(in_out, w_xtmp1);
8750 
8751   xorl(tmp2, tmp2);
8752   crc32(tmp2, tmp1, 4);
8753   xorl(in_out, tmp2);
8754   
8755   psllq(w_xtmp2, 1);
8756   movdl(tmp1, w_xtmp2);
8757   psrlq(w_xtmp2, 32);
8758   movdl(in1, w_xtmp2);
8759 
8760   xorl(tmp2, tmp2);
8761   crc32(tmp2, tmp1, 4);
8762   xorl(in1, tmp2);
8763   xorl(in_out, in1);
8764   xorl(in_out, in2);
8765 }
8766 
8767 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
8768                                        Register in_out1, Register in_out2, Register in_out3,
8769                                        Register tmp1, Register tmp2, Register tmp3,
8770                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8771                                        Register tmp4, Register tmp5,
8772                                        Register n_tmp6) {
8773   Label L_processPartitions;
8774   Label L_processPartition;
8775   Label L_exit;
8776 
8777   bind(L_processPartitions);
8778   cmpl(in_out1, 3 * size);
8779   jcc(Assembler::less, L_exit);
8780     xorl(tmp1, tmp1);
8781     xorl(tmp2, tmp2);
8782     movl(tmp3, in_out2);
8783     addl(tmp3, size);
8784 
8785     bind(L_processPartition);
8786       crc32(in_out3, Address(in_out2, 0), 4);
8787       crc32(tmp1, Address(in_out2, size), 4);
8788       crc32(tmp2, Address(in_out2, size*2), 4);
8789       crc32(in_out3, Address(in_out2, 0+4), 4);
8790       crc32(tmp1, Address(in_out2, size+4), 4);
8791       crc32(tmp2, Address(in_out2, size*2+4), 4);
8792       addl(in_out2, 8);
8793       cmpl(in_out2, tmp3);
8794       jcc(Assembler::less, L_processPartition);
8795 
8796         push(tmp3);
8797         push(in_out1);
8798         push(in_out2);
8799         tmp4 = tmp3;
8800         tmp5 = in_out1;
8801         n_tmp6 = in_out2;
8802 
8803       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
8804             w_xtmp1, w_xtmp2, w_xtmp3,
8805             tmp4, tmp5,
8806             n_tmp6);
8807 
8808         pop(in_out2);
8809         pop(in_out1);
8810         pop(tmp3);
8811 
8812     addl(in_out2, 2 * size);
8813     subl(in_out1, 3 * size);
8814     jmp(L_processPartitions);
8815 
8816   bind(L_exit);
8817 }
8818 #endif //LP64
8819 
8820 #ifdef _LP64
8821 // Algorithm 2: Pipelined usage of the CRC32 instruction.
8822 // Input: A buffer I of L bytes.
8823 // Output: the CRC32C value of the buffer.
8824 // Notations:
8825 // Write L = 24N + r, with N = floor (L/24).
8826 // r = L mod 24 (0 <= r < 24).
8827 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
8828 // N quadwords, and R consists of r bytes.
8829 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
8830 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
8831 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
8832 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
8833 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8834                                           Register tmp1, Register tmp2, Register tmp3,
8835                                           Register tmp4, Register tmp5, Register tmp6,
8836                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8837                                           bool is_pclmulqdq_supported) {
8838   uint32_t const_or_pre_comp_const_index[CRC32C::NUM_PRECOMPUTED_CONSTANTS];
8839   Label L_wordByWord;
8840   Label L_byteByByteProlog;
8841   Label L_byteByByte;
8842   Label L_exit;
8843 
8844   if (is_pclmulqdq_supported ) {
8845     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
8846     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
8847 
8848     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
8849     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
8850 
8851     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
8852     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
8853     assert((CRC32C::NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
8854   } else {
8855     const_or_pre_comp_const_index[0] = 1;
8856     const_or_pre_comp_const_index[1] = 0;
8857 
8858     const_or_pre_comp_const_index[2] = 3;
8859     const_or_pre_comp_const_index[3] = 2;
8860 
8861     const_or_pre_comp_const_index[4] = 5;
8862     const_or_pre_comp_const_index[5] = 4;
8863    }
8864   crc32c_proc_chunk(CRC32C::HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8865                     in2, in1, in_out, 
8866                     tmp1, tmp2, tmp3,
8867                     w_xtmp1, w_xtmp2, w_xtmp3,
8868                     tmp4, tmp5, 
8869                     tmp6);
8870   crc32c_proc_chunk(CRC32C::MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8871                     in2, in1, in_out,
8872                     tmp1, tmp2, tmp3,
8873                     w_xtmp1, w_xtmp2, w_xtmp3,
8874                     tmp4, tmp5, 
8875                     tmp6);
8876   crc32c_proc_chunk(CRC32C::LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8877                     in2, in1, in_out,
8878                     tmp1, tmp2, tmp3,
8879                     w_xtmp1, w_xtmp2, w_xtmp3,
8880                     tmp4, tmp5, 
8881                     tmp6);
8882   movl(tmp1, in2);
8883   andl(tmp1, 0x00000007);
8884   negl(tmp1);
8885   addl(tmp1, in2);
8886   addq(tmp1, in1);
8887 
8888   BIND(L_wordByWord);
8889   cmpq(in1, tmp1);
8890   jcc(Assembler::greaterEqual, L_byteByByteProlog);
8891     crc32(in_out, Address(in1, 0), 4);
8892     addq(in1, 4);
8893     jmp(L_wordByWord);
8894   
8895   BIND(L_byteByByteProlog);
8896   andl(in2, 0x00000007);
8897   movl(tmp2, 1);
8898 
8899   BIND(L_byteByByte);
8900   cmpl(tmp2, in2);
8901   jccb(Assembler::greater, L_exit);
8902     crc32(in_out, Address(in1, 0), 1);
8903     incq(in1);
8904     incl(tmp2);
8905     jmp(L_byteByByte);
8906 
8907   BIND(L_exit);
8908 }
8909 #else
8910 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
8911                                           Register tmp1, Register  tmp2, Register tmp3,
8912                                           Register tmp4, Register  tmp5, Register tmp6,
8913                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
8914                                           bool is_pclmulqdq_supported) {
8915   uint32_t const_or_pre_comp_const_index[CRC32C::NUM_PRECOMPUTED_CONSTANTS];
8916   Label L_wordByWord;
8917   Label L_byteByByteProlog;
8918   Label L_byteByByte;
8919   Label L_exit;
8920 
8921   if (is_pclmulqdq_supported) {
8922     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
8923     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
8924 
8925     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
8926     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
8927 
8928     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
8929     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
8930   } else {
8931     const_or_pre_comp_const_index[0] = 1;
8932     const_or_pre_comp_const_index[1] = 0;
8933 
8934     const_or_pre_comp_const_index[2] = 3;
8935     const_or_pre_comp_const_index[3] = 2;
8936 
8937     const_or_pre_comp_const_index[4] = 5;
8938     const_or_pre_comp_const_index[5] = 4;
8939   }
8940   crc32c_proc_chunk(CRC32C::HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
8941                     in2, in1, in_out,
8942                     tmp1, tmp2, tmp3,
8943                     w_xtmp1, w_xtmp2, w_xtmp3,
8944                     tmp4, tmp5,
8945                     tmp6);
8946   crc32c_proc_chunk(CRC32C::MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
8947                     in2, in1, in_out,
8948                     tmp1, tmp2, tmp3,
8949                     w_xtmp1, w_xtmp2, w_xtmp3,
8950                     tmp4, tmp5,
8951                     tmp6);
8952   crc32c_proc_chunk(CRC32C::LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
8953                     in2, in1, in_out,
8954                     tmp1, tmp2, tmp3,
8955                     w_xtmp1, w_xtmp2, w_xtmp3,
8956                     tmp4, tmp5,
8957                     tmp6);
8958   movl(tmp1, in2);
8959   andl(tmp1, 0x00000007);
8960   negl(tmp1);
8961   addl(tmp1, in2);
8962   addl(tmp1, in1);
8963 
8964   BIND(L_wordByWord);
8965   cmpl(in1, tmp1);
8966   jcc(Assembler::greaterEqual, L_byteByByteProlog);
8967     crc32(in_out, Address(in1,0), 4);
8968     addl(in1, 4);
8969     jmp(L_wordByWord);
8970 
8971   BIND(L_byteByByteProlog);
8972   andl(in2, 0x00000007);
8973   movl(tmp2, 1);
8974 
8975   BIND(L_byteByByte);
8976   cmpl(tmp2, in2);
8977   jccb(Assembler::greater, L_exit);
8978     movb(tmp1, Address(in1, 0));
8979     crc32(in_out, tmp1, 1);
8980     incl(in1);
8981     incl(tmp2);
8982     jmp(L_byteByByte);
8983 
8984   BIND(L_exit);
8985 }
8986 #endif // LP64
8987 #undef BIND
8988 #undef BLOCK_COMMENT
8989 
8990 
8991 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8992   switch (cond) {
8993     // Note some conditions are synonyms for others
8994     case Assembler::zero:         return Assembler::notZero;
8995     case Assembler::notZero:      return Assembler::zero;
8996     case Assembler::less:         return Assembler::greaterEqual;
8997     case Assembler::lessEqual:    return Assembler::greater;
8998     case Assembler::greater:      return Assembler::lessEqual;
8999     case Assembler::greaterEqual: return Assembler::less;
9000     case Assembler::below:        return Assembler::aboveEqual;
9001     case Assembler::belowEqual:   return Assembler::above;
9002     case Assembler::above:        return Assembler::belowEqual;
9003     case Assembler::aboveEqual:   return Assembler::below;
9004     case Assembler::overflow:     return Assembler::noOverflow;
9005     case Assembler::noOverflow:   return Assembler::overflow;
9006     case Assembler::negative:     return Assembler::positive;
9007     case Assembler::positive:     return Assembler::negative;
9008     case Assembler::parity:       return Assembler::noParity;
9009     case Assembler::noParity:     return Assembler::parity;
9010   }
9011   ShouldNotReachHere(); return Assembler::overflow;
9012 }
9013 
9014 SkipIfEqual::SkipIfEqual(
9015     MacroAssembler* masm, const bool* flag_addr, bool value) {
9016   _masm = masm;
9017   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9018   _masm->jcc(Assembler::equal, _label);
9019 }
9020 
9021 SkipIfEqual::~SkipIfEqual() {
9022   _masm->bind(_label);
9023 }