1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 
  37 // Optimization - Graph Style
  38 
  39 // Check whether val is not-null-decoded compressed oop,
  40 // i.e. will grab into the base of the heap if it represents NULL.
  41 static bool accesses_heap_base_zone(Node *val) {
  42   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  43     if (val && val->is_Mach()) {
  44       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  45         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  46         // decode NULL to point to the heap base (Decode_NN).
  47         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  48           return true;
  49         }
  50       }
  51       // Must recognize load operation with Decode matched in memory operand.
  52       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  53       // returns true everywhere else. On PPC, no such memory operands
  54       // exist, therefore we did not yet implement a check for such operands.
  55       NOT_AIX(Unimplemented());
  56     }
  57   }
  58   return false;
  59 }
  60 
  61 static bool needs_explicit_null_check_for_read(Node *val) {
  62   // On some OSes (AIX) the page at address 0 is only write protected.
  63   // If so, only Store operations will trap.
  64   if (os::zero_page_read_protected()) {
  65     return false;  // Implicit null check will work.
  66   }
  67   // Also a read accessing the base of a heap-based compressed heap will trap.
  68   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  69       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  70     return false;
  71   }
  72 
  73   return true;
  74 }
  75 
  76 //------------------------------implicit_null_check----------------------------
  77 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  78 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  79 // I can generate a memory op if there is not one nearby.
  80 // The proj is the control projection for the not-null case.
  81 // The val is the pointer being checked for nullness or
  82 // decodeHeapOop_not_null node if it did not fold into address.
  83 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  84   // Assume if null check need for 0 offset then always needed
  85   // Intel solaris doesn't support any null checks yet and no
  86   // mechanism exists (yet) to set the switches at an os_cpu level
  87   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  88 
  89   // Make sure the ptr-is-null path appears to be uncommon!
  90   float f = block->end()->as_MachIf()->_prob;
  91   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  92   if( f > PROB_UNLIKELY_MAG(4) ) return;
  93 
  94   uint bidx = 0;                // Capture index of value into memop
  95   bool was_store;               // Memory op is a store op
  96 
  97   // Get the successor block for if the test ptr is non-null
  98   Block* not_null_block;  // this one goes with the proj
  99   Block* null_block;
 100   if (block->get_node(block->number_of_nodes()-1) == proj) {
 101     null_block     = block->_succs[0];
 102     not_null_block = block->_succs[1];
 103   } else {
 104     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 105     not_null_block = block->_succs[0];
 106     null_block     = block->_succs[1];
 107   }
 108   while (null_block->is_Empty() == Block::empty_with_goto) {
 109     null_block     = null_block->_succs[0];
 110   }
 111 
 112   // Search the exception block for an uncommon trap.
 113   // (See Parse::do_if and Parse::do_ifnull for the reason
 114   // we need an uncommon trap.  Briefly, we need a way to
 115   // detect failure of this optimization, as in 6366351.)
 116   {
 117     bool found_trap = false;
 118     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 119       Node* nn = null_block->get_node(i1);
 120       if (nn->is_MachCall() &&
 121           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 122         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 123         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 124           jint tr_con = trtype->is_int()->get_con();
 125           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 126           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 127           assert((int)reason < (int)BitsPerInt, "recode bit map");
 128           if (is_set_nth_bit(allowed_reasons, (int) reason)
 129               && action != Deoptimization::Action_none) {
 130             // This uncommon trap is sure to recompile, eventually.
 131             // When that happens, C->too_many_traps will prevent
 132             // this transformation from happening again.
 133             found_trap = true;
 134           }
 135         }
 136         break;
 137       }
 138     }
 139     if (!found_trap) {
 140       // We did not find an uncommon trap.
 141       return;
 142     }
 143   }
 144 
 145   // Check for decodeHeapOop_not_null node which did not fold into address
 146   bool is_decoden = ((intptr_t)val) & 1;
 147   val = (Node*)(((intptr_t)val) & ~1);
 148 
 149   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 150          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 151 
 152   // Search the successor block for a load or store who's base value is also
 153   // the tested value.  There may be several.
 154   Node_List *out = new Node_List(Thread::current()->resource_area());
 155   MachNode *best = NULL;        // Best found so far
 156   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 157     Node *m = val->out(i);
 158     if( !m->is_Mach() ) continue;
 159     MachNode *mach = m->as_Mach();
 160     was_store = false;
 161     int iop = mach->ideal_Opcode();
 162     switch( iop ) {
 163     case Op_LoadB:
 164     case Op_LoadUB:
 165     case Op_LoadUS:
 166     case Op_LoadD:
 167     case Op_LoadF:
 168     case Op_LoadI:
 169     case Op_LoadL:
 170     case Op_LoadP:
 171     case Op_LoadN:
 172     case Op_LoadS:
 173     case Op_LoadKlass:
 174     case Op_LoadNKlass:
 175     case Op_LoadRange:
 176     case Op_LoadD_unaligned:
 177     case Op_LoadL_unaligned:
 178       assert(mach->in(2) == val, "should be address");
 179       break;
 180     case Op_StoreB:
 181     case Op_StoreC:
 182     case Op_StoreCM:
 183     case Op_StoreD:
 184     case Op_StoreF:
 185     case Op_StoreI:
 186     case Op_StoreL:
 187     case Op_StoreP:
 188     case Op_StoreN:
 189     case Op_StoreNKlass:
 190       was_store = true;         // Memory op is a store op
 191       // Stores will have their address in slot 2 (memory in slot 1).
 192       // If the value being nul-checked is in another slot, it means we
 193       // are storing the checked value, which does NOT check the value!
 194       if( mach->in(2) != val ) continue;
 195       break;                    // Found a memory op?
 196     case Op_StrComp:
 197     case Op_StrEquals:
 198     case Op_StrIndexOf:
 199     case Op_AryEq:
 200     case Op_EncodeISOArray:
 201       // Not a legit memory op for implicit null check regardless of
 202       // embedded loads
 203       continue;
 204     default:                    // Also check for embedded loads
 205       if( !mach->needs_anti_dependence_check() )
 206         continue;               // Not an memory op; skip it
 207       if( must_clone[iop] ) {
 208         // Do not move nodes which produce flags because
 209         // RA will try to clone it to place near branch and
 210         // it will cause recompilation, see clone_node().
 211         continue;
 212       }
 213       {
 214         // Check that value is used in memory address in
 215         // instructions with embedded load (CmpP val1,(val2+off)).
 216         Node* base;
 217         Node* index;
 218         const MachOper* oper = mach->memory_inputs(base, index);
 219         if (oper == NULL || oper == (MachOper*)-1) {
 220           continue;             // Not an memory op; skip it
 221         }
 222         if (val == base ||
 223             val == index && val->bottom_type()->isa_narrowoop()) {
 224           break;                // Found it
 225         } else {
 226           continue;             // Skip it
 227         }
 228       }
 229       break;
 230     }
 231 
 232     // On some OSes (AIX) the page at address 0 is only write protected.
 233     // If so, only Store operations will trap.
 234     // But a read accessing the base of a heap-based compressed heap will trap.
 235     if (!was_store && needs_explicit_null_check_for_read(val)) {
 236       continue;
 237     }
 238 
 239     // check if the offset is not too high for implicit exception
 240     {
 241       intptr_t offset = 0;
 242       const TypePtr *adr_type = NULL;  // Do not need this return value here
 243       const Node* base = mach->get_base_and_disp(offset, adr_type);
 244       if (base == NULL || base == NodeSentinel) {
 245         // Narrow oop address doesn't have base, only index
 246         if( val->bottom_type()->isa_narrowoop() &&
 247             MacroAssembler::needs_explicit_null_check(offset) )
 248           continue;             // Give up if offset is beyond page size
 249         // cannot reason about it; is probably not implicit null exception
 250       } else {
 251         const TypePtr* tptr;
 252         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 253                                   Universe::narrow_klass_shift() == 0)) {
 254           // 32-bits narrow oop can be the base of address expressions
 255           tptr = base->get_ptr_type();
 256         } else {
 257           // only regular oops are expected here
 258           tptr = base->bottom_type()->is_ptr();
 259         }
 260         // Give up if offset is not a compile-time constant
 261         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 262           continue;
 263         offset += tptr->_offset; // correct if base is offseted
 264         if( MacroAssembler::needs_explicit_null_check(offset) )
 265           continue;             // Give up is reference is beyond 4K page size
 266       }
 267     }
 268 
 269     // Check ctrl input to see if the null-check dominates the memory op
 270     Block *cb = get_block_for_node(mach);
 271     cb = cb->_idom;             // Always hoist at least 1 block
 272     if( !was_store ) {          // Stores can be hoisted only one block
 273       while( cb->_dom_depth > (block->_dom_depth + 1))
 274         cb = cb->_idom;         // Hoist loads as far as we want
 275       // The non-null-block should dominate the memory op, too. Live
 276       // range spilling will insert a spill in the non-null-block if it is
 277       // needs to spill the memory op for an implicit null check.
 278       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 279         if (cb != not_null_block) continue;
 280         cb = cb->_idom;
 281       }
 282     }
 283     if( cb != block ) continue;
 284 
 285     // Found a memory user; see if it can be hoisted to check-block
 286     uint vidx = 0;              // Capture index of value into memop
 287     uint j;
 288     for( j = mach->req()-1; j > 0; j-- ) {
 289       if( mach->in(j) == val ) {
 290         vidx = j;
 291         // Ignore DecodeN val which could be hoisted to where needed.
 292         if( is_decoden ) continue;
 293       }
 294       // Block of memory-op input
 295       Block *inb = get_block_for_node(mach->in(j));
 296       Block *b = block;          // Start from nul check
 297       while( b != inb && b->_dom_depth > inb->_dom_depth )
 298         b = b->_idom;           // search upwards for input
 299       // See if input dominates null check
 300       if( b != inb )
 301         break;
 302     }
 303     if( j > 0 )
 304       continue;
 305     Block *mb = get_block_for_node(mach);
 306     // Hoisting stores requires more checks for the anti-dependence case.
 307     // Give up hoisting if we have to move the store past any load.
 308     if( was_store ) {
 309       Block *b = mb;            // Start searching here for a local load
 310       // mach use (faulting) trying to hoist
 311       // n might be blocker to hoisting
 312       while( b != block ) {
 313         uint k;
 314         for( k = 1; k < b->number_of_nodes(); k++ ) {
 315           Node *n = b->get_node(k);
 316           if( n->needs_anti_dependence_check() &&
 317               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 318             break;              // Found anti-dependent load
 319         }
 320         if( k < b->number_of_nodes() )
 321           break;                // Found anti-dependent load
 322         // Make sure control does not do a merge (would have to check allpaths)
 323         if( b->num_preds() != 2 ) break;
 324         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 325       }
 326       if( b != block ) continue;
 327     }
 328 
 329     // Make sure this memory op is not already being used for a NullCheck
 330     Node *e = mb->end();
 331     if( e->is_MachNullCheck() && e->in(1) == mach )
 332       continue;                 // Already being used as a NULL check
 333 
 334     // Found a candidate!  Pick one with least dom depth - the highest
 335     // in the dom tree should be closest to the null check.
 336     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 337       best = mach;
 338       bidx = vidx;
 339     }
 340   }
 341   // No candidate!
 342   if (best == NULL) {
 343     return;
 344   }
 345 
 346   // ---- Found an implicit null check
 347   extern int implicit_null_checks;
 348   implicit_null_checks++;
 349 
 350   if( is_decoden ) {
 351     // Check if we need to hoist decodeHeapOop_not_null first.
 352     Block *valb = get_block_for_node(val);
 353     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 354       // Hoist it up to the end of the test block.
 355       valb->find_remove(val);
 356       block->add_inst(val);
 357       map_node_to_block(val, block);
 358       // DecodeN on x86 may kill flags. Check for flag-killing projections
 359       // that also need to be hoisted.
 360       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 361         Node* n = val->fast_out(j);
 362         if( n->is_MachProj() ) {
 363           get_block_for_node(n)->find_remove(n);
 364           block->add_inst(n);
 365           map_node_to_block(n, block);
 366         }
 367       }
 368     }
 369   }
 370   // Hoist the memory candidate up to the end of the test block.
 371   Block *old_block = get_block_for_node(best);
 372   old_block->find_remove(best);
 373   block->add_inst(best);
 374   map_node_to_block(best, block);
 375 
 376   // Move the control dependence
 377   if (best->in(0) && best->in(0) == old_block->head())
 378     best->set_req(0, block->head());
 379 
 380   // Check for flag-killing projections that also need to be hoisted
 381   // Should be DU safe because no edge updates.
 382   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 383     Node* n = best->fast_out(j);
 384     if( n->is_MachProj() ) {
 385       get_block_for_node(n)->find_remove(n);
 386       block->add_inst(n);
 387       map_node_to_block(n, block);
 388     }
 389   }
 390 
 391   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 392   // One of two graph shapes got matched:
 393   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 394   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 395   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 396   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 397   // We need to flip the projections to keep the same semantics.
 398   if( proj->Opcode() == Op_IfTrue ) {
 399     // Swap order of projections in basic block to swap branch targets
 400     Node *tmp1 = block->get_node(block->end_idx()+1);
 401     Node *tmp2 = block->get_node(block->end_idx()+2);
 402     block->map_node(tmp2, block->end_idx()+1);
 403     block->map_node(tmp1, block->end_idx()+2);
 404     Node *tmp = new Node(C->top()); // Use not NULL input
 405     tmp1->replace_by(tmp);
 406     tmp2->replace_by(tmp1);
 407     tmp->replace_by(tmp2);
 408     tmp->destruct();
 409   }
 410 
 411   // Remove the existing null check; use a new implicit null check instead.
 412   // Since schedule-local needs precise def-use info, we need to correct
 413   // it as well.
 414   Node *old_tst = proj->in(0);
 415   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 416   block->map_node(nul_chk, block->end_idx());
 417   map_node_to_block(nul_chk, block);
 418   // Redirect users of old_test to nul_chk
 419   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 420     old_tst->last_out(i2)->set_req(0, nul_chk);
 421   // Clean-up any dead code
 422   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 423     Node* in = old_tst->in(i3);
 424     old_tst->set_req(i3, NULL);
 425     if (in->outcnt() == 0) {
 426       // Remove dead input node
 427       in->disconnect_inputs(NULL, C);
 428       block->find_remove(in);
 429     }
 430   }
 431 
 432   latency_from_uses(nul_chk);
 433   latency_from_uses(best);
 434 }
 435 
 436 
 437 //------------------------------select-----------------------------------------
 438 // Select a nice fellow from the worklist to schedule next. If there is only
 439 // one choice, then use it. Projections take top priority for correctness
 440 // reasons - if I see a projection, then it is next.  There are a number of
 441 // other special cases, for instructions that consume condition codes, et al.
 442 // These are chosen immediately. Some instructions are required to immediately
 443 // precede the last instruction in the block, and these are taken last. Of the
 444 // remaining cases (most), choose the instruction with the greatest latency
 445 // (that is, the most number of pseudo-cycles required to the end of the
 446 // routine). If there is a tie, choose the instruction with the most inputs.
 447 Node* PhaseCFG::select(
 448   Block* block,
 449   Node_List &worklist,
 450   GrowableArray<int> &ready_cnt,
 451   VectorSet &next_call,
 452   uint sched_slot,
 453   intptr_t* recalc_pressure_nodes) {
 454 
 455   // If only a single entry on the stack, use it
 456   uint cnt = worklist.size();
 457   if (cnt == 1) {
 458     Node *n = worklist[0];
 459     worklist.map(0,worklist.pop());
 460     return n;
 461   }
 462 
 463   uint choice  = 0; // Bigger is most important
 464   uint latency = 0; // Bigger is scheduled first
 465   uint score   = 0; // Bigger is better
 466   int idx = -1;     // Index in worklist
 467   int cand_cnt = 0; // Candidate count
 468   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 469 
 470   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 471     // Order in worklist is used to break ties.
 472     // See caller for how this is used to delay scheduling
 473     // of induction variable increments to after the other
 474     // uses of the phi are scheduled.
 475     Node *n = worklist[i];      // Get Node on worklist
 476 
 477     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 478     if( n->is_Proj() ||         // Projections always win
 479         n->Opcode()== Op_Con || // So does constant 'Top'
 480         iop == Op_CreateEx ||   // Create-exception must start block
 481         iop == Op_CheckCastPP
 482         ) {
 483       worklist.map(i,worklist.pop());
 484       return n;
 485     }
 486 
 487     // Final call in a block must be adjacent to 'catch'
 488     Node *e = block->end();
 489     if( e->is_Catch() && e->in(0)->in(0) == n )
 490       continue;
 491 
 492     // Memory op for an implicit null check has to be at the end of the block
 493     if( e->is_MachNullCheck() && e->in(1) == n )
 494       continue;
 495 
 496     // Schedule IV increment last.
 497     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 498         e->in(1)->in(1) == n && n->is_iteratively_computed())
 499       continue;
 500 
 501     uint n_choice  = 2;
 502 
 503     // See if this instruction is consumed by a branch. If so, then (as the
 504     // branch is the last instruction in the basic block) force it to the
 505     // end of the basic block
 506     if ( must_clone[iop] ) {
 507       // See if any use is a branch
 508       bool found_machif = false;
 509 
 510       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 511         Node* use = n->fast_out(j);
 512 
 513         // The use is a conditional branch, make them adjacent
 514         if (use->is_MachIf() && get_block_for_node(use) == block) {
 515           found_machif = true;
 516           break;
 517         }
 518 
 519         // More than this instruction pending for successor to be ready,
 520         // don't choose this if other opportunities are ready
 521         if (ready_cnt.at(use->_idx) > 1)
 522           n_choice = 1;
 523       }
 524 
 525       // loop terminated, prefer not to use this instruction
 526       if (found_machif)
 527         continue;
 528     }
 529 
 530     // See if this has a predecessor that is "must_clone", i.e. sets the
 531     // condition code. If so, choose this first
 532     for (uint j = 0; j < n->req() ; j++) {
 533       Node *inn = n->in(j);
 534       if (inn) {
 535         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 536           n_choice = 3;
 537           break;
 538         }
 539       }
 540     }
 541 
 542     // MachTemps should be scheduled last so they are near their uses
 543     if (n->is_MachTemp()) {
 544       n_choice = 1;
 545     }
 546 
 547     uint n_latency = get_latency_for_node(n);
 548     uint n_score = n->req();   // Many inputs get high score to break ties
 549 
 550     if (OptoRegScheduling && block_size_threshold_ok) {
 551       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 552         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 553         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 554         // simulate the notion that we just picked this node to schedule
 555         n->add_flag(Node::Flag_is_scheduled);
 556         // now caculate its effect upon the graph if we did
 557         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 558         // return its state for finalize in case somebody else wins
 559         n->remove_flag(Node::Flag_is_scheduled);
 560         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 561         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 562         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 563         recalc_pressure_nodes[n->_idx] = int_pressure;
 564         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 565       }
 566 
 567       if (_scheduling_for_pressure) {
 568         latency = n_latency;
 569         if (n_choice != 3) {
 570           // Now evaluate each register pressure component based on threshold in the score.
 571           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 572           // on a single instruction, but we might see it shrink on both banks.
 573           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 574             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 575             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 576           }
 577           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 578             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 579             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 580           }
 581         } else {
 582           // make sure we choose these candidates
 583           score = 0;
 584         }
 585       }
 586     }
 587 
 588     // Keep best latency found
 589     cand_cnt++;
 590     if (choice < n_choice ||
 591         (choice == n_choice &&
 592          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 593           (!StressLCM &&
 594            (latency < n_latency ||
 595             (latency == n_latency &&
 596              (score < n_score))))))) {
 597       choice  = n_choice;
 598       latency = n_latency;
 599       score   = n_score;
 600       idx     = i;               // Also keep index in worklist
 601     }
 602   } // End of for all ready nodes in worklist
 603 
 604   assert(idx >= 0, "index should be set");
 605   Node *n = worklist[(uint)idx];      // Get the winner
 606 
 607   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 608   return n;
 609 }
 610 
 611 //-------------------------adjust_register_pressure----------------------------
 612 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 613   PhaseLive* liveinfo = _regalloc->get_live();
 614   IndexSet* liveout = liveinfo->live(block);
 615   // first adjust the register pressure for the sources
 616   for (uint i = 1; i < n->req(); i++) {
 617     bool lrg_ends = false;
 618     Node *src_n = n->in(i);
 619     if (src_n == NULL) continue;
 620     if (!src_n->is_Mach()) continue;
 621     uint src = _regalloc->_lrg_map.find(src_n);
 622     if (src == 0) continue;
 623     LRG& lrg_src = _regalloc->lrgs(src);
 624     // detect if the live range ends or not
 625     if (liveout->member(src) == false) {
 626       lrg_ends = true;
 627       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 628         Node* m = src_n->fast_out(j); // Get user
 629         if (m == n) continue;
 630         if (!m->is_Mach()) continue;
 631         MachNode *mach = m->as_Mach();
 632         bool src_matches = false;
 633         int iop = mach->ideal_Opcode();
 634 
 635         switch (iop) {
 636         case Op_StoreB:
 637         case Op_StoreC:
 638         case Op_StoreCM:
 639         case Op_StoreD:
 640         case Op_StoreF:
 641         case Op_StoreI:
 642         case Op_StoreL:
 643         case Op_StoreP:
 644         case Op_StoreN:
 645         case Op_StoreVector:
 646         case Op_StoreNKlass:
 647           for (uint k = 1; k < m->req(); k++) {
 648             Node *in = m->in(k);
 649             if (in == src_n) {
 650               src_matches = true;
 651               break;
 652             }
 653           }
 654           break;
 655 
 656         default:
 657           src_matches = true;
 658           break;
 659         }
 660 
 661         // If we have a store as our use, ignore the non source operands
 662         if (src_matches == false) continue;
 663 
 664         // Mark every unscheduled use which is not n with a recalculation
 665         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 666           if (finalize_mode && !m->is_Phi()) {
 667             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 668           }
 669           lrg_ends = false;
 670         }
 671       }
 672     }
 673     // if none, this live range ends and we can adjust register pressure
 674     if (lrg_ends) {
 675       if (finalize_mode) {
 676         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 677       } else {
 678         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 679       }
 680     }
 681   }
 682 
 683   // now add the register pressure from the dest and evaluate which heuristic we should use:
 684   // 1.) The default, latency scheduling
 685   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 686   uint dst = _regalloc->_lrg_map.find(n);
 687   if (dst != 0) {
 688     LRG& lrg_dst = _regalloc->lrgs(dst);
 689     if (finalize_mode) {
 690       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 691       // check to see if we fall over the register pressure cliff here
 692       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 693         _scheduling_for_pressure = true;
 694       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 695         _scheduling_for_pressure = true;
 696       } else {
 697         // restore latency scheduling mode
 698         _scheduling_for_pressure = false;
 699       }
 700     } else {
 701       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 702     }
 703   }
 704 }
 705 
 706 //------------------------------set_next_call----------------------------------
 707 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 708   if( next_call.test_set(n->_idx) ) return;
 709   for( uint i=0; i<n->len(); i++ ) {
 710     Node *m = n->in(i);
 711     if( !m ) continue;  // must see all nodes in block that precede call
 712     if (get_block_for_node(m) == block) {
 713       set_next_call(block, m, next_call);
 714     }
 715   }
 716 }
 717 
 718 //------------------------------needed_for_next_call---------------------------
 719 // Set the flag 'next_call' for each Node that is needed for the next call to
 720 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 721 // next subroutine call get priority - basically it moves things NOT needed
 722 // for the next call till after the call.  This prevents me from trying to
 723 // carry lots of stuff live across a call.
 724 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 725   // Find the next control-defining Node in this block
 726   Node* call = NULL;
 727   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 728     Node* m = this_call->fast_out(i);
 729     if (get_block_for_node(m) == block && // Local-block user
 730         m != this_call &&       // Not self-start node
 731         m->is_MachCall()) {
 732       call = m;
 733       break;
 734     }
 735   }
 736   if (call == NULL)  return;    // No next call (e.g., block end is near)
 737   // Set next-call for all inputs to this call
 738   set_next_call(block, call, next_call);
 739 }
 740 
 741 //------------------------------add_call_kills-------------------------------------
 742 // helper function that adds caller save registers to MachProjNode
 743 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 744   // Fill in the kill mask for the call
 745   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 746     if( !regs.Member(r) ) {     // Not already defined by the call
 747       // Save-on-call register?
 748       if ((save_policy[r] == 'C') ||
 749           (save_policy[r] == 'A') ||
 750           ((save_policy[r] == 'E') && exclude_soe)) {
 751         proj->_rout.Insert(r);
 752       }
 753     }
 754   }
 755 }
 756 
 757 
 758 //------------------------------sched_call-------------------------------------
 759 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 760   RegMask regs;
 761 
 762   // Schedule all the users of the call right now.  All the users are
 763   // projection Nodes, so they must be scheduled next to the call.
 764   // Collect all the defined registers.
 765   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 766     Node* n = mcall->fast_out(i);
 767     assert( n->is_MachProj(), "" );
 768     int n_cnt = ready_cnt.at(n->_idx)-1;
 769     ready_cnt.at_put(n->_idx, n_cnt);
 770     assert( n_cnt == 0, "" );
 771     // Schedule next to call
 772     block->map_node(n, node_cnt++);
 773     // Collect defined registers
 774     regs.OR(n->out_RegMask());
 775     // Check for scheduling the next control-definer
 776     if( n->bottom_type() == Type::CONTROL )
 777       // Warm up next pile of heuristic bits
 778       needed_for_next_call(block, n, next_call);
 779 
 780     // Children of projections are now all ready
 781     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 782       Node* m = n->fast_out(j); // Get user
 783       if(get_block_for_node(m) != block) {
 784         continue;
 785       }
 786       if( m->is_Phi() ) continue;
 787       int m_cnt = ready_cnt.at(m->_idx) - 1;
 788       ready_cnt.at_put(m->_idx, m_cnt);
 789       if( m_cnt == 0 )
 790         worklist.push(m);
 791     }
 792 
 793   }
 794 
 795   // Act as if the call defines the Frame Pointer.
 796   // Certainly the FP is alive and well after the call.
 797   regs.Insert(_matcher.c_frame_pointer());
 798 
 799   // Set all registers killed and not already defined by the call.
 800   uint r_cnt = mcall->tf()->range()->cnt();
 801   int op = mcall->ideal_Opcode();
 802   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 803   map_node_to_block(proj, block);
 804   block->insert_node(proj, node_cnt++);
 805 
 806   // Select the right register save policy.
 807   const char * save_policy;
 808   switch (op) {
 809     case Op_CallRuntime:
 810     case Op_CallLeaf:
 811     case Op_CallLeafNoFP:
 812       // Calling C code so use C calling convention
 813       save_policy = _matcher._c_reg_save_policy;
 814       break;
 815 
 816     case Op_CallStaticJava:
 817     case Op_CallDynamicJava:
 818       // Calling Java code so use Java calling convention
 819       save_policy = _matcher._register_save_policy;
 820       break;
 821 
 822     default:
 823       ShouldNotReachHere();
 824   }
 825 
 826   // When using CallRuntime mark SOE registers as killed by the call
 827   // so values that could show up in the RegisterMap aren't live in a
 828   // callee saved register since the register wouldn't know where to
 829   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 830   // have debug info on them.  Strictly speaking this only needs to be
 831   // done for oops since idealreg2debugmask takes care of debug info
 832   // references but there no way to handle oops differently than other
 833   // pointers as far as the kill mask goes.
 834   bool exclude_soe = op == Op_CallRuntime;
 835 
 836   // If the call is a MethodHandle invoke, we need to exclude the
 837   // register which is used to save the SP value over MH invokes from
 838   // the mask.  Otherwise this register could be used for
 839   // deoptimization information.
 840   if (op == Op_CallStaticJava) {
 841     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 842     if (mcallstaticjava->_method_handle_invoke)
 843       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 844   }
 845 
 846   add_call_kills(proj, regs, save_policy, exclude_soe);
 847 
 848   return node_cnt;
 849 }
 850 
 851 
 852 //------------------------------schedule_local---------------------------------
 853 // Topological sort within a block.  Someday become a real scheduler.
 854 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 855   // Already "sorted" are the block start Node (as the first entry), and
 856   // the block-ending Node and any trailing control projections.  We leave
 857   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 858   // Node.  Everything else gets topo-sorted.
 859 
 860 #ifndef PRODUCT
 861     if (trace_opto_pipelining()) {
 862       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 863       for (uint i = 0;i < block->number_of_nodes(); i++) {
 864         tty->print("# ");
 865         block->get_node(i)->fast_dump();
 866       }
 867       tty->print_cr("#");
 868     }
 869 #endif
 870 
 871   // RootNode is already sorted
 872   if (block->number_of_nodes() == 1) {
 873     return true;
 874   }
 875 
 876   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 877 
 878   // We track the uses of local definitions as input dependences so that
 879   // we know when a given instruction is avialable to be scheduled.
 880   uint i;
 881   if (OptoRegScheduling && block_size_threshold_ok) {
 882     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 883       Node *n = block->get_node(i);
 884       n->remove_flag(Node::Flag_is_scheduled);
 885       if (!n->is_Phi()) {
 886         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 887       }
 888     }
 889   }
 890 
 891   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 892   uint node_cnt = block->end_idx();
 893   uint phi_cnt = 1;
 894   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 895     Node *n = block->get_node(i);
 896     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 897         (n->is_Proj()  && n->in(0) == block->head()) ) {
 898       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 899       block->map_node(block->get_node(phi_cnt), i);
 900       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 901       if (OptoRegScheduling && block_size_threshold_ok) {
 902         // mark n as scheduled
 903         n->add_flag(Node::Flag_is_scheduled);
 904       }
 905     } else {                    // All others
 906       // Count block-local inputs to 'n'
 907       uint cnt = n->len();      // Input count
 908       uint local = 0;
 909       for( uint j=0; j<cnt; j++ ) {
 910         Node *m = n->in(j);
 911         if( m && get_block_for_node(m) == block && !m->is_top() )
 912           local++;              // One more block-local input
 913       }
 914       ready_cnt.at_put(n->_idx, local); // Count em up
 915 
 916 #ifdef ASSERT
 917       if( UseConcMarkSweepGC || UseG1GC ) {
 918         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 919           // Check the precedence edges
 920           for (uint prec = n->req(); prec < n->len(); prec++) {
 921             Node* oop_store = n->in(prec);
 922             if (oop_store != NULL) {
 923               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 924             }
 925           }
 926         }
 927       }
 928 #endif
 929 
 930       // A few node types require changing a required edge to a precedence edge
 931       // before allocation.
 932       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 933           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 934            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 935         // MemBarAcquire could be created without Precedent edge.
 936         // del_req() replaces the specified edge with the last input edge
 937         // and then removes the last edge. If the specified edge > number of
 938         // edges the last edge will be moved outside of the input edges array
 939         // and the edge will be lost. This is why this code should be
 940         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 941         Node *x = n->in(TypeFunc::Parms);
 942         n->del_req(TypeFunc::Parms);
 943         n->add_prec(x);
 944       }
 945     }
 946   }
 947   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 948     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 949 
 950   // All the prescheduled guys do not hold back internal nodes
 951   uint i3;
 952   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
 953     Node *n = block->get_node(i3);       // Get pre-scheduled
 954     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 955       Node* m = n->fast_out(j);
 956       if (get_block_for_node(m) == block) { // Local-block user
 957         int m_cnt = ready_cnt.at(m->_idx)-1;
 958         if (OptoRegScheduling && block_size_threshold_ok) {
 959           // mark m as scheduled
 960           if (m_cnt < 0) {
 961             m->add_flag(Node::Flag_is_scheduled);
 962           }
 963         }
 964         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 965       }
 966     }
 967   }
 968 
 969   Node_List delay;
 970   // Make a worklist
 971   Node_List worklist;
 972   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 973     Node *m = block->get_node(i4);
 974     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 975       if (m->is_iteratively_computed()) {
 976         // Push induction variable increments last to allow other uses
 977         // of the phi to be scheduled first. The select() method breaks
 978         // ties in scheduling by worklist order.
 979         delay.push(m);
 980       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 981         // Force the CreateEx to the top of the list so it's processed
 982         // first and ends up at the start of the block.
 983         worklist.insert(0, m);
 984       } else {
 985         worklist.push(m);         // Then on to worklist!
 986       }
 987     }
 988   }
 989   while (delay.size()) {
 990     Node* d = delay.pop();
 991     worklist.push(d);
 992   }
 993 
 994   if (OptoRegScheduling && block_size_threshold_ok) {
 995     // To stage register pressure calculations we need to examine the live set variables
 996     // breaking them up by register class to compartmentalize the calculations.
 997     uint float_pressure = FLOATPRESSURE;
 998 #ifdef _LP64
 999     if (UseAVX > 2) {
1000       float_pressure *= 2;
1001     }
1002 #endif
1003     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1004     _regalloc->_sched_float_pressure.init(float_pressure);
1005     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1006     _regalloc->_scratch_float_pressure.init(float_pressure);
1007 
1008     _regalloc->compute_entry_block_pressure(block);
1009   }
1010 
1011   // Warm up the 'next_call' heuristic bits
1012   needed_for_next_call(block, block->head(), next_call);
1013 
1014 #ifndef PRODUCT
1015     if (trace_opto_pipelining()) {
1016       for (uint j=0; j< block->number_of_nodes(); j++) {
1017         Node     *n = block->get_node(j);
1018         int     idx = n->_idx;
1019         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1020         tty->print("latency:%3d  ", get_latency_for_node(n));
1021         tty->print("%4d: %s\n", idx, n->Name());
1022       }
1023     }
1024 #endif
1025 
1026   uint max_idx = (uint)ready_cnt.length();
1027   // Pull from worklist and schedule
1028   while( worklist.size() ) {    // Worklist is not ready
1029 
1030 #ifndef PRODUCT
1031     if (trace_opto_pipelining()) {
1032       tty->print("#   ready list:");
1033       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1034         Node *n = worklist[i];      // Get Node on worklist
1035         tty->print(" %d", n->_idx);
1036       }
1037       tty->cr();
1038     }
1039 #endif
1040 
1041     // Select and pop a ready guy from worklist
1042     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1043     block->map_node(n, phi_cnt++);    // Schedule him next
1044 
1045     if (OptoRegScheduling && block_size_threshold_ok) {
1046       n->add_flag(Node::Flag_is_scheduled);
1047 
1048       // Now adjust the resister pressure with the node we selected
1049       if (!n->is_Phi()) {
1050         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1051       }
1052     }
1053 
1054 #ifndef PRODUCT
1055     if (trace_opto_pipelining()) {
1056       tty->print("#    select %d: %s", n->_idx, n->Name());
1057       tty->print(", latency:%d", get_latency_for_node(n));
1058       n->dump();
1059       if (Verbose) {
1060         tty->print("#   ready list:");
1061         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1062           Node *n = worklist[i];      // Get Node on worklist
1063           tty->print(" %d", n->_idx);
1064         }
1065         tty->cr();
1066       }
1067     }
1068 
1069 #endif
1070     if( n->is_MachCall() ) {
1071       MachCallNode *mcall = n->as_MachCall();
1072       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1073       continue;
1074     }
1075 
1076     if (n->is_Mach() && n->as_Mach()->has_call()) {
1077       RegMask regs;
1078       regs.Insert(_matcher.c_frame_pointer());
1079       regs.OR(n->out_RegMask());
1080 
1081       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1082       map_node_to_block(proj, block);
1083       block->insert_node(proj, phi_cnt++);
1084 
1085       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1086     }
1087 
1088     // Children are now all ready
1089     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1090       Node* m = n->fast_out(i5); // Get user
1091       if (get_block_for_node(m) != block) {
1092         continue;
1093       }
1094       if( m->is_Phi() ) continue;
1095       if (m->_idx >= max_idx) { // new node, skip it
1096         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1097         continue;
1098       }
1099       int m_cnt = ready_cnt.at(m->_idx) - 1;
1100       ready_cnt.at_put(m->_idx, m_cnt);
1101       if( m_cnt == 0 )
1102         worklist.push(m);
1103     }
1104   }
1105 
1106   if( phi_cnt != block->end_idx() ) {
1107     // did not schedule all.  Retry, Bailout, or Die
1108     if (C->subsume_loads() == true && !C->failing()) {
1109       // Retry with subsume_loads == false
1110       // If this is the first failure, the sentinel string will "stick"
1111       // to the Compile object, and the C2Compiler will see it and retry.
1112       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1113     }
1114     // assert( phi_cnt == end_idx(), "did not schedule all" );
1115     return false;
1116   }
1117 
1118   if (OptoRegScheduling && block_size_threshold_ok) {
1119     _regalloc->compute_exit_block_pressure(block);
1120     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1121     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1122   }
1123 
1124 #ifndef PRODUCT
1125   if (trace_opto_pipelining()) {
1126     tty->print_cr("#");
1127     tty->print_cr("# after schedule_local");
1128     for (uint i = 0;i < block->number_of_nodes();i++) {
1129       tty->print("# ");
1130       block->get_node(i)->fast_dump();
1131     }
1132     tty->print_cr("# ");
1133 
1134     if (OptoRegScheduling && block_size_threshold_ok) {
1135       tty->print_cr("# pressure info : %d", block->_pre_order);
1136       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1137       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1138     }
1139     tty->cr();
1140   }
1141 #endif
1142 
1143   return true;
1144 }
1145 
1146 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1147 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1148   for (uint l = 0; l < use->len(); l++) {
1149     if (use->in(l) == old_def) {
1150       if (l < use->req()) {
1151         use->set_req(l, new_def);
1152       } else {
1153         use->rm_prec(l);
1154         use->add_prec(new_def);
1155         l--;
1156       }
1157     }
1158   }
1159 }
1160 
1161 //------------------------------catch_cleanup_find_cloned_def------------------
1162 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1163   assert( use_blk != def_blk, "Inter-block cleanup only");
1164 
1165   // The use is some block below the Catch.  Find and return the clone of the def
1166   // that dominates the use. If there is no clone in a dominating block, then
1167   // create a phi for the def in a dominating block.
1168 
1169   // Find which successor block dominates this use.  The successor
1170   // blocks must all be single-entry (from the Catch only; I will have
1171   // split blocks to make this so), hence they all dominate.
1172   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1173     use_blk = use_blk->_idom;
1174 
1175   // Find the successor
1176   Node *fixup = NULL;
1177 
1178   uint j;
1179   for( j = 0; j < def_blk->_num_succs; j++ )
1180     if( use_blk == def_blk->_succs[j] )
1181       break;
1182 
1183   if( j == def_blk->_num_succs ) {
1184     // Block at same level in dom-tree is not a successor.  It needs a
1185     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1186     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1187     for(uint k = 1; k < use_blk->num_preds(); k++) {
1188       Block* block = get_block_for_node(use_blk->pred(k));
1189       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1190     }
1191 
1192     // Check to see if the use_blk already has an identical phi inserted.
1193     // If it exists, it will be at the first position since all uses of a
1194     // def are processed together.
1195     Node *phi = use_blk->get_node(1);
1196     if( phi->is_Phi() ) {
1197       fixup = phi;
1198       for (uint k = 1; k < use_blk->num_preds(); k++) {
1199         if (phi->in(k) != inputs[k]) {
1200           // Not a match
1201           fixup = NULL;
1202           break;
1203         }
1204       }
1205     }
1206 
1207     // If an existing PhiNode was not found, make a new one.
1208     if (fixup == NULL) {
1209       Node *new_phi = PhiNode::make(use_blk->head(), def);
1210       use_blk->insert_node(new_phi, 1);
1211       map_node_to_block(new_phi, use_blk);
1212       for (uint k = 1; k < use_blk->num_preds(); k++) {
1213         new_phi->set_req(k, inputs[k]);
1214       }
1215       fixup = new_phi;
1216     }
1217 
1218   } else {
1219     // Found the use just below the Catch.  Make it use the clone.
1220     fixup = use_blk->get_node(n_clone_idx);
1221   }
1222 
1223   return fixup;
1224 }
1225 
1226 //--------------------------catch_cleanup_intra_block--------------------------
1227 // Fix all input edges in use that reference "def".  The use is in the same
1228 // block as the def and both have been cloned in each successor block.
1229 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1230 
1231   // Both the use and def have been cloned. For each successor block,
1232   // get the clone of the use, and make its input the clone of the def
1233   // found in that block.
1234 
1235   uint use_idx = blk->find_node(use);
1236   uint offset_idx = use_idx - beg;
1237   for( uint k = 0; k < blk->_num_succs; k++ ) {
1238     // Get clone in each successor block
1239     Block *sb = blk->_succs[k];
1240     Node *clone = sb->get_node(offset_idx+1);
1241     assert( clone->Opcode() == use->Opcode(), "" );
1242 
1243     // Make use-clone reference the def-clone
1244     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1245   }
1246 }
1247 
1248 //------------------------------catch_cleanup_inter_block---------------------
1249 // Fix all input edges in use that reference "def".  The use is in a different
1250 // block than the def.
1251 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1252   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1253 
1254   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1255   catch_cleanup_fix_all_inputs(use, def, new_def);
1256 }
1257 
1258 //------------------------------call_catch_cleanup-----------------------------
1259 // If we inserted any instructions between a Call and his CatchNode,
1260 // clone the instructions on all paths below the Catch.
1261 void PhaseCFG::call_catch_cleanup(Block* block) {
1262 
1263   // End of region to clone
1264   uint end = block->end_idx();
1265   if( !block->get_node(end)->is_Catch() ) return;
1266   // Start of region to clone
1267   uint beg = end;
1268   while(!block->get_node(beg-1)->is_MachProj() ||
1269         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1270     beg--;
1271     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1272   }
1273   // Range of inserted instructions is [beg, end)
1274   if( beg == end ) return;
1275 
1276   // Clone along all Catch output paths.  Clone area between the 'beg' and
1277   // 'end' indices.
1278   for( uint i = 0; i < block->_num_succs; i++ ) {
1279     Block *sb = block->_succs[i];
1280     // Clone the entire area; ignoring the edge fixup for now.
1281     for( uint j = end; j > beg; j-- ) {
1282       // It is safe here to clone a node with anti_dependence
1283       // since clones dominate on each path.
1284       Node *clone = block->get_node(j-1)->clone();
1285       sb->insert_node(clone, 1);
1286       map_node_to_block(clone, sb);
1287     }
1288   }
1289 
1290 
1291   // Fixup edges.  Check the def-use info per cloned Node
1292   for(uint i2 = beg; i2 < end; i2++ ) {
1293     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1294     Node *n = block->get_node(i2);        // Node that got cloned
1295     // Need DU safe iterator because of edge manipulation in calls.
1296     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1297     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1298       out->push(n->fast_out(j1));
1299     }
1300     uint max = out->size();
1301     for (uint j = 0; j < max; j++) {// For all users
1302       Node *use = out->pop();
1303       Block *buse = get_block_for_node(use);
1304       if( use->is_Phi() ) {
1305         for( uint k = 1; k < use->req(); k++ )
1306           if( use->in(k) == n ) {
1307             Block* b = get_block_for_node(buse->pred(k));
1308             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1309             use->set_req(k, fixup);
1310           }
1311       } else {
1312         if (block == buse) {
1313           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1314         } else {
1315           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1316         }
1317       }
1318     } // End for all users
1319 
1320   } // End of for all Nodes in cloned area
1321 
1322   // Remove the now-dead cloned ops
1323   for(uint i3 = beg; i3 < end; i3++ ) {
1324     block->get_node(beg)->disconnect_inputs(NULL, C);
1325     block->remove_node(beg);
1326   }
1327 
1328   // If the successor blocks have a CreateEx node, move it back to the top
1329   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1330     Block *sb = block->_succs[i4];
1331     uint new_cnt = end - beg;
1332     // Remove any newly created, but dead, nodes.
1333     for( uint j = new_cnt; j > 0; j-- ) {
1334       Node *n = sb->get_node(j);
1335       if (n->outcnt() == 0 &&
1336           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1337         n->disconnect_inputs(NULL, C);
1338         sb->remove_node(j);
1339         new_cnt--;
1340       }
1341     }
1342     // If any newly created nodes remain, move the CreateEx node to the top
1343     if (new_cnt > 0) {
1344       Node *cex = sb->get_node(1+new_cnt);
1345       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1346         sb->remove_node(1+new_cnt);
1347         sb->insert_node(cex, 1);
1348       }
1349     }
1350   }
1351 }