1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 
  33 // MacroAssembler extends Assembler by frequently used macros.
  34 //
  35 // Instructions for which a 'better' code sequence exists depending
  36 // on arguments should also go in here.
  37 
  38 class MacroAssembler: public Assembler {
  39   friend class LIR_Assembler;
  40   friend class Runtime1;      // as_Address()
  41 
  42  protected:
  43 
  44   Address as_Address(AddressLiteral adr);
  45   Address as_Address(ArrayAddress adr);
  46 
  47   // Support for VM calls
  48   //
  49   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  50   // may customize this version by overriding it for its purposes (e.g., to save/restore
  51   // additional registers when doing a VM call).
  52 #ifdef CC_INTERP
  53   // c++ interpreter never wants to use interp_masm version of call_VM
  54   #define VIRTUAL
  55 #else
  56   #define VIRTUAL virtual
  57 #endif
  58 
  59   VIRTUAL void call_VM_leaf_base(
  60     address entry_point,               // the entry point
  61     int     number_of_arguments        // the number of arguments to pop after the call
  62   );
  63 
  64   // This is the base routine called by the different versions of call_VM. The interpreter
  65   // may customize this version by overriding it for its purposes (e.g., to save/restore
  66   // additional registers when doing a VM call).
  67   //
  68   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  69   // returns the register which contains the thread upon return. If a thread register has been
  70   // specified, the return value will correspond to that register. If no last_java_sp is specified
  71   // (noreg) than rsp will be used instead.
  72   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  73     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  74     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  75     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  76     address  entry_point,              // the entry point
  77     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  78     bool     check_exceptions          // whether to check for pending exceptions after return
  79   );
  80 
  81   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82   // The implementation is only non-empty for the InterpreterMacroAssembler,
  83   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84   virtual void check_and_handle_popframe(Register java_thread);
  85   virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  88 
  89   // helpers for FPU flag access
  90   // tmp is a temporary register, if none is available use noreg
  91   void save_rax   (Register tmp);
  92   void restore_rax(Register tmp);
  93 
  94  public:
  95   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  96 
  97   // Support for NULL-checks
  98   //
  99   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 100   // If the accessed location is M[reg + offset] and the offset is known, provide the
 101   // offset. No explicit code generation is needed if the offset is within a certain
 102   // range (0 <= offset <= page_size).
 103 
 104   void null_check(Register reg, int offset = -1);
 105   static bool needs_explicit_null_check(intptr_t offset);
 106 
 107   // Required platform-specific helpers for Label::patch_instructions.
 108   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 109   void pd_patch_instruction(address branch, address target) {
 110     unsigned char op = branch[0];
 111     assert(op == 0xE8 /* call */ ||
 112         op == 0xE9 /* jmp */ ||
 113         op == 0xEB /* short jmp */ ||
 114         (op & 0xF0) == 0x70 /* short jcc */ ||
 115         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 116         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 117         "Invalid opcode at patch point");
 118 
 119     if (op == 0xEB || (op & 0xF0) == 0x70) {
 120       // short offset operators (jmp and jcc)
 121       char* disp = (char*) &branch[1];
 122       int imm8 = target - (address) &disp[1];
 123       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 124       *disp = imm8;
 125     } else {
 126       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 127       int imm32 = target - (address) &disp[1];
 128       *disp = imm32;
 129     }
 130   }
 131 
 132   // The following 4 methods return the offset of the appropriate move instruction
 133 
 134   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 135   int load_unsigned_byte(Register dst, Address src);
 136   int load_unsigned_short(Register dst, Address src);
 137 
 138   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 139   int load_signed_byte(Register dst, Address src);
 140   int load_signed_short(Register dst, Address src);
 141 
 142   // Support for sign-extension (hi:lo = extend_sign(lo))
 143   void extend_sign(Register hi, Register lo);
 144 
 145   // Load and store values by size and signed-ness
 146   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 147   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 148 
 149   // Support for inc/dec with optimal instruction selection depending on value
 150 
 151   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 152   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 153 
 154   void decrementl(Address dst, int value = 1);
 155   void decrementl(Register reg, int value = 1);
 156 
 157   void decrementq(Register reg, int value = 1);
 158   void decrementq(Address dst, int value = 1);
 159 
 160   void incrementl(Address dst, int value = 1);
 161   void incrementl(Register reg, int value = 1);
 162 
 163   void incrementq(Register reg, int value = 1);
 164   void incrementq(Address dst, int value = 1);
 165 
 166   // Support optimal SSE move instructions.
 167   void movflt(XMMRegister dst, XMMRegister src) {
 168     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 169     else                       { movss (dst, src); return; }
 170   }
 171   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 172   void movflt(XMMRegister dst, AddressLiteral src);
 173   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 174 
 175   void movdbl(XMMRegister dst, XMMRegister src) {
 176     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 177     else                       { movsd (dst, src); return; }
 178   }
 179 
 180   void movdbl(XMMRegister dst, AddressLiteral src);
 181 
 182   void movdbl(XMMRegister dst, Address src) {
 183     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 184     else                         { movlpd(dst, src); return; }
 185   }
 186   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 187 
 188   void incrementl(AddressLiteral dst);
 189   void incrementl(ArrayAddress dst);
 190 
 191   void incrementq(AddressLiteral dst);
 192 
 193   // Alignment
 194   void align(int modulus);
 195   void align(int modulus, int target);
 196 
 197   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 198   void fat_nop();
 199 
 200   // Stack frame creation/removal
 201   void enter();
 202   void leave();
 203 
 204   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 205   // The pointer will be loaded into the thread register.
 206   void get_thread(Register thread);
 207 
 208 
 209   // Support for VM calls
 210   //
 211   // It is imperative that all calls into the VM are handled via the call_VM macros.
 212   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 213   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 214 
 215 
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                bool check_exceptions = true);
 219   void call_VM(Register oop_result,
 220                address entry_point,
 221                Register arg_1,
 222                bool check_exceptions = true);
 223   void call_VM(Register oop_result,
 224                address entry_point,
 225                Register arg_1, Register arg_2,
 226                bool check_exceptions = true);
 227   void call_VM(Register oop_result,
 228                address entry_point,
 229                Register arg_1, Register arg_2, Register arg_3,
 230                bool check_exceptions = true);
 231 
 232   // Overloadings with last_Java_sp
 233   void call_VM(Register oop_result,
 234                Register last_java_sp,
 235                address entry_point,
 236                int number_of_arguments = 0,
 237                bool check_exceptions = true);
 238   void call_VM(Register oop_result,
 239                Register last_java_sp,
 240                address entry_point,
 241                Register arg_1, bool
 242                check_exceptions = true);
 243   void call_VM(Register oop_result,
 244                Register last_java_sp,
 245                address entry_point,
 246                Register arg_1, Register arg_2,
 247                bool check_exceptions = true);
 248   void call_VM(Register oop_result,
 249                Register last_java_sp,
 250                address entry_point,
 251                Register arg_1, Register arg_2, Register arg_3,
 252                bool check_exceptions = true);
 253 
 254   void get_vm_result  (Register oop_result, Register thread);
 255   void get_vm_result_2(Register metadata_result, Register thread);
 256 
 257   // These always tightly bind to MacroAssembler::call_VM_base
 258   // bypassing the virtual implementation
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 263   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 264 
 265   void call_VM_leaf(address entry_point,
 266                     int number_of_arguments = 0);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2);
 271   void call_VM_leaf(address entry_point,
 272                     Register arg_1, Register arg_2, Register arg_3);
 273 
 274   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 275   // bypassing the virtual implementation
 276   void super_call_VM_leaf(address entry_point);
 277   void super_call_VM_leaf(address entry_point, Register arg_1);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 280   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 281 
 282   // last Java Frame (fills frame anchor)
 283   void set_last_Java_frame(Register thread,
 284                            Register last_java_sp,
 285                            Register last_java_fp,
 286                            address last_java_pc);
 287 
 288   // thread in the default location (r15_thread on 64bit)
 289   void set_last_Java_frame(Register last_java_sp,
 290                            Register last_java_fp,
 291                            address last_java_pc);
 292 
 293   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 294 
 295   // thread in the default location (r15_thread on 64bit)
 296   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 297 
 298   // Stores
 299   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 300   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 301 
 302 #if INCLUDE_ALL_GCS
 303 
 304   void g1_write_barrier_pre(Register obj,
 305                             Register pre_val,
 306                             Register thread,
 307                             Register tmp,
 308                             bool tosca_live,
 309                             bool expand_call);
 310 
 311   void g1_write_barrier_post(Register store_addr,
 312                              Register new_val,
 313                              Register thread,
 314                              Register tmp,
 315                              Register tmp2);
 316 
 317 #endif // INCLUDE_ALL_GCS
 318 
 319   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 320   void c2bool(Register x);
 321 
 322   // C++ bool manipulation
 323 
 324   void movbool(Register dst, Address src);
 325   void movbool(Address dst, bool boolconst);
 326   void movbool(Address dst, Register src);
 327   void testbool(Register dst);
 328 
 329   // oop manipulations
 330   void load_klass(Register dst, Register src);
 331   void store_klass(Register dst, Register src);
 332 
 333   void load_heap_oop(Register dst, Address src);
 334   void load_heap_oop_not_null(Register dst, Address src);
 335   void store_heap_oop(Address dst, Register src);
 336   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 337 
 338   // Used for storing NULL. All other oop constants should be
 339   // stored using routines that take a jobject.
 340   void store_heap_oop_null(Address dst);
 341 
 342   void load_prototype_header(Register dst, Register src);
 343 
 344 #ifdef _LP64
 345   void store_klass_gap(Register dst, Register src);
 346 
 347   // This dummy is to prevent a call to store_heap_oop from
 348   // converting a zero (like NULL) into a Register by giving
 349   // the compiler two choices it can't resolve
 350 
 351   void store_heap_oop(Address dst, void* dummy);
 352 
 353   void encode_heap_oop(Register r);
 354   void decode_heap_oop(Register r);
 355   void encode_heap_oop_not_null(Register r);
 356   void decode_heap_oop_not_null(Register r);
 357   void encode_heap_oop_not_null(Register dst, Register src);
 358   void decode_heap_oop_not_null(Register dst, Register src);
 359 
 360   void set_narrow_oop(Register dst, jobject obj);
 361   void set_narrow_oop(Address dst, jobject obj);
 362   void cmp_narrow_oop(Register dst, jobject obj);
 363   void cmp_narrow_oop(Address dst, jobject obj);
 364 
 365   void encode_klass_not_null(Register r);
 366   void decode_klass_not_null(Register r);
 367   void encode_klass_not_null(Register dst, Register src);
 368   void decode_klass_not_null(Register dst, Register src);
 369   void set_narrow_klass(Register dst, Klass* k);
 370   void set_narrow_klass(Address dst, Klass* k);
 371   void cmp_narrow_klass(Register dst, Klass* k);
 372   void cmp_narrow_klass(Address dst, Klass* k);
 373 
 374   // Returns the byte size of the instructions generated by decode_klass_not_null()
 375   // when compressed klass pointers are being used.
 376   static int instr_size_for_decode_klass_not_null();
 377 
 378   // if heap base register is used - reinit it with the correct value
 379   void reinit_heapbase();
 380 
 381   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 382 
 383 #endif // _LP64
 384 
 385   // Int division/remainder for Java
 386   // (as idivl, but checks for special case as described in JVM spec.)
 387   // returns idivl instruction offset for implicit exception handling
 388   int corrected_idivl(Register reg);
 389 
 390   // Long division/remainder for Java
 391   // (as idivq, but checks for special case as described in JVM spec.)
 392   // returns idivq instruction offset for implicit exception handling
 393   int corrected_idivq(Register reg);
 394 
 395   void int3();
 396 
 397   // Long operation macros for a 32bit cpu
 398   // Long negation for Java
 399   void lneg(Register hi, Register lo);
 400 
 401   // Long multiplication for Java
 402   // (destroys contents of eax, ebx, ecx and edx)
 403   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 404 
 405   // Long shifts for Java
 406   // (semantics as described in JVM spec.)
 407   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 408   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 409 
 410   // Long compare for Java
 411   // (semantics as described in JVM spec.)
 412   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 413 
 414 
 415   // misc
 416 
 417   // Sign extension
 418   void sign_extend_short(Register reg);
 419   void sign_extend_byte(Register reg);
 420 
 421   // Division by power of 2, rounding towards 0
 422   void division_with_shift(Register reg, int shift_value);
 423 
 424   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 425   //
 426   // CF (corresponds to C0) if x < y
 427   // PF (corresponds to C2) if unordered
 428   // ZF (corresponds to C3) if x = y
 429   //
 430   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 431   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 432   void fcmp(Register tmp);
 433   // Variant of the above which allows y to be further down the stack
 434   // and which only pops x and y if specified. If pop_right is
 435   // specified then pop_left must also be specified.
 436   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 437 
 438   // Floating-point comparison for Java
 439   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 440   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 441   // (semantics as described in JVM spec.)
 442   void fcmp2int(Register dst, bool unordered_is_less);
 443   // Variant of the above which allows y to be further down the stack
 444   // and which only pops x and y if specified. If pop_right is
 445   // specified then pop_left must also be specified.
 446   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 447 
 448   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 449   // tmp is a temporary register, if none is available use noreg
 450   void fremr(Register tmp);
 451 
 452 
 453   // same as fcmp2int, but using SSE2
 454   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 455   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456 
 457   // Inlined sin/cos generator for Java; must not use CPU instruction
 458   // directly on Intel as it does not have high enough precision
 459   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 460   // number of FPU stack slots in use; all but the topmost will
 461   // require saving if a slow case is necessary. Assumes argument is
 462   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 463   // this code.
 464   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 465 
 466   // branch to L if FPU flag C2 is set/not set
 467   // tmp is a temporary register, if none is available use noreg
 468   void jC2 (Register tmp, Label& L);
 469   void jnC2(Register tmp, Label& L);
 470 
 471   // Pop ST (ffree & fincstp combined)
 472   void fpop();
 473 
 474   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 475   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 476   void load_float(Address src);
 477 
 478   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 479   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 480   void store_float(Address dst);
 481 
 482   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 483   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 484   void load_double(Address src);
 485 
 486   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 487   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 488   void store_double(Address dst);
 489 
 490   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 491   void push_fTOS();
 492 
 493   // pops double TOS element from CPU stack and pushes on FPU stack
 494   void pop_fTOS();
 495 
 496   void empty_FPU_stack();
 497 
 498   void push_IU_state();
 499   void pop_IU_state();
 500 
 501   void push_FPU_state();
 502   void pop_FPU_state();
 503 
 504   void push_CPU_state();
 505   void pop_CPU_state();
 506 
 507   // Round up to a power of two
 508   void round_to(Register reg, int modulus);
 509 
 510   // Callee saved registers handling
 511   void push_callee_saved_registers();
 512   void pop_callee_saved_registers();
 513 
 514   // allocation
 515   void eden_allocate(
 516     Register obj,                      // result: pointer to object after successful allocation
 517     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 518     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 519     Register t1,                       // temp register
 520     Label&   slow_case                 // continuation point if fast allocation fails
 521   );
 522   void tlab_allocate(
 523     Register obj,                      // result: pointer to object after successful allocation
 524     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 525     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 526     Register t1,                       // temp register
 527     Register t2,                       // temp register
 528     Label&   slow_case                 // continuation point if fast allocation fails
 529   );
 530   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 531   void incr_allocated_bytes(Register thread,
 532                             Register var_size_in_bytes, int con_size_in_bytes,
 533                             Register t1 = noreg);
 534 
 535   // interface method calling
 536   void lookup_interface_method(Register recv_klass,
 537                                Register intf_klass,
 538                                RegisterOrConstant itable_index,
 539                                Register method_result,
 540                                Register scan_temp,
 541                                Label& no_such_interface);
 542 
 543   // virtual method calling
 544   void lookup_virtual_method(Register recv_klass,
 545                              RegisterOrConstant vtable_index,
 546                              Register method_result);
 547 
 548   // Test sub_klass against super_klass, with fast and slow paths.
 549 
 550   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 551   // One of the three labels can be NULL, meaning take the fall-through.
 552   // If super_check_offset is -1, the value is loaded up from super_klass.
 553   // No registers are killed, except temp_reg.
 554   void check_klass_subtype_fast_path(Register sub_klass,
 555                                      Register super_klass,
 556                                      Register temp_reg,
 557                                      Label* L_success,
 558                                      Label* L_failure,
 559                                      Label* L_slow_path,
 560                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 561 
 562   // The rest of the type check; must be wired to a corresponding fast path.
 563   // It does not repeat the fast path logic, so don't use it standalone.
 564   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 565   // Updates the sub's secondary super cache as necessary.
 566   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 567   void check_klass_subtype_slow_path(Register sub_klass,
 568                                      Register super_klass,
 569                                      Register temp_reg,
 570                                      Register temp2_reg,
 571                                      Label* L_success,
 572                                      Label* L_failure,
 573                                      bool set_cond_codes = false);
 574 
 575   // Simplified, combined version, good for typical uses.
 576   // Falls through on failure.
 577   void check_klass_subtype(Register sub_klass,
 578                            Register super_klass,
 579                            Register temp_reg,
 580                            Label& L_success);
 581 
 582   // method handles (JSR 292)
 583   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 584 
 585   //----
 586   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 587 
 588   // Debugging
 589 
 590   // only if +VerifyOops
 591   // TODO: Make these macros with file and line like sparc version!
 592   void verify_oop(Register reg, const char* s = "broken oop");
 593   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 594 
 595   // TODO: verify method and klass metadata (compare against vptr?)
 596   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 597   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 598 
 599 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 600 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 601 
 602   // only if +VerifyFPU
 603   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 604 
 605   // Verify or restore cpu control state after JNI call
 606   void restore_cpu_control_state_after_jni();
 607 
 608   // prints msg, dumps registers and stops execution
 609   void stop(const char* msg);
 610 
 611   // prints msg and continues
 612   void warn(const char* msg);
 613 
 614   // dumps registers and other state
 615   void print_state();
 616 
 617   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 618   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 619   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 620   static void print_state64(int64_t pc, int64_t regs[]);
 621 
 622   void os_breakpoint();
 623 
 624   void untested()                                { stop("untested"); }
 625 
 626   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 627 
 628   void should_not_reach_here()                   { stop("should not reach here"); }
 629 
 630   void print_CPU_state();
 631 
 632   // Stack overflow checking
 633   void bang_stack_with_offset(int offset) {
 634     // stack grows down, caller passes positive offset
 635     assert(offset > 0, "must bang with negative offset");
 636     movl(Address(rsp, (-offset)), rax);
 637   }
 638 
 639   // Writes to stack successive pages until offset reached to check for
 640   // stack overflow + shadow pages.  Also, clobbers tmp
 641   void bang_stack_size(Register size, Register tmp);
 642 
 643   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 644                                                 Register tmp,
 645                                                 int offset);
 646 
 647   // Support for serializing memory accesses between threads
 648   void serialize_memory(Register thread, Register tmp);
 649 
 650   void verify_tlab();
 651 
 652   // Biased locking support
 653   // lock_reg and obj_reg must be loaded up with the appropriate values.
 654   // swap_reg must be rax, and is killed.
 655   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 656   // be killed; if not supplied, push/pop will be used internally to
 657   // allocate a temporary (inefficient, avoid if possible).
 658   // Optional slow case is for implementations (interpreter and C1) which branch to
 659   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 660   // Returns offset of first potentially-faulting instruction for null
 661   // check info (currently consumed only by C1). If
 662   // swap_reg_contains_mark is true then returns -1 as it is assumed
 663   // the calling code has already passed any potential faults.
 664   int biased_locking_enter(Register lock_reg, Register obj_reg,
 665                            Register swap_reg, Register tmp_reg,
 666                            bool swap_reg_contains_mark,
 667                            Label& done, Label* slow_case = NULL,
 668                            BiasedLockingCounters* counters = NULL);
 669   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 670 #ifdef COMPILER2
 671   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 672   // See full desription in macroAssembler_x86.cpp.
 673   void fast_lock(Register obj, Register box, Register tmp,
 674                  Register scr, Register cx1, Register cx2,
 675                  BiasedLockingCounters* counters,
 676                  RTMLockingCounters* rtm_counters,
 677                  RTMLockingCounters* stack_rtm_counters,
 678                  Metadata* method_data,
 679                  bool use_rtm, bool profile_rtm);
 680   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 681 #if INCLUDE_RTM_OPT
 682   void rtm_counters_update(Register abort_status, Register rtm_counters);
 683   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 684   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 685                                    RTMLockingCounters* rtm_counters,
 686                                    Metadata* method_data);
 687   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 688                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 689   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 690   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 691   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 692                          Register retry_on_abort_count,
 693                          RTMLockingCounters* stack_rtm_counters,
 694                          Metadata* method_data, bool profile_rtm,
 695                          Label& DONE_LABEL, Label& IsInflated);
 696   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 697                             Register scr, Register retry_on_busy_count,
 698                             Register retry_on_abort_count,
 699                             RTMLockingCounters* rtm_counters,
 700                             Metadata* method_data, bool profile_rtm,
 701                             Label& DONE_LABEL);
 702 #endif
 703 #endif
 704 
 705   Condition negate_condition(Condition cond);
 706 
 707   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 708   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 709   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 710   // here in MacroAssembler. The major exception to this rule is call
 711 
 712   // Arithmetics
 713 
 714 
 715   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 716   void addptr(Address dst, Register src);
 717 
 718   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 719   void addptr(Register dst, int32_t src);
 720   void addptr(Register dst, Register src);
 721   void addptr(Register dst, RegisterOrConstant src) {
 722     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 723     else                   addptr(dst,       src.as_register());
 724   }
 725 
 726   void andptr(Register dst, int32_t src);
 727   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 728 
 729   void cmp8(AddressLiteral src1, int imm);
 730 
 731   // renamed to drag out the casting of address to int32_t/intptr_t
 732   void cmp32(Register src1, int32_t imm);
 733 
 734   void cmp32(AddressLiteral src1, int32_t imm);
 735   // compare reg - mem, or reg - &mem
 736   void cmp32(Register src1, AddressLiteral src2);
 737 
 738   void cmp32(Register src1, Address src2);
 739 
 740 #ifndef _LP64
 741   void cmpklass(Address dst, Metadata* obj);
 742   void cmpklass(Register dst, Metadata* obj);
 743   void cmpoop(Address dst, jobject obj);
 744   void cmpoop(Register dst, jobject obj);
 745 #endif // _LP64
 746 
 747   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 748   void cmpptr(Address src1, AddressLiteral src2);
 749 
 750   void cmpptr(Register src1, AddressLiteral src2);
 751 
 752   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 753   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755 
 756   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758 
 759   // cmp64 to avoild hiding cmpq
 760   void cmp64(Register src1, AddressLiteral src);
 761 
 762   void cmpxchgptr(Register reg, Address adr);
 763 
 764   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 765 
 766 
 767   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 768   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 769 
 770 
 771   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 772 
 773   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 774 
 775   void shlptr(Register dst, int32_t shift);
 776   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 777 
 778   void shrptr(Register dst, int32_t shift);
 779   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 780 
 781   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 782   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 783 
 784   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 785 
 786   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 787   void subptr(Register dst, int32_t src);
 788   // Force generation of a 4 byte immediate value even if it fits into 8bit
 789   void subptr_imm32(Register dst, int32_t src);
 790   void subptr(Register dst, Register src);
 791   void subptr(Register dst, RegisterOrConstant src) {
 792     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 793     else                   subptr(dst,       src.as_register());
 794   }
 795 
 796   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 797   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 798 
 799   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 800   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 801 
 802   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 803 
 804 
 805 
 806   // Helper functions for statistics gathering.
 807   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 808   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 809   // Unconditional atomic increment.
 810   void atomic_incl(Address counter_addr);
 811   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 812 #ifdef _LP64
 813   void atomic_incq(Address counter_addr);
 814   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 815 #endif
 816   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 817   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 818 
 819   void lea(Register dst, AddressLiteral adr);
 820   void lea(Address dst, AddressLiteral adr);
 821   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 822 
 823   void leal32(Register dst, Address src) { leal(dst, src); }
 824 
 825   // Import other testl() methods from the parent class or else
 826   // they will be hidden by the following overriding declaration.
 827   using Assembler::testl;
 828   void testl(Register dst, AddressLiteral src);
 829 
 830   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 831   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 832   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 834 
 835   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 836   void testptr(Register src1, Register src2);
 837 
 838   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 839   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 840 
 841   // Calls
 842 
 843   void call(Label& L, relocInfo::relocType rtype);
 844   void call(Register entry);
 845 
 846   // NOTE: this call tranfers to the effective address of entry NOT
 847   // the address contained by entry. This is because this is more natural
 848   // for jumps/calls.
 849   void call(AddressLiteral entry);
 850 
 851   // Emit the CompiledIC call idiom
 852   void ic_call(address entry);
 853 
 854   // Jumps
 855 
 856   // NOTE: these jumps tranfer to the effective address of dst NOT
 857   // the address contained by dst. This is because this is more natural
 858   // for jumps/calls.
 859   void jump(AddressLiteral dst);
 860   void jump_cc(Condition cc, AddressLiteral dst);
 861 
 862   // 32bit can do a case table jump in one instruction but we no longer allow the base
 863   // to be installed in the Address class. This jump will tranfers to the address
 864   // contained in the location described by entry (not the address of entry)
 865   void jump(ArrayAddress entry);
 866 
 867   // Floating
 868 
 869   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 870   void andpd(XMMRegister dst, AddressLiteral src);
 871 
 872   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 873   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 874   void andps(XMMRegister dst, AddressLiteral src);
 875 
 876   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 877   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 878   void comiss(XMMRegister dst, AddressLiteral src);
 879 
 880   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 881   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 882   void comisd(XMMRegister dst, AddressLiteral src);
 883 
 884   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 885   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 886 
 887   void fldcw(Address src) { Assembler::fldcw(src); }
 888   void fldcw(AddressLiteral src);
 889 
 890   void fld_s(int index)   { Assembler::fld_s(index); }
 891   void fld_s(Address src) { Assembler::fld_s(src); }
 892   void fld_s(AddressLiteral src);
 893 
 894   void fld_d(Address src) { Assembler::fld_d(src); }
 895   void fld_d(AddressLiteral src);
 896 
 897   void fld_x(Address src) { Assembler::fld_x(src); }
 898   void fld_x(AddressLiteral src);
 899 
 900   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 901   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 902 
 903   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 904   void ldmxcsr(AddressLiteral src);
 905 
 906   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
 907   // all corner cases and may result in NaN and require fallback to a
 908   // runtime call.
 909   void fast_pow();
 910   void fast_exp();
 911   void increase_precision();
 912   void restore_precision();
 913 
 914   // computes exp(x). Fallback to runtime call included.
 915   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
 916   // computes pow(x,y). Fallback to runtime call included.
 917   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
 918 
 919 private:
 920 
 921   // call runtime as a fallback for trig functions and pow/exp.
 922   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
 923 
 924   // computes 2^(Ylog2X); Ylog2X in ST(0)
 925   void pow_exp_core_encoding();
 926 
 927   // computes pow(x,y) or exp(x). Fallback to runtime call included.
 928   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
 929 
 930   // these are private because users should be doing movflt/movdbl
 931 
 932   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 933   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 934   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 935   void movss(XMMRegister dst, AddressLiteral src);
 936 
 937   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 938   void movlpd(XMMRegister dst, AddressLiteral src);
 939 
 940 public:
 941 
 942   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
 943   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
 944   void addsd(XMMRegister dst, AddressLiteral src);
 945 
 946   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
 947   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
 948   void addss(XMMRegister dst, AddressLiteral src);
 949 
 950   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
 951   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
 952   void divsd(XMMRegister dst, AddressLiteral src);
 953 
 954   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
 955   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
 956   void divss(XMMRegister dst, AddressLiteral src);
 957 
 958   // Move Unaligned Double Quadword
 959   void movdqu(Address     dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
 960   void movdqu(XMMRegister dst, Address src)       { Assembler::movdqu(dst, src); }
 961   void movdqu(XMMRegister dst, XMMRegister src)   { Assembler::movdqu(dst, src); }
 962   void movdqu(XMMRegister dst, AddressLiteral src);
 963 
 964   // Move Aligned Double Quadword
 965   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
 966   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
 967   void movdqa(XMMRegister dst, AddressLiteral src);
 968 
 969   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
 970   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
 971   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
 972   void movsd(XMMRegister dst, AddressLiteral src);
 973 
 974   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
 975   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
 976   void mulsd(XMMRegister dst, AddressLiteral src);
 977 
 978   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
 979   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
 980   void mulss(XMMRegister dst, AddressLiteral src);
 981 
 982   // Carry-Less Multiplication Quadword
 983   void pclmulldq(XMMRegister dst, XMMRegister src) {
 984     // 0x00 - multiply lower 64 bits [0:63]
 985     Assembler::pclmulqdq(dst, src, 0x00);
 986   }
 987   void pclmulhdq(XMMRegister dst, XMMRegister src) {
 988     // 0x11 - multiply upper 64 bits [64:127]
 989     Assembler::pclmulqdq(dst, src, 0x11);
 990   }
 991 
 992   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
 993   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
 994   void sqrtsd(XMMRegister dst, AddressLiteral src);
 995 
 996   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
 997   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
 998   void sqrtss(XMMRegister dst, AddressLiteral src);
 999 
1000   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1001   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1002   void subsd(XMMRegister dst, AddressLiteral src);
1003 
1004   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1005   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1006   void subss(XMMRegister dst, AddressLiteral src);
1007 
1008   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1009   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1010   void ucomiss(XMMRegister dst, AddressLiteral src);
1011 
1012   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1013   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1014   void ucomisd(XMMRegister dst, AddressLiteral src);
1015 
1016   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1017   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
1018   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1019   void xorpd(XMMRegister dst, AddressLiteral src);
1020 
1021   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1022   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
1023   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1024   void xorps(XMMRegister dst, AddressLiteral src);
1025 
1026   // Shuffle Bytes
1027   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1028   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1029   void pshufb(XMMRegister dst, AddressLiteral src);
1030   // AVX 3-operands instructions
1031 
1032   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1033   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1034   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1035 
1036   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1037   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1038   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1039 
1040   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1041   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1042   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1043 
1044   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1045   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1046   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1047 
1048   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1049   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1050   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1051 
1052   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1053   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1054   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1055 
1056   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1057   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1058   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1059 
1060   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1061   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1062   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1063 
1064   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1065   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1066   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1067 
1068   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1069   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1070   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1071 
1072   // AVX Vector instructions
1073 
1074   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1075   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1076   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1077 
1078   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1079   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1080   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1081 
1082   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1083     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1084       Assembler::vpxor(dst, nds, src, vector_len);
1085     else
1086       Assembler::vxorpd(dst, nds, src, vector_len);
1087   }
1088   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1089     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1090       Assembler::vpxor(dst, nds, src, vector_len);
1091     else
1092       Assembler::vxorpd(dst, nds, src, vector_len);
1093   }
1094 
1095   // Simple version for AVX2 256bit vectors
1096   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1097   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1098 
1099   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1100   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1101     if (UseAVX > 1) // vinserti128h is available only in AVX2
1102       Assembler::vinserti128h(dst, nds, src);
1103     else
1104       Assembler::vinsertf128h(dst, nds, src);
1105   }
1106 
1107   // Carry-Less Multiplication Quadword
1108   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1109     // 0x00 - multiply lower 64 bits [0:63]
1110     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1111   }
1112   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1113     // 0x11 - multiply upper 64 bits [64:127]
1114     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1115   }
1116 
1117   // Data
1118 
1119   void cmov32( Condition cc, Register dst, Address  src);
1120   void cmov32( Condition cc, Register dst, Register src);
1121 
1122   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1123 
1124   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1125   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1126 
1127   void movoop(Register dst, jobject obj);
1128   void movoop(Address dst, jobject obj);
1129 
1130   void mov_metadata(Register dst, Metadata* obj);
1131   void mov_metadata(Address dst, Metadata* obj);
1132 
1133   void movptr(ArrayAddress dst, Register src);
1134   // can this do an lea?
1135   void movptr(Register dst, ArrayAddress src);
1136 
1137   void movptr(Register dst, Address src);
1138 
1139 #ifdef _LP64
1140   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1141 #else
1142   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1143 #endif
1144 
1145   void movptr(Register dst, intptr_t src);
1146   void movptr(Register dst, Register src);
1147   void movptr(Address dst, intptr_t src);
1148 
1149   void movptr(Address dst, Register src);
1150 
1151   void movptr(Register dst, RegisterOrConstant src) {
1152     if (src.is_constant()) movptr(dst, src.as_constant());
1153     else                   movptr(dst, src.as_register());
1154   }
1155 
1156 #ifdef _LP64
1157   // Generally the next two are only used for moving NULL
1158   // Although there are situations in initializing the mark word where
1159   // they could be used. They are dangerous.
1160 
1161   // They only exist on LP64 so that int32_t and intptr_t are not the same
1162   // and we have ambiguous declarations.
1163 
1164   void movptr(Address dst, int32_t imm32);
1165   void movptr(Register dst, int32_t imm32);
1166 #endif // _LP64
1167 
1168   // to avoid hiding movl
1169   void mov32(AddressLiteral dst, Register src);
1170   void mov32(Register dst, AddressLiteral src);
1171 
1172   // to avoid hiding movb
1173   void movbyte(ArrayAddress dst, int src);
1174 
1175   // Import other mov() methods from the parent class or else
1176   // they will be hidden by the following overriding declaration.
1177   using Assembler::movdl;
1178   using Assembler::movq;
1179   void movdl(XMMRegister dst, AddressLiteral src);
1180   void movq(XMMRegister dst, AddressLiteral src);
1181 
1182   // Can push value or effective address
1183   void pushptr(AddressLiteral src);
1184 
1185   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1186   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1187 
1188   void pushoop(jobject obj);
1189   void pushklass(Metadata* obj);
1190 
1191   // sign extend as need a l to ptr sized element
1192   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1193   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1194 
1195   // C2 compiled method's prolog code.
1196   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1197 
1198   // clear memory of size 'cnt' qwords, starting at 'base'.
1199   void clear_mem(Register base, Register cnt, Register rtmp);
1200 
1201   // IndexOf strings.
1202   // Small strings are loaded through stack if they cross page boundary.
1203   void string_indexof(Register str1, Register str2,
1204                       Register cnt1, Register cnt2,
1205                       int int_cnt2,  Register result,
1206                       XMMRegister vec, Register tmp);
1207 
1208   // IndexOf for constant substrings with size >= 8 elements
1209   // which don't need to be loaded through stack.
1210   void string_indexofC8(Register str1, Register str2,
1211                       Register cnt1, Register cnt2,
1212                       int int_cnt2,  Register result,
1213                       XMMRegister vec, Register tmp);
1214 
1215     // Smallest code: we don't need to load through stack,
1216     // check string tail.
1217 
1218   // Compare strings.
1219   void string_compare(Register str1, Register str2,
1220                       Register cnt1, Register cnt2, Register result,
1221                       XMMRegister vec1);
1222 
1223   // Compare char[] arrays.
1224   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1225                           Register limit, Register result, Register chr,
1226                           XMMRegister vec1, XMMRegister vec2);
1227 
1228   // Fill primitive arrays
1229   void generate_fill(BasicType t, bool aligned,
1230                      Register to, Register value, Register count,
1231                      Register rtmp, XMMRegister xtmp);
1232 
1233   void encode_iso_array(Register src, Register dst, Register len,
1234                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1235                         XMMRegister tmp4, Register tmp5, Register result);
1236 
1237 #ifdef _LP64
1238   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1239   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1240                              Register y, Register y_idx, Register z,
1241                              Register carry, Register product,
1242                              Register idx, Register kdx);
1243   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1244                               Register yz_idx, Register idx,
1245                               Register carry, Register product, int offset);
1246   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1247                                     Register carry, Register carry2,
1248                                     Register idx, Register jdx,
1249                                     Register yz_idx1, Register yz_idx2,
1250                                     Register tmp, Register tmp3, Register tmp4);
1251   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1252                                Register yz_idx, Register idx, Register jdx,
1253                                Register carry, Register product,
1254                                Register carry2);
1255   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1256                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1257 
1258   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1259                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1260   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1261                             Register tmp2);
1262   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1263                        Register rdxReg, Register raxReg);
1264   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1265   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1266                        Register tmp3, Register tmp4);
1267   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1268                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1269 
1270   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1271                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1272                Register raxReg);
1273   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1274                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1275                Register raxReg);
1276 #endif
1277 
1278   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1279   void update_byte_crc32(Register crc, Register val, Register table);
1280   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1281   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1282   // Note on a naming convention:
1283   // Prefix w = register only used on a Westmere+ architecture
1284   // Prefix n = register only used on a Nehalem architecture
1285 #ifdef _LP64
1286   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1287                        Register tmp1, Register tmp2, Register tmp3);
1288 #else
1289   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1290                        Register tmp1, Register tmp2, Register tmp3,
1291                        XMMRegister xtmp1, XMMRegister xtmp2);
1292 #endif
1293   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1294                         Register in_out,
1295                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1296                         XMMRegister w_xtmp2,
1297                         Register tmp1,
1298                         Register n_tmp2, Register n_tmp3);
1299   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1300                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1301                        Register tmp1, Register tmp2,
1302                        Register n_tmp3);
1303   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1304                          Register in_out1, Register in_out2, Register in_out3,
1305                          Register tmp1, Register tmp2, Register tmp3,
1306                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1307                          Register tmp4, Register tmp5,
1308                          Register n_tmp6);
1309   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1310                             Register tmp1, Register tmp2, Register tmp3,
1311                             Register tmp4, Register tmp5, Register tmp6,
1312                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1313                             bool is_pclmulqdq_supported);
1314   // Fold 128-bit data chunk
1315   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1316   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1317   // Fold 8-bit data
1318   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1319   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1320 
1321 #undef VIRTUAL
1322 
1323 };
1324 
1325 /**
1326  * class SkipIfEqual:
1327  * 
1328  * Instantiating this class will result in assembly code being output that will
1329  * jump around any code emitted between the creation of the instance and it's
1330  * automatic destruction at the end of a scope block, depending on the value of
1331  * the flag passed to the constructor, which will be checked at run-time.
1332  */
1333 class SkipIfEqual {
1334  private:
1335   MacroAssembler* _masm;
1336   Label _label;
1337 
1338  public:
1339    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1340    ~SkipIfEqual();
1341 };
1342 
1343 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP