1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  84 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  85 
  86 
  87 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  88   LIR_Opr opr;
  89   switch (type->tag()) {
  90     case intTag:     opr = FrameMap::rax_opr;          break;
  91     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  92     case longTag:    opr = FrameMap::long0_opr;        break;
  93     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  94     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  95 
  96     case addressTag:
  97     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  98   }
  99 
 100   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 101   return opr;
 102 }
 103 
 104 
 105 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 106   LIR_Opr reg = new_register(T_INT);
 107   set_vreg_flag(reg, LIRGenerator::byte_reg);
 108   return reg;
 109 }
 110 
 111 
 112 //--------- loading items into registers --------------------------------
 113 
 114 
 115 // i486 instructions can inline constants
 116 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 117   if (type == T_SHORT || type == T_CHAR) {
 118     // there is no immediate move of word values in asembler_i486.?pp
 119     return false;
 120   }
 121   Constant* c = v->as_Constant();
 122   if (c && c->state_before() == NULL) {
 123     // constants of any type can be stored directly, except for
 124     // unloaded object constants.
 125     return true;
 126   }
 127   return false;
 128 }
 129 
 130 
 131 bool LIRGenerator::can_inline_as_constant(Value v) const {
 132   if (v->type()->tag() == longTag) return false;
 133   return v->type()->tag() != objectTag ||
 134     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 139   if (c->type() == T_LONG) return false;
 140   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 141 }
 142 
 143 
 144 LIR_Opr LIRGenerator::safepoint_poll_register() {
 145   return LIR_OprFact::illegalOpr;
 146 }
 147 
 148 
 149 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 150                                             int shift, int disp, BasicType type) {
 151   assert(base->is_register(), "must be");
 152   if (index->is_constant()) {
 153     return new LIR_Address(base,
 154                            (index->as_constant_ptr()->as_jint() << shift) + disp,
 155                            type);
 156   } else {
 157     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 158   }
 159 }
 160 
 161 
 162 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 163                                               BasicType type, bool needs_card_mark) {
 164   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 165 
 166   LIR_Address* addr;
 167   if (index_opr->is_constant()) {
 168     int elem_size = type2aelembytes(type);
 169     addr = new LIR_Address(array_opr,
 170                            offset_in_bytes + index_opr->as_jint() * elem_size, type);
 171   } else {
 172 #ifdef _LP64
 173     if (index_opr->type() == T_INT) {
 174       LIR_Opr tmp = new_register(T_LONG);
 175       __ convert(Bytecodes::_i2l, index_opr, tmp);
 176       index_opr = tmp;
 177     }
 178 #endif // _LP64
 179     addr =  new LIR_Address(array_opr,
 180                             index_opr,
 181                             LIR_Address::scale(type),
 182                             offset_in_bytes, type);
 183   }
 184   if (needs_card_mark) {
 185     // This store will need a precise card mark, so go ahead and
 186     // compute the full adddres instead of computing once for the
 187     // store and again for the card mark.
 188     LIR_Opr tmp = new_pointer_register();
 189     __ leal(LIR_OprFact::address(addr), tmp);
 190     return new LIR_Address(tmp, type);
 191   } else {
 192     return addr;
 193   }
 194 }
 195 
 196 
 197 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 198   LIR_Opr r;
 199   if (type == T_LONG) {
 200     r = LIR_OprFact::longConst(x);
 201   } else if (type == T_INT) {
 202     r = LIR_OprFact::intConst(x);
 203   } else {
 204     ShouldNotReachHere();
 205   }
 206   return r;
 207 }
 208 
 209 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 210   LIR_Opr pointer = new_pointer_register();
 211   __ move(LIR_OprFact::intptrConst(counter), pointer);
 212   LIR_Address* addr = new LIR_Address(pointer, type);
 213   increment_counter(addr, step);
 214 }
 215 
 216 
 217 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 218   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 219 }
 220 
 221 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 222   __ cmp_mem_int(condition, base, disp, c, info);
 223 }
 224 
 225 
 226 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 227   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 228 }
 229 
 230 
 231 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 232   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 233 }
 234 
 235 
 236 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 237   if (tmp->is_valid()) {
 238     if (is_power_of_2(c + 1)) {
 239       __ move(left, tmp);
 240       __ shift_left(left, log2_intptr(c + 1), left);
 241       __ sub(left, tmp, result);
 242       return true;
 243     } else if (is_power_of_2(c - 1)) {
 244       __ move(left, tmp);
 245       __ shift_left(left, log2_intptr(c - 1), left);
 246       __ add(left, tmp, result);
 247       return true;
 248     }
 249   }
 250   return false;
 251 }
 252 
 253 
 254 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 255   BasicType type = item->type();
 256   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 257 }
 258 
 259 //----------------------------------------------------------------------
 260 //             visitor functions
 261 //----------------------------------------------------------------------
 262 
 263 
 264 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 265   assert(x->is_pinned(),"");
 266   bool needs_range_check = x->compute_needs_range_check();
 267   bool use_length = x->length() != NULL;
 268   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 269   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 270                                          !get_jobject_constant(x->value())->is_null_object() ||
 271                                          x->should_profile());
 272 
 273   LIRItem array(x->array(), this);
 274   LIRItem index(x->index(), this);
 275   LIRItem value(x->value(), this);
 276   LIRItem length(this);
 277 
 278   array.load_item();
 279   index.load_nonconstant();
 280 
 281   if (use_length && needs_range_check) {
 282     length.set_instruction(x->length());
 283     length.load_item();
 284 
 285   }
 286   if (needs_store_check) {
 287     value.load_item();
 288   } else {
 289     value.load_for_store(x->elt_type());
 290   }
 291 
 292   set_no_result(x);
 293 
 294   // the CodeEmitInfo must be duplicated for each different
 295   // LIR-instruction because spilling can occur anywhere between two
 296   // instructions and so the debug information must be different
 297   CodeEmitInfo* range_check_info = state_for(x);
 298   CodeEmitInfo* null_check_info = NULL;
 299   if (x->needs_null_check()) {
 300     null_check_info = new CodeEmitInfo(range_check_info);
 301   }
 302 
 303   // emit array address setup early so it schedules better
 304   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 305 
 306   if (GenerateRangeChecks && needs_range_check) {
 307     if (use_length) {
 308       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 309       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 310     } else {
 311       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 312       // range_check also does the null check
 313       null_check_info = NULL;
 314     }
 315   }
 316 
 317   if (GenerateArrayStoreCheck && needs_store_check) {
 318     LIR_Opr tmp1 = new_register(objectType);
 319     LIR_Opr tmp2 = new_register(objectType);
 320     LIR_Opr tmp3 = new_register(objectType);
 321 
 322     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 323     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 324   }
 325 
 326   if (obj_store) {
 327     // Needs GC write barriers.
 328     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 329                 true /* do_load */, false /* patch */, NULL);
 330     __ move(value.result(), array_addr, null_check_info);
 331     // Seems to be a precise
 332     post_barrier(LIR_OprFact::address(array_addr), value.result());
 333   } else {
 334     __ move(value.result(), array_addr, null_check_info);
 335   }
 336 }
 337 
 338 
 339 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 340   assert(x->is_pinned(),"");
 341   LIRItem obj(x->obj(), this);
 342   obj.load_item();
 343 
 344   set_no_result(x);
 345 
 346   // "lock" stores the address of the monitor stack slot, so this is not an oop
 347   LIR_Opr lock = new_register(T_INT);
 348   // Need a scratch register for biased locking on x86
 349   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 350   if (UseBiasedLocking) {
 351     scratch = new_register(T_INT);
 352   }
 353 
 354   CodeEmitInfo* info_for_exception = NULL;
 355   if (x->needs_null_check()) {
 356     info_for_exception = state_for(x);
 357   }
 358   // this CodeEmitInfo must not have the xhandlers because here the
 359   // object is already locked (xhandlers expect object to be unlocked)
 360   CodeEmitInfo* info = state_for(x, x->state(), true);
 361   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 362                         x->monitor_no(), info_for_exception, info);
 363 }
 364 
 365 
 366 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 367   assert(x->is_pinned(),"");
 368 
 369   LIRItem obj(x->obj(), this);
 370   obj.dont_load_item();
 371 
 372   LIR_Opr lock = new_register(T_INT);
 373   LIR_Opr obj_temp = new_register(T_INT);
 374   set_no_result(x);
 375   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 376 }
 377 
 378 
 379 // _ineg, _lneg, _fneg, _dneg
 380 void LIRGenerator::do_NegateOp(NegateOp* x) {
 381   LIRItem value(x->x(), this);
 382   value.set_destroys_register();
 383   value.load_item();
 384   LIR_Opr reg = rlock(x);
 385   __ negate(value.result(), reg);
 386 
 387   set_result(x, round_item(reg));
 388 }
 389 
 390 
 391 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 392 //      _dadd, _dmul, _dsub, _ddiv, _drem
 393 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 394   LIRItem left(x->x(),  this);
 395   LIRItem right(x->y(), this);
 396   LIRItem* left_arg  = &left;
 397   LIRItem* right_arg = &right;
 398   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 399   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 400   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 401     left.load_item();
 402   } else {
 403     left.dont_load_item();
 404   }
 405 
 406   // do not load right operand if it is a constant.  only 0 and 1 are
 407   // loaded because there are special instructions for loading them
 408   // without memory access (not needed for SSE2 instructions)
 409   bool must_load_right = false;
 410   if (right.is_constant()) {
 411     LIR_Const* c = right.result()->as_constant_ptr();
 412     assert(c != NULL, "invalid constant");
 413     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 414 
 415     if (c->type() == T_FLOAT) {
 416       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 417     } else {
 418       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 419     }
 420   }
 421 
 422   if (must_load_both) {
 423     // frem and drem destroy also right operand, so move it to a new register
 424     right.set_destroys_register();
 425     right.load_item();
 426   } else if (right.is_register() || must_load_right) {
 427     right.load_item();
 428   } else {
 429     right.dont_load_item();
 430   }
 431   LIR_Opr reg = rlock(x);
 432   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 433   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 434     tmp = new_register(T_DOUBLE);
 435   }
 436 
 437   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 438     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 439     LIR_Opr fpu0, fpu1;
 440     if (x->op() == Bytecodes::_frem) {
 441       fpu0 = LIR_OprFact::single_fpu(0);
 442       fpu1 = LIR_OprFact::single_fpu(1);
 443     } else {
 444       fpu0 = LIR_OprFact::double_fpu(0);
 445       fpu1 = LIR_OprFact::double_fpu(1);
 446     }
 447     __ move(right.result(), fpu1); // order of left and right operand is important!
 448     __ move(left.result(), fpu0);
 449     __ rem (fpu0, fpu1, fpu0);
 450     __ move(fpu0, reg);
 451 
 452   } else {
 453     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 454   }
 455 
 456   set_result(x, round_item(reg));
 457 }
 458 
 459 
 460 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 461 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 462   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 463     // long division is implemented as a direct call into the runtime
 464     LIRItem left(x->x(), this);
 465     LIRItem right(x->y(), this);
 466 
 467     // the check for division by zero destroys the right operand
 468     right.set_destroys_register();
 469 
 470     BasicTypeList signature(2);
 471     signature.append(T_LONG);
 472     signature.append(T_LONG);
 473     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 474 
 475     // check for division by zero (destroys registers of right operand!)
 476     CodeEmitInfo* info = state_for(x);
 477 
 478     const LIR_Opr result_reg = result_register_for(x->type());
 479     left.load_item_force(cc->at(1));
 480     right.load_item();
 481 
 482     __ move(right.result(), cc->at(0));
 483 
 484     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 485     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 486 
 487     address entry;
 488     switch (x->op()) {
 489     case Bytecodes::_lrem:
 490       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 491       break; // check if dividend is 0 is done elsewhere
 492     case Bytecodes::_ldiv:
 493       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 494       break; // check if dividend is 0 is done elsewhere
 495     case Bytecodes::_lmul:
 496       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 497       break;
 498     default:
 499       ShouldNotReachHere();
 500     }
 501 
 502     LIR_Opr result = rlock_result(x);
 503     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 504     __ move(result_reg, result);
 505   } else if (x->op() == Bytecodes::_lmul) {
 506     // missing test if instr is commutative and if we should swap
 507     LIRItem left(x->x(), this);
 508     LIRItem right(x->y(), this);
 509 
 510     // right register is destroyed by the long mul, so it must be
 511     // copied to a new register.
 512     right.set_destroys_register();
 513 
 514     left.load_item();
 515     right.load_item();
 516 
 517     LIR_Opr reg = FrameMap::long0_opr;
 518     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 519     LIR_Opr result = rlock_result(x);
 520     __ move(reg, result);
 521   } else {
 522     // missing test if instr is commutative and if we should swap
 523     LIRItem left(x->x(), this);
 524     LIRItem right(x->y(), this);
 525 
 526     left.load_item();
 527     // don't load constants to save register
 528     right.load_nonconstant();
 529     rlock_result(x);
 530     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 531   }
 532 }
 533 
 534 
 535 
 536 // for: _iadd, _imul, _isub, _idiv, _irem
 537 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 538   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 539     // The requirements for division and modulo
 540     // input : rax,: dividend                         min_int
 541     //         reg: divisor   (may not be rax,/rdx)   -1
 542     //
 543     // output: rax,: quotient  (= rax, idiv reg)       min_int
 544     //         rdx: remainder (= rax, irem reg)       0
 545 
 546     // rax, and rdx will be destroyed
 547 
 548     // Note: does this invalidate the spec ???
 549     LIRItem right(x->y(), this);
 550     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 551 
 552     // call state_for before load_item_force because state_for may
 553     // force the evaluation of other instructions that are needed for
 554     // correct debug info.  Otherwise the live range of the fix
 555     // register might be too long.
 556     CodeEmitInfo* info = state_for(x);
 557 
 558     left.load_item_force(divInOpr());
 559 
 560     right.load_item();
 561 
 562     LIR_Opr result = rlock_result(x);
 563     LIR_Opr result_reg;
 564     if (x->op() == Bytecodes::_idiv) {
 565       result_reg = divOutOpr();
 566     } else {
 567       result_reg = remOutOpr();
 568     }
 569 
 570     if (!ImplicitDiv0Checks) {
 571       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 572       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 573     }
 574     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 575     if (x->op() == Bytecodes::_irem) {
 576       __ irem(left.result(), right.result(), result_reg, tmp, info);
 577     } else if (x->op() == Bytecodes::_idiv) {
 578       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 579     } else {
 580       ShouldNotReachHere();
 581     }
 582 
 583     __ move(result_reg, result);
 584   } else {
 585     // missing test if instr is commutative and if we should swap
 586     LIRItem left(x->x(),  this);
 587     LIRItem right(x->y(), this);
 588     LIRItem* left_arg = &left;
 589     LIRItem* right_arg = &right;
 590     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 591       // swap them if left is real stack (or cached) and right is real register(not cached)
 592       left_arg = &right;
 593       right_arg = &left;
 594     }
 595 
 596     left_arg->load_item();
 597 
 598     // do not need to load right, as we can handle stack and constants
 599     if (x->op() == Bytecodes::_imul ) {
 600       // check if we can use shift instead
 601       bool use_constant = false;
 602       bool use_tmp = false;
 603       if (right_arg->is_constant()) {
 604         int iconst = right_arg->get_jint_constant();
 605         if (iconst > 0) {
 606           if (is_power_of_2(iconst)) {
 607             use_constant = true;
 608           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 609             use_constant = true;
 610             use_tmp = true;
 611           }
 612         }
 613       }
 614       if (use_constant) {
 615         right_arg->dont_load_item();
 616       } else {
 617         right_arg->load_item();
 618       }
 619       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 620       if (use_tmp) {
 621         tmp = new_register(T_INT);
 622       }
 623       rlock_result(x);
 624 
 625       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 626     } else {
 627       right_arg->dont_load_item();
 628       rlock_result(x);
 629       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 630       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 631     }
 632   }
 633 }
 634 
 635 
 636 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 637   // when an operand with use count 1 is the left operand, then it is
 638   // likely that no move for 2-operand-LIR-form is necessary
 639   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 640     x->swap_operands();
 641   }
 642 
 643   ValueTag tag = x->type()->tag();
 644   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 645   switch (tag) {
 646     case floatTag:
 647     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 648     case longTag:    do_ArithmeticOp_Long(x); return;
 649     case intTag:     do_ArithmeticOp_Int(x);  return;
 650   }
 651   ShouldNotReachHere();
 652 }
 653 
 654 
 655 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 656 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 657   // count must always be in rcx
 658   LIRItem value(x->x(), this);
 659   LIRItem count(x->y(), this);
 660 
 661   ValueTag elemType = x->type()->tag();
 662   bool must_load_count = !count.is_constant() || elemType == longTag;
 663   if (must_load_count) {
 664     // count for long must be in register
 665     count.load_item_force(shiftCountOpr());
 666   } else {
 667     count.dont_load_item();
 668   }
 669   value.load_item();
 670   LIR_Opr reg = rlock_result(x);
 671 
 672   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 673 }
 674 
 675 
 676 // _iand, _land, _ior, _lor, _ixor, _lxor
 677 void LIRGenerator::do_LogicOp(LogicOp* x) {
 678   // when an operand with use count 1 is the left operand, then it is
 679   // likely that no move for 2-operand-LIR-form is necessary
 680   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 681     x->swap_operands();
 682   }
 683 
 684   LIRItem left(x->x(), this);
 685   LIRItem right(x->y(), this);
 686 
 687   left.load_item();
 688   right.load_nonconstant();
 689   LIR_Opr reg = rlock_result(x);
 690 
 691   logic_op(x->op(), reg, left.result(), right.result());
 692 }
 693 
 694 
 695 
 696 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 697 void LIRGenerator::do_CompareOp(CompareOp* x) {
 698   LIRItem left(x->x(), this);
 699   LIRItem right(x->y(), this);
 700   ValueTag tag = x->x()->type()->tag();
 701   if (tag == longTag) {
 702     left.set_destroys_register();
 703   }
 704   left.load_item();
 705   right.load_item();
 706   LIR_Opr reg = rlock_result(x);
 707 
 708   if (x->x()->type()->is_float_kind()) {
 709     Bytecodes::Code code = x->op();
 710     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 711   } else if (x->x()->type()->tag() == longTag) {
 712     __ lcmp2int(left.result(), right.result(), reg);
 713   } else {
 714     Unimplemented();
 715   }
 716 }
 717 
 718 
 719 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 720   assert(x->number_of_arguments() == 4, "wrong type");
 721   LIRItem obj   (x->argument_at(0), this);  // object
 722   LIRItem offset(x->argument_at(1), this);  // offset of field
 723   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 724   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 725 
 726   assert(obj.type()->tag() == objectTag, "invalid type");
 727 
 728   // In 64bit the type can be long, sparc doesn't have this assert
 729   // assert(offset.type()->tag() == intTag, "invalid type");
 730 
 731   assert(cmp.type()->tag() == type->tag(), "invalid type");
 732   assert(val.type()->tag() == type->tag(), "invalid type");
 733 
 734   // get address of field
 735   obj.load_item();
 736   offset.load_nonconstant();
 737 
 738   if (type == objectType) {
 739     cmp.load_item_force(FrameMap::rax_oop_opr);
 740     val.load_item();
 741   } else if (type == intType) {
 742     cmp.load_item_force(FrameMap::rax_opr);
 743     val.load_item();
 744   } else if (type == longType) {
 745     cmp.load_item_force(FrameMap::long0_opr);
 746     val.load_item_force(FrameMap::long1_opr);
 747   } else {
 748     ShouldNotReachHere();
 749   }
 750 
 751   LIR_Opr addr = new_pointer_register();
 752   LIR_Address* a;
 753   if(offset.result()->is_constant()) {
 754 #ifdef _LP64
 755     jlong c = offset.result()->as_jlong();
 756     if ((jlong)((jint)c) == c) {
 757       a = new LIR_Address(obj.result(),
 758                           (jint)c,
 759                           as_BasicType(type));
 760     } else {
 761       LIR_Opr tmp = new_register(T_LONG);
 762       __ move(offset.result(), tmp);
 763       a = new LIR_Address(obj.result(),
 764                           tmp,
 765                           as_BasicType(type));
 766     }
 767 #else
 768     a = new LIR_Address(obj.result(),
 769                         offset.result()->as_jint(),
 770                         as_BasicType(type));
 771 #endif
 772   } else {
 773     a = new LIR_Address(obj.result(),
 774                         offset.result(),
 775                         LIR_Address::times_1,
 776                         0,
 777                         as_BasicType(type));
 778   }
 779   __ leal(LIR_OprFact::address(a), addr);
 780 
 781   if (type == objectType) {  // Write-barrier needed for Object fields.
 782     // Do the pre-write barrier, if any.
 783     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 784                 true /* do_load */, false /* patch */, NULL);
 785   }
 786 
 787   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 788   if (type == objectType)
 789     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 790   else if (type == intType)
 791     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 792   else if (type == longType)
 793     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 794   else {
 795     ShouldNotReachHere();
 796   }
 797 
 798   // generate conditional move of boolean result
 799   LIR_Opr result = rlock_result(x);
 800   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 801            result, as_BasicType(type));
 802   if (type == objectType) {   // Write-barrier needed for Object fields.
 803     // Seems to be precise
 804     post_barrier(addr, val.result());
 805   }
 806 }
 807 
 808 
 809 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 810   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 811 
 812   if (x->id() == vmIntrinsics::_dexp) {
 813     do_ExpIntrinsic(x);
 814     return;
 815   }
 816 
 817   LIRItem value(x->argument_at(0), this);
 818 
 819   bool use_fpu = false;
 820   if (UseSSE >= 2) {
 821     switch(x->id()) {
 822       case vmIntrinsics::_dsin:
 823       case vmIntrinsics::_dcos:
 824       case vmIntrinsics::_dtan:
 825       case vmIntrinsics::_dlog:
 826       case vmIntrinsics::_dlog10:
 827       case vmIntrinsics::_dpow:
 828         use_fpu = true;
 829     }
 830   } else {
 831     value.set_destroys_register();
 832   }
 833 
 834   value.load_item();
 835 
 836   LIR_Opr calc_input = value.result();
 837   LIR_Opr calc_input2 = NULL;
 838   if (x->id() == vmIntrinsics::_dpow) {
 839     LIRItem extra_arg(x->argument_at(1), this);
 840     if (UseSSE < 2) {
 841       extra_arg.set_destroys_register();
 842     }
 843     extra_arg.load_item();
 844     calc_input2 = extra_arg.result();
 845   }
 846   LIR_Opr calc_result = rlock_result(x);
 847 
 848   // sin, cos, pow and exp need two free fpu stack slots, so register
 849   // two temporary operands
 850   LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
 851   LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
 852 
 853   if (use_fpu) {
 854     LIR_Opr tmp = FrameMap::fpu0_double_opr;
 855     int tmp_start = 1;
 856     if (calc_input2 != NULL) {
 857       __ move(calc_input2, tmp);
 858       tmp_start = 2;
 859       calc_input2 = tmp;
 860     }
 861     __ move(calc_input, tmp);
 862 
 863     calc_input = tmp;
 864     calc_result = tmp;
 865 
 866     tmp1 = FrameMap::caller_save_fpu_reg_at(tmp_start);
 867     tmp2 = FrameMap::caller_save_fpu_reg_at(tmp_start + 1);
 868   }
 869 
 870   switch(x->id()) {
 871     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 872     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 873     case vmIntrinsics::_dsin:   __ sin  (calc_input, calc_result, tmp1, tmp2);              break;
 874     case vmIntrinsics::_dcos:   __ cos  (calc_input, calc_result, tmp1, tmp2);              break;
 875     case vmIntrinsics::_dtan:   __ tan  (calc_input, calc_result, tmp1, tmp2);              break;
 876     case vmIntrinsics::_dlog:   __ log  (calc_input, calc_result, tmp1);                    break;
 877     case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, tmp1);                    break;
 878     case vmIntrinsics::_dpow:   __ pow  (calc_input, calc_input2, calc_result, tmp1, tmp2, FrameMap::rax_opr, FrameMap::rcx_opr, FrameMap::rdx_opr); break;
 879     default:                    ShouldNotReachHere();
 880   }
 881 
 882   if (use_fpu) {
 883     __ move(calc_result, x->operand());
 884   }
 885 }
 886 
 887 void LIRGenerator::do_ExpIntrinsic(Intrinsic* x) {
 888   LIRItem value(x->argument_at(0), this);
 889   value.set_destroys_register();
 890 
 891   LIR_Opr calc_result = rlock_result(x);
 892   LIR_Opr result_reg = result_register_for(x->type());
 893 
 894   BasicTypeList signature(1);
 895   signature.append(T_DOUBLE);
 896   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 897 
 898   value.load_item_force(cc->at(0));
 899 
 900 #ifndef _LP64
 901   LIR_Opr tmp = FrameMap::fpu0_double_opr;
 902   result_reg = tmp;
 903   if (VM_Version::supports_sse2()) {
 904     __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 905   } else {
 906     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 907   }
 908 #else
 909   __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 910 #endif
 911   __ move(result_reg, calc_result);
 912 }
 913 
 914 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 915   assert(x->number_of_arguments() == 5, "wrong type");
 916 
 917   // Make all state_for calls early since they can emit code
 918   CodeEmitInfo* info = state_for(x, x->state());
 919 
 920   LIRItem src(x->argument_at(0), this);
 921   LIRItem src_pos(x->argument_at(1), this);
 922   LIRItem dst(x->argument_at(2), this);
 923   LIRItem dst_pos(x->argument_at(3), this);
 924   LIRItem length(x->argument_at(4), this);
 925 
 926   // operands for arraycopy must use fixed registers, otherwise
 927   // LinearScan will fail allocation (because arraycopy always needs a
 928   // call)
 929 
 930 #ifndef _LP64
 931   src.load_item_force     (FrameMap::rcx_oop_opr);
 932   src_pos.load_item_force (FrameMap::rdx_opr);
 933   dst.load_item_force     (FrameMap::rax_oop_opr);
 934   dst_pos.load_item_force (FrameMap::rbx_opr);
 935   length.load_item_force  (FrameMap::rdi_opr);
 936   LIR_Opr tmp =           (FrameMap::rsi_opr);
 937 #else
 938 
 939   // The java calling convention will give us enough registers
 940   // so that on the stub side the args will be perfect already.
 941   // On the other slow/special case side we call C and the arg
 942   // positions are not similar enough to pick one as the best.
 943   // Also because the java calling convention is a "shifted" version
 944   // of the C convention we can process the java args trivially into C
 945   // args without worry of overwriting during the xfer
 946 
 947   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 948   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 949   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 950   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 951   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 952 
 953   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 954 #endif // LP64
 955 
 956   set_no_result(x);
 957 
 958   int flags;
 959   ciArrayKlass* expected_type;
 960   arraycopy_helper(x, &flags, &expected_type);
 961 
 962   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 963 }
 964 
 965 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 966   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
 967   // Make all state_for calls early since they can emit code
 968   LIR_Opr result = rlock_result(x);
 969   int flags = 0;
 970   switch (x->id()) {
 971     case vmIntrinsics::_updateCRC32: {
 972       LIRItem crc(x->argument_at(0), this);
 973       LIRItem val(x->argument_at(1), this);
 974       // val is destroyed by update_crc32
 975       val.set_destroys_register();
 976       crc.load_item();
 977       val.load_item();
 978       __ update_crc32(crc.result(), val.result(), result);
 979       break;
 980     }
 981     case vmIntrinsics::_updateBytesCRC32:
 982     case vmIntrinsics::_updateByteBufferCRC32: {
 983       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 984 
 985       LIRItem crc(x->argument_at(0), this);
 986       LIRItem buf(x->argument_at(1), this);
 987       LIRItem off(x->argument_at(2), this);
 988       LIRItem len(x->argument_at(3), this);
 989       buf.load_item();
 990       off.load_nonconstant();
 991 
 992       LIR_Opr index = off.result();
 993       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 994       if(off.result()->is_constant()) {
 995         index = LIR_OprFact::illegalOpr;
 996        offset += off.result()->as_jint();
 997       }
 998       LIR_Opr base_op = buf.result();
 999 
1000 #ifndef _LP64
1001       if (!is_updateBytes) { // long b raw address
1002          base_op = new_register(T_INT);
1003          __ convert(Bytecodes::_l2i, buf.result(), base_op);
1004       }
1005 #else
1006       if (index->is_valid()) {
1007         LIR_Opr tmp = new_register(T_LONG);
1008         __ convert(Bytecodes::_i2l, index, tmp);
1009         index = tmp;
1010       }
1011 #endif
1012 
1013       LIR_Address* a = new LIR_Address(base_op,
1014                                        index,
1015                                        LIR_Address::times_1,
1016                                        offset,
1017                                        T_BYTE);
1018       BasicTypeList signature(3);
1019       signature.append(T_INT);
1020       signature.append(T_ADDRESS);
1021       signature.append(T_INT);
1022       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1023       const LIR_Opr result_reg = result_register_for(x->type());
1024 
1025       LIR_Opr addr = new_pointer_register();
1026       __ leal(LIR_OprFact::address(a), addr);
1027 
1028       crc.load_item_force(cc->at(0));
1029       __ move(addr, cc->at(1));
1030       len.load_item_force(cc->at(2));
1031 
1032       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1033       __ move(result_reg, result);
1034 
1035       break;
1036     }
1037     default: {
1038       ShouldNotReachHere();
1039     }
1040   }
1041 }
1042 
1043 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1044 // _i2b, _i2c, _i2s
1045 LIR_Opr fixed_register_for(BasicType type) {
1046   switch (type) {
1047     case T_FLOAT:  return FrameMap::fpu0_float_opr;
1048     case T_DOUBLE: return FrameMap::fpu0_double_opr;
1049     case T_INT:    return FrameMap::rax_opr;
1050     case T_LONG:   return FrameMap::long0_opr;
1051     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1052   }
1053 }
1054 
1055 void LIRGenerator::do_Convert(Convert* x) {
1056   // flags that vary for the different operations and different SSE-settings
1057   bool fixed_input, fixed_result, round_result, needs_stub;
1058 
1059   switch (x->op()) {
1060     case Bytecodes::_i2l: // fall through
1061     case Bytecodes::_l2i: // fall through
1062     case Bytecodes::_i2b: // fall through
1063     case Bytecodes::_i2c: // fall through
1064     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1065 
1066     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1067     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1068     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1069     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1070     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1071     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1072     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1073     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1074     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1075     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1076     default: ShouldNotReachHere();
1077   }
1078 
1079   LIRItem value(x->value(), this);
1080   value.load_item();
1081   LIR_Opr input = value.result();
1082   LIR_Opr result = rlock(x);
1083 
1084   // arguments of lir_convert
1085   LIR_Opr conv_input = input;
1086   LIR_Opr conv_result = result;
1087   ConversionStub* stub = NULL;
1088 
1089   if (fixed_input) {
1090     conv_input = fixed_register_for(input->type());
1091     __ move(input, conv_input);
1092   }
1093 
1094   assert(fixed_result == false || round_result == false, "cannot set both");
1095   if (fixed_result) {
1096     conv_result = fixed_register_for(result->type());
1097   } else if (round_result) {
1098     result = new_register(result->type());
1099     set_vreg_flag(result, must_start_in_memory);
1100   }
1101 
1102   if (needs_stub) {
1103     stub = new ConversionStub(x->op(), conv_input, conv_result);
1104   }
1105 
1106   __ convert(x->op(), conv_input, conv_result, stub);
1107 
1108   if (result != conv_result) {
1109     __ move(conv_result, result);
1110   }
1111 
1112   assert(result->is_virtual(), "result must be virtual register");
1113   set_result(x, result);
1114 }
1115 
1116 
1117 void LIRGenerator::do_NewInstance(NewInstance* x) {
1118   print_if_not_loaded(x);
1119 
1120   CodeEmitInfo* info = state_for(x, x->state());
1121   LIR_Opr reg = result_register_for(x->type());
1122   new_instance(reg, x->klass(), x->is_unresolved(),
1123                        FrameMap::rcx_oop_opr,
1124                        FrameMap::rdi_oop_opr,
1125                        FrameMap::rsi_oop_opr,
1126                        LIR_OprFact::illegalOpr,
1127                        FrameMap::rdx_metadata_opr, info);
1128   LIR_Opr result = rlock_result(x);
1129   __ move(reg, result);
1130 }
1131 
1132 
1133 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1134   CodeEmitInfo* info = state_for(x, x->state());
1135 
1136   LIRItem length(x->length(), this);
1137   length.load_item_force(FrameMap::rbx_opr);
1138 
1139   LIR_Opr reg = result_register_for(x->type());
1140   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1141   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1142   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1143   LIR_Opr tmp4 = reg;
1144   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1145   LIR_Opr len = length.result();
1146   BasicType elem_type = x->elt_type();
1147 
1148   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1149 
1150   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1151   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1152 
1153   LIR_Opr result = rlock_result(x);
1154   __ move(reg, result);
1155 }
1156 
1157 
1158 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1159   LIRItem length(x->length(), this);
1160   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1161   // and therefore provide the state before the parameters have been consumed
1162   CodeEmitInfo* patching_info = NULL;
1163   if (!x->klass()->is_loaded() || PatchALot) {
1164     patching_info =  state_for(x, x->state_before());
1165   }
1166 
1167   CodeEmitInfo* info = state_for(x, x->state());
1168 
1169   const LIR_Opr reg = result_register_for(x->type());
1170   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1171   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1172   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1173   LIR_Opr tmp4 = reg;
1174   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1175 
1176   length.load_item_force(FrameMap::rbx_opr);
1177   LIR_Opr len = length.result();
1178 
1179   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1180   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1181   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1182     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1183   }
1184   klass2reg_with_patching(klass_reg, obj, patching_info);
1185   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1186 
1187   LIR_Opr result = rlock_result(x);
1188   __ move(reg, result);
1189 }
1190 
1191 
1192 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1193   Values* dims = x->dims();
1194   int i = dims->length();
1195   LIRItemList* items = new LIRItemList(dims->length(), NULL);
1196   while (i-- > 0) {
1197     LIRItem* size = new LIRItem(dims->at(i), this);
1198     items->at_put(i, size);
1199   }
1200 
1201   // Evaluate state_for early since it may emit code.
1202   CodeEmitInfo* patching_info = NULL;
1203   if (!x->klass()->is_loaded() || PatchALot) {
1204     patching_info = state_for(x, x->state_before());
1205 
1206     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1207     // clone all handlers (NOTE: Usually this is handled transparently
1208     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1209     // is done explicitly here because a stub isn't being used).
1210     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1211   }
1212   CodeEmitInfo* info = state_for(x, x->state());
1213 
1214   i = dims->length();
1215   while (i-- > 0) {
1216     LIRItem* size = items->at(i);
1217     size->load_nonconstant();
1218 
1219     store_stack_parameter(size->result(), in_ByteSize(i*4));
1220   }
1221 
1222   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1223   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1224 
1225   LIR_Opr rank = FrameMap::rbx_opr;
1226   __ move(LIR_OprFact::intConst(x->rank()), rank);
1227   LIR_Opr varargs = FrameMap::rcx_opr;
1228   __ move(FrameMap::rsp_opr, varargs);
1229   LIR_OprList* args = new LIR_OprList(3);
1230   args->append(klass_reg);
1231   args->append(rank);
1232   args->append(varargs);
1233   LIR_Opr reg = result_register_for(x->type());
1234   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1235                   LIR_OprFact::illegalOpr,
1236                   reg, args, info);
1237 
1238   LIR_Opr result = rlock_result(x);
1239   __ move(reg, result);
1240 }
1241 
1242 
1243 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1244   // nothing to do for now
1245 }
1246 
1247 
1248 void LIRGenerator::do_CheckCast(CheckCast* x) {
1249   LIRItem obj(x->obj(), this);
1250 
1251   CodeEmitInfo* patching_info = NULL;
1252   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1253     // must do this before locking the destination register as an oop register,
1254     // and before the obj is loaded (the latter is for deoptimization)
1255     patching_info = state_for(x, x->state_before());
1256   }
1257   obj.load_item();
1258 
1259   // info for exceptions
1260   CodeEmitInfo* info_for_exception = state_for(x);
1261 
1262   CodeStub* stub;
1263   if (x->is_incompatible_class_change_check()) {
1264     assert(patching_info == NULL, "can't patch this");
1265     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1266   } else {
1267     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1268   }
1269   LIR_Opr reg = rlock_result(x);
1270   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1271   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1272     tmp3 = new_register(objectType);
1273   }
1274   __ checkcast(reg, obj.result(), x->klass(),
1275                new_register(objectType), new_register(objectType), tmp3,
1276                x->direct_compare(), info_for_exception, patching_info, stub,
1277                x->profiled_method(), x->profiled_bci());
1278 }
1279 
1280 
1281 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1282   LIRItem obj(x->obj(), this);
1283 
1284   // result and test object may not be in same register
1285   LIR_Opr reg = rlock_result(x);
1286   CodeEmitInfo* patching_info = NULL;
1287   if ((!x->klass()->is_loaded() || PatchALot)) {
1288     // must do this before locking the destination register as an oop register
1289     patching_info = state_for(x, x->state_before());
1290   }
1291   obj.load_item();
1292   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1293   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1294     tmp3 = new_register(objectType);
1295   }
1296   __ instanceof(reg, obj.result(), x->klass(),
1297                 new_register(objectType), new_register(objectType), tmp3,
1298                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1299 }
1300 
1301 
1302 void LIRGenerator::do_If(If* x) {
1303   assert(x->number_of_sux() == 2, "inconsistency");
1304   ValueTag tag = x->x()->type()->tag();
1305   bool is_safepoint = x->is_safepoint();
1306 
1307   If::Condition cond = x->cond();
1308 
1309   LIRItem xitem(x->x(), this);
1310   LIRItem yitem(x->y(), this);
1311   LIRItem* xin = &xitem;
1312   LIRItem* yin = &yitem;
1313 
1314   if (tag == longTag) {
1315     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1316     // mirror for other conditions
1317     if (cond == If::gtr || cond == If::leq) {
1318       cond = Instruction::mirror(cond);
1319       xin = &yitem;
1320       yin = &xitem;
1321     }
1322     xin->set_destroys_register();
1323   }
1324   xin->load_item();
1325   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1326     // inline long zero
1327     yin->dont_load_item();
1328   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1329     // longs cannot handle constants at right side
1330     yin->load_item();
1331   } else {
1332     yin->dont_load_item();
1333   }
1334 
1335   // add safepoint before generating condition code so it can be recomputed
1336   if (x->is_safepoint()) {
1337     // increment backedge counter if needed
1338     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1339     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1340   }
1341   set_no_result(x);
1342 
1343   LIR_Opr left = xin->result();
1344   LIR_Opr right = yin->result();
1345   __ cmp(lir_cond(cond), left, right);
1346   // Generate branch profiling. Profiling code doesn't kill flags.
1347   profile_branch(x, cond);
1348   move_to_phi(x->state());
1349   if (x->x()->type()->is_float_kind()) {
1350     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1351   } else {
1352     __ branch(lir_cond(cond), right->type(), x->tsux());
1353   }
1354   assert(x->default_sux() == x->fsux(), "wrong destination above");
1355   __ jump(x->default_sux());
1356 }
1357 
1358 
1359 LIR_Opr LIRGenerator::getThreadPointer() {
1360 #ifdef _LP64
1361   return FrameMap::as_pointer_opr(r15_thread);
1362 #else
1363   LIR_Opr result = new_register(T_INT);
1364   __ get_thread(result);
1365   return result;
1366 #endif //
1367 }
1368 
1369 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1370   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1371   LIR_OprList* args = new LIR_OprList();
1372   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1373   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1374 }
1375 
1376 
1377 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1378                                         CodeEmitInfo* info) {
1379   if (address->type() == T_LONG) {
1380     address = new LIR_Address(address->base(),
1381                               address->index(), address->scale(),
1382                               address->disp(), T_DOUBLE);
1383     // Transfer the value atomically by using FP moves.  This means
1384     // the value has to be moved between CPU and FPU registers.  It
1385     // always has to be moved through spill slot since there's no
1386     // quick way to pack the value into an SSE register.
1387     LIR_Opr temp_double = new_register(T_DOUBLE);
1388     LIR_Opr spill = new_register(T_LONG);
1389     set_vreg_flag(spill, must_start_in_memory);
1390     __ move(value, spill);
1391     __ volatile_move(spill, temp_double, T_LONG);
1392     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1393   } else {
1394     __ store(value, address, info);
1395   }
1396 }
1397 
1398 
1399 
1400 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1401                                        CodeEmitInfo* info) {
1402   if (address->type() == T_LONG) {
1403     address = new LIR_Address(address->base(),
1404                               address->index(), address->scale(),
1405                               address->disp(), T_DOUBLE);
1406     // Transfer the value atomically by using FP moves.  This means
1407     // the value has to be moved between CPU and FPU registers.  In
1408     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1409     // SSE2+ mode it can be moved directly.
1410     LIR_Opr temp_double = new_register(T_DOUBLE);
1411     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1412     __ volatile_move(temp_double, result, T_LONG);
1413     if (UseSSE < 2) {
1414       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1415       set_vreg_flag(result, must_start_in_memory);
1416     }
1417   } else {
1418     __ load(address, result, info);
1419   }
1420 }
1421 
1422 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1423                                      BasicType type, bool is_volatile) {
1424   if (is_volatile && type == T_LONG) {
1425     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1426     LIR_Opr tmp = new_register(T_DOUBLE);
1427     __ load(addr, tmp);
1428     LIR_Opr spill = new_register(T_LONG);
1429     set_vreg_flag(spill, must_start_in_memory);
1430     __ move(tmp, spill);
1431     __ move(spill, dst);
1432   } else {
1433     LIR_Address* addr = new LIR_Address(src, offset, type);
1434     __ load(addr, dst);
1435   }
1436 }
1437 
1438 
1439 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1440                                      BasicType type, bool is_volatile) {
1441   if (is_volatile && type == T_LONG) {
1442     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1443     LIR_Opr tmp = new_register(T_DOUBLE);
1444     LIR_Opr spill = new_register(T_DOUBLE);
1445     set_vreg_flag(spill, must_start_in_memory);
1446     __ move(data, spill);
1447     __ move(spill, tmp);
1448     __ move(tmp, addr);
1449   } else {
1450     LIR_Address* addr = new LIR_Address(src, offset, type);
1451     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1452     if (is_obj) {
1453       // Do the pre-write barrier, if any.
1454       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1455                   true /* do_load */, false /* patch */, NULL);
1456       __ move(data, addr);
1457       assert(src->is_register(), "must be register");
1458       // Seems to be a precise address
1459       post_barrier(LIR_OprFact::address(addr), data);
1460     } else {
1461       __ move(data, addr);
1462     }
1463   }
1464 }
1465 
1466 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1467   BasicType type = x->basic_type();
1468   LIRItem src(x->object(), this);
1469   LIRItem off(x->offset(), this);
1470   LIRItem value(x->value(), this);
1471 
1472   src.load_item();
1473   value.load_item();
1474   off.load_nonconstant();
1475 
1476   LIR_Opr dst = rlock_result(x, type);
1477   LIR_Opr data = value.result();
1478   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1479   LIR_Opr offset = off.result();
1480 
1481   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1482   LIR_Address* addr;
1483   if (offset->is_constant()) {
1484 #ifdef _LP64
1485     jlong c = offset->as_jlong();
1486     if ((jlong)((jint)c) == c) {
1487       addr = new LIR_Address(src.result(), (jint)c, type);
1488     } else {
1489       LIR_Opr tmp = new_register(T_LONG);
1490       __ move(offset, tmp);
1491       addr = new LIR_Address(src.result(), tmp, type);
1492     }
1493 #else
1494     addr = new LIR_Address(src.result(), offset->as_jint(), type);
1495 #endif
1496   } else {
1497     addr = new LIR_Address(src.result(), offset, type);
1498   }
1499 
1500   // Because we want a 2-arg form of xchg and xadd
1501   __ move(data, dst);
1502 
1503   if (x->is_add()) {
1504     __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1505   } else {
1506     if (is_obj) {
1507       // Do the pre-write barrier, if any.
1508       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1509                   true /* do_load */, false /* patch */, NULL);
1510     }
1511     __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1512     if (is_obj) {
1513       // Seems to be a precise address
1514       post_barrier(LIR_OprFact::address(addr), data);
1515     }
1516   }
1517 }