< prev index next >

src/share/vm/opto/lcm.cpp

Print this page




  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"

  34 #include "runtime/sharedRuntime.hpp"
  35 
  36 // Optimization - Graph Style
  37 
  38 // Check whether val is not-null-decoded compressed oop,
  39 // i.e. will grab into the base of the heap if it represents NULL.
  40 static bool accesses_heap_base_zone(Node *val) {
  41   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  42     if (val && val->is_Mach()) {
  43       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  44         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  45         // decode NULL to point to the heap base (Decode_NN).
  46         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  47           return true;
  48         }
  49       }
  50       // Must recognize load operation with Decode matched in memory operand.
  51       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  52       // returns true everywhere else. On PPC, no such memory operands
  53       // exist, therefore we did not yet implement a check for such operands.


 426       in->disconnect_inputs(NULL, C);
 427       block->find_remove(in);
 428     }
 429   }
 430 
 431   latency_from_uses(nul_chk);
 432   latency_from_uses(best);
 433 }
 434 
 435 
 436 //------------------------------select-----------------------------------------
 437 // Select a nice fellow from the worklist to schedule next. If there is only
 438 // one choice, then use it. Projections take top priority for correctness
 439 // reasons - if I see a projection, then it is next.  There are a number of
 440 // other special cases, for instructions that consume condition codes, et al.
 441 // These are chosen immediately. Some instructions are required to immediately
 442 // precede the last instruction in the block, and these are taken last. Of the
 443 // remaining cases (most), choose the instruction with the greatest latency
 444 // (that is, the most number of pseudo-cycles required to the end of the
 445 // routine). If there is a tie, choose the instruction with the most inputs.
 446 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {






 447 
 448   // If only a single entry on the stack, use it
 449   uint cnt = worklist.size();
 450   if (cnt == 1) {
 451     Node *n = worklist[0];
 452     worklist.map(0,worklist.pop());
 453     return n;
 454   }
 455 
 456   uint choice  = 0; // Bigger is most important
 457   uint latency = 0; // Bigger is scheduled first
 458   uint score   = 0; // Bigger is better
 459   int idx = -1;     // Index in worklist
 460   int cand_cnt = 0; // Candidate count

 461 
 462   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 463     // Order in worklist is used to break ties.
 464     // See caller for how this is used to delay scheduling
 465     // of induction variable increments to after the other
 466     // uses of the phi are scheduled.
 467     Node *n = worklist[i];      // Get Node on worklist
 468 
 469     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 470     if( n->is_Proj() ||         // Projections always win
 471         n->Opcode()== Op_Con || // So does constant 'Top'
 472         iop == Op_CreateEx ||   // Create-exception must start block
 473         iop == Op_CheckCastPP
 474         ) {
 475       worklist.map(i,worklist.pop());
 476       return n;
 477     }
 478 
 479     // Final call in a block must be adjacent to 'catch'
 480     Node *e = block->end();


 522     // See if this has a predecessor that is "must_clone", i.e. sets the
 523     // condition code. If so, choose this first
 524     for (uint j = 0; j < n->req() ; j++) {
 525       Node *inn = n->in(j);
 526       if (inn) {
 527         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 528           n_choice = 3;
 529           break;
 530         }
 531       }
 532     }
 533 
 534     // MachTemps should be scheduled last so they are near their uses
 535     if (n->is_MachTemp()) {
 536       n_choice = 1;
 537     }
 538 
 539     uint n_latency = get_latency_for_node(n);
 540     uint n_score   = n->req();   // Many inputs get high score to break ties
 541 






































 542     // Keep best latency found
 543     cand_cnt++;
 544     if (choice < n_choice ||
 545         (choice == n_choice &&
 546          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 547           (!StressLCM &&
 548            (latency < n_latency ||
 549             (latency == n_latency &&
 550              (score < n_score))))))) {
 551       choice  = n_choice;
 552       latency = n_latency;
 553       score   = n_score;
 554       idx     = i;               // Also keep index in worklist
 555     }
 556   } // End of for all ready nodes in worklist
 557 
 558   assert(idx >= 0, "index should be set");
 559   Node *n = worklist[(uint)idx];      // Get the winner
 560 
 561   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 562   return n;
 563 }
 564 






























































































 565 
 566 //------------------------------set_next_call----------------------------------
 567 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 568   if( next_call.test_set(n->_idx) ) return;
 569   for( uint i=0; i<n->len(); i++ ) {
 570     Node *m = n->in(i);
 571     if( !m ) continue;  // must see all nodes in block that precede call
 572     if (get_block_for_node(m) == block) {
 573       set_next_call(block, m, next_call);
 574     }
 575   }
 576 }
 577 
 578 //------------------------------needed_for_next_call---------------------------
 579 // Set the flag 'next_call' for each Node that is needed for the next call to
 580 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 581 // next subroutine call get priority - basically it moves things NOT needed
 582 // for the next call till after the call.  This prevents me from trying to
 583 // carry lots of stuff live across a call.
 584 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {


 627     assert( n->is_MachProj(), "" );
 628     int n_cnt = ready_cnt.at(n->_idx)-1;
 629     ready_cnt.at_put(n->_idx, n_cnt);
 630     assert( n_cnt == 0, "" );
 631     // Schedule next to call
 632     block->map_node(n, node_cnt++);
 633     // Collect defined registers
 634     regs.OR(n->out_RegMask());
 635     // Check for scheduling the next control-definer
 636     if( n->bottom_type() == Type::CONTROL )
 637       // Warm up next pile of heuristic bits
 638       needed_for_next_call(block, n, next_call);
 639 
 640     // Children of projections are now all ready
 641     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 642       Node* m = n->fast_out(j); // Get user
 643       if(get_block_for_node(m) != block) {
 644         continue;
 645       }
 646       if( m->is_Phi() ) continue;
 647       int m_cnt = ready_cnt.at(m->_idx)-1;
 648       ready_cnt.at_put(m->_idx, m_cnt);
 649       if( m_cnt == 0 )
 650         worklist.push(m);
 651     }
 652 
 653   }
 654 
 655   // Act as if the call defines the Frame Pointer.
 656   // Certainly the FP is alive and well after the call.
 657   regs.Insert(_matcher.c_frame_pointer());
 658 
 659   // Set all registers killed and not already defined by the call.
 660   uint r_cnt = mcall->tf()->range()->cnt();
 661   int op = mcall->ideal_Opcode();
 662   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 663   map_node_to_block(proj, block);
 664   block->insert_node(proj, node_cnt++);
 665 
 666   // Select the right register save policy.
 667   const char * save_policy;


 694   bool exclude_soe = op == Op_CallRuntime;
 695 
 696   // If the call is a MethodHandle invoke, we need to exclude the
 697   // register which is used to save the SP value over MH invokes from
 698   // the mask.  Otherwise this register could be used for
 699   // deoptimization information.
 700   if (op == Op_CallStaticJava) {
 701     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 702     if (mcallstaticjava->_method_handle_invoke)
 703       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 704   }
 705 
 706   add_call_kills(proj, regs, save_policy, exclude_soe);
 707 
 708   return node_cnt;
 709 }
 710 
 711 
 712 //------------------------------schedule_local---------------------------------
 713 // Topological sort within a block.  Someday become a real scheduler.
 714 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
 715   // Already "sorted" are the block start Node (as the first entry), and
 716   // the block-ending Node and any trailing control projections.  We leave
 717   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 718   // Node.  Everything else gets topo-sorted.
 719 
 720 #ifndef PRODUCT
 721     if (trace_opto_pipelining()) {
 722       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 723       for (uint i = 0;i < block->number_of_nodes(); i++) {
 724         tty->print("# ");
 725         block->get_node(i)->fast_dump();
 726       }
 727       tty->print_cr("#");
 728     }
 729 #endif
 730 
 731   // RootNode is already sorted
 732   if (block->number_of_nodes() == 1) {
 733     return true;
 734   }
 735 















 736   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 737   uint node_cnt = block->end_idx();
 738   uint phi_cnt = 1;
 739   uint i;
 740   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 741     Node *n = block->get_node(i);
 742     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 743         (n->is_Proj()  && n->in(0) == block->head()) ) {
 744       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 745       block->map_node(block->get_node(phi_cnt), i);
 746       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front




 747     } else {                    // All others
 748       // Count block-local inputs to 'n'
 749       uint cnt = n->len();      // Input count
 750       uint local = 0;
 751       for( uint j=0; j<cnt; j++ ) {
 752         Node *m = n->in(j);
 753         if( m && get_block_for_node(m) == block && !m->is_top() )
 754           local++;              // One more block-local input
 755       }
 756       ready_cnt.at_put(n->_idx, local); // Count em up
 757 
 758 #ifdef ASSERT
 759       if( UseConcMarkSweepGC || UseG1GC ) {
 760         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 761           // Check the precedence edges
 762           for (uint prec = n->req(); prec < n->len(); prec++) {
 763             Node* oop_store = n->in(prec);
 764             if (oop_store != NULL) {
 765               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 766             }


 774       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 775           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 776            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 777         // MemBarAcquire could be created without Precedent edge.
 778         // del_req() replaces the specified edge with the last input edge
 779         // and then removes the last edge. If the specified edge > number of
 780         // edges the last edge will be moved outside of the input edges array
 781         // and the edge will be lost. This is why this code should be
 782         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 783         Node *x = n->in(TypeFunc::Parms);
 784         n->del_req(TypeFunc::Parms);
 785         n->add_prec(x);
 786       }
 787     }
 788   }
 789   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 790     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 791 
 792   // All the prescheduled guys do not hold back internal nodes
 793   uint i3;
 794   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 795     Node *n = block->get_node(i3);       // Get pre-scheduled
 796     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 797       Node* m = n->fast_out(j);
 798       if (get_block_for_node(m) == block) { // Local-block user
 799         int m_cnt = ready_cnt.at(m->_idx)-1;






 800         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 801       }
 802     }
 803   }
 804 
 805   Node_List delay;
 806   // Make a worklist
 807   Node_List worklist;
 808   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 809     Node *m = block->get_node(i4);
 810     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 811       if (m->is_iteratively_computed()) {
 812         // Push induction variable increments last to allow other uses
 813         // of the phi to be scheduled first. The select() method breaks
 814         // ties in scheduling by worklist order.
 815         delay.push(m);
 816       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 817         // Force the CreateEx to the top of the list so it's processed
 818         // first and ends up at the start of the block.
 819         worklist.insert(0, m);
 820       } else {
 821         worklist.push(m);         // Then on to worklist!
 822       }
 823     }
 824   }
 825   while (delay.size()) {
 826     Node* d = delay.pop();
 827     worklist.push(d);
 828   }
 829 












 830   // Warm up the 'next_call' heuristic bits
 831   needed_for_next_call(block, block->head(), next_call);
 832 
 833 #ifndef PRODUCT
 834     if (trace_opto_pipelining()) {
 835       for (uint j=0; j< block->number_of_nodes(); j++) {
 836         Node     *n = block->get_node(j);
 837         int     idx = n->_idx;
 838         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 839         tty->print("latency:%3d  ", get_latency_for_node(n));
 840         tty->print("%4d: %s\n", idx, n->Name());
 841       }
 842     }
 843 #endif
 844 
 845   uint max_idx = (uint)ready_cnt.length();
 846   // Pull from worklist and schedule
 847   while( worklist.size() ) {    // Worklist is not ready
 848 
 849 #ifndef PRODUCT
 850     if (trace_opto_pipelining()) {
 851       tty->print("#   ready list:");
 852       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 853         Node *n = worklist[i];      // Get Node on worklist
 854         tty->print(" %d", n->_idx);
 855       }
 856       tty->cr();
 857     }
 858 #endif
 859 
 860     // Select and pop a ready guy from worklist
 861     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
 862     block->map_node(n, phi_cnt++);    // Schedule him next
 863 









 864 #ifndef PRODUCT
 865     if (trace_opto_pipelining()) {
 866       tty->print("#    select %d: %s", n->_idx, n->Name());
 867       tty->print(", latency:%d", get_latency_for_node(n));
 868       n->dump();
 869       if (Verbose) {
 870         tty->print("#   ready list:");
 871         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 872           Node *n = worklist[i];      // Get Node on worklist
 873           tty->print(" %d", n->_idx);
 874         }
 875         tty->cr();
 876       }
 877     }
 878 
 879 #endif
 880     if( n->is_MachCall() ) {
 881       MachCallNode *mcall = n->as_MachCall();
 882       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
 883       continue;


 889       regs.OR(n->out_RegMask());
 890 
 891       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 892       map_node_to_block(proj, block);
 893       block->insert_node(proj, phi_cnt++);
 894 
 895       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
 896     }
 897 
 898     // Children are now all ready
 899     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 900       Node* m = n->fast_out(i5); // Get user
 901       if (get_block_for_node(m) != block) {
 902         continue;
 903       }
 904       if( m->is_Phi() ) continue;
 905       if (m->_idx >= max_idx) { // new node, skip it
 906         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 907         continue;
 908       }
 909       int m_cnt = ready_cnt.at(m->_idx)-1;
 910       ready_cnt.at_put(m->_idx, m_cnt);
 911       if( m_cnt == 0 )
 912         worklist.push(m);
 913     }
 914   }
 915 
 916   if( phi_cnt != block->end_idx() ) {
 917     // did not schedule all.  Retry, Bailout, or Die
 918     if (C->subsume_loads() == true && !C->failing()) {
 919       // Retry with subsume_loads == false
 920       // If this is the first failure, the sentinel string will "stick"
 921       // to the Compile object, and the C2Compiler will see it and retry.
 922       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 923     }
 924     // assert( phi_cnt == end_idx(), "did not schedule all" );
 925     return false;
 926   }
 927 






 928 #ifndef PRODUCT
 929   if (trace_opto_pipelining()) {
 930     tty->print_cr("#");
 931     tty->print_cr("# after schedule_local");
 932     for (uint i = 0;i < block->number_of_nodes();i++) {
 933       tty->print("# ");
 934       block->get_node(i)->fast_dump();
 935     }







 936     tty->cr();
 937   }
 938 #endif
 939 
 940 
 941   return true;
 942 }
 943 
 944 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 945 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 946   for (uint l = 0; l < use->len(); l++) {
 947     if (use->in(l) == old_def) {
 948       if (l < use->req()) {
 949         use->set_req(l, new_def);
 950       } else {
 951         use->rm_prec(l);
 952         use->add_prec(new_def);
 953         l--;
 954       }
 955     }
 956   }
 957 }
 958 
 959 //------------------------------catch_cleanup_find_cloned_def------------------




  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 
  37 // Optimization - Graph Style
  38 
  39 // Check whether val is not-null-decoded compressed oop,
  40 // i.e. will grab into the base of the heap if it represents NULL.
  41 static bool accesses_heap_base_zone(Node *val) {
  42   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  43     if (val && val->is_Mach()) {
  44       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  45         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  46         // decode NULL to point to the heap base (Decode_NN).
  47         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  48           return true;
  49         }
  50       }
  51       // Must recognize load operation with Decode matched in memory operand.
  52       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  53       // returns true everywhere else. On PPC, no such memory operands
  54       // exist, therefore we did not yet implement a check for such operands.


 427       in->disconnect_inputs(NULL, C);
 428       block->find_remove(in);
 429     }
 430   }
 431 
 432   latency_from_uses(nul_chk);
 433   latency_from_uses(best);
 434 }
 435 
 436 
 437 //------------------------------select-----------------------------------------
 438 // Select a nice fellow from the worklist to schedule next. If there is only
 439 // one choice, then use it. Projections take top priority for correctness
 440 // reasons - if I see a projection, then it is next.  There are a number of
 441 // other special cases, for instructions that consume condition codes, et al.
 442 // These are chosen immediately. Some instructions are required to immediately
 443 // precede the last instruction in the block, and these are taken last. Of the
 444 // remaining cases (most), choose the instruction with the greatest latency
 445 // (that is, the most number of pseudo-cycles required to the end of the
 446 // routine). If there is a tie, choose the instruction with the most inputs.
 447 Node* PhaseCFG::select(
 448   Block* block,
 449   Node_List &worklist,
 450   GrowableArray<int> &ready_cnt,
 451   VectorSet &next_call,
 452   uint sched_slot,
 453   intptr_t* recalc_pressure_nodes) {
 454 
 455   // If only a single entry on the stack, use it
 456   uint cnt = worklist.size();
 457   if (cnt == 1) {
 458     Node *n = worklist[0];
 459     worklist.map(0,worklist.pop());
 460     return n;
 461   }
 462 
 463   uint choice  = 0; // Bigger is most important
 464   uint latency = 0; // Bigger is scheduled first
 465   uint score   = 0; // Bigger is better
 466   int idx = -1;     // Index in worklist
 467   int cand_cnt = 0; // Candidate count
 468   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 469 
 470   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 471     // Order in worklist is used to break ties.
 472     // See caller for how this is used to delay scheduling
 473     // of induction variable increments to after the other
 474     // uses of the phi are scheduled.
 475     Node *n = worklist[i];      // Get Node on worklist
 476 
 477     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 478     if( n->is_Proj() ||         // Projections always win
 479         n->Opcode()== Op_Con || // So does constant 'Top'
 480         iop == Op_CreateEx ||   // Create-exception must start block
 481         iop == Op_CheckCastPP
 482         ) {
 483       worklist.map(i,worklist.pop());
 484       return n;
 485     }
 486 
 487     // Final call in a block must be adjacent to 'catch'
 488     Node *e = block->end();


 530     // See if this has a predecessor that is "must_clone", i.e. sets the
 531     // condition code. If so, choose this first
 532     for (uint j = 0; j < n->req() ; j++) {
 533       Node *inn = n->in(j);
 534       if (inn) {
 535         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 536           n_choice = 3;
 537           break;
 538         }
 539       }
 540     }
 541 
 542     // MachTemps should be scheduled last so they are near their uses
 543     if (n->is_MachTemp()) {
 544       n_choice = 1;
 545     }
 546 
 547     uint n_latency = get_latency_for_node(n);
 548     uint n_score = n->req();   // Many inputs get high score to break ties
 549 
 550     if (OptoRegScheduling && block_size_threshold_ok) {
 551       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 552         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 553         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 554         // simulate the notion that we just picked this node to schedule
 555         n->add_flag(Node::Flag_is_scheduled);
 556         // now caculate its effect upon the graph if we did
 557         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 558         // return its state for finalize in case somebody else wins
 559         n->remove_flag(Node::Flag_is_scheduled);
 560         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 561         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 562         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 563         recalc_pressure_nodes[n->_idx] = int_pressure;
 564         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 565       }
 566 
 567       if (_scheduling_for_pressure) {
 568         latency = n_latency;
 569         if (n_choice != 3) {
 570           // Now evaluate each register pressure component based on threshold in the score.
 571           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 572           // on a single instruction, but we might see it shrink on both banks.
 573           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 574             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 575             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 576           }
 577           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 578             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 579             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 580           }
 581         } else {
 582           // make sure we choose these candidates
 583           score = 0;
 584         }
 585       }
 586     }
 587 
 588     // Keep best latency found
 589     cand_cnt++;
 590     if (choice < n_choice ||
 591         (choice == n_choice &&
 592          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 593           (!StressLCM &&
 594            (latency < n_latency ||
 595             (latency == n_latency &&
 596              (score < n_score))))))) {
 597       choice  = n_choice;
 598       latency = n_latency;
 599       score   = n_score;
 600       idx     = i;               // Also keep index in worklist
 601     }
 602   } // End of for all ready nodes in worklist
 603 
 604   assert(idx >= 0, "index should be set");
 605   Node *n = worklist[(uint)idx];      // Get the winner
 606 
 607   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 608   return n;
 609 }
 610 
 611 //-------------------------adjust_register_pressure----------------------------
 612 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 613   PhaseLive* liveinfo = _regalloc->get_live();
 614   IndexSet* liveout = liveinfo->live(block);
 615   // first adjust the register pressure for the sources
 616   for (uint i = 1; i < n->req(); i++) {
 617     bool lrg_ends = false;
 618     Node *src_n = n->in(i);
 619     if (src_n == NULL) continue;
 620     if (!src_n->is_Mach()) continue;
 621     uint src = _regalloc->_lrg_map.find(src_n);
 622     if (src == 0) continue;
 623     LRG& lrg_src = _regalloc->lrgs(src);
 624     // detect if the live range ends or not
 625     if (liveout->member(src) == false) {
 626       lrg_ends = true;
 627       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 628         Node* m = src_n->fast_out(j); // Get user
 629         if (m == n) continue;
 630         if (!m->is_Mach()) continue;
 631         MachNode *mach = m->as_Mach();
 632         bool src_matches = false;
 633         int iop = mach->ideal_Opcode();
 634 
 635         switch (iop) {
 636         case Op_StoreB:
 637         case Op_StoreC:
 638         case Op_StoreCM:
 639         case Op_StoreD:
 640         case Op_StoreF:
 641         case Op_StoreI:
 642         case Op_StoreL:
 643         case Op_StoreP:
 644         case Op_StoreN:
 645         case Op_StoreVector:
 646         case Op_StoreNKlass:
 647           for (uint k = 1; k < m->req(); k++) {
 648             Node *in = m->in(k);
 649             if (in == src_n) {
 650               src_matches = true;
 651               break;
 652             }
 653           }
 654           break;
 655 
 656         default:
 657           src_matches = true;
 658           break;
 659         }
 660 
 661         // If we have a store as our use, ignore the non source operands
 662         if (src_matches == false) continue;
 663 
 664         // Mark every unscheduled use which is not n with a recalculation
 665         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 666           if (finalize_mode && !m->is_Phi()) {
 667             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 668           }
 669           lrg_ends = false;
 670         }
 671       }
 672     }
 673     // if none, this live range ends and we can adjust register pressure
 674     if (lrg_ends) {
 675       if (finalize_mode) {
 676         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 677       } else {
 678         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 679       }
 680     }
 681   }
 682 
 683   // now add the register pressure from the dest and evaluate which heuristic we should use:
 684   // 1.) The default, latency scheduling
 685   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 686   uint dst = _regalloc->_lrg_map.find(n);
 687   if (dst != 0) {
 688     LRG& lrg_dst = _regalloc->lrgs(dst);
 689     if (finalize_mode) {
 690       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 691       // check to see if we fall over the register pressure cliff here
 692       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 693         _scheduling_for_pressure = true;
 694       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 695         _scheduling_for_pressure = true;
 696       } else {
 697         // restore latency scheduling mode
 698         _scheduling_for_pressure = false;
 699       }
 700     } else {
 701       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 702     }
 703   }
 704 }
 705 
 706 //------------------------------set_next_call----------------------------------
 707 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 708   if( next_call.test_set(n->_idx) ) return;
 709   for( uint i=0; i<n->len(); i++ ) {
 710     Node *m = n->in(i);
 711     if( !m ) continue;  // must see all nodes in block that precede call
 712     if (get_block_for_node(m) == block) {
 713       set_next_call(block, m, next_call);
 714     }
 715   }
 716 }
 717 
 718 //------------------------------needed_for_next_call---------------------------
 719 // Set the flag 'next_call' for each Node that is needed for the next call to
 720 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 721 // next subroutine call get priority - basically it moves things NOT needed
 722 // for the next call till after the call.  This prevents me from trying to
 723 // carry lots of stuff live across a call.
 724 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {


 767     assert( n->is_MachProj(), "" );
 768     int n_cnt = ready_cnt.at(n->_idx)-1;
 769     ready_cnt.at_put(n->_idx, n_cnt);
 770     assert( n_cnt == 0, "" );
 771     // Schedule next to call
 772     block->map_node(n, node_cnt++);
 773     // Collect defined registers
 774     regs.OR(n->out_RegMask());
 775     // Check for scheduling the next control-definer
 776     if( n->bottom_type() == Type::CONTROL )
 777       // Warm up next pile of heuristic bits
 778       needed_for_next_call(block, n, next_call);
 779 
 780     // Children of projections are now all ready
 781     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 782       Node* m = n->fast_out(j); // Get user
 783       if(get_block_for_node(m) != block) {
 784         continue;
 785       }
 786       if( m->is_Phi() ) continue;
 787       int m_cnt = ready_cnt.at(m->_idx) - 1;
 788       ready_cnt.at_put(m->_idx, m_cnt);
 789       if( m_cnt == 0 )
 790         worklist.push(m);
 791     }
 792 
 793   }
 794 
 795   // Act as if the call defines the Frame Pointer.
 796   // Certainly the FP is alive and well after the call.
 797   regs.Insert(_matcher.c_frame_pointer());
 798 
 799   // Set all registers killed and not already defined by the call.
 800   uint r_cnt = mcall->tf()->range()->cnt();
 801   int op = mcall->ideal_Opcode();
 802   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 803   map_node_to_block(proj, block);
 804   block->insert_node(proj, node_cnt++);
 805 
 806   // Select the right register save policy.
 807   const char * save_policy;


 834   bool exclude_soe = op == Op_CallRuntime;
 835 
 836   // If the call is a MethodHandle invoke, we need to exclude the
 837   // register which is used to save the SP value over MH invokes from
 838   // the mask.  Otherwise this register could be used for
 839   // deoptimization information.
 840   if (op == Op_CallStaticJava) {
 841     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 842     if (mcallstaticjava->_method_handle_invoke)
 843       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 844   }
 845 
 846   add_call_kills(proj, regs, save_policy, exclude_soe);
 847 
 848   return node_cnt;
 849 }
 850 
 851 
 852 //------------------------------schedule_local---------------------------------
 853 // Topological sort within a block.  Someday become a real scheduler.
 854 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 855   // Already "sorted" are the block start Node (as the first entry), and
 856   // the block-ending Node and any trailing control projections.  We leave
 857   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 858   // Node.  Everything else gets topo-sorted.
 859 
 860 #ifndef PRODUCT
 861     if (trace_opto_pipelining()) {
 862       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 863       for (uint i = 0;i < block->number_of_nodes(); i++) {
 864         tty->print("# ");
 865         block->get_node(i)->fast_dump();
 866       }
 867       tty->print_cr("#");
 868     }
 869 #endif
 870 
 871   // RootNode is already sorted
 872   if (block->number_of_nodes() == 1) {
 873     return true;
 874   }
 875 
 876   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 877 
 878   // We track the uses of local definitions as input dependences so that
 879   // we know when a given instruction is avialable to be scheduled.
 880   uint i;
 881   if (OptoRegScheduling && block_size_threshold_ok) {
 882     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 883       Node *n = block->get_node(i);
 884       n->remove_flag(Node::Flag_is_scheduled);
 885       if (!n->is_Phi()) {
 886         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 887       }
 888     }
 889   }
 890 
 891   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 892   uint node_cnt = block->end_idx();
 893   uint phi_cnt = 1;

 894   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 895     Node *n = block->get_node(i);
 896     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 897         (n->is_Proj()  && n->in(0) == block->head()) ) {
 898       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 899       block->map_node(block->get_node(phi_cnt), i);
 900       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 901       if (OptoRegScheduling && block_size_threshold_ok) {
 902         // mark n as scheduled
 903         n->add_flag(Node::Flag_is_scheduled);
 904       }
 905     } else {                    // All others
 906       // Count block-local inputs to 'n'
 907       uint cnt = n->len();      // Input count
 908       uint local = 0;
 909       for( uint j=0; j<cnt; j++ ) {
 910         Node *m = n->in(j);
 911         if( m && get_block_for_node(m) == block && !m->is_top() )
 912           local++;              // One more block-local input
 913       }
 914       ready_cnt.at_put(n->_idx, local); // Count em up
 915 
 916 #ifdef ASSERT
 917       if( UseConcMarkSweepGC || UseG1GC ) {
 918         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 919           // Check the precedence edges
 920           for (uint prec = n->req(); prec < n->len(); prec++) {
 921             Node* oop_store = n->in(prec);
 922             if (oop_store != NULL) {
 923               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 924             }


 932       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 933           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 934            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 935         // MemBarAcquire could be created without Precedent edge.
 936         // del_req() replaces the specified edge with the last input edge
 937         // and then removes the last edge. If the specified edge > number of
 938         // edges the last edge will be moved outside of the input edges array
 939         // and the edge will be lost. This is why this code should be
 940         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 941         Node *x = n->in(TypeFunc::Parms);
 942         n->del_req(TypeFunc::Parms);
 943         n->add_prec(x);
 944       }
 945     }
 946   }
 947   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 948     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 949 
 950   // All the prescheduled guys do not hold back internal nodes
 951   uint i3;
 952   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
 953     Node *n = block->get_node(i3);       // Get pre-scheduled
 954     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 955       Node* m = n->fast_out(j);
 956       if (get_block_for_node(m) == block) { // Local-block user
 957         int m_cnt = ready_cnt.at(m->_idx)-1;
 958         if (OptoRegScheduling && block_size_threshold_ok) {
 959           // mark m as scheduled
 960           if (m_cnt < 0) {
 961             m->add_flag(Node::Flag_is_scheduled);
 962           }
 963         }
 964         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 965       }
 966     }
 967   }
 968 
 969   Node_List delay;
 970   // Make a worklist
 971   Node_List worklist;
 972   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 973     Node *m = block->get_node(i4);
 974     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 975       if (m->is_iteratively_computed()) {
 976         // Push induction variable increments last to allow other uses
 977         // of the phi to be scheduled first. The select() method breaks
 978         // ties in scheduling by worklist order.
 979         delay.push(m);
 980       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 981         // Force the CreateEx to the top of the list so it's processed
 982         // first and ends up at the start of the block.
 983         worklist.insert(0, m);
 984       } else {
 985         worklist.push(m);         // Then on to worklist!
 986       }
 987     }
 988   }
 989   while (delay.size()) {
 990     Node* d = delay.pop();
 991     worklist.push(d);
 992   }
 993 
 994   if (OptoRegScheduling && block_size_threshold_ok) {
 995     // To stage register pressure calculations we need to examine the live set variables
 996     // breaking them up by register class to compartmentalize the calculations.
 997     uint float_pressure = FLOATPRESSURE * Matcher::float_pressure_scale();
 998     _regalloc->_sched_int_pressure.init(INTPRESSURE);
 999     _regalloc->_sched_float_pressure.init(float_pressure);
1000     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1001     _regalloc->_scratch_float_pressure.init(float_pressure);
1002 
1003     _regalloc->compute_entry_block_pressure(block);
1004   }
1005 
1006   // Warm up the 'next_call' heuristic bits
1007   needed_for_next_call(block, block->head(), next_call);
1008 
1009 #ifndef PRODUCT
1010     if (trace_opto_pipelining()) {
1011       for (uint j=0; j< block->number_of_nodes(); j++) {
1012         Node     *n = block->get_node(j);
1013         int     idx = n->_idx;
1014         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1015         tty->print("latency:%3d  ", get_latency_for_node(n));
1016         tty->print("%4d: %s\n", idx, n->Name());
1017       }
1018     }
1019 #endif
1020 
1021   uint max_idx = (uint)ready_cnt.length();
1022   // Pull from worklist and schedule
1023   while( worklist.size() ) {    // Worklist is not ready
1024 
1025 #ifndef PRODUCT
1026     if (trace_opto_pipelining()) {
1027       tty->print("#   ready list:");
1028       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1029         Node *n = worklist[i];      // Get Node on worklist
1030         tty->print(" %d", n->_idx);
1031       }
1032       tty->cr();
1033     }
1034 #endif
1035 
1036     // Select and pop a ready guy from worklist
1037     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1038     block->map_node(n, phi_cnt++);    // Schedule him next
1039 
1040     if (OptoRegScheduling && block_size_threshold_ok) {
1041       n->add_flag(Node::Flag_is_scheduled);
1042 
1043       // Now adjust the resister pressure with the node we selected
1044       if (!n->is_Phi()) {
1045         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1046       }
1047     }
1048 
1049 #ifndef PRODUCT
1050     if (trace_opto_pipelining()) {
1051       tty->print("#    select %d: %s", n->_idx, n->Name());
1052       tty->print(", latency:%d", get_latency_for_node(n));
1053       n->dump();
1054       if (Verbose) {
1055         tty->print("#   ready list:");
1056         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1057           Node *n = worklist[i];      // Get Node on worklist
1058           tty->print(" %d", n->_idx);
1059         }
1060         tty->cr();
1061       }
1062     }
1063 
1064 #endif
1065     if( n->is_MachCall() ) {
1066       MachCallNode *mcall = n->as_MachCall();
1067       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1068       continue;


1074       regs.OR(n->out_RegMask());
1075 
1076       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1077       map_node_to_block(proj, block);
1078       block->insert_node(proj, phi_cnt++);
1079 
1080       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1081     }
1082 
1083     // Children are now all ready
1084     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1085       Node* m = n->fast_out(i5); // Get user
1086       if (get_block_for_node(m) != block) {
1087         continue;
1088       }
1089       if( m->is_Phi() ) continue;
1090       if (m->_idx >= max_idx) { // new node, skip it
1091         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1092         continue;
1093       }
1094       int m_cnt = ready_cnt.at(m->_idx) - 1;
1095       ready_cnt.at_put(m->_idx, m_cnt);
1096       if( m_cnt == 0 )
1097         worklist.push(m);
1098     }
1099   }
1100 
1101   if( phi_cnt != block->end_idx() ) {
1102     // did not schedule all.  Retry, Bailout, or Die
1103     if (C->subsume_loads() == true && !C->failing()) {
1104       // Retry with subsume_loads == false
1105       // If this is the first failure, the sentinel string will "stick"
1106       // to the Compile object, and the C2Compiler will see it and retry.
1107       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1108     }
1109     // assert( phi_cnt == end_idx(), "did not schedule all" );
1110     return false;
1111   }
1112 
1113   if (OptoRegScheduling && block_size_threshold_ok) {
1114     _regalloc->compute_exit_block_pressure(block);
1115     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1116     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1117   }
1118 
1119 #ifndef PRODUCT
1120   if (trace_opto_pipelining()) {
1121     tty->print_cr("#");
1122     tty->print_cr("# after schedule_local");
1123     for (uint i = 0;i < block->number_of_nodes();i++) {
1124       tty->print("# ");
1125       block->get_node(i)->fast_dump();
1126     }
1127     tty->print_cr("# ");
1128 
1129     if (OptoRegScheduling && block_size_threshold_ok) {
1130       tty->print_cr("# pressure info : %d", block->_pre_order);
1131       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1132       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1133     }
1134     tty->cr();
1135   }
1136 #endif

1137 
1138   return true;
1139 }
1140 
1141 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1142 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1143   for (uint l = 0; l < use->len(); l++) {
1144     if (use->in(l) == old_def) {
1145       if (l < use->req()) {
1146         use->set_req(l, new_def);
1147       } else {
1148         use->rm_prec(l);
1149         use->add_prec(new_def);
1150         l--;
1151       }
1152     }
1153   }
1154 }
1155 
1156 //------------------------------catch_cleanup_find_cloned_def------------------


< prev index next >