1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 #include "asm/register.hpp"
  29 #include "vm_version_x86.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Contains all the definitions needed for x86 assembly code generation.
  34 
  35 // Calling convention
  36 class Argument VALUE_OBJ_CLASS_SPEC {
  37  public:
  38   enum {
  39 #ifdef _LP64
  40 #ifdef _WIN64
  41     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  43 #else
  44     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  46 #endif // _WIN64
  47     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  49 #else
  50     n_register_parameters = 0   // 0 registers used to pass arguments
  51 #endif // _LP64
  52   };
  53 };
  54 
  55 
  56 #ifdef _LP64
  57 // Symbolically name the register arguments used by the c calling convention.
  58 // Windows is different from linux/solaris. So much for standards...
  59 
  60 #ifdef _WIN64
  61 
  62 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  63 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  64 REGISTER_DECLARATION(Register, c_rarg2, r8);
  65 REGISTER_DECLARATION(Register, c_rarg3, r9);
  66 
  67 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  68 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  69 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  70 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  71 
  72 #else
  73 
  74 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  75 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  76 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  77 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  78 REGISTER_DECLARATION(Register, c_rarg4, r8);
  79 REGISTER_DECLARATION(Register, c_rarg5, r9);
  80 
  81 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  82 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  83 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  84 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  85 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  86 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  87 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  88 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  89 
  90 #endif // _WIN64
  91 
  92 // Symbolically name the register arguments used by the Java calling convention.
  93 // We have control over the convention for java so we can do what we please.
  94 // What pleases us is to offset the java calling convention so that when
  95 // we call a suitable jni method the arguments are lined up and we don't
  96 // have to do little shuffling. A suitable jni method is non-static and a
  97 // small number of arguments (two fewer args on windows)
  98 //
  99 //        |-------------------------------------------------------|
 100 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
 101 //        |-------------------------------------------------------|
 102 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 103 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 104 //        |-------------------------------------------------------|
 105 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 106 //        |-------------------------------------------------------|
 107 
 108 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 109 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 110 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 111 // Windows runs out of register args here
 112 #ifdef _WIN64
 113 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 114 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 115 #else
 116 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 117 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 118 #endif /* _WIN64 */
 119 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 120 
 121 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 122 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 123 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 124 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 125 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 126 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 127 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 128 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 129 
 130 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 131 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 132 
 133 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 134 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 135 
 136 #else
 137 // rscratch1 will apear in 32bit code that is dead but of course must compile
 138 // Using noreg ensures if the dead code is incorrectly live and executed it
 139 // will cause an assertion failure
 140 #define rscratch1 noreg
 141 #define rscratch2 noreg
 142 
 143 #endif // _LP64
 144 
 145 // JSR 292
 146 // On x86, the SP does not have to be saved when invoking method handle intrinsics
 147 // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg.
 148 REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg);
 149 
 150 // Address is an abstraction used to represent a memory location
 151 // using any of the amd64 addressing modes with one object.
 152 //
 153 // Note: A register location is represented via a Register, not
 154 //       via an address for efficiency & simplicity reasons.
 155 
 156 class ArrayAddress;
 157 
 158 class Address VALUE_OBJ_CLASS_SPEC {
 159  public:
 160   enum ScaleFactor {
 161     no_scale = -1,
 162     times_1  =  0,
 163     times_2  =  1,
 164     times_4  =  2,
 165     times_8  =  3,
 166     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 167   };
 168   static ScaleFactor times(int size) {
 169     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 170     if (size == 8)  return times_8;
 171     if (size == 4)  return times_4;
 172     if (size == 2)  return times_2;
 173     return times_1;
 174   }
 175   static int scale_size(ScaleFactor scale) {
 176     assert(scale != no_scale, "");
 177     assert(((1 << (int)times_1) == 1 &&
 178             (1 << (int)times_2) == 2 &&
 179             (1 << (int)times_4) == 4 &&
 180             (1 << (int)times_8) == 8), "");
 181     return (1 << (int)scale);
 182   }
 183 
 184  private:
 185   Register         _base;
 186   Register         _index;
 187   ScaleFactor      _scale;
 188   int              _disp;
 189   RelocationHolder _rspec;
 190 
 191   // Easily misused constructors make them private
 192   // %%% can we make these go away?
 193   NOT_LP64(Address(address loc, RelocationHolder spec);)
 194   Address(int disp, address loc, relocInfo::relocType rtype);
 195   Address(int disp, address loc, RelocationHolder spec);
 196 
 197  public:
 198 
 199  int disp() { return _disp; }
 200   // creation
 201   Address()
 202     : _base(noreg),
 203       _index(noreg),
 204       _scale(no_scale),
 205       _disp(0) {
 206   }
 207 
 208   // No default displacement otherwise Register can be implicitly
 209   // converted to 0(Register) which is quite a different animal.
 210 
 211   Address(Register base, int disp)
 212     : _base(base),
 213       _index(noreg),
 214       _scale(no_scale),
 215       _disp(disp) {
 216   }
 217 
 218   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 219     : _base (base),
 220       _index(index),
 221       _scale(scale),
 222       _disp (disp) {
 223     assert(!index->is_valid() == (scale == Address::no_scale),
 224            "inconsistent address");
 225   }
 226 
 227   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 228     : _base (base),
 229       _index(index.register_or_noreg()),
 230       _scale(scale),
 231       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 232     if (!index.is_register())  scale = Address::no_scale;
 233     assert(!_index->is_valid() == (scale == Address::no_scale),
 234            "inconsistent address");
 235   }
 236 
 237   Address plus_disp(int disp) const {
 238     Address a = (*this);
 239     a._disp += disp;
 240     return a;
 241   }
 242   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
 243     Address a = (*this);
 244     a._disp += disp.constant_or_zero() * scale_size(scale);
 245     if (disp.is_register()) {
 246       assert(!a.index()->is_valid(), "competing indexes");
 247       a._index = disp.as_register();
 248       a._scale = scale;
 249     }
 250     return a;
 251   }
 252   bool is_same_address(Address a) const {
 253     // disregard _rspec
 254     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
 255   }
 256 
 257   // The following two overloads are used in connection with the
 258   // ByteSize type (see sizes.hpp).  They simplify the use of
 259   // ByteSize'd arguments in assembly code. Note that their equivalent
 260   // for the optimized build are the member functions with int disp
 261   // argument since ByteSize is mapped to an int type in that case.
 262   //
 263   // Note: DO NOT introduce similar overloaded functions for WordSize
 264   // arguments as in the optimized mode, both ByteSize and WordSize
 265   // are mapped to the same type and thus the compiler cannot make a
 266   // distinction anymore (=> compiler errors).
 267 
 268 #ifdef ASSERT
 269   Address(Register base, ByteSize disp)
 270     : _base(base),
 271       _index(noreg),
 272       _scale(no_scale),
 273       _disp(in_bytes(disp)) {
 274   }
 275 
 276   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 277     : _base(base),
 278       _index(index),
 279       _scale(scale),
 280       _disp(in_bytes(disp)) {
 281     assert(!index->is_valid() == (scale == Address::no_scale),
 282            "inconsistent address");
 283   }
 284 
 285   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 286     : _base (base),
 287       _index(index.register_or_noreg()),
 288       _scale(scale),
 289       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 290     if (!index.is_register())  scale = Address::no_scale;
 291     assert(!_index->is_valid() == (scale == Address::no_scale),
 292            "inconsistent address");
 293   }
 294 
 295 #endif // ASSERT
 296 
 297   // accessors
 298   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 299   Register    base()             const { return _base;  }
 300   Register    index()            const { return _index; }
 301   ScaleFactor scale()            const { return _scale; }
 302   int         disp()             const { return _disp;  }
 303 
 304   // Convert the raw encoding form into the form expected by the constructor for
 305   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 306   // that to noreg for the Address constructor.
 307   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
 308 
 309   static Address make_array(ArrayAddress);
 310 
 311  private:
 312   bool base_needs_rex() const {
 313     return _base != noreg && _base->encoding() >= 8;
 314   }
 315 
 316   bool index_needs_rex() const {
 317     return _index != noreg &&_index->encoding() >= 8;
 318   }
 319 
 320   relocInfo::relocType reloc() const { return _rspec.type(); }
 321 
 322   friend class Assembler;
 323   friend class MacroAssembler;
 324   friend class LIR_Assembler; // base/index/scale/disp
 325 };
 326 
 327 //
 328 // AddressLiteral has been split out from Address because operands of this type
 329 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 330 // the few instructions that need to deal with address literals are unique and the
 331 // MacroAssembler does not have to implement every instruction in the Assembler
 332 // in order to search for address literals that may need special handling depending
 333 // on the instruction and the platform. As small step on the way to merging i486/amd64
 334 // directories.
 335 //
 336 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 337   friend class ArrayAddress;
 338   RelocationHolder _rspec;
 339   // Typically we use AddressLiterals we want to use their rval
 340   // However in some situations we want the lval (effect address) of the item.
 341   // We provide a special factory for making those lvals.
 342   bool _is_lval;
 343 
 344   // If the target is far we'll need to load the ea of this to
 345   // a register to reach it. Otherwise if near we can do rip
 346   // relative addressing.
 347 
 348   address          _target;
 349 
 350  protected:
 351   // creation
 352   AddressLiteral()
 353     : _is_lval(false),
 354       _target(NULL)
 355   {}
 356 
 357   public:
 358 
 359 
 360   AddressLiteral(address target, relocInfo::relocType rtype);
 361 
 362   AddressLiteral(address target, RelocationHolder const& rspec)
 363     : _rspec(rspec),
 364       _is_lval(false),
 365       _target(target)
 366   {}
 367 
 368   AddressLiteral addr() {
 369     AddressLiteral ret = *this;
 370     ret._is_lval = true;
 371     return ret;
 372   }
 373 
 374 
 375  private:
 376 
 377   address target() { return _target; }
 378   bool is_lval() { return _is_lval; }
 379 
 380   relocInfo::relocType reloc() const { return _rspec.type(); }
 381   const RelocationHolder& rspec() const { return _rspec; }
 382 
 383   friend class Assembler;
 384   friend class MacroAssembler;
 385   friend class Address;
 386   friend class LIR_Assembler;
 387 };
 388 
 389 // Convience classes
 390 class RuntimeAddress: public AddressLiteral {
 391 
 392   public:
 393 
 394   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 395 
 396 };
 397 
 398 class ExternalAddress: public AddressLiteral {
 399  private:
 400   static relocInfo::relocType reloc_for_target(address target) {
 401     // Sometimes ExternalAddress is used for values which aren't
 402     // exactly addresses, like the card table base.
 403     // external_word_type can't be used for values in the first page
 404     // so just skip the reloc in that case.
 405     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 406   }
 407 
 408  public:
 409 
 410   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
 411 
 412 };
 413 
 414 class InternalAddress: public AddressLiteral {
 415 
 416   public:
 417 
 418   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 419 
 420 };
 421 
 422 // x86 can do array addressing as a single operation since disp can be an absolute
 423 // address amd64 can't. We create a class that expresses the concept but does extra
 424 // magic on amd64 to get the final result
 425 
 426 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 427   private:
 428 
 429   AddressLiteral _base;
 430   Address        _index;
 431 
 432   public:
 433 
 434   ArrayAddress() {};
 435   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 436   AddressLiteral base() { return _base; }
 437   Address index() { return _index; }
 438 
 439 };
 440 
 441 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512*2 / wordSize);
 442 
 443 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 444 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 445 // is what you get. The Assembler is generating code into a CodeBuffer.
 446 
 447 class Assembler : public AbstractAssembler  {
 448   friend class AbstractAssembler; // for the non-virtual hack
 449   friend class LIR_Assembler; // as_Address()
 450   friend class StubGenerator;
 451 
 452  public:
 453   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 454     zero          = 0x4,
 455     notZero       = 0x5,
 456     equal         = 0x4,
 457     notEqual      = 0x5,
 458     less          = 0xc,
 459     lessEqual     = 0xe,
 460     greater       = 0xf,
 461     greaterEqual  = 0xd,
 462     below         = 0x2,
 463     belowEqual    = 0x6,
 464     above         = 0x7,
 465     aboveEqual    = 0x3,
 466     overflow      = 0x0,
 467     noOverflow    = 0x1,
 468     carrySet      = 0x2,
 469     carryClear    = 0x3,
 470     negative      = 0x8,
 471     positive      = 0x9,
 472     parity        = 0xa,
 473     noParity      = 0xb
 474   };
 475 
 476   enum Prefix {
 477     // segment overrides
 478     CS_segment = 0x2e,
 479     SS_segment = 0x36,
 480     DS_segment = 0x3e,
 481     ES_segment = 0x26,
 482     FS_segment = 0x64,
 483     GS_segment = 0x65,
 484 
 485     REX        = 0x40,
 486 
 487     REX_B      = 0x41,
 488     REX_X      = 0x42,
 489     REX_XB     = 0x43,
 490     REX_R      = 0x44,
 491     REX_RB     = 0x45,
 492     REX_RX     = 0x46,
 493     REX_RXB    = 0x47,
 494 
 495     REX_W      = 0x48,
 496 
 497     REX_WB     = 0x49,
 498     REX_WX     = 0x4A,
 499     REX_WXB    = 0x4B,
 500     REX_WR     = 0x4C,
 501     REX_WRB    = 0x4D,
 502     REX_WRX    = 0x4E,
 503     REX_WRXB   = 0x4F,
 504 
 505     VEX_3bytes = 0xC4,
 506     VEX_2bytes = 0xC5,
 507     EVEX_4bytes = 0x62,
 508     Prefix_EMPTY = 0x0
 509   };
 510 
 511   enum VexPrefix {
 512     VEX_B = 0x20,
 513     VEX_X = 0x40,
 514     VEX_R = 0x80,
 515     VEX_W = 0x80
 516   };
 517 
 518   enum ExexPrefix {
 519     EVEX_F  = 0x04,
 520     EVEX_V  = 0x08,
 521     EVEX_Rb = 0x10,
 522     EVEX_X  = 0x40,
 523     EVEX_Z  = 0x80
 524   };
 525 
 526   enum VexSimdPrefix {
 527     VEX_SIMD_NONE = 0x0,
 528     VEX_SIMD_66   = 0x1,
 529     VEX_SIMD_F3   = 0x2,
 530     VEX_SIMD_F2   = 0x3
 531   };
 532 
 533   enum VexOpcode {
 534     VEX_OPCODE_NONE  = 0x0,
 535     VEX_OPCODE_0F    = 0x1,
 536     VEX_OPCODE_0F_38 = 0x2,
 537     VEX_OPCODE_0F_3A = 0x3
 538   };
 539 
 540   enum AvxVectorLen {
 541     AVX_128bit = 0x0,
 542     AVX_256bit = 0x1,
 543     AVX_512bit = 0x2,
 544     AVX_NoVec  = 0x4
 545   };
 546 
 547   enum EvexTupleType {
 548     EVEX_FV   = 0,
 549     EVEX_HV   = 4,
 550     EVEX_FVM  = 6,
 551     EVEX_T1S  = 7,
 552     EVEX_T1F  = 11,
 553     EVEX_T2   = 13,
 554     EVEX_T4   = 15,
 555     EVEX_T8   = 17,
 556     EVEX_HVM  = 18,
 557     EVEX_QVM  = 19,
 558     EVEX_OVM  = 20,
 559     EVEX_M128 = 21,
 560     EVEX_DUP  = 22,
 561     EVEX_ETUP = 23
 562   };
 563 
 564   enum EvexInputSizeInBits {
 565     EVEX_8bit  = 0,
 566     EVEX_16bit = 1,
 567     EVEX_32bit = 2,
 568     EVEX_64bit = 3
 569   };
 570 
 571   enum WhichOperand {
 572     // input to locate_operand, and format code for relocations
 573     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 574     disp32_operand = 1,          // embedded 32-bit displacement or address
 575     call32_operand = 2,          // embedded 32-bit self-relative displacement
 576 #ifndef _LP64
 577     _WhichOperand_limit = 3
 578 #else
 579      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 580     _WhichOperand_limit = 4
 581 #endif
 582   };
 583 
 584 
 585 
 586   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 587   // of instructions are freely declared without the need for wrapping them an ifdef.
 588   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 589   // In the .cpp file the implementations are wrapped so that they are dropped out
 590   // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL
 591   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 592   //
 593   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 594   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 595 
 596 private:
 597 
 598   int evex_encoding;
 599   int input_size_in_bits;
 600   int avx_vector_len;
 601   int tuple_type;
 602   bool is_evex_instruction;
 603 
 604   // 64bit prefixes
 605   int prefix_and_encode(int reg_enc, bool byteinst = false);
 606   int prefixq_and_encode(int reg_enc);
 607 
 608   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 609   int prefixq_and_encode(int dst_enc, int src_enc);
 610 
 611   void prefix(Register reg);
 612   void prefix(Register dst, Register src, Prefix p);
 613   void prefix(Register dst, Address adr, Prefix p);
 614   void prefix(Address adr);
 615   void prefixq(Address adr);
 616 
 617   void prefix(Address adr, Register reg,  bool byteinst = false);
 618   void prefix(Address adr, XMMRegister reg);
 619   void prefixq(Address adr, Register reg);
 620   void prefixq(Address adr, XMMRegister reg);
 621 
 622   void prefetch_prefix(Address src);
 623 
 624   void rex_prefix(Address adr, XMMRegister xreg,
 625                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 626   int  rex_prefix_and_encode(int dst_enc, int src_enc,
 627                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
 628 
 629   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
 630                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 631                   int vector_len);
 632 
 633   void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
 634                    int nds_enc, VexSimdPrefix pre, VexOpcode opc,
 635                    bool is_extended_context, bool is_merge_context,
 636                    int vector_len, bool no_mask_reg );
 637 
 638   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
 639                   VexSimdPrefix pre, VexOpcode opc,
 640                   bool vex_w, int vector_len,
 641                   bool legacy_mode = false, bool no_mask_reg = false);
 642 
 643   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
 644                   VexSimdPrefix pre, int vector_len = AVX_128bit,
 645                   bool no_mask_reg = false, bool legacy_mode = false) {
 646     int dst_enc = dst->encoding();
 647     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 648     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector_len, legacy_mode, no_mask_reg);
 649   }
 650 
 651   void vex_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 652                     VexSimdPrefix pre, int vector_len = AVX_128bit,
 653                     bool no_mask_reg = false) {
 654     int dst_enc = dst->encoding();
 655     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 656     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
 657   }
 658 
 659   void vex_prefix_0F38(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 660     bool vex_w = false;
 661     int vector_len = AVX_128bit;
 662     vex_prefix(src, nds->encoding(), dst->encoding(),
 663                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 664                vector_len, no_mask_reg);
 665   }
 666 
 667   void vex_prefix_0F38_legacy(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 668     bool vex_w = false;
 669     int vector_len = AVX_128bit;
 670     vex_prefix(src, nds->encoding(), dst->encoding(),
 671                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 672                vector_len, true, no_mask_reg);
 673   }
 674 
 675   void vex_prefix_0F38_q(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 676     bool vex_w = true;
 677     int vector_len = AVX_128bit;
 678     vex_prefix(src, nds->encoding(), dst->encoding(),
 679                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 680                vector_len, no_mask_reg);
 681   }
 682 
 683   void vex_prefix_0F38_q_legacy(Register dst, Register nds, Address src, bool no_mask_reg = false) {
 684     bool vex_w = true;
 685     int vector_len = AVX_128bit;
 686     vex_prefix(src, nds->encoding(), dst->encoding(),
 687                VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w,
 688                vector_len, true, no_mask_reg);
 689   }
 690 
 691   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
 692                              VexSimdPrefix pre, VexOpcode opc,
 693                              bool vex_w, int vector_len,
 694                              bool legacy_mode, bool no_mask_reg);
 695 
 696   int  vex_prefix_0F38_and_encode(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 697     bool vex_w = false;
 698     int vector_len = AVX_128bit;
 699     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 700                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 701                                  false, no_mask_reg);
 702   }
 703 
 704   int  vex_prefix_0F38_and_encode_legacy(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 705     bool vex_w = false;
 706     int vector_len = AVX_128bit;
 707     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 708       VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 709       true, no_mask_reg);
 710   }
 711 
 712   int  vex_prefix_0F38_and_encode_q(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 713     bool vex_w = true;
 714     int vector_len = AVX_128bit;
 715     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 716                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 717                                  false, no_mask_reg);
 718   }
 719 
 720   int  vex_prefix_0F38_and_encode_q_legacy(Register dst, Register nds, Register src, bool no_mask_reg = false) {
 721     bool vex_w = true;
 722     int vector_len = AVX_128bit;
 723     return vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(),
 724                                  VEX_SIMD_NONE, VEX_OPCODE_0F_38, vex_w, vector_len,
 725                                  true, no_mask_reg);
 726   }
 727 
 728   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 729                              VexSimdPrefix pre, int vector_len = AVX_128bit,
 730                              VexOpcode opc = VEX_OPCODE_0F, bool legacy_mode = false,
 731                              bool no_mask_reg = false) {
 732     int src_enc = src->encoding();
 733     int dst_enc = dst->encoding();
 734     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
 735     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector_len, legacy_mode, no_mask_reg);
 736   }
 737 
 738   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
 739                    VexSimdPrefix pre, bool no_mask_reg, VexOpcode opc = VEX_OPCODE_0F,
 740                    bool rex_w = false, int vector_len = AVX_128bit, bool legacy_mode = false);
 741 
 742   void simd_prefix(XMMRegister dst, Address src, VexSimdPrefix pre,
 743                    bool no_mask_reg, VexOpcode opc = VEX_OPCODE_0F) {
 744     simd_prefix(dst, xnoreg, src, pre, no_mask_reg, opc);
 745   }
 746 
 747   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
 748     simd_prefix(src, dst, pre, no_mask_reg);
 749   }
 750   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
 751                      VexSimdPrefix pre, bool no_mask_reg = false) {
 752     bool rex_w = true;
 753     simd_prefix(dst, nds, src, pre, no_mask_reg, VEX_OPCODE_0F, rex_w);
 754   }
 755 
 756   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
 757                              VexSimdPrefix pre, bool no_mask_reg,
 758                              VexOpcode opc = VEX_OPCODE_0F,
 759                              bool rex_w = false, int vector_len = AVX_128bit,
 760                              bool legacy_mode = false);
 761 
 762   int kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src,
 763                              VexSimdPrefix pre, bool no_mask_reg,
 764                              VexOpcode opc = VEX_OPCODE_0F,
 765                              bool rex_w = false, int vector_len = AVX_128bit);
 766 
 767   int kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src,
 768                              VexSimdPrefix pre, bool no_mask_reg,
 769                              VexOpcode opc = VEX_OPCODE_0F,
 770                              bool rex_w = false, int vector_len = AVX_128bit);
 771 
 772   // Move/convert 32-bit integer value.
 773   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
 774                              VexSimdPrefix pre, bool no_mask_reg) {
 775     // It is OK to cast from Register to XMMRegister to pass argument here
 776     // since only encoding is used in simd_prefix_and_encode() and number of
 777     // Gen and Xmm registers are the same.
 778     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, no_mask_reg, VEX_OPCODE_0F);
 779   }
 780   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre, bool no_mask_reg) {
 781     return simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg);
 782   }
 783   int simd_prefix_and_encode(Register dst, XMMRegister src,
 784                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 785                              bool no_mask_reg = false) {
 786     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, no_mask_reg, opc);
 787   }
 788 
 789   // Move/convert 64-bit integer value.
 790   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
 791                                VexSimdPrefix pre, bool no_mask_reg = false) {
 792     bool rex_w = true;
 793     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, no_mask_reg, VEX_OPCODE_0F, rex_w);
 794   }
 795   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre, bool no_mask_reg) {
 796     return simd_prefix_and_encode_q(dst, xnoreg, src, pre, no_mask_reg);
 797   }
 798   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
 799                                VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
 800                                bool no_mask_reg = false) {
 801     bool rex_w = true;
 802     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, no_mask_reg, opc, rex_w);
 803   }
 804 
 805   // Helper functions for groups of instructions
 806   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 807 
 808   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 809   // Force generation of a 4 byte immediate value even if it fits into 8bit
 810   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
 811   void emit_arith(int op1, int op2, Register dst, Register src);
 812 
 813   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 814   void emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 815   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 816   void emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false);
 817   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 818   void emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg = false);
 819   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false, bool legacy_mode = false);
 820   void emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg = false);
 821   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 822                       Address src, VexSimdPrefix pre, int vector_len,
 823                       bool no_mask_reg = false, bool legacy_mode = false);
 824   void emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
 825                         Address src, VexSimdPrefix pre, int vector_len,
 826                         bool no_mask_reg = false);
 827   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
 828                       XMMRegister src, VexSimdPrefix pre, int vector_len,
 829                       bool no_mask_reg = false, bool legacy_mode = false);
 830   void emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
 831                         XMMRegister src, VexSimdPrefix pre, int vector_len,
 832                         bool no_mask_reg = false);
 833 
 834   bool emit_compressed_disp_byte(int &disp);
 835 
 836   void emit_operand(Register reg,
 837                     Register base, Register index, Address::ScaleFactor scale,
 838                     int disp,
 839                     RelocationHolder const& rspec,
 840                     int rip_relative_correction = 0);
 841 
 842   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 843 
 844   // operands that only take the original 32bit registers
 845   void emit_operand32(Register reg, Address adr);
 846 
 847   void emit_operand(XMMRegister reg,
 848                     Register base, Register index, Address::ScaleFactor scale,
 849                     int disp,
 850                     RelocationHolder const& rspec);
 851 
 852   void emit_operand(XMMRegister reg, Address adr);
 853 
 854   void emit_operand(MMXRegister reg, Address adr);
 855 
 856   // workaround gcc (3.2.1-7) bug
 857   void emit_operand(Address adr, MMXRegister reg);
 858 
 859 
 860   // Immediate-to-memory forms
 861   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 862 
 863   void emit_farith(int b1, int b2, int i);
 864 
 865 
 866  protected:
 867   #ifdef ASSERT
 868   void check_relocation(RelocationHolder const& rspec, int format);
 869   #endif
 870 
 871   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 872   void emit_data(jint data, RelocationHolder const& rspec, int format);
 873   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 874   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 875 
 876   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 877 
 878   // These are all easily abused and hence protected
 879 
 880   // 32BIT ONLY SECTION
 881 #ifndef _LP64
 882   // Make these disappear in 64bit mode since they would never be correct
 883   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 884   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 885 
 886   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 887   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 888 
 889   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 890 #else
 891   // 64BIT ONLY SECTION
 892   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 893 
 894   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 895   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 896 
 897   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 898   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 899 #endif // _LP64
 900 
 901   // These are unique in that we are ensured by the caller that the 32bit
 902   // relative in these instructions will always be able to reach the potentially
 903   // 64bit address described by entry. Since they can take a 64bit address they
 904   // don't have the 32 suffix like the other instructions in this class.
 905 
 906   void call_literal(address entry, RelocationHolder const& rspec);
 907   void jmp_literal(address entry, RelocationHolder const& rspec);
 908 
 909   // Avoid using directly section
 910   // Instructions in this section are actually usable by anyone without danger
 911   // of failure but have performance issues that are addressed my enhanced
 912   // instructions which will do the proper thing base on the particular cpu.
 913   // We protect them because we don't trust you...
 914 
 915   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 916   // could cause a partial flag stall since they don't set CF flag.
 917   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 918   // which call inc() & dec() or add() & sub() in accordance with
 919   // the product flag UseIncDec value.
 920 
 921   void decl(Register dst);
 922   void decl(Address dst);
 923   void decq(Register dst);
 924   void decq(Address dst);
 925 
 926   void incl(Register dst);
 927   void incl(Address dst);
 928   void incq(Register dst);
 929   void incq(Address dst);
 930 
 931   // New cpus require use of movsd and movss to avoid partial register stall
 932   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 933   // The selection is done in MacroAssembler::movdbl() and movflt().
 934 
 935   // Move Scalar Single-Precision Floating-Point Values
 936   void movss(XMMRegister dst, Address src);
 937   void movss(XMMRegister dst, XMMRegister src);
 938   void movss(Address dst, XMMRegister src);
 939 
 940   // Move Scalar Double-Precision Floating-Point Values
 941   void movsd(XMMRegister dst, Address src);
 942   void movsd(XMMRegister dst, XMMRegister src);
 943   void movsd(Address dst, XMMRegister src);
 944   void movlpd(XMMRegister dst, Address src);
 945 
 946   // New cpus require use of movaps and movapd to avoid partial register stall
 947   // when moving between registers.
 948   void movaps(XMMRegister dst, XMMRegister src);
 949   void movapd(XMMRegister dst, XMMRegister src);
 950 
 951   // End avoid using directly
 952 
 953 
 954   // Instruction prefixes
 955   void prefix(Prefix p);
 956 
 957   public:
 958 
 959   // Creation
 960   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
 961     init_attributes();
 962   }
 963 
 964   // Decoding
 965   static address locate_operand(address inst, WhichOperand which);
 966   static address locate_next_instruction(address inst);
 967 
 968   // Utilities
 969   static bool is_polling_page_far() NOT_LP64({ return false;});
 970   static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 971                                          int cur_tuple_type, int in_size_in_bits, int cur_encoding);
 972 
 973   // Generic instructions
 974   // Does 32bit or 64bit as needed for the platform. In some sense these
 975   // belong in macro assembler but there is no need for both varieties to exist
 976 
 977   void init_attributes(void) {
 978     evex_encoding = 0;
 979     input_size_in_bits = 0;
 980     avx_vector_len = AVX_NoVec;
 981     tuple_type = EVEX_ETUP;
 982     is_evex_instruction = false;
 983   }
 984 
 985   void lea(Register dst, Address src);
 986 
 987   void mov(Register dst, Register src);
 988 
 989   void pusha();
 990   void popa();
 991 
 992   void pushf();
 993   void popf();
 994 
 995   void push(int32_t imm32);
 996 
 997   void push(Register src);
 998 
 999   void pop(Register dst);
1000 
1001   // These are dummies to prevent surprise implicit conversions to Register
1002   void push(void* v);
1003   void pop(void* v);
1004 
1005   // These do register sized moves/scans
1006   void rep_mov();
1007   void rep_stos();
1008   void rep_stosb();
1009   void repne_scan();
1010 #ifdef _LP64
1011   void repne_scanl();
1012 #endif
1013 
1014   // Vanilla instructions in lexical order
1015 
1016   void adcl(Address dst, int32_t imm32);
1017   void adcl(Address dst, Register src);
1018   void adcl(Register dst, int32_t imm32);
1019   void adcl(Register dst, Address src);
1020   void adcl(Register dst, Register src);
1021 
1022   void adcq(Register dst, int32_t imm32);
1023   void adcq(Register dst, Address src);
1024   void adcq(Register dst, Register src);
1025 
1026   void addl(Address dst, int32_t imm32);
1027   void addl(Address dst, Register src);
1028   void addl(Register dst, int32_t imm32);
1029   void addl(Register dst, Address src);
1030   void addl(Register dst, Register src);
1031 
1032   void addq(Address dst, int32_t imm32);
1033   void addq(Address dst, Register src);
1034   void addq(Register dst, int32_t imm32);
1035   void addq(Register dst, Address src);
1036   void addq(Register dst, Register src);
1037 
1038 #ifdef _LP64
1039  //Add Unsigned Integers with Carry Flag
1040   void adcxq(Register dst, Register src);
1041 
1042  //Add Unsigned Integers with Overflow Flag
1043   void adoxq(Register dst, Register src);
1044 #endif
1045 
1046   void addr_nop_4();
1047   void addr_nop_5();
1048   void addr_nop_7();
1049   void addr_nop_8();
1050 
1051   // Add Scalar Double-Precision Floating-Point Values
1052   void addsd(XMMRegister dst, Address src);
1053   void addsd(XMMRegister dst, XMMRegister src);
1054 
1055   // Add Scalar Single-Precision Floating-Point Values
1056   void addss(XMMRegister dst, Address src);
1057   void addss(XMMRegister dst, XMMRegister src);
1058 
1059   // AES instructions
1060   void aesdec(XMMRegister dst, Address src);
1061   void aesdec(XMMRegister dst, XMMRegister src);
1062   void aesdeclast(XMMRegister dst, Address src);
1063   void aesdeclast(XMMRegister dst, XMMRegister src);
1064   void aesenc(XMMRegister dst, Address src);
1065   void aesenc(XMMRegister dst, XMMRegister src);
1066   void aesenclast(XMMRegister dst, Address src);
1067   void aesenclast(XMMRegister dst, XMMRegister src);
1068 
1069 
1070   void andl(Address  dst, int32_t imm32);
1071   void andl(Register dst, int32_t imm32);
1072   void andl(Register dst, Address src);
1073   void andl(Register dst, Register src);
1074 
1075   void andq(Address  dst, int32_t imm32);
1076   void andq(Register dst, int32_t imm32);
1077   void andq(Register dst, Address src);
1078   void andq(Register dst, Register src);
1079 
1080   // BMI instructions
1081   void andnl(Register dst, Register src1, Register src2);
1082   void andnl(Register dst, Register src1, Address src2);
1083   void andnq(Register dst, Register src1, Register src2);
1084   void andnq(Register dst, Register src1, Address src2);
1085 
1086   void blsil(Register dst, Register src);
1087   void blsil(Register dst, Address src);
1088   void blsiq(Register dst, Register src);
1089   void blsiq(Register dst, Address src);
1090 
1091   void blsmskl(Register dst, Register src);
1092   void blsmskl(Register dst, Address src);
1093   void blsmskq(Register dst, Register src);
1094   void blsmskq(Register dst, Address src);
1095 
1096   void blsrl(Register dst, Register src);
1097   void blsrl(Register dst, Address src);
1098   void blsrq(Register dst, Register src);
1099   void blsrq(Register dst, Address src);
1100 
1101   void bsfl(Register dst, Register src);
1102   void bsrl(Register dst, Register src);
1103 
1104 #ifdef _LP64
1105   void bsfq(Register dst, Register src);
1106   void bsrq(Register dst, Register src);
1107 #endif
1108 
1109   void bswapl(Register reg);
1110 
1111   void bswapq(Register reg);
1112 
1113   void call(Label& L, relocInfo::relocType rtype);
1114   void call(Register reg);  // push pc; pc <- reg
1115   void call(Address adr);   // push pc; pc <- adr
1116 
1117   void cdql();
1118 
1119   void cdqq();
1120 
1121   void cld();
1122 
1123   void clflush(Address adr);
1124 
1125   void cmovl(Condition cc, Register dst, Register src);
1126   void cmovl(Condition cc, Register dst, Address src);
1127 
1128   void cmovq(Condition cc, Register dst, Register src);
1129   void cmovq(Condition cc, Register dst, Address src);
1130 
1131 
1132   void cmpb(Address dst, int imm8);
1133 
1134   void cmpl(Address dst, int32_t imm32);
1135 
1136   void cmpl(Register dst, int32_t imm32);
1137   void cmpl(Register dst, Register src);
1138   void cmpl(Register dst, Address src);
1139 
1140   void cmpq(Address dst, int32_t imm32);
1141   void cmpq(Address dst, Register src);
1142 
1143   void cmpq(Register dst, int32_t imm32);
1144   void cmpq(Register dst, Register src);
1145   void cmpq(Register dst, Address src);
1146 
1147   // these are dummies used to catch attempting to convert NULL to Register
1148   void cmpl(Register dst, void* junk); // dummy
1149   void cmpq(Register dst, void* junk); // dummy
1150 
1151   void cmpw(Address dst, int imm16);
1152 
1153   void cmpxchg8 (Address adr);
1154 
1155   void cmpxchgb(Register reg, Address adr);
1156   void cmpxchgl(Register reg, Address adr);
1157 
1158   void cmpxchgq(Register reg, Address adr);
1159 
1160   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1161   void comisd(XMMRegister dst, Address src);
1162   void comisd(XMMRegister dst, XMMRegister src);
1163 
1164   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1165   void comiss(XMMRegister dst, Address src);
1166   void comiss(XMMRegister dst, XMMRegister src);
1167 
1168   // Identify processor type and features
1169   void cpuid();
1170 
1171   // CRC32C
1172   void crc32(Register crc, Register v, int8_t sizeInBytes);
1173   void crc32(Register crc, Address adr, int8_t sizeInBytes);
1174 
1175   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
1176   void cvtsd2ss(XMMRegister dst, XMMRegister src);
1177   void cvtsd2ss(XMMRegister dst, Address src);
1178 
1179   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
1180   void cvtsi2sdl(XMMRegister dst, Register src);
1181   void cvtsi2sdl(XMMRegister dst, Address src);
1182   void cvtsi2sdq(XMMRegister dst, Register src);
1183   void cvtsi2sdq(XMMRegister dst, Address src);
1184 
1185   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
1186   void cvtsi2ssl(XMMRegister dst, Register src);
1187   void cvtsi2ssl(XMMRegister dst, Address src);
1188   void cvtsi2ssq(XMMRegister dst, Register src);
1189   void cvtsi2ssq(XMMRegister dst, Address src);
1190 
1191   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
1192   void cvtdq2pd(XMMRegister dst, XMMRegister src);
1193 
1194   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
1195   void cvtdq2ps(XMMRegister dst, XMMRegister src);
1196 
1197   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
1198   void cvtss2sd(XMMRegister dst, XMMRegister src);
1199   void cvtss2sd(XMMRegister dst, Address src);
1200 
1201   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
1202   void cvttsd2sil(Register dst, Address src);
1203   void cvttsd2sil(Register dst, XMMRegister src);
1204   void cvttsd2siq(Register dst, XMMRegister src);
1205 
1206   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
1207   void cvttss2sil(Register dst, XMMRegister src);
1208   void cvttss2siq(Register dst, XMMRegister src);
1209 
1210   // Divide Scalar Double-Precision Floating-Point Values
1211   void divsd(XMMRegister dst, Address src);
1212   void divsd(XMMRegister dst, XMMRegister src);
1213 
1214   // Divide Scalar Single-Precision Floating-Point Values
1215   void divss(XMMRegister dst, Address src);
1216   void divss(XMMRegister dst, XMMRegister src);
1217 
1218   void emms();
1219 
1220   void fabs();
1221 
1222   void fadd(int i);
1223 
1224   void fadd_d(Address src);
1225   void fadd_s(Address src);
1226 
1227   // "Alternate" versions of x87 instructions place result down in FPU
1228   // stack instead of on TOS
1229 
1230   void fadda(int i); // "alternate" fadd
1231   void faddp(int i = 1);
1232 
1233   void fchs();
1234 
1235   void fcom(int i);
1236 
1237   void fcomp(int i = 1);
1238   void fcomp_d(Address src);
1239   void fcomp_s(Address src);
1240 
1241   void fcompp();
1242 
1243   void fcos();
1244 
1245   void fdecstp();
1246 
1247   void fdiv(int i);
1248   void fdiv_d(Address src);
1249   void fdivr_s(Address src);
1250   void fdiva(int i);  // "alternate" fdiv
1251   void fdivp(int i = 1);
1252 
1253   void fdivr(int i);
1254   void fdivr_d(Address src);
1255   void fdiv_s(Address src);
1256 
1257   void fdivra(int i); // "alternate" reversed fdiv
1258 
1259   void fdivrp(int i = 1);
1260 
1261   void ffree(int i = 0);
1262 
1263   void fild_d(Address adr);
1264   void fild_s(Address adr);
1265 
1266   void fincstp();
1267 
1268   void finit();
1269 
1270   void fist_s (Address adr);
1271   void fistp_d(Address adr);
1272   void fistp_s(Address adr);
1273 
1274   void fld1();
1275 
1276   void fld_d(Address adr);
1277   void fld_s(Address adr);
1278   void fld_s(int index);
1279   void fld_x(Address adr);  // extended-precision (80-bit) format
1280 
1281   void fldcw(Address src);
1282 
1283   void fldenv(Address src);
1284 
1285   void fldlg2();
1286 
1287   void fldln2();
1288 
1289   void fldz();
1290 
1291   void flog();
1292   void flog10();
1293 
1294   void fmul(int i);
1295 
1296   void fmul_d(Address src);
1297   void fmul_s(Address src);
1298 
1299   void fmula(int i);  // "alternate" fmul
1300 
1301   void fmulp(int i = 1);
1302 
1303   void fnsave(Address dst);
1304 
1305   void fnstcw(Address src);
1306 
1307   void fnstsw_ax();
1308 
1309   void fprem();
1310   void fprem1();
1311 
1312   void frstor(Address src);
1313 
1314   void fsin();
1315 
1316   void fsqrt();
1317 
1318   void fst_d(Address adr);
1319   void fst_s(Address adr);
1320 
1321   void fstp_d(Address adr);
1322   void fstp_d(int index);
1323   void fstp_s(Address adr);
1324   void fstp_x(Address adr); // extended-precision (80-bit) format
1325 
1326   void fsub(int i);
1327   void fsub_d(Address src);
1328   void fsub_s(Address src);
1329 
1330   void fsuba(int i);  // "alternate" fsub
1331 
1332   void fsubp(int i = 1);
1333 
1334   void fsubr(int i);
1335   void fsubr_d(Address src);
1336   void fsubr_s(Address src);
1337 
1338   void fsubra(int i); // "alternate" reversed fsub
1339 
1340   void fsubrp(int i = 1);
1341 
1342   void ftan();
1343 
1344   void ftst();
1345 
1346   void fucomi(int i = 1);
1347   void fucomip(int i = 1);
1348 
1349   void fwait();
1350 
1351   void fxch(int i = 1);
1352 
1353   void fxrstor(Address src);
1354 
1355   void fxsave(Address dst);
1356 
1357   void fyl2x();
1358   void frndint();
1359   void f2xm1();
1360   void fldl2e();
1361 
1362   void hlt();
1363 
1364   void idivl(Register src);
1365   void divl(Register src); // Unsigned division
1366 
1367 #ifdef _LP64
1368   void idivq(Register src);
1369 #endif
1370 
1371   void imull(Register dst, Register src);
1372   void imull(Register dst, Register src, int value);
1373   void imull(Register dst, Address src);
1374 
1375 #ifdef _LP64
1376   void imulq(Register dst, Register src);
1377   void imulq(Register dst, Register src, int value);
1378   void imulq(Register dst, Address src);
1379 #endif
1380 
1381   // jcc is the generic conditional branch generator to run-
1382   // time routines, jcc is used for branches to labels. jcc
1383   // takes a branch opcode (cc) and a label (L) and generates
1384   // either a backward branch or a forward branch and links it
1385   // to the label fixup chain. Usage:
1386   //
1387   // Label L;      // unbound label
1388   // jcc(cc, L);   // forward branch to unbound label
1389   // bind(L);      // bind label to the current pc
1390   // jcc(cc, L);   // backward branch to bound label
1391   // bind(L);      // illegal: a label may be bound only once
1392   //
1393   // Note: The same Label can be used for forward and backward branches
1394   // but it may be bound only once.
1395 
1396   void jcc(Condition cc, Label& L, bool maybe_short = true);
1397 
1398   // Conditional jump to a 8-bit offset to L.
1399   // WARNING: be very careful using this for forward jumps.  If the label is
1400   // not bound within an 8-bit offset of this instruction, a run-time error
1401   // will occur.
1402   void jccb(Condition cc, Label& L);
1403 
1404   void jmp(Address entry);    // pc <- entry
1405 
1406   // Label operations & relative jumps (PPUM Appendix D)
1407   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
1408 
1409   void jmp(Register entry); // pc <- entry
1410 
1411   // Unconditional 8-bit offset jump to L.
1412   // WARNING: be very careful using this for forward jumps.  If the label is
1413   // not bound within an 8-bit offset of this instruction, a run-time error
1414   // will occur.
1415   void jmpb(Label& L);
1416 
1417   void ldmxcsr( Address src );
1418 
1419   void leal(Register dst, Address src);
1420 
1421   void leaq(Register dst, Address src);
1422 
1423   void lfence();
1424 
1425   void lock();
1426 
1427   void lzcntl(Register dst, Register src);
1428 
1429 #ifdef _LP64
1430   void lzcntq(Register dst, Register src);
1431 #endif
1432 
1433   enum Membar_mask_bits {
1434     StoreStore = 1 << 3,
1435     LoadStore  = 1 << 2,
1436     StoreLoad  = 1 << 1,
1437     LoadLoad   = 1 << 0
1438   };
1439 
1440   // Serializes memory and blows flags
1441   void membar(Membar_mask_bits order_constraint) {
1442     if (os::is_MP()) {
1443       // We only have to handle StoreLoad
1444       if (order_constraint & StoreLoad) {
1445         // All usable chips support "locked" instructions which suffice
1446         // as barriers, and are much faster than the alternative of
1447         // using cpuid instruction. We use here a locked add [esp-C],0.
1448         // This is conveniently otherwise a no-op except for blowing
1449         // flags, and introducing a false dependency on target memory
1450         // location. We can't do anything with flags, but we can avoid
1451         // memory dependencies in the current method by locked-adding
1452         // somewhere else on the stack. Doing [esp+C] will collide with
1453         // something on stack in current method, hence we go for [esp-C].
1454         // It is convenient since it is almost always in data cache, for
1455         // any small C.  We need to step back from SP to avoid data
1456         // dependencies with other things on below SP (callee-saves, for
1457         // example). Without a clear way to figure out the minimal safe
1458         // distance from SP, it makes sense to step back the complete
1459         // cache line, as this will also avoid possible second-order effects
1460         // with locked ops against the cache line. Our choice of offset
1461         // is bounded by x86 operand encoding, which should stay within
1462         // [-128; +127] to have the 8-byte displacement encoding.
1463         //
1464         // Any change to this code may need to revisit other places in
1465         // the code where this idiom is used, in particular the
1466         // orderAccess code.
1467 
1468         int offset = -VM_Version::L1_line_size();
1469         if (offset < -128) {
1470           offset = -128;
1471         }
1472 
1473         lock();
1474         addl(Address(rsp, offset), 0);// Assert the lock# signal here
1475       }
1476     }
1477   }
1478 
1479   void mfence();
1480 
1481   // Moves
1482 
1483   void mov64(Register dst, int64_t imm64);
1484 
1485   void movb(Address dst, Register src);
1486   void movb(Address dst, int imm8);
1487   void movb(Register dst, Address src);
1488 
1489   void kmovq(KRegister dst, KRegister src);
1490   void kmovql(KRegister dst, Register src);
1491   void kmovdl(KRegister dst, Register src);
1492   void kmovq(Address dst, KRegister src);
1493   void kmovq(KRegister dst, Address src);
1494 
1495   void movdl(XMMRegister dst, Register src);
1496   void movdl(Register dst, XMMRegister src);
1497   void movdl(XMMRegister dst, Address src);
1498   void movdl(Address dst, XMMRegister src);
1499 
1500   // Move Double Quadword
1501   void movdq(XMMRegister dst, Register src);
1502   void movdq(Register dst, XMMRegister src);
1503 
1504   // Move Aligned Double Quadword
1505   void movdqa(XMMRegister dst, XMMRegister src);
1506   void movdqa(XMMRegister dst, Address src);
1507 
1508   // Move Unaligned Double Quadword
1509   void movdqu(Address     dst, XMMRegister src);
1510   void movdqu(XMMRegister dst, Address src);
1511   void movdqu(XMMRegister dst, XMMRegister src);
1512 
1513   // Move Unaligned 256bit Vector
1514   void vmovdqu(Address dst, XMMRegister src);
1515   void vmovdqu(XMMRegister dst, Address src);
1516   void vmovdqu(XMMRegister dst, XMMRegister src);
1517 
1518    // Move Unaligned 512bit Vector
1519   void evmovdqu(Address dst, XMMRegister src, int vector_len);
1520   void evmovdqu(XMMRegister dst, Address src, int vector_len);
1521   void evmovdqu(XMMRegister dst, XMMRegister src, int vector_len);
1522 
1523   // Move lower 64bit to high 64bit in 128bit register
1524   void movlhps(XMMRegister dst, XMMRegister src);
1525 
1526   void movl(Register dst, int32_t imm32);
1527   void movl(Address dst, int32_t imm32);
1528   void movl(Register dst, Register src);
1529   void movl(Register dst, Address src);
1530   void movl(Address dst, Register src);
1531 
1532   // These dummies prevent using movl from converting a zero (like NULL) into Register
1533   // by giving the compiler two choices it can't resolve
1534 
1535   void movl(Address  dst, void* junk);
1536   void movl(Register dst, void* junk);
1537 
1538 #ifdef _LP64
1539   void movq(Register dst, Register src);
1540   void movq(Register dst, Address src);
1541   void movq(Address  dst, Register src);
1542 #endif
1543 
1544   void movq(Address     dst, MMXRegister src );
1545   void movq(MMXRegister dst, Address src );
1546 
1547 #ifdef _LP64
1548   // These dummies prevent using movq from converting a zero (like NULL) into Register
1549   // by giving the compiler two choices it can't resolve
1550 
1551   void movq(Address  dst, void* dummy);
1552   void movq(Register dst, void* dummy);
1553 #endif
1554 
1555   // Move Quadword
1556   void movq(Address     dst, XMMRegister src);
1557   void movq(XMMRegister dst, Address src);
1558 
1559   void movsbl(Register dst, Address src);
1560   void movsbl(Register dst, Register src);
1561 
1562 #ifdef _LP64
1563   void movsbq(Register dst, Address src);
1564   void movsbq(Register dst, Register src);
1565 
1566   // Move signed 32bit immediate to 64bit extending sign
1567   void movslq(Address  dst, int32_t imm64);
1568   void movslq(Register dst, int32_t imm64);
1569 
1570   void movslq(Register dst, Address src);
1571   void movslq(Register dst, Register src);
1572   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1573 #endif
1574 
1575   void movswl(Register dst, Address src);
1576   void movswl(Register dst, Register src);
1577 
1578 #ifdef _LP64
1579   void movswq(Register dst, Address src);
1580   void movswq(Register dst, Register src);
1581 #endif
1582 
1583   void movw(Address dst, int imm16);
1584   void movw(Register dst, Address src);
1585   void movw(Address dst, Register src);
1586 
1587   void movzbl(Register dst, Address src);
1588   void movzbl(Register dst, Register src);
1589 
1590 #ifdef _LP64
1591   void movzbq(Register dst, Address src);
1592   void movzbq(Register dst, Register src);
1593 #endif
1594 
1595   void movzwl(Register dst, Address src);
1596   void movzwl(Register dst, Register src);
1597 
1598 #ifdef _LP64
1599   void movzwq(Register dst, Address src);
1600   void movzwq(Register dst, Register src);
1601 #endif
1602 
1603   // Unsigned multiply with RAX destination register
1604   void mull(Address src);
1605   void mull(Register src);
1606 
1607 #ifdef _LP64
1608   void mulq(Address src);
1609   void mulq(Register src);
1610   void mulxq(Register dst1, Register dst2, Register src);
1611 #endif
1612 
1613   // Multiply Scalar Double-Precision Floating-Point Values
1614   void mulsd(XMMRegister dst, Address src);
1615   void mulsd(XMMRegister dst, XMMRegister src);
1616 
1617   // Multiply Scalar Single-Precision Floating-Point Values
1618   void mulss(XMMRegister dst, Address src);
1619   void mulss(XMMRegister dst, XMMRegister src);
1620 
1621   void negl(Register dst);
1622 
1623 #ifdef _LP64
1624   void negq(Register dst);
1625 #endif
1626 
1627   void nop(int i = 1);
1628 
1629   void notl(Register dst);
1630 
1631 #ifdef _LP64
1632   void notq(Register dst);
1633 #endif
1634 
1635   void orl(Address dst, int32_t imm32);
1636   void orl(Register dst, int32_t imm32);
1637   void orl(Register dst, Address src);
1638   void orl(Register dst, Register src);
1639   void orl(Address dst, Register src);
1640 
1641   void orq(Address dst, int32_t imm32);
1642   void orq(Register dst, int32_t imm32);
1643   void orq(Register dst, Address src);
1644   void orq(Register dst, Register src);
1645 
1646   // Pack with unsigned saturation
1647   void packuswb(XMMRegister dst, XMMRegister src);
1648   void packuswb(XMMRegister dst, Address src);
1649   void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1650 
1651   // Pemutation of 64bit words
1652   void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len);
1653 
1654   void pause();
1655 
1656   // SSE4.2 string instructions
1657   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1658   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1659 
1660   // SSE 4.1 extract
1661   void pextrd(Register dst, XMMRegister src, int imm8);
1662   void pextrq(Register dst, XMMRegister src, int imm8);
1663 
1664   // SSE 4.1 insert
1665   void pinsrd(XMMRegister dst, Register src, int imm8);
1666   void pinsrq(XMMRegister dst, Register src, int imm8);
1667 
1668   // SSE4.1 packed move
1669   void pmovzxbw(XMMRegister dst, XMMRegister src);
1670   void pmovzxbw(XMMRegister dst, Address src);
1671 
1672 #ifndef _LP64 // no 32bit push/pop on amd64
1673   void popl(Address dst);
1674 #endif
1675 
1676 #ifdef _LP64
1677   void popq(Address dst);
1678 #endif
1679 
1680   void popcntl(Register dst, Address src);
1681   void popcntl(Register dst, Register src);
1682 
1683 #ifdef _LP64
1684   void popcntq(Register dst, Address src);
1685   void popcntq(Register dst, Register src);
1686 #endif
1687 
1688   // Prefetches (SSE, SSE2, 3DNOW only)
1689 
1690   void prefetchnta(Address src);
1691   void prefetchr(Address src);
1692   void prefetcht0(Address src);
1693   void prefetcht1(Address src);
1694   void prefetcht2(Address src);
1695   void prefetchw(Address src);
1696 
1697   // Shuffle Bytes
1698   void pshufb(XMMRegister dst, XMMRegister src);
1699   void pshufb(XMMRegister dst, Address src);
1700 
1701   // Shuffle Packed Doublewords
1702   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1703   void pshufd(XMMRegister dst, Address src,     int mode);
1704 
1705   // Shuffle Packed Low Words
1706   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1707   void pshuflw(XMMRegister dst, Address src,     int mode);
1708 
1709   // Shift Right by bytes Logical DoubleQuadword Immediate
1710   void psrldq(XMMRegister dst, int shift);
1711   // Shift Left by bytes Logical DoubleQuadword Immediate
1712   void pslldq(XMMRegister dst, int shift);
1713 
1714   // Logical Compare 128bit
1715   void ptest(XMMRegister dst, XMMRegister src);
1716   void ptest(XMMRegister dst, Address src);
1717   // Logical Compare 256bit
1718   void vptest(XMMRegister dst, XMMRegister src);
1719   void vptest(XMMRegister dst, Address src);
1720 
1721   // Interleave Low Bytes
1722   void punpcklbw(XMMRegister dst, XMMRegister src);
1723   void punpcklbw(XMMRegister dst, Address src);
1724 
1725   // Interleave Low Doublewords
1726   void punpckldq(XMMRegister dst, XMMRegister src);
1727   void punpckldq(XMMRegister dst, Address src);
1728 
1729   // Interleave Low Quadwords
1730   void punpcklqdq(XMMRegister dst, XMMRegister src);
1731 
1732 #ifndef _LP64 // no 32bit push/pop on amd64
1733   void pushl(Address src);
1734 #endif
1735 
1736   void pushq(Address src);
1737 
1738   void rcll(Register dst, int imm8);
1739 
1740   void rclq(Register dst, int imm8);
1741 
1742   void rcrq(Register dst, int imm8);
1743 
1744   void rdtsc();
1745 
1746   void ret(int imm16);
1747 
1748 #ifdef _LP64
1749   void rorq(Register dst, int imm8);
1750   void rorxq(Register dst, Register src, int imm8);
1751 #endif
1752 
1753   void sahf();
1754 
1755   void sarl(Register dst, int imm8);
1756   void sarl(Register dst);
1757 
1758   void sarq(Register dst, int imm8);
1759   void sarq(Register dst);
1760 
1761   void sbbl(Address dst, int32_t imm32);
1762   void sbbl(Register dst, int32_t imm32);
1763   void sbbl(Register dst, Address src);
1764   void sbbl(Register dst, Register src);
1765 
1766   void sbbq(Address dst, int32_t imm32);
1767   void sbbq(Register dst, int32_t imm32);
1768   void sbbq(Register dst, Address src);
1769   void sbbq(Register dst, Register src);
1770 
1771   void setb(Condition cc, Register dst);
1772 
1773   void shldl(Register dst, Register src);
1774   void shldl(Register dst, Register src, int8_t imm8);
1775 
1776   void shll(Register dst, int imm8);
1777   void shll(Register dst);
1778 
1779   void shlq(Register dst, int imm8);
1780   void shlq(Register dst);
1781 
1782   void shrdl(Register dst, Register src);
1783 
1784   void shrl(Register dst, int imm8);
1785   void shrl(Register dst);
1786 
1787   void shrq(Register dst, int imm8);
1788   void shrq(Register dst);
1789 
1790   void smovl(); // QQQ generic?
1791 
1792   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1793   void sqrtsd(XMMRegister dst, Address src);
1794   void sqrtsd(XMMRegister dst, XMMRegister src);
1795 
1796   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1797   void sqrtss(XMMRegister dst, Address src);
1798   void sqrtss(XMMRegister dst, XMMRegister src);
1799 
1800   void std();
1801 
1802   void stmxcsr( Address dst );
1803 
1804   void subl(Address dst, int32_t imm32);
1805   void subl(Address dst, Register src);
1806   void subl(Register dst, int32_t imm32);
1807   void subl(Register dst, Address src);
1808   void subl(Register dst, Register src);
1809 
1810   void subq(Address dst, int32_t imm32);
1811   void subq(Address dst, Register src);
1812   void subq(Register dst, int32_t imm32);
1813   void subq(Register dst, Address src);
1814   void subq(Register dst, Register src);
1815 
1816   // Force generation of a 4 byte immediate value even if it fits into 8bit
1817   void subl_imm32(Register dst, int32_t imm32);
1818   void subq_imm32(Register dst, int32_t imm32);
1819 
1820   // Subtract Scalar Double-Precision Floating-Point Values
1821   void subsd(XMMRegister dst, Address src);
1822   void subsd(XMMRegister dst, XMMRegister src);
1823 
1824   // Subtract Scalar Single-Precision Floating-Point Values
1825   void subss(XMMRegister dst, Address src);
1826   void subss(XMMRegister dst, XMMRegister src);
1827 
1828   void testb(Register dst, int imm8);
1829 
1830   void testl(Register dst, int32_t imm32);
1831   void testl(Register dst, Register src);
1832   void testl(Register dst, Address src);
1833 
1834   void testq(Register dst, int32_t imm32);
1835   void testq(Register dst, Register src);
1836 
1837   // BMI - count trailing zeros
1838   void tzcntl(Register dst, Register src);
1839   void tzcntq(Register dst, Register src);
1840 
1841   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1842   void ucomisd(XMMRegister dst, Address src);
1843   void ucomisd(XMMRegister dst, XMMRegister src);
1844 
1845   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1846   void ucomiss(XMMRegister dst, Address src);
1847   void ucomiss(XMMRegister dst, XMMRegister src);
1848 
1849   void xabort(int8_t imm8);
1850 
1851   void xaddl(Address dst, Register src);
1852 
1853   void xaddq(Address dst, Register src);
1854 
1855   void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none);
1856 
1857   void xchgl(Register reg, Address adr);
1858   void xchgl(Register dst, Register src);
1859 
1860   void xchgq(Register reg, Address adr);
1861   void xchgq(Register dst, Register src);
1862 
1863   void xend();
1864 
1865   // Get Value of Extended Control Register
1866   void xgetbv();
1867 
1868   void xorl(Register dst, int32_t imm32);
1869   void xorl(Register dst, Address src);
1870   void xorl(Register dst, Register src);
1871 
1872   void xorq(Register dst, Address src);
1873   void xorq(Register dst, Register src);
1874 
1875   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1876 
1877   // AVX 3-operands scalar instructions (encoded with VEX prefix)
1878 
1879   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
1880   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1881   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
1882   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1883   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
1884   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1885   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
1886   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1887   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
1888   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1889   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
1890   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1891   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
1892   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
1893   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
1894   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
1895 
1896 
1897   //====================VECTOR ARITHMETIC=====================================
1898 
1899   // Add Packed Floating-Point Values
1900   void addpd(XMMRegister dst, XMMRegister src);
1901   void addps(XMMRegister dst, XMMRegister src);
1902   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1903   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1904   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1905   void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1906 
1907   // Subtract Packed Floating-Point Values
1908   void subpd(XMMRegister dst, XMMRegister src);
1909   void subps(XMMRegister dst, XMMRegister src);
1910   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1911   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1912   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1913   void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1914 
1915   // Multiply Packed Floating-Point Values
1916   void mulpd(XMMRegister dst, XMMRegister src);
1917   void mulps(XMMRegister dst, XMMRegister src);
1918   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1919   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1920   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1921   void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1922 
1923   // Divide Packed Floating-Point Values
1924   void divpd(XMMRegister dst, XMMRegister src);
1925   void divps(XMMRegister dst, XMMRegister src);
1926   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1927   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1928   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1929   void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1930 
1931   // Bitwise Logical AND of Packed Floating-Point Values
1932   void andpd(XMMRegister dst, XMMRegister src);
1933   void andps(XMMRegister dst, XMMRegister src);
1934   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1935   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1936   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1937   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1938 
1939   // Bitwise Logical XOR of Packed Floating-Point Values
1940   void xorpd(XMMRegister dst, XMMRegister src);
1941   void xorps(XMMRegister dst, XMMRegister src);
1942   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1943   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1944   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1945   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1946 
1947   // Add horizontal packed integers
1948   void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1949   void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1950   void phaddw(XMMRegister dst, XMMRegister src);
1951   void phaddd(XMMRegister dst, XMMRegister src);
1952 
1953   // Add packed integers
1954   void paddb(XMMRegister dst, XMMRegister src);
1955   void paddw(XMMRegister dst, XMMRegister src);
1956   void paddd(XMMRegister dst, XMMRegister src);
1957   void paddq(XMMRegister dst, XMMRegister src);
1958   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1959   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1960   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1961   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1962   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1963   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1964   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1965   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1966 
1967   // Sub packed integers
1968   void psubb(XMMRegister dst, XMMRegister src);
1969   void psubw(XMMRegister dst, XMMRegister src);
1970   void psubd(XMMRegister dst, XMMRegister src);
1971   void psubq(XMMRegister dst, XMMRegister src);
1972   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1973   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1974   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1975   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1976   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1977   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1978   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1979   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1980 
1981   // Multiply packed integers (only shorts and ints)
1982   void pmullw(XMMRegister dst, XMMRegister src);
1983   void pmulld(XMMRegister dst, XMMRegister src);
1984   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1985   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1986   void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1987   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1988   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1989   void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1990 
1991   // Shift left packed integers
1992   void psllw(XMMRegister dst, int shift);
1993   void pslld(XMMRegister dst, int shift);
1994   void psllq(XMMRegister dst, int shift);
1995   void psllw(XMMRegister dst, XMMRegister shift);
1996   void pslld(XMMRegister dst, XMMRegister shift);
1997   void psllq(XMMRegister dst, XMMRegister shift);
1998   void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
1999   void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2000   void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2001   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2002   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2003   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2004 
2005   // Logical shift right packed integers
2006   void psrlw(XMMRegister dst, int shift);
2007   void psrld(XMMRegister dst, int shift);
2008   void psrlq(XMMRegister dst, int shift);
2009   void psrlw(XMMRegister dst, XMMRegister shift);
2010   void psrld(XMMRegister dst, XMMRegister shift);
2011   void psrlq(XMMRegister dst, XMMRegister shift);
2012   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2013   void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2014   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2015   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2016   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2017   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2018 
2019   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
2020   void psraw(XMMRegister dst, int shift);
2021   void psrad(XMMRegister dst, int shift);
2022   void psraw(XMMRegister dst, XMMRegister shift);
2023   void psrad(XMMRegister dst, XMMRegister shift);
2024   void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2025   void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len);
2026   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2027   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len);
2028 
2029   // And packed integers
2030   void pand(XMMRegister dst, XMMRegister src);
2031   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2032   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2033 
2034   // Or packed integers
2035   void por(XMMRegister dst, XMMRegister src);
2036   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2037   void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2038 
2039   // Xor packed integers
2040   void pxor(XMMRegister dst, XMMRegister src);
2041   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
2042   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
2043 
2044   // Copy low 128bit into high 128bit of YMM registers.
2045   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2046   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2047   void vextractf128h(XMMRegister dst, XMMRegister src);
2048   void vextracti128h(XMMRegister dst, XMMRegister src);
2049 
2050   // Load/store high 128bit of YMM registers which does not destroy other half.
2051   void vinsertf128h(XMMRegister dst, Address src);
2052   void vinserti128h(XMMRegister dst, Address src);
2053   void vextractf128h(Address dst, XMMRegister src);
2054   void vextracti128h(Address dst, XMMRegister src);
2055 
2056   // Copy low 256bit into high 256bit of ZMM registers.
2057   void vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2058   void vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src);
2059   void vextracti64x4h(XMMRegister dst, XMMRegister src);
2060   void vextractf64x4h(XMMRegister dst, XMMRegister src);
2061   void vextractf64x4h(Address dst, XMMRegister src);
2062   void vinsertf64x4h(XMMRegister dst, Address src);
2063 
2064   // Copy targeted 128bit segments of the ZMM registers
2065   void vextracti64x2h(XMMRegister dst, XMMRegister src, int value);
2066   void vextractf64x2h(XMMRegister dst, XMMRegister src, int value);
2067   void vextractf32x4h(XMMRegister dst, XMMRegister src, int value);
2068 
2069   // duplicate 4-bytes integer data from src into 8 locations in dest
2070   void vpbroadcastd(XMMRegister dst, XMMRegister src);
2071 
2072   // duplicate n-bytes integer data from src into vector_len locations in dest
2073   void evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len);
2074   void evpbroadcastb(XMMRegister dst, Address src, int vector_len);
2075   void evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
2076   void evpbroadcastw(XMMRegister dst, Address src, int vector_len);
2077   void evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len);
2078   void evpbroadcastd(XMMRegister dst, Address src, int vector_len);
2079   void evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len);
2080   void evpbroadcastq(XMMRegister dst, Address src, int vector_len);
2081 
2082   void evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len);
2083   void evpbroadcastss(XMMRegister dst, Address src, int vector_len);
2084   void evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len);
2085   void evpbroadcastsd(XMMRegister dst, Address src, int vector_len);
2086 
2087   void evpbroadcastb(XMMRegister dst, Register src, int vector_len);
2088   void evpbroadcastw(XMMRegister dst, Register src, int vector_len);
2089   void evpbroadcastd(XMMRegister dst, Register src, int vector_len);
2090   void evpbroadcastq(XMMRegister dst, Register src, int vector_len);
2091 
2092   // Carry-Less Multiplication Quadword
2093   void pclmulqdq(XMMRegister dst, XMMRegister src, int mask);
2094   void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask);
2095 
2096   // AVX instruction which is used to clear upper 128 bits of YMM registers and
2097   // to avoid transaction penalty between AVX and SSE states. There is no
2098   // penalty if legacy SSE instructions are encoded using VEX prefix because
2099   // they always clear upper 128 bits. It should be used before calling
2100   // runtime code and native libraries.
2101   void vzeroupper();
2102 
2103  protected:
2104   // Next instructions require address alignment 16 bytes SSE mode.
2105   // They should be called only from corresponding MacroAssembler instructions.
2106   void andpd(XMMRegister dst, Address src);
2107   void andps(XMMRegister dst, Address src);
2108   void xorpd(XMMRegister dst, Address src);
2109   void xorps(XMMRegister dst, Address src);
2110 
2111 };
2112 
2113 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP