1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _is_evex_instruction) {
 398     switch (_tuple_type) {
 399     case EVEX_FV:
 400       if ((_evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((_evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (_avx_vector_len >= AVX_128bit && _avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[_tuple_type + mod_idx][_avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   _is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x59: //mulpd
 774     case 0x6E: // movd
 775     case 0x7E: // movd
 776     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 777       debug_only(has_disp32 = true);
 778       break;
 779 
 780     case 0xAD: // shrd r, a, %cl
 781     case 0xAF: // imul r, a
 782     case 0xBE: // movsbl r, a (movsxb)
 783     case 0xBF: // movswl r, a (movsxw)
 784     case 0xB6: // movzbl r, a (movzxb)
 785     case 0xB7: // movzwl r, a (movzxw)
 786     case REP16(0x40): // cmovl cc, r, a
 787     case 0xB0: // cmpxchgb
 788     case 0xB1: // cmpxchg
 789     case 0xC1: // xaddl
 790     case 0xC7: // cmpxchg8
 791     case REP16(0x90): // setcc a
 792       debug_only(has_disp32 = true);
 793       // fall out of the switch to decode the address
 794       break;
 795 
 796     case 0xC4: // pinsrw r, a, #8
 797       debug_only(has_disp32 = true);
 798     case 0xC5: // pextrw r, r, #8
 799       tail_size = 1;  // the imm8
 800       break;
 801 
 802     case 0xAC: // shrd r, a, #8
 803       debug_only(has_disp32 = true);
 804       tail_size = 1;  // the imm8
 805       break;
 806 
 807     case REP16(0x80): // jcc rdisp32
 808       if (which == end_pc_operand)  return ip + 4;
 809       assert(which == call32_operand, "jcc has no disp32 or imm");
 810       return ip;
 811     default:
 812       ShouldNotReachHere();
 813     }
 814     break;
 815 
 816   case 0x81: // addl a, #32; addl r, #32
 817     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 818     // on 32bit in the case of cmpl, the imm might be an oop
 819     tail_size = 4;
 820     debug_only(has_disp32 = true); // has both kinds of operands!
 821     break;
 822 
 823   case 0x83: // addl a, #8; addl r, #8
 824     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 825     debug_only(has_disp32 = true); // has both kinds of operands!
 826     tail_size = 1;
 827     break;
 828 
 829   case 0x9B:
 830     switch (0xFF & *ip++) {
 831     case 0xD9: // fnstcw a
 832       debug_only(has_disp32 = true);
 833       break;
 834     default:
 835       ShouldNotReachHere();
 836     }
 837     break;
 838 
 839   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 840   case REP4(0x10): // adc...
 841   case REP4(0x20): // and...
 842   case REP4(0x30): // xor...
 843   case REP4(0x08): // or...
 844   case REP4(0x18): // sbb...
 845   case REP4(0x28): // sub...
 846   case 0xF7: // mull a
 847   case 0x8D: // lea r, a
 848   case 0x87: // xchg r, a
 849   case REP4(0x38): // cmp...
 850   case 0x85: // test r, a
 851     debug_only(has_disp32 = true); // has both kinds of operands!
 852     break;
 853 
 854   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 855   case 0xC6: // movb a, #8
 856   case 0x80: // cmpb a, #8
 857   case 0x6B: // imul r, a, #8
 858     debug_only(has_disp32 = true); // has both kinds of operands!
 859     tail_size = 1; // the imm8
 860     break;
 861 
 862   case 0xC4: // VEX_3bytes
 863   case 0xC5: // VEX_2bytes
 864     assert((UseAVX > 0), "shouldn't have VEX prefix");
 865     assert(ip == inst+1, "no prefixes allowed");
 866     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 867     // but they have prefix 0x0F and processed when 0x0F processed above.
 868     //
 869     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 870     // instructions (these instructions are not supported in 64-bit mode).
 871     // To distinguish them bits [7:6] are set in the VEX second byte since
 872     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 873     // those VEX bits REX and vvvv bits are inverted.
 874     //
 875     // Fortunately C2 doesn't generate these instructions so we don't need
 876     // to check for them in product version.
 877 
 878     // Check second byte
 879     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 880 
 881     int vex_opcode;
 882     // First byte
 883     if ((0xFF & *inst) == VEX_3bytes) {
 884       vex_opcode = VEX_OPCODE_MASK & *ip;
 885       ip++; // third byte
 886       is_64bit = ((VEX_W & *ip) == VEX_W);
 887     } else {
 888       vex_opcode = VEX_OPCODE_0F;
 889     }
 890     ip++; // opcode
 891     // To find the end of instruction (which == end_pc_operand).
 892     switch (vex_opcode) {
 893       case VEX_OPCODE_0F:
 894         switch (0xFF & *ip) {
 895         case 0x70: // pshufd r, r/a, #8
 896         case 0x71: // ps[rl|ra|ll]w r, #8
 897         case 0x72: // ps[rl|ra|ll]d r, #8
 898         case 0x73: // ps[rl|ra|ll]q r, #8
 899         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 900         case 0xC4: // pinsrw r, r, r/a, #8
 901         case 0xC5: // pextrw r/a, r, #8
 902         case 0xC6: // shufp[s|d] r, r, r/a, #8
 903           tail_size = 1;  // the imm8
 904           break;
 905         }
 906         break;
 907       case VEX_OPCODE_0F_3A:
 908         tail_size = 1;
 909         break;
 910     }
 911     ip++; // skip opcode
 912     debug_only(has_disp32 = true); // has both kinds of operands!
 913     break;
 914 
 915   case 0x62: // EVEX_4bytes
 916     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 917     assert(ip == inst+1, "no prefixes allowed");
 918     // no EVEX collisions, all instructions that have 0x62 opcodes
 919     // have EVEX versions and are subopcodes of 0x66
 920     ip++; // skip P0 and exmaine W in P1
 921     is_64bit = ((VEX_W & *ip) == VEX_W);
 922     ip++; // move to P2
 923     ip++; // skip P2, move to opcode
 924     // To find the end of instruction (which == end_pc_operand).
 925     switch (0xFF & *ip) {
 926     case 0x61: // pcmpestri r, r/a, #8
 927     case 0x70: // pshufd r, r/a, #8
 928     case 0x73: // psrldq r, #8
 929       tail_size = 1;  // the imm8
 930       break;
 931     default:
 932       break;
 933     }
 934     ip++; // skip opcode
 935     debug_only(has_disp32 = true); // has both kinds of operands!
 936     break;
 937 
 938   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 939   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 940   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 941   case 0xDD: // fld_d a; fst_d a; fstp_d a
 942   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 943   case 0xDF: // fild_d a; fistp_d a
 944   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 945   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 946   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 947     debug_only(has_disp32 = true);
 948     break;
 949 
 950   case 0xE8: // call rdisp32
 951   case 0xE9: // jmp  rdisp32
 952     if (which == end_pc_operand)  return ip + 4;
 953     assert(which == call32_operand, "call has no disp32 or imm");
 954     return ip;
 955 
 956   case 0xF0:                    // Lock
 957     assert(os::is_MP(), "only on MP");
 958     goto again_after_prefix;
 959 
 960   case 0xF3:                    // For SSE
 961   case 0xF2:                    // For SSE2
 962     switch (0xFF & *ip++) {
 963     case REX:
 964     case REX_B:
 965     case REX_X:
 966     case REX_XB:
 967     case REX_R:
 968     case REX_RB:
 969     case REX_RX:
 970     case REX_RXB:
 971     case REX_W:
 972     case REX_WB:
 973     case REX_WX:
 974     case REX_WXB:
 975     case REX_WR:
 976     case REX_WRB:
 977     case REX_WRX:
 978     case REX_WRXB:
 979       NOT_LP64(assert(false, "found 64bit prefix"));
 980       ip++;
 981     default:
 982       ip++;
 983     }
 984     debug_only(has_disp32 = true); // has both kinds of operands!
 985     break;
 986 
 987   default:
 988     ShouldNotReachHere();
 989 
 990 #undef REP8
 991 #undef REP16
 992   }
 993 
 994   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 995 #ifdef _LP64
 996   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 997 #else
 998   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 999   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1000 #endif // LP64
1001   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1002 
1003   // parse the output of emit_operand
1004   int op2 = 0xFF & *ip++;
1005   int base = op2 & 0x07;
1006   int op3 = -1;
1007   const int b100 = 4;
1008   const int b101 = 5;
1009   if (base == b100 && (op2 >> 6) != 3) {
1010     op3 = 0xFF & *ip++;
1011     base = op3 & 0x07;   // refetch the base
1012   }
1013   // now ip points at the disp (if any)
1014 
1015   switch (op2 >> 6) {
1016   case 0:
1017     // [00 reg  100][ss index base]
1018     // [00 reg  100][00   100  esp]
1019     // [00 reg base]
1020     // [00 reg  100][ss index  101][disp32]
1021     // [00 reg  101]               [disp32]
1022 
1023     if (base == b101) {
1024       if (which == disp32_operand)
1025         return ip;              // caller wants the disp32
1026       ip += 4;                  // skip the disp32
1027     }
1028     break;
1029 
1030   case 1:
1031     // [01 reg  100][ss index base][disp8]
1032     // [01 reg  100][00   100  esp][disp8]
1033     // [01 reg base]               [disp8]
1034     ip += 1;                    // skip the disp8
1035     break;
1036 
1037   case 2:
1038     // [10 reg  100][ss index base][disp32]
1039     // [10 reg  100][00   100  esp][disp32]
1040     // [10 reg base]               [disp32]
1041     if (which == disp32_operand)
1042       return ip;                // caller wants the disp32
1043     ip += 4;                    // skip the disp32
1044     break;
1045 
1046   case 3:
1047     // [11 reg base]  (not a memory addressing mode)
1048     break;
1049   }
1050 
1051   if (which == end_pc_operand) {
1052     return ip + tail_size;
1053   }
1054 
1055 #ifdef _LP64
1056   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1057 #else
1058   assert(which == imm_operand, "instruction has only an imm field");
1059 #endif // LP64
1060   return ip;
1061 }
1062 
1063 address Assembler::locate_next_instruction(address inst) {
1064   // Secretly share code with locate_operand:
1065   return locate_operand(inst, end_pc_operand);
1066 }
1067 
1068 
1069 #ifdef ASSERT
1070 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1071   address inst = inst_mark();
1072   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1073   address opnd;
1074 
1075   Relocation* r = rspec.reloc();
1076   if (r->type() == relocInfo::none) {
1077     return;
1078   } else if (r->is_call() || format == call32_operand) {
1079     // assert(format == imm32_operand, "cannot specify a nonzero format");
1080     opnd = locate_operand(inst, call32_operand);
1081   } else if (r->is_data()) {
1082     assert(format == imm_operand || format == disp32_operand
1083            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1084     opnd = locate_operand(inst, (WhichOperand)format);
1085   } else {
1086     assert(format == imm_operand, "cannot specify a format");
1087     return;
1088   }
1089   assert(opnd == pc(), "must put operand where relocs can find it");
1090 }
1091 #endif // ASSERT
1092 
1093 void Assembler::emit_operand32(Register reg, Address adr) {
1094   assert(reg->encoding() < 8, "no extended registers");
1095   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1096   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1097                adr._rspec);
1098 }
1099 
1100 void Assembler::emit_operand(Register reg, Address adr,
1101                              int rip_relative_correction) {
1102   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1103                adr._rspec,
1104                rip_relative_correction);
1105 }
1106 
1107 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1108   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1109                adr._rspec);
1110 }
1111 
1112 // MMX operations
1113 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1114   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1115   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1116 }
1117 
1118 // work around gcc (3.2.1-7a) bug
1119 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1120   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1121   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1122 }
1123 
1124 
1125 void Assembler::emit_farith(int b1, int b2, int i) {
1126   assert(isByte(b1) && isByte(b2), "wrong opcode");
1127   assert(0 <= i &&  i < 8, "illegal stack offset");
1128   emit_int8(b1);
1129   emit_int8(b2 + i);
1130 }
1131 
1132 
1133 // Now the Assembler instructions (identical for 32/64 bits)
1134 
1135 void Assembler::adcl(Address dst, int32_t imm32) {
1136   InstructionMark im(this);
1137   prefix(dst);
1138   emit_arith_operand(0x81, rdx, dst, imm32);
1139 }
1140 
1141 void Assembler::adcl(Address dst, Register src) {
1142   InstructionMark im(this);
1143   prefix(dst, src);
1144   emit_int8(0x11);
1145   emit_operand(src, dst);
1146 }
1147 
1148 void Assembler::adcl(Register dst, int32_t imm32) {
1149   prefix(dst);
1150   emit_arith(0x81, 0xD0, dst, imm32);
1151 }
1152 
1153 void Assembler::adcl(Register dst, Address src) {
1154   InstructionMark im(this);
1155   prefix(src, dst);
1156   emit_int8(0x13);
1157   emit_operand(dst, src);
1158 }
1159 
1160 void Assembler::adcl(Register dst, Register src) {
1161   (void) prefix_and_encode(dst->encoding(), src->encoding());
1162   emit_arith(0x13, 0xC0, dst, src);
1163 }
1164 
1165 void Assembler::addl(Address dst, int32_t imm32) {
1166   InstructionMark im(this);
1167   prefix(dst);
1168   emit_arith_operand(0x81, rax, dst, imm32);
1169 }
1170 
1171 void Assembler::addl(Address dst, Register src) {
1172   InstructionMark im(this);
1173   prefix(dst, src);
1174   emit_int8(0x01);
1175   emit_operand(src, dst);
1176 }
1177 
1178 void Assembler::addl(Register dst, int32_t imm32) {
1179   prefix(dst);
1180   emit_arith(0x81, 0xC0, dst, imm32);
1181 }
1182 
1183 void Assembler::addl(Register dst, Address src) {
1184   InstructionMark im(this);
1185   prefix(src, dst);
1186   emit_int8(0x03);
1187   emit_operand(dst, src);
1188 }
1189 
1190 void Assembler::addl(Register dst, Register src) {
1191   (void) prefix_and_encode(dst->encoding(), src->encoding());
1192   emit_arith(0x03, 0xC0, dst, src);
1193 }
1194 
1195 void Assembler::addr_nop_4() {
1196   assert(UseAddressNop, "no CPU support");
1197   // 4 bytes: NOP DWORD PTR [EAX+0]
1198   emit_int8(0x0F);
1199   emit_int8(0x1F);
1200   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1201   emit_int8(0);    // 8-bits offset (1 byte)
1202 }
1203 
1204 void Assembler::addr_nop_5() {
1205   assert(UseAddressNop, "no CPU support");
1206   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1207   emit_int8(0x0F);
1208   emit_int8(0x1F);
1209   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1210   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1211   emit_int8(0);    // 8-bits offset (1 byte)
1212 }
1213 
1214 void Assembler::addr_nop_7() {
1215   assert(UseAddressNop, "no CPU support");
1216   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1217   emit_int8(0x0F);
1218   emit_int8(0x1F);
1219   emit_int8((unsigned char)0x80);
1220                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1221   emit_int32(0);   // 32-bits offset (4 bytes)
1222 }
1223 
1224 void Assembler::addr_nop_8() {
1225   assert(UseAddressNop, "no CPU support");
1226   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1227   emit_int8(0x0F);
1228   emit_int8(0x1F);
1229   emit_int8((unsigned char)0x84);
1230                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1231   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1232   emit_int32(0);   // 32-bits offset (4 bytes)
1233 }
1234 
1235 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1236   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1237   if (VM_Version::supports_evex()) {
1238     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1239   } else {
1240     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1241   }
1242 }
1243 
1244 void Assembler::addsd(XMMRegister dst, Address src) {
1245   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1246   if (VM_Version::supports_evex()) {
1247     _tuple_type = EVEX_T1S;
1248     _input_size_in_bits = EVEX_64bit;
1249     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1250   } else {
1251     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1252   }
1253 }
1254 
1255 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1256   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1257   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1258 }
1259 
1260 void Assembler::addss(XMMRegister dst, Address src) {
1261   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1262   if (VM_Version::supports_evex()) {
1263     _tuple_type = EVEX_T1S;
1264     _input_size_in_bits = EVEX_32bit;
1265   }
1266   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1267 }
1268 
1269 void Assembler::aesdec(XMMRegister dst, Address src) {
1270   assert(VM_Version::supports_aes(), "");
1271   InstructionMark im(this);
1272   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1273               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1274   emit_int8((unsigned char)0xDE);
1275   emit_operand(dst, src);
1276 }
1277 
1278 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1279   assert(VM_Version::supports_aes(), "");
1280   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1281                                       VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1282   emit_int8((unsigned char)0xDE);
1283   emit_int8(0xC0 | encode);
1284 }
1285 
1286 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1287   assert(VM_Version::supports_aes(), "");
1288   InstructionMark im(this);
1289   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1290               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
1291   emit_int8((unsigned char)0xDF);
1292   emit_operand(dst, src);
1293 }
1294 
1295 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1296   assert(VM_Version::supports_aes(), "");
1297   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1298                                       VEX_OPCODE_0F_38,  /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1299   emit_int8((unsigned char)0xDF);
1300   emit_int8((unsigned char)(0xC0 | encode));
1301 }
1302 
1303 void Assembler::aesenc(XMMRegister dst, Address src) {
1304   assert(VM_Version::supports_aes(), "");
1305   InstructionMark im(this);
1306   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1307               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1308   emit_int8((unsigned char)0xDC);
1309   emit_operand(dst, src);
1310 }
1311 
1312 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1313   assert(VM_Version::supports_aes(), "");
1314   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1315                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1316   emit_int8((unsigned char)0xDC);
1317   emit_int8(0xC0 | encode);
1318 }
1319 
1320 void Assembler::aesenclast(XMMRegister dst, Address src) {
1321   assert(VM_Version::supports_aes(), "");
1322   InstructionMark im(this);
1323   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1324               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit,  /* legacy_mode */ true);
1325   emit_int8((unsigned char)0xDD);
1326   emit_operand(dst, src);
1327 }
1328 
1329 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1330   assert(VM_Version::supports_aes(), "");
1331   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
1332                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
1333   emit_int8((unsigned char)0xDD);
1334   emit_int8((unsigned char)(0xC0 | encode));
1335 }
1336 
1337 void Assembler::andl(Address dst, int32_t imm32) {
1338   InstructionMark im(this);
1339   prefix(dst);
1340   emit_int8((unsigned char)0x81);
1341   emit_operand(rsp, dst, 4);
1342   emit_int32(imm32);
1343 }
1344 
1345 void Assembler::andl(Register dst, int32_t imm32) {
1346   prefix(dst);
1347   emit_arith(0x81, 0xE0, dst, imm32);
1348 }
1349 
1350 void Assembler::andl(Register dst, Address src) {
1351   InstructionMark im(this);
1352   prefix(src, dst);
1353   emit_int8(0x23);
1354   emit_operand(dst, src);
1355 }
1356 
1357 void Assembler::andl(Register dst, Register src) {
1358   (void) prefix_and_encode(dst->encoding(), src->encoding());
1359   emit_arith(0x23, 0xC0, dst, src);
1360 }
1361 
1362 void Assembler::andnl(Register dst, Register src1, Register src2) {
1363   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1364   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2);
1365   emit_int8((unsigned char)0xF2);
1366   emit_int8((unsigned char)(0xC0 | encode));
1367 }
1368 
1369 void Assembler::andnl(Register dst, Register src1, Address src2) {
1370   InstructionMark im(this);
1371   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1372   vex_prefix_0F38_legacy(dst, src1, src2);
1373   emit_int8((unsigned char)0xF2);
1374   emit_operand(dst, src2);
1375 }
1376 
1377 void Assembler::bsfl(Register dst, Register src) {
1378   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)0xBC);
1381   emit_int8((unsigned char)(0xC0 | encode));
1382 }
1383 
1384 void Assembler::bsrl(Register dst, Register src) {
1385   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1386   emit_int8(0x0F);
1387   emit_int8((unsigned char)0xBD);
1388   emit_int8((unsigned char)(0xC0 | encode));
1389 }
1390 
1391 void Assembler::bswapl(Register reg) { // bswap
1392   int encode = prefix_and_encode(reg->encoding());
1393   emit_int8(0x0F);
1394   emit_int8((unsigned char)(0xC8 | encode));
1395 }
1396 
1397 void Assembler::blsil(Register dst, Register src) {
1398   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1399   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src);
1400   emit_int8((unsigned char)0xF3);
1401   emit_int8((unsigned char)(0xC0 | encode));
1402 }
1403 
1404 void Assembler::blsil(Register dst, Address src) {
1405   InstructionMark im(this);
1406   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1407   vex_prefix_0F38_legacy(rbx, dst, src);
1408   emit_int8((unsigned char)0xF3);
1409   emit_operand(rbx, src);
1410 }
1411 
1412 void Assembler::blsmskl(Register dst, Register src) {
1413   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1414   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src);
1415   emit_int8((unsigned char)0xF3);
1416   emit_int8((unsigned char)(0xC0 | encode));
1417 }
1418 
1419 void Assembler::blsmskl(Register dst, Address src) {
1420   InstructionMark im(this);
1421   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1422   vex_prefix_0F38_legacy(rdx, dst, src);
1423   emit_int8((unsigned char)0xF3);
1424   emit_operand(rdx, src);
1425 }
1426 
1427 void Assembler::blsrl(Register dst, Register src) {
1428   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1429   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src);
1430   emit_int8((unsigned char)0xF3);
1431   emit_int8((unsigned char)(0xC0 | encode));
1432 }
1433 
1434 void Assembler::blsrl(Register dst, Address src) {
1435   InstructionMark im(this);
1436   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1437   vex_prefix_0F38_legacy(rcx, dst, src);
1438   emit_int8((unsigned char)0xF3);
1439   emit_operand(rcx, src);
1440 }
1441 
1442 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1443   // suspect disp32 is always good
1444   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1445 
1446   if (L.is_bound()) {
1447     const int long_size = 5;
1448     int offs = (int)( target(L) - pc() );
1449     assert(offs <= 0, "assembler error");
1450     InstructionMark im(this);
1451     // 1110 1000 #32-bit disp
1452     emit_int8((unsigned char)0xE8);
1453     emit_data(offs - long_size, rtype, operand);
1454   } else {
1455     InstructionMark im(this);
1456     // 1110 1000 #32-bit disp
1457     L.add_patch_at(code(), locator());
1458 
1459     emit_int8((unsigned char)0xE8);
1460     emit_data(int(0), rtype, operand);
1461   }
1462 }
1463 
1464 void Assembler::call(Register dst) {
1465   int encode = prefix_and_encode(dst->encoding());
1466   emit_int8((unsigned char)0xFF);
1467   emit_int8((unsigned char)(0xD0 | encode));
1468 }
1469 
1470 
1471 void Assembler::call(Address adr) {
1472   InstructionMark im(this);
1473   prefix(adr);
1474   emit_int8((unsigned char)0xFF);
1475   emit_operand(rdx, adr);
1476 }
1477 
1478 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1479   assert(entry != NULL, "call most probably wrong");
1480   InstructionMark im(this);
1481   emit_int8((unsigned char)0xE8);
1482   intptr_t disp = entry - (pc() + sizeof(int32_t));
1483   assert(is_simm32(disp), "must be 32bit offset (call2)");
1484   // Technically, should use call32_operand, but this format is
1485   // implied by the fact that we're emitting a call instruction.
1486 
1487   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1488   emit_data((int) disp, rspec, operand);
1489 }
1490 
1491 void Assembler::cdql() {
1492   emit_int8((unsigned char)0x99);
1493 }
1494 
1495 void Assembler::cld() {
1496   emit_int8((unsigned char)0xFC);
1497 }
1498 
1499 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1500   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1501   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1502   emit_int8(0x0F);
1503   emit_int8(0x40 | cc);
1504   emit_int8((unsigned char)(0xC0 | encode));
1505 }
1506 
1507 
1508 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1509   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1510   prefix(src, dst);
1511   emit_int8(0x0F);
1512   emit_int8(0x40 | cc);
1513   emit_operand(dst, src);
1514 }
1515 
1516 void Assembler::cmpb(Address dst, int imm8) {
1517   InstructionMark im(this);
1518   prefix(dst);
1519   emit_int8((unsigned char)0x80);
1520   emit_operand(rdi, dst, 1);
1521   emit_int8(imm8);
1522 }
1523 
1524 void Assembler::cmpl(Address dst, int32_t imm32) {
1525   InstructionMark im(this);
1526   prefix(dst);
1527   emit_int8((unsigned char)0x81);
1528   emit_operand(rdi, dst, 4);
1529   emit_int32(imm32);
1530 }
1531 
1532 void Assembler::cmpl(Register dst, int32_t imm32) {
1533   prefix(dst);
1534   emit_arith(0x81, 0xF8, dst, imm32);
1535 }
1536 
1537 void Assembler::cmpl(Register dst, Register src) {
1538   (void) prefix_and_encode(dst->encoding(), src->encoding());
1539   emit_arith(0x3B, 0xC0, dst, src);
1540 }
1541 
1542 void Assembler::cmpl(Register dst, Address  src) {
1543   InstructionMark im(this);
1544   prefix(src, dst);
1545   emit_int8((unsigned char)0x3B);
1546   emit_operand(dst, src);
1547 }
1548 
1549 void Assembler::cmpw(Address dst, int imm16) {
1550   InstructionMark im(this);
1551   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1552   emit_int8(0x66);
1553   emit_int8((unsigned char)0x81);
1554   emit_operand(rdi, dst, 2);
1555   emit_int16(imm16);
1556 }
1557 
1558 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1559 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1560 // The ZF is set if the compared values were equal, and cleared otherwise.
1561 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1562   InstructionMark im(this);
1563   prefix(adr, reg);
1564   emit_int8(0x0F);
1565   emit_int8((unsigned char)0xB1);
1566   emit_operand(reg, adr);
1567 }
1568 
1569 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1570 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1571 // The ZF is set if the compared values were equal, and cleared otherwise.
1572 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1573   InstructionMark im(this);
1574   prefix(adr, reg, true);
1575   emit_int8(0x0F);
1576   emit_int8((unsigned char)0xB0);
1577   emit_operand(reg, adr);
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, Address src) {
1581   // NOTE: dbx seems to decode this as comiss even though the
1582   // 0x66 is there. Strangly ucomisd comes out correct
1583   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1584   if (VM_Version::supports_evex()) {
1585     _tuple_type = EVEX_T1S;
1586     _input_size_in_bits = EVEX_64bit;
1587     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
1588   } else {
1589     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1590   }
1591 }
1592 
1593 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1594   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1595   if (VM_Version::supports_evex()) {
1596     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
1597   } else {
1598     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1599   }
1600 }
1601 
1602 void Assembler::comiss(XMMRegister dst, Address src) {
1603   if (VM_Version::supports_evex()) {
1604     _tuple_type = EVEX_T1S;
1605     _input_size_in_bits = EVEX_32bit;
1606   }
1607   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1608   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
1609 }
1610 
1611 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1612   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1613   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
1614 }
1615 
1616 void Assembler::cpuid() {
1617   emit_int8(0x0F);
1618   emit_int8((unsigned char)0xA2);
1619 }
1620 
1621 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1622 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1623 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1624 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1625 //
1626 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1627 //
1628 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1629 //
1630 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1631 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1632   assert(VM_Version::supports_sse4_2(), "");
1633   int8_t w = 0x01;
1634   Prefix p = Prefix_EMPTY;
1635 
1636   emit_int8((int8_t)0xF2);
1637   switch (sizeInBytes) {
1638   case 1:
1639     w = 0;
1640     break;
1641   case 2:
1642   case 4:
1643     break;
1644   LP64_ONLY(case 8:)
1645     // This instruction is not valid in 32 bits
1646     // Note:
1647     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1648     //
1649     // Page B - 72   Vol. 2C says
1650     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1651     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1652     //                                                                            F0!!!
1653     // while 3 - 208 Vol. 2A
1654     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1655     //
1656     // the 0 on a last bit is reserved for a different flavor of this instruction :
1657     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1658     p = REX_W;
1659     break;
1660   default:
1661     assert(0, "Unsupported value for a sizeInBytes argument");
1662     break;
1663   }
1664   LP64_ONLY(prefix(crc, v, p);)
1665   emit_int8((int8_t)0x0F);
1666   emit_int8(0x38);
1667   emit_int8((int8_t)(0xF0 | w));
1668   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1669 }
1670 
1671 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1672   assert(VM_Version::supports_sse4_2(), "");
1673   InstructionMark im(this);
1674   int8_t w = 0x01;
1675   Prefix p = Prefix_EMPTY;
1676 
1677   emit_int8((int8_t)0xF2);
1678   switch (sizeInBytes) {
1679   case 1:
1680     w = 0;
1681     break;
1682   case 2:
1683   case 4:
1684     break;
1685   LP64_ONLY(case 8:)
1686     // This instruction is not valid in 32 bits
1687     p = REX_W;
1688     break;
1689   default:
1690     assert(0, "Unsupported value for a sizeInBytes argument");
1691     break;
1692   }
1693   LP64_ONLY(prefix(crc, adr, p);)
1694   emit_int8((int8_t)0x0F);
1695   emit_int8(0x38);
1696   emit_int8((int8_t)(0xF0 | w));
1697   emit_operand(crc, adr);
1698 }
1699 
1700 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1701   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1702   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3, /* no_mask_reg */ false, /* legacy_mode */ true);
1703 }
1704 
1705 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1707   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ true);
1708 }
1709 
1710 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1712   if (VM_Version::supports_evex()) {
1713     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1714   } else {
1715     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1716   }
1717 }
1718 
1719 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1721   if (VM_Version::supports_evex()) {
1722     _tuple_type = EVEX_T1F;
1723     _input_size_in_bits = EVEX_64bit;
1724     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1725   } else {
1726     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1727   }
1728 }
1729 
1730 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1732   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VM_Version::supports_evex());
1733   emit_int8(0x2A);
1734   emit_int8((unsigned char)(0xC0 | encode));
1735 }
1736 
1737 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1738   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1739   if (VM_Version::supports_evex()) {
1740     _tuple_type = EVEX_T1S;
1741     _input_size_in_bits = EVEX_32bit;
1742     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
1743   } else {
1744     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1745   }
1746 }
1747 
1748 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1749   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1750   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1751   emit_int8(0x2A);
1752   emit_int8((unsigned char)(0xC0 | encode));
1753 }
1754 
1755 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1756   if (VM_Version::supports_evex()) {
1757     _tuple_type = EVEX_T1S;
1758     _input_size_in_bits = EVEX_32bit;
1759   }
1760   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1761   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1762 }
1763 
1764 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1765   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1766   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
1767   emit_int8(0x2A);
1768   emit_int8((unsigned char)(0xC0 | encode));
1769 }
1770 
1771 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1772   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1773   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1774 }
1775 
1776 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1777   if (VM_Version::supports_evex()) {
1778     _tuple_type = EVEX_T1S;
1779     _input_size_in_bits = EVEX_32bit;
1780   }
1781   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1782   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1783 }
1784 
1785 
1786 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1788   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
1789   emit_int8(0x2C);
1790   emit_int8((unsigned char)(0xC0 | encode));
1791 }
1792 
1793 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1794   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1795   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
1796   emit_int8(0x2C);
1797   emit_int8((unsigned char)(0xC0 | encode));
1798 }
1799 
1800 void Assembler::decl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::decrement() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rcx, dst);
1806 }
1807 
1808 void Assembler::divsd(XMMRegister dst, Address src) {
1809   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1810   if (VM_Version::supports_evex()) {
1811     _tuple_type = EVEX_T1S;
1812     _input_size_in_bits = EVEX_64bit;
1813     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1814   } else {
1815     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1816   }
1817 }
1818 
1819 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1821   if (VM_Version::supports_evex()) {
1822     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1823   } else {
1824     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1825   }
1826 }
1827 
1828 void Assembler::divss(XMMRegister dst, Address src) {
1829   if (VM_Version::supports_evex()) {
1830     _tuple_type = EVEX_T1S;
1831     _input_size_in_bits = EVEX_32bit;
1832   }
1833   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1834   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1835 }
1836 
1837 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1838   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1839   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1840 }
1841 
1842 void Assembler::emms() {
1843   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1844   emit_int8(0x0F);
1845   emit_int8(0x77);
1846 }
1847 
1848 void Assembler::hlt() {
1849   emit_int8((unsigned char)0xF4);
1850 }
1851 
1852 void Assembler::idivl(Register src) {
1853   int encode = prefix_and_encode(src->encoding());
1854   emit_int8((unsigned char)0xF7);
1855   emit_int8((unsigned char)(0xF8 | encode));
1856 }
1857 
1858 void Assembler::divl(Register src) { // Unsigned
1859   int encode = prefix_and_encode(src->encoding());
1860   emit_int8((unsigned char)0xF7);
1861   emit_int8((unsigned char)(0xF0 | encode));
1862 }
1863 
1864 void Assembler::imull(Register dst, Register src) {
1865   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1866   emit_int8(0x0F);
1867   emit_int8((unsigned char)0xAF);
1868   emit_int8((unsigned char)(0xC0 | encode));
1869 }
1870 
1871 
1872 void Assembler::imull(Register dst, Register src, int value) {
1873   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1874   if (is8bit(value)) {
1875     emit_int8(0x6B);
1876     emit_int8((unsigned char)(0xC0 | encode));
1877     emit_int8(value & 0xFF);
1878   } else {
1879     emit_int8(0x69);
1880     emit_int8((unsigned char)(0xC0 | encode));
1881     emit_int32(value);
1882   }
1883 }
1884 
1885 void Assembler::imull(Register dst, Address src) {
1886   InstructionMark im(this);
1887   prefix(src, dst);
1888   emit_int8(0x0F);
1889   emit_int8((unsigned char) 0xAF);
1890   emit_operand(dst, src);
1891 }
1892 
1893 
1894 void Assembler::incl(Address dst) {
1895   // Don't use it directly. Use MacroAssembler::increment() instead.
1896   InstructionMark im(this);
1897   prefix(dst);
1898   emit_int8((unsigned char)0xFF);
1899   emit_operand(rax, dst);
1900 }
1901 
1902 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1903   InstructionMark im(this);
1904   assert((0 <= cc) && (cc < 16), "illegal cc");
1905   if (L.is_bound()) {
1906     address dst = target(L);
1907     assert(dst != NULL, "jcc most probably wrong");
1908 
1909     const int short_size = 2;
1910     const int long_size = 6;
1911     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1912     if (maybe_short && is8bit(offs - short_size)) {
1913       // 0111 tttn #8-bit disp
1914       emit_int8(0x70 | cc);
1915       emit_int8((offs - short_size) & 0xFF);
1916     } else {
1917       // 0000 1111 1000 tttn #32-bit disp
1918       assert(is_simm32(offs - long_size),
1919              "must be 32bit offset (call4)");
1920       emit_int8(0x0F);
1921       emit_int8((unsigned char)(0x80 | cc));
1922       emit_int32(offs - long_size);
1923     }
1924   } else {
1925     // Note: could eliminate cond. jumps to this jump if condition
1926     //       is the same however, seems to be rather unlikely case.
1927     // Note: use jccb() if label to be bound is very close to get
1928     //       an 8-bit displacement
1929     L.add_patch_at(code(), locator());
1930     emit_int8(0x0F);
1931     emit_int8((unsigned char)(0x80 | cc));
1932     emit_int32(0);
1933   }
1934 }
1935 
1936 void Assembler::jccb(Condition cc, Label& L) {
1937   if (L.is_bound()) {
1938     const int short_size = 2;
1939     address entry = target(L);
1940 #ifdef ASSERT
1941     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1942     intptr_t delta = short_branch_delta();
1943     if (delta != 0) {
1944       dist += (dist < 0 ? (-delta) :delta);
1945     }
1946     assert(is8bit(dist), "Dispacement too large for a short jmp");
1947 #endif
1948     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1949     // 0111 tttn #8-bit disp
1950     emit_int8(0x70 | cc);
1951     emit_int8((offs - short_size) & 0xFF);
1952   } else {
1953     InstructionMark im(this);
1954     L.add_patch_at(code(), locator());
1955     emit_int8(0x70 | cc);
1956     emit_int8(0);
1957   }
1958 }
1959 
1960 void Assembler::jmp(Address adr) {
1961   InstructionMark im(this);
1962   prefix(adr);
1963   emit_int8((unsigned char)0xFF);
1964   emit_operand(rsp, adr);
1965 }
1966 
1967 void Assembler::jmp(Label& L, bool maybe_short) {
1968   if (L.is_bound()) {
1969     address entry = target(L);
1970     assert(entry != NULL, "jmp most probably wrong");
1971     InstructionMark im(this);
1972     const int short_size = 2;
1973     const int long_size = 5;
1974     intptr_t offs = entry - pc();
1975     if (maybe_short && is8bit(offs - short_size)) {
1976       emit_int8((unsigned char)0xEB);
1977       emit_int8((offs - short_size) & 0xFF);
1978     } else {
1979       emit_int8((unsigned char)0xE9);
1980       emit_int32(offs - long_size);
1981     }
1982   } else {
1983     // By default, forward jumps are always 32-bit displacements, since
1984     // we can't yet know where the label will be bound.  If you're sure that
1985     // the forward jump will not run beyond 256 bytes, use jmpb to
1986     // force an 8-bit displacement.
1987     InstructionMark im(this);
1988     L.add_patch_at(code(), locator());
1989     emit_int8((unsigned char)0xE9);
1990     emit_int32(0);
1991   }
1992 }
1993 
1994 void Assembler::jmp(Register entry) {
1995   int encode = prefix_and_encode(entry->encoding());
1996   emit_int8((unsigned char)0xFF);
1997   emit_int8((unsigned char)(0xE0 | encode));
1998 }
1999 
2000 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2001   InstructionMark im(this);
2002   emit_int8((unsigned char)0xE9);
2003   assert(dest != NULL, "must have a target");
2004   intptr_t disp = dest - (pc() + sizeof(int32_t));
2005   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2006   emit_data(disp, rspec.reloc(), call32_operand);
2007 }
2008 
2009 void Assembler::jmpb(Label& L) {
2010   if (L.is_bound()) {
2011     const int short_size = 2;
2012     address entry = target(L);
2013     assert(entry != NULL, "jmp most probably wrong");
2014 #ifdef ASSERT
2015     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2016     intptr_t delta = short_branch_delta();
2017     if (delta != 0) {
2018       dist += (dist < 0 ? (-delta) :delta);
2019     }
2020     assert(is8bit(dist), "Dispacement too large for a short jmp");
2021 #endif
2022     intptr_t offs = entry - pc();
2023     emit_int8((unsigned char)0xEB);
2024     emit_int8((offs - short_size) & 0xFF);
2025   } else {
2026     InstructionMark im(this);
2027     L.add_patch_at(code(), locator());
2028     emit_int8((unsigned char)0xEB);
2029     emit_int8(0);
2030   }
2031 }
2032 
2033 void Assembler::ldmxcsr( Address src) {
2034   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2035   InstructionMark im(this);
2036   prefix(src);
2037   emit_int8(0x0F);
2038   emit_int8((unsigned char)0xAE);
2039   emit_operand(as_Register(2), src);
2040 }
2041 
2042 void Assembler::leal(Register dst, Address src) {
2043   InstructionMark im(this);
2044 #ifdef _LP64
2045   emit_int8(0x67); // addr32
2046   prefix(src, dst);
2047 #endif // LP64
2048   emit_int8((unsigned char)0x8D);
2049   emit_operand(dst, src);
2050 }
2051 
2052 void Assembler::lfence() {
2053   emit_int8(0x0F);
2054   emit_int8((unsigned char)0xAE);
2055   emit_int8((unsigned char)0xE8);
2056 }
2057 
2058 void Assembler::lock() {
2059   emit_int8((unsigned char)0xF0);
2060 }
2061 
2062 void Assembler::lzcntl(Register dst, Register src) {
2063   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2064   emit_int8((unsigned char)0xF3);
2065   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2066   emit_int8(0x0F);
2067   emit_int8((unsigned char)0xBD);
2068   emit_int8((unsigned char)(0xC0 | encode));
2069 }
2070 
2071 // Emit mfence instruction
2072 void Assembler::mfence() {
2073   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2074   emit_int8(0x0F);
2075   emit_int8((unsigned char)0xAE);
2076   emit_int8((unsigned char)0xF0);
2077 }
2078 
2079 void Assembler::mov(Register dst, Register src) {
2080   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2081 }
2082 
2083 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2085   if (VM_Version::supports_avx512novl()) {
2086     int vector_len = AVX_512bit;
2087     int dst_enc = dst->encoding();
2088     int src_enc = src->encoding();
2089     int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F,
2090                                        /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2091     emit_int8(0x28);
2092     emit_int8((unsigned char)(0xC0 | encode));
2093   } else if (VM_Version::supports_evex()) {
2094     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66);
2095   } else {
2096     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
2097   }
2098 }
2099 
2100 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2101   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2102   if (VM_Version::supports_avx512novl()) {
2103     int vector_len = AVX_512bit;
2104     int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, vector_len);
2105     emit_int8(0x28);
2106     emit_int8((unsigned char)(0xC0 | encode));
2107   } else {
2108     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2109   }
2110 }
2111 
2112 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2113   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2114   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
2115   emit_int8(0x16);
2116   emit_int8((unsigned char)(0xC0 | encode));
2117 }
2118 
2119 void Assembler::movb(Register dst, Address src) {
2120   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2121   InstructionMark im(this);
2122   prefix(src, dst, true);
2123   emit_int8((unsigned char)0x8A);
2124   emit_operand(dst, src);
2125 }
2126 
2127 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2128   _instruction_uses_vl = true;
2129   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2130   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, /* no_mask_reg */ false, VEX_OPCODE_0F,
2131                                       /* rex_w */ VM_Version::supports_evex(), AVX_128bit, /* legacy_mode */ false);
2132   emit_int8(0x12);
2133   emit_int8(0xC0 | encode);
2134 
2135 }
2136 
2137 void Assembler::kmovql(KRegister dst, KRegister src) {
2138   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2139   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2140                                       /* no_mask_reg */ true, VEX_OPCODE_0F, /* rex_w */ true);
2141   emit_int8((unsigned char)0x90);
2142   emit_int8((unsigned char)(0xC0 | encode));
2143 }
2144 
2145 void Assembler::kmovql(KRegister dst, Address src) {
2146   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2147   int dst_enc = dst->encoding();
2148   int nds_enc = 0;
2149   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2150              VEX_OPCODE_0F, /* vex_w */  true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
2151   emit_int8((unsigned char)0x90);
2152   emit_operand((Register)dst, src);
2153 }
2154 
2155 void Assembler::kmovql(Address dst, KRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2157   int src_enc = src->encoding();
2158   int nds_enc = 0;
2159   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2160              VEX_OPCODE_0F, /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_reg_mask */ true);
2161   emit_int8((unsigned char)0x90);
2162   emit_operand((Register)src, dst);
2163 }
2164 
2165 void Assembler::kmovql(KRegister dst, Register src) {
2166   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2167   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2168   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true,
2169                                       VEX_OPCODE_0F, /* legacy_mode */ !_legacy_mode_bw);
2170   emit_int8((unsigned char)0x92);
2171   emit_int8((unsigned char)(0xC0 | encode));
2172 }
2173 
2174 void Assembler::kmovdl(KRegister dst, Register src) {
2175   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2176   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2177   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, /* no_mask_reg */ true);
2178   emit_int8((unsigned char)0x92);
2179   emit_int8((unsigned char)(0xC0 | encode));
2180 }
2181 
2182 void Assembler::kmovwl(KRegister dst, Register src) {
2183   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2184   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
2185   emit_int8((unsigned char)0x92);
2186   emit_int8((unsigned char)(0xC0 | encode));
2187 }
2188 
2189 void Assembler::movb(Address dst, int imm8) {
2190   InstructionMark im(this);
2191    prefix(dst);
2192   emit_int8((unsigned char)0xC6);
2193   emit_operand(rax, dst, 1);
2194   emit_int8(imm8);
2195 }
2196 
2197 
2198 void Assembler::movb(Address dst, Register src) {
2199   assert(src->has_byte_register(), "must have byte register");
2200   InstructionMark im(this);
2201   prefix(dst, src, true);
2202   emit_int8((unsigned char)0x88);
2203   emit_operand(src, dst);
2204 }
2205 
2206 void Assembler::movdl(XMMRegister dst, Register src) {
2207   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2208   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2209   emit_int8(0x6E);
2210   emit_int8((unsigned char)(0xC0 | encode));
2211 }
2212 
2213 void Assembler::movdl(Register dst, XMMRegister src) {
2214   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2215   // swap src/dst to get correct prefix
2216   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
2217   emit_int8(0x7E);
2218   emit_int8((unsigned char)(0xC0 | encode));
2219 }
2220 
2221 void Assembler::movdl(XMMRegister dst, Address src) {
2222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2223   if (VM_Version::supports_evex()) {
2224     _tuple_type = EVEX_T1S;
2225     _input_size_in_bits = EVEX_32bit;
2226   }
2227   InstructionMark im(this);
2228   simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
2229   emit_int8(0x6E);
2230   emit_operand(dst, src);
2231 }
2232 
2233 void Assembler::movdl(Address dst, XMMRegister src) {
2234   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2235   if (VM_Version::supports_evex()) {
2236     _tuple_type = EVEX_T1S;
2237     _input_size_in_bits = EVEX_32bit;
2238   }
2239   InstructionMark im(this);
2240   simd_prefix(dst, src, VEX_SIMD_66, /* no_reg_mask */ true);
2241   emit_int8(0x7E);
2242   emit_operand(src, dst);
2243 }
2244 
2245 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2246   _instruction_uses_vl = true;
2247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2248   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2249 }
2250 
2251 void Assembler::movdqa(XMMRegister dst, Address src) {
2252   _instruction_uses_vl = true;
2253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2254   if (VM_Version::supports_evex()) {
2255     _tuple_type = EVEX_FVM;
2256   }
2257   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2258 }
2259 
2260 void Assembler::movdqu(XMMRegister dst, Address src) {
2261   _instruction_uses_vl = true;
2262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2263   if (VM_Version::supports_evex()) {
2264     _tuple_type = EVEX_FVM;
2265   }
2266   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2267 }
2268 
2269 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2270   _instruction_uses_vl = true;
2271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2272   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2273 }
2274 
2275 void Assembler::movdqu(Address dst, XMMRegister src) {
2276   _instruction_uses_vl = true;
2277   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2278   if (VM_Version::supports_evex()) {
2279     _tuple_type = EVEX_FVM;
2280   }
2281   InstructionMark im(this);
2282   simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
2283   emit_int8(0x7F);
2284   emit_operand(src, dst);
2285 }
2286 
2287 // Move Unaligned 256bit Vector
2288 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2289   _instruction_uses_vl = true;
2290   assert(UseAVX > 0, "");
2291   int vector_len = AVX_256bit;
2292   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2293   emit_int8(0x6F);
2294   emit_int8((unsigned char)(0xC0 | encode));
2295 }
2296 
2297 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2298   _instruction_uses_vl = true;
2299   assert(UseAVX > 0, "");
2300   if (VM_Version::supports_evex()) {
2301     _tuple_type = EVEX_FVM;
2302   }
2303   InstructionMark im(this);
2304   int vector_len = AVX_256bit;
2305   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2306   emit_int8(0x6F);
2307   emit_operand(dst, src);
2308 }
2309 
2310 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2311   _instruction_uses_vl = true;
2312   assert(UseAVX > 0, "");
2313   if (VM_Version::supports_evex()) {
2314     _tuple_type = EVEX_FVM;
2315   }
2316   InstructionMark im(this);
2317   int vector_len = AVX_256bit;
2318   // swap src<->dst for encoding
2319   assert(src != xnoreg, "sanity");
2320   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2321   emit_int8(0x7F);
2322   emit_operand(src, dst);
2323 }
2324 
2325 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2326 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2327   _instruction_uses_vl = true;
2328   assert(UseAVX > 0, "");
2329   int src_enc = src->encoding();
2330   int dst_enc = dst->encoding();
2331   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2332                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2333   emit_int8(0x6F);
2334   emit_int8((unsigned char)(0xC0 | encode));
2335 }
2336 
2337 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2338   _instruction_uses_vl = true;
2339   assert(UseAVX > 0, "");
2340   InstructionMark im(this);
2341   if (VM_Version::supports_evex()) {
2342     _tuple_type = EVEX_FVM;
2343   }
2344   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2345   emit_int8(0x6F);
2346   emit_operand(dst, src);
2347 }
2348 
2349 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2350   _instruction_uses_vl = true;
2351   assert(UseAVX > 0, "");
2352   InstructionMark im(this);
2353   assert(src != xnoreg, "sanity");
2354   if (VM_Version::supports_evex()) {
2355     _tuple_type = EVEX_FVM;
2356   }
2357   // swap src<->dst for encoding
2358   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2359   emit_int8(0x7F);
2360   emit_operand(src, dst);
2361 }
2362 
2363 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2364   _instruction_uses_vl = true;
2365   assert(UseAVX > 0, "");
2366   int src_enc = src->encoding();
2367   int dst_enc = dst->encoding();
2368   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2369                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
2370   emit_int8(0x6F);
2371   emit_int8((unsigned char)(0xC0 | encode));
2372 }
2373 
2374 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2375   _instruction_uses_vl = true;
2376   assert(UseAVX > 2, "");
2377   InstructionMark im(this);
2378   _tuple_type = EVEX_FVM;
2379   vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2380   emit_int8(0x6F);
2381   emit_operand(dst, src);
2382 }
2383 
2384 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2385   _instruction_uses_vl = true;
2386   assert(UseAVX > 2, "");
2387   InstructionMark im(this);
2388   assert(src != xnoreg, "sanity");
2389   _tuple_type = EVEX_FVM;
2390   // swap src<->dst for encoding
2391   vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len);
2392   emit_int8(0x7F);
2393   emit_operand(src, dst);
2394 }
2395 
2396 // Uses zero extension on 64bit
2397 
2398 void Assembler::movl(Register dst, int32_t imm32) {
2399   int encode = prefix_and_encode(dst->encoding());
2400   emit_int8((unsigned char)(0xB8 | encode));
2401   emit_int32(imm32);
2402 }
2403 
2404 void Assembler::movl(Register dst, Register src) {
2405   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2406   emit_int8((unsigned char)0x8B);
2407   emit_int8((unsigned char)(0xC0 | encode));
2408 }
2409 
2410 void Assembler::movl(Register dst, Address src) {
2411   InstructionMark im(this);
2412   prefix(src, dst);
2413   emit_int8((unsigned char)0x8B);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movl(Address dst, int32_t imm32) {
2418   InstructionMark im(this);
2419   prefix(dst);
2420   emit_int8((unsigned char)0xC7);
2421   emit_operand(rax, dst, 4);
2422   emit_int32(imm32);
2423 }
2424 
2425 void Assembler::movl(Address dst, Register src) {
2426   InstructionMark im(this);
2427   prefix(dst, src);
2428   emit_int8((unsigned char)0x89);
2429   emit_operand(src, dst);
2430 }
2431 
2432 // New cpus require to use movsd and movss to avoid partial register stall
2433 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2434 // The selection is done in MacroAssembler::movdbl() and movflt().
2435 void Assembler::movlpd(XMMRegister dst, Address src) {
2436   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2437   if (VM_Version::supports_evex()) {
2438     _tuple_type = EVEX_T1S;
2439     _input_size_in_bits = EVEX_32bit;
2440     emit_simd_arith_q(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2441   } else {
2442     emit_simd_arith(0x12, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2443   }
2444 }
2445 
2446 void Assembler::movq( MMXRegister dst, Address src ) {
2447   assert( VM_Version::supports_mmx(), "" );
2448   emit_int8(0x0F);
2449   emit_int8(0x6F);
2450   emit_operand(dst, src);
2451 }
2452 
2453 void Assembler::movq( Address dst, MMXRegister src ) {
2454   assert( VM_Version::supports_mmx(), "" );
2455   emit_int8(0x0F);
2456   emit_int8(0x7F);
2457   // workaround gcc (3.2.1-7a) bug
2458   // In that version of gcc with only an emit_operand(MMX, Address)
2459   // gcc will tail jump and try and reverse the parameters completely
2460   // obliterating dst in the process. By having a version available
2461   // that doesn't need to swap the args at the tail jump the bug is
2462   // avoided.
2463   emit_operand(dst, src);
2464 }
2465 
2466 void Assembler::movq(XMMRegister dst, Address src) {
2467   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2468   InstructionMark im(this);
2469   if (VM_Version::supports_evex()) {
2470     _tuple_type = EVEX_T1S;
2471     _input_size_in_bits = EVEX_64bit;
2472     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2473   } else {
2474     simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2475   }
2476   emit_int8(0x7E);
2477   emit_operand(dst, src);
2478 }
2479 
2480 void Assembler::movq(Address dst, XMMRegister src) {
2481   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2482   InstructionMark im(this);
2483   if (VM_Version::supports_evex()) {
2484     _tuple_type = EVEX_T1S;
2485     _input_size_in_bits = EVEX_64bit;
2486     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, /* no_mask_reg */ true,
2487                 VEX_OPCODE_0F, /* rex_w */ true);
2488   } else {
2489     simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
2490   }
2491   emit_int8((unsigned char)0xD6);
2492   emit_operand(src, dst);
2493 }
2494 
2495 void Assembler::movsbl(Register dst, Address src) { // movsxb
2496   InstructionMark im(this);
2497   prefix(src, dst);
2498   emit_int8(0x0F);
2499   emit_int8((unsigned char)0xBE);
2500   emit_operand(dst, src);
2501 }
2502 
2503 void Assembler::movsbl(Register dst, Register src) { // movsxb
2504   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2505   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2506   emit_int8(0x0F);
2507   emit_int8((unsigned char)0xBE);
2508   emit_int8((unsigned char)(0xC0 | encode));
2509 }
2510 
2511 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2513   if (VM_Version::supports_evex()) {
2514     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
2515   } else {
2516     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2517   }
2518 }
2519 
2520 void Assembler::movsd(XMMRegister dst, Address src) {
2521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2522   if (VM_Version::supports_evex()) {
2523     _tuple_type = EVEX_T1S;
2524     _input_size_in_bits = EVEX_64bit;
2525     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
2526   } else {
2527     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2528   }
2529 }
2530 
2531 void Assembler::movsd(Address dst, XMMRegister src) {
2532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2533   InstructionMark im(this);
2534   if (VM_Version::supports_evex()) {
2535     _tuple_type = EVEX_T1S;
2536     _input_size_in_bits = EVEX_64bit;
2537     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2538   } else {
2539     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, /* no_mask_reg */ false);
2540   }
2541   emit_int8(0x11);
2542   emit_operand(src, dst);
2543 }
2544 
2545 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2546   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2547   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2548 }
2549 
2550 void Assembler::movss(XMMRegister dst, Address src) {
2551   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2552   if (VM_Version::supports_evex()) {
2553     _tuple_type = EVEX_T1S;
2554     _input_size_in_bits = EVEX_32bit;
2555   }
2556   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
2557 }
2558 
2559 void Assembler::movss(Address dst, XMMRegister src) {
2560   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2561   if (VM_Version::supports_evex()) {
2562     _tuple_type = EVEX_T1S;
2563     _input_size_in_bits = EVEX_32bit;
2564   }
2565   InstructionMark im(this);
2566   simd_prefix(dst, src, VEX_SIMD_F3, /* no_mask_reg */ false);
2567   emit_int8(0x11);
2568   emit_operand(src, dst);
2569 }
2570 
2571 void Assembler::movswl(Register dst, Address src) { // movsxw
2572   InstructionMark im(this);
2573   prefix(src, dst);
2574   emit_int8(0x0F);
2575   emit_int8((unsigned char)0xBF);
2576   emit_operand(dst, src);
2577 }
2578 
2579 void Assembler::movswl(Register dst, Register src) { // movsxw
2580   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2581   emit_int8(0x0F);
2582   emit_int8((unsigned char)0xBF);
2583   emit_int8((unsigned char)(0xC0 | encode));
2584 }
2585 
2586 void Assembler::movw(Address dst, int imm16) {
2587   InstructionMark im(this);
2588 
2589   emit_int8(0x66); // switch to 16-bit mode
2590   prefix(dst);
2591   emit_int8((unsigned char)0xC7);
2592   emit_operand(rax, dst, 2);
2593   emit_int16(imm16);
2594 }
2595 
2596 void Assembler::movw(Register dst, Address src) {
2597   InstructionMark im(this);
2598   emit_int8(0x66);
2599   prefix(src, dst);
2600   emit_int8((unsigned char)0x8B);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::movw(Address dst, Register src) {
2605   InstructionMark im(this);
2606   emit_int8(0x66);
2607   prefix(dst, src);
2608   emit_int8((unsigned char)0x89);
2609   emit_operand(src, dst);
2610 }
2611 
2612 void Assembler::movzbl(Register dst, Address src) { // movzxb
2613   InstructionMark im(this);
2614   prefix(src, dst);
2615   emit_int8(0x0F);
2616   emit_int8((unsigned char)0xB6);
2617   emit_operand(dst, src);
2618 }
2619 
2620 void Assembler::movzbl(Register dst, Register src) { // movzxb
2621   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2622   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2623   emit_int8(0x0F);
2624   emit_int8((unsigned char)0xB6);
2625   emit_int8(0xC0 | encode);
2626 }
2627 
2628 void Assembler::movzwl(Register dst, Address src) { // movzxw
2629   InstructionMark im(this);
2630   prefix(src, dst);
2631   emit_int8(0x0F);
2632   emit_int8((unsigned char)0xB7);
2633   emit_operand(dst, src);
2634 }
2635 
2636 void Assembler::movzwl(Register dst, Register src) { // movzxw
2637   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2638   emit_int8(0x0F);
2639   emit_int8((unsigned char)0xB7);
2640   emit_int8(0xC0 | encode);
2641 }
2642 
2643 void Assembler::mull(Address src) {
2644   InstructionMark im(this);
2645   prefix(src);
2646   emit_int8((unsigned char)0xF7);
2647   emit_operand(rsp, src);
2648 }
2649 
2650 void Assembler::mull(Register src) {
2651   int encode = prefix_and_encode(src->encoding());
2652   emit_int8((unsigned char)0xF7);
2653   emit_int8((unsigned char)(0xE0 | encode));
2654 }
2655 
2656 void Assembler::mulsd(XMMRegister dst, Address src) {
2657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2658   if (VM_Version::supports_evex()) {
2659     _tuple_type = EVEX_T1S;
2660     _input_size_in_bits = EVEX_64bit;
2661     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2662   } else {
2663     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2664   }
2665 }
2666 
2667 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2669   if (VM_Version::supports_evex()) {
2670     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2671   } else {
2672     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2673   }
2674 }
2675 
2676 void Assembler::mulss(XMMRegister dst, Address src) {
2677   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2678   if (VM_Version::supports_evex()) {
2679     _tuple_type = EVEX_T1S;
2680     _input_size_in_bits = EVEX_32bit;
2681   }
2682   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2683 }
2684 
2685 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2686   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2687   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2688 }
2689 
2690 void Assembler::negl(Register dst) {
2691   int encode = prefix_and_encode(dst->encoding());
2692   emit_int8((unsigned char)0xF7);
2693   emit_int8((unsigned char)(0xD8 | encode));
2694 }
2695 
2696 void Assembler::nop(int i) {
2697 #ifdef ASSERT
2698   assert(i > 0, " ");
2699   // The fancy nops aren't currently recognized by debuggers making it a
2700   // pain to disassemble code while debugging. If asserts are on clearly
2701   // speed is not an issue so simply use the single byte traditional nop
2702   // to do alignment.
2703 
2704   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2705   return;
2706 
2707 #endif // ASSERT
2708 
2709   if (UseAddressNop && VM_Version::is_intel()) {
2710     //
2711     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2712     //  1: 0x90
2713     //  2: 0x66 0x90
2714     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2715     //  4: 0x0F 0x1F 0x40 0x00
2716     //  5: 0x0F 0x1F 0x44 0x00 0x00
2717     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2718     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2719     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2720     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2721     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2722     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2723 
2724     // The rest coding is Intel specific - don't use consecutive address nops
2725 
2726     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2727     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2728     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2729     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2730 
2731     while(i >= 15) {
2732       // For Intel don't generate consecutive addess nops (mix with regular nops)
2733       i -= 15;
2734       emit_int8(0x66);   // size prefix
2735       emit_int8(0x66);   // size prefix
2736       emit_int8(0x66);   // size prefix
2737       addr_nop_8();
2738       emit_int8(0x66);   // size prefix
2739       emit_int8(0x66);   // size prefix
2740       emit_int8(0x66);   // size prefix
2741       emit_int8((unsigned char)0x90);
2742                          // nop
2743     }
2744     switch (i) {
2745       case 14:
2746         emit_int8(0x66); // size prefix
2747       case 13:
2748         emit_int8(0x66); // size prefix
2749       case 12:
2750         addr_nop_8();
2751         emit_int8(0x66); // size prefix
2752         emit_int8(0x66); // size prefix
2753         emit_int8(0x66); // size prefix
2754         emit_int8((unsigned char)0x90);
2755                          // nop
2756         break;
2757       case 11:
2758         emit_int8(0x66); // size prefix
2759       case 10:
2760         emit_int8(0x66); // size prefix
2761       case 9:
2762         emit_int8(0x66); // size prefix
2763       case 8:
2764         addr_nop_8();
2765         break;
2766       case 7:
2767         addr_nop_7();
2768         break;
2769       case 6:
2770         emit_int8(0x66); // size prefix
2771       case 5:
2772         addr_nop_5();
2773         break;
2774       case 4:
2775         addr_nop_4();
2776         break;
2777       case 3:
2778         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2779         emit_int8(0x66); // size prefix
2780       case 2:
2781         emit_int8(0x66); // size prefix
2782       case 1:
2783         emit_int8((unsigned char)0x90);
2784                          // nop
2785         break;
2786       default:
2787         assert(i == 0, " ");
2788     }
2789     return;
2790   }
2791   if (UseAddressNop && VM_Version::is_amd()) {
2792     //
2793     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2794     //  1: 0x90
2795     //  2: 0x66 0x90
2796     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2797     //  4: 0x0F 0x1F 0x40 0x00
2798     //  5: 0x0F 0x1F 0x44 0x00 0x00
2799     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2800     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2801     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2802     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2803     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2804     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2805 
2806     // The rest coding is AMD specific - use consecutive address nops
2807 
2808     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2809     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2810     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2811     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2812     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2813     //     Size prefixes (0x66) are added for larger sizes
2814 
2815     while(i >= 22) {
2816       i -= 11;
2817       emit_int8(0x66); // size prefix
2818       emit_int8(0x66); // size prefix
2819       emit_int8(0x66); // size prefix
2820       addr_nop_8();
2821     }
2822     // Generate first nop for size between 21-12
2823     switch (i) {
2824       case 21:
2825         i -= 1;
2826         emit_int8(0x66); // size prefix
2827       case 20:
2828       case 19:
2829         i -= 1;
2830         emit_int8(0x66); // size prefix
2831       case 18:
2832       case 17:
2833         i -= 1;
2834         emit_int8(0x66); // size prefix
2835       case 16:
2836       case 15:
2837         i -= 8;
2838         addr_nop_8();
2839         break;
2840       case 14:
2841       case 13:
2842         i -= 7;
2843         addr_nop_7();
2844         break;
2845       case 12:
2846         i -= 6;
2847         emit_int8(0x66); // size prefix
2848         addr_nop_5();
2849         break;
2850       default:
2851         assert(i < 12, " ");
2852     }
2853 
2854     // Generate second nop for size between 11-1
2855     switch (i) {
2856       case 11:
2857         emit_int8(0x66); // size prefix
2858       case 10:
2859         emit_int8(0x66); // size prefix
2860       case 9:
2861         emit_int8(0x66); // size prefix
2862       case 8:
2863         addr_nop_8();
2864         break;
2865       case 7:
2866         addr_nop_7();
2867         break;
2868       case 6:
2869         emit_int8(0x66); // size prefix
2870       case 5:
2871         addr_nop_5();
2872         break;
2873       case 4:
2874         addr_nop_4();
2875         break;
2876       case 3:
2877         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2878         emit_int8(0x66); // size prefix
2879       case 2:
2880         emit_int8(0x66); // size prefix
2881       case 1:
2882         emit_int8((unsigned char)0x90);
2883                          // nop
2884         break;
2885       default:
2886         assert(i == 0, " ");
2887     }
2888     return;
2889   }
2890 
2891   // Using nops with size prefixes "0x66 0x90".
2892   // From AMD Optimization Guide:
2893   //  1: 0x90
2894   //  2: 0x66 0x90
2895   //  3: 0x66 0x66 0x90
2896   //  4: 0x66 0x66 0x66 0x90
2897   //  5: 0x66 0x66 0x90 0x66 0x90
2898   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2899   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2900   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2901   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2902   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2903   //
2904   while(i > 12) {
2905     i -= 4;
2906     emit_int8(0x66); // size prefix
2907     emit_int8(0x66);
2908     emit_int8(0x66);
2909     emit_int8((unsigned char)0x90);
2910                      // nop
2911   }
2912   // 1 - 12 nops
2913   if(i > 8) {
2914     if(i > 9) {
2915       i -= 1;
2916       emit_int8(0x66);
2917     }
2918     i -= 3;
2919     emit_int8(0x66);
2920     emit_int8(0x66);
2921     emit_int8((unsigned char)0x90);
2922   }
2923   // 1 - 8 nops
2924   if(i > 4) {
2925     if(i > 6) {
2926       i -= 1;
2927       emit_int8(0x66);
2928     }
2929     i -= 3;
2930     emit_int8(0x66);
2931     emit_int8(0x66);
2932     emit_int8((unsigned char)0x90);
2933   }
2934   switch (i) {
2935     case 4:
2936       emit_int8(0x66);
2937     case 3:
2938       emit_int8(0x66);
2939     case 2:
2940       emit_int8(0x66);
2941     case 1:
2942       emit_int8((unsigned char)0x90);
2943       break;
2944     default:
2945       assert(i == 0, " ");
2946   }
2947 }
2948 
2949 void Assembler::notl(Register dst) {
2950   int encode = prefix_and_encode(dst->encoding());
2951   emit_int8((unsigned char)0xF7);
2952   emit_int8((unsigned char)(0xD0 | encode));
2953 }
2954 
2955 void Assembler::orl(Address dst, int32_t imm32) {
2956   InstructionMark im(this);
2957   prefix(dst);
2958   emit_arith_operand(0x81, rcx, dst, imm32);
2959 }
2960 
2961 void Assembler::orl(Register dst, int32_t imm32) {
2962   prefix(dst);
2963   emit_arith(0x81, 0xC8, dst, imm32);
2964 }
2965 
2966 void Assembler::orl(Register dst, Address src) {
2967   InstructionMark im(this);
2968   prefix(src, dst);
2969   emit_int8(0x0B);
2970   emit_operand(dst, src);
2971 }
2972 
2973 void Assembler::orl(Register dst, Register src) {
2974   (void) prefix_and_encode(dst->encoding(), src->encoding());
2975   emit_arith(0x0B, 0xC0, dst, src);
2976 }
2977 
2978 void Assembler::orl(Address dst, Register src) {
2979   InstructionMark im(this);
2980   prefix(dst, src);
2981   emit_int8(0x09);
2982   emit_operand(src, dst);
2983 }
2984 
2985 void Assembler::packuswb(XMMRegister dst, Address src) {
2986   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2987   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2988   if (VM_Version::supports_evex()) {
2989     _tuple_type = EVEX_FV;
2990     _input_size_in_bits = EVEX_32bit;
2991   }
2992   emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
2993 }
2994 
2995 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2997   emit_simd_arith(0x67, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
2998 }
2999 
3000 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3001   assert(UseAVX > 0, "some form of AVX must be enabled");
3002   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
3003 }
3004 
3005 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3006   _instruction_uses_vl = true;
3007   assert(VM_Version::supports_avx2(), "");
3008   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3009                                       VEX_OPCODE_0F_3A, /* rex_w */ true, vector_len);
3010   emit_int8(0x00);
3011   emit_int8(0xC0 | encode);
3012   emit_int8(imm8);
3013 }
3014 
3015 void Assembler::pause() {
3016   emit_int8((unsigned char)0xF3);
3017   emit_int8((unsigned char)0x90);
3018 }
3019 
3020 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3021   assert(VM_Version::supports_sse4_2(), "");
3022   InstructionMark im(this);
3023   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_3A,
3024               /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3025   emit_int8(0x61);
3026   emit_operand(dst, src);
3027   emit_int8(imm8);
3028 }
3029 
3030 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3031   assert(VM_Version::supports_sse4_2(), "");
3032   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3033                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3034   emit_int8(0x61);
3035   emit_int8((unsigned char)(0xC0 | encode));
3036   emit_int8(imm8);
3037 }
3038 
3039 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3040   assert(VM_Version::supports_sse4_1(), "");
3041   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ true,
3042                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3043   emit_int8(0x16);
3044   emit_int8((unsigned char)(0xC0 | encode));
3045   emit_int8(imm8);
3046 }
3047 
3048 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3049   assert(VM_Version::supports_sse4_1(), "");
3050   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */  true,
3051                                       VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3052   emit_int8(0x16);
3053   emit_int8((unsigned char)(0xC0 | encode));
3054   emit_int8(imm8);
3055 }
3056 
3057 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3058   assert(VM_Version::supports_sse2(), "");
3059   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ true,
3060                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3061   emit_int8((unsigned char)0xC5);
3062   emit_int8((unsigned char)(0xC0 | encode));
3063   emit_int8(imm8);
3064 }
3065 
3066 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3067   assert(VM_Version::supports_sse4_1(), "");
3068   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3069                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3070   emit_int8(0x22);
3071   emit_int8((unsigned char)(0xC0 | encode));
3072   emit_int8(imm8);
3073 }
3074 
3075 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3076   assert(VM_Version::supports_sse4_1(), "");
3077   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3078                                       VEX_OPCODE_0F_3A, /* rex_w */ true, AVX_128bit, /* legacy_mode */ _legacy_mode_dq);
3079   emit_int8(0x22);
3080   emit_int8((unsigned char)(0xC0 | encode));
3081   emit_int8(imm8);
3082 }
3083 
3084 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3085   assert(VM_Version::supports_sse2(), "");
3086   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, /* no_mask_reg */ true,
3087                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3088   emit_int8((unsigned char)0xC4);
3089   emit_int8((unsigned char)(0xC0 | encode));
3090   emit_int8(imm8);
3091 }
3092 
3093 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3094   assert(VM_Version::supports_sse4_1(), "");
3095   if (VM_Version::supports_evex()) {
3096     _tuple_type = EVEX_HVM;
3097   }
3098   InstructionMark im(this);
3099   simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
3100   emit_int8(0x30);
3101   emit_operand(dst, src);
3102 }
3103 
3104 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3105   assert(VM_Version::supports_sse4_1(), "");
3106   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F_38);
3107   emit_int8(0x30);
3108   emit_int8((unsigned char)(0xC0 | encode));
3109 }
3110 
3111 // generic
3112 void Assembler::pop(Register dst) {
3113   int encode = prefix_and_encode(dst->encoding());
3114   emit_int8(0x58 | encode);
3115 }
3116 
3117 void Assembler::popcntl(Register dst, Address src) {
3118   assert(VM_Version::supports_popcnt(), "must support");
3119   InstructionMark im(this);
3120   emit_int8((unsigned char)0xF3);
3121   prefix(src, dst);
3122   emit_int8(0x0F);
3123   emit_int8((unsigned char)0xB8);
3124   emit_operand(dst, src);
3125 }
3126 
3127 void Assembler::popcntl(Register dst, Register src) {
3128   assert(VM_Version::supports_popcnt(), "must support");
3129   emit_int8((unsigned char)0xF3);
3130   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3131   emit_int8(0x0F);
3132   emit_int8((unsigned char)0xB8);
3133   emit_int8((unsigned char)(0xC0 | encode));
3134 }
3135 
3136 void Assembler::popf() {
3137   emit_int8((unsigned char)0x9D);
3138 }
3139 
3140 #ifndef _LP64 // no 32bit push/pop on amd64
3141 void Assembler::popl(Address dst) {
3142   // NOTE: this will adjust stack by 8byte on 64bits
3143   InstructionMark im(this);
3144   prefix(dst);
3145   emit_int8((unsigned char)0x8F);
3146   emit_operand(rax, dst);
3147 }
3148 #endif
3149 
3150 void Assembler::prefetch_prefix(Address src) {
3151   prefix(src);
3152   emit_int8(0x0F);
3153 }
3154 
3155 void Assembler::prefetchnta(Address src) {
3156   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3157   InstructionMark im(this);
3158   prefetch_prefix(src);
3159   emit_int8(0x18);
3160   emit_operand(rax, src); // 0, src
3161 }
3162 
3163 void Assembler::prefetchr(Address src) {
3164   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3165   InstructionMark im(this);
3166   prefetch_prefix(src);
3167   emit_int8(0x0D);
3168   emit_operand(rax, src); // 0, src
3169 }
3170 
3171 void Assembler::prefetcht0(Address src) {
3172   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3173   InstructionMark im(this);
3174   prefetch_prefix(src);
3175   emit_int8(0x18);
3176   emit_operand(rcx, src); // 1, src
3177 }
3178 
3179 void Assembler::prefetcht1(Address src) {
3180   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3181   InstructionMark im(this);
3182   prefetch_prefix(src);
3183   emit_int8(0x18);
3184   emit_operand(rdx, src); // 2, src
3185 }
3186 
3187 void Assembler::prefetcht2(Address src) {
3188   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3189   InstructionMark im(this);
3190   prefetch_prefix(src);
3191   emit_int8(0x18);
3192   emit_operand(rbx, src); // 3, src
3193 }
3194 
3195 void Assembler::prefetchw(Address src) {
3196   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3197   InstructionMark im(this);
3198   prefetch_prefix(src);
3199   emit_int8(0x0D);
3200   emit_operand(rcx, src); // 1, src
3201 }
3202 
3203 void Assembler::prefix(Prefix p) {
3204   emit_int8(p);
3205 }
3206 
3207 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3208   assert(VM_Version::supports_ssse3(), "");
3209   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
3210                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3211   emit_int8(0x00);
3212   emit_int8((unsigned char)(0xC0 | encode));
3213 }
3214 
3215 void Assembler::pshufb(XMMRegister dst, Address src) {
3216   assert(VM_Version::supports_ssse3(), "");
3217   if (VM_Version::supports_evex()) {
3218     _tuple_type = EVEX_FVM;
3219   }
3220   InstructionMark im(this);
3221   simd_prefix(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
3222               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3223   emit_int8(0x00);
3224   emit_operand(dst, src);
3225 }
3226 
3227 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3228   _instruction_uses_vl = true;
3229   assert(isByte(mode), "invalid value");
3230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3231   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3232   emit_int8(mode & 0xFF);
3233 }
3234 
3235 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3236   _instruction_uses_vl = true;
3237   assert(isByte(mode), "invalid value");
3238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3239   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3240   if (VM_Version::supports_evex()) {
3241     _tuple_type = EVEX_FV;
3242     _input_size_in_bits = EVEX_32bit;
3243   }
3244   InstructionMark im(this);
3245   simd_prefix(dst, src, VEX_SIMD_66, /* no_mask_reg */ false);
3246   emit_int8(0x70);
3247   emit_operand(dst, src);
3248   emit_int8(mode & 0xFF);
3249 }
3250 
3251 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3252   assert(isByte(mode), "invalid value");
3253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3254   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
3255   emit_int8(mode & 0xFF);
3256 }
3257 
3258 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3259   assert(isByte(mode), "invalid value");
3260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3261   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3262   if (VM_Version::supports_evex()) {
3263     _tuple_type = EVEX_FVM;
3264   }
3265   InstructionMark im(this);
3266   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, /* no_mask_reg */ false,
3267               VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3268   emit_int8(0x70);
3269   emit_operand(dst, src);
3270   emit_int8(mode & 0xFF);
3271 }
3272 
3273 void Assembler::psrldq(XMMRegister dst, int shift) {
3274   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3275   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3276   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3277   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
3278                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3279   emit_int8(0x73);
3280   emit_int8((unsigned char)(0xC0 | encode));
3281   emit_int8(shift);
3282 }
3283 
3284 void Assembler::pslldq(XMMRegister dst, int shift) {
3285   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3287   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3288   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, /* no_mask_reg */ true,
3289                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
3290   emit_int8(0x73);
3291   emit_int8((unsigned char)(0xC0 | encode));
3292   emit_int8(shift);
3293 }
3294 
3295 void Assembler::ptest(XMMRegister dst, Address src) {
3296   assert(VM_Version::supports_sse4_1(), "");
3297   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3298   InstructionMark im(this);
3299   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3300               VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3301   emit_int8(0x17);
3302   emit_operand(dst, src);
3303 }
3304 
3305 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3306   assert(VM_Version::supports_sse4_1(), "");
3307   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, /* no_mask_reg */ false,
3308                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3309   emit_int8(0x17);
3310   emit_int8((unsigned char)(0xC0 | encode));
3311 }
3312 
3313 void Assembler::vptest(XMMRegister dst, Address src) {
3314   assert(VM_Version::supports_avx(), "");
3315   InstructionMark im(this);
3316   int vector_len = AVX_256bit;
3317   assert(dst != xnoreg, "sanity");
3318   int dst_enc = dst->encoding();
3319   // swap src<->dst for encoding
3320   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* rex_w */ false,
3321              vector_len, /* legacy_mode  */ true, /* no_mask_reg */ false);
3322   emit_int8(0x17);
3323   emit_operand(dst, src);
3324 }
3325 
3326 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3327   assert(VM_Version::supports_avx(), "");
3328   int vector_len = AVX_256bit;
3329   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
3330   emit_int8(0x17);
3331   emit_int8((unsigned char)(0xC0 | encode));
3332 }
3333 
3334 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3336   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3337   if (VM_Version::supports_evex()) {
3338     _tuple_type = EVEX_FVM;
3339   }
3340   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
3341 }
3342 
3343 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3345   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_vlbw);
3346 }
3347 
3348 void Assembler::punpckldq(XMMRegister dst, Address src) {
3349   _instruction_uses_vl = true;
3350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3351   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3352   if (VM_Version::supports_evex()) {
3353     _tuple_type = EVEX_FV;
3354     _input_size_in_bits = EVEX_32bit;
3355   }
3356   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3357 }
3358 
3359 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3360   _instruction_uses_vl = true;
3361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3362   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3363 }
3364 
3365 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3366   _instruction_uses_vl = true;
3367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3368   if (VM_Version::supports_evex()) {
3369     emit_simd_arith_q(0x6C, dst, src, VEX_SIMD_66);
3370   } else {
3371     emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3372   }
3373 }
3374 
3375 void Assembler::push(int32_t imm32) {
3376   // in 64bits we push 64bits onto the stack but only
3377   // take a 32bit immediate
3378   emit_int8(0x68);
3379   emit_int32(imm32);
3380 }
3381 
3382 void Assembler::push(Register src) {
3383   int encode = prefix_and_encode(src->encoding());
3384 
3385   emit_int8(0x50 | encode);
3386 }
3387 
3388 void Assembler::pushf() {
3389   emit_int8((unsigned char)0x9C);
3390 }
3391 
3392 #ifndef _LP64 // no 32bit push/pop on amd64
3393 void Assembler::pushl(Address src) {
3394   // Note this will push 64bit on 64bit
3395   InstructionMark im(this);
3396   prefix(src);
3397   emit_int8((unsigned char)0xFF);
3398   emit_operand(rsi, src);
3399 }
3400 #endif
3401 
3402 void Assembler::rcll(Register dst, int imm8) {
3403   assert(isShiftCount(imm8), "illegal shift count");
3404   int encode = prefix_and_encode(dst->encoding());
3405   if (imm8 == 1) {
3406     emit_int8((unsigned char)0xD1);
3407     emit_int8((unsigned char)(0xD0 | encode));
3408   } else {
3409     emit_int8((unsigned char)0xC1);
3410     emit_int8((unsigned char)0xD0 | encode);
3411     emit_int8(imm8);
3412   }
3413 }
3414 
3415 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3416   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3417   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, /* no_mask_reg */ false, VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3418   emit_int8(0x53);
3419   emit_int8(0xC0 | encode);
3420 }
3421 
3422 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3423   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3424   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ false, VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
3425   emit_int8(0x53);
3426   emit_int8(0xC0 | encode);
3427 }
3428 
3429 void Assembler::rdtsc() {
3430   emit_int8((unsigned char)0x0F);
3431   emit_int8((unsigned char)0x31);
3432 }
3433 
3434 // copies data from [esi] to [edi] using rcx pointer sized words
3435 // generic
3436 void Assembler::rep_mov() {
3437   emit_int8((unsigned char)0xF3);
3438   // MOVSQ
3439   LP64_ONLY(prefix(REX_W));
3440   emit_int8((unsigned char)0xA5);
3441 }
3442 
3443 // sets rcx bytes with rax, value at [edi]
3444 void Assembler::rep_stosb() {
3445   emit_int8((unsigned char)0xF3); // REP
3446   LP64_ONLY(prefix(REX_W));
3447   emit_int8((unsigned char)0xAA); // STOSB
3448 }
3449 
3450 // sets rcx pointer sized words with rax, value at [edi]
3451 // generic
3452 void Assembler::rep_stos() {
3453   emit_int8((unsigned char)0xF3); // REP
3454   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3455   emit_int8((unsigned char)0xAB);
3456 }
3457 
3458 // scans rcx pointer sized words at [edi] for occurance of rax,
3459 // generic
3460 void Assembler::repne_scan() { // repne_scan
3461   emit_int8((unsigned char)0xF2);
3462   // SCASQ
3463   LP64_ONLY(prefix(REX_W));
3464   emit_int8((unsigned char)0xAF);
3465 }
3466 
3467 #ifdef _LP64
3468 // scans rcx 4 byte words at [edi] for occurance of rax,
3469 // generic
3470 void Assembler::repne_scanl() { // repne_scan
3471   emit_int8((unsigned char)0xF2);
3472   // SCASL
3473   emit_int8((unsigned char)0xAF);
3474 }
3475 #endif
3476 
3477 void Assembler::ret(int imm16) {
3478   if (imm16 == 0) {
3479     emit_int8((unsigned char)0xC3);
3480   } else {
3481     emit_int8((unsigned char)0xC2);
3482     emit_int16(imm16);
3483   }
3484 }
3485 
3486 void Assembler::sahf() {
3487 #ifdef _LP64
3488   // Not supported in 64bit mode
3489   ShouldNotReachHere();
3490 #endif
3491   emit_int8((unsigned char)0x9E);
3492 }
3493 
3494 void Assembler::sarl(Register dst, int imm8) {
3495   int encode = prefix_and_encode(dst->encoding());
3496   assert(isShiftCount(imm8), "illegal shift count");
3497   if (imm8 == 1) {
3498     emit_int8((unsigned char)0xD1);
3499     emit_int8((unsigned char)(0xF8 | encode));
3500   } else {
3501     emit_int8((unsigned char)0xC1);
3502     emit_int8((unsigned char)(0xF8 | encode));
3503     emit_int8(imm8);
3504   }
3505 }
3506 
3507 void Assembler::sarl(Register dst) {
3508   int encode = prefix_and_encode(dst->encoding());
3509   emit_int8((unsigned char)0xD3);
3510   emit_int8((unsigned char)(0xF8 | encode));
3511 }
3512 
3513 void Assembler::sbbl(Address dst, int32_t imm32) {
3514   InstructionMark im(this);
3515   prefix(dst);
3516   emit_arith_operand(0x81, rbx, dst, imm32);
3517 }
3518 
3519 void Assembler::sbbl(Register dst, int32_t imm32) {
3520   prefix(dst);
3521   emit_arith(0x81, 0xD8, dst, imm32);
3522 }
3523 
3524 
3525 void Assembler::sbbl(Register dst, Address src) {
3526   InstructionMark im(this);
3527   prefix(src, dst);
3528   emit_int8(0x1B);
3529   emit_operand(dst, src);
3530 }
3531 
3532 void Assembler::sbbl(Register dst, Register src) {
3533   (void) prefix_and_encode(dst->encoding(), src->encoding());
3534   emit_arith(0x1B, 0xC0, dst, src);
3535 }
3536 
3537 void Assembler::setb(Condition cc, Register dst) {
3538   assert(0 <= cc && cc < 16, "illegal cc");
3539   int encode = prefix_and_encode(dst->encoding(), true);
3540   emit_int8(0x0F);
3541   emit_int8((unsigned char)0x90 | cc);
3542   emit_int8((unsigned char)(0xC0 | encode));
3543 }
3544 
3545 void Assembler::shll(Register dst, int imm8) {
3546   assert(isShiftCount(imm8), "illegal shift count");
3547   int encode = prefix_and_encode(dst->encoding());
3548   if (imm8 == 1 ) {
3549     emit_int8((unsigned char)0xD1);
3550     emit_int8((unsigned char)(0xE0 | encode));
3551   } else {
3552     emit_int8((unsigned char)0xC1);
3553     emit_int8((unsigned char)(0xE0 | encode));
3554     emit_int8(imm8);
3555   }
3556 }
3557 
3558 void Assembler::shll(Register dst) {
3559   int encode = prefix_and_encode(dst->encoding());
3560   emit_int8((unsigned char)0xD3);
3561   emit_int8((unsigned char)(0xE0 | encode));
3562 }
3563 
3564 void Assembler::shrl(Register dst, int imm8) {
3565   assert(isShiftCount(imm8), "illegal shift count");
3566   int encode = prefix_and_encode(dst->encoding());
3567   emit_int8((unsigned char)0xC1);
3568   emit_int8((unsigned char)(0xE8 | encode));
3569   emit_int8(imm8);
3570 }
3571 
3572 void Assembler::shrl(Register dst) {
3573   int encode = prefix_and_encode(dst->encoding());
3574   emit_int8((unsigned char)0xD3);
3575   emit_int8((unsigned char)(0xE8 | encode));
3576 }
3577 
3578 // copies a single word from [esi] to [edi]
3579 void Assembler::smovl() {
3580   emit_int8((unsigned char)0xA5);
3581 }
3582 
3583 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3584   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3585   if (VM_Version::supports_evex()) {
3586     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3587   } else {
3588     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3589   }
3590 }
3591 
3592 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3593   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3594   if (VM_Version::supports_evex()) {
3595     _tuple_type = EVEX_T1S;
3596     _input_size_in_bits = EVEX_64bit;
3597     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3598   } else {
3599     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3600   }
3601 }
3602 
3603 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3604   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3605   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3606 }
3607 
3608 void Assembler::std() {
3609   emit_int8((unsigned char)0xFD);
3610 }
3611 
3612 void Assembler::sqrtss(XMMRegister dst, Address src) {
3613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3614   if (VM_Version::supports_evex()) {
3615     _tuple_type = EVEX_T1S;
3616     _input_size_in_bits = EVEX_32bit;
3617   }
3618   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3619 }
3620 
3621 void Assembler::stmxcsr( Address dst) {
3622   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3623   InstructionMark im(this);
3624   prefix(dst);
3625   emit_int8(0x0F);
3626   emit_int8((unsigned char)0xAE);
3627   emit_operand(as_Register(3), dst);
3628 }
3629 
3630 void Assembler::subl(Address dst, int32_t imm32) {
3631   InstructionMark im(this);
3632   prefix(dst);
3633   emit_arith_operand(0x81, rbp, dst, imm32);
3634 }
3635 
3636 void Assembler::subl(Address dst, Register src) {
3637   InstructionMark im(this);
3638   prefix(dst, src);
3639   emit_int8(0x29);
3640   emit_operand(src, dst);
3641 }
3642 
3643 void Assembler::subl(Register dst, int32_t imm32) {
3644   prefix(dst);
3645   emit_arith(0x81, 0xE8, dst, imm32);
3646 }
3647 
3648 // Force generation of a 4 byte immediate value even if it fits into 8bit
3649 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3650   prefix(dst);
3651   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3652 }
3653 
3654 void Assembler::subl(Register dst, Address src) {
3655   InstructionMark im(this);
3656   prefix(src, dst);
3657   emit_int8(0x2B);
3658   emit_operand(dst, src);
3659 }
3660 
3661 void Assembler::subl(Register dst, Register src) {
3662   (void) prefix_and_encode(dst->encoding(), src->encoding());
3663   emit_arith(0x2B, 0xC0, dst, src);
3664 }
3665 
3666 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3668   if (VM_Version::supports_evex()) {
3669     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3670   } else {
3671     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3672   }
3673 }
3674 
3675 void Assembler::subsd(XMMRegister dst, Address src) {
3676   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3677   if (VM_Version::supports_evex()) {
3678     _tuple_type = EVEX_T1S;
3679     _input_size_in_bits = EVEX_64bit;
3680   }
3681   if (VM_Version::supports_evex()) {
3682     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3683   } else {
3684     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3685   }
3686 }
3687 
3688 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3689   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3690   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3691 }
3692 
3693 void Assembler::subss(XMMRegister dst, Address src) {
3694   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3695   if (VM_Version::supports_evex()) {
3696     _tuple_type = EVEX_T1S;
3697     _input_size_in_bits = EVEX_32bit;
3698   }
3699   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3700 }
3701 
3702 void Assembler::testb(Register dst, int imm8) {
3703   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3704   (void) prefix_and_encode(dst->encoding(), true);
3705   emit_arith_b(0xF6, 0xC0, dst, imm8);
3706 }
3707 
3708 void Assembler::testl(Register dst, int32_t imm32) {
3709   // not using emit_arith because test
3710   // doesn't support sign-extension of
3711   // 8bit operands
3712   int encode = dst->encoding();
3713   if (encode == 0) {
3714     emit_int8((unsigned char)0xA9);
3715   } else {
3716     encode = prefix_and_encode(encode);
3717     emit_int8((unsigned char)0xF7);
3718     emit_int8((unsigned char)(0xC0 | encode));
3719   }
3720   emit_int32(imm32);
3721 }
3722 
3723 void Assembler::testl(Register dst, Register src) {
3724   (void) prefix_and_encode(dst->encoding(), src->encoding());
3725   emit_arith(0x85, 0xC0, dst, src);
3726 }
3727 
3728 void Assembler::testl(Register dst, Address  src) {
3729   InstructionMark im(this);
3730   prefix(src, dst);
3731   emit_int8((unsigned char)0x85);
3732   emit_operand(dst, src);
3733 }
3734 
3735 void Assembler::tzcntl(Register dst, Register src) {
3736   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3737   emit_int8((unsigned char)0xF3);
3738   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3739   emit_int8(0x0F);
3740   emit_int8((unsigned char)0xBC);
3741   emit_int8((unsigned char)0xC0 | encode);
3742 }
3743 
3744 void Assembler::tzcntq(Register dst, Register src) {
3745   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3746   emit_int8((unsigned char)0xF3);
3747   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3748   emit_int8(0x0F);
3749   emit_int8((unsigned char)0xBC);
3750   emit_int8((unsigned char)(0xC0 | encode));
3751 }
3752 
3753 void Assembler::ucomisd(XMMRegister dst, Address src) {
3754   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3755   if (VM_Version::supports_evex()) {
3756     _tuple_type = EVEX_T1S;
3757     _input_size_in_bits = EVEX_64bit;
3758     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
3759   } else {
3760     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3761   }
3762 }
3763 
3764 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3766   if (VM_Version::supports_evex()) {
3767     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
3768   } else {
3769     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3770   }
3771 }
3772 
3773 void Assembler::ucomiss(XMMRegister dst, Address src) {
3774   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3775   if (VM_Version::supports_evex()) {
3776     _tuple_type = EVEX_T1S;
3777     _input_size_in_bits = EVEX_32bit;
3778   }
3779   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
3780 }
3781 
3782 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3783   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3784   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ true);
3785 }
3786 
3787 void Assembler::xabort(int8_t imm8) {
3788   emit_int8((unsigned char)0xC6);
3789   emit_int8((unsigned char)0xF8);
3790   emit_int8((unsigned char)(imm8 & 0xFF));
3791 }
3792 
3793 void Assembler::xaddl(Address dst, Register src) {
3794   InstructionMark im(this);
3795   prefix(dst, src);
3796   emit_int8(0x0F);
3797   emit_int8((unsigned char)0xC1);
3798   emit_operand(src, dst);
3799 }
3800 
3801 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3802   InstructionMark im(this);
3803   relocate(rtype);
3804   if (abort.is_bound()) {
3805     address entry = target(abort);
3806     assert(entry != NULL, "abort entry NULL");
3807     intptr_t offset = entry - pc();
3808     emit_int8((unsigned char)0xC7);
3809     emit_int8((unsigned char)0xF8);
3810     emit_int32(offset - 6); // 2 opcode + 4 address
3811   } else {
3812     abort.add_patch_at(code(), locator());
3813     emit_int8((unsigned char)0xC7);
3814     emit_int8((unsigned char)0xF8);
3815     emit_int32(0);
3816   }
3817 }
3818 
3819 void Assembler::xchgl(Register dst, Address src) { // xchg
3820   InstructionMark im(this);
3821   prefix(src, dst);
3822   emit_int8((unsigned char)0x87);
3823   emit_operand(dst, src);
3824 }
3825 
3826 void Assembler::xchgl(Register dst, Register src) {
3827   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3828   emit_int8((unsigned char)0x87);
3829   emit_int8((unsigned char)(0xC0 | encode));
3830 }
3831 
3832 void Assembler::xend() {
3833   emit_int8((unsigned char)0x0F);
3834   emit_int8((unsigned char)0x01);
3835   emit_int8((unsigned char)0xD5);
3836 }
3837 
3838 void Assembler::xgetbv() {
3839   emit_int8(0x0F);
3840   emit_int8(0x01);
3841   emit_int8((unsigned char)0xD0);
3842 }
3843 
3844 void Assembler::xorl(Register dst, int32_t imm32) {
3845   prefix(dst);
3846   emit_arith(0x81, 0xF0, dst, imm32);
3847 }
3848 
3849 void Assembler::xorl(Register dst, Address src) {
3850   InstructionMark im(this);
3851   prefix(src, dst);
3852   emit_int8(0x33);
3853   emit_operand(dst, src);
3854 }
3855 
3856 void Assembler::xorl(Register dst, Register src) {
3857   (void) prefix_and_encode(dst->encoding(), src->encoding());
3858   emit_arith(0x33, 0xC0, dst, src);
3859 }
3860 
3861 
3862 // AVX 3-operands scalar float-point arithmetic instructions
3863 
3864 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3865   assert(VM_Version::supports_avx(), "");
3866   if (VM_Version::supports_evex()) {
3867     _tuple_type = EVEX_T1S;
3868     _input_size_in_bits = EVEX_64bit;
3869     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3870   } else {
3871     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3872   }
3873 }
3874 
3875 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3876   assert(VM_Version::supports_avx(), "");
3877   if (VM_Version::supports_evex()) {
3878     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3879   } else {
3880     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3881   }
3882 }
3883 
3884 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3885   assert(VM_Version::supports_avx(), "");
3886   if (VM_Version::supports_evex()) {
3887     _tuple_type = EVEX_T1S;
3888     _input_size_in_bits = EVEX_32bit;
3889   }
3890   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3891 }
3892 
3893 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3894   assert(VM_Version::supports_avx(), "");
3895   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3896 }
3897 
3898 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3899   assert(VM_Version::supports_avx(), "");
3900   if (VM_Version::supports_evex()) {
3901     _tuple_type = EVEX_T1S;
3902     _input_size_in_bits = EVEX_64bit;
3903     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3904   } else {
3905     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3906   }
3907 }
3908 
3909 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3910   assert(VM_Version::supports_avx(), "");
3911   if (VM_Version::supports_evex()) {
3912     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3913   } else {
3914     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3915   }
3916 }
3917 
3918 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3919   assert(VM_Version::supports_avx(), "");
3920   if (VM_Version::supports_evex()) {
3921     _tuple_type = EVEX_T1S;
3922     _input_size_in_bits = EVEX_32bit;
3923   }
3924   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3925 }
3926 
3927 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3928   assert(VM_Version::supports_avx(), "");
3929   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3930 }
3931 
3932 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3933   assert(VM_Version::supports_avx(), "");
3934   if (VM_Version::supports_evex()) {
3935     _tuple_type = EVEX_T1S;
3936     _input_size_in_bits = EVEX_64bit;
3937     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3938   } else {
3939     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3940   }
3941 }
3942 
3943 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3944   assert(VM_Version::supports_avx(), "");
3945   if (VM_Version::supports_evex()) {
3946     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3947   } else {
3948     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3949   }
3950 }
3951 
3952 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3953   assert(VM_Version::supports_avx(), "");
3954   if (VM_Version::supports_evex()) {
3955     _tuple_type = EVEX_T1S;
3956     _input_size_in_bits = EVEX_32bit;
3957   }
3958   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3959 }
3960 
3961 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3962   assert(VM_Version::supports_avx(), "");
3963   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3964 }
3965 
3966 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3967   assert(VM_Version::supports_avx(), "");
3968   if (VM_Version::supports_evex()) {
3969     _tuple_type = EVEX_T1S;
3970     _input_size_in_bits = EVEX_64bit;
3971     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3972   } else {
3973     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3974   }
3975 }
3976 
3977 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3978   assert(VM_Version::supports_avx(), "");
3979   if (VM_Version::supports_evex()) {
3980     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3981   } else {
3982     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3983   }
3984 }
3985 
3986 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3987   assert(VM_Version::supports_avx(), "");
3988   if (VM_Version::supports_evex()) {
3989     _tuple_type = EVEX_T1S;
3990     _input_size_in_bits = EVEX_32bit;
3991   }
3992   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3993 }
3994 
3995 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3996   assert(VM_Version::supports_avx(), "");
3997   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3998 }
3999 
4000 //====================VECTOR ARITHMETIC=====================================
4001 
4002 // Float-point vector arithmetic
4003 
4004 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4005   _instruction_uses_vl = true;
4006   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4007   if (VM_Version::supports_evex()) {
4008     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
4009   } else {
4010     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
4011   }
4012 }
4013 
4014 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4015   _instruction_uses_vl = true;
4016   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4017   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
4018 }
4019 
4020 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4021   _instruction_uses_vl = true;
4022   assert(VM_Version::supports_avx(), "");
4023   if (VM_Version::supports_evex()) {
4024     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4025   } else {
4026     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4027   }
4028 }
4029 
4030 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4031   _instruction_uses_vl = true;
4032   assert(VM_Version::supports_avx(), "");
4033   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
4034 }
4035 
4036 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4037   _instruction_uses_vl = true;
4038   assert(VM_Version::supports_avx(), "");
4039   if (VM_Version::supports_evex()) {
4040     _tuple_type = EVEX_FV;
4041     _input_size_in_bits = EVEX_64bit;
4042     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4043   } else {
4044     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
4045   }
4046 }
4047 
4048 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4049   _instruction_uses_vl = true;
4050   assert(VM_Version::supports_avx(), "");
4051   if (VM_Version::supports_evex()) {
4052     _tuple_type = EVEX_FV;
4053     _input_size_in_bits = EVEX_32bit;
4054   }
4055   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
4056 }
4057 
4058 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4059   _instruction_uses_vl = true;
4060   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4061   if (VM_Version::supports_evex()) {
4062     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
4063   } else {
4064     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
4065   }
4066 }
4067 
4068 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4069   _instruction_uses_vl = true;
4070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4071   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
4072 }
4073 
4074 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4075   _instruction_uses_vl = true;
4076   assert(VM_Version::supports_avx(), "");
4077   if (VM_Version::supports_evex()) {
4078     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4079   } else {
4080     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4081   }
4082 }
4083 
4084 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4085   _instruction_uses_vl = true;
4086   assert(VM_Version::supports_avx(), "");
4087   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
4088 }
4089 
4090 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4091   _instruction_uses_vl = true;
4092   assert(VM_Version::supports_avx(), "");
4093   if (VM_Version::supports_evex()) {
4094     _tuple_type = EVEX_FV;
4095     _input_size_in_bits = EVEX_64bit;
4096     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4097   } else {
4098     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
4099   }
4100 }
4101 
4102 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4103   _instruction_uses_vl = true;
4104   assert(VM_Version::supports_avx(), "");
4105   if (VM_Version::supports_evex()) {
4106     _tuple_type = EVEX_FV;
4107     _input_size_in_bits = EVEX_32bit;
4108   }
4109   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
4110 }
4111 
4112 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4113   _instruction_uses_vl = true;
4114   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4115   if (VM_Version::supports_evex()) {
4116     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
4117   } else {
4118     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
4119   }
4120 }
4121 
4122 void Assembler::mulpd(XMMRegister dst, Address src) {
4123   _instruction_uses_vl = true;
4124   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4125   if (VM_Version::supports_evex()) {
4126     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
4127   } else {
4128     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
4129   }
4130 }
4131 
4132 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4133   _instruction_uses_vl = true;
4134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4135   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
4136 }
4137 
4138 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4139   _instruction_uses_vl = true;
4140   assert(VM_Version::supports_avx(), "");
4141   if (VM_Version::supports_evex()) {
4142     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4143   } else {
4144     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4145   }
4146 }
4147 
4148 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4149   _instruction_uses_vl = true;
4150   assert(VM_Version::supports_avx(), "");
4151   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
4152 }
4153 
4154 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4155   _instruction_uses_vl = true;
4156   assert(VM_Version::supports_avx(), "");
4157   if (VM_Version::supports_evex()) {
4158     _tuple_type = EVEX_FV;
4159     _input_size_in_bits = EVEX_64bit;
4160     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4161   } else {
4162     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
4163   }
4164 }
4165 
4166 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4167   _instruction_uses_vl = true;
4168   assert(VM_Version::supports_avx(), "");
4169   if (VM_Version::supports_evex()) {
4170     _tuple_type = EVEX_FV;
4171     _input_size_in_bits = EVEX_32bit;
4172   }
4173   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
4174 }
4175 
4176 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4177   _instruction_uses_vl = true;
4178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4179   if (VM_Version::supports_evex()) {
4180     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
4181   } else {
4182     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
4183   }
4184 }
4185 
4186 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4187   _instruction_uses_vl = true;
4188   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4189   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
4190 }
4191 
4192 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4193   _instruction_uses_vl = true;
4194   assert(VM_Version::supports_avx(), "");
4195   if (VM_Version::supports_evex()) {
4196     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4197   } else {
4198     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4199   }
4200 }
4201 
4202 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4203   _instruction_uses_vl = true;
4204   assert(VM_Version::supports_avx(), "");
4205   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
4206 }
4207 
4208 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4209   _instruction_uses_vl = true;
4210   assert(VM_Version::supports_avx(), "");
4211   if (VM_Version::supports_evex()) {
4212     _tuple_type = EVEX_FV;
4213     _input_size_in_bits = EVEX_64bit;
4214     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4215   } else {
4216     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
4217   }
4218 }
4219 
4220 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4221   _instruction_uses_vl = true;
4222   assert(VM_Version::supports_avx(), "");
4223   if (VM_Version::supports_evex()) {
4224     _tuple_type = EVEX_FV;
4225     _input_size_in_bits = EVEX_32bit;
4226   }
4227   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
4228 }
4229 
4230 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4231   _instruction_uses_vl = true;
4232   assert(VM_Version::supports_avx(), "");
4233   if (VM_Version::supports_evex()) {
4234     emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4235   } else {
4236     emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4237   }
4238 }
4239 
4240 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4241   _instruction_uses_vl = true;
4242   assert(VM_Version::supports_avx(), "");
4243   if (VM_Version::supports_evex()) {
4244     _tuple_type = EVEX_FV;
4245     _input_size_in_bits = EVEX_64bit;
4246     emit_vex_arith_q(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4247   } else {
4248     emit_vex_arith(0x51, dst, xnoreg, src, VEX_SIMD_66, vector_len);
4249   }
4250 }
4251 
4252 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4253   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4254   if (VM_Version::supports_avx512dq()) {
4255     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4256   } else {
4257     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4258   }
4259 }
4260 
4261 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4262   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4263   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4264 }
4265 
4266 void Assembler::andps(XMMRegister dst, Address src) {
4267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4268   if (VM_Version::supports_evex()) {
4269     _tuple_type = EVEX_FV;
4270     _input_size_in_bits = EVEX_32bit;
4271   }
4272   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4273 }
4274 
4275 void Assembler::andpd(XMMRegister dst, Address src) {
4276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4277   if (VM_Version::supports_avx512dq()) {
4278     _tuple_type = EVEX_FV;
4279     _input_size_in_bits = EVEX_64bit;
4280     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4281   } else {
4282     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4283   }
4284 }
4285 
4286 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4287   assert(VM_Version::supports_avx(), "");
4288   if (VM_Version::supports_avx512dq()) {
4289     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4290   } else {
4291     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4292   }
4293 }
4294 
4295 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4296   assert(VM_Version::supports_avx(), "");
4297   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false,  /* legacy_mode */ _legacy_mode_dq);
4298 }
4299 
4300 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4301   assert(VM_Version::supports_avx(), "");
4302   if (VM_Version::supports_avx512dq()) {
4303     _tuple_type = EVEX_FV;
4304     _input_size_in_bits = EVEX_64bit;
4305     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4306   } else {
4307     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4308   }
4309 }
4310 
4311 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4312   assert(VM_Version::supports_avx(), "");
4313   if (VM_Version::supports_evex()) {
4314     _tuple_type = EVEX_FV;
4315     _input_size_in_bits = EVEX_32bit;
4316   }
4317   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4318 }
4319 
4320 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4321   _instruction_uses_vl = true;
4322   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4323   if (VM_Version::supports_evex()) {
4324     emit_simd_arith_q(0x15, dst, src, VEX_SIMD_66);
4325   } else {
4326     emit_simd_arith(0x15, dst, src, VEX_SIMD_66);
4327   }
4328 }
4329 
4330 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4331   _instruction_uses_vl = true;
4332   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4333   if (VM_Version::supports_evex()) {
4334     emit_simd_arith_q(0x14, dst, src, VEX_SIMD_66);
4335   } else {
4336     emit_simd_arith(0x14, dst, src, VEX_SIMD_66);
4337   }
4338 }
4339 
4340 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4341   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4342   if (VM_Version::supports_avx512dq()) {
4343     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4344   } else {
4345     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4346   }
4347 }
4348 
4349 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4350   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4351   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4352 }
4353 
4354 void Assembler::xorpd(XMMRegister dst, Address src) {
4355   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4356   if (VM_Version::supports_avx512dq()) {
4357     _tuple_type = EVEX_FV;
4358     _input_size_in_bits = EVEX_64bit;
4359     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4360   } else {
4361     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ true);
4362   }
4363 }
4364 
4365 void Assembler::xorps(XMMRegister dst, Address src) {
4366   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4367   if (VM_Version::supports_evex()) {
4368     _tuple_type = EVEX_FV;
4369     _input_size_in_bits = EVEX_32bit;
4370   }
4371   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4372 }
4373 
4374 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4375   assert(VM_Version::supports_avx(), "");
4376   if (VM_Version::supports_avx512dq()) {
4377     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4378   } else {
4379     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4380   }
4381 }
4382 
4383 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4384   assert(VM_Version::supports_avx(), "");
4385   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4386 }
4387 
4388 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4389   assert(VM_Version::supports_avx(), "");
4390   if (VM_Version::supports_avx512dq()) {
4391     _tuple_type = EVEX_FV;
4392     _input_size_in_bits = EVEX_64bit;
4393     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4394   } else {
4395     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ true);
4396   }
4397 }
4398 
4399 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4400   assert(VM_Version::supports_avx(), "");
4401   if (VM_Version::supports_evex()) {
4402     _tuple_type = EVEX_FV;
4403     _input_size_in_bits = EVEX_32bit;
4404   }
4405   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_dq);
4406 }
4407 
4408 // Integer vector arithmetic
4409 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4410   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4411          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4412   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
4413   emit_int8(0x01);
4414   emit_int8((unsigned char)(0xC0 | encode));
4415 }
4416 
4417 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4418   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4419          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4420   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38, /* legacy_mode */ true);
4421   emit_int8(0x02);
4422   emit_int8((unsigned char)(0xC0 | encode));
4423 }
4424 
4425 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4427   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4428 }
4429 
4430 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4431   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4432   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4433 }
4434 
4435 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4436   _instruction_uses_vl = true;
4437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4438   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4439 }
4440 
4441 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4442   _instruction_uses_vl = true;
4443   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4444   if (VM_Version::supports_evex()) {
4445     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4446   } else {
4447     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4448   }
4449 }
4450 
4451 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4452   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4453   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
4454                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
4455   emit_int8(0x01);
4456   emit_int8((unsigned char)(0xC0 | encode));
4457 }
4458 
4459 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4460   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4461   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
4462                                       VEX_OPCODE_0F_38, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
4463   emit_int8(0x02);
4464   emit_int8((unsigned char)(0xC0 | encode));
4465 }
4466 
4467 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4468   assert(UseAVX > 0, "requires some form of AVX");
4469   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4470 }
4471 
4472 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4473   assert(UseAVX > 0, "requires some form of AVX");
4474   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4475 }
4476 
4477 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4478   _instruction_uses_vl = true;
4479   assert(UseAVX > 0, "requires some form of AVX");
4480   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4481 }
4482 
4483 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4484   _instruction_uses_vl = true;
4485   assert(UseAVX > 0, "requires some form of AVX");
4486   if (VM_Version::supports_evex()) {
4487     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4488   } else {
4489     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4490   }
4491 }
4492 
4493 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4494   assert(UseAVX > 0, "requires some form of AVX");
4495   if (VM_Version::supports_evex()) {
4496     _tuple_type = EVEX_FVM;
4497   }
4498   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4499 }
4500 
4501 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4502   assert(UseAVX > 0, "requires some form of AVX");
4503   if (VM_Version::supports_evex()) {
4504     _tuple_type = EVEX_FVM;
4505   }
4506   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4507 }
4508 
4509 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4510   _instruction_uses_vl = true;
4511   assert(UseAVX > 0, "requires some form of AVX");
4512   if (VM_Version::supports_evex()) {
4513     _tuple_type = EVEX_FV;
4514     _input_size_in_bits = EVEX_32bit;
4515   }
4516   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4517 }
4518 
4519 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4520   _instruction_uses_vl = true;
4521   assert(UseAVX > 0, "requires some form of AVX");
4522   if (VM_Version::supports_evex()) {
4523     _tuple_type = EVEX_FV;
4524     _input_size_in_bits = EVEX_64bit;
4525     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4526   } else {
4527     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4528   }
4529 }
4530 
4531 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4533   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4534 }
4535 
4536 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4538   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4539 }
4540 
4541 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4542   _instruction_uses_vl = true;
4543   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4544   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4545 }
4546 
4547 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4548   _instruction_uses_vl = true;
4549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4550   if (VM_Version::supports_evex()) {
4551     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4552   } else {
4553     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4554   }
4555 }
4556 
4557 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4558   assert(UseAVX > 0, "requires some form of AVX");
4559   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4560 }
4561 
4562 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4563   assert(UseAVX > 0, "requires some form of AVX");
4564   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4565 }
4566 
4567 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4568   _instruction_uses_vl = true;
4569   assert(UseAVX > 0, "requires some form of AVX");
4570   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4571 }
4572 
4573 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4574   _instruction_uses_vl = true;
4575   assert(UseAVX > 0, "requires some form of AVX");
4576   if (VM_Version::supports_evex()) {
4577     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4578   } else {
4579     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4580   }
4581 }
4582 
4583 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4584   assert(UseAVX > 0, "requires some form of AVX");
4585   if (VM_Version::supports_evex()) {
4586     _tuple_type = EVEX_FVM;
4587   }
4588   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4589 }
4590 
4591 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4592   assert(UseAVX > 0, "requires some form of AVX");
4593   if (VM_Version::supports_evex()) {
4594     _tuple_type = EVEX_FVM;
4595   }
4596   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4597 }
4598 
4599 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4600   _instruction_uses_vl = true;
4601   assert(UseAVX > 0, "requires some form of AVX");
4602   if (VM_Version::supports_evex()) {
4603     _tuple_type = EVEX_FV;
4604     _input_size_in_bits = EVEX_32bit;
4605   }
4606   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4607 }
4608 
4609 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4610   _instruction_uses_vl = true;
4611   assert(UseAVX > 0, "requires some form of AVX");
4612   if (VM_Version::supports_evex()) {
4613     _tuple_type = EVEX_FV;
4614     _input_size_in_bits = EVEX_64bit;
4615     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4616   } else {
4617     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4618   }
4619 }
4620 
4621 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4623   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4624 }
4625 
4626 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4627   _instruction_uses_vl = true;
4628   assert(VM_Version::supports_sse4_1(), "");
4629   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4630                                       /* no_mask_reg */ false, VEX_OPCODE_0F_38);
4631   emit_int8(0x40);
4632   emit_int8((unsigned char)(0xC0 | encode));
4633 }
4634 
4635 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4636   assert(UseAVX > 0, "requires some form of AVX");
4637   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4638 }
4639 
4640 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4641   _instruction_uses_vl = true;
4642   assert(UseAVX > 0, "requires some form of AVX");
4643   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
4644   emit_int8(0x40);
4645   emit_int8((unsigned char)(0xC0 | encode));
4646 }
4647 
4648 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4649   assert(UseAVX > 2, "requires some form of AVX");
4650   int src_enc = src->encoding();
4651   int dst_enc = dst->encoding();
4652   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4653   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_38,
4654                                      /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false);
4655   emit_int8(0x40);
4656   emit_int8((unsigned char)(0xC0 | encode));
4657 }
4658 
4659 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4660   assert(UseAVX > 0, "requires some form of AVX");
4661   if (VM_Version::supports_evex()) {
4662     _tuple_type = EVEX_FVM;
4663   }
4664   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4665 }
4666 
4667 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4668   _instruction_uses_vl = true;
4669   assert(UseAVX > 0, "requires some form of AVX");
4670   if (VM_Version::supports_evex()) {
4671     _tuple_type = EVEX_FV;
4672     _input_size_in_bits = EVEX_32bit;
4673   }
4674   InstructionMark im(this);
4675   int dst_enc = dst->encoding();
4676   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4677   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4678              VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
4679   emit_int8(0x40);
4680   emit_operand(dst, src);
4681 }
4682 
4683 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4684   assert(UseAVX > 0, "requires some form of AVX");
4685   if (VM_Version::supports_evex()) {
4686     _tuple_type = EVEX_FV;
4687     _input_size_in_bits = EVEX_64bit;
4688   }
4689   InstructionMark im(this);
4690   int dst_enc = dst->encoding();
4691   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4692   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4693              VEX_OPCODE_0F_38, /* vex_w */ true, vector_len, /* legacy_mode */ _legacy_mode_dq);
4694   emit_int8(0x40);
4695   emit_operand(dst, src);
4696 }
4697 
4698 // Shift packed integers left by specified number of bits.
4699 void Assembler::psllw(XMMRegister dst, int shift) {
4700   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4701   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4702   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F,
4703                                       /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4704   emit_int8(0x71);
4705   emit_int8((unsigned char)(0xC0 | encode));
4706   emit_int8(shift & 0xFF);
4707 }
4708 
4709 void Assembler::pslld(XMMRegister dst, int shift) {
4710   _instruction_uses_vl = true;
4711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4712   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4713   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4714   emit_int8(0x72);
4715   emit_int8((unsigned char)(0xC0 | encode));
4716   emit_int8(shift & 0xFF);
4717 }
4718 
4719 void Assembler::psllq(XMMRegister dst, int shift) {
4720   _instruction_uses_vl = true;
4721   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4722   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4723   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false, VEX_OPCODE_0F, /* rex_w */ true);
4724   emit_int8(0x73);
4725   emit_int8((unsigned char)(0xC0 | encode));
4726   emit_int8(shift & 0xFF);
4727 }
4728 
4729 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4731   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4732 }
4733 
4734 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4735   _instruction_uses_vl = true;
4736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4737   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4738 }
4739 
4740 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4741   _instruction_uses_vl = true;
4742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4743   if (VM_Version::supports_evex()) {
4744     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4745   } else {
4746     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4747   }
4748 }
4749 
4750 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4751   assert(UseAVX > 0, "requires some form of AVX");
4752   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4753   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4754   emit_int8(shift & 0xFF);
4755 }
4756 
4757 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4758   _instruction_uses_vl = true;
4759   assert(UseAVX > 0, "requires some form of AVX");
4760   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4761   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4762   emit_int8(shift & 0xFF);
4763 }
4764 
4765 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4766   _instruction_uses_vl = true;
4767   assert(UseAVX > 0, "requires some form of AVX");
4768   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4769   if (VM_Version::supports_evex()) {
4770     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4771   } else {
4772     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4773   }
4774   emit_int8(shift & 0xFF);
4775 }
4776 
4777 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4778   assert(UseAVX > 0, "requires some form of AVX");
4779   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4780 }
4781 
4782 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4783   _instruction_uses_vl = true;
4784   assert(UseAVX > 0, "requires some form of AVX");
4785   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4786 }
4787 
4788 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4789   _instruction_uses_vl = true;
4790   assert(UseAVX > 0, "requires some form of AVX");
4791   if (VM_Version::supports_evex()) {
4792     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4793   } else {
4794     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4795   }
4796 }
4797 
4798 // Shift packed integers logically right by specified number of bits.
4799 void Assembler::psrlw(XMMRegister dst, int shift) {
4800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4801   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4802   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4803                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4804   emit_int8(0x71);
4805   emit_int8((unsigned char)(0xC0 | encode));
4806   emit_int8(shift & 0xFF);
4807 }
4808 
4809 void Assembler::psrld(XMMRegister dst, int shift) {
4810   _instruction_uses_vl = true;
4811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4812   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4813   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4814   emit_int8(0x72);
4815   emit_int8((unsigned char)(0xC0 | encode));
4816   emit_int8(shift & 0xFF);
4817 }
4818 
4819 void Assembler::psrlq(XMMRegister dst, int shift) {
4820   _instruction_uses_vl = true;
4821   // Do not confuse it with psrldq SSE2 instruction which
4822   // shifts 128 bit value in xmm register by number of bytes.
4823   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4824   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4825   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4826                                       VEX_OPCODE_0F, /* rex_w */ VM_Version::supports_evex());
4827   emit_int8(0x73);
4828   emit_int8((unsigned char)(0xC0 | encode));
4829   emit_int8(shift & 0xFF);
4830 }
4831 
4832 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4833   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4834   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4835 }
4836 
4837 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4838   _instruction_uses_vl = true;
4839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4840   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4841 }
4842 
4843 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4844   _instruction_uses_vl = true;
4845   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4846   if (VM_Version::supports_evex()) {
4847     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4848   } else {
4849     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4850   }
4851 }
4852 
4853 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4854   assert(UseAVX > 0, "requires some form of AVX");
4855   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4856   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4857   emit_int8(shift & 0xFF);
4858 }
4859 
4860 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4861   _instruction_uses_vl = true;
4862   assert(UseAVX > 0, "requires some form of AVX");
4863   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4864   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4865   emit_int8(shift & 0xFF);
4866 }
4867 
4868 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4869   _instruction_uses_vl = true;
4870   assert(UseAVX > 0, "requires some form of AVX");
4871   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4872   if (VM_Version::supports_evex()) {
4873     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4874   } else {
4875     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4876   }
4877   emit_int8(shift & 0xFF);
4878 }
4879 
4880 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4881   assert(UseAVX > 0, "requires some form of AVX");
4882   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4883 }
4884 
4885 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4886   _instruction_uses_vl = true;
4887   assert(UseAVX > 0, "requires some form of AVX");
4888   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4889 }
4890 
4891 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4892   _instruction_uses_vl = true;
4893   assert(UseAVX > 0, "requires some form of AVX");
4894   if (VM_Version::supports_evex()) {
4895     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4896   } else {
4897     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4898   }
4899 }
4900 
4901 // Shift packed integers arithmetically right by specified number of bits.
4902 void Assembler::psraw(XMMRegister dst, int shift) {
4903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4904   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4905   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false,
4906                                       VEX_OPCODE_0F, /* rex_w */ false, AVX_128bit, /* legacy_mode */ _legacy_mode_bw);
4907   emit_int8(0x71);
4908   emit_int8((unsigned char)(0xC0 | encode));
4909   emit_int8(shift & 0xFF);
4910 }
4911 
4912 void Assembler::psrad(XMMRegister dst, int shift) {
4913   _instruction_uses_vl = true;
4914   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4915   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4916   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, /* no_mask_reg */ false);
4917   emit_int8(0x72);
4918   emit_int8((unsigned char)(0xC0 | encode));
4919   emit_int8(shift & 0xFF);
4920 }
4921 
4922 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4923   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4924   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4925 }
4926 
4927 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4928   _instruction_uses_vl = true;
4929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4930   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4931 }
4932 
4933 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4934   assert(UseAVX > 0, "requires some form of AVX");
4935   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4936   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4937   emit_int8(shift & 0xFF);
4938 }
4939 
4940 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4941   _instruction_uses_vl = true;
4942   assert(UseAVX > 0, "requires some form of AVX");
4943   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4944   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4945   emit_int8(shift & 0xFF);
4946 }
4947 
4948 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4949   assert(UseAVX > 0, "requires some form of AVX");
4950   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len, /* no_mask_reg */ false, /* legacy_mode */ _legacy_mode_bw);
4951 }
4952 
4953 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4954   _instruction_uses_vl = true;
4955   assert(UseAVX > 0, "requires some form of AVX");
4956   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4957 }
4958 
4959 
4960 // logical operations packed integers
4961 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4962   _instruction_uses_vl = true;
4963   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4964   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4965 }
4966 
4967 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4968   _instruction_uses_vl = true;
4969   assert(UseAVX > 0, "requires some form of AVX");
4970   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4971 }
4972 
4973 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4974   _instruction_uses_vl = true;
4975   assert(UseAVX > 0, "requires some form of AVX");
4976   if (VM_Version::supports_evex()) {
4977     _tuple_type = EVEX_FV;
4978     _input_size_in_bits = EVEX_32bit;
4979   }
4980   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4981 }
4982 
4983 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
4984   _instruction_uses_vl = true;
4985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4986   if (VM_Version::supports_evex()) {
4987     emit_simd_arith_q(0xDF, dst, src, VEX_SIMD_66);
4988   }
4989   else {
4990     emit_simd_arith(0xDF, dst, src, VEX_SIMD_66);
4991   }
4992 }
4993 
4994 void Assembler::por(XMMRegister dst, XMMRegister src) {
4995   _instruction_uses_vl = true;
4996   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4997   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4998 }
4999 
5000 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5001   _instruction_uses_vl = true;
5002   assert(UseAVX > 0, "requires some form of AVX");
5003   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
5004 }
5005 
5006 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5007   _instruction_uses_vl = true;
5008   assert(UseAVX > 0, "requires some form of AVX");
5009   if (VM_Version::supports_evex()) {
5010     _tuple_type = EVEX_FV;
5011     _input_size_in_bits = EVEX_32bit;
5012   }
5013   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
5014 }
5015 
5016 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5017   _instruction_uses_vl = true;
5018   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5019   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
5020 }
5021 
5022 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5023   _instruction_uses_vl = true;
5024   assert(UseAVX > 0, "requires some form of AVX");
5025   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
5026 }
5027 
5028 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5029   _instruction_uses_vl = true;
5030   assert(UseAVX > 0, "requires some form of AVX");
5031   if (VM_Version::supports_evex()) {
5032     _tuple_type = EVEX_FV;
5033     _input_size_in_bits = EVEX_32bit;
5034   }
5035   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
5036 }
5037 
5038 
5039 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5040   assert(VM_Version::supports_avx(), "");
5041   int vector_len = AVX_256bit;
5042   if (VM_Version::supports_evex()) {
5043     vector_len = AVX_512bit;
5044   }
5045   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5046   emit_int8(0x18);
5047   emit_int8((unsigned char)(0xC0 | encode));
5048   // 0x00 - insert into lower 128 bits
5049   // 0x01 - insert into upper 128 bits
5050   emit_int8(0x01);
5051 }
5052 
5053 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5054   assert(VM_Version::supports_evex(), "");
5055   int vector_len = AVX_512bit;
5056   int src_enc = src->encoding();
5057   int dst_enc = dst->encoding();
5058   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5059   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5060                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5061   emit_int8(0x1A);
5062   emit_int8((unsigned char)(0xC0 | encode));
5063   // 0x00 - insert into lower 256 bits
5064   // 0x01 - insert into upper 256 bits
5065   emit_int8(0x01);
5066 }
5067 
5068 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
5069   assert(VM_Version::supports_evex(), "");
5070   _tuple_type = EVEX_T4;
5071   _input_size_in_bits = EVEX_64bit;
5072   InstructionMark im(this);
5073   int vector_len = AVX_512bit;
5074   assert(dst != xnoreg, "sanity");
5075   int dst_enc = dst->encoding();
5076   // swap src<->dst for encoding
5077   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ true, vector_len);
5078   emit_int8(0x1A);
5079   emit_operand(dst, src);
5080   // 0x01 - insert into upper 128 bits
5081   emit_int8(0x01);
5082 }
5083 
5084 void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5085   assert(VM_Version::supports_evex(), "");
5086   int vector_len = AVX_512bit;
5087   int src_enc = src->encoding();
5088   int dst_enc = dst->encoding();
5089   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5090   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5091                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5092   emit_int8(0x18);
5093   emit_int8((unsigned char)(0xC0 | encode));
5094   // 0x00 - insert into q0 128 bits (0..127)
5095   // 0x01 - insert into q1 128 bits (128..255)
5096   // 0x02 - insert into q2 128 bits (256..383)
5097   // 0x03 - insert into q3 128 bits (384..511)
5098   emit_int8(value & 0x3);
5099 }
5100 
5101 void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
5102   assert(VM_Version::supports_evex(), "");
5103   _tuple_type = EVEX_T4;
5104   _input_size_in_bits = EVEX_32bit;
5105   InstructionMark im(this);
5106   int vector_len = AVX_512bit;
5107   assert(dst != xnoreg, "sanity");
5108   int dst_enc = dst->encoding();
5109   // swap src<->dst for encoding
5110   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5111   emit_int8(0x18);
5112   emit_operand(dst, src);
5113   // 0x00 - insert into q0 128 bits (0..127)
5114   // 0x01 - insert into q1 128 bits (128..255)
5115   // 0x02 - insert into q2 128 bits (256..383)
5116   // 0x03 - insert into q3 128 bits (384..511)
5117   emit_int8(value & 0x3);
5118 }
5119 
5120 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
5121   assert(VM_Version::supports_avx(), "");
5122   int vector_len = AVX_256bit;
5123   if (VM_Version::supports_evex()) {
5124     _tuple_type = EVEX_T4;
5125     _input_size_in_bits = EVEX_32bit;
5126     vector_len = AVX_512bit;
5127   }
5128   InstructionMark im(this);
5129   assert(dst != xnoreg, "sanity");
5130   int dst_enc = dst->encoding();
5131   // swap src<->dst for encoding
5132   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5133   emit_int8(0x18);
5134   emit_operand(dst, src);
5135   // 0x01 - insert into upper 128 bits
5136   emit_int8(0x01);
5137 }
5138 
5139 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
5140   assert(VM_Version::supports_avx(), "");
5141   int vector_len = AVX_256bit;
5142   if (VM_Version::supports_evex()) {
5143     vector_len = AVX_512bit;
5144   }
5145   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5146   emit_int8(0x19);
5147   emit_int8((unsigned char)(0xC0 | encode));
5148   // 0x00 - insert into lower 128 bits
5149   // 0x01 - insert into upper 128 bits
5150   emit_int8(0x01);
5151 }
5152 
5153 void Assembler::vextractf128h(Address dst, XMMRegister src) {
5154   assert(VM_Version::supports_avx(), "");
5155   int vector_len = AVX_256bit;
5156   if (VM_Version::supports_evex()) {
5157     _tuple_type = EVEX_T4;
5158     _input_size_in_bits = EVEX_32bit;
5159     vector_len = AVX_512bit;
5160   }
5161   InstructionMark im(this);
5162   assert(src != xnoreg, "sanity");
5163   int src_enc = src->encoding();
5164   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5165   emit_int8(0x19);
5166   emit_operand(src, dst);
5167   // 0x01 - extract from upper 128 bits
5168   emit_int8(0x01);
5169 }
5170 
5171 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5172   assert(VM_Version::supports_avx2(), "");
5173   int vector_len = AVX_256bit;
5174   if (VM_Version::supports_evex()) {
5175     vector_len = AVX_512bit;
5176   }
5177   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5178   emit_int8(0x38);
5179   emit_int8((unsigned char)(0xC0 | encode));
5180   // 0x00 - insert into lower 128 bits
5181   // 0x01 - insert into upper 128 bits
5182   emit_int8(0x01);
5183 }
5184 
5185 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5186   assert(VM_Version::supports_evex(), "");
5187   int vector_len = AVX_512bit;
5188   int src_enc = src->encoding();
5189   int dst_enc = dst->encoding();
5190   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5191   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5192                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_reg_mask */ false);
5193   emit_int8(0x38);
5194   emit_int8((unsigned char)(0xC0 | encode));
5195   // 0x00 - insert into lower 256 bits
5196   // 0x01 - insert into upper 256 bits
5197   emit_int8(0x01);
5198 }
5199 
5200 void Assembler::vinserti128h(XMMRegister dst, Address src) {
5201   assert(VM_Version::supports_avx2(), "");
5202   int vector_len = AVX_256bit;
5203   if (VM_Version::supports_evex()) {
5204     _tuple_type = EVEX_T4;
5205     _input_size_in_bits = EVEX_32bit;
5206     vector_len = AVX_512bit;
5207   }
5208   InstructionMark im(this);
5209   assert(dst != xnoreg, "sanity");
5210   int dst_enc = dst->encoding();
5211   // swap src<->dst for encoding
5212   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5213   emit_int8(0x38);
5214   emit_operand(dst, src);
5215   // 0x01 - insert into upper 128 bits
5216   emit_int8(0x01);
5217 }
5218 
5219 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
5220   assert(VM_Version::supports_avx(), "");
5221   int vector_len = AVX_256bit;
5222   if (VM_Version::supports_evex()) {
5223     vector_len = AVX_512bit;
5224   }
5225   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
5226   emit_int8(0x39);
5227   emit_int8((unsigned char)(0xC0 | encode));
5228   // 0x00 - insert into lower 128 bits
5229   // 0x01 - insert into upper 128 bits
5230   emit_int8(0x01);
5231 }
5232 
5233 void Assembler::vextracti128h(Address dst, XMMRegister src) {
5234   assert(VM_Version::supports_avx2(), "");
5235   int vector_len = AVX_256bit;
5236   if (VM_Version::supports_evex()) {
5237     _tuple_type = EVEX_T4;
5238     _input_size_in_bits = EVEX_32bit;
5239     vector_len = AVX_512bit;
5240   }
5241   InstructionMark im(this);
5242   assert(src != xnoreg, "sanity");
5243   int src_enc = src->encoding();
5244   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5245   emit_int8(0x39);
5246   emit_operand(src, dst);
5247   // 0x01 - extract from upper 128 bits
5248   emit_int8(0x01);
5249 }
5250 
5251 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
5252   assert(VM_Version::supports_evex(), "");
5253   int vector_len = AVX_512bit;
5254   int src_enc = src->encoding();
5255   int dst_enc = dst->encoding();
5256   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5257                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5258   emit_int8(0x3B);
5259   emit_int8((unsigned char)(0xC0 | encode));
5260   // 0x01 - extract from upper 256 bits
5261   emit_int8(0x01);
5262 }
5263 
5264 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
5265   assert(VM_Version::supports_evex(), "");
5266   int vector_len = AVX_512bit;
5267   int src_enc = src->encoding();
5268   int dst_enc = dst->encoding();
5269   int encode;
5270   if (VM_Version::supports_avx512dq()) {
5271     encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5272                                    /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5273   } else {
5274     encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5275                                    /* vex_w */ false, vector_len, /* legacy_mode */ true, /* no_mask_reg */ false);
5276   }
5277   emit_int8(0x39);
5278   emit_int8((unsigned char)(0xC0 | encode));
5279   // 0x01 - extract from bits 255:128
5280   // 0x02 - extract from bits 383:256
5281   // 0x03 - extract from bits 511:384
5282   emit_int8(value & 0x3);
5283 }
5284 
5285 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
5286   assert(VM_Version::supports_evex(), "");
5287   int vector_len = AVX_512bit;
5288   int src_enc = src->encoding();
5289   int dst_enc = dst->encoding();
5290   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5291                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5292   emit_int8(0x1B);
5293   emit_int8((unsigned char)(0xC0 | encode));
5294   // 0x01 - extract from upper 256 bits
5295   emit_int8(0x01);
5296 }
5297 
5298 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
5299   assert(VM_Version::supports_evex(), "");
5300   _tuple_type = EVEX_T4;
5301   _input_size_in_bits = EVEX_64bit;
5302   InstructionMark im(this);
5303   int vector_len = AVX_512bit;
5304   assert(src != xnoreg, "sanity");
5305   int src_enc = src->encoding();
5306   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5307              /* vex_w */ true, vector_len);
5308   emit_int8(0x1B);
5309   emit_operand(src, dst);
5310   // 0x01 - extract from upper 256 bits
5311   emit_int8(0x01);
5312 }
5313 
5314 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5315   assert(VM_Version::supports_evex(), "");
5316   int vector_len = AVX_512bit;
5317   int src_enc = src->encoding();
5318   int dst_enc = dst->encoding();
5319   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5320                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5321   emit_int8(0x19);
5322   emit_int8((unsigned char)(0xC0 | encode));
5323   // 0x00 - extract from bits 127:0
5324   // 0x01 - extract from bits 255:128
5325   // 0x02 - extract from bits 383:256
5326   // 0x03 - extract from bits 511:384
5327   emit_int8(value & 0x3);
5328 }
5329 
5330 void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
5331   assert(VM_Version::supports_evex(), "");
5332   _tuple_type = EVEX_T4;
5333   _input_size_in_bits = EVEX_32bit;
5334   InstructionMark im(this);
5335   int vector_len = AVX_512bit;
5336   assert(src != xnoreg, "sanity");
5337   int src_enc = src->encoding();
5338   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, /* vex_w */ false, vector_len);
5339   emit_int8(0x19);
5340   emit_operand(src, dst);
5341   // 0x00 - extract from bits 127:0
5342   // 0x01 - extract from bits 255:128
5343   // 0x02 - extract from bits 383:256
5344   // 0x03 - extract from bits 511:384
5345   emit_int8(value & 0x3);
5346 }
5347 
5348 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5349   assert(VM_Version::supports_evex(), "");
5350   int vector_len = AVX_512bit;
5351   int src_enc = src->encoding();
5352   int dst_enc = dst->encoding();
5353   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
5354                                      /* vex_w */ !_legacy_mode_dq, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5355   emit_int8(0x19);
5356   emit_int8((unsigned char)(0xC0 | encode));
5357   // 0x01 - extract from bits 255:128
5358   // 0x02 - extract from bits 383:256
5359   // 0x03 - extract from bits 511:384
5360   emit_int8(value & 0x3);
5361 }
5362 
5363 // duplicate 4-bytes integer data from src into 8 locations in dest
5364 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5365   _instruction_uses_vl = true;
5366   assert(UseAVX > 1, "");
5367   int vector_len = AVX_256bit;
5368   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5369   emit_int8(0x58);
5370   emit_int8((unsigned char)(0xC0 | encode));
5371 }
5372 
5373 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5374 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5375   _instruction_uses_vl = true;
5376   assert(UseAVX > 1, "");
5377   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5378   emit_int8(0x78);
5379   emit_int8((unsigned char)(0xC0 | encode));
5380 }
5381 
5382 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5383   _instruction_uses_vl = true;
5384   assert(UseAVX > 1, "");
5385   _tuple_type = EVEX_T1S;
5386   _input_size_in_bits = EVEX_8bit;
5387   InstructionMark im(this);
5388   assert(dst != xnoreg, "sanity");
5389   int dst_enc = dst->encoding();
5390   // swap src<->dst for encoding
5391   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5392   emit_int8(0x78);
5393   emit_operand(dst, src);
5394 }
5395 
5396 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5397 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5398   _instruction_uses_vl = true;
5399   assert(UseAVX > 1, "");
5400   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5401   emit_int8(0x79);
5402   emit_int8((unsigned char)(0xC0 | encode));
5403 }
5404 
5405 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5406   _instruction_uses_vl = true;
5407   assert(UseAVX > 1, "");
5408   _tuple_type = EVEX_T1S;
5409   _input_size_in_bits = EVEX_16bit;
5410   InstructionMark im(this);
5411   assert(dst != xnoreg, "sanity");
5412   int dst_enc = dst->encoding();
5413   // swap src<->dst for encoding
5414   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5415   emit_int8(0x79);
5416   emit_operand(dst, src);
5417 }
5418 
5419 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5420 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5421   _instruction_uses_vl = true;
5422   assert(UseAVX > 1, "");
5423   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_38);
5424   emit_int8(0x58);
5425   emit_int8((unsigned char)(0xC0 | encode));
5426 }
5427 
5428 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5429   _instruction_uses_vl = true;
5430   assert(UseAVX > 1, "");
5431   _tuple_type = EVEX_T1S;
5432   _input_size_in_bits = EVEX_32bit;
5433   InstructionMark im(this);
5434   assert(dst != xnoreg, "sanity");
5435   int dst_enc = dst->encoding();
5436   // swap src<->dst for encoding
5437   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5438   emit_int8(0x58);
5439   emit_operand(dst, src);
5440 }
5441 
5442 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5443 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5444   _instruction_uses_vl = true;
5445   assert(UseAVX > 1, "");
5446   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5447                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /* no_mask_reg */ false);
5448   emit_int8(0x59);
5449   emit_int8((unsigned char)(0xC0 | encode));
5450 }
5451 
5452 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5453   _instruction_uses_vl = true;
5454   assert(UseAVX > 1, "");
5455   _tuple_type = EVEX_T1S;
5456   _input_size_in_bits = EVEX_64bit;
5457   InstructionMark im(this);
5458   assert(dst != xnoreg, "sanity");
5459   int dst_enc = dst->encoding();
5460   // swap src<->dst for encoding
5461   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
5462   emit_int8(0x59);
5463   emit_operand(dst, src);
5464 }
5465 
5466 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5467 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5468   _instruction_uses_vl = true;
5469   assert(UseAVX > 1, "");
5470   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5471                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5472   emit_int8(0x18);
5473   emit_int8((unsigned char)(0xC0 | encode));
5474 }
5475 
5476 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5477   assert(UseAVX > 1, "");
5478   _tuple_type = EVEX_T1S;
5479   _input_size_in_bits = EVEX_32bit;
5480   InstructionMark im(this);
5481   assert(dst != xnoreg, "sanity");
5482   int dst_enc = dst->encoding();
5483   // swap src<->dst for encoding
5484   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ false, vector_len);
5485   emit_int8(0x18);
5486   emit_operand(dst, src);
5487 }
5488 
5489 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5490 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5491   _instruction_uses_vl = true;
5492   assert(UseAVX > 1, "");
5493   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5494                                      /*vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5495   emit_int8(0x19);
5496   emit_int8((unsigned char)(0xC0 | encode));
5497 }
5498 
5499 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5500   _instruction_uses_vl = true;
5501   assert(UseAVX > 1, "");
5502   _tuple_type = EVEX_T1S;
5503   _input_size_in_bits = EVEX_64bit;
5504   InstructionMark im(this);
5505   assert(dst != xnoreg, "sanity");
5506   int dst_enc = dst->encoding();
5507   // swap src<->dst for encoding
5508   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, /* vex_w */ true, vector_len);
5509   emit_int8(0x19);
5510   emit_operand(dst, src);
5511 }
5512 
5513 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5514 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5515   _instruction_uses_vl = true;
5516   assert(VM_Version::supports_evex(), "");
5517   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5518                                      /*vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5519   emit_int8(0x7A);
5520   emit_int8((unsigned char)(0xC0 | encode));
5521 }
5522 
5523 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5524 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5525   _instruction_uses_vl = true;
5526   assert(VM_Version::supports_evex(), "");
5527   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5528                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5529   emit_int8(0x7B);
5530   emit_int8((unsigned char)(0xC0 | encode));
5531 }
5532 
5533 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5534 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5535   _instruction_uses_vl = true;
5536   assert(VM_Version::supports_evex(), "");
5537   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5538                                      /* vex_w */ false, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5539   emit_int8(0x7C);
5540   emit_int8((unsigned char)(0xC0 | encode));
5541 }
5542 
5543 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5544 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5545   _instruction_uses_vl = true;
5546   assert(VM_Version::supports_evex(), "");
5547   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38,
5548                                      /* vex_w */ true, vector_len, /* legacy_mode */ false, /*no_mask_reg */ false);
5549   emit_int8(0x7C);
5550   emit_int8((unsigned char)(0xC0 | encode));
5551 }
5552 
5553 // Carry-Less Multiplication Quadword
5554 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5555   assert(VM_Version::supports_clmul(), "");
5556   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, /* no_mask_reg */ false,
5557                                       VEX_OPCODE_0F_3A, /* rex_w */ false, AVX_128bit, /* legacy_mode */ true);
5558   emit_int8(0x44);
5559   emit_int8((unsigned char)(0xC0 | encode));
5560   emit_int8((unsigned char)mask);
5561 }
5562 
5563 // Carry-Less Multiplication Quadword
5564 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5565   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5566   int vector_len = AVX_128bit;
5567   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A, /* legacy_mode */ true);
5568   emit_int8(0x44);
5569   emit_int8((unsigned char)(0xC0 | encode));
5570   emit_int8((unsigned char)mask);
5571 }
5572 
5573 void Assembler::vzeroupper() {
5574   assert(VM_Version::supports_avx(), "");
5575   if (UseAVX < 3)
5576   {
5577     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5578     emit_int8(0x77);
5579   }
5580 }
5581 
5582 
5583 #ifndef _LP64
5584 // 32bit only pieces of the assembler
5585 
5586 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5587   // NO PREFIX AS NEVER 64BIT
5588   InstructionMark im(this);
5589   emit_int8((unsigned char)0x81);
5590   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5591   emit_data(imm32, rspec, 0);
5592 }
5593 
5594 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5595   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5596   InstructionMark im(this);
5597   emit_int8((unsigned char)0x81);
5598   emit_operand(rdi, src1);
5599   emit_data(imm32, rspec, 0);
5600 }
5601 
5602 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5603 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5604 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5605 void Assembler::cmpxchg8(Address adr) {
5606   InstructionMark im(this);
5607   emit_int8(0x0F);
5608   emit_int8((unsigned char)0xC7);
5609   emit_operand(rcx, adr);
5610 }
5611 
5612 void Assembler::decl(Register dst) {
5613   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5614  emit_int8(0x48 | dst->encoding());
5615 }
5616 
5617 #endif // _LP64
5618 
5619 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5620 
5621 void Assembler::fabs() {
5622   emit_int8((unsigned char)0xD9);
5623   emit_int8((unsigned char)0xE1);
5624 }
5625 
5626 void Assembler::fadd(int i) {
5627   emit_farith(0xD8, 0xC0, i);
5628 }
5629 
5630 void Assembler::fadd_d(Address src) {
5631   InstructionMark im(this);
5632   emit_int8((unsigned char)0xDC);
5633   emit_operand32(rax, src);
5634 }
5635 
5636 void Assembler::fadd_s(Address src) {
5637   InstructionMark im(this);
5638   emit_int8((unsigned char)0xD8);
5639   emit_operand32(rax, src);
5640 }
5641 
5642 void Assembler::fadda(int i) {
5643   emit_farith(0xDC, 0xC0, i);
5644 }
5645 
5646 void Assembler::faddp(int i) {
5647   emit_farith(0xDE, 0xC0, i);
5648 }
5649 
5650 void Assembler::fchs() {
5651   emit_int8((unsigned char)0xD9);
5652   emit_int8((unsigned char)0xE0);
5653 }
5654 
5655 void Assembler::fcom(int i) {
5656   emit_farith(0xD8, 0xD0, i);
5657 }
5658 
5659 void Assembler::fcomp(int i) {
5660   emit_farith(0xD8, 0xD8, i);
5661 }
5662 
5663 void Assembler::fcomp_d(Address src) {
5664   InstructionMark im(this);
5665   emit_int8((unsigned char)0xDC);
5666   emit_operand32(rbx, src);
5667 }
5668 
5669 void Assembler::fcomp_s(Address src) {
5670   InstructionMark im(this);
5671   emit_int8((unsigned char)0xD8);
5672   emit_operand32(rbx, src);
5673 }
5674 
5675 void Assembler::fcompp() {
5676   emit_int8((unsigned char)0xDE);
5677   emit_int8((unsigned char)0xD9);
5678 }
5679 
5680 void Assembler::fcos() {
5681   emit_int8((unsigned char)0xD9);
5682   emit_int8((unsigned char)0xFF);
5683 }
5684 
5685 void Assembler::fdecstp() {
5686   emit_int8((unsigned char)0xD9);
5687   emit_int8((unsigned char)0xF6);
5688 }
5689 
5690 void Assembler::fdiv(int i) {
5691   emit_farith(0xD8, 0xF0, i);
5692 }
5693 
5694 void Assembler::fdiv_d(Address src) {
5695   InstructionMark im(this);
5696   emit_int8((unsigned char)0xDC);
5697   emit_operand32(rsi, src);
5698 }
5699 
5700 void Assembler::fdiv_s(Address src) {
5701   InstructionMark im(this);
5702   emit_int8((unsigned char)0xD8);
5703   emit_operand32(rsi, src);
5704 }
5705 
5706 void Assembler::fdiva(int i) {
5707   emit_farith(0xDC, 0xF8, i);
5708 }
5709 
5710 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5711 //       is erroneous for some of the floating-point instructions below.
5712 
5713 void Assembler::fdivp(int i) {
5714   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5715 }
5716 
5717 void Assembler::fdivr(int i) {
5718   emit_farith(0xD8, 0xF8, i);
5719 }
5720 
5721 void Assembler::fdivr_d(Address src) {
5722   InstructionMark im(this);
5723   emit_int8((unsigned char)0xDC);
5724   emit_operand32(rdi, src);
5725 }
5726 
5727 void Assembler::fdivr_s(Address src) {
5728   InstructionMark im(this);
5729   emit_int8((unsigned char)0xD8);
5730   emit_operand32(rdi, src);
5731 }
5732 
5733 void Assembler::fdivra(int i) {
5734   emit_farith(0xDC, 0xF0, i);
5735 }
5736 
5737 void Assembler::fdivrp(int i) {
5738   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5739 }
5740 
5741 void Assembler::ffree(int i) {
5742   emit_farith(0xDD, 0xC0, i);
5743 }
5744 
5745 void Assembler::fild_d(Address adr) {
5746   InstructionMark im(this);
5747   emit_int8((unsigned char)0xDF);
5748   emit_operand32(rbp, adr);
5749 }
5750 
5751 void Assembler::fild_s(Address adr) {
5752   InstructionMark im(this);
5753   emit_int8((unsigned char)0xDB);
5754   emit_operand32(rax, adr);
5755 }
5756 
5757 void Assembler::fincstp() {
5758   emit_int8((unsigned char)0xD9);
5759   emit_int8((unsigned char)0xF7);
5760 }
5761 
5762 void Assembler::finit() {
5763   emit_int8((unsigned char)0x9B);
5764   emit_int8((unsigned char)0xDB);
5765   emit_int8((unsigned char)0xE3);
5766 }
5767 
5768 void Assembler::fist_s(Address adr) {
5769   InstructionMark im(this);
5770   emit_int8((unsigned char)0xDB);
5771   emit_operand32(rdx, adr);
5772 }
5773 
5774 void Assembler::fistp_d(Address adr) {
5775   InstructionMark im(this);
5776   emit_int8((unsigned char)0xDF);
5777   emit_operand32(rdi, adr);
5778 }
5779 
5780 void Assembler::fistp_s(Address adr) {
5781   InstructionMark im(this);
5782   emit_int8((unsigned char)0xDB);
5783   emit_operand32(rbx, adr);
5784 }
5785 
5786 void Assembler::fld1() {
5787   emit_int8((unsigned char)0xD9);
5788   emit_int8((unsigned char)0xE8);
5789 }
5790 
5791 void Assembler::fld_d(Address adr) {
5792   InstructionMark im(this);
5793   emit_int8((unsigned char)0xDD);
5794   emit_operand32(rax, adr);
5795 }
5796 
5797 void Assembler::fld_s(Address adr) {
5798   InstructionMark im(this);
5799   emit_int8((unsigned char)0xD9);
5800   emit_operand32(rax, adr);
5801 }
5802 
5803 
5804 void Assembler::fld_s(int index) {
5805   emit_farith(0xD9, 0xC0, index);
5806 }
5807 
5808 void Assembler::fld_x(Address adr) {
5809   InstructionMark im(this);
5810   emit_int8((unsigned char)0xDB);
5811   emit_operand32(rbp, adr);
5812 }
5813 
5814 void Assembler::fldcw(Address src) {
5815   InstructionMark im(this);
5816   emit_int8((unsigned char)0xD9);
5817   emit_operand32(rbp, src);
5818 }
5819 
5820 void Assembler::fldenv(Address src) {
5821   InstructionMark im(this);
5822   emit_int8((unsigned char)0xD9);
5823   emit_operand32(rsp, src);
5824 }
5825 
5826 void Assembler::fldlg2() {
5827   emit_int8((unsigned char)0xD9);
5828   emit_int8((unsigned char)0xEC);
5829 }
5830 
5831 void Assembler::fldln2() {
5832   emit_int8((unsigned char)0xD9);
5833   emit_int8((unsigned char)0xED);
5834 }
5835 
5836 void Assembler::fldz() {
5837   emit_int8((unsigned char)0xD9);
5838   emit_int8((unsigned char)0xEE);
5839 }
5840 
5841 void Assembler::flog() {
5842   fldln2();
5843   fxch();
5844   fyl2x();
5845 }
5846 
5847 void Assembler::flog10() {
5848   fldlg2();
5849   fxch();
5850   fyl2x();
5851 }
5852 
5853 void Assembler::fmul(int i) {
5854   emit_farith(0xD8, 0xC8, i);
5855 }
5856 
5857 void Assembler::fmul_d(Address src) {
5858   InstructionMark im(this);
5859   emit_int8((unsigned char)0xDC);
5860   emit_operand32(rcx, src);
5861 }
5862 
5863 void Assembler::fmul_s(Address src) {
5864   InstructionMark im(this);
5865   emit_int8((unsigned char)0xD8);
5866   emit_operand32(rcx, src);
5867 }
5868 
5869 void Assembler::fmula(int i) {
5870   emit_farith(0xDC, 0xC8, i);
5871 }
5872 
5873 void Assembler::fmulp(int i) {
5874   emit_farith(0xDE, 0xC8, i);
5875 }
5876 
5877 void Assembler::fnsave(Address dst) {
5878   InstructionMark im(this);
5879   emit_int8((unsigned char)0xDD);
5880   emit_operand32(rsi, dst);
5881 }
5882 
5883 void Assembler::fnstcw(Address src) {
5884   InstructionMark im(this);
5885   emit_int8((unsigned char)0x9B);
5886   emit_int8((unsigned char)0xD9);
5887   emit_operand32(rdi, src);
5888 }
5889 
5890 void Assembler::fnstsw_ax() {
5891   emit_int8((unsigned char)0xDF);
5892   emit_int8((unsigned char)0xE0);
5893 }
5894 
5895 void Assembler::fprem() {
5896   emit_int8((unsigned char)0xD9);
5897   emit_int8((unsigned char)0xF8);
5898 }
5899 
5900 void Assembler::fprem1() {
5901   emit_int8((unsigned char)0xD9);
5902   emit_int8((unsigned char)0xF5);
5903 }
5904 
5905 void Assembler::frstor(Address src) {
5906   InstructionMark im(this);
5907   emit_int8((unsigned char)0xDD);
5908   emit_operand32(rsp, src);
5909 }
5910 
5911 void Assembler::fsin() {
5912   emit_int8((unsigned char)0xD9);
5913   emit_int8((unsigned char)0xFE);
5914 }
5915 
5916 void Assembler::fsqrt() {
5917   emit_int8((unsigned char)0xD9);
5918   emit_int8((unsigned char)0xFA);
5919 }
5920 
5921 void Assembler::fst_d(Address adr) {
5922   InstructionMark im(this);
5923   emit_int8((unsigned char)0xDD);
5924   emit_operand32(rdx, adr);
5925 }
5926 
5927 void Assembler::fst_s(Address adr) {
5928   InstructionMark im(this);
5929   emit_int8((unsigned char)0xD9);
5930   emit_operand32(rdx, adr);
5931 }
5932 
5933 void Assembler::fstp_d(Address adr) {
5934   InstructionMark im(this);
5935   emit_int8((unsigned char)0xDD);
5936   emit_operand32(rbx, adr);
5937 }
5938 
5939 void Assembler::fstp_d(int index) {
5940   emit_farith(0xDD, 0xD8, index);
5941 }
5942 
5943 void Assembler::fstp_s(Address adr) {
5944   InstructionMark im(this);
5945   emit_int8((unsigned char)0xD9);
5946   emit_operand32(rbx, adr);
5947 }
5948 
5949 void Assembler::fstp_x(Address adr) {
5950   InstructionMark im(this);
5951   emit_int8((unsigned char)0xDB);
5952   emit_operand32(rdi, adr);
5953 }
5954 
5955 void Assembler::fsub(int i) {
5956   emit_farith(0xD8, 0xE0, i);
5957 }
5958 
5959 void Assembler::fsub_d(Address src) {
5960   InstructionMark im(this);
5961   emit_int8((unsigned char)0xDC);
5962   emit_operand32(rsp, src);
5963 }
5964 
5965 void Assembler::fsub_s(Address src) {
5966   InstructionMark im(this);
5967   emit_int8((unsigned char)0xD8);
5968   emit_operand32(rsp, src);
5969 }
5970 
5971 void Assembler::fsuba(int i) {
5972   emit_farith(0xDC, 0xE8, i);
5973 }
5974 
5975 void Assembler::fsubp(int i) {
5976   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5977 }
5978 
5979 void Assembler::fsubr(int i) {
5980   emit_farith(0xD8, 0xE8, i);
5981 }
5982 
5983 void Assembler::fsubr_d(Address src) {
5984   InstructionMark im(this);
5985   emit_int8((unsigned char)0xDC);
5986   emit_operand32(rbp, src);
5987 }
5988 
5989 void Assembler::fsubr_s(Address src) {
5990   InstructionMark im(this);
5991   emit_int8((unsigned char)0xD8);
5992   emit_operand32(rbp, src);
5993 }
5994 
5995 void Assembler::fsubra(int i) {
5996   emit_farith(0xDC, 0xE0, i);
5997 }
5998 
5999 void Assembler::fsubrp(int i) {
6000   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6001 }
6002 
6003 void Assembler::ftan() {
6004   emit_int8((unsigned char)0xD9);
6005   emit_int8((unsigned char)0xF2);
6006   emit_int8((unsigned char)0xDD);
6007   emit_int8((unsigned char)0xD8);
6008 }
6009 
6010 void Assembler::ftst() {
6011   emit_int8((unsigned char)0xD9);
6012   emit_int8((unsigned char)0xE4);
6013 }
6014 
6015 void Assembler::fucomi(int i) {
6016   // make sure the instruction is supported (introduced for P6, together with cmov)
6017   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6018   emit_farith(0xDB, 0xE8, i);
6019 }
6020 
6021 void Assembler::fucomip(int i) {
6022   // make sure the instruction is supported (introduced for P6, together with cmov)
6023   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6024   emit_farith(0xDF, 0xE8, i);
6025 }
6026 
6027 void Assembler::fwait() {
6028   emit_int8((unsigned char)0x9B);
6029 }
6030 
6031 void Assembler::fxch(int i) {
6032   emit_farith(0xD9, 0xC8, i);
6033 }
6034 
6035 void Assembler::fyl2x() {
6036   emit_int8((unsigned char)0xD9);
6037   emit_int8((unsigned char)0xF1);
6038 }
6039 
6040 void Assembler::frndint() {
6041   emit_int8((unsigned char)0xD9);
6042   emit_int8((unsigned char)0xFC);
6043 }
6044 
6045 void Assembler::f2xm1() {
6046   emit_int8((unsigned char)0xD9);
6047   emit_int8((unsigned char)0xF0);
6048 }
6049 
6050 void Assembler::fldl2e() {
6051   emit_int8((unsigned char)0xD9);
6052   emit_int8((unsigned char)0xEA);
6053 }
6054 
6055 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6056 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6057 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6058 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6059 
6060 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6061 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6062   if (pre > 0) {
6063     emit_int8(simd_pre[pre]);
6064   }
6065   if (rex_w) {
6066     prefixq(adr, xreg);
6067   } else {
6068     prefix(adr, xreg);
6069   }
6070   if (opc > 0) {
6071     emit_int8(0x0F);
6072     int opc2 = simd_opc[opc];
6073     if (opc2 > 0) {
6074       emit_int8(opc2);
6075     }
6076   }
6077 }
6078 
6079 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6080   if (pre > 0) {
6081     emit_int8(simd_pre[pre]);
6082   }
6083   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
6084                           prefix_and_encode(dst_enc, src_enc);
6085   if (opc > 0) {
6086     emit_int8(0x0F);
6087     int opc2 = simd_opc[opc];
6088     if (opc2 > 0) {
6089       emit_int8(opc2);
6090     }
6091   }
6092   return encode;
6093 }
6094 
6095 
6096 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
6097   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6098     prefix(VEX_3bytes);
6099 
6100     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6101     byte1 = (~byte1) & 0xE0;
6102     byte1 |= opc;
6103     emit_int8(byte1);
6104 
6105     int byte2 = ((~nds_enc) & 0xf) << 3;
6106     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6107     emit_int8(byte2);
6108   } else {
6109     prefix(VEX_2bytes);
6110 
6111     int byte1 = vex_r ? VEX_R : 0;
6112     byte1 = (~byte1) & 0x80;
6113     byte1 |= ((~nds_enc) & 0xf) << 3;
6114     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6115     emit_int8(byte1);
6116   }
6117 }
6118 
6119 // This is a 4 byte encoding
6120 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
6121                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
6122                             bool is_extended_context, bool is_merge_context,
6123                             int vector_len, bool no_mask_reg ){
6124   // EVEX 0x62 prefix
6125   prefix(EVEX_4bytes);
6126   _evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
6127 
6128   // P0: byte 2, initialized to RXBR`00mm
6129   // instead of not'd
6130   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6131   byte2 = (~byte2) & 0xF0;
6132   // confine opc opcode extensions in mm bits to lower two bits
6133   // of form {0F, 0F_38, 0F_3A}
6134   byte2 |= opc;
6135   emit_int8(byte2);
6136 
6137   // P1: byte 3 as Wvvvv1pp
6138   int byte3 = ((~nds_enc) & 0xf) << 3;
6139   // p[10] is always 1
6140   byte3 |= EVEX_F;
6141   byte3 |= (vex_w & 1) << 7;
6142   // confine pre opcode extensions in pp bits to lower two bits
6143   // of form {66, F3, F2}
6144   byte3 |= pre;
6145   emit_int8(byte3);
6146 
6147   // P2: byte 4 as zL'Lbv'aaa
6148   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6149   // EVEX.v` for extending EVEX.vvvv or VIDX
6150   byte4 |= (evex_v ? 0: EVEX_V);
6151   // third EXEC.b for broadcast actions
6152   byte4 |= (is_extended_context ? EVEX_Rb : 0);
6153   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6154   byte4 |= ((vector_len) & 0x3) << 5;
6155   // last is EVEX.z for zero/merge actions
6156   byte4 |= (is_merge_context ? EVEX_Z : 0);
6157   emit_int8(byte4);
6158 }
6159 
6160 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
6161                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
6162   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6163   bool vex_b = adr.base_needs_rex();
6164   bool vex_x = adr.index_needs_rex();
6165   _avx_vector_len = vector_len;
6166 
6167   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6168   if (_legacy_mode_vl && _instruction_uses_vl) {
6169     switch (vector_len) {
6170     case AVX_128bit:
6171     case AVX_256bit:
6172       legacy_mode = true;
6173       break;
6174     }
6175   }
6176 
6177   if ((UseAVX > 2) && (legacy_mode == false))
6178   {
6179     bool evex_r = (xreg_enc >= 16);
6180     bool evex_v = (nds_enc >= 16);
6181     _is_evex_instruction = true;
6182     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
6183   } else {
6184     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
6185   }
6186   _instruction_uses_vl = false;
6187 }
6188 
6189 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
6190                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
6191   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6192   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6193   bool vex_x = false;
6194   _avx_vector_len = vector_len;
6195 
6196   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6197   if (_legacy_mode_vl && _instruction_uses_vl) {
6198     switch (vector_len) {
6199     case AVX_128bit:
6200     case AVX_256bit:
6201       legacy_mode = true;
6202       break;
6203     }
6204   }
6205 
6206   if ((UseAVX > 2) && (legacy_mode == false))
6207   {
6208     bool evex_r = (dst_enc >= 16);
6209     bool evex_v = (nds_enc >= 16);
6210     // can use vex_x as bank extender on rm encoding
6211     vex_x = (src_enc >= 16);
6212     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
6213   } else {
6214     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
6215   }
6216 
6217   _instruction_uses_vl = false;
6218 
6219   // return modrm byte components for operands
6220   return (((dst_enc & 7) << 3) | (src_enc & 7));
6221 }
6222 
6223 
6224 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6225                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
6226   if (UseAVX > 0) {
6227     int xreg_enc = xreg->encoding();
6228     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
6229     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
6230   } else {
6231     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6232     rex_prefix(adr, xreg, pre, opc, rex_w);
6233   }
6234 }
6235 
6236 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6237                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
6238   int dst_enc = dst->encoding();
6239   int src_enc = src->encoding();
6240   if (UseAVX > 0) {
6241     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6242     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
6243   } else {
6244     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6245     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
6246   }
6247 }
6248 
6249 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
6250                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
6251   int dst_enc = dst->encoding();
6252   int src_enc = src->encoding();
6253   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6254   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
6255 }
6256 
6257 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
6258                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
6259   int dst_enc = dst->encoding();
6260   int src_enc = src->encoding();
6261   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6262   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
6263 }
6264 
6265 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6266   InstructionMark im(this);
6267   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6268   emit_int8(opcode);
6269   emit_operand(dst, src);
6270 }
6271 
6272 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
6273   InstructionMark im(this);
6274   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
6275   emit_int8(opcode);
6276   emit_operand(dst, src);
6277 }
6278 
6279 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6280   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6281   emit_int8(opcode);
6282   emit_int8((unsigned char)(0xC0 | encode));
6283 }
6284 
6285 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
6286   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
6287   emit_int8(opcode);
6288   emit_int8((unsigned char)(0xC0 | encode));
6289 }
6290 
6291 // Versions with no second source register (non-destructive source).
6292 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
6293   InstructionMark im(this);
6294   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
6295   emit_int8(opcode);
6296   emit_operand(dst, src);
6297 }
6298 
6299 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
6300   InstructionMark im(this);
6301   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
6302   emit_int8(opcode);
6303   emit_operand(dst, src);
6304 }
6305 
6306 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
6307   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
6308   emit_int8(opcode);
6309   emit_int8((unsigned char)(0xC0 | encode));
6310 }
6311 
6312 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
6313   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true);
6314   emit_int8(opcode);
6315   emit_int8((unsigned char)(0xC0 | encode));
6316 }
6317 
6318 // 3-operands AVX instructions
6319 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
6320                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
6321   InstructionMark im(this);
6322   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
6323   emit_int8(opcode);
6324   emit_operand(dst, src);
6325 }
6326 
6327 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
6328                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
6329   InstructionMark im(this);
6330   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
6331   emit_int8(opcode);
6332   emit_operand(dst, src);
6333 }
6334 
6335 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
6336                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
6337   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, legacy_mode, no_mask_reg);
6338   emit_int8(opcode);
6339   emit_int8((unsigned char)(0xC0 | encode));
6340 }
6341 
6342 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
6343                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
6344   int src_enc = src->encoding();
6345   int dst_enc = dst->encoding();
6346   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6347   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
6348   emit_int8(opcode);
6349   emit_int8((unsigned char)(0xC0 | encode));
6350 }
6351 
6352 #ifndef _LP64
6353 
6354 void Assembler::incl(Register dst) {
6355   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6356   emit_int8(0x40 | dst->encoding());
6357 }
6358 
6359 void Assembler::lea(Register dst, Address src) {
6360   leal(dst, src);
6361 }
6362 
6363 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6364   InstructionMark im(this);
6365   emit_int8((unsigned char)0xC7);
6366   emit_operand(rax, dst);
6367   emit_data((int)imm32, rspec, 0);
6368 }
6369 
6370 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6371   InstructionMark im(this);
6372   int encode = prefix_and_encode(dst->encoding());
6373   emit_int8((unsigned char)(0xB8 | encode));
6374   emit_data((int)imm32, rspec, 0);
6375 }
6376 
6377 void Assembler::popa() { // 32bit
6378   emit_int8(0x61);
6379 }
6380 
6381 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6382   InstructionMark im(this);
6383   emit_int8(0x68);
6384   emit_data(imm32, rspec, 0);
6385 }
6386 
6387 void Assembler::pusha() { // 32bit
6388   emit_int8(0x60);
6389 }
6390 
6391 void Assembler::set_byte_if_not_zero(Register dst) {
6392   emit_int8(0x0F);
6393   emit_int8((unsigned char)0x95);
6394   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6395 }
6396 
6397 void Assembler::shldl(Register dst, Register src) {
6398   emit_int8(0x0F);
6399   emit_int8((unsigned char)0xA5);
6400   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6401 }
6402 
6403 // 0F A4 / r ib
6404 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6405   emit_int8(0x0F);
6406   emit_int8((unsigned char)0xA4);
6407   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6408   emit_int8(imm8);
6409 }
6410 
6411 void Assembler::shrdl(Register dst, Register src) {
6412   emit_int8(0x0F);
6413   emit_int8((unsigned char)0xAD);
6414   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6415 }
6416 
6417 #else // LP64
6418 
6419 void Assembler::set_byte_if_not_zero(Register dst) {
6420   int enc = prefix_and_encode(dst->encoding(), true);
6421   emit_int8(0x0F);
6422   emit_int8((unsigned char)0x95);
6423   emit_int8((unsigned char)(0xE0 | enc));
6424 }
6425 
6426 // 64bit only pieces of the assembler
6427 // This should only be used by 64bit instructions that can use rip-relative
6428 // it cannot be used by instructions that want an immediate value.
6429 
6430 bool Assembler::reachable(AddressLiteral adr) {
6431   int64_t disp;
6432   // None will force a 64bit literal to the code stream. Likely a placeholder
6433   // for something that will be patched later and we need to certain it will
6434   // always be reachable.
6435   if (adr.reloc() == relocInfo::none) {
6436     return false;
6437   }
6438   if (adr.reloc() == relocInfo::internal_word_type) {
6439     // This should be rip relative and easily reachable.
6440     return true;
6441   }
6442   if (adr.reloc() == relocInfo::virtual_call_type ||
6443       adr.reloc() == relocInfo::opt_virtual_call_type ||
6444       adr.reloc() == relocInfo::static_call_type ||
6445       adr.reloc() == relocInfo::static_stub_type ) {
6446     // This should be rip relative within the code cache and easily
6447     // reachable until we get huge code caches. (At which point
6448     // ic code is going to have issues).
6449     return true;
6450   }
6451   if (adr.reloc() != relocInfo::external_word_type &&
6452       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6453       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6454       adr.reloc() != relocInfo::runtime_call_type ) {
6455     return false;
6456   }
6457 
6458   // Stress the correction code
6459   if (ForceUnreachable) {
6460     // Must be runtimecall reloc, see if it is in the codecache
6461     // Flipping stuff in the codecache to be unreachable causes issues
6462     // with things like inline caches where the additional instructions
6463     // are not handled.
6464     if (CodeCache::find_blob(adr._target) == NULL) {
6465       return false;
6466     }
6467   }
6468   // For external_word_type/runtime_call_type if it is reachable from where we
6469   // are now (possibly a temp buffer) and where we might end up
6470   // anywhere in the codeCache then we are always reachable.
6471   // This would have to change if we ever save/restore shared code
6472   // to be more pessimistic.
6473   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6474   if (!is_simm32(disp)) return false;
6475   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6476   if (!is_simm32(disp)) return false;
6477 
6478   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6479 
6480   // Because rip relative is a disp + address_of_next_instruction and we
6481   // don't know the value of address_of_next_instruction we apply a fudge factor
6482   // to make sure we will be ok no matter the size of the instruction we get placed into.
6483   // We don't have to fudge the checks above here because they are already worst case.
6484 
6485   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6486   // + 4 because better safe than sorry.
6487   const int fudge = 12 + 4;
6488   if (disp < 0) {
6489     disp -= fudge;
6490   } else {
6491     disp += fudge;
6492   }
6493   return is_simm32(disp);
6494 }
6495 
6496 // Check if the polling page is not reachable from the code cache using rip-relative
6497 // addressing.
6498 bool Assembler::is_polling_page_far() {
6499   intptr_t addr = (intptr_t)os::get_polling_page();
6500   return ForceUnreachable ||
6501          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6502          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6503 }
6504 
6505 void Assembler::emit_data64(jlong data,
6506                             relocInfo::relocType rtype,
6507                             int format) {
6508   if (rtype == relocInfo::none) {
6509     emit_int64(data);
6510   } else {
6511     emit_data64(data, Relocation::spec_simple(rtype), format);
6512   }
6513 }
6514 
6515 void Assembler::emit_data64(jlong data,
6516                             RelocationHolder const& rspec,
6517                             int format) {
6518   assert(imm_operand == 0, "default format must be immediate in this file");
6519   assert(imm_operand == format, "must be immediate");
6520   assert(inst_mark() != NULL, "must be inside InstructionMark");
6521   // Do not use AbstractAssembler::relocate, which is not intended for
6522   // embedded words.  Instead, relocate to the enclosing instruction.
6523   code_section()->relocate(inst_mark(), rspec, format);
6524 #ifdef ASSERT
6525   check_relocation(rspec, format);
6526 #endif
6527   emit_int64(data);
6528 }
6529 
6530 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6531   if (reg_enc >= 8) {
6532     prefix(REX_B);
6533     reg_enc -= 8;
6534   } else if (byteinst && reg_enc >= 4) {
6535     prefix(REX);
6536   }
6537   return reg_enc;
6538 }
6539 
6540 int Assembler::prefixq_and_encode(int reg_enc) {
6541   if (reg_enc < 8) {
6542     prefix(REX_W);
6543   } else {
6544     prefix(REX_WB);
6545     reg_enc -= 8;
6546   }
6547   return reg_enc;
6548 }
6549 
6550 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
6551   if (dst_enc < 8) {
6552     if (src_enc >= 8) {
6553       prefix(REX_B);
6554       src_enc -= 8;
6555     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
6556       prefix(REX);
6557     }
6558   } else {
6559     if (src_enc < 8) {
6560       prefix(REX_R);
6561     } else {
6562       prefix(REX_RB);
6563       src_enc -= 8;
6564     }
6565     dst_enc -= 8;
6566   }
6567   return dst_enc << 3 | src_enc;
6568 }
6569 
6570 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6571   if (dst_enc < 8) {
6572     if (src_enc < 8) {
6573       prefix(REX_W);
6574     } else {
6575       prefix(REX_WB);
6576       src_enc -= 8;
6577     }
6578   } else {
6579     if (src_enc < 8) {
6580       prefix(REX_WR);
6581     } else {
6582       prefix(REX_WRB);
6583       src_enc -= 8;
6584     }
6585     dst_enc -= 8;
6586   }
6587   return dst_enc << 3 | src_enc;
6588 }
6589 
6590 void Assembler::prefix(Register reg) {
6591   if (reg->encoding() >= 8) {
6592     prefix(REX_B);
6593   }
6594 }
6595 
6596 void Assembler::prefix(Register dst, Register src, Prefix p) {
6597   if (src->encoding() >= 8) {
6598     p = (Prefix)(p | REX_B);
6599   }
6600   if (dst->encoding() >= 8) {
6601     p = (Prefix)( p | REX_R);
6602   }
6603   if (p != Prefix_EMPTY) {
6604     // do not generate an empty prefix
6605     prefix(p);
6606   }
6607 }
6608 
6609 void Assembler::prefix(Register dst, Address adr, Prefix p) {
6610   if (adr.base_needs_rex()) {
6611     if (adr.index_needs_rex()) {
6612       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6613     } else {
6614       prefix(REX_B);
6615     }
6616   } else {
6617     if (adr.index_needs_rex()) {
6618       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6619     }
6620   }
6621   if (dst->encoding() >= 8) {
6622     p = (Prefix)(p | REX_R);
6623   }
6624   if (p != Prefix_EMPTY) {
6625     // do not generate an empty prefix
6626     prefix(p);
6627   }
6628 }
6629 
6630 void Assembler::prefix(Address adr) {
6631   if (adr.base_needs_rex()) {
6632     if (adr.index_needs_rex()) {
6633       prefix(REX_XB);
6634     } else {
6635       prefix(REX_B);
6636     }
6637   } else {
6638     if (adr.index_needs_rex()) {
6639       prefix(REX_X);
6640     }
6641   }
6642 }
6643 
6644 void Assembler::prefixq(Address adr) {
6645   if (adr.base_needs_rex()) {
6646     if (adr.index_needs_rex()) {
6647       prefix(REX_WXB);
6648     } else {
6649       prefix(REX_WB);
6650     }
6651   } else {
6652     if (adr.index_needs_rex()) {
6653       prefix(REX_WX);
6654     } else {
6655       prefix(REX_W);
6656     }
6657   }
6658 }
6659 
6660 
6661 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6662   if (reg->encoding() < 8) {
6663     if (adr.base_needs_rex()) {
6664       if (adr.index_needs_rex()) {
6665         prefix(REX_XB);
6666       } else {
6667         prefix(REX_B);
6668       }
6669     } else {
6670       if (adr.index_needs_rex()) {
6671         prefix(REX_X);
6672       } else if (byteinst && reg->encoding() >= 4 ) {
6673         prefix(REX);
6674       }
6675     }
6676   } else {
6677     if (adr.base_needs_rex()) {
6678       if (adr.index_needs_rex()) {
6679         prefix(REX_RXB);
6680       } else {
6681         prefix(REX_RB);
6682       }
6683     } else {
6684       if (adr.index_needs_rex()) {
6685         prefix(REX_RX);
6686       } else {
6687         prefix(REX_R);
6688       }
6689     }
6690   }
6691 }
6692 
6693 void Assembler::prefixq(Address adr, Register src) {
6694   if (src->encoding() < 8) {
6695     if (adr.base_needs_rex()) {
6696       if (adr.index_needs_rex()) {
6697         prefix(REX_WXB);
6698       } else {
6699         prefix(REX_WB);
6700       }
6701     } else {
6702       if (adr.index_needs_rex()) {
6703         prefix(REX_WX);
6704       } else {
6705         prefix(REX_W);
6706       }
6707     }
6708   } else {
6709     if (adr.base_needs_rex()) {
6710       if (adr.index_needs_rex()) {
6711         prefix(REX_WRXB);
6712       } else {
6713         prefix(REX_WRB);
6714       }
6715     } else {
6716       if (adr.index_needs_rex()) {
6717         prefix(REX_WRX);
6718       } else {
6719         prefix(REX_WR);
6720       }
6721     }
6722   }
6723 }
6724 
6725 void Assembler::prefix(Address adr, XMMRegister reg) {
6726   if (reg->encoding() < 8) {
6727     if (adr.base_needs_rex()) {
6728       if (adr.index_needs_rex()) {
6729         prefix(REX_XB);
6730       } else {
6731         prefix(REX_B);
6732       }
6733     } else {
6734       if (adr.index_needs_rex()) {
6735         prefix(REX_X);
6736       }
6737     }
6738   } else {
6739     if (adr.base_needs_rex()) {
6740       if (adr.index_needs_rex()) {
6741         prefix(REX_RXB);
6742       } else {
6743         prefix(REX_RB);
6744       }
6745     } else {
6746       if (adr.index_needs_rex()) {
6747         prefix(REX_RX);
6748       } else {
6749         prefix(REX_R);
6750       }
6751     }
6752   }
6753 }
6754 
6755 void Assembler::prefixq(Address adr, XMMRegister src) {
6756   if (src->encoding() < 8) {
6757     if (adr.base_needs_rex()) {
6758       if (adr.index_needs_rex()) {
6759         prefix(REX_WXB);
6760       } else {
6761         prefix(REX_WB);
6762       }
6763     } else {
6764       if (adr.index_needs_rex()) {
6765         prefix(REX_WX);
6766       } else {
6767         prefix(REX_W);
6768       }
6769     }
6770   } else {
6771     if (adr.base_needs_rex()) {
6772       if (adr.index_needs_rex()) {
6773         prefix(REX_WRXB);
6774       } else {
6775         prefix(REX_WRB);
6776       }
6777     } else {
6778       if (adr.index_needs_rex()) {
6779         prefix(REX_WRX);
6780       } else {
6781         prefix(REX_WR);
6782       }
6783     }
6784   }
6785 }
6786 
6787 void Assembler::adcq(Register dst, int32_t imm32) {
6788   (void) prefixq_and_encode(dst->encoding());
6789   emit_arith(0x81, 0xD0, dst, imm32);
6790 }
6791 
6792 void Assembler::adcq(Register dst, Address src) {
6793   InstructionMark im(this);
6794   prefixq(src, dst);
6795   emit_int8(0x13);
6796   emit_operand(dst, src);
6797 }
6798 
6799 void Assembler::adcq(Register dst, Register src) {
6800   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6801   emit_arith(0x13, 0xC0, dst, src);
6802 }
6803 
6804 void Assembler::addq(Address dst, int32_t imm32) {
6805   InstructionMark im(this);
6806   prefixq(dst);
6807   emit_arith_operand(0x81, rax, dst,imm32);
6808 }
6809 
6810 void Assembler::addq(Address dst, Register src) {
6811   InstructionMark im(this);
6812   prefixq(dst, src);
6813   emit_int8(0x01);
6814   emit_operand(src, dst);
6815 }
6816 
6817 void Assembler::addq(Register dst, int32_t imm32) {
6818   (void) prefixq_and_encode(dst->encoding());
6819   emit_arith(0x81, 0xC0, dst, imm32);
6820 }
6821 
6822 void Assembler::addq(Register dst, Address src) {
6823   InstructionMark im(this);
6824   prefixq(src, dst);
6825   emit_int8(0x03);
6826   emit_operand(dst, src);
6827 }
6828 
6829 void Assembler::addq(Register dst, Register src) {
6830   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6831   emit_arith(0x03, 0xC0, dst, src);
6832 }
6833 
6834 void Assembler::adcxq(Register dst, Register src) {
6835   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6836   emit_int8((unsigned char)0x66);
6837   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6838   emit_int8(0x0F);
6839   emit_int8(0x38);
6840   emit_int8((unsigned char)0xF6);
6841   emit_int8((unsigned char)(0xC0 | encode));
6842 }
6843 
6844 void Assembler::adoxq(Register dst, Register src) {
6845   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6846   emit_int8((unsigned char)0xF3);
6847   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6848   emit_int8(0x0F);
6849   emit_int8(0x38);
6850   emit_int8((unsigned char)0xF6);
6851   emit_int8((unsigned char)(0xC0 | encode));
6852 }
6853 
6854 void Assembler::andq(Address dst, int32_t imm32) {
6855   InstructionMark im(this);
6856   prefixq(dst);
6857   emit_int8((unsigned char)0x81);
6858   emit_operand(rsp, dst, 4);
6859   emit_int32(imm32);
6860 }
6861 
6862 void Assembler::andq(Register dst, int32_t imm32) {
6863   (void) prefixq_and_encode(dst->encoding());
6864   emit_arith(0x81, 0xE0, dst, imm32);
6865 }
6866 
6867 void Assembler::andq(Register dst, Address src) {
6868   InstructionMark im(this);
6869   prefixq(src, dst);
6870   emit_int8(0x23);
6871   emit_operand(dst, src);
6872 }
6873 
6874 void Assembler::andq(Register dst, Register src) {
6875   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6876   emit_arith(0x23, 0xC0, dst, src);
6877 }
6878 
6879 void Assembler::andnq(Register dst, Register src1, Register src2) {
6880   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6881   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6882   emit_int8((unsigned char)0xF2);
6883   emit_int8((unsigned char)(0xC0 | encode));
6884 }
6885 
6886 void Assembler::andnq(Register dst, Register src1, Address src2) {
6887   InstructionMark im(this);
6888   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6889   vex_prefix_0F38_q_legacy(dst, src1, src2);
6890   emit_int8((unsigned char)0xF2);
6891   emit_operand(dst, src2);
6892 }
6893 
6894 void Assembler::bsfq(Register dst, Register src) {
6895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6896   emit_int8(0x0F);
6897   emit_int8((unsigned char)0xBC);
6898   emit_int8((unsigned char)(0xC0 | encode));
6899 }
6900 
6901 void Assembler::bsrq(Register dst, Register src) {
6902   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6903   emit_int8(0x0F);
6904   emit_int8((unsigned char)0xBD);
6905   emit_int8((unsigned char)(0xC0 | encode));
6906 }
6907 
6908 void Assembler::bswapq(Register reg) {
6909   int encode = prefixq_and_encode(reg->encoding());
6910   emit_int8(0x0F);
6911   emit_int8((unsigned char)(0xC8 | encode));
6912 }
6913 
6914 void Assembler::blsiq(Register dst, Register src) {
6915   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6916   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6917   emit_int8((unsigned char)0xF3);
6918   emit_int8((unsigned char)(0xC0 | encode));
6919 }
6920 
6921 void Assembler::blsiq(Register dst, Address src) {
6922   InstructionMark im(this);
6923   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6924   vex_prefix_0F38_q_legacy(rbx, dst, src);
6925   emit_int8((unsigned char)0xF3);
6926   emit_operand(rbx, src);
6927 }
6928 
6929 void Assembler::blsmskq(Register dst, Register src) {
6930   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6931   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6932   emit_int8((unsigned char)0xF3);
6933   emit_int8((unsigned char)(0xC0 | encode));
6934 }
6935 
6936 void Assembler::blsmskq(Register dst, Address src) {
6937   InstructionMark im(this);
6938   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6939   vex_prefix_0F38_q_legacy(rdx, dst, src);
6940   emit_int8((unsigned char)0xF3);
6941   emit_operand(rdx, src);
6942 }
6943 
6944 void Assembler::blsrq(Register dst, Register src) {
6945   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6946   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6947   emit_int8((unsigned char)0xF3);
6948   emit_int8((unsigned char)(0xC0 | encode));
6949 }
6950 
6951 void Assembler::blsrq(Register dst, Address src) {
6952   InstructionMark im(this);
6953   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6954   vex_prefix_0F38_q_legacy(rcx, dst, src);
6955   emit_int8((unsigned char)0xF3);
6956   emit_operand(rcx, src);
6957 }
6958 
6959 void Assembler::cdqq() {
6960   prefix(REX_W);
6961   emit_int8((unsigned char)0x99);
6962 }
6963 
6964 void Assembler::clflush(Address adr) {
6965   prefix(adr);
6966   emit_int8(0x0F);
6967   emit_int8((unsigned char)0xAE);
6968   emit_operand(rdi, adr);
6969 }
6970 
6971 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6972   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6973   emit_int8(0x0F);
6974   emit_int8(0x40 | cc);
6975   emit_int8((unsigned char)(0xC0 | encode));
6976 }
6977 
6978 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6979   InstructionMark im(this);
6980   prefixq(src, dst);
6981   emit_int8(0x0F);
6982   emit_int8(0x40 | cc);
6983   emit_operand(dst, src);
6984 }
6985 
6986 void Assembler::cmpq(Address dst, int32_t imm32) {
6987   InstructionMark im(this);
6988   prefixq(dst);
6989   emit_int8((unsigned char)0x81);
6990   emit_operand(rdi, dst, 4);
6991   emit_int32(imm32);
6992 }
6993 
6994 void Assembler::cmpq(Register dst, int32_t imm32) {
6995   (void) prefixq_and_encode(dst->encoding());
6996   emit_arith(0x81, 0xF8, dst, imm32);
6997 }
6998 
6999 void Assembler::cmpq(Address dst, Register src) {
7000   InstructionMark im(this);
7001   prefixq(dst, src);
7002   emit_int8(0x3B);
7003   emit_operand(src, dst);
7004 }
7005 
7006 void Assembler::cmpq(Register dst, Register src) {
7007   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7008   emit_arith(0x3B, 0xC0, dst, src);
7009 }
7010 
7011 void Assembler::cmpq(Register dst, Address  src) {
7012   InstructionMark im(this);
7013   prefixq(src, dst);
7014   emit_int8(0x3B);
7015   emit_operand(dst, src);
7016 }
7017 
7018 void Assembler::cmpxchgq(Register reg, Address adr) {
7019   InstructionMark im(this);
7020   prefixq(adr, reg);
7021   emit_int8(0x0F);
7022   emit_int8((unsigned char)0xB1);
7023   emit_operand(reg, adr);
7024 }
7025 
7026 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7027   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7028   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
7029   emit_int8(0x2A);
7030   emit_int8((unsigned char)(0xC0 | encode));
7031 }
7032 
7033 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7034   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7035   if (VM_Version::supports_evex()) {
7036     _tuple_type = EVEX_T1S;
7037     _input_size_in_bits = EVEX_32bit;
7038   }
7039   InstructionMark im(this);
7040   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, /* no_mask_reg */ true);
7041   emit_int8(0x2A);
7042   emit_operand(dst, src);
7043 }
7044 
7045 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7046   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7047   if (VM_Version::supports_evex()) {
7048     _tuple_type = EVEX_T1S;
7049     _input_size_in_bits = EVEX_32bit;
7050   }
7051   InstructionMark im(this);
7052   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, /* no_mask_reg */ true);
7053   emit_int8(0x2A);
7054   emit_operand(dst, src);
7055 }
7056 
7057 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7059   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, /* no_mask_reg */ true);
7060   emit_int8(0x2C);
7061   emit_int8((unsigned char)(0xC0 | encode));
7062 }
7063 
7064 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7065   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7066   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, /* no_mask_reg */ true);
7067   emit_int8(0x2C);
7068   emit_int8((unsigned char)(0xC0 | encode));
7069 }
7070 
7071 void Assembler::decl(Register dst) {
7072   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7073   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7074   int encode = prefix_and_encode(dst->encoding());
7075   emit_int8((unsigned char)0xFF);
7076   emit_int8((unsigned char)(0xC8 | encode));
7077 }
7078 
7079 void Assembler::decq(Register dst) {
7080   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7081   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7082   int encode = prefixq_and_encode(dst->encoding());
7083   emit_int8((unsigned char)0xFF);
7084   emit_int8(0xC8 | encode);
7085 }
7086 
7087 void Assembler::decq(Address dst) {
7088   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7089   InstructionMark im(this);
7090   prefixq(dst);
7091   emit_int8((unsigned char)0xFF);
7092   emit_operand(rcx, dst);
7093 }
7094 
7095 void Assembler::fxrstor(Address src) {
7096   prefixq(src);
7097   emit_int8(0x0F);
7098   emit_int8((unsigned char)0xAE);
7099   emit_operand(as_Register(1), src);
7100 }
7101 
7102 void Assembler::xrstor(Address src) {
7103   prefixq(src);
7104   emit_int8(0x0F);
7105   emit_int8((unsigned char)0xAE);
7106   emit_operand(as_Register(5), src);
7107 }
7108 
7109 void Assembler::fxsave(Address dst) {
7110   prefixq(dst);
7111   emit_int8(0x0F);
7112   emit_int8((unsigned char)0xAE);
7113   emit_operand(as_Register(0), dst);
7114 }
7115 
7116 void Assembler::xsave(Address dst) {
7117   prefixq(dst);
7118   emit_int8(0x0F);
7119   emit_int8((unsigned char)0xAE);
7120   emit_operand(as_Register(4), dst);
7121 }
7122 
7123 void Assembler::idivq(Register src) {
7124   int encode = prefixq_and_encode(src->encoding());
7125   emit_int8((unsigned char)0xF7);
7126   emit_int8((unsigned char)(0xF8 | encode));
7127 }
7128 
7129 void Assembler::imulq(Register dst, Register src) {
7130   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7131   emit_int8(0x0F);
7132   emit_int8((unsigned char)0xAF);
7133   emit_int8((unsigned char)(0xC0 | encode));
7134 }
7135 
7136 void Assembler::imulq(Register dst, Register src, int value) {
7137   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7138   if (is8bit(value)) {
7139     emit_int8(0x6B);
7140     emit_int8((unsigned char)(0xC0 | encode));
7141     emit_int8(value & 0xFF);
7142   } else {
7143     emit_int8(0x69);
7144     emit_int8((unsigned char)(0xC0 | encode));
7145     emit_int32(value);
7146   }
7147 }
7148 
7149 void Assembler::imulq(Register dst, Address src) {
7150   InstructionMark im(this);
7151   prefixq(src, dst);
7152   emit_int8(0x0F);
7153   emit_int8((unsigned char) 0xAF);
7154   emit_operand(dst, src);
7155 }
7156 
7157 void Assembler::incl(Register dst) {
7158   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7159   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7160   int encode = prefix_and_encode(dst->encoding());
7161   emit_int8((unsigned char)0xFF);
7162   emit_int8((unsigned char)(0xC0 | encode));
7163 }
7164 
7165 void Assembler::incq(Register dst) {
7166   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7167   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7168   int encode = prefixq_and_encode(dst->encoding());
7169   emit_int8((unsigned char)0xFF);
7170   emit_int8((unsigned char)(0xC0 | encode));
7171 }
7172 
7173 void Assembler::incq(Address dst) {
7174   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7175   InstructionMark im(this);
7176   prefixq(dst);
7177   emit_int8((unsigned char)0xFF);
7178   emit_operand(rax, dst);
7179 }
7180 
7181 void Assembler::lea(Register dst, Address src) {
7182   leaq(dst, src);
7183 }
7184 
7185 void Assembler::leaq(Register dst, Address src) {
7186   InstructionMark im(this);
7187   prefixq(src, dst);
7188   emit_int8((unsigned char)0x8D);
7189   emit_operand(dst, src);
7190 }
7191 
7192 void Assembler::mov64(Register dst, int64_t imm64) {
7193   InstructionMark im(this);
7194   int encode = prefixq_and_encode(dst->encoding());
7195   emit_int8((unsigned char)(0xB8 | encode));
7196   emit_int64(imm64);
7197 }
7198 
7199 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7200   InstructionMark im(this);
7201   int encode = prefixq_and_encode(dst->encoding());
7202   emit_int8(0xB8 | encode);
7203   emit_data64(imm64, rspec);
7204 }
7205 
7206 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7207   InstructionMark im(this);
7208   int encode = prefix_and_encode(dst->encoding());
7209   emit_int8((unsigned char)(0xB8 | encode));
7210   emit_data((int)imm32, rspec, narrow_oop_operand);
7211 }
7212 
7213 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7214   InstructionMark im(this);
7215   prefix(dst);
7216   emit_int8((unsigned char)0xC7);
7217   emit_operand(rax, dst, 4);
7218   emit_data((int)imm32, rspec, narrow_oop_operand);
7219 }
7220 
7221 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7222   InstructionMark im(this);
7223   int encode = prefix_and_encode(src1->encoding());
7224   emit_int8((unsigned char)0x81);
7225   emit_int8((unsigned char)(0xF8 | encode));
7226   emit_data((int)imm32, rspec, narrow_oop_operand);
7227 }
7228 
7229 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7230   InstructionMark im(this);
7231   prefix(src1);
7232   emit_int8((unsigned char)0x81);
7233   emit_operand(rax, src1, 4);
7234   emit_data((int)imm32, rspec, narrow_oop_operand);
7235 }
7236 
7237 void Assembler::lzcntq(Register dst, Register src) {
7238   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7239   emit_int8((unsigned char)0xF3);
7240   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7241   emit_int8(0x0F);
7242   emit_int8((unsigned char)0xBD);
7243   emit_int8((unsigned char)(0xC0 | encode));
7244 }
7245 
7246 void Assembler::movdq(XMMRegister dst, Register src) {
7247   // table D-1 says MMX/SSE2
7248   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7249   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, /* no_mask_reg */ true);
7250   emit_int8(0x6E);
7251   emit_int8((unsigned char)(0xC0 | encode));
7252 }
7253 
7254 void Assembler::movdq(Register dst, XMMRegister src) {
7255   // table D-1 says MMX/SSE2
7256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7257   // swap src/dst to get correct prefix
7258   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, /* no_mask_reg */ true);
7259   emit_int8(0x7E);
7260   emit_int8((unsigned char)(0xC0 | encode));
7261 }
7262 
7263 void Assembler::movq(Register dst, Register src) {
7264   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7265   emit_int8((unsigned char)0x8B);
7266   emit_int8((unsigned char)(0xC0 | encode));
7267 }
7268 
7269 void Assembler::movq(Register dst, Address src) {
7270   InstructionMark im(this);
7271   prefixq(src, dst);
7272   emit_int8((unsigned char)0x8B);
7273   emit_operand(dst, src);
7274 }
7275 
7276 void Assembler::movq(Address dst, Register src) {
7277   InstructionMark im(this);
7278   prefixq(dst, src);
7279   emit_int8((unsigned char)0x89);
7280   emit_operand(src, dst);
7281 }
7282 
7283 void Assembler::movsbq(Register dst, Address src) {
7284   InstructionMark im(this);
7285   prefixq(src, dst);
7286   emit_int8(0x0F);
7287   emit_int8((unsigned char)0xBE);
7288   emit_operand(dst, src);
7289 }
7290 
7291 void Assembler::movsbq(Register dst, Register src) {
7292   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7293   emit_int8(0x0F);
7294   emit_int8((unsigned char)0xBE);
7295   emit_int8((unsigned char)(0xC0 | encode));
7296 }
7297 
7298 void Assembler::movslq(Register dst, int32_t imm32) {
7299   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7300   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7301   // as a result we shouldn't use until tested at runtime...
7302   ShouldNotReachHere();
7303   InstructionMark im(this);
7304   int encode = prefixq_and_encode(dst->encoding());
7305   emit_int8((unsigned char)(0xC7 | encode));
7306   emit_int32(imm32);
7307 }
7308 
7309 void Assembler::movslq(Address dst, int32_t imm32) {
7310   assert(is_simm32(imm32), "lost bits");
7311   InstructionMark im(this);
7312   prefixq(dst);
7313   emit_int8((unsigned char)0xC7);
7314   emit_operand(rax, dst, 4);
7315   emit_int32(imm32);
7316 }
7317 
7318 void Assembler::movslq(Register dst, Address src) {
7319   InstructionMark im(this);
7320   prefixq(src, dst);
7321   emit_int8(0x63);
7322   emit_operand(dst, src);
7323 }
7324 
7325 void Assembler::movslq(Register dst, Register src) {
7326   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7327   emit_int8(0x63);
7328   emit_int8((unsigned char)(0xC0 | encode));
7329 }
7330 
7331 void Assembler::movswq(Register dst, Address src) {
7332   InstructionMark im(this);
7333   prefixq(src, dst);
7334   emit_int8(0x0F);
7335   emit_int8((unsigned char)0xBF);
7336   emit_operand(dst, src);
7337 }
7338 
7339 void Assembler::movswq(Register dst, Register src) {
7340   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7341   emit_int8((unsigned char)0x0F);
7342   emit_int8((unsigned char)0xBF);
7343   emit_int8((unsigned char)(0xC0 | encode));
7344 }
7345 
7346 void Assembler::movzbq(Register dst, Address src) {
7347   InstructionMark im(this);
7348   prefixq(src, dst);
7349   emit_int8((unsigned char)0x0F);
7350   emit_int8((unsigned char)0xB6);
7351   emit_operand(dst, src);
7352 }
7353 
7354 void Assembler::movzbq(Register dst, Register src) {
7355   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7356   emit_int8(0x0F);
7357   emit_int8((unsigned char)0xB6);
7358   emit_int8(0xC0 | encode);
7359 }
7360 
7361 void Assembler::movzwq(Register dst, Address src) {
7362   InstructionMark im(this);
7363   prefixq(src, dst);
7364   emit_int8((unsigned char)0x0F);
7365   emit_int8((unsigned char)0xB7);
7366   emit_operand(dst, src);
7367 }
7368 
7369 void Assembler::movzwq(Register dst, Register src) {
7370   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7371   emit_int8((unsigned char)0x0F);
7372   emit_int8((unsigned char)0xB7);
7373   emit_int8((unsigned char)(0xC0 | encode));
7374 }
7375 
7376 void Assembler::mulq(Address src) {
7377   InstructionMark im(this);
7378   prefixq(src);
7379   emit_int8((unsigned char)0xF7);
7380   emit_operand(rsp, src);
7381 }
7382 
7383 void Assembler::mulq(Register src) {
7384   int encode = prefixq_and_encode(src->encoding());
7385   emit_int8((unsigned char)0xF7);
7386   emit_int8((unsigned char)(0xE0 | encode));
7387 }
7388 
7389 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7390   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7391   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38,
7392                                     /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
7393   emit_int8((unsigned char)0xF6);
7394   emit_int8((unsigned char)(0xC0 | encode));
7395 }
7396 
7397 void Assembler::negq(Register dst) {
7398   int encode = prefixq_and_encode(dst->encoding());
7399   emit_int8((unsigned char)0xF7);
7400   emit_int8((unsigned char)(0xD8 | encode));
7401 }
7402 
7403 void Assembler::notq(Register dst) {
7404   int encode = prefixq_and_encode(dst->encoding());
7405   emit_int8((unsigned char)0xF7);
7406   emit_int8((unsigned char)(0xD0 | encode));
7407 }
7408 
7409 void Assembler::orq(Address dst, int32_t imm32) {
7410   InstructionMark im(this);
7411   prefixq(dst);
7412   emit_int8((unsigned char)0x81);
7413   emit_operand(rcx, dst, 4);
7414   emit_int32(imm32);
7415 }
7416 
7417 void Assembler::orq(Register dst, int32_t imm32) {
7418   (void) prefixq_and_encode(dst->encoding());
7419   emit_arith(0x81, 0xC8, dst, imm32);
7420 }
7421 
7422 void Assembler::orq(Register dst, Address src) {
7423   InstructionMark im(this);
7424   prefixq(src, dst);
7425   emit_int8(0x0B);
7426   emit_operand(dst, src);
7427 }
7428 
7429 void Assembler::orq(Register dst, Register src) {
7430   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7431   emit_arith(0x0B, 0xC0, dst, src);
7432 }
7433 
7434 void Assembler::popa() { // 64bit
7435   movq(r15, Address(rsp, 0));
7436   movq(r14, Address(rsp, wordSize));
7437   movq(r13, Address(rsp, 2 * wordSize));
7438   movq(r12, Address(rsp, 3 * wordSize));
7439   movq(r11, Address(rsp, 4 * wordSize));
7440   movq(r10, Address(rsp, 5 * wordSize));
7441   movq(r9,  Address(rsp, 6 * wordSize));
7442   movq(r8,  Address(rsp, 7 * wordSize));
7443   movq(rdi, Address(rsp, 8 * wordSize));
7444   movq(rsi, Address(rsp, 9 * wordSize));
7445   movq(rbp, Address(rsp, 10 * wordSize));
7446   // skip rsp
7447   movq(rbx, Address(rsp, 12 * wordSize));
7448   movq(rdx, Address(rsp, 13 * wordSize));
7449   movq(rcx, Address(rsp, 14 * wordSize));
7450   movq(rax, Address(rsp, 15 * wordSize));
7451 
7452   addq(rsp, 16 * wordSize);
7453 }
7454 
7455 void Assembler::popcntq(Register dst, Address src) {
7456   assert(VM_Version::supports_popcnt(), "must support");
7457   InstructionMark im(this);
7458   emit_int8((unsigned char)0xF3);
7459   prefixq(src, dst);
7460   emit_int8((unsigned char)0x0F);
7461   emit_int8((unsigned char)0xB8);
7462   emit_operand(dst, src);
7463 }
7464 
7465 void Assembler::popcntq(Register dst, Register src) {
7466   assert(VM_Version::supports_popcnt(), "must support");
7467   emit_int8((unsigned char)0xF3);
7468   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7469   emit_int8((unsigned char)0x0F);
7470   emit_int8((unsigned char)0xB8);
7471   emit_int8((unsigned char)(0xC0 | encode));
7472 }
7473 
7474 void Assembler::popq(Address dst) {
7475   InstructionMark im(this);
7476   prefixq(dst);
7477   emit_int8((unsigned char)0x8F);
7478   emit_operand(rax, dst);
7479 }
7480 
7481 void Assembler::pusha() { // 64bit
7482   // we have to store original rsp.  ABI says that 128 bytes
7483   // below rsp are local scratch.
7484   movq(Address(rsp, -5 * wordSize), rsp);
7485 
7486   subq(rsp, 16 * wordSize);
7487 
7488   movq(Address(rsp, 15 * wordSize), rax);
7489   movq(Address(rsp, 14 * wordSize), rcx);
7490   movq(Address(rsp, 13 * wordSize), rdx);
7491   movq(Address(rsp, 12 * wordSize), rbx);
7492   // skip rsp
7493   movq(Address(rsp, 10 * wordSize), rbp);
7494   movq(Address(rsp, 9 * wordSize), rsi);
7495   movq(Address(rsp, 8 * wordSize), rdi);
7496   movq(Address(rsp, 7 * wordSize), r8);
7497   movq(Address(rsp, 6 * wordSize), r9);
7498   movq(Address(rsp, 5 * wordSize), r10);
7499   movq(Address(rsp, 4 * wordSize), r11);
7500   movq(Address(rsp, 3 * wordSize), r12);
7501   movq(Address(rsp, 2 * wordSize), r13);
7502   movq(Address(rsp, wordSize), r14);
7503   movq(Address(rsp, 0), r15);
7504 }
7505 
7506 void Assembler::pushq(Address src) {
7507   InstructionMark im(this);
7508   prefixq(src);
7509   emit_int8((unsigned char)0xFF);
7510   emit_operand(rsi, src);
7511 }
7512 
7513 void Assembler::rclq(Register dst, int imm8) {
7514   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7515   int encode = prefixq_and_encode(dst->encoding());
7516   if (imm8 == 1) {
7517     emit_int8((unsigned char)0xD1);
7518     emit_int8((unsigned char)(0xD0 | encode));
7519   } else {
7520     emit_int8((unsigned char)0xC1);
7521     emit_int8((unsigned char)(0xD0 | encode));
7522     emit_int8(imm8);
7523   }
7524 }
7525 
7526 void Assembler::rcrq(Register dst, int imm8) {
7527   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7528   int encode = prefixq_and_encode(dst->encoding());
7529   if (imm8 == 1) {
7530     emit_int8((unsigned char)0xD1);
7531     emit_int8((unsigned char)(0xD8 | encode));
7532   } else {
7533     emit_int8((unsigned char)0xC1);
7534     emit_int8((unsigned char)(0xD8 | encode));
7535     emit_int8(imm8);
7536   }
7537 }
7538 
7539 void Assembler::rorq(Register dst, int imm8) {
7540   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7541   int encode = prefixq_and_encode(dst->encoding());
7542   if (imm8 == 1) {
7543     emit_int8((unsigned char)0xD1);
7544     emit_int8((unsigned char)(0xC8 | encode));
7545   } else {
7546     emit_int8((unsigned char)0xC1);
7547     emit_int8((unsigned char)(0xc8 | encode));
7548     emit_int8(imm8);
7549   }
7550 }
7551 
7552 void Assembler::rorxq(Register dst, Register src, int imm8) {
7553   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7554   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A,
7555                                      /* vex_w */ true, AVX_128bit, /* legacy_mode */ true, /* no_mask_reg */ false);
7556   emit_int8((unsigned char)0xF0);
7557   emit_int8((unsigned char)(0xC0 | encode));
7558   emit_int8(imm8);
7559 }
7560 
7561 void Assembler::sarq(Register dst, int imm8) {
7562   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7563   int encode = prefixq_and_encode(dst->encoding());
7564   if (imm8 == 1) {
7565     emit_int8((unsigned char)0xD1);
7566     emit_int8((unsigned char)(0xF8 | encode));
7567   } else {
7568     emit_int8((unsigned char)0xC1);
7569     emit_int8((unsigned char)(0xF8 | encode));
7570     emit_int8(imm8);
7571   }
7572 }
7573 
7574 void Assembler::sarq(Register dst) {
7575   int encode = prefixq_and_encode(dst->encoding());
7576   emit_int8((unsigned char)0xD3);
7577   emit_int8((unsigned char)(0xF8 | encode));
7578 }
7579 
7580 void Assembler::sbbq(Address dst, int32_t imm32) {
7581   InstructionMark im(this);
7582   prefixq(dst);
7583   emit_arith_operand(0x81, rbx, dst, imm32);
7584 }
7585 
7586 void Assembler::sbbq(Register dst, int32_t imm32) {
7587   (void) prefixq_and_encode(dst->encoding());
7588   emit_arith(0x81, 0xD8, dst, imm32);
7589 }
7590 
7591 void Assembler::sbbq(Register dst, Address src) {
7592   InstructionMark im(this);
7593   prefixq(src, dst);
7594   emit_int8(0x1B);
7595   emit_operand(dst, src);
7596 }
7597 
7598 void Assembler::sbbq(Register dst, Register src) {
7599   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7600   emit_arith(0x1B, 0xC0, dst, src);
7601 }
7602 
7603 void Assembler::shlq(Register dst, int imm8) {
7604   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7605   int encode = prefixq_and_encode(dst->encoding());
7606   if (imm8 == 1) {
7607     emit_int8((unsigned char)0xD1);
7608     emit_int8((unsigned char)(0xE0 | encode));
7609   } else {
7610     emit_int8((unsigned char)0xC1);
7611     emit_int8((unsigned char)(0xE0 | encode));
7612     emit_int8(imm8);
7613   }
7614 }
7615 
7616 void Assembler::shlq(Register dst) {
7617   int encode = prefixq_and_encode(dst->encoding());
7618   emit_int8((unsigned char)0xD3);
7619   emit_int8((unsigned char)(0xE0 | encode));
7620 }
7621 
7622 void Assembler::shrq(Register dst, int imm8) {
7623   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7624   int encode = prefixq_and_encode(dst->encoding());
7625   emit_int8((unsigned char)0xC1);
7626   emit_int8((unsigned char)(0xE8 | encode));
7627   emit_int8(imm8);
7628 }
7629 
7630 void Assembler::shrq(Register dst) {
7631   int encode = prefixq_and_encode(dst->encoding());
7632   emit_int8((unsigned char)0xD3);
7633   emit_int8(0xE8 | encode);
7634 }
7635 
7636 void Assembler::subq(Address dst, int32_t imm32) {
7637   InstructionMark im(this);
7638   prefixq(dst);
7639   emit_arith_operand(0x81, rbp, dst, imm32);
7640 }
7641 
7642 void Assembler::subq(Address dst, Register src) {
7643   InstructionMark im(this);
7644   prefixq(dst, src);
7645   emit_int8(0x29);
7646   emit_operand(src, dst);
7647 }
7648 
7649 void Assembler::subq(Register dst, int32_t imm32) {
7650   (void) prefixq_and_encode(dst->encoding());
7651   emit_arith(0x81, 0xE8, dst, imm32);
7652 }
7653 
7654 // Force generation of a 4 byte immediate value even if it fits into 8bit
7655 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7656   (void) prefixq_and_encode(dst->encoding());
7657   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7658 }
7659 
7660 void Assembler::subq(Register dst, Address src) {
7661   InstructionMark im(this);
7662   prefixq(src, dst);
7663   emit_int8(0x2B);
7664   emit_operand(dst, src);
7665 }
7666 
7667 void Assembler::subq(Register dst, Register src) {
7668   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7669   emit_arith(0x2B, 0xC0, dst, src);
7670 }
7671 
7672 void Assembler::testq(Register dst, int32_t imm32) {
7673   // not using emit_arith because test
7674   // doesn't support sign-extension of
7675   // 8bit operands
7676   int encode = dst->encoding();
7677   if (encode == 0) {
7678     prefix(REX_W);
7679     emit_int8((unsigned char)0xA9);
7680   } else {
7681     encode = prefixq_and_encode(encode);
7682     emit_int8((unsigned char)0xF7);
7683     emit_int8((unsigned char)(0xC0 | encode));
7684   }
7685   emit_int32(imm32);
7686 }
7687 
7688 void Assembler::testq(Register dst, Register src) {
7689   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7690   emit_arith(0x85, 0xC0, dst, src);
7691 }
7692 
7693 void Assembler::xaddq(Address dst, Register src) {
7694   InstructionMark im(this);
7695   prefixq(dst, src);
7696   emit_int8(0x0F);
7697   emit_int8((unsigned char)0xC1);
7698   emit_operand(src, dst);
7699 }
7700 
7701 void Assembler::xchgq(Register dst, Address src) {
7702   InstructionMark im(this);
7703   prefixq(src, dst);
7704   emit_int8((unsigned char)0x87);
7705   emit_operand(dst, src);
7706 }
7707 
7708 void Assembler::xchgq(Register dst, Register src) {
7709   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7710   emit_int8((unsigned char)0x87);
7711   emit_int8((unsigned char)(0xc0 | encode));
7712 }
7713 
7714 void Assembler::xorq(Register dst, Register src) {
7715   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7716   emit_arith(0x33, 0xC0, dst, src);
7717 }
7718 
7719 void Assembler::xorq(Register dst, Address src) {
7720   InstructionMark im(this);
7721   prefixq(src, dst);
7722   emit_int8(0x33);
7723   emit_operand(dst, src);
7724 }
7725 
7726 #endif // !LP64