1 //
   2 // Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 894           !(n->rule() == loadUB_rule)) {
 895         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 896       }
 897     } else if (st_op) {
 898       // a Store
 899       // inputs are (0:control, 1:memory, 2:address, 3:value)
 900       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 901           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 902           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 903           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 904           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 905           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 906           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 907         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 908       }
 909     }
 910 
 911     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 912       Node* addr = n->in(2);
 913       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 914         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 915         if (atype != NULL) {
 916           intptr_t offset = get_offset_from_base(n, atype, disp32);
 917           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 918           if (offset != offset_2) {
 919             get_offset_from_base(n, atype, disp32);
 920             get_offset_from_base_2(n, atype, disp32);
 921           }
 922           assert(offset == offset_2, "different offsets");
 923           if (offset == disp32) {
 924             // we now know that src1 is a true oop pointer
 925             is_verified_oop_base = true;
 926             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 927               if( primary == Assembler::ldd_op3 ) {
 928                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 929               } else {
 930                 tmp_enc = dst_enc;
 931                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 932                 assert(src1_enc != dst_enc, "");
 933               }
 934             }
 935           }
 936           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 937                        || offset == oopDesc::mark_offset_in_bytes())) {
 938                       // loading the mark should not be allowed either, but
 939                       // we don't check this since it conflicts with InlineObjectHash
 940                       // usage of LoadINode to get the mark. We could keep the
 941                       // check if we create a new LoadMarkNode
 942             // but do not verify the object before its header is initialized
 943             ShouldNotReachHere();
 944           }
 945         }
 946       }
 947     }
 948   }
 949 #endif
 950 
 951   uint instr;
 952   instr = (Assembler::ldst_op << 30)
 953         | (dst_enc        << 25)
 954         | (primary        << 19)
 955         | (src1_enc       << 14);
 956 
 957   uint index = src2_enc;
 958   int disp = disp32;
 959 
 960   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 961     disp += STACK_BIAS;
 962     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 963     if (!Assembler::is_simm13(disp)) {
 964       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 965       return;
 966     }
 967   }
 968 
 969   // We should have a compiler bailout here rather than a guarantee.
 970   // Better yet would be some mechanism to handle variable-size matches correctly.
 971   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 972 
 973   if( disp == 0 ) {
 974     // use reg-reg form
 975     // bit 13 is already zero
 976     instr |= index;
 977   } else {
 978     // use reg-imm form
 979     instr |= 0x00002000;          // set bit 13 to one
 980     instr |= disp & 0x1FFF;
 981   }
 982 
 983   cbuf.insts()->emit_int32(instr);
 984 
 985 #ifdef ASSERT
 986   {
 987     MacroAssembler _masm(&cbuf);
 988     if (is_verified_oop_base) {
 989       __ verify_oop(reg_to_register_object(src1_enc));
 990     }
 991     if (is_verified_oop_store) {
 992       __ verify_oop(reg_to_register_object(dst_enc));
 993     }
 994     if (tmp_enc != -1) {
 995       __ mov(O7, reg_to_register_object(tmp_enc));
 996     }
 997     if (is_verified_oop_load) {
 998       __ verify_oop(reg_to_register_object(dst_enc));
 999     }
1000   }
1001 #endif
1002 }
1003 
1004 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1005   // The method which records debug information at every safepoint
1006   // expects the call to be the first instruction in the snippet as
1007   // it creates a PcDesc structure which tracks the offset of a call
1008   // from the start of the codeBlob. This offset is computed as
1009   // code_end() - code_begin() of the code which has been emitted
1010   // so far.
1011   // In this particular case we have skirted around the problem by
1012   // putting the "mov" instruction in the delay slot but the problem
1013   // may bite us again at some other point and a cleaner/generic
1014   // solution using relocations would be needed.
1015   MacroAssembler _masm(&cbuf);
1016   __ set_inst_mark();
1017 
1018   // We flush the current window just so that there is a valid stack copy
1019   // the fact that the current window becomes active again instantly is
1020   // not a problem there is nothing live in it.
1021 
1022 #ifdef ASSERT
1023   int startpos = __ offset();
1024 #endif /* ASSERT */
1025 
1026   __ call((address)entry_point, rtype);
1027 
1028   if (preserve_g2)   __ delayed()->mov(G2, L7);
1029   else __ delayed()->nop();
1030 
1031   if (preserve_g2)   __ mov(L7, G2);
1032 
1033 #ifdef ASSERT
1034   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035 #ifdef _LP64
1036     // Trash argument dump slots.
1037     __ set(0xb0b8ac0db0b8ac0d, G1);
1038     __ mov(G1, G5);
1039     __ stx(G1, SP, STACK_BIAS + 0x80);
1040     __ stx(G1, SP, STACK_BIAS + 0x88);
1041     __ stx(G1, SP, STACK_BIAS + 0x90);
1042     __ stx(G1, SP, STACK_BIAS + 0x98);
1043     __ stx(G1, SP, STACK_BIAS + 0xA0);
1044     __ stx(G1, SP, STACK_BIAS + 0xA8);
1045 #else // _LP64
1046     // this is also a native call, so smash the first 7 stack locations,
1047     // and the various registers
1048 
1049     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050     // while [SP+0x44..0x58] are the argument dump slots.
1051     __ set((intptr_t)0xbaadf00d, G1);
1052     __ mov(G1, G5);
1053     __ sllx(G1, 32, G1);
1054     __ or3(G1, G5, G1);
1055     __ mov(G1, G5);
1056     __ stx(G1, SP, 0x40);
1057     __ stx(G1, SP, 0x48);
1058     __ stx(G1, SP, 0x50);
1059     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060 #endif // _LP64
1061   }
1062 #endif /*ASSERT*/
1063 }
1064 
1065 //=============================================================================
1066 // REQUIRED FUNCTIONALITY for encoding
1067 void emit_lo(CodeBuffer &cbuf, int val) {  }
1068 void emit_hi(CodeBuffer &cbuf, int val) {  }
1069 
1070 
1071 //=============================================================================
1072 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073 
1074 int Compile::ConstantTable::calculate_table_base_offset() const {
1075   if (UseRDPCForConstantTableBase) {
1076     // The table base offset might be less but then it fits into
1077     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078     return Assembler::min_simm13();
1079   } else {
1080     int offset = -(size() / 2);
1081     if (!Assembler::is_simm13(offset)) {
1082       offset = Assembler::min_simm13();
1083     }
1084     return offset;
1085   }
1086 }
1087 
1088 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090   ShouldNotReachHere();
1091 }
1092 
1093 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094   Compile* C = ra_->C;
1095   Compile::ConstantTable& constant_table = C->constant_table();
1096   MacroAssembler _masm(&cbuf);
1097 
1098   Register r = as_Register(ra_->get_encode(this));
1099   CodeSection* consts_section = __ code()->consts();
1100   int consts_size = consts_section->align_at_start(consts_section->size());
1101   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1102 
1103   if (UseRDPCForConstantTableBase) {
1104     // For the following RDPC logic to work correctly the consts
1105     // section must be allocated right before the insts section.  This
1106     // assert checks for that.  The layout and the SECT_* constants
1107     // are defined in src/share/vm/asm/codeBuffer.hpp.
1108     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109     int insts_offset = __ offset();
1110 
1111     // Layout:
1112     //
1113     // |----------- consts section ------------|----------- insts section -----------...
1114     // |------ constant table -----|- padding -|------------------x----
1115     //                                                            \ current PC (RDPC instruction)
1116     // |<------------- consts_size ----------->|<- insts_offset ->|
1117     //                                                            \ table base
1118     // The table base offset is later added to the load displacement
1119     // so it has to be negative.
1120     int table_base_offset = -(consts_size + insts_offset);
1121     int disp;
1122 
1123     // If the displacement from the current PC to the constant table
1124     // base fits into simm13 we set the constant table base to the
1125     // current PC.
1126     if (Assembler::is_simm13(table_base_offset)) {
1127       constant_table.set_table_base_offset(table_base_offset);
1128       disp = 0;
1129     } else {
1130       // Otherwise we set the constant table base offset to the
1131       // maximum negative displacement of load instructions to keep
1132       // the disp as small as possible:
1133       //
1134       // |<------------- consts_size ----------->|<- insts_offset ->|
1135       // |<--------- min_simm13 --------->|<-------- disp --------->|
1136       //                                  \ table base
1137       table_base_offset = Assembler::min_simm13();
1138       constant_table.set_table_base_offset(table_base_offset);
1139       disp = (consts_size + insts_offset) + table_base_offset;
1140     }
1141 
1142     __ rdpc(r);
1143 
1144     if (disp != 0) {
1145       assert(r != O7, "need temporary");
1146       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147     }
1148   }
1149   else {
1150     // Materialize the constant table base.
1151     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153     AddressLiteral base(baseaddr, rspec);
1154     __ set(base, r);
1155   }
1156 }
1157 
1158 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159   if (UseRDPCForConstantTableBase) {
1160     // This is really the worst case but generally it's only 1 instruction.
1161     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162   } else {
1163     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164   }
1165 }
1166 
1167 #ifndef PRODUCT
1168 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169   char reg[128];
1170   ra_->dump_register(this, reg);
1171   if (UseRDPCForConstantTableBase) {
1172     st->print("RDPC   %s\t! constant table base", reg);
1173   } else {
1174     st->print("SET    &constanttable,%s\t! constant table base", reg);
1175   }
1176 }
1177 #endif
1178 
1179 
1180 //=============================================================================
1181 
1182 #ifndef PRODUCT
1183 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184   Compile* C = ra_->C;
1185 
1186   for (int i = 0; i < OptoPrologueNops; i++) {
1187     st->print_cr("NOP"); st->print("\t");
1188   }
1189 
1190   if( VerifyThread ) {
1191     st->print_cr("Verify_Thread"); st->print("\t");
1192   }
1193 
1194   size_t framesize = C->frame_size_in_bytes();
1195   int bangsize = C->bang_size_in_bytes();
1196 
1197   // Calls to C2R adapters often do not accept exceptional returns.
1198   // We require that their callers must bang for them.  But be careful, because
1199   // some VM calls (such as call site linkage) can use several kilobytes of
1200   // stack.  But the stack safety zone should account for that.
1201   // See bugs 4446381, 4468289, 4497237.
1202   if (C->need_stack_bang(bangsize)) {
1203     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204   }
1205 
1206   if (Assembler::is_simm13(-framesize)) {
1207     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208   } else {
1209     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211     st->print   ("SAVE   R_SP,R_G3,R_SP");
1212   }
1213 
1214 }
1215 #endif
1216 
1217 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218   Compile* C = ra_->C;
1219   MacroAssembler _masm(&cbuf);
1220 
1221   for (int i = 0; i < OptoPrologueNops; i++) {
1222     __ nop();
1223   }
1224 
1225   __ verify_thread();
1226 
1227   size_t framesize = C->frame_size_in_bytes();
1228   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230   int bangsize = C->bang_size_in_bytes();
1231 
1232   // Calls to C2R adapters often do not accept exceptional returns.
1233   // We require that their callers must bang for them.  But be careful, because
1234   // some VM calls (such as call site linkage) can use several kilobytes of
1235   // stack.  But the stack safety zone should account for that.
1236   // See bugs 4446381, 4468289, 4497237.
1237   if (C->need_stack_bang(bangsize)) {
1238     __ generate_stack_overflow_check(bangsize);
1239   }
1240 
1241   if (Assembler::is_simm13(-framesize)) {
1242     __ save(SP, -framesize, SP);
1243   } else {
1244     __ sethi(-framesize & ~0x3ff, G3);
1245     __ add(G3, -framesize & 0x3ff, G3);
1246     __ save(SP, G3, SP);
1247   }
1248   C->set_frame_complete( __ offset() );
1249 
1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251     // NOTE: We set the table base offset here because users might be
1252     // emitted before MachConstantBaseNode.
1253     Compile::ConstantTable& constant_table = C->constant_table();
1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255   }
1256 }
1257 
1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachPrologNode::reloc() const {
1263   return 10; // a large enough number
1264 }
1265 
1266 //=============================================================================
1267 #ifndef PRODUCT
1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269   Compile* C = ra_->C;
1270 
1271   if(do_polling() && ra_->C->is_method_compilation()) {
1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273 #ifdef _LP64
1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275 #else
1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277 #endif
1278   }
1279 
1280   if(do_polling()) {
1281     if (UseCBCond && !ra_->C->is_method_compilation()) {
1282       st->print("NOP\n\t");
1283     }
1284     st->print("RET\n\t");
1285   }
1286 
1287   st->print("RESTORE");
1288 }
1289 #endif
1290 
1291 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292   MacroAssembler _masm(&cbuf);
1293   Compile* C = ra_->C;
1294 
1295   __ verify_thread();
1296 
1297   // If this does safepoint polling, then do it here
1298   if(do_polling() && ra_->C->is_method_compilation()) {
1299     AddressLiteral polling_page(os::get_polling_page());
1300     __ sethi(polling_page, L0);
1301     __ relocate(relocInfo::poll_return_type);
1302     __ ld_ptr(L0, 0, G0);
1303   }
1304 
1305   // If this is a return, then stuff the restore in the delay slot
1306   if(do_polling()) {
1307     if (UseCBCond && !ra_->C->is_method_compilation()) {
1308       // Insert extra padding for the case when the epilogue is preceded by
1309       // a cbcond jump, which can't be followed by a CTI instruction
1310       __ nop();
1311     }
1312     __ ret();
1313     __ delayed()->restore();
1314   } else {
1315     __ restore();
1316   }
1317 }
1318 
1319 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1320   return MachNode::size(ra_);
1321 }
1322 
1323 int MachEpilogNode::reloc() const {
1324   return 16; // a large enough number
1325 }
1326 
1327 const Pipeline * MachEpilogNode::pipeline() const {
1328   return MachNode::pipeline_class();
1329 }
1330 
1331 int MachEpilogNode::safepoint_offset() const {
1332   assert( do_polling(), "no return for this epilog node");
1333   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1334 }
1335 
1336 //=============================================================================
1337 
1338 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1339 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1340 static enum RC rc_class( OptoReg::Name reg ) {
1341   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1342   if (OptoReg::is_stack(reg)) return rc_stack;
1343   VMReg r = OptoReg::as_VMReg(reg);
1344   if (r->is_Register()) return rc_int;
1345   assert(r->is_FloatRegister(), "must be");
1346   return rc_float;
1347 }
1348 
1349 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1350   if (cbuf) {
1351     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1352   }
1353 #ifndef PRODUCT
1354   else if (!do_size) {
1355     if (size != 0) st->print("\n\t");
1356     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1357     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1358   }
1359 #endif
1360   return size+4;
1361 }
1362 
1363 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1364   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1365 #ifndef PRODUCT
1366   else if( !do_size ) {
1367     if( size != 0 ) st->print("\n\t");
1368     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1369   }
1370 #endif
1371   return size+4;
1372 }
1373 
1374 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1375                                         PhaseRegAlloc *ra_,
1376                                         bool do_size,
1377                                         outputStream* st ) const {
1378   // Get registers to move
1379   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1380   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1381   OptoReg::Name dst_second = ra_->get_reg_second(this );
1382   OptoReg::Name dst_first = ra_->get_reg_first(this );
1383 
1384   enum RC src_second_rc = rc_class(src_second);
1385   enum RC src_first_rc = rc_class(src_first);
1386   enum RC dst_second_rc = rc_class(dst_second);
1387   enum RC dst_first_rc = rc_class(dst_first);
1388 
1389   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1390 
1391   // Generate spill code!
1392   int size = 0;
1393 
1394   if( src_first == dst_first && src_second == dst_second )
1395     return size;            // Self copy, no move
1396 
1397   // --------------------------------------
1398   // Check for mem-mem move.  Load into unused float registers and fall into
1399   // the float-store case.
1400   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1401     int offset = ra_->reg2offset(src_first);
1402     // Further check for aligned-adjacent pair, so we can use a double load
1403     if( (src_first&1)==0 && src_first+1 == src_second ) {
1404       src_second    = OptoReg::Name(R_F31_num);
1405       src_second_rc = rc_float;
1406       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1407     } else {
1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1409     }
1410     src_first    = OptoReg::Name(R_F30_num);
1411     src_first_rc = rc_float;
1412   }
1413 
1414   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1415     int offset = ra_->reg2offset(src_second);
1416     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1417     src_second    = OptoReg::Name(R_F31_num);
1418     src_second_rc = rc_float;
1419   }
1420 
1421   // --------------------------------------
1422   // Check for float->int copy; requires a trip through memory
1423   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1424     int offset = frame::register_save_words*wordSize;
1425     if (cbuf) {
1426       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1427       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1428       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1429       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1430     }
1431 #ifndef PRODUCT
1432     else if (!do_size) {
1433       if (size != 0) st->print("\n\t");
1434       st->print(  "SUB    R_SP,16,R_SP\n");
1435       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1436       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1437       st->print("\tADD    R_SP,16,R_SP\n");
1438     }
1439 #endif
1440     size += 16;
1441   }
1442 
1443   // Check for float->int copy on T4
1444   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1445     // Further check for aligned-adjacent pair, so we can use a double move
1446     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1447       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1448     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1449   }
1450   // Check for int->float copy on T4
1451   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1452     // Further check for aligned-adjacent pair, so we can use a double move
1453     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1454       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1455     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1456   }
1457 
1458   // --------------------------------------
1459   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1460   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1461   // hardware does the flop for me.  Doubles are always aligned, so no problem
1462   // there.  Misaligned sources only come from native-long-returns (handled
1463   // special below).
1464 #ifndef _LP64
1465   if( src_first_rc == rc_int &&     // source is already big-endian
1466       src_second_rc != rc_bad &&    // 64-bit move
1467       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1468     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1469     // Do the big-endian flop.
1470     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1471     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1472   }
1473 #endif
1474 
1475   // --------------------------------------
1476   // Check for integer reg-reg copy
1477   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1478 #ifndef _LP64
1479     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1480       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1481       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1482       //       operand contains the least significant word of the 64-bit value and vice versa.
1483       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1484       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1485       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1486       if( cbuf ) {
1487         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1488         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1489         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1490 #ifndef PRODUCT
1491       } else if( !do_size ) {
1492         if( size != 0 ) st->print("\n\t");
1493         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1494         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1495         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1496 #endif
1497       }
1498       return size+12;
1499     }
1500     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1501       // returning a long value in I0/I1
1502       // a SpillCopy must be able to target a return instruction's reg_class
1503       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1504       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1505       //       operand contains the least significant word of the 64-bit value and vice versa.
1506       OptoReg::Name tdest = dst_first;
1507 
1508       if (src_first == dst_first) {
1509         tdest = OptoReg::Name(R_O7_num);
1510         size += 4;
1511       }
1512 
1513       if( cbuf ) {
1514         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1515         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1516         // ShrL_reg_imm6
1517         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1518         // ShrR_reg_imm6  src, 0, dst
1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1520         if (tdest != dst_first) {
1521           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1522         }
1523       }
1524 #ifndef PRODUCT
1525       else if( !do_size ) {
1526         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1527         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1528         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1529         if (tdest != dst_first) {
1530           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1531         }
1532       }
1533 #endif // PRODUCT
1534       return size+8;
1535     }
1536 #endif // !_LP64
1537     // Else normal reg-reg copy
1538     assert( src_second != dst_first, "smashed second before evacuating it" );
1539     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1540     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1541     // This moves an aligned adjacent pair.
1542     // See if we are done.
1543     if( src_first+1 == src_second && dst_first+1 == dst_second )
1544       return size;
1545   }
1546 
1547   // Check for integer store
1548   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1549     int offset = ra_->reg2offset(dst_first);
1550     // Further check for aligned-adjacent pair, so we can use a double store
1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1552       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1553     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1554   }
1555 
1556   // Check for integer load
1557   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1558     int offset = ra_->reg2offset(src_first);
1559     // Further check for aligned-adjacent pair, so we can use a double load
1560     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1561       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1562     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1563   }
1564 
1565   // Check for float reg-reg copy
1566   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1567     // Further check for aligned-adjacent pair, so we can use a double move
1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1569       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1570     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1571   }
1572 
1573   // Check for float store
1574   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1575     int offset = ra_->reg2offset(dst_first);
1576     // Further check for aligned-adjacent pair, so we can use a double store
1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1578       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1579     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1580   }
1581 
1582   // Check for float load
1583   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1584     int offset = ra_->reg2offset(src_first);
1585     // Further check for aligned-adjacent pair, so we can use a double load
1586     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1587       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1588     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1589   }
1590 
1591   // --------------------------------------------------------------------
1592   // Check for hi bits still needing moving.  Only happens for misaligned
1593   // arguments to native calls.
1594   if( src_second == dst_second )
1595     return size;               // Self copy; no move
1596   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1597 
1598 #ifndef _LP64
1599   // In the LP64 build, all registers can be moved as aligned/adjacent
1600   // pairs, so there's never any need to move the high bits separately.
1601   // The 32-bit builds have to deal with the 32-bit ABI which can force
1602   // all sorts of silly alignment problems.
1603 
1604   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1605   // 32-bits of a 64-bit register, but are needed in low bits of another
1606   // register (else it's a hi-bits-to-hi-bits copy which should have
1607   // happened already as part of a 64-bit move)
1608   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1609     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1610     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1611     // Shift src_second down to dst_second's low bits.
1612     if( cbuf ) {
1613       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1614 #ifndef PRODUCT
1615     } else if( !do_size ) {
1616       if( size != 0 ) st->print("\n\t");
1617       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1618 #endif
1619     }
1620     return size+4;
1621   }
1622 
1623   // Check for high word integer store.  Must down-shift the hi bits
1624   // into a temp register, then fall into the case of storing int bits.
1625   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1626     // Shift src_second down to dst_second's low bits.
1627     if( cbuf ) {
1628       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1629 #ifndef PRODUCT
1630     } else if( !do_size ) {
1631       if( size != 0 ) st->print("\n\t");
1632       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1633 #endif
1634     }
1635     size+=4;
1636     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1637   }
1638 
1639   // Check for high word integer load
1640   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1641     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1642 
1643   // Check for high word integer store
1644   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1645     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1646 
1647   // Check for high word float store
1648   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1649     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1650 
1651 #endif // !_LP64
1652 
1653   Unimplemented();
1654 }
1655 
1656 #ifndef PRODUCT
1657 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   implementation( NULL, ra_, false, st );
1659 }
1660 #endif
1661 
1662 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1663   implementation( &cbuf, ra_, false, NULL );
1664 }
1665 
1666 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1667   return implementation( NULL, ra_, true, NULL );
1668 }
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1673   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1674 }
1675 #endif
1676 
1677 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1678   MacroAssembler _masm(&cbuf);
1679   for(int i = 0; i < _count; i += 1) {
1680     __ nop();
1681   }
1682 }
1683 
1684 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1685   return 4 * _count;
1686 }
1687 
1688 
1689 //=============================================================================
1690 #ifndef PRODUCT
1691 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1692   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1693   int reg = ra_->get_reg_first(this);
1694   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1695 }
1696 #endif
1697 
1698 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1699   MacroAssembler _masm(&cbuf);
1700   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1701   int reg = ra_->get_encode(this);
1702 
1703   if (Assembler::is_simm13(offset)) {
1704      __ add(SP, offset, reg_to_register_object(reg));
1705   } else {
1706      __ set(offset, O7);
1707      __ add(SP, O7, reg_to_register_object(reg));
1708   }
1709 }
1710 
1711 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1712   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1713   assert(ra_ == ra_->C->regalloc(), "sanity");
1714   return ra_->C->scratch_emit_size(this);
1715 }
1716 
1717 //=============================================================================
1718 #ifndef PRODUCT
1719 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1720   st->print_cr("\nUEP:");
1721 #ifdef    _LP64
1722   if (UseCompressedClassPointers) {
1723     assert(Universe::heap() != NULL, "java heap should be initialized");
1724     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1725     if (Universe::narrow_klass_base() != 0) {
1726       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1727       if (Universe::narrow_klass_shift() != 0) {
1728         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1729       }
1730       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1731       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1732     } else {
1733       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1734     }
1735   } else {
1736     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1737   }
1738   st->print_cr("\tCMP    R_G5,R_G3" );
1739   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1740 #else  // _LP64
1741   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1742   st->print_cr("\tCMP    R_G5,R_G3" );
1743   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1744 #endif // _LP64
1745 }
1746 #endif
1747 
1748 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1749   MacroAssembler _masm(&cbuf);
1750   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1751   Register temp_reg   = G3;
1752   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1753 
1754   // Load klass from receiver
1755   __ load_klass(O0, temp_reg);
1756   // Compare against expected klass
1757   __ cmp(temp_reg, G5_ic_reg);
1758   // Branch to miss code, checks xcc or icc depending
1759   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1760 }
1761 
1762 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1763   return MachNode::size(ra_);
1764 }
1765 
1766 
1767 //=============================================================================
1768 
1769 
1770 // Emit exception handler code.
1771 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1772   Register temp_reg = G3;
1773   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1774   MacroAssembler _masm(&cbuf);
1775 
1776   address base = __ start_a_stub(size_exception_handler());
1777   if (base == NULL) {
1778     ciEnv::current()->record_failure("CodeCache is full");
1779     return 0;  // CodeBuffer::expand failed
1780   }
1781 
1782   int offset = __ offset();
1783 
1784   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1785   __ delayed()->nop();
1786 
1787   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1788 
1789   __ end_a_stub();
1790 
1791   return offset;
1792 }
1793 
1794 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1795   // Can't use any of the current frame's registers as we may have deopted
1796   // at a poll and everything (including G3) can be live.
1797   Register temp_reg = L0;
1798   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1799   MacroAssembler _masm(&cbuf);
1800 
1801   address base = __ start_a_stub(size_deopt_handler());
1802   if (base == NULL) {
1803     ciEnv::current()->record_failure("CodeCache is full");
1804     return 0;  // CodeBuffer::expand failed
1805   }
1806 
1807   int offset = __ offset();
1808   __ save_frame(0);
1809   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1810   __ delayed()->restore();
1811 
1812   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1813 
1814   __ end_a_stub();
1815   return offset;
1816 
1817 }
1818 
1819 // Given a register encoding, produce a Integer Register object
1820 static Register reg_to_register_object(int register_encoding) {
1821   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1822   return as_Register(register_encoding);
1823 }
1824 
1825 // Given a register encoding, produce a single-precision Float Register object
1826 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1827   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1828   return as_SingleFloatRegister(register_encoding);
1829 }
1830 
1831 // Given a register encoding, produce a double-precision Float Register object
1832 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1833   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1834   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1835   return as_DoubleFloatRegister(register_encoding);
1836 }
1837 
1838 const bool Matcher::match_rule_supported(int opcode) {
1839   if (!has_match_rule(opcode))
1840     return false;
1841 
1842   switch (opcode) {
1843   case Op_CountLeadingZerosI:
1844   case Op_CountLeadingZerosL:
1845   case Op_CountTrailingZerosI:
1846   case Op_CountTrailingZerosL:
1847   case Op_PopCountI:
1848   case Op_PopCountL:
1849     if (!UsePopCountInstruction)
1850       return false;
1851   case Op_CompareAndSwapL:
1852 #ifdef _LP64
1853   case Op_CompareAndSwapP:
1854 #endif
1855     if (!VM_Version::supports_cx8())
1856       return false;
1857     break;
1858   }
1859 
1860   return true;  // Per default match rules are supported.
1861 }
1862 
1863 const int Matcher::float_pressure(int default_pressure_threshold) {
1864   return default_pressure_threshold;
1865 }
1866 
1867 int Matcher::regnum_to_fpu_offset(int regnum) {
1868   return regnum - 32; // The FP registers are in the second chunk
1869 }
1870 
1871 #ifdef ASSERT
1872 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1873 #endif
1874 
1875 // Vector width in bytes
1876 const int Matcher::vector_width_in_bytes(BasicType bt) {
1877   assert(MaxVectorSize == 8, "");
1878   return 8;
1879 }
1880 
1881 // Vector ideal reg
1882 const int Matcher::vector_ideal_reg(int size) {
1883   assert(MaxVectorSize == 8, "");
1884   return Op_RegD;
1885 }
1886 
1887 const int Matcher::vector_shift_count_ideal_reg(int size) {
1888   fatal("vector shift is not supported");
1889   return Node::NotAMachineReg;
1890 }
1891 
1892 // Limits on vector size (number of elements) loaded into vector.
1893 const int Matcher::max_vector_size(const BasicType bt) {
1894   assert(is_java_primitive(bt), "only primitive type vectors");
1895   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1896 }
1897 
1898 const int Matcher::min_vector_size(const BasicType bt) {
1899   return max_vector_size(bt); // Same as max.
1900 }
1901 
1902 // SPARC doesn't support misaligned vectors store/load.
1903 const bool Matcher::misaligned_vectors_ok() {
1904   return false;
1905 }
1906 
1907 // Current (2013) SPARC platforms need to read original key
1908 // to construct decryption expanded key 
1909 const bool Matcher::pass_original_key_for_aes() {
1910   return true;
1911 }
1912 
1913 // USII supports fxtof through the whole range of number, USIII doesn't
1914 const bool Matcher::convL2FSupported(void) {
1915   return VM_Version::has_fast_fxtof();
1916 }
1917 
1918 // Is this branch offset short enough that a short branch can be used?
1919 //
1920 // NOTE: If the platform does not provide any short branch variants, then
1921 //       this method should return false for offset 0.
1922 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1923   // The passed offset is relative to address of the branch.
1924   // Don't need to adjust the offset.
1925   return UseCBCond && Assembler::is_simm12(offset);
1926 }
1927 
1928 const bool Matcher::isSimpleConstant64(jlong value) {
1929   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1930   // Depends on optimizations in MacroAssembler::setx.
1931   int hi = (int)(value >> 32);
1932   int lo = (int)(value & ~0);
1933   return (hi == 0) || (hi == -1) || (lo == 0);
1934 }
1935 
1936 // No scaling for the parameter the ClearArray node.
1937 const bool Matcher::init_array_count_is_in_bytes = true;
1938 
1939 // Threshold size for cleararray.
1940 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1941 
1942 // No additional cost for CMOVL.
1943 const int Matcher::long_cmove_cost() { return 0; }
1944 
1945 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1946 const int Matcher::float_cmove_cost() {
1947   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1948 }
1949 
1950 // Does the CPU require late expand (see block.cpp for description of late expand)?
1951 const bool Matcher::require_postalloc_expand = false;
1952 
1953 // Should the Matcher clone shifts on addressing modes, expecting them to
1954 // be subsumed into complex addressing expressions or compute them into
1955 // registers?  True for Intel but false for most RISCs
1956 const bool Matcher::clone_shift_expressions = false;
1957 
1958 // Do we need to mask the count passed to shift instructions or does
1959 // the cpu only look at the lower 5/6 bits anyway?
1960 const bool Matcher::need_masked_shift_count = false;
1961 
1962 bool Matcher::narrow_oop_use_complex_address() {
1963   NOT_LP64(ShouldNotCallThis());
1964   assert(UseCompressedOops, "only for compressed oops code");
1965   return false;
1966 }
1967 
1968 bool Matcher::narrow_klass_use_complex_address() {
1969   NOT_LP64(ShouldNotCallThis());
1970   assert(UseCompressedClassPointers, "only for compressed klass code");
1971   return false;
1972 }
1973 
1974 // Is it better to copy float constants, or load them directly from memory?
1975 // Intel can load a float constant from a direct address, requiring no
1976 // extra registers.  Most RISCs will have to materialize an address into a
1977 // register first, so they would do better to copy the constant from stack.
1978 const bool Matcher::rematerialize_float_constants = false;
1979 
1980 // If CPU can load and store mis-aligned doubles directly then no fixup is
1981 // needed.  Else we split the double into 2 integer pieces and move it
1982 // piece-by-piece.  Only happens when passing doubles into C code as the
1983 // Java calling convention forces doubles to be aligned.
1984 #ifdef _LP64
1985 const bool Matcher::misaligned_doubles_ok = true;
1986 #else
1987 const bool Matcher::misaligned_doubles_ok = false;
1988 #endif
1989 
1990 // No-op on SPARC.
1991 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1992 }
1993 
1994 // Advertise here if the CPU requires explicit rounding operations
1995 // to implement the UseStrictFP mode.
1996 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1997 
1998 // Are floats converted to double when stored to stack during deoptimization?
1999 // Sparc does not handle callee-save floats.
2000 bool Matcher::float_in_double() { return false; }
2001 
2002 // Do ints take an entire long register or just half?
2003 // Note that we if-def off of _LP64.
2004 // The relevant question is how the int is callee-saved.  In _LP64
2005 // the whole long is written but de-opt'ing will have to extract
2006 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2007 #ifdef _LP64
2008 const bool Matcher::int_in_long = true;
2009 #else
2010 const bool Matcher::int_in_long = false;
2011 #endif
2012 
2013 // Return whether or not this register is ever used as an argument.  This
2014 // function is used on startup to build the trampoline stubs in generateOptoStub.
2015 // Registers not mentioned will be killed by the VM call in the trampoline, and
2016 // arguments in those registers not be available to the callee.
2017 bool Matcher::can_be_java_arg( int reg ) {
2018   // Standard sparc 6 args in registers
2019   if( reg == R_I0_num ||
2020       reg == R_I1_num ||
2021       reg == R_I2_num ||
2022       reg == R_I3_num ||
2023       reg == R_I4_num ||
2024       reg == R_I5_num ) return true;
2025 #ifdef _LP64
2026   // 64-bit builds can pass 64-bit pointers and longs in
2027   // the high I registers
2028   if( reg == R_I0H_num ||
2029       reg == R_I1H_num ||
2030       reg == R_I2H_num ||
2031       reg == R_I3H_num ||
2032       reg == R_I4H_num ||
2033       reg == R_I5H_num ) return true;
2034 
2035   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2036     return true;
2037   }
2038 
2039 #else
2040   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2041   // Longs cannot be passed in O regs, because O regs become I regs
2042   // after a 'save' and I regs get their high bits chopped off on
2043   // interrupt.
2044   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2045   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2046 #endif
2047   // A few float args in registers
2048   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2049 
2050   return false;
2051 }
2052 
2053 bool Matcher::is_spillable_arg( int reg ) {
2054   return can_be_java_arg(reg);
2055 }
2056 
2057 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2058   // Use hardware SDIVX instruction when it is
2059   // faster than a code which use multiply.
2060   return VM_Version::has_fast_idiv();
2061 }
2062 
2063 // Register for DIVI projection of divmodI
2064 RegMask Matcher::divI_proj_mask() {
2065   ShouldNotReachHere();
2066   return RegMask();
2067 }
2068 
2069 // Register for MODI projection of divmodI
2070 RegMask Matcher::modI_proj_mask() {
2071   ShouldNotReachHere();
2072   return RegMask();
2073 }
2074 
2075 // Register for DIVL projection of divmodL
2076 RegMask Matcher::divL_proj_mask() {
2077   ShouldNotReachHere();
2078   return RegMask();
2079 }
2080 
2081 // Register for MODL projection of divmodL
2082 RegMask Matcher::modL_proj_mask() {
2083   ShouldNotReachHere();
2084   return RegMask();
2085 }
2086 
2087 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2088   return L7_REGP_mask();
2089 }
2090 
2091 %}
2092 
2093 
2094 // The intptr_t operand types, defined by textual substitution.
2095 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2096 #ifdef _LP64
2097 #define immX      immL
2098 #define immX13    immL13
2099 #define immX13m7  immL13m7
2100 #define iRegX     iRegL
2101 #define g1RegX    g1RegL
2102 #else
2103 #define immX      immI
2104 #define immX13    immI13
2105 #define immX13m7  immI13m7
2106 #define iRegX     iRegI
2107 #define g1RegX    g1RegI
2108 #endif
2109 
2110 //----------ENCODING BLOCK-----------------------------------------------------
2111 // This block specifies the encoding classes used by the compiler to output
2112 // byte streams.  Encoding classes are parameterized macros used by
2113 // Machine Instruction Nodes in order to generate the bit encoding of the
2114 // instruction.  Operands specify their base encoding interface with the
2115 // interface keyword.  There are currently supported four interfaces,
2116 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2117 // operand to generate a function which returns its register number when
2118 // queried.   CONST_INTER causes an operand to generate a function which
2119 // returns the value of the constant when queried.  MEMORY_INTER causes an
2120 // operand to generate four functions which return the Base Register, the
2121 // Index Register, the Scale Value, and the Offset Value of the operand when
2122 // queried.  COND_INTER causes an operand to generate six functions which
2123 // return the encoding code (ie - encoding bits for the instruction)
2124 // associated with each basic boolean condition for a conditional instruction.
2125 //
2126 // Instructions specify two basic values for encoding.  Again, a function
2127 // is available to check if the constant displacement is an oop. They use the
2128 // ins_encode keyword to specify their encoding classes (which must be
2129 // a sequence of enc_class names, and their parameters, specified in
2130 // the encoding block), and they use the
2131 // opcode keyword to specify, in order, their primary, secondary, and
2132 // tertiary opcode.  Only the opcode sections which a particular instruction
2133 // needs for encoding need to be specified.
2134 encode %{
2135   enc_class enc_untested %{
2136 #ifdef ASSERT
2137     MacroAssembler _masm(&cbuf);
2138     __ untested("encoding");
2139 #endif
2140   %}
2141 
2142   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2143     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2144                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2145   %}
2146 
2147   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2148     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2149                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2150   %}
2151 
2152   enc_class form3_mem_prefetch_read( memory mem ) %{
2153     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2154                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2155   %}
2156 
2157   enc_class form3_mem_prefetch_write( memory mem ) %{
2158     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2159                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2160   %}
2161 
2162   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2163     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2164     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2165     guarantee($mem$$index == R_G0_enc, "double index?");
2166     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2167     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2168     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2169     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2170   %}
2171 
2172   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2173     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2174     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2175     guarantee($mem$$index == R_G0_enc, "double index?");
2176     // Load long with 2 instructions
2177     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2178     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2179   %}
2180 
2181   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2182   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2183     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2184     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2185   %}
2186 
2187   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2188     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2189     if( $rs2$$reg != $rd$$reg )
2190       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2191   %}
2192 
2193   // Target lo half of long
2194   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2195     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2196     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2197       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2198   %}
2199 
2200   // Source lo half of long
2201   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2202     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2203     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2204       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2205   %}
2206 
2207   // Target hi half of long
2208   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2209     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2210   %}
2211 
2212   // Source lo half of long, and leave it sign extended.
2213   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2214     // Sign extend low half
2215     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2216   %}
2217 
2218   // Source hi half of long, and leave it sign extended.
2219   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2220     // Shift high half to low half
2221     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2222   %}
2223 
2224   // Source hi half of long
2225   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2226     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2227     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2228       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2229   %}
2230 
2231   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2232     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2233   %}
2234 
2235   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2236     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2237     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2238   %}
2239 
2240   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2241     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2242     // clear if nothing else is happening
2243     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2244     // blt,a,pn done
2245     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2246     // mov dst,-1 in delay slot
2247     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2248   %}
2249 
2250   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2251     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2252   %}
2253 
2254   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2255     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2256   %}
2257 
2258   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2259     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2260   %}
2261 
2262   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2263     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2264   %}
2265 
2266   enc_class move_return_pc_to_o1() %{
2267     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2268   %}
2269 
2270 #ifdef _LP64
2271   /* %%% merge with enc_to_bool */
2272   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2273     MacroAssembler _masm(&cbuf);
2274 
2275     Register   src_reg = reg_to_register_object($src$$reg);
2276     Register   dst_reg = reg_to_register_object($dst$$reg);
2277     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2278   %}
2279 #endif
2280 
2281   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2282     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2283     MacroAssembler _masm(&cbuf);
2284 
2285     Register   p_reg = reg_to_register_object($p$$reg);
2286     Register   q_reg = reg_to_register_object($q$$reg);
2287     Register   y_reg = reg_to_register_object($y$$reg);
2288     Register tmp_reg = reg_to_register_object($tmp$$reg);
2289 
2290     __ subcc( p_reg, q_reg,   p_reg );
2291     __ add  ( p_reg, y_reg, tmp_reg );
2292     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2293   %}
2294 
2295   enc_class form_d2i_helper(regD src, regF dst) %{
2296     // fcmp %fcc0,$src,$src
2297     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2298     // branch %fcc0 not-nan, predict taken
2299     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2300     // fdtoi $src,$dst
2301     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2302     // fitos $dst,$dst (if nan)
2303     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2304     // clear $dst (if nan)
2305     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2306     // carry on here...
2307   %}
2308 
2309   enc_class form_d2l_helper(regD src, regD dst) %{
2310     // fcmp %fcc0,$src,$src  check for NAN
2311     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2312     // branch %fcc0 not-nan, predict taken
2313     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2314     // fdtox $src,$dst   convert in delay slot
2315     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2316     // fxtod $dst,$dst  (if nan)
2317     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2318     // clear $dst (if nan)
2319     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2320     // carry on here...
2321   %}
2322 
2323   enc_class form_f2i_helper(regF src, regF dst) %{
2324     // fcmps %fcc0,$src,$src
2325     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2326     // branch %fcc0 not-nan, predict taken
2327     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2328     // fstoi $src,$dst
2329     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2330     // fitos $dst,$dst (if nan)
2331     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2332     // clear $dst (if nan)
2333     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2334     // carry on here...
2335   %}
2336 
2337   enc_class form_f2l_helper(regF src, regD dst) %{
2338     // fcmps %fcc0,$src,$src
2339     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2340     // branch %fcc0 not-nan, predict taken
2341     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2342     // fstox $src,$dst
2343     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2344     // fxtod $dst,$dst (if nan)
2345     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2346     // clear $dst (if nan)
2347     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2348     // carry on here...
2349   %}
2350 
2351   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2352   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2353   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2354   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2355 
2356   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2357 
2358   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2359   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2360 
2361   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2362     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2363   %}
2364 
2365   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2366     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2367   %}
2368 
2369   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2370     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2371   %}
2372 
2373   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2374     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2375   %}
2376 
2377   enc_class form3_convI2F(regF rs2, regF rd) %{
2378     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2379   %}
2380 
2381   // Encloding class for traceable jumps
2382   enc_class form_jmpl(g3RegP dest) %{
2383     emit_jmpl(cbuf, $dest$$reg);
2384   %}
2385 
2386   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2387     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2388   %}
2389 
2390   enc_class form2_nop() %{
2391     emit_nop(cbuf);
2392   %}
2393 
2394   enc_class form2_illtrap() %{
2395     emit_illtrap(cbuf);
2396   %}
2397 
2398 
2399   // Compare longs and convert into -1, 0, 1.
2400   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2401     // CMP $src1,$src2
2402     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2403     // blt,a,pn done
2404     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2405     // mov dst,-1 in delay slot
2406     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2407     // bgt,a,pn done
2408     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2409     // mov dst,1 in delay slot
2410     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2411     // CLR    $dst
2412     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2413   %}
2414 
2415   enc_class enc_PartialSubtypeCheck() %{
2416     MacroAssembler _masm(&cbuf);
2417     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2418     __ delayed()->nop();
2419   %}
2420 
2421   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2422     MacroAssembler _masm(&cbuf);
2423     Label* L = $labl$$label;
2424     Assembler::Predict predict_taken =
2425       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2426 
2427     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2428     __ delayed()->nop();
2429   %}
2430 
2431   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2432     MacroAssembler _masm(&cbuf);
2433     Label* L = $labl$$label;
2434     Assembler::Predict predict_taken =
2435       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2436 
2437     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2438     __ delayed()->nop();
2439   %}
2440 
2441   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2442     int op = (Assembler::arith_op << 30) |
2443              ($dst$$reg << 25) |
2444              (Assembler::movcc_op3 << 19) |
2445              (1 << 18) |                    // cc2 bit for 'icc'
2446              ($cmp$$cmpcode << 14) |
2447              (0 << 13) |                    // select register move
2448              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2449              ($src$$reg << 0);
2450     cbuf.insts()->emit_int32(op);
2451   %}
2452 
2453   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2454     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2455     int op = (Assembler::arith_op << 30) |
2456              ($dst$$reg << 25) |
2457              (Assembler::movcc_op3 << 19) |
2458              (1 << 18) |                    // cc2 bit for 'icc'
2459              ($cmp$$cmpcode << 14) |
2460              (1 << 13) |                    // select immediate move
2461              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2462              (simm11 << 0);
2463     cbuf.insts()->emit_int32(op);
2464   %}
2465 
2466   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2467     int op = (Assembler::arith_op << 30) |
2468              ($dst$$reg << 25) |
2469              (Assembler::movcc_op3 << 19) |
2470              (0 << 18) |                    // cc2 bit for 'fccX'
2471              ($cmp$$cmpcode << 14) |
2472              (0 << 13) |                    // select register move
2473              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2474              ($src$$reg << 0);
2475     cbuf.insts()->emit_int32(op);
2476   %}
2477 
2478   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2479     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2480     int op = (Assembler::arith_op << 30) |
2481              ($dst$$reg << 25) |
2482              (Assembler::movcc_op3 << 19) |
2483              (0 << 18) |                    // cc2 bit for 'fccX'
2484              ($cmp$$cmpcode << 14) |
2485              (1 << 13) |                    // select immediate move
2486              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2487              (simm11 << 0);
2488     cbuf.insts()->emit_int32(op);
2489   %}
2490 
2491   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2492     int op = (Assembler::arith_op << 30) |
2493              ($dst$$reg << 25) |
2494              (Assembler::fpop2_op3 << 19) |
2495              (0 << 18) |
2496              ($cmp$$cmpcode << 14) |
2497              (1 << 13) |                    // select register move
2498              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2499              ($primary << 5) |              // select single, double or quad
2500              ($src$$reg << 0);
2501     cbuf.insts()->emit_int32(op);
2502   %}
2503 
2504   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2505     int op = (Assembler::arith_op << 30) |
2506              ($dst$$reg << 25) |
2507              (Assembler::fpop2_op3 << 19) |
2508              (0 << 18) |
2509              ($cmp$$cmpcode << 14) |
2510              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2511              ($primary << 5) |              // select single, double or quad
2512              ($src$$reg << 0);
2513     cbuf.insts()->emit_int32(op);
2514   %}
2515 
2516   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2517   // the condition comes from opcode-field instead of an argument.
2518   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2519     int op = (Assembler::arith_op << 30) |
2520              ($dst$$reg << 25) |
2521              (Assembler::movcc_op3 << 19) |
2522              (1 << 18) |                    // cc2 bit for 'icc'
2523              ($primary << 14) |
2524              (0 << 13) |                    // select register move
2525              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2526              ($src$$reg << 0);
2527     cbuf.insts()->emit_int32(op);
2528   %}
2529 
2530   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2531     int op = (Assembler::arith_op << 30) |
2532              ($dst$$reg << 25) |
2533              (Assembler::movcc_op3 << 19) |
2534              (6 << 16) |                    // cc2 bit for 'xcc'
2535              ($primary << 14) |
2536              (0 << 13) |                    // select register move
2537              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2538              ($src$$reg << 0);
2539     cbuf.insts()->emit_int32(op);
2540   %}
2541 
2542   enc_class Set13( immI13 src, iRegI rd ) %{
2543     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2544   %}
2545 
2546   enc_class SetHi22( immI src, iRegI rd ) %{
2547     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2548   %}
2549 
2550   enc_class Set32( immI src, iRegI rd ) %{
2551     MacroAssembler _masm(&cbuf);
2552     __ set($src$$constant, reg_to_register_object($rd$$reg));
2553   %}
2554 
2555   enc_class call_epilog %{
2556     if( VerifyStackAtCalls ) {
2557       MacroAssembler _masm(&cbuf);
2558       int framesize = ra_->C->frame_size_in_bytes();
2559       Register temp_reg = G3;
2560       __ add(SP, framesize, temp_reg);
2561       __ cmp(temp_reg, FP);
2562       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2563     }
2564   %}
2565 
2566   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2567   // to G1 so the register allocator will not have to deal with the misaligned register
2568   // pair.
2569   enc_class adjust_long_from_native_call %{
2570 #ifndef _LP64
2571     if (returns_long()) {
2572       //    sllx  O0,32,O0
2573       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2574       //    srl   O1,0,O1
2575       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2576       //    or    O0,O1,G1
2577       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2578     }
2579 #endif
2580   %}
2581 
2582   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2583     // CALL directly to the runtime
2584     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2585     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2586                     /*preserve_g2=*/true);
2587   %}
2588 
2589   enc_class preserve_SP %{
2590     MacroAssembler _masm(&cbuf);
2591     __ mov(SP, L7_mh_SP_save);
2592   %}
2593 
2594   enc_class restore_SP %{
2595     MacroAssembler _masm(&cbuf);
2596     __ mov(L7_mh_SP_save, SP);
2597   %}
2598 
2599   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2600     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2601     // who we intended to call.
2602     if (!_method) {
2603       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2604     } else if (_optimized_virtual) {
2605       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2606     } else {
2607       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2608     }
2609     if (_method) {  // Emit stub for static call.
2610       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2611       // Stub does not fit into scratch buffer if TraceJumps is enabled
2612       if (stub == NULL && !(TraceJumps && Compile::current()->in_scratch_emit_size())) {
2613         ciEnv::current()->record_failure("CodeCache is full");
2614         return;
2615       } 
2616     }
2617   %}
2618 
2619   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2620     MacroAssembler _masm(&cbuf);
2621     __ set_inst_mark();
2622     int vtable_index = this->_vtable_index;
2623     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2624     if (vtable_index < 0) {
2625       // must be invalid_vtable_index, not nonvirtual_vtable_index
2626       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2627       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2628       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2629       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2630       __ ic_call((address)$meth$$method);
2631     } else {
2632       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2633       // Just go thru the vtable
2634       // get receiver klass (receiver already checked for non-null)
2635       // If we end up going thru a c2i adapter interpreter expects method in G5
2636       int off = __ offset();
2637       __ load_klass(O0, G3_scratch);
2638       int klass_load_size;
2639       if (UseCompressedClassPointers) {
2640         assert(Universe::heap() != NULL, "java heap should be initialized");
2641         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2642       } else {
2643         klass_load_size = 1*BytesPerInstWord;
2644       }
2645       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2646       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2647       if (Assembler::is_simm13(v_off)) {
2648         __ ld_ptr(G3, v_off, G5_method);
2649       } else {
2650         // Generate 2 instructions
2651         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2652         __ or3(G5_method, v_off & 0x3ff, G5_method);
2653         // ld_ptr, set_hi, set
2654         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2655                "Unexpected instruction size(s)");
2656         __ ld_ptr(G3, G5_method, G5_method);
2657       }
2658       // NOTE: for vtable dispatches, the vtable entry will never be null.
2659       // However it may very well end up in handle_wrong_method if the
2660       // method is abstract for the particular class.
2661       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2662       // jump to target (either compiled code or c2iadapter)
2663       __ jmpl(G3_scratch, G0, O7);
2664       __ delayed()->nop();
2665     }
2666   %}
2667 
2668   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2669     MacroAssembler _masm(&cbuf);
2670 
2671     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2672     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2673                               // we might be calling a C2I adapter which needs it.
2674 
2675     assert(temp_reg != G5_ic_reg, "conflicting registers");
2676     // Load nmethod
2677     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2678 
2679     // CALL to compiled java, indirect the contents of G3
2680     __ set_inst_mark();
2681     __ callr(temp_reg, G0);
2682     __ delayed()->nop();
2683   %}
2684 
2685 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2686     MacroAssembler _masm(&cbuf);
2687     Register Rdividend = reg_to_register_object($src1$$reg);
2688     Register Rdivisor = reg_to_register_object($src2$$reg);
2689     Register Rresult = reg_to_register_object($dst$$reg);
2690 
2691     __ sra(Rdivisor, 0, Rdivisor);
2692     __ sra(Rdividend, 0, Rdividend);
2693     __ sdivx(Rdividend, Rdivisor, Rresult);
2694 %}
2695 
2696 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2697     MacroAssembler _masm(&cbuf);
2698 
2699     Register Rdividend = reg_to_register_object($src1$$reg);
2700     int divisor = $imm$$constant;
2701     Register Rresult = reg_to_register_object($dst$$reg);
2702 
2703     __ sra(Rdividend, 0, Rdividend);
2704     __ sdivx(Rdividend, divisor, Rresult);
2705 %}
2706 
2707 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2708     MacroAssembler _masm(&cbuf);
2709     Register Rsrc1 = reg_to_register_object($src1$$reg);
2710     Register Rsrc2 = reg_to_register_object($src2$$reg);
2711     Register Rdst  = reg_to_register_object($dst$$reg);
2712 
2713     __ sra( Rsrc1, 0, Rsrc1 );
2714     __ sra( Rsrc2, 0, Rsrc2 );
2715     __ mulx( Rsrc1, Rsrc2, Rdst );
2716     __ srlx( Rdst, 32, Rdst );
2717 %}
2718 
2719 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2720     MacroAssembler _masm(&cbuf);
2721     Register Rdividend = reg_to_register_object($src1$$reg);
2722     Register Rdivisor = reg_to_register_object($src2$$reg);
2723     Register Rresult = reg_to_register_object($dst$$reg);
2724     Register Rscratch = reg_to_register_object($scratch$$reg);
2725 
2726     assert(Rdividend != Rscratch, "");
2727     assert(Rdivisor  != Rscratch, "");
2728 
2729     __ sra(Rdividend, 0, Rdividend);
2730     __ sra(Rdivisor, 0, Rdivisor);
2731     __ sdivx(Rdividend, Rdivisor, Rscratch);
2732     __ mulx(Rscratch, Rdivisor, Rscratch);
2733     __ sub(Rdividend, Rscratch, Rresult);
2734 %}
2735 
2736 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2737     MacroAssembler _masm(&cbuf);
2738 
2739     Register Rdividend = reg_to_register_object($src1$$reg);
2740     int divisor = $imm$$constant;
2741     Register Rresult = reg_to_register_object($dst$$reg);
2742     Register Rscratch = reg_to_register_object($scratch$$reg);
2743 
2744     assert(Rdividend != Rscratch, "");
2745 
2746     __ sra(Rdividend, 0, Rdividend);
2747     __ sdivx(Rdividend, divisor, Rscratch);
2748     __ mulx(Rscratch, divisor, Rscratch);
2749     __ sub(Rdividend, Rscratch, Rresult);
2750 %}
2751 
2752 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2753     MacroAssembler _masm(&cbuf);
2754 
2755     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2756     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2757 
2758     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2759 %}
2760 
2761 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2762     MacroAssembler _masm(&cbuf);
2763 
2764     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2765     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2766 
2767     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2768 %}
2769 
2770 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2771     MacroAssembler _masm(&cbuf);
2772 
2773     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2774     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2775 
2776     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2777 %}
2778 
2779 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2780     MacroAssembler _masm(&cbuf);
2781 
2782     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2783     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2784 
2785     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2786 %}
2787 
2788 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2789     MacroAssembler _masm(&cbuf);
2790 
2791     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2792     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2793 
2794     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2795 %}
2796 
2797 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2798     MacroAssembler _masm(&cbuf);
2799 
2800     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2801     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2802 
2803     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2804 %}
2805 
2806 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2807     MacroAssembler _masm(&cbuf);
2808 
2809     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2810     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2811 
2812     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2813 %}
2814 
2815 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2816     MacroAssembler _masm(&cbuf);
2817 
2818     Register Roop  = reg_to_register_object($oop$$reg);
2819     Register Rbox  = reg_to_register_object($box$$reg);
2820     Register Rscratch = reg_to_register_object($scratch$$reg);
2821     Register Rmark =    reg_to_register_object($scratch2$$reg);
2822 
2823     assert(Roop  != Rscratch, "");
2824     assert(Roop  != Rmark, "");
2825     assert(Rbox  != Rscratch, "");
2826     assert(Rbox  != Rmark, "");
2827 
2828     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2829 %}
2830 
2831 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2832     MacroAssembler _masm(&cbuf);
2833 
2834     Register Roop  = reg_to_register_object($oop$$reg);
2835     Register Rbox  = reg_to_register_object($box$$reg);
2836     Register Rscratch = reg_to_register_object($scratch$$reg);
2837     Register Rmark =    reg_to_register_object($scratch2$$reg);
2838 
2839     assert(Roop  != Rscratch, "");
2840     assert(Roop  != Rmark, "");
2841     assert(Rbox  != Rscratch, "");
2842     assert(Rbox  != Rmark, "");
2843 
2844     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2845   %}
2846 
2847   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2848     MacroAssembler _masm(&cbuf);
2849     Register Rmem = reg_to_register_object($mem$$reg);
2850     Register Rold = reg_to_register_object($old$$reg);
2851     Register Rnew = reg_to_register_object($new$$reg);
2852 
2853     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2854     __ cmp( Rold, Rnew );
2855   %}
2856 
2857   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2858     Register Rmem = reg_to_register_object($mem$$reg);
2859     Register Rold = reg_to_register_object($old$$reg);
2860     Register Rnew = reg_to_register_object($new$$reg);
2861 
2862     MacroAssembler _masm(&cbuf);
2863     __ mov(Rnew, O7);
2864     __ casx(Rmem, Rold, O7);
2865     __ cmp( Rold, O7 );
2866   %}
2867 
2868   // raw int cas, used for compareAndSwap
2869   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2870     Register Rmem = reg_to_register_object($mem$$reg);
2871     Register Rold = reg_to_register_object($old$$reg);
2872     Register Rnew = reg_to_register_object($new$$reg);
2873 
2874     MacroAssembler _masm(&cbuf);
2875     __ mov(Rnew, O7);
2876     __ cas(Rmem, Rold, O7);
2877     __ cmp( Rold, O7 );
2878   %}
2879 
2880   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2881     Register Rres = reg_to_register_object($res$$reg);
2882 
2883     MacroAssembler _masm(&cbuf);
2884     __ mov(1, Rres);
2885     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2886   %}
2887 
2888   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2889     Register Rres = reg_to_register_object($res$$reg);
2890 
2891     MacroAssembler _masm(&cbuf);
2892     __ mov(1, Rres);
2893     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2894   %}
2895 
2896   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2897     MacroAssembler _masm(&cbuf);
2898     Register Rdst = reg_to_register_object($dst$$reg);
2899     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2900                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2901     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2902                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2903 
2904     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2905     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2906   %}
2907 
2908   enc_class enc_rethrow() %{
2909     cbuf.set_insts_mark();
2910     Register temp_reg = G3;
2911     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2912     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2913     MacroAssembler _masm(&cbuf);
2914 #ifdef ASSERT
2915     __ save_frame(0);
2916     AddressLiteral last_rethrow_addrlit(&last_rethrow);
2917     __ sethi(last_rethrow_addrlit, L1);
2918     Address addr(L1, last_rethrow_addrlit.low10());
2919     __ rdpc(L2);
2920     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2921     __ st_ptr(L2, addr);
2922     __ restore();
2923 #endif
2924     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2925     __ delayed()->nop();
2926   %}
2927 
2928   enc_class emit_mem_nop() %{
2929     // Generates the instruction LDUXA [o6,g0],#0x82,g0
2930     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2931   %}
2932 
2933   enc_class emit_fadd_nop() %{
2934     // Generates the instruction FMOVS f31,f31
2935     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2936   %}
2937 
2938   enc_class emit_br_nop() %{
2939     // Generates the instruction BPN,PN .
2940     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2941   %}
2942 
2943   enc_class enc_membar_acquire %{
2944     MacroAssembler _masm(&cbuf);
2945     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2946   %}
2947 
2948   enc_class enc_membar_release %{
2949     MacroAssembler _masm(&cbuf);
2950     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2951   %}
2952 
2953   enc_class enc_membar_volatile %{
2954     MacroAssembler _masm(&cbuf);
2955     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2956   %}
2957 
2958 %}
2959 
2960 //----------FRAME--------------------------------------------------------------
2961 // Definition of frame structure and management information.
2962 //
2963 //  S T A C K   L A Y O U T    Allocators stack-slot number
2964 //                             |   (to get allocators register number
2965 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
2966 //  r   CALLER     |        |
2967 //  o     |        +--------+      pad to even-align allocators stack-slot
2968 //  w     V        |  pad0  |        numbers; owned by CALLER
2969 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2970 //  h     ^        |   in   |  5
2971 //        |        |  args  |  4   Holes in incoming args owned by SELF
2972 //  |     |        |        |  3
2973 //  |     |        +--------+
2974 //  V     |        | old out|      Empty on Intel, window on Sparc
2975 //        |    old |preserve|      Must be even aligned.
2976 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
2977 //        |        |   in   |  3   area for Intel ret address
2978 //     Owned by    |preserve|      Empty on Sparc.
2979 //       SELF      +--------+
2980 //        |        |  pad2  |  2   pad to align old SP
2981 //        |        +--------+  1
2982 //        |        | locks  |  0
2983 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
2984 //        |        |  pad1  | 11   pad to align new SP
2985 //        |        +--------+
2986 //        |        |        | 10
2987 //        |        | spills |  9   spills
2988 //        V        |        |  8   (pad0 slot for callee)
2989 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2990 //        ^        |  out   |  7
2991 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2992 //     Owned by    +--------+
2993 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2994 //        |    new |preserve|      Must be even-aligned.
2995 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2996 //        |        |        |
2997 //
2998 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2999 //         known from SELF's arguments and the Java calling convention.
3000 //         Region 6-7 is determined per call site.
3001 // Note 2: If the calling convention leaves holes in the incoming argument
3002 //         area, those holes are owned by SELF.  Holes in the outgoing area
3003 //         are owned by the CALLEE.  Holes should not be nessecary in the
3004 //         incoming area, as the Java calling convention is completely under
3005 //         the control of the AD file.  Doubles can be sorted and packed to
3006 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3007 //         varargs C calling conventions.
3008 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3009 //         even aligned with pad0 as needed.
3010 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3011 //         region 6-11 is even aligned; it may be padded out more so that
3012 //         the region from SP to FP meets the minimum stack alignment.
3013 
3014 frame %{
3015   // What direction does stack grow in (assumed to be same for native & Java)
3016   stack_direction(TOWARDS_LOW);
3017 
3018   // These two registers define part of the calling convention
3019   // between compiled code and the interpreter.
3020   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3021   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3022 
3023   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3024   cisc_spilling_operand_name(indOffset);
3025 
3026   // Number of stack slots consumed by a Monitor enter
3027 #ifdef _LP64
3028   sync_stack_slots(2);
3029 #else
3030   sync_stack_slots(1);
3031 #endif
3032 
3033   // Compiled code's Frame Pointer
3034   frame_pointer(R_SP);
3035 
3036   // Stack alignment requirement
3037   stack_alignment(StackAlignmentInBytes);
3038   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3039   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3040 
3041   // Number of stack slots between incoming argument block and the start of
3042   // a new frame.  The PROLOG must add this many slots to the stack.  The
3043   // EPILOG must remove this many slots.
3044   in_preserve_stack_slots(0);
3045 
3046   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3047   // for calls to C.  Supports the var-args backing area for register parms.
3048   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3049 #ifdef _LP64
3050   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3051   varargs_C_out_slots_killed(12);
3052 #else
3053   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3054   varargs_C_out_slots_killed( 7);
3055 #endif
3056 
3057   // The after-PROLOG location of the return address.  Location of
3058   // return address specifies a type (REG or STACK) and a number
3059   // representing the register number (i.e. - use a register name) or
3060   // stack slot.
3061   return_addr(REG R_I7);          // Ret Addr is in register I7
3062 
3063   // Body of function which returns an OptoRegs array locating
3064   // arguments either in registers or in stack slots for calling
3065   // java
3066   calling_convention %{
3067     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3068 
3069   %}
3070 
3071   // Body of function which returns an OptoRegs array locating
3072   // arguments either in registers or in stack slots for calling
3073   // C.
3074   c_calling_convention %{
3075     // This is obviously always outgoing
3076     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3077   %}
3078 
3079   // Location of native (C/C++) and interpreter return values.  This is specified to
3080   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3081   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3082   // to and from the register pairs is done by the appropriate call and epilog
3083   // opcodes.  This simplifies the register allocator.
3084   c_return_value %{
3085     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3086 #ifdef     _LP64
3087     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3088     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3089     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3090     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3091 #else  // !_LP64
3092     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3093     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3094     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3095     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3096 #endif
3097     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3098                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3099   %}
3100 
3101   // Location of compiled Java return values.  Same as C
3102   return_value %{
3103     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3104 #ifdef     _LP64
3105     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3106     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3107     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3108     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3109 #else  // !_LP64
3110     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3111     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3112     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3113     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3114 #endif
3115     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3116                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3117   %}
3118 
3119 %}
3120 
3121 
3122 //----------ATTRIBUTES---------------------------------------------------------
3123 //----------Operand Attributes-------------------------------------------------
3124 op_attrib op_cost(1);          // Required cost attribute
3125 
3126 //----------Instruction Attributes---------------------------------------------
3127 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3128 ins_attrib ins_size(32);           // Required size attribute (in bits)
3129 
3130 // avoid_back_to_back attribute is an expression that must return
3131 // one of the following values defined in MachNode:
3132 // AVOID_NONE   - instruction can be placed anywhere
3133 // AVOID_BEFORE - instruction cannot be placed after an
3134 //                instruction with MachNode::AVOID_AFTER
3135 // AVOID_AFTER  - the next instruction cannot be the one 
3136 //                with MachNode::AVOID_BEFORE
3137 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
3138 //                          the same time                                
3139 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3140 
3141 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3142                                    // non-matching short branch variant of some
3143                                                             // long branch?
3144 
3145 //----------OPERANDS-----------------------------------------------------------
3146 // Operand definitions must precede instruction definitions for correct parsing
3147 // in the ADLC because operands constitute user defined types which are used in
3148 // instruction definitions.
3149 
3150 //----------Simple Operands----------------------------------------------------
3151 // Immediate Operands
3152 // Integer Immediate: 32-bit
3153 operand immI() %{
3154   match(ConI);
3155 
3156   op_cost(0);
3157   // formats are generated automatically for constants and base registers
3158   format %{ %}
3159   interface(CONST_INTER);
3160 %}
3161 
3162 // Integer Immediate: 0-bit
3163 operand immI0() %{
3164   predicate(n->get_int() == 0);
3165   match(ConI);
3166   op_cost(0);
3167 
3168   format %{ %}
3169   interface(CONST_INTER);
3170 %}
3171 
3172 // Integer Immediate: 5-bit
3173 operand immI5() %{
3174   predicate(Assembler::is_simm5(n->get_int()));
3175   match(ConI);
3176   op_cost(0);
3177   format %{ %}
3178   interface(CONST_INTER);
3179 %}
3180 
3181 // Integer Immediate: 8-bit
3182 operand immI8() %{
3183   predicate(Assembler::is_simm8(n->get_int()));
3184   match(ConI);
3185   op_cost(0);
3186   format %{ %}
3187   interface(CONST_INTER);
3188 %}
3189 
3190 // Integer Immediate: the value 10
3191 operand immI10() %{
3192   predicate(n->get_int() == 10);
3193   match(ConI);
3194   op_cost(0);
3195 
3196   format %{ %}
3197   interface(CONST_INTER);
3198 %}
3199 
3200 // Integer Immediate: 11-bit
3201 operand immI11() %{
3202   predicate(Assembler::is_simm11(n->get_int()));
3203   match(ConI);
3204   op_cost(0);
3205   format %{ %}
3206   interface(CONST_INTER);
3207 %}
3208 
3209 // Integer Immediate: 13-bit
3210 operand immI13() %{
3211   predicate(Assembler::is_simm13(n->get_int()));
3212   match(ConI);
3213   op_cost(0);
3214 
3215   format %{ %}
3216   interface(CONST_INTER);
3217 %}
3218 
3219 // Integer Immediate: 13-bit minus 7
3220 operand immI13m7() %{
3221   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3222   match(ConI);
3223   op_cost(0);
3224 
3225   format %{ %}
3226   interface(CONST_INTER);
3227 %}
3228 
3229 // Integer Immediate: 16-bit
3230 operand immI16() %{
3231   predicate(Assembler::is_simm16(n->get_int()));
3232   match(ConI);
3233   op_cost(0);
3234   format %{ %}
3235   interface(CONST_INTER);
3236 %}
3237 
3238 // Integer Immediate: the values 1-31
3239 operand immI_1_31() %{
3240   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3241   match(ConI);
3242   op_cost(0);
3243 
3244   format %{ %}
3245   interface(CONST_INTER);
3246 %}
3247 
3248 // Integer Immediate: the values 32-63
3249 operand immI_32_63() %{
3250   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3251   match(ConI);
3252   op_cost(0);
3253 
3254   format %{ %}
3255   interface(CONST_INTER);
3256 %}
3257 
3258 // Immediates for special shifts (sign extend)
3259 
3260 // Integer Immediate: the value 16
3261 operand immI_16() %{
3262   predicate(n->get_int() == 16);
3263   match(ConI);
3264   op_cost(0);
3265 
3266   format %{ %}
3267   interface(CONST_INTER);
3268 %}
3269 
3270 // Integer Immediate: the value 24
3271 operand immI_24() %{
3272   predicate(n->get_int() == 24);
3273   match(ConI);
3274   op_cost(0);
3275 
3276   format %{ %}
3277   interface(CONST_INTER);
3278 %}
3279 // Integer Immediate: the value 255
3280 operand immI_255() %{
3281   predicate( n->get_int() == 255 );
3282   match(ConI);
3283   op_cost(0);
3284 
3285   format %{ %}
3286   interface(CONST_INTER);
3287 %}
3288 
3289 // Integer Immediate: the value 65535
3290 operand immI_65535() %{
3291   predicate(n->get_int() == 65535);
3292   match(ConI);
3293   op_cost(0);
3294 
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Integer Immediate: the values 0-31
3300 operand immU5() %{
3301   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3302   match(ConI);
3303   op_cost(0);
3304 
3305   format %{ %}
3306   interface(CONST_INTER);
3307 %}
3308 
3309 // Integer Immediate: 6-bit
3310 operand immU6() %{
3311   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3312   match(ConI);
3313   op_cost(0);
3314   format %{ %}
3315   interface(CONST_INTER);
3316 %}
3317 
3318 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3319 operand immU12() %{
3320   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3321   match(ConI);
3322   op_cost(0);
3323 
3324   format %{ %}
3325   interface(CONST_INTER);
3326 %}
3327 
3328 // Integer Immediate non-negative
3329 operand immU31()
3330 %{
3331   predicate(n->get_int() >= 0);
3332   match(ConI);
3333 
3334   op_cost(0);
3335   format %{ %}
3336   interface(CONST_INTER);
3337 %}
3338 
3339 // Long Immediate: the value FF
3340 operand immL_FF() %{
3341   predicate( n->get_long() == 0xFFL );
3342   match(ConL);
3343   op_cost(0);
3344 
3345   format %{ %}
3346   interface(CONST_INTER);
3347 %}
3348 
3349 // Long Immediate: the value FFFF
3350 operand immL_FFFF() %{
3351   predicate( n->get_long() == 0xFFFFL );
3352   match(ConL);
3353   op_cost(0);
3354 
3355   format %{ %}
3356   interface(CONST_INTER);
3357 %}
3358 
3359 // Pointer Immediate: 32 or 64-bit
3360 operand immP() %{
3361   match(ConP);
3362 
3363   op_cost(5);
3364   // formats are generated automatically for constants and base registers
3365   format %{ %}
3366   interface(CONST_INTER);
3367 %}
3368 
3369 #ifdef _LP64
3370 // Pointer Immediate: 64-bit
3371 operand immP_set() %{
3372   predicate(!VM_Version::is_niagara_plus());
3373   match(ConP);
3374 
3375   op_cost(5);
3376   // formats are generated automatically for constants and base registers
3377   format %{ %}
3378   interface(CONST_INTER);
3379 %}
3380 
3381 // Pointer Immediate: 64-bit
3382 // From Niagara2 processors on a load should be better than materializing.
3383 operand immP_load() %{
3384   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3385   match(ConP);
3386 
3387   op_cost(5);
3388   // formats are generated automatically for constants and base registers
3389   format %{ %}
3390   interface(CONST_INTER);
3391 %}
3392 
3393 // Pointer Immediate: 64-bit
3394 operand immP_no_oop_cheap() %{
3395   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3396   match(ConP);
3397 
3398   op_cost(5);
3399   // formats are generated automatically for constants and base registers
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 #endif
3404 
3405 operand immP13() %{
3406   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3407   match(ConP);
3408   op_cost(0);
3409 
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 operand immP0() %{
3415   predicate(n->get_ptr() == 0);
3416   match(ConP);
3417   op_cost(0);
3418 
3419   format %{ %}
3420   interface(CONST_INTER);
3421 %}
3422 
3423 operand immP_poll() %{
3424   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3425   match(ConP);
3426 
3427   // formats are generated automatically for constants and base registers
3428   format %{ %}
3429   interface(CONST_INTER);
3430 %}
3431 
3432 // Pointer Immediate
3433 operand immN()
3434 %{
3435   match(ConN);
3436 
3437   op_cost(10);
3438   format %{ %}
3439   interface(CONST_INTER);
3440 %}
3441 
3442 operand immNKlass()
3443 %{
3444   match(ConNKlass);
3445 
3446   op_cost(10);
3447   format %{ %}
3448   interface(CONST_INTER);
3449 %}
3450 
3451 // NULL Pointer Immediate
3452 operand immN0()
3453 %{
3454   predicate(n->get_narrowcon() == 0);
3455   match(ConN);
3456 
3457   op_cost(0);
3458   format %{ %}
3459   interface(CONST_INTER);
3460 %}
3461 
3462 operand immL() %{
3463   match(ConL);
3464   op_cost(40);
3465   // formats are generated automatically for constants and base registers
3466   format %{ %}
3467   interface(CONST_INTER);
3468 %}
3469 
3470 operand immL0() %{
3471   predicate(n->get_long() == 0L);
3472   match(ConL);
3473   op_cost(0);
3474   // formats are generated automatically for constants and base registers
3475   format %{ %}
3476   interface(CONST_INTER);
3477 %}
3478 
3479 // Integer Immediate: 5-bit
3480 operand immL5() %{
3481   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3482   match(ConL);
3483   op_cost(0);
3484   format %{ %}
3485   interface(CONST_INTER);
3486 %}
3487 
3488 // Long Immediate: 13-bit
3489 operand immL13() %{
3490   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3491   match(ConL);
3492   op_cost(0);
3493 
3494   format %{ %}
3495   interface(CONST_INTER);
3496 %}
3497 
3498 // Long Immediate: 13-bit minus 7
3499 operand immL13m7() %{
3500   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3501   match(ConL);
3502   op_cost(0);
3503 
3504   format %{ %}
3505   interface(CONST_INTER);
3506 %}
3507 
3508 // Long Immediate: low 32-bit mask
3509 operand immL_32bits() %{
3510   predicate(n->get_long() == 0xFFFFFFFFL);
3511   match(ConL);
3512   op_cost(0);
3513 
3514   format %{ %}
3515   interface(CONST_INTER);
3516 %}
3517 
3518 // Long Immediate: cheap (materialize in <= 3 instructions)
3519 operand immL_cheap() %{
3520   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3521   match(ConL);
3522   op_cost(0);
3523 
3524   format %{ %}
3525   interface(CONST_INTER);
3526 %}
3527 
3528 // Long Immediate: expensive (materialize in > 3 instructions)
3529 operand immL_expensive() %{
3530   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3531   match(ConL);
3532   op_cost(0);
3533 
3534   format %{ %}
3535   interface(CONST_INTER);
3536 %}
3537 
3538 // Double Immediate
3539 operand immD() %{
3540   match(ConD);
3541 
3542   op_cost(40);
3543   format %{ %}
3544   interface(CONST_INTER);
3545 %}
3546 
3547 // Double Immediate: +0.0d
3548 operand immD0() %{
3549   predicate(jlong_cast(n->getd()) == 0);
3550   match(ConD);
3551 
3552   op_cost(0);
3553   format %{ %}
3554   interface(CONST_INTER);
3555 %}
3556 
3557 // Float Immediate
3558 operand immF() %{
3559   match(ConF);
3560 
3561   op_cost(20);
3562   format %{ %}
3563   interface(CONST_INTER);
3564 %}
3565 
3566 // Float Immediate: +0.0f
3567 operand immF0() %{
3568   predicate(jint_cast(n->getf()) == 0);
3569   match(ConF);
3570 
3571   op_cost(0);
3572   format %{ %}
3573   interface(CONST_INTER);
3574 %}
3575 
3576 // Integer Register Operands
3577 // Integer Register
3578 operand iRegI() %{
3579   constraint(ALLOC_IN_RC(int_reg));
3580   match(RegI);
3581 
3582   match(notemp_iRegI);
3583   match(g1RegI);
3584   match(o0RegI);
3585   match(iRegIsafe);
3586 
3587   format %{ %}
3588   interface(REG_INTER);
3589 %}
3590 
3591 operand notemp_iRegI() %{
3592   constraint(ALLOC_IN_RC(notemp_int_reg));
3593   match(RegI);
3594 
3595   match(o0RegI);
3596 
3597   format %{ %}
3598   interface(REG_INTER);
3599 %}
3600 
3601 operand o0RegI() %{
3602   constraint(ALLOC_IN_RC(o0_regI));
3603   match(iRegI);
3604 
3605   format %{ %}
3606   interface(REG_INTER);
3607 %}
3608 
3609 // Pointer Register
3610 operand iRegP() %{
3611   constraint(ALLOC_IN_RC(ptr_reg));
3612   match(RegP);
3613 
3614   match(lock_ptr_RegP);
3615   match(g1RegP);
3616   match(g2RegP);
3617   match(g3RegP);
3618   match(g4RegP);
3619   match(i0RegP);
3620   match(o0RegP);
3621   match(o1RegP);
3622   match(l7RegP);
3623 
3624   format %{ %}
3625   interface(REG_INTER);
3626 %}
3627 
3628 operand sp_ptr_RegP() %{
3629   constraint(ALLOC_IN_RC(sp_ptr_reg));
3630   match(RegP);
3631   match(iRegP);
3632 
3633   format %{ %}
3634   interface(REG_INTER);
3635 %}
3636 
3637 operand lock_ptr_RegP() %{
3638   constraint(ALLOC_IN_RC(lock_ptr_reg));
3639   match(RegP);
3640   match(i0RegP);
3641   match(o0RegP);
3642   match(o1RegP);
3643   match(l7RegP);
3644 
3645   format %{ %}
3646   interface(REG_INTER);
3647 %}
3648 
3649 operand g1RegP() %{
3650   constraint(ALLOC_IN_RC(g1_regP));
3651   match(iRegP);
3652 
3653   format %{ %}
3654   interface(REG_INTER);
3655 %}
3656 
3657 operand g2RegP() %{
3658   constraint(ALLOC_IN_RC(g2_regP));
3659   match(iRegP);
3660 
3661   format %{ %}
3662   interface(REG_INTER);
3663 %}
3664 
3665 operand g3RegP() %{
3666   constraint(ALLOC_IN_RC(g3_regP));
3667   match(iRegP);
3668 
3669   format %{ %}
3670   interface(REG_INTER);
3671 %}
3672 
3673 operand g1RegI() %{
3674   constraint(ALLOC_IN_RC(g1_regI));
3675   match(iRegI);
3676 
3677   format %{ %}
3678   interface(REG_INTER);
3679 %}
3680 
3681 operand g3RegI() %{
3682   constraint(ALLOC_IN_RC(g3_regI));
3683   match(iRegI);
3684 
3685   format %{ %}
3686   interface(REG_INTER);
3687 %}
3688 
3689 operand g4RegI() %{
3690   constraint(ALLOC_IN_RC(g4_regI));
3691   match(iRegI);
3692 
3693   format %{ %}
3694   interface(REG_INTER);
3695 %}
3696 
3697 operand g4RegP() %{
3698   constraint(ALLOC_IN_RC(g4_regP));
3699   match(iRegP);
3700 
3701   format %{ %}
3702   interface(REG_INTER);
3703 %}
3704 
3705 operand i0RegP() %{
3706   constraint(ALLOC_IN_RC(i0_regP));
3707   match(iRegP);
3708 
3709   format %{ %}
3710   interface(REG_INTER);
3711 %}
3712 
3713 operand o0RegP() %{
3714   constraint(ALLOC_IN_RC(o0_regP));
3715   match(iRegP);
3716 
3717   format %{ %}
3718   interface(REG_INTER);
3719 %}
3720 
3721 operand o1RegP() %{
3722   constraint(ALLOC_IN_RC(o1_regP));
3723   match(iRegP);
3724 
3725   format %{ %}
3726   interface(REG_INTER);
3727 %}
3728 
3729 operand o2RegP() %{
3730   constraint(ALLOC_IN_RC(o2_regP));
3731   match(iRegP);
3732 
3733   format %{ %}
3734   interface(REG_INTER);
3735 %}
3736 
3737 operand o7RegP() %{
3738   constraint(ALLOC_IN_RC(o7_regP));
3739   match(iRegP);
3740 
3741   format %{ %}
3742   interface(REG_INTER);
3743 %}
3744 
3745 operand l7RegP() %{
3746   constraint(ALLOC_IN_RC(l7_regP));
3747   match(iRegP);
3748 
3749   format %{ %}
3750   interface(REG_INTER);
3751 %}
3752 
3753 operand o7RegI() %{
3754   constraint(ALLOC_IN_RC(o7_regI));
3755   match(iRegI);
3756 
3757   format %{ %}
3758   interface(REG_INTER);
3759 %}
3760 
3761 operand iRegN() %{
3762   constraint(ALLOC_IN_RC(int_reg));
3763   match(RegN);
3764 
3765   format %{ %}
3766   interface(REG_INTER);
3767 %}
3768 
3769 // Long Register
3770 operand iRegL() %{
3771   constraint(ALLOC_IN_RC(long_reg));
3772   match(RegL);
3773 
3774   format %{ %}
3775   interface(REG_INTER);
3776 %}
3777 
3778 operand o2RegL() %{
3779   constraint(ALLOC_IN_RC(o2_regL));
3780   match(iRegL);
3781 
3782   format %{ %}
3783   interface(REG_INTER);
3784 %}
3785 
3786 operand o7RegL() %{
3787   constraint(ALLOC_IN_RC(o7_regL));
3788   match(iRegL);
3789 
3790   format %{ %}
3791   interface(REG_INTER);
3792 %}
3793 
3794 operand g1RegL() %{
3795   constraint(ALLOC_IN_RC(g1_regL));
3796   match(iRegL);
3797 
3798   format %{ %}
3799   interface(REG_INTER);
3800 %}
3801 
3802 operand g3RegL() %{
3803   constraint(ALLOC_IN_RC(g3_regL));
3804   match(iRegL);
3805 
3806   format %{ %}
3807   interface(REG_INTER);
3808 %}
3809 
3810 // Int Register safe
3811 // This is 64bit safe
3812 operand iRegIsafe() %{
3813   constraint(ALLOC_IN_RC(long_reg));
3814 
3815   match(iRegI);
3816 
3817   format %{ %}
3818   interface(REG_INTER);
3819 %}
3820 
3821 // Condition Code Flag Register
3822 operand flagsReg() %{
3823   constraint(ALLOC_IN_RC(int_flags));
3824   match(RegFlags);
3825 
3826   format %{ "ccr" %} // both ICC and XCC
3827   interface(REG_INTER);
3828 %}
3829 
3830 // Condition Code Register, unsigned comparisons.
3831 operand flagsRegU() %{
3832   constraint(ALLOC_IN_RC(int_flags));
3833   match(RegFlags);
3834 
3835   format %{ "icc_U" %}
3836   interface(REG_INTER);
3837 %}
3838 
3839 // Condition Code Register, pointer comparisons.
3840 operand flagsRegP() %{
3841   constraint(ALLOC_IN_RC(int_flags));
3842   match(RegFlags);
3843 
3844 #ifdef _LP64
3845   format %{ "xcc_P" %}
3846 #else
3847   format %{ "icc_P" %}
3848 #endif
3849   interface(REG_INTER);
3850 %}
3851 
3852 // Condition Code Register, long comparisons.
3853 operand flagsRegL() %{
3854   constraint(ALLOC_IN_RC(int_flags));
3855   match(RegFlags);
3856 
3857   format %{ "xcc_L" %}
3858   interface(REG_INTER);
3859 %}
3860 
3861 // Condition Code Register, floating comparisons, unordered same as "less".
3862 operand flagsRegF() %{
3863   constraint(ALLOC_IN_RC(float_flags));
3864   match(RegFlags);
3865   match(flagsRegF0);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand flagsRegF0() %{
3872   constraint(ALLOC_IN_RC(float_flag0));
3873   match(RegFlags);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 
3880 // Condition Code Flag Register used by long compare
3881 operand flagsReg_long_LTGE() %{
3882   constraint(ALLOC_IN_RC(int_flags));
3883   match(RegFlags);
3884   format %{ "icc_LTGE" %}
3885   interface(REG_INTER);
3886 %}
3887 operand flagsReg_long_EQNE() %{
3888   constraint(ALLOC_IN_RC(int_flags));
3889   match(RegFlags);
3890   format %{ "icc_EQNE" %}
3891   interface(REG_INTER);
3892 %}
3893 operand flagsReg_long_LEGT() %{
3894   constraint(ALLOC_IN_RC(int_flags));
3895   match(RegFlags);
3896   format %{ "icc_LEGT" %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 
3901 operand regD() %{
3902   constraint(ALLOC_IN_RC(dflt_reg));
3903   match(RegD);
3904 
3905   match(regD_low);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand regF() %{
3912   constraint(ALLOC_IN_RC(sflt_reg));
3913   match(RegF);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand regD_low() %{
3920   constraint(ALLOC_IN_RC(dflt_low_reg));
3921   match(regD);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 // Special Registers
3928 
3929 // Method Register
3930 operand inline_cache_regP(iRegP reg) %{
3931   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3932   match(reg);
3933   format %{ %}
3934   interface(REG_INTER);
3935 %}
3936 
3937 operand interpreter_method_oop_regP(iRegP reg) %{
3938   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3939   match(reg);
3940   format %{ %}
3941   interface(REG_INTER);
3942 %}
3943 
3944 
3945 //----------Complex Operands---------------------------------------------------
3946 // Indirect Memory Reference
3947 operand indirect(sp_ptr_RegP reg) %{
3948   constraint(ALLOC_IN_RC(sp_ptr_reg));
3949   match(reg);
3950 
3951   op_cost(100);
3952   format %{ "[$reg]" %}
3953   interface(MEMORY_INTER) %{
3954     base($reg);
3955     index(0x0);
3956     scale(0x0);
3957     disp(0x0);
3958   %}
3959 %}
3960 
3961 // Indirect with simm13 Offset
3962 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3963   constraint(ALLOC_IN_RC(sp_ptr_reg));
3964   match(AddP reg offset);
3965 
3966   op_cost(100);
3967   format %{ "[$reg + $offset]" %}
3968   interface(MEMORY_INTER) %{
3969     base($reg);
3970     index(0x0);
3971     scale(0x0);
3972     disp($offset);
3973   %}
3974 %}
3975 
3976 // Indirect with simm13 Offset minus 7
3977 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
3978   constraint(ALLOC_IN_RC(sp_ptr_reg));
3979   match(AddP reg offset);
3980 
3981   op_cost(100);
3982   format %{ "[$reg + $offset]" %}
3983   interface(MEMORY_INTER) %{
3984     base($reg);
3985     index(0x0);
3986     scale(0x0);
3987     disp($offset);
3988   %}
3989 %}
3990 
3991 // Note:  Intel has a swapped version also, like this:
3992 //operand indOffsetX(iRegI reg, immP offset) %{
3993 //  constraint(ALLOC_IN_RC(int_reg));
3994 //  match(AddP offset reg);
3995 //
3996 //  op_cost(100);
3997 //  format %{ "[$reg + $offset]" %}
3998 //  interface(MEMORY_INTER) %{
3999 //    base($reg);
4000 //    index(0x0);
4001 //    scale(0x0);
4002 //    disp($offset);
4003 //  %}
4004 //%}
4005 //// However, it doesn't make sense for SPARC, since
4006 // we have no particularly good way to embed oops in
4007 // single instructions.
4008 
4009 // Indirect with Register Index
4010 operand indIndex(iRegP addr, iRegX index) %{
4011   constraint(ALLOC_IN_RC(ptr_reg));
4012   match(AddP addr index);
4013 
4014   op_cost(100);
4015   format %{ "[$addr + $index]" %}
4016   interface(MEMORY_INTER) %{
4017     base($addr);
4018     index($index);
4019     scale(0x0);
4020     disp(0x0);
4021   %}
4022 %}
4023 
4024 //----------Special Memory Operands--------------------------------------------
4025 // Stack Slot Operand - This operand is used for loading and storing temporary
4026 //                      values on the stack where a match requires a value to
4027 //                      flow through memory.
4028 operand stackSlotI(sRegI reg) %{
4029   constraint(ALLOC_IN_RC(stack_slots));
4030   op_cost(100);
4031   //match(RegI);
4032   format %{ "[$reg]" %}
4033   interface(MEMORY_INTER) %{
4034     base(0xE);   // R_SP
4035     index(0x0);
4036     scale(0x0);
4037     disp($reg);  // Stack Offset
4038   %}
4039 %}
4040 
4041 operand stackSlotP(sRegP reg) %{
4042   constraint(ALLOC_IN_RC(stack_slots));
4043   op_cost(100);
4044   //match(RegP);
4045   format %{ "[$reg]" %}
4046   interface(MEMORY_INTER) %{
4047     base(0xE);   // R_SP
4048     index(0x0);
4049     scale(0x0);
4050     disp($reg);  // Stack Offset
4051   %}
4052 %}
4053 
4054 operand stackSlotF(sRegF reg) %{
4055   constraint(ALLOC_IN_RC(stack_slots));
4056   op_cost(100);
4057   //match(RegF);
4058   format %{ "[$reg]" %}
4059   interface(MEMORY_INTER) %{
4060     base(0xE);   // R_SP
4061     index(0x0);
4062     scale(0x0);
4063     disp($reg);  // Stack Offset
4064   %}
4065 %}
4066 operand stackSlotD(sRegD reg) %{
4067   constraint(ALLOC_IN_RC(stack_slots));
4068   op_cost(100);
4069   //match(RegD);
4070   format %{ "[$reg]" %}
4071   interface(MEMORY_INTER) %{
4072     base(0xE);   // R_SP
4073     index(0x0);
4074     scale(0x0);
4075     disp($reg);  // Stack Offset
4076   %}
4077 %}
4078 operand stackSlotL(sRegL reg) %{
4079   constraint(ALLOC_IN_RC(stack_slots));
4080   op_cost(100);
4081   //match(RegL);
4082   format %{ "[$reg]" %}
4083   interface(MEMORY_INTER) %{
4084     base(0xE);   // R_SP
4085     index(0x0);
4086     scale(0x0);
4087     disp($reg);  // Stack Offset
4088   %}
4089 %}
4090 
4091 // Operands for expressing Control Flow
4092 // NOTE:  Label is a predefined operand which should not be redefined in
4093 //        the AD file.  It is generically handled within the ADLC.
4094 
4095 //----------Conditional Branch Operands----------------------------------------
4096 // Comparison Op  - This is the operation of the comparison, and is limited to
4097 //                  the following set of codes:
4098 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4099 //
4100 // Other attributes of the comparison, such as unsignedness, are specified
4101 // by the comparison instruction that sets a condition code flags register.
4102 // That result is represented by a flags operand whose subtype is appropriate
4103 // to the unsignedness (etc.) of the comparison.
4104 //
4105 // Later, the instruction which matches both the Comparison Op (a Bool) and
4106 // the flags (produced by the Cmp) specifies the coding of the comparison op
4107 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4108 
4109 operand cmpOp() %{
4110   match(Bool);
4111 
4112   format %{ "" %}
4113   interface(COND_INTER) %{
4114     equal(0x1);
4115     not_equal(0x9);
4116     less(0x3);
4117     greater_equal(0xB);
4118     less_equal(0x2);
4119     greater(0xA);
4120     overflow(0x7);
4121     no_overflow(0xF);
4122   %}
4123 %}
4124 
4125 // Comparison Op, unsigned
4126 operand cmpOpU() %{
4127   match(Bool);
4128   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4129             n->as_Bool()->_test._test != BoolTest::no_overflow);
4130 
4131   format %{ "u" %}
4132   interface(COND_INTER) %{
4133     equal(0x1);
4134     not_equal(0x9);
4135     less(0x5);
4136     greater_equal(0xD);
4137     less_equal(0x4);
4138     greater(0xC);
4139     overflow(0x7);
4140     no_overflow(0xF);
4141   %}
4142 %}
4143 
4144 // Comparison Op, pointer (same as unsigned)
4145 operand cmpOpP() %{
4146   match(Bool);
4147   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4148             n->as_Bool()->_test._test != BoolTest::no_overflow);
4149 
4150   format %{ "p" %}
4151   interface(COND_INTER) %{
4152     equal(0x1);
4153     not_equal(0x9);
4154     less(0x5);
4155     greater_equal(0xD);
4156     less_equal(0x4);
4157     greater(0xC);
4158     overflow(0x7);
4159     no_overflow(0xF);
4160   %}
4161 %}
4162 
4163 // Comparison Op, branch-register encoding
4164 operand cmpOp_reg() %{
4165   match(Bool);
4166   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4167             n->as_Bool()->_test._test != BoolTest::no_overflow);
4168 
4169   format %{ "" %}
4170   interface(COND_INTER) %{
4171     equal        (0x1);
4172     not_equal    (0x5);
4173     less         (0x3);
4174     greater_equal(0x7);
4175     less_equal   (0x2);
4176     greater      (0x6);
4177     overflow(0x7); // not supported
4178     no_overflow(0xF); // not supported
4179   %}
4180 %}
4181 
4182 // Comparison Code, floating, unordered same as less
4183 operand cmpOpF() %{
4184   match(Bool);
4185   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4186             n->as_Bool()->_test._test != BoolTest::no_overflow);
4187 
4188   format %{ "fl" %}
4189   interface(COND_INTER) %{
4190     equal(0x9);
4191     not_equal(0x1);
4192     less(0x3);
4193     greater_equal(0xB);
4194     less_equal(0xE);
4195     greater(0x6);
4196 
4197     overflow(0x7); // not supported
4198     no_overflow(0xF); // not supported
4199   %}
4200 %}
4201 
4202 // Used by long compare
4203 operand cmpOp_commute() %{
4204   match(Bool);
4205   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4206             n->as_Bool()->_test._test != BoolTest::no_overflow);
4207 
4208   format %{ "" %}
4209   interface(COND_INTER) %{
4210     equal(0x1);
4211     not_equal(0x9);
4212     less(0xA);
4213     greater_equal(0x2);
4214     less_equal(0xB);
4215     greater(0x3);
4216     overflow(0x7);
4217     no_overflow(0xF);
4218   %}
4219 %}
4220 
4221 //----------OPERAND CLASSES----------------------------------------------------
4222 // Operand Classes are groups of operands that are used to simplify
4223 // instruction definitions by not requiring the AD writer to specify separate
4224 // instructions for every form of operand when the instruction accepts
4225 // multiple operand types with the same basic encoding and format.  The classic
4226 // case of this is memory operands.
4227 opclass memory( indirect, indOffset13, indIndex );
4228 opclass indIndexMemory( indIndex );
4229 
4230 //----------PIPELINE-----------------------------------------------------------
4231 pipeline %{
4232 
4233 //----------ATTRIBUTES---------------------------------------------------------
4234 attributes %{
4235   fixed_size_instructions;           // Fixed size instructions
4236   branch_has_delay_slot;             // Branch has delay slot following
4237   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4238   instruction_unit_size = 4;         // An instruction is 4 bytes long
4239   instruction_fetch_unit_size = 16;  // The processor fetches one line
4240   instruction_fetch_units = 1;       // of 16 bytes
4241 
4242   // List of nop instructions
4243   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4244 %}
4245 
4246 //----------RESOURCES----------------------------------------------------------
4247 // Resources are the functional units available to the machine
4248 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4249 
4250 //----------PIPELINE DESCRIPTION-----------------------------------------------
4251 // Pipeline Description specifies the stages in the machine's pipeline
4252 
4253 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4254 
4255 //----------PIPELINE CLASSES---------------------------------------------------
4256 // Pipeline Classes describe the stages in which input and output are
4257 // referenced by the hardware pipeline.
4258 
4259 // Integer ALU reg-reg operation
4260 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4261     single_instruction;
4262     dst   : E(write);
4263     src1  : R(read);
4264     src2  : R(read);
4265     IALU  : R;
4266 %}
4267 
4268 // Integer ALU reg-reg long operation
4269 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4270     instruction_count(2);
4271     dst   : E(write);
4272     src1  : R(read);
4273     src2  : R(read);
4274     IALU  : R;
4275     IALU  : R;
4276 %}
4277 
4278 // Integer ALU reg-reg long dependent operation
4279 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4280     instruction_count(1); multiple_bundles;
4281     dst   : E(write);
4282     src1  : R(read);
4283     src2  : R(read);
4284     cr    : E(write);
4285     IALU  : R(2);
4286 %}
4287 
4288 // Integer ALU reg-imm operaion
4289 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4290     single_instruction;
4291     dst   : E(write);
4292     src1  : R(read);
4293     IALU  : R;
4294 %}
4295 
4296 // Integer ALU reg-reg operation with condition code
4297 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4298     single_instruction;
4299     dst   : E(write);
4300     cr    : E(write);
4301     src1  : R(read);
4302     src2  : R(read);
4303     IALU  : R;
4304 %}
4305 
4306 // Integer ALU reg-imm operation with condition code
4307 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4308     single_instruction;
4309     dst   : E(write);
4310     cr    : E(write);
4311     src1  : R(read);
4312     IALU  : R;
4313 %}
4314 
4315 // Integer ALU zero-reg operation
4316 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4317     single_instruction;
4318     dst   : E(write);
4319     src2  : R(read);
4320     IALU  : R;
4321 %}
4322 
4323 // Integer ALU zero-reg operation with condition code only
4324 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4325     single_instruction;
4326     cr    : E(write);
4327     src   : R(read);
4328     IALU  : R;
4329 %}
4330 
4331 // Integer ALU reg-reg operation with condition code only
4332 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4333     single_instruction;
4334     cr    : E(write);
4335     src1  : R(read);
4336     src2  : R(read);
4337     IALU  : R;
4338 %}
4339 
4340 // Integer ALU reg-imm operation with condition code only
4341 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4342     single_instruction;
4343     cr    : E(write);
4344     src1  : R(read);
4345     IALU  : R;
4346 %}
4347 
4348 // Integer ALU reg-reg-zero operation with condition code only
4349 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4350     single_instruction;
4351     cr    : E(write);
4352     src1  : R(read);
4353     src2  : R(read);
4354     IALU  : R;
4355 %}
4356 
4357 // Integer ALU reg-imm-zero operation with condition code only
4358 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4359     single_instruction;
4360     cr    : E(write);
4361     src1  : R(read);
4362     IALU  : R;
4363 %}
4364 
4365 // Integer ALU reg-reg operation with condition code, src1 modified
4366 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4367     single_instruction;
4368     cr    : E(write);
4369     src1  : E(write);
4370     src1  : R(read);
4371     src2  : R(read);
4372     IALU  : R;
4373 %}
4374 
4375 // Integer ALU reg-imm operation with condition code, src1 modified
4376 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4377     single_instruction;
4378     cr    : E(write);
4379     src1  : E(write);
4380     src1  : R(read);
4381     IALU  : R;
4382 %}
4383 
4384 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4385     multiple_bundles;
4386     dst   : E(write)+4;
4387     cr    : E(write);
4388     src1  : R(read);
4389     src2  : R(read);
4390     IALU  : R(3);
4391     BR    : R(2);
4392 %}
4393 
4394 // Integer ALU operation
4395 pipe_class ialu_none(iRegI dst) %{
4396     single_instruction;
4397     dst   : E(write);
4398     IALU  : R;
4399 %}
4400 
4401 // Integer ALU reg operation
4402 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4403     single_instruction; may_have_no_code;
4404     dst   : E(write);
4405     src   : R(read);
4406     IALU  : R;
4407 %}
4408 
4409 // Integer ALU reg conditional operation
4410 // This instruction has a 1 cycle stall, and cannot execute
4411 // in the same cycle as the instruction setting the condition
4412 // code. We kludge this by pretending to read the condition code
4413 // 1 cycle earlier, and by marking the functional units as busy
4414 // for 2 cycles with the result available 1 cycle later than
4415 // is really the case.
4416 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4417     single_instruction;
4418     op2_out : C(write);
4419     op1     : R(read);
4420     cr      : R(read);       // This is really E, with a 1 cycle stall
4421     BR      : R(2);
4422     MS      : R(2);
4423 %}
4424 
4425 #ifdef _LP64
4426 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4427     instruction_count(1); multiple_bundles;
4428     dst     : C(write)+1;
4429     src     : R(read)+1;
4430     IALU    : R(1);
4431     BR      : E(2);
4432     MS      : E(2);
4433 %}
4434 #endif
4435 
4436 // Integer ALU reg operation
4437 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4438     single_instruction; may_have_no_code;
4439     dst   : E(write);
4440     src   : R(read);
4441     IALU  : R;
4442 %}
4443 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4444     single_instruction; may_have_no_code;
4445     dst   : E(write);
4446     src   : R(read);
4447     IALU  : R;
4448 %}
4449 
4450 // Two integer ALU reg operations
4451 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4452     instruction_count(2);
4453     dst   : E(write);
4454     src   : R(read);
4455     A0    : R;
4456     A1    : R;
4457 %}
4458 
4459 // Two integer ALU reg operations
4460 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4461     instruction_count(2); may_have_no_code;
4462     dst   : E(write);
4463     src   : R(read);
4464     A0    : R;
4465     A1    : R;
4466 %}
4467 
4468 // Integer ALU imm operation
4469 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4470     single_instruction;
4471     dst   : E(write);
4472     IALU  : R;
4473 %}
4474 
4475 // Integer ALU reg-reg with carry operation
4476 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4477     single_instruction;
4478     dst   : E(write);
4479     src1  : R(read);
4480     src2  : R(read);
4481     IALU  : R;
4482 %}
4483 
4484 // Integer ALU cc operation
4485 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4486     single_instruction;
4487     dst   : E(write);
4488     cc    : R(read);
4489     IALU  : R;
4490 %}
4491 
4492 // Integer ALU cc / second IALU operation
4493 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4494     instruction_count(1); multiple_bundles;
4495     dst   : E(write)+1;
4496     src   : R(read);
4497     IALU  : R;
4498 %}
4499 
4500 // Integer ALU cc / second IALU operation
4501 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4502     instruction_count(1); multiple_bundles;
4503     dst   : E(write)+1;
4504     p     : R(read);
4505     q     : R(read);
4506     IALU  : R;
4507 %}
4508 
4509 // Integer ALU hi-lo-reg operation
4510 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4511     instruction_count(1); multiple_bundles;
4512     dst   : E(write)+1;
4513     IALU  : R(2);
4514 %}
4515 
4516 // Float ALU hi-lo-reg operation (with temp)
4517 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4518     instruction_count(1); multiple_bundles;
4519     dst   : E(write)+1;
4520     IALU  : R(2);
4521 %}
4522 
4523 // Long Constant
4524 pipe_class loadConL( iRegL dst, immL src ) %{
4525     instruction_count(2); multiple_bundles;
4526     dst   : E(write)+1;
4527     IALU  : R(2);
4528     IALU  : R(2);
4529 %}
4530 
4531 // Pointer Constant
4532 pipe_class loadConP( iRegP dst, immP src ) %{
4533     instruction_count(0); multiple_bundles;
4534     fixed_latency(6);
4535 %}
4536 
4537 // Polling Address
4538 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4539 #ifdef _LP64
4540     instruction_count(0); multiple_bundles;
4541     fixed_latency(6);
4542 #else
4543     dst   : E(write);
4544     IALU  : R;
4545 #endif
4546 %}
4547 
4548 // Long Constant small
4549 pipe_class loadConLlo( iRegL dst, immL src ) %{
4550     instruction_count(2);
4551     dst   : E(write);
4552     IALU  : R;
4553     IALU  : R;
4554 %}
4555 
4556 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4557 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4558     instruction_count(1); multiple_bundles;
4559     src   : R(read);
4560     dst   : M(write)+1;
4561     IALU  : R;
4562     MS    : E;
4563 %}
4564 
4565 // Integer ALU nop operation
4566 pipe_class ialu_nop() %{
4567     single_instruction;
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU nop operation
4572 pipe_class ialu_nop_A0() %{
4573     single_instruction;
4574     A0    : R;
4575 %}
4576 
4577 // Integer ALU nop operation
4578 pipe_class ialu_nop_A1() %{
4579     single_instruction;
4580     A1    : R;
4581 %}
4582 
4583 // Integer Multiply reg-reg operation
4584 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4585     single_instruction;
4586     dst   : E(write);
4587     src1  : R(read);
4588     src2  : R(read);
4589     MS    : R(5);
4590 %}
4591 
4592 // Integer Multiply reg-imm operation
4593 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4594     single_instruction;
4595     dst   : E(write);
4596     src1  : R(read);
4597     MS    : R(5);
4598 %}
4599 
4600 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4601     single_instruction;
4602     dst   : E(write)+4;
4603     src1  : R(read);
4604     src2  : R(read);
4605     MS    : R(6);
4606 %}
4607 
4608 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4609     single_instruction;
4610     dst   : E(write)+4;
4611     src1  : R(read);
4612     MS    : R(6);
4613 %}
4614 
4615 // Integer Divide reg-reg
4616 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4617     instruction_count(1); multiple_bundles;
4618     dst   : E(write);
4619     temp  : E(write);
4620     src1  : R(read);
4621     src2  : R(read);
4622     temp  : R(read);
4623     MS    : R(38);
4624 %}
4625 
4626 // Integer Divide reg-imm
4627 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4628     instruction_count(1); multiple_bundles;
4629     dst   : E(write);
4630     temp  : E(write);
4631     src1  : R(read);
4632     temp  : R(read);
4633     MS    : R(38);
4634 %}
4635 
4636 // Long Divide
4637 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4638     dst  : E(write)+71;
4639     src1 : R(read);
4640     src2 : R(read)+1;
4641     MS   : R(70);
4642 %}
4643 
4644 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4645     dst  : E(write)+71;
4646     src1 : R(read);
4647     MS   : R(70);
4648 %}
4649 
4650 // Floating Point Add Float
4651 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4652     single_instruction;
4653     dst   : X(write);
4654     src1  : E(read);
4655     src2  : E(read);
4656     FA    : R;
4657 %}
4658 
4659 // Floating Point Add Double
4660 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4661     single_instruction;
4662     dst   : X(write);
4663     src1  : E(read);
4664     src2  : E(read);
4665     FA    : R;
4666 %}
4667 
4668 // Floating Point Conditional Move based on integer flags
4669 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4670     single_instruction;
4671     dst   : X(write);
4672     src   : E(read);
4673     cr    : R(read);
4674     FA    : R(2);
4675     BR    : R(2);
4676 %}
4677 
4678 // Floating Point Conditional Move based on integer flags
4679 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4680     single_instruction;
4681     dst   : X(write);
4682     src   : E(read);
4683     cr    : R(read);
4684     FA    : R(2);
4685     BR    : R(2);
4686 %}
4687 
4688 // Floating Point Multiply Float
4689 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4690     single_instruction;
4691     dst   : X(write);
4692     src1  : E(read);
4693     src2  : E(read);
4694     FM    : R;
4695 %}
4696 
4697 // Floating Point Multiply Double
4698 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4699     single_instruction;
4700     dst   : X(write);
4701     src1  : E(read);
4702     src2  : E(read);
4703     FM    : R;
4704 %}
4705 
4706 // Floating Point Divide Float
4707 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4708     single_instruction;
4709     dst   : X(write);
4710     src1  : E(read);
4711     src2  : E(read);
4712     FM    : R;
4713     FDIV  : C(14);
4714 %}
4715 
4716 // Floating Point Divide Double
4717 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4718     single_instruction;
4719     dst   : X(write);
4720     src1  : E(read);
4721     src2  : E(read);
4722     FM    : R;
4723     FDIV  : C(17);
4724 %}
4725 
4726 // Floating Point Move/Negate/Abs Float
4727 pipe_class faddF_reg(regF dst, regF src) %{
4728     single_instruction;
4729     dst   : W(write);
4730     src   : E(read);
4731     FA    : R(1);
4732 %}
4733 
4734 // Floating Point Move/Negate/Abs Double
4735 pipe_class faddD_reg(regD dst, regD src) %{
4736     single_instruction;
4737     dst   : W(write);
4738     src   : E(read);
4739     FA    : R;
4740 %}
4741 
4742 // Floating Point Convert F->D
4743 pipe_class fcvtF2D(regD dst, regF src) %{
4744     single_instruction;
4745     dst   : X(write);
4746     src   : E(read);
4747     FA    : R;
4748 %}
4749 
4750 // Floating Point Convert I->D
4751 pipe_class fcvtI2D(regD dst, regF src) %{
4752     single_instruction;
4753     dst   : X(write);
4754     src   : E(read);
4755     FA    : R;
4756 %}
4757 
4758 // Floating Point Convert LHi->D
4759 pipe_class fcvtLHi2D(regD dst, regD src) %{
4760     single_instruction;
4761     dst   : X(write);
4762     src   : E(read);
4763     FA    : R;
4764 %}
4765 
4766 // Floating Point Convert L->D
4767 pipe_class fcvtL2D(regD dst, regF src) %{
4768     single_instruction;
4769     dst   : X(write);
4770     src   : E(read);
4771     FA    : R;
4772 %}
4773 
4774 // Floating Point Convert L->F
4775 pipe_class fcvtL2F(regD dst, regF src) %{
4776     single_instruction;
4777     dst   : X(write);
4778     src   : E(read);
4779     FA    : R;
4780 %}
4781 
4782 // Floating Point Convert D->F
4783 pipe_class fcvtD2F(regD dst, regF src) %{
4784     single_instruction;
4785     dst   : X(write);
4786     src   : E(read);
4787     FA    : R;
4788 %}
4789 
4790 // Floating Point Convert I->L
4791 pipe_class fcvtI2L(regD dst, regF src) %{
4792     single_instruction;
4793     dst   : X(write);
4794     src   : E(read);
4795     FA    : R;
4796 %}
4797 
4798 // Floating Point Convert D->F
4799 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4800     instruction_count(1); multiple_bundles;
4801     dst   : X(write)+6;
4802     src   : E(read);
4803     FA    : R;
4804 %}
4805 
4806 // Floating Point Convert D->L
4807 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4808     instruction_count(1); multiple_bundles;
4809     dst   : X(write)+6;
4810     src   : E(read);
4811     FA    : R;
4812 %}
4813 
4814 // Floating Point Convert F->I
4815 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4816     instruction_count(1); multiple_bundles;
4817     dst   : X(write)+6;
4818     src   : E(read);
4819     FA    : R;
4820 %}
4821 
4822 // Floating Point Convert F->L
4823 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4824     instruction_count(1); multiple_bundles;
4825     dst   : X(write)+6;
4826     src   : E(read);
4827     FA    : R;
4828 %}
4829 
4830 // Floating Point Convert I->F
4831 pipe_class fcvtI2F(regF dst, regF src) %{
4832     single_instruction;
4833     dst   : X(write);
4834     src   : E(read);
4835     FA    : R;
4836 %}
4837 
4838 // Floating Point Compare
4839 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4840     single_instruction;
4841     cr    : X(write);
4842     src1  : E(read);
4843     src2  : E(read);
4844     FA    : R;
4845 %}
4846 
4847 // Floating Point Compare
4848 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4849     single_instruction;
4850     cr    : X(write);
4851     src1  : E(read);
4852     src2  : E(read);
4853     FA    : R;
4854 %}
4855 
4856 // Floating Add Nop
4857 pipe_class fadd_nop() %{
4858     single_instruction;
4859     FA  : R;
4860 %}
4861 
4862 // Integer Store to Memory
4863 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4864     single_instruction;
4865     mem   : R(read);
4866     src   : C(read);
4867     MS    : R;
4868 %}
4869 
4870 // Integer Store to Memory
4871 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4872     single_instruction;
4873     mem   : R(read);
4874     src   : C(read);
4875     MS    : R;
4876 %}
4877 
4878 // Integer Store Zero to Memory
4879 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4880     single_instruction;
4881     mem   : R(read);
4882     MS    : R;
4883 %}
4884 
4885 // Special Stack Slot Store
4886 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4887     single_instruction;
4888     stkSlot : R(read);
4889     src     : C(read);
4890     MS      : R;
4891 %}
4892 
4893 // Special Stack Slot Store
4894 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4895     instruction_count(2); multiple_bundles;
4896     stkSlot : R(read);
4897     src     : C(read);
4898     MS      : R(2);
4899 %}
4900 
4901 // Float Store
4902 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4903     single_instruction;
4904     mem : R(read);
4905     src : C(read);
4906     MS  : R;
4907 %}
4908 
4909 // Float Store
4910 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4911     single_instruction;
4912     mem : R(read);
4913     MS  : R;
4914 %}
4915 
4916 // Double Store
4917 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4918     instruction_count(1);
4919     mem : R(read);
4920     src : C(read);
4921     MS  : R;
4922 %}
4923 
4924 // Double Store
4925 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4926     single_instruction;
4927     mem : R(read);
4928     MS  : R;
4929 %}
4930 
4931 // Special Stack Slot Float Store
4932 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4933     single_instruction;
4934     stkSlot : R(read);
4935     src     : C(read);
4936     MS      : R;
4937 %}
4938 
4939 // Special Stack Slot Double Store
4940 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4941     single_instruction;
4942     stkSlot : R(read);
4943     src     : C(read);
4944     MS      : R;
4945 %}
4946 
4947 // Integer Load (when sign bit propagation not needed)
4948 pipe_class iload_mem(iRegI dst, memory mem) %{
4949     single_instruction;
4950     mem : R(read);
4951     dst : C(write);
4952     MS  : R;
4953 %}
4954 
4955 // Integer Load from stack operand
4956 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4957     single_instruction;
4958     mem : R(read);
4959     dst : C(write);
4960     MS  : R;
4961 %}
4962 
4963 // Integer Load (when sign bit propagation or masking is needed)
4964 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4965     single_instruction;
4966     mem : R(read);
4967     dst : M(write);
4968     MS  : R;
4969 %}
4970 
4971 // Float Load
4972 pipe_class floadF_mem(regF dst, memory mem) %{
4973     single_instruction;
4974     mem : R(read);
4975     dst : M(write);
4976     MS  : R;
4977 %}
4978 
4979 // Float Load
4980 pipe_class floadD_mem(regD dst, memory mem) %{
4981     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4982     mem : R(read);
4983     dst : M(write);
4984     MS  : R;
4985 %}
4986 
4987 // Float Load
4988 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4989     single_instruction;
4990     stkSlot : R(read);
4991     dst : M(write);
4992     MS  : R;
4993 %}
4994 
4995 // Float Load
4996 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4997     single_instruction;
4998     stkSlot : R(read);
4999     dst : M(write);
5000     MS  : R;
5001 %}
5002 
5003 // Memory Nop
5004 pipe_class mem_nop() %{
5005     single_instruction;
5006     MS  : R;
5007 %}
5008 
5009 pipe_class sethi(iRegP dst, immI src) %{
5010     single_instruction;
5011     dst  : E(write);
5012     IALU : R;
5013 %}
5014 
5015 pipe_class loadPollP(iRegP poll) %{
5016     single_instruction;
5017     poll : R(read);
5018     MS   : R;
5019 %}
5020 
5021 pipe_class br(Universe br, label labl) %{
5022     single_instruction_with_delay_slot;
5023     BR  : R;
5024 %}
5025 
5026 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5027     single_instruction_with_delay_slot;
5028     cr    : E(read);
5029     BR    : R;
5030 %}
5031 
5032 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5033     single_instruction_with_delay_slot;
5034     op1 : E(read);
5035     BR  : R;
5036     MS  : R;
5037 %}
5038 
5039 // Compare and branch
5040 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5041     instruction_count(2); has_delay_slot;
5042     cr    : E(write);
5043     src1  : R(read);
5044     src2  : R(read);
5045     IALU  : R;
5046     BR    : R;
5047 %}
5048 
5049 // Compare and branch
5050 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5051     instruction_count(2); has_delay_slot;
5052     cr    : E(write);
5053     src1  : R(read);
5054     IALU  : R;
5055     BR    : R;
5056 %}
5057 
5058 // Compare and branch using cbcond
5059 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5060     single_instruction;
5061     src1  : E(read);
5062     src2  : E(read);
5063     IALU  : R;
5064     BR    : R;
5065 %}
5066 
5067 // Compare and branch using cbcond
5068 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5069     single_instruction;
5070     src1  : E(read);
5071     IALU  : R;
5072     BR    : R;
5073 %}
5074 
5075 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5076     single_instruction_with_delay_slot;
5077     cr    : E(read);
5078     BR    : R;
5079 %}
5080 
5081 pipe_class br_nop() %{
5082     single_instruction;
5083     BR  : R;
5084 %}
5085 
5086 pipe_class simple_call(method meth) %{
5087     instruction_count(2); multiple_bundles; force_serialization;
5088     fixed_latency(100);
5089     BR  : R(1);
5090     MS  : R(1);
5091     A0  : R(1);
5092 %}
5093 
5094 pipe_class compiled_call(method meth) %{
5095     instruction_count(1); multiple_bundles; force_serialization;
5096     fixed_latency(100);
5097     MS  : R(1);
5098 %}
5099 
5100 pipe_class call(method meth) %{
5101     instruction_count(0); multiple_bundles; force_serialization;
5102     fixed_latency(100);
5103 %}
5104 
5105 pipe_class tail_call(Universe ignore, label labl) %{
5106     single_instruction; has_delay_slot;
5107     fixed_latency(100);
5108     BR  : R(1);
5109     MS  : R(1);
5110 %}
5111 
5112 pipe_class ret(Universe ignore) %{
5113     single_instruction; has_delay_slot;
5114     BR  : R(1);
5115     MS  : R(1);
5116 %}
5117 
5118 pipe_class ret_poll(g3RegP poll) %{
5119     instruction_count(3); has_delay_slot;
5120     poll : E(read);
5121     MS   : R;
5122 %}
5123 
5124 // The real do-nothing guy
5125 pipe_class empty( ) %{
5126     instruction_count(0);
5127 %}
5128 
5129 pipe_class long_memory_op() %{
5130     instruction_count(0); multiple_bundles; force_serialization;
5131     fixed_latency(25);
5132     MS  : R(1);
5133 %}
5134 
5135 // Check-cast
5136 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5137     array : R(read);
5138     match  : R(read);
5139     IALU   : R(2);
5140     BR     : R(2);
5141     MS     : R;
5142 %}
5143 
5144 // Convert FPU flags into +1,0,-1
5145 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5146     src1  : E(read);
5147     src2  : E(read);
5148     dst   : E(write);
5149     FA    : R;
5150     MS    : R(2);
5151     BR    : R(2);
5152 %}
5153 
5154 // Compare for p < q, and conditionally add y
5155 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5156     p     : E(read);
5157     q     : E(read);
5158     y     : E(read);
5159     IALU  : R(3)
5160 %}
5161 
5162 // Perform a compare, then move conditionally in a branch delay slot.
5163 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5164     src2   : E(read);
5165     srcdst : E(read);
5166     IALU   : R;
5167     BR     : R;
5168 %}
5169 
5170 // Define the class for the Nop node
5171 define %{
5172    MachNop = ialu_nop;
5173 %}
5174 
5175 %}
5176 
5177 //----------INSTRUCTIONS-------------------------------------------------------
5178 
5179 //------------Special Stack Slot instructions - no match rules-----------------
5180 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5181   // No match rule to avoid chain rule match.
5182   effect(DEF dst, USE src);
5183   ins_cost(MEMORY_REF_COST);
5184   size(4);
5185   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5186   opcode(Assembler::ldf_op3);
5187   ins_encode(simple_form3_mem_reg(src, dst));
5188   ins_pipe(floadF_stk);
5189 %}
5190 
5191 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5192   // No match rule to avoid chain rule match.
5193   effect(DEF dst, USE src);
5194   ins_cost(MEMORY_REF_COST);
5195   size(4);
5196   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5197   opcode(Assembler::lddf_op3);
5198   ins_encode(simple_form3_mem_reg(src, dst));
5199   ins_pipe(floadD_stk);
5200 %}
5201 
5202 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5203   // No match rule to avoid chain rule match.
5204   effect(DEF dst, USE src);
5205   ins_cost(MEMORY_REF_COST);
5206   size(4);
5207   format %{ "STF    $src,$dst\t! regF to stkI" %}
5208   opcode(Assembler::stf_op3);
5209   ins_encode(simple_form3_mem_reg(dst, src));
5210   ins_pipe(fstoreF_stk_reg);
5211 %}
5212 
5213 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5214   // No match rule to avoid chain rule match.
5215   effect(DEF dst, USE src);
5216   ins_cost(MEMORY_REF_COST);
5217   size(4);
5218   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5219   opcode(Assembler::stdf_op3);
5220   ins_encode(simple_form3_mem_reg(dst, src));
5221   ins_pipe(fstoreD_stk_reg);
5222 %}
5223 
5224 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5225   effect(DEF dst, USE src);
5226   ins_cost(MEMORY_REF_COST*2);
5227   size(8);
5228   format %{ "STW    $src,$dst.hi\t! long\n\t"
5229             "STW    R_G0,$dst.lo" %}
5230   opcode(Assembler::stw_op3);
5231   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5232   ins_pipe(lstoreI_stk_reg);
5233 %}
5234 
5235 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5236   // No match rule to avoid chain rule match.
5237   effect(DEF dst, USE src);
5238   ins_cost(MEMORY_REF_COST);
5239   size(4);
5240   format %{ "STX    $src,$dst\t! regL to stkD" %}
5241   opcode(Assembler::stx_op3);
5242   ins_encode(simple_form3_mem_reg( dst, src ) );
5243   ins_pipe(istore_stk_reg);
5244 %}
5245 
5246 //---------- Chain stack slots between similar types --------
5247 
5248 // Load integer from stack slot
5249 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5250   match(Set dst src);
5251   ins_cost(MEMORY_REF_COST);
5252 
5253   size(4);
5254   format %{ "LDUW   $src,$dst\t!stk" %}
5255   opcode(Assembler::lduw_op3);
5256   ins_encode(simple_form3_mem_reg( src, dst ) );
5257   ins_pipe(iload_mem);
5258 %}
5259 
5260 // Store integer to stack slot
5261 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5262   match(Set dst src);
5263   ins_cost(MEMORY_REF_COST);
5264 
5265   size(4);
5266   format %{ "STW    $src,$dst\t!stk" %}
5267   opcode(Assembler::stw_op3);
5268   ins_encode(simple_form3_mem_reg( dst, src ) );
5269   ins_pipe(istore_mem_reg);
5270 %}
5271 
5272 // Load long from stack slot
5273 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5274   match(Set dst src);
5275 
5276   ins_cost(MEMORY_REF_COST);
5277   size(4);
5278   format %{ "LDX    $src,$dst\t! long" %}
5279   opcode(Assembler::ldx_op3);
5280   ins_encode(simple_form3_mem_reg( src, dst ) );
5281   ins_pipe(iload_mem);
5282 %}
5283 
5284 // Store long to stack slot
5285 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5286   match(Set dst src);
5287 
5288   ins_cost(MEMORY_REF_COST);
5289   size(4);
5290   format %{ "STX    $src,$dst\t! long" %}
5291   opcode(Assembler::stx_op3);
5292   ins_encode(simple_form3_mem_reg( dst, src ) );
5293   ins_pipe(istore_mem_reg);
5294 %}
5295 
5296 #ifdef _LP64
5297 // Load pointer from stack slot, 64-bit encoding
5298 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5299   match(Set dst src);
5300   ins_cost(MEMORY_REF_COST);
5301   size(4);
5302   format %{ "LDX    $src,$dst\t!ptr" %}
5303   opcode(Assembler::ldx_op3);
5304   ins_encode(simple_form3_mem_reg( src, dst ) );
5305   ins_pipe(iload_mem);
5306 %}
5307 
5308 // Store pointer to stack slot
5309 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5310   match(Set dst src);
5311   ins_cost(MEMORY_REF_COST);
5312   size(4);
5313   format %{ "STX    $src,$dst\t!ptr" %}
5314   opcode(Assembler::stx_op3);
5315   ins_encode(simple_form3_mem_reg( dst, src ) );
5316   ins_pipe(istore_mem_reg);
5317 %}
5318 #else // _LP64
5319 // Load pointer from stack slot, 32-bit encoding
5320 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5321   match(Set dst src);
5322   ins_cost(MEMORY_REF_COST);
5323   format %{ "LDUW   $src,$dst\t!ptr" %}
5324   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5325   ins_encode(simple_form3_mem_reg( src, dst ) );
5326   ins_pipe(iload_mem);
5327 %}
5328 
5329 // Store pointer to stack slot
5330 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5331   match(Set dst src);
5332   ins_cost(MEMORY_REF_COST);
5333   format %{ "STW    $src,$dst\t!ptr" %}
5334   opcode(Assembler::stw_op3, Assembler::ldst_op);
5335   ins_encode(simple_form3_mem_reg( dst, src ) );
5336   ins_pipe(istore_mem_reg);
5337 %}
5338 #endif // _LP64
5339 
5340 //------------Special Nop instructions for bundling - no match rules-----------
5341 // Nop using the A0 functional unit
5342 instruct Nop_A0() %{
5343   ins_cost(0);
5344 
5345   format %{ "NOP    ! Alu Pipeline" %}
5346   opcode(Assembler::or_op3, Assembler::arith_op);
5347   ins_encode( form2_nop() );
5348   ins_pipe(ialu_nop_A0);
5349 %}
5350 
5351 // Nop using the A1 functional unit
5352 instruct Nop_A1( ) %{
5353   ins_cost(0);
5354 
5355   format %{ "NOP    ! Alu Pipeline" %}
5356   opcode(Assembler::or_op3, Assembler::arith_op);
5357   ins_encode( form2_nop() );
5358   ins_pipe(ialu_nop_A1);
5359 %}
5360 
5361 // Nop using the memory functional unit
5362 instruct Nop_MS( ) %{
5363   ins_cost(0);
5364 
5365   format %{ "NOP    ! Memory Pipeline" %}
5366   ins_encode( emit_mem_nop );
5367   ins_pipe(mem_nop);
5368 %}
5369 
5370 // Nop using the floating add functional unit
5371 instruct Nop_FA( ) %{
5372   ins_cost(0);
5373 
5374   format %{ "NOP    ! Floating Add Pipeline" %}
5375   ins_encode( emit_fadd_nop );
5376   ins_pipe(fadd_nop);
5377 %}
5378 
5379 // Nop using the branch functional unit
5380 instruct Nop_BR( ) %{
5381   ins_cost(0);
5382 
5383   format %{ "NOP    ! Branch Pipeline" %}
5384   ins_encode( emit_br_nop );
5385   ins_pipe(br_nop);
5386 %}
5387 
5388 //----------Load/Store/Move Instructions---------------------------------------
5389 //----------Load Instructions--------------------------------------------------
5390 // Load Byte (8bit signed)
5391 instruct loadB(iRegI dst, memory mem) %{
5392   match(Set dst (LoadB mem));
5393   ins_cost(MEMORY_REF_COST);
5394 
5395   size(4);
5396   format %{ "LDSB   $mem,$dst\t! byte" %}
5397   ins_encode %{
5398     __ ldsb($mem$$Address, $dst$$Register);
5399   %}
5400   ins_pipe(iload_mask_mem);
5401 %}
5402 
5403 // Load Byte (8bit signed) into a Long Register
5404 instruct loadB2L(iRegL dst, memory mem) %{
5405   match(Set dst (ConvI2L (LoadB mem)));
5406   ins_cost(MEMORY_REF_COST);
5407 
5408   size(4);
5409   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5410   ins_encode %{
5411     __ ldsb($mem$$Address, $dst$$Register);
5412   %}
5413   ins_pipe(iload_mask_mem);
5414 %}
5415 
5416 // Load Unsigned Byte (8bit UNsigned) into an int reg
5417 instruct loadUB(iRegI dst, memory mem) %{
5418   match(Set dst (LoadUB mem));
5419   ins_cost(MEMORY_REF_COST);
5420 
5421   size(4);
5422   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5423   ins_encode %{
5424     __ ldub($mem$$Address, $dst$$Register);
5425   %}
5426   ins_pipe(iload_mem);
5427 %}
5428 
5429 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5430 instruct loadUB2L(iRegL dst, memory mem) %{
5431   match(Set dst (ConvI2L (LoadUB mem)));
5432   ins_cost(MEMORY_REF_COST);
5433 
5434   size(4);
5435   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5436   ins_encode %{
5437     __ ldub($mem$$Address, $dst$$Register);
5438   %}
5439   ins_pipe(iload_mem);
5440 %}
5441 
5442 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5443 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5444   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5445   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5446 
5447   size(2*4);
5448   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5449             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5450   ins_encode %{
5451     __ ldub($mem$$Address, $dst$$Register);
5452     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5453   %}
5454   ins_pipe(iload_mem);
5455 %}
5456 
5457 // Load Short (16bit signed)
5458 instruct loadS(iRegI dst, memory mem) %{
5459   match(Set dst (LoadS mem));
5460   ins_cost(MEMORY_REF_COST);
5461 
5462   size(4);
5463   format %{ "LDSH   $mem,$dst\t! short" %}
5464   ins_encode %{
5465     __ ldsh($mem$$Address, $dst$$Register);
5466   %}
5467   ins_pipe(iload_mask_mem);
5468 %}
5469 
5470 // Load Short (16 bit signed) to Byte (8 bit signed)
5471 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5472   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5473   ins_cost(MEMORY_REF_COST);
5474 
5475   size(4);
5476 
5477   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5478   ins_encode %{
5479     __ ldsb($mem$$Address, $dst$$Register, 1);
5480   %}
5481   ins_pipe(iload_mask_mem);
5482 %}
5483 
5484 // Load Short (16bit signed) into a Long Register
5485 instruct loadS2L(iRegL dst, memory mem) %{
5486   match(Set dst (ConvI2L (LoadS mem)));
5487   ins_cost(MEMORY_REF_COST);
5488 
5489   size(4);
5490   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5491   ins_encode %{
5492     __ ldsh($mem$$Address, $dst$$Register);
5493   %}
5494   ins_pipe(iload_mask_mem);
5495 %}
5496 
5497 // Load Unsigned Short/Char (16bit UNsigned)
5498 instruct loadUS(iRegI dst, memory mem) %{
5499   match(Set dst (LoadUS mem));
5500   ins_cost(MEMORY_REF_COST);
5501 
5502   size(4);
5503   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5504   ins_encode %{
5505     __ lduh($mem$$Address, $dst$$Register);
5506   %}
5507   ins_pipe(iload_mem);
5508 %}
5509 
5510 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5511 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5512   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5513   ins_cost(MEMORY_REF_COST);
5514 
5515   size(4);
5516   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5517   ins_encode %{
5518     __ ldsb($mem$$Address, $dst$$Register, 1);
5519   %}
5520   ins_pipe(iload_mask_mem);
5521 %}
5522 
5523 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5524 instruct loadUS2L(iRegL dst, memory mem) %{
5525   match(Set dst (ConvI2L (LoadUS mem)));
5526   ins_cost(MEMORY_REF_COST);
5527 
5528   size(4);
5529   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5530   ins_encode %{
5531     __ lduh($mem$$Address, $dst$$Register);
5532   %}
5533   ins_pipe(iload_mem);
5534 %}
5535 
5536 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5537 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5538   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5539   ins_cost(MEMORY_REF_COST);
5540 
5541   size(4);
5542   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5543   ins_encode %{
5544     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5545   %}
5546   ins_pipe(iload_mem);
5547 %}
5548 
5549 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5550 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5551   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5552   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5553 
5554   size(2*4);
5555   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5556             "AND    $dst,$mask,$dst" %}
5557   ins_encode %{
5558     Register Rdst = $dst$$Register;
5559     __ lduh($mem$$Address, Rdst);
5560     __ and3(Rdst, $mask$$constant, Rdst);
5561   %}
5562   ins_pipe(iload_mem);
5563 %}
5564 
5565 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5566 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5567   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5568   effect(TEMP dst, TEMP tmp);
5569   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5570 
5571   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5572             "SET    right_n_bits($mask, 16),$tmp\n\t"
5573             "AND    $dst,$tmp,$dst" %}
5574   ins_encode %{
5575     Register Rdst = $dst$$Register;
5576     Register Rtmp = $tmp$$Register;
5577     __ lduh($mem$$Address, Rdst);
5578     __ set($mask$$constant & right_n_bits(16), Rtmp);
5579     __ and3(Rdst, Rtmp, Rdst);
5580   %}
5581   ins_pipe(iload_mem);
5582 %}
5583 
5584 // Load Integer
5585 instruct loadI(iRegI dst, memory mem) %{
5586   match(Set dst (LoadI mem));
5587   ins_cost(MEMORY_REF_COST);
5588 
5589   size(4);
5590   format %{ "LDUW   $mem,$dst\t! int" %}
5591   ins_encode %{
5592     __ lduw($mem$$Address, $dst$$Register);
5593   %}
5594   ins_pipe(iload_mem);
5595 %}
5596 
5597 // Load Integer to Byte (8 bit signed)
5598 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5599   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5600   ins_cost(MEMORY_REF_COST);
5601 
5602   size(4);
5603 
5604   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5605   ins_encode %{
5606     __ ldsb($mem$$Address, $dst$$Register, 3);
5607   %}
5608   ins_pipe(iload_mask_mem);
5609 %}
5610 
5611 // Load Integer to Unsigned Byte (8 bit UNsigned)
5612 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5613   match(Set dst (AndI (LoadI mem) mask));
5614   ins_cost(MEMORY_REF_COST);
5615 
5616   size(4);
5617 
5618   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5619   ins_encode %{
5620     __ ldub($mem$$Address, $dst$$Register, 3);
5621   %}
5622   ins_pipe(iload_mask_mem);
5623 %}
5624 
5625 // Load Integer to Short (16 bit signed)
5626 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5627   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5628   ins_cost(MEMORY_REF_COST);
5629 
5630   size(4);
5631 
5632   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5633   ins_encode %{
5634     __ ldsh($mem$$Address, $dst$$Register, 2);
5635   %}
5636   ins_pipe(iload_mask_mem);
5637 %}
5638 
5639 // Load Integer to Unsigned Short (16 bit UNsigned)
5640 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5641   match(Set dst (AndI (LoadI mem) mask));
5642   ins_cost(MEMORY_REF_COST);
5643 
5644   size(4);
5645 
5646   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5647   ins_encode %{
5648     __ lduh($mem$$Address, $dst$$Register, 2);
5649   %}
5650   ins_pipe(iload_mask_mem);
5651 %}
5652 
5653 // Load Integer into a Long Register
5654 instruct loadI2L(iRegL dst, memory mem) %{
5655   match(Set dst (ConvI2L (LoadI mem)));
5656   ins_cost(MEMORY_REF_COST);
5657 
5658   size(4);
5659   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5660   ins_encode %{
5661     __ ldsw($mem$$Address, $dst$$Register);
5662   %}
5663   ins_pipe(iload_mask_mem);
5664 %}
5665 
5666 // Load Integer with mask 0xFF into a Long Register
5667 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5668   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5669   ins_cost(MEMORY_REF_COST);
5670 
5671   size(4);
5672   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5673   ins_encode %{
5674     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5675   %}
5676   ins_pipe(iload_mem);
5677 %}
5678 
5679 // Load Integer with mask 0xFFFF into a Long Register
5680 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5681   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   size(4);
5685   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5686   ins_encode %{
5687     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5688   %}
5689   ins_pipe(iload_mem);
5690 %}
5691 
5692 // Load Integer with a 12-bit mask into a Long Register
5693 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5694   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5695   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5696 
5697   size(2*4);
5698   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5699             "AND    $dst,$mask,$dst" %}
5700   ins_encode %{
5701     Register Rdst = $dst$$Register;
5702     __ lduw($mem$$Address, Rdst);
5703     __ and3(Rdst, $mask$$constant, Rdst);
5704   %}
5705   ins_pipe(iload_mem);
5706 %}
5707 
5708 // Load Integer with a 31-bit mask into a Long Register
5709 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5710   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5711   effect(TEMP dst, TEMP tmp);
5712   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5713 
5714   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5715             "SET    $mask,$tmp\n\t"
5716             "AND    $dst,$tmp,$dst" %}
5717   ins_encode %{
5718     Register Rdst = $dst$$Register;
5719     Register Rtmp = $tmp$$Register;
5720     __ lduw($mem$$Address, Rdst);
5721     __ set($mask$$constant, Rtmp);
5722     __ and3(Rdst, Rtmp, Rdst);
5723   %}
5724   ins_pipe(iload_mem);
5725 %}
5726 
5727 // Load Unsigned Integer into a Long Register
5728 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5729   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5730   ins_cost(MEMORY_REF_COST);
5731 
5732   size(4);
5733   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5734   ins_encode %{
5735     __ lduw($mem$$Address, $dst$$Register);
5736   %}
5737   ins_pipe(iload_mem);
5738 %}
5739 
5740 // Load Long - aligned
5741 instruct loadL(iRegL dst, memory mem ) %{
5742   match(Set dst (LoadL mem));
5743   ins_cost(MEMORY_REF_COST);
5744 
5745   size(4);
5746   format %{ "LDX    $mem,$dst\t! long" %}
5747   ins_encode %{
5748     __ ldx($mem$$Address, $dst$$Register);
5749   %}
5750   ins_pipe(iload_mem);
5751 %}
5752 
5753 // Load Long - UNaligned
5754 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5755   match(Set dst (LoadL_unaligned mem));
5756   effect(KILL tmp);
5757   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5758   size(16);
5759   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5760           "\tLDUW   $mem  ,$dst\n"
5761           "\tSLLX   #32, $dst, $dst\n"
5762           "\tOR     $dst, R_O7, $dst" %}
5763   opcode(Assembler::lduw_op3);
5764   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5765   ins_pipe(iload_mem);
5766 %}
5767 
5768 // Load Range
5769 instruct loadRange(iRegI dst, memory mem) %{
5770   match(Set dst (LoadRange mem));
5771   ins_cost(MEMORY_REF_COST);
5772 
5773   size(4);
5774   format %{ "LDUW   $mem,$dst\t! range" %}
5775   opcode(Assembler::lduw_op3);
5776   ins_encode(simple_form3_mem_reg( mem, dst ) );
5777   ins_pipe(iload_mem);
5778 %}
5779 
5780 // Load Integer into %f register (for fitos/fitod)
5781 instruct loadI_freg(regF dst, memory mem) %{
5782   match(Set dst (LoadI mem));
5783   ins_cost(MEMORY_REF_COST);
5784   size(4);
5785 
5786   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5787   opcode(Assembler::ldf_op3);
5788   ins_encode(simple_form3_mem_reg( mem, dst ) );
5789   ins_pipe(floadF_mem);
5790 %}
5791 
5792 // Load Pointer
5793 instruct loadP(iRegP dst, memory mem) %{
5794   match(Set dst (LoadP mem));
5795   ins_cost(MEMORY_REF_COST);
5796   size(4);
5797 
5798 #ifndef _LP64
5799   format %{ "LDUW   $mem,$dst\t! ptr" %}
5800   ins_encode %{
5801     __ lduw($mem$$Address, $dst$$Register);
5802   %}
5803 #else
5804   format %{ "LDX    $mem,$dst\t! ptr" %}
5805   ins_encode %{
5806     __ ldx($mem$$Address, $dst$$Register);
5807   %}
5808 #endif
5809   ins_pipe(iload_mem);
5810 %}
5811 
5812 // Load Compressed Pointer
5813 instruct loadN(iRegN dst, memory mem) %{
5814   match(Set dst (LoadN mem));
5815   ins_cost(MEMORY_REF_COST);
5816   size(4);
5817 
5818   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5819   ins_encode %{
5820     __ lduw($mem$$Address, $dst$$Register);
5821   %}
5822   ins_pipe(iload_mem);
5823 %}
5824 
5825 // Load Klass Pointer
5826 instruct loadKlass(iRegP dst, memory mem) %{
5827   match(Set dst (LoadKlass mem));
5828   ins_cost(MEMORY_REF_COST);
5829   size(4);
5830 
5831 #ifndef _LP64
5832   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5833   ins_encode %{
5834     __ lduw($mem$$Address, $dst$$Register);
5835   %}
5836 #else
5837   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5838   ins_encode %{
5839     __ ldx($mem$$Address, $dst$$Register);
5840   %}
5841 #endif
5842   ins_pipe(iload_mem);
5843 %}
5844 
5845 // Load narrow Klass Pointer
5846 instruct loadNKlass(iRegN dst, memory mem) %{
5847   match(Set dst (LoadNKlass mem));
5848   ins_cost(MEMORY_REF_COST);
5849   size(4);
5850 
5851   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5852   ins_encode %{
5853     __ lduw($mem$$Address, $dst$$Register);
5854   %}
5855   ins_pipe(iload_mem);
5856 %}
5857 
5858 // Load Double
5859 instruct loadD(regD dst, memory mem) %{
5860   match(Set dst (LoadD mem));
5861   ins_cost(MEMORY_REF_COST);
5862 
5863   size(4);
5864   format %{ "LDDF   $mem,$dst" %}
5865   opcode(Assembler::lddf_op3);
5866   ins_encode(simple_form3_mem_reg( mem, dst ) );
5867   ins_pipe(floadD_mem);
5868 %}
5869 
5870 // Load Double - UNaligned
5871 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5872   match(Set dst (LoadD_unaligned mem));
5873   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5874   size(8);
5875   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5876           "\tLDF    $mem+4,$dst.lo\t!" %}
5877   opcode(Assembler::ldf_op3);
5878   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5879   ins_pipe(iload_mem);
5880 %}
5881 
5882 // Load Float
5883 instruct loadF(regF dst, memory mem) %{
5884   match(Set dst (LoadF mem));
5885   ins_cost(MEMORY_REF_COST);
5886 
5887   size(4);
5888   format %{ "LDF    $mem,$dst" %}
5889   opcode(Assembler::ldf_op3);
5890   ins_encode(simple_form3_mem_reg( mem, dst ) );
5891   ins_pipe(floadF_mem);
5892 %}
5893 
5894 // Load Constant
5895 instruct loadConI( iRegI dst, immI src ) %{
5896   match(Set dst src);
5897   ins_cost(DEFAULT_COST * 3/2);
5898   format %{ "SET    $src,$dst" %}
5899   ins_encode( Set32(src, dst) );
5900   ins_pipe(ialu_hi_lo_reg);
5901 %}
5902 
5903 instruct loadConI13( iRegI dst, immI13 src ) %{
5904   match(Set dst src);
5905 
5906   size(4);
5907   format %{ "MOV    $src,$dst" %}
5908   ins_encode( Set13( src, dst ) );
5909   ins_pipe(ialu_imm);
5910 %}
5911 
5912 #ifndef _LP64
5913 instruct loadConP(iRegP dst, immP con) %{
5914   match(Set dst con);
5915   ins_cost(DEFAULT_COST * 3/2);
5916   format %{ "SET    $con,$dst\t!ptr" %}
5917   ins_encode %{
5918     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5919       intptr_t val = $con$$constant;
5920     if (constant_reloc == relocInfo::oop_type) {
5921       __ set_oop_constant((jobject) val, $dst$$Register);
5922     } else if (constant_reloc == relocInfo::metadata_type) {
5923       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5924     } else {          // non-oop pointers, e.g. card mark base, heap top
5925       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5926       __ set(val, $dst$$Register);
5927     }
5928   %}
5929   ins_pipe(loadConP);
5930 %}
5931 #else
5932 instruct loadConP_set(iRegP dst, immP_set con) %{
5933   match(Set dst con);
5934   ins_cost(DEFAULT_COST * 3/2);
5935   format %{ "SET    $con,$dst\t! ptr" %}
5936   ins_encode %{
5937     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5938       intptr_t val = $con$$constant;
5939     if (constant_reloc == relocInfo::oop_type) {
5940       __ set_oop_constant((jobject) val, $dst$$Register);
5941     } else if (constant_reloc == relocInfo::metadata_type) {
5942       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5943     } else {          // non-oop pointers, e.g. card mark base, heap top
5944       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5945       __ set(val, $dst$$Register);
5946     }
5947   %}
5948   ins_pipe(loadConP);
5949 %}
5950 
5951 instruct loadConP_load(iRegP dst, immP_load con) %{
5952   match(Set dst con);
5953   ins_cost(MEMORY_REF_COST);
5954   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5955   ins_encode %{
5956     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5957     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5958   %}
5959   ins_pipe(loadConP);
5960 %}
5961 
5962 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5963   match(Set dst con);
5964   ins_cost(DEFAULT_COST * 3/2);
5965   format %{ "SET    $con,$dst\t! non-oop ptr" %}
5966   ins_encode %{
5967     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5968       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5969     } else {
5970       __ set($con$$constant, $dst$$Register);
5971     }
5972   %}
5973   ins_pipe(loadConP);
5974 %}
5975 #endif // _LP64
5976 
5977 instruct loadConP0(iRegP dst, immP0 src) %{
5978   match(Set dst src);
5979 
5980   size(4);
5981   format %{ "CLR    $dst\t!ptr" %}
5982   ins_encode %{
5983     __ clr($dst$$Register);
5984   %}
5985   ins_pipe(ialu_imm);
5986 %}
5987 
5988 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5989   match(Set dst src);
5990   ins_cost(DEFAULT_COST);
5991   format %{ "SET    $src,$dst\t!ptr" %}
5992   ins_encode %{
5993     AddressLiteral polling_page(os::get_polling_page());
5994     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5995   %}
5996   ins_pipe(loadConP_poll);
5997 %}
5998 
5999 instruct loadConN0(iRegN dst, immN0 src) %{
6000   match(Set dst src);
6001 
6002   size(4);
6003   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6004   ins_encode %{
6005     __ clr($dst$$Register);
6006   %}
6007   ins_pipe(ialu_imm);
6008 %}
6009 
6010 instruct loadConN(iRegN dst, immN src) %{
6011   match(Set dst src);
6012   ins_cost(DEFAULT_COST * 3/2);
6013   format %{ "SET    $src,$dst\t! compressed ptr" %}
6014   ins_encode %{
6015     Register dst = $dst$$Register;
6016     __ set_narrow_oop((jobject)$src$$constant, dst);
6017   %}
6018   ins_pipe(ialu_hi_lo_reg);
6019 %}
6020 
6021 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6022   match(Set dst src);
6023   ins_cost(DEFAULT_COST * 3/2);
6024   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6025   ins_encode %{
6026     Register dst = $dst$$Register;
6027     __ set_narrow_klass((Klass*)$src$$constant, dst);
6028   %}
6029   ins_pipe(ialu_hi_lo_reg);
6030 %}
6031 
6032 // Materialize long value (predicated by immL_cheap).
6033 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6034   match(Set dst con);
6035   effect(KILL tmp);
6036   ins_cost(DEFAULT_COST * 3);
6037   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6038   ins_encode %{
6039     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6040   %}
6041   ins_pipe(loadConL);
6042 %}
6043 
6044 // Load long value from constant table (predicated by immL_expensive).
6045 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6046   match(Set dst con);
6047   ins_cost(MEMORY_REF_COST);
6048   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6049   ins_encode %{
6050       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6051     __ ldx($constanttablebase, con_offset, $dst$$Register);
6052   %}
6053   ins_pipe(loadConL);
6054 %}
6055 
6056 instruct loadConL0( iRegL dst, immL0 src ) %{
6057   match(Set dst src);
6058   ins_cost(DEFAULT_COST);
6059   size(4);
6060   format %{ "CLR    $dst\t! long" %}
6061   ins_encode( Set13( src, dst ) );
6062   ins_pipe(ialu_imm);
6063 %}
6064 
6065 instruct loadConL13( iRegL dst, immL13 src ) %{
6066   match(Set dst src);
6067   ins_cost(DEFAULT_COST * 2);
6068 
6069   size(4);
6070   format %{ "MOV    $src,$dst\t! long" %}
6071   ins_encode( Set13( src, dst ) );
6072   ins_pipe(ialu_imm);
6073 %}
6074 
6075 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6076   match(Set dst con);
6077   effect(KILL tmp);
6078   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6079   ins_encode %{
6080       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6081     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6082   %}
6083   ins_pipe(loadConFD);
6084 %}
6085 
6086 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6087   match(Set dst con);
6088   effect(KILL tmp);
6089   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6090   ins_encode %{
6091     // XXX This is a quick fix for 6833573.
6092     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6093     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6094     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6095   %}
6096   ins_pipe(loadConFD);
6097 %}
6098 
6099 // Prefetch instructions for allocation.
6100 // Must be safe to execute with invalid address (cannot fault).
6101 
6102 instruct prefetchAlloc( memory mem ) %{
6103   predicate(AllocatePrefetchInstr == 0);
6104   match( PrefetchAllocation mem );
6105   ins_cost(MEMORY_REF_COST);
6106   size(4);
6107 
6108   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6109   opcode(Assembler::prefetch_op3);
6110   ins_encode( form3_mem_prefetch_write( mem ) );
6111   ins_pipe(iload_mem);
6112 %}
6113 
6114 // Use BIS instruction to prefetch for allocation.
6115 // Could fault, need space at the end of TLAB.
6116 instruct prefetchAlloc_bis( iRegP dst ) %{
6117   predicate(AllocatePrefetchInstr == 1);
6118   match( PrefetchAllocation dst );
6119   ins_cost(MEMORY_REF_COST);
6120   size(4);
6121 
6122   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6123   ins_encode %{
6124     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6125   %}
6126   ins_pipe(istore_mem_reg);
6127 %}
6128 
6129 // Next code is used for finding next cache line address to prefetch.
6130 #ifndef _LP64
6131 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6132   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6133   ins_cost(DEFAULT_COST);
6134   size(4);
6135 
6136   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6137   ins_encode %{
6138     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6139   %}
6140   ins_pipe(ialu_reg_imm);
6141 %}
6142 #else
6143 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6144   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6145   ins_cost(DEFAULT_COST);
6146   size(4);
6147 
6148   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6149   ins_encode %{
6150     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6151   %}
6152   ins_pipe(ialu_reg_imm);
6153 %}
6154 #endif
6155 
6156 //----------Store Instructions-------------------------------------------------
6157 // Store Byte
6158 instruct storeB(memory mem, iRegI src) %{
6159   match(Set mem (StoreB mem src));
6160   ins_cost(MEMORY_REF_COST);
6161 
6162   size(4);
6163   format %{ "STB    $src,$mem\t! byte" %}
6164   opcode(Assembler::stb_op3);
6165   ins_encode(simple_form3_mem_reg( mem, src ) );
6166   ins_pipe(istore_mem_reg);
6167 %}
6168 
6169 instruct storeB0(memory mem, immI0 src) %{
6170   match(Set mem (StoreB mem src));
6171   ins_cost(MEMORY_REF_COST);
6172 
6173   size(4);
6174   format %{ "STB    $src,$mem\t! byte" %}
6175   opcode(Assembler::stb_op3);
6176   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6177   ins_pipe(istore_mem_zero);
6178 %}
6179 
6180 instruct storeCM0(memory mem, immI0 src) %{
6181   match(Set mem (StoreCM mem src));
6182   ins_cost(MEMORY_REF_COST);
6183 
6184   size(4);
6185   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6186   opcode(Assembler::stb_op3);
6187   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6188   ins_pipe(istore_mem_zero);
6189 %}
6190 
6191 // Store Char/Short
6192 instruct storeC(memory mem, iRegI src) %{
6193   match(Set mem (StoreC mem src));
6194   ins_cost(MEMORY_REF_COST);
6195 
6196   size(4);
6197   format %{ "STH    $src,$mem\t! short" %}
6198   opcode(Assembler::sth_op3);
6199   ins_encode(simple_form3_mem_reg( mem, src ) );
6200   ins_pipe(istore_mem_reg);
6201 %}
6202 
6203 instruct storeC0(memory mem, immI0 src) %{
6204   match(Set mem (StoreC mem src));
6205   ins_cost(MEMORY_REF_COST);
6206 
6207   size(4);
6208   format %{ "STH    $src,$mem\t! short" %}
6209   opcode(Assembler::sth_op3);
6210   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6211   ins_pipe(istore_mem_zero);
6212 %}
6213 
6214 // Store Integer
6215 instruct storeI(memory mem, iRegI src) %{
6216   match(Set mem (StoreI mem src));
6217   ins_cost(MEMORY_REF_COST);
6218 
6219   size(4);
6220   format %{ "STW    $src,$mem" %}
6221   opcode(Assembler::stw_op3);
6222   ins_encode(simple_form3_mem_reg( mem, src ) );
6223   ins_pipe(istore_mem_reg);
6224 %}
6225 
6226 // Store Long
6227 instruct storeL(memory mem, iRegL src) %{
6228   match(Set mem (StoreL mem src));
6229   ins_cost(MEMORY_REF_COST);
6230   size(4);
6231   format %{ "STX    $src,$mem\t! long" %}
6232   opcode(Assembler::stx_op3);
6233   ins_encode(simple_form3_mem_reg( mem, src ) );
6234   ins_pipe(istore_mem_reg);
6235 %}
6236 
6237 instruct storeI0(memory mem, immI0 src) %{
6238   match(Set mem (StoreI mem src));
6239   ins_cost(MEMORY_REF_COST);
6240 
6241   size(4);
6242   format %{ "STW    $src,$mem" %}
6243   opcode(Assembler::stw_op3);
6244   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6245   ins_pipe(istore_mem_zero);
6246 %}
6247 
6248 instruct storeL0(memory mem, immL0 src) %{
6249   match(Set mem (StoreL mem src));
6250   ins_cost(MEMORY_REF_COST);
6251 
6252   size(4);
6253   format %{ "STX    $src,$mem" %}
6254   opcode(Assembler::stx_op3);
6255   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6256   ins_pipe(istore_mem_zero);
6257 %}
6258 
6259 // Store Integer from float register (used after fstoi)
6260 instruct storeI_Freg(memory mem, regF src) %{
6261   match(Set mem (StoreI mem src));
6262   ins_cost(MEMORY_REF_COST);
6263 
6264   size(4);
6265   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6266   opcode(Assembler::stf_op3);
6267   ins_encode(simple_form3_mem_reg( mem, src ) );
6268   ins_pipe(fstoreF_mem_reg);
6269 %}
6270 
6271 // Store Pointer
6272 instruct storeP(memory dst, sp_ptr_RegP src) %{
6273   match(Set dst (StoreP dst src));
6274   ins_cost(MEMORY_REF_COST);
6275   size(4);
6276 
6277 #ifndef _LP64
6278   format %{ "STW    $src,$dst\t! ptr" %}
6279   opcode(Assembler::stw_op3, 0, REGP_OP);
6280 #else
6281   format %{ "STX    $src,$dst\t! ptr" %}
6282   opcode(Assembler::stx_op3, 0, REGP_OP);
6283 #endif
6284   ins_encode( form3_mem_reg( dst, src ) );
6285   ins_pipe(istore_mem_spORreg);
6286 %}
6287 
6288 instruct storeP0(memory dst, immP0 src) %{
6289   match(Set dst (StoreP dst src));
6290   ins_cost(MEMORY_REF_COST);
6291   size(4);
6292 
6293 #ifndef _LP64
6294   format %{ "STW    $src,$dst\t! ptr" %}
6295   opcode(Assembler::stw_op3, 0, REGP_OP);
6296 #else
6297   format %{ "STX    $src,$dst\t! ptr" %}
6298   opcode(Assembler::stx_op3, 0, REGP_OP);
6299 #endif
6300   ins_encode( form3_mem_reg( dst, R_G0 ) );
6301   ins_pipe(istore_mem_zero);
6302 %}
6303 
6304 // Store Compressed Pointer
6305 instruct storeN(memory dst, iRegN src) %{
6306    match(Set dst (StoreN dst src));
6307    ins_cost(MEMORY_REF_COST);
6308    size(4);
6309 
6310    format %{ "STW    $src,$dst\t! compressed ptr" %}
6311    ins_encode %{
6312      Register base = as_Register($dst$$base);
6313      Register index = as_Register($dst$$index);
6314      Register src = $src$$Register;
6315      if (index != G0) {
6316        __ stw(src, base, index);
6317      } else {
6318        __ stw(src, base, $dst$$disp);
6319      }
6320    %}
6321    ins_pipe(istore_mem_spORreg);
6322 %}
6323 
6324 instruct storeNKlass(memory dst, iRegN src) %{
6325    match(Set dst (StoreNKlass dst src));
6326    ins_cost(MEMORY_REF_COST);
6327    size(4);
6328 
6329    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6330    ins_encode %{
6331      Register base = as_Register($dst$$base);
6332      Register index = as_Register($dst$$index);
6333      Register src = $src$$Register;
6334      if (index != G0) {
6335        __ stw(src, base, index);
6336      } else {
6337        __ stw(src, base, $dst$$disp);
6338      }
6339    %}
6340    ins_pipe(istore_mem_spORreg);
6341 %}
6342 
6343 instruct storeN0(memory dst, immN0 src) %{
6344    match(Set dst (StoreN dst src));
6345    ins_cost(MEMORY_REF_COST);
6346    size(4);
6347 
6348    format %{ "STW    $src,$dst\t! compressed ptr" %}
6349    ins_encode %{
6350      Register base = as_Register($dst$$base);
6351      Register index = as_Register($dst$$index);
6352      if (index != G0) {
6353        __ stw(0, base, index);
6354      } else {
6355        __ stw(0, base, $dst$$disp);
6356      }
6357    %}
6358    ins_pipe(istore_mem_zero);
6359 %}
6360 
6361 // Store Double
6362 instruct storeD( memory mem, regD src) %{
6363   match(Set mem (StoreD mem src));
6364   ins_cost(MEMORY_REF_COST);
6365 
6366   size(4);
6367   format %{ "STDF   $src,$mem" %}
6368   opcode(Assembler::stdf_op3);
6369   ins_encode(simple_form3_mem_reg( mem, src ) );
6370   ins_pipe(fstoreD_mem_reg);
6371 %}
6372 
6373 instruct storeD0( memory mem, immD0 src) %{
6374   match(Set mem (StoreD mem src));
6375   ins_cost(MEMORY_REF_COST);
6376 
6377   size(4);
6378   format %{ "STX    $src,$mem" %}
6379   opcode(Assembler::stx_op3);
6380   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6381   ins_pipe(fstoreD_mem_zero);
6382 %}
6383 
6384 // Store Float
6385 instruct storeF( memory mem, regF src) %{
6386   match(Set mem (StoreF mem src));
6387   ins_cost(MEMORY_REF_COST);
6388 
6389   size(4);
6390   format %{ "STF    $src,$mem" %}
6391   opcode(Assembler::stf_op3);
6392   ins_encode(simple_form3_mem_reg( mem, src ) );
6393   ins_pipe(fstoreF_mem_reg);
6394 %}
6395 
6396 instruct storeF0( memory mem, immF0 src) %{
6397   match(Set mem (StoreF mem src));
6398   ins_cost(MEMORY_REF_COST);
6399 
6400   size(4);
6401   format %{ "STW    $src,$mem\t! storeF0" %}
6402   opcode(Assembler::stw_op3);
6403   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6404   ins_pipe(fstoreF_mem_zero);
6405 %}
6406 
6407 // Convert oop pointer into compressed form
6408 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6409   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6410   match(Set dst (EncodeP src));
6411   format %{ "encode_heap_oop $src, $dst" %}
6412   ins_encode %{
6413     __ encode_heap_oop($src$$Register, $dst$$Register);
6414   %}
6415   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6416   ins_pipe(ialu_reg);
6417 %}
6418 
6419 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6420   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6421   match(Set dst (EncodeP src));
6422   format %{ "encode_heap_oop_not_null $src, $dst" %}
6423   ins_encode %{
6424     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6425   %}
6426   ins_pipe(ialu_reg);
6427 %}
6428 
6429 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6430   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6431             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6432   match(Set dst (DecodeN src));
6433   format %{ "decode_heap_oop $src, $dst" %}
6434   ins_encode %{
6435     __ decode_heap_oop($src$$Register, $dst$$Register);
6436   %}
6437   ins_pipe(ialu_reg);
6438 %}
6439 
6440 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6441   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6442             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6443   match(Set dst (DecodeN src));
6444   format %{ "decode_heap_oop_not_null $src, $dst" %}
6445   ins_encode %{
6446     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6447   %}
6448   ins_pipe(ialu_reg);
6449 %}
6450 
6451 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6452   match(Set dst (EncodePKlass src));
6453   format %{ "encode_klass_not_null $src, $dst" %}
6454   ins_encode %{
6455     __ encode_klass_not_null($src$$Register, $dst$$Register);
6456   %}
6457   ins_pipe(ialu_reg);
6458 %}
6459 
6460 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6461   match(Set dst (DecodeNKlass src));
6462   format %{ "decode_klass_not_null $src, $dst" %}
6463   ins_encode %{
6464     __ decode_klass_not_null($src$$Register, $dst$$Register);
6465   %}
6466   ins_pipe(ialu_reg);
6467 %}
6468 
6469 //----------MemBar Instructions-----------------------------------------------
6470 // Memory barrier flavors
6471 
6472 instruct membar_acquire() %{
6473   match(MemBarAcquire);
6474   match(LoadFence);
6475   ins_cost(4*MEMORY_REF_COST);
6476 
6477   size(0);
6478   format %{ "MEMBAR-acquire" %}
6479   ins_encode( enc_membar_acquire );
6480   ins_pipe(long_memory_op);
6481 %}
6482 
6483 instruct membar_acquire_lock() %{
6484   match(MemBarAcquireLock);
6485   ins_cost(0);
6486 
6487   size(0);
6488   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6489   ins_encode( );
6490   ins_pipe(empty);
6491 %}
6492 
6493 instruct membar_release() %{
6494   match(MemBarRelease);
6495   match(StoreFence);
6496   ins_cost(4*MEMORY_REF_COST);
6497 
6498   size(0);
6499   format %{ "MEMBAR-release" %}
6500   ins_encode( enc_membar_release );
6501   ins_pipe(long_memory_op);
6502 %}
6503 
6504 instruct membar_release_lock() %{
6505   match(MemBarReleaseLock);
6506   ins_cost(0);
6507 
6508   size(0);
6509   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6510   ins_encode( );
6511   ins_pipe(empty);
6512 %}
6513 
6514 instruct membar_volatile() %{
6515   match(MemBarVolatile);
6516   ins_cost(4*MEMORY_REF_COST);
6517 
6518   size(4);
6519   format %{ "MEMBAR-volatile" %}
6520   ins_encode( enc_membar_volatile );
6521   ins_pipe(long_memory_op);
6522 %}
6523 
6524 instruct unnecessary_membar_volatile() %{
6525   match(MemBarVolatile);
6526   predicate(Matcher::post_store_load_barrier(n));
6527   ins_cost(0);
6528 
6529   size(0);
6530   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6531   ins_encode( );
6532   ins_pipe(empty);
6533 %}
6534 
6535 instruct membar_storestore() %{
6536   match(MemBarStoreStore);
6537   ins_cost(0);
6538 
6539   size(0);
6540   format %{ "!MEMBAR-storestore (empty encoding)" %}
6541   ins_encode( );
6542   ins_pipe(empty);
6543 %}
6544 
6545 //----------Register Move Instructions-----------------------------------------
6546 instruct roundDouble_nop(regD dst) %{
6547   match(Set dst (RoundDouble dst));
6548   ins_cost(0);
6549   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6550   ins_encode( );
6551   ins_pipe(empty);
6552 %}
6553 
6554 
6555 instruct roundFloat_nop(regF dst) %{
6556   match(Set dst (RoundFloat dst));
6557   ins_cost(0);
6558   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6559   ins_encode( );
6560   ins_pipe(empty);
6561 %}
6562 
6563 
6564 // Cast Index to Pointer for unsafe natives
6565 instruct castX2P(iRegX src, iRegP dst) %{
6566   match(Set dst (CastX2P src));
6567 
6568   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6569   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6570   ins_pipe(ialu_reg);
6571 %}
6572 
6573 // Cast Pointer to Index for unsafe natives
6574 instruct castP2X(iRegP src, iRegX dst) %{
6575   match(Set dst (CastP2X src));
6576 
6577   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6578   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6579   ins_pipe(ialu_reg);
6580 %}
6581 
6582 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6583   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6584   match(Set stkSlot src);   // chain rule
6585   ins_cost(MEMORY_REF_COST);
6586   format %{ "STDF   $src,$stkSlot\t!stk" %}
6587   opcode(Assembler::stdf_op3);
6588   ins_encode(simple_form3_mem_reg(stkSlot, src));
6589   ins_pipe(fstoreD_stk_reg);
6590 %}
6591 
6592 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6593   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6594   match(Set dst stkSlot);   // chain rule
6595   ins_cost(MEMORY_REF_COST);
6596   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6597   opcode(Assembler::lddf_op3);
6598   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6599   ins_pipe(floadD_stk);
6600 %}
6601 
6602 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6603   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6604   match(Set stkSlot src);   // chain rule
6605   ins_cost(MEMORY_REF_COST);
6606   format %{ "STF   $src,$stkSlot\t!stk" %}
6607   opcode(Assembler::stf_op3);
6608   ins_encode(simple_form3_mem_reg(stkSlot, src));
6609   ins_pipe(fstoreF_stk_reg);
6610 %}
6611 
6612 //----------Conditional Move---------------------------------------------------
6613 // Conditional move
6614 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6615   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6616   ins_cost(150);
6617   format %{ "MOV$cmp $pcc,$src,$dst" %}
6618   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6619   ins_pipe(ialu_reg);
6620 %}
6621 
6622 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6623   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6624   ins_cost(140);
6625   format %{ "MOV$cmp $pcc,$src,$dst" %}
6626   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6627   ins_pipe(ialu_imm);
6628 %}
6629 
6630 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6631   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6632   ins_cost(150);
6633   size(4);
6634   format %{ "MOV$cmp  $icc,$src,$dst" %}
6635   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6636   ins_pipe(ialu_reg);
6637 %}
6638 
6639 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6640   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6641   ins_cost(140);
6642   size(4);
6643   format %{ "MOV$cmp  $icc,$src,$dst" %}
6644   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6645   ins_pipe(ialu_imm);
6646 %}
6647 
6648 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6649   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6650   ins_cost(150);
6651   size(4);
6652   format %{ "MOV$cmp  $icc,$src,$dst" %}
6653   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6654   ins_pipe(ialu_reg);
6655 %}
6656 
6657 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6658   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6659   ins_cost(140);
6660   size(4);
6661   format %{ "MOV$cmp  $icc,$src,$dst" %}
6662   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6663   ins_pipe(ialu_imm);
6664 %}
6665 
6666 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6667   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6668   ins_cost(150);
6669   size(4);
6670   format %{ "MOV$cmp $fcc,$src,$dst" %}
6671   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6672   ins_pipe(ialu_reg);
6673 %}
6674 
6675 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6676   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6677   ins_cost(140);
6678   size(4);
6679   format %{ "MOV$cmp $fcc,$src,$dst" %}
6680   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6681   ins_pipe(ialu_imm);
6682 %}
6683 
6684 // Conditional move for RegN. Only cmov(reg,reg).
6685 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6686   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6687   ins_cost(150);
6688   format %{ "MOV$cmp $pcc,$src,$dst" %}
6689   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6690   ins_pipe(ialu_reg);
6691 %}
6692 
6693 // This instruction also works with CmpN so we don't need cmovNN_reg.
6694 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6695   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6696   ins_cost(150);
6697   size(4);
6698   format %{ "MOV$cmp  $icc,$src,$dst" %}
6699   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6700   ins_pipe(ialu_reg);
6701 %}
6702 
6703 // This instruction also works with CmpN so we don't need cmovNN_reg.
6704 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6705   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6706   ins_cost(150);
6707   size(4);
6708   format %{ "MOV$cmp  $icc,$src,$dst" %}
6709   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6710   ins_pipe(ialu_reg);
6711 %}
6712 
6713 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6714   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6715   ins_cost(150);
6716   size(4);
6717   format %{ "MOV$cmp $fcc,$src,$dst" %}
6718   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6719   ins_pipe(ialu_reg);
6720 %}
6721 
6722 // Conditional move
6723 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6724   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6725   ins_cost(150);
6726   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6727   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6728   ins_pipe(ialu_reg);
6729 %}
6730 
6731 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6732   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6733   ins_cost(140);
6734   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6735   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6736   ins_pipe(ialu_imm);
6737 %}
6738 
6739 // This instruction also works with CmpN so we don't need cmovPN_reg.
6740 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6741   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6742   ins_cost(150);
6743 
6744   size(4);
6745   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6746   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6747   ins_pipe(ialu_reg);
6748 %}
6749 
6750 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6751   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6752   ins_cost(150);
6753 
6754   size(4);
6755   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6756   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6757   ins_pipe(ialu_reg);
6758 %}
6759 
6760 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6761   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6762   ins_cost(140);
6763 
6764   size(4);
6765   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6766   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6767   ins_pipe(ialu_imm);
6768 %}
6769 
6770 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6771   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6772   ins_cost(140);
6773 
6774   size(4);
6775   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6776   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6777   ins_pipe(ialu_imm);
6778 %}
6779 
6780 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6781   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6782   ins_cost(150);
6783   size(4);
6784   format %{ "MOV$cmp $fcc,$src,$dst" %}
6785   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6786   ins_pipe(ialu_imm);
6787 %}
6788 
6789 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6790   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6791   ins_cost(140);
6792   size(4);
6793   format %{ "MOV$cmp $fcc,$src,$dst" %}
6794   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6795   ins_pipe(ialu_imm);
6796 %}
6797 
6798 // Conditional move
6799 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6800   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6801   ins_cost(150);
6802   opcode(0x101);
6803   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6804   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6805   ins_pipe(int_conditional_float_move);
6806 %}
6807 
6808 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6809   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6810   ins_cost(150);
6811 
6812   size(4);
6813   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6814   opcode(0x101);
6815   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6816   ins_pipe(int_conditional_float_move);
6817 %}
6818 
6819 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6820   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6821   ins_cost(150);
6822 
6823   size(4);
6824   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6825   opcode(0x101);
6826   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6827   ins_pipe(int_conditional_float_move);
6828 %}
6829 
6830 // Conditional move,
6831 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6832   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6833   ins_cost(150);
6834   size(4);
6835   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6836   opcode(0x1);
6837   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6838   ins_pipe(int_conditional_double_move);
6839 %}
6840 
6841 // Conditional move
6842 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6843   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6844   ins_cost(150);
6845   size(4);
6846   opcode(0x102);
6847   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6848   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6849   ins_pipe(int_conditional_double_move);
6850 %}
6851 
6852 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6853   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6854   ins_cost(150);
6855 
6856   size(4);
6857   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6858   opcode(0x102);
6859   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6860   ins_pipe(int_conditional_double_move);
6861 %}
6862 
6863 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6864   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6865   ins_cost(150);
6866 
6867   size(4);
6868   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6869   opcode(0x102);
6870   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6871   ins_pipe(int_conditional_double_move);
6872 %}
6873 
6874 // Conditional move,
6875 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6876   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6877   ins_cost(150);
6878   size(4);
6879   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6880   opcode(0x2);
6881   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6882   ins_pipe(int_conditional_double_move);
6883 %}
6884 
6885 // Conditional move
6886 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6887   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6888   ins_cost(150);
6889   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6890   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6891   ins_pipe(ialu_reg);
6892 %}
6893 
6894 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6895   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6896   ins_cost(140);
6897   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6898   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6899   ins_pipe(ialu_imm);
6900 %}
6901 
6902 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6903   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6904   ins_cost(150);
6905 
6906   size(4);
6907   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6908   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6909   ins_pipe(ialu_reg);
6910 %}
6911 
6912 
6913 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6914   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6915   ins_cost(150);
6916 
6917   size(4);
6918   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6919   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6920   ins_pipe(ialu_reg);
6921 %}
6922 
6923 
6924 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6925   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6926   ins_cost(150);
6927 
6928   size(4);
6929   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6930   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6931   ins_pipe(ialu_reg);
6932 %}
6933 
6934 
6935 
6936 //----------OS and Locking Instructions----------------------------------------
6937 
6938 // This name is KNOWN by the ADLC and cannot be changed.
6939 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6940 // for this guy.
6941 instruct tlsLoadP(g2RegP dst) %{
6942   match(Set dst (ThreadLocal));
6943 
6944   size(0);
6945   ins_cost(0);
6946   format %{ "# TLS is in G2" %}
6947   ins_encode( /*empty encoding*/ );
6948   ins_pipe(ialu_none);
6949 %}
6950 
6951 instruct checkCastPP( iRegP dst ) %{
6952   match(Set dst (CheckCastPP dst));
6953 
6954   size(0);
6955   format %{ "# checkcastPP of $dst" %}
6956   ins_encode( /*empty encoding*/ );
6957   ins_pipe(empty);
6958 %}
6959 
6960 
6961 instruct castPP( iRegP dst ) %{
6962   match(Set dst (CastPP dst));
6963   format %{ "# castPP of $dst" %}
6964   ins_encode( /*empty encoding*/ );
6965   ins_pipe(empty);
6966 %}
6967 
6968 instruct castII( iRegI dst ) %{
6969   match(Set dst (CastII dst));
6970   format %{ "# castII of $dst" %}
6971   ins_encode( /*empty encoding*/ );
6972   ins_cost(0);
6973   ins_pipe(empty);
6974 %}
6975 
6976 //----------Arithmetic Instructions--------------------------------------------
6977 // Addition Instructions
6978 // Register Addition
6979 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6980   match(Set dst (AddI src1 src2));
6981 
6982   size(4);
6983   format %{ "ADD    $src1,$src2,$dst" %}
6984   ins_encode %{
6985     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6986   %}
6987   ins_pipe(ialu_reg_reg);
6988 %}
6989 
6990 // Immediate Addition
6991 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6992   match(Set dst (AddI src1 src2));
6993 
6994   size(4);
6995   format %{ "ADD    $src1,$src2,$dst" %}
6996   opcode(Assembler::add_op3, Assembler::arith_op);
6997   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6998   ins_pipe(ialu_reg_imm);
6999 %}
7000 
7001 // Pointer Register Addition
7002 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7003   match(Set dst (AddP src1 src2));
7004 
7005   size(4);
7006   format %{ "ADD    $src1,$src2,$dst" %}
7007   opcode(Assembler::add_op3, Assembler::arith_op);
7008   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7009   ins_pipe(ialu_reg_reg);
7010 %}
7011 
7012 // Pointer Immediate Addition
7013 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7014   match(Set dst (AddP src1 src2));
7015 
7016   size(4);
7017   format %{ "ADD    $src1,$src2,$dst" %}
7018   opcode(Assembler::add_op3, Assembler::arith_op);
7019   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7020   ins_pipe(ialu_reg_imm);
7021 %}
7022 
7023 // Long Addition
7024 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7025   match(Set dst (AddL src1 src2));
7026 
7027   size(4);
7028   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7029   opcode(Assembler::add_op3, Assembler::arith_op);
7030   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7031   ins_pipe(ialu_reg_reg);
7032 %}
7033 
7034 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7035   match(Set dst (AddL src1 con));
7036 
7037   size(4);
7038   format %{ "ADD    $src1,$con,$dst" %}
7039   opcode(Assembler::add_op3, Assembler::arith_op);
7040   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7041   ins_pipe(ialu_reg_imm);
7042 %}
7043 
7044 //----------Conditional_store--------------------------------------------------
7045 // Conditional-store of the updated heap-top.
7046 // Used during allocation of the shared heap.
7047 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7048 
7049 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7050 instruct loadPLocked(iRegP dst, memory mem) %{
7051   match(Set dst (LoadPLocked mem));
7052   ins_cost(MEMORY_REF_COST);
7053 
7054 #ifndef _LP64
7055   size(4);
7056   format %{ "LDUW   $mem,$dst\t! ptr" %}
7057   opcode(Assembler::lduw_op3, 0, REGP_OP);
7058 #else
7059   format %{ "LDX    $mem,$dst\t! ptr" %}
7060   opcode(Assembler::ldx_op3, 0, REGP_OP);
7061 #endif
7062   ins_encode( form3_mem_reg( mem, dst ) );
7063   ins_pipe(iload_mem);
7064 %}
7065 
7066 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7067   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7068   effect( KILL newval );
7069   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7070             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7071   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7072   ins_pipe( long_memory_op );
7073 %}
7074 
7075 // Conditional-store of an int value.
7076 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7077   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7078   effect( KILL newval );
7079   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7080             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7081   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7082   ins_pipe( long_memory_op );
7083 %}
7084 
7085 // Conditional-store of a long value.
7086 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7087   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7088   effect( KILL newval );
7089   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7090             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7091   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7092   ins_pipe( long_memory_op );
7093 %}
7094 
7095 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7096 
7097 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7098   predicate(VM_Version::supports_cx8());
7099   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7100   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7101   format %{
7102             "MOV    $newval,O7\n\t"
7103             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7104             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7105             "MOV    1,$res\n\t"
7106             "MOVne  xcc,R_G0,$res"
7107   %}
7108   ins_encode( enc_casx(mem_ptr, oldval, newval),
7109               enc_lflags_ne_to_boolean(res) );
7110   ins_pipe( long_memory_op );
7111 %}
7112 
7113 
7114 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7115   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7116   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7117   format %{
7118             "MOV    $newval,O7\n\t"
7119             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7120             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7121             "MOV    1,$res\n\t"
7122             "MOVne  icc,R_G0,$res"
7123   %}
7124   ins_encode( enc_casi(mem_ptr, oldval, newval),
7125               enc_iflags_ne_to_boolean(res) );
7126   ins_pipe( long_memory_op );
7127 %}
7128 
7129 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7130 #ifdef _LP64
7131   predicate(VM_Version::supports_cx8());
7132 #endif
7133   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7134   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7135   format %{
7136             "MOV    $newval,O7\n\t"
7137             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7138             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7139             "MOV    1,$res\n\t"
7140             "MOVne  xcc,R_G0,$res"
7141   %}
7142 #ifdef _LP64
7143   ins_encode( enc_casx(mem_ptr, oldval, newval),
7144               enc_lflags_ne_to_boolean(res) );
7145 #else
7146   ins_encode( enc_casi(mem_ptr, oldval, newval),
7147               enc_iflags_ne_to_boolean(res) );
7148 #endif
7149   ins_pipe( long_memory_op );
7150 %}
7151 
7152 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7153   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7154   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7155   format %{
7156             "MOV    $newval,O7\n\t"
7157             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7158             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7159             "MOV    1,$res\n\t"
7160             "MOVne  icc,R_G0,$res"
7161   %}
7162   ins_encode( enc_casi(mem_ptr, oldval, newval),
7163               enc_iflags_ne_to_boolean(res) );
7164   ins_pipe( long_memory_op );
7165 %}
7166 
7167 instruct xchgI( memory mem, iRegI newval) %{
7168   match(Set newval (GetAndSetI mem newval));
7169   format %{ "SWAP  [$mem],$newval" %}
7170   size(4);
7171   ins_encode %{
7172     __ swap($mem$$Address, $newval$$Register);
7173   %}
7174   ins_pipe( long_memory_op );
7175 %}
7176 
7177 #ifndef _LP64
7178 instruct xchgP( memory mem, iRegP newval) %{
7179   match(Set newval (GetAndSetP mem newval));
7180   format %{ "SWAP  [$mem],$newval" %}
7181   size(4);
7182   ins_encode %{
7183     __ swap($mem$$Address, $newval$$Register);
7184   %}
7185   ins_pipe( long_memory_op );
7186 %}
7187 #endif
7188 
7189 instruct xchgN( memory mem, iRegN newval) %{
7190   match(Set newval (GetAndSetN mem newval));
7191   format %{ "SWAP  [$mem],$newval" %}
7192   size(4);
7193   ins_encode %{
7194     __ swap($mem$$Address, $newval$$Register);
7195   %}
7196   ins_pipe( long_memory_op );
7197 %}
7198 
7199 //---------------------
7200 // Subtraction Instructions
7201 // Register Subtraction
7202 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7203   match(Set dst (SubI src1 src2));
7204 
7205   size(4);
7206   format %{ "SUB    $src1,$src2,$dst" %}
7207   opcode(Assembler::sub_op3, Assembler::arith_op);
7208   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7209   ins_pipe(ialu_reg_reg);
7210 %}
7211 
7212 // Immediate Subtraction
7213 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7214   match(Set dst (SubI src1 src2));
7215 
7216   size(4);
7217   format %{ "SUB    $src1,$src2,$dst" %}
7218   opcode(Assembler::sub_op3, Assembler::arith_op);
7219   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7220   ins_pipe(ialu_reg_imm);
7221 %}
7222 
7223 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7224   match(Set dst (SubI zero src2));
7225 
7226   size(4);
7227   format %{ "NEG    $src2,$dst" %}
7228   opcode(Assembler::sub_op3, Assembler::arith_op);
7229   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7230   ins_pipe(ialu_zero_reg);
7231 %}
7232 
7233 // Long subtraction
7234 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7235   match(Set dst (SubL src1 src2));
7236 
7237   size(4);
7238   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7239   opcode(Assembler::sub_op3, Assembler::arith_op);
7240   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7241   ins_pipe(ialu_reg_reg);
7242 %}
7243 
7244 // Immediate Subtraction
7245 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7246   match(Set dst (SubL src1 con));
7247 
7248   size(4);
7249   format %{ "SUB    $src1,$con,$dst\t! long" %}
7250   opcode(Assembler::sub_op3, Assembler::arith_op);
7251   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7252   ins_pipe(ialu_reg_imm);
7253 %}
7254 
7255 // Long negation
7256 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7257   match(Set dst (SubL zero src2));
7258 
7259   size(4);
7260   format %{ "NEG    $src2,$dst\t! long" %}
7261   opcode(Assembler::sub_op3, Assembler::arith_op);
7262   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7263   ins_pipe(ialu_zero_reg);
7264 %}
7265 
7266 // Multiplication Instructions
7267 // Integer Multiplication
7268 // Register Multiplication
7269 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7270   match(Set dst (MulI src1 src2));
7271 
7272   size(4);
7273   format %{ "MULX   $src1,$src2,$dst" %}
7274   opcode(Assembler::mulx_op3, Assembler::arith_op);
7275   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7276   ins_pipe(imul_reg_reg);
7277 %}
7278 
7279 // Immediate Multiplication
7280 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7281   match(Set dst (MulI src1 src2));
7282 
7283   size(4);
7284   format %{ "MULX   $src1,$src2,$dst" %}
7285   opcode(Assembler::mulx_op3, Assembler::arith_op);
7286   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7287   ins_pipe(imul_reg_imm);
7288 %}
7289 
7290 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7291   match(Set dst (MulL src1 src2));
7292   ins_cost(DEFAULT_COST * 5);
7293   size(4);
7294   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7295   opcode(Assembler::mulx_op3, Assembler::arith_op);
7296   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7297   ins_pipe(mulL_reg_reg);
7298 %}
7299 
7300 // Immediate Multiplication
7301 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7302   match(Set dst (MulL src1 src2));
7303   ins_cost(DEFAULT_COST * 5);
7304   size(4);
7305   format %{ "MULX   $src1,$src2,$dst" %}
7306   opcode(Assembler::mulx_op3, Assembler::arith_op);
7307   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7308   ins_pipe(mulL_reg_imm);
7309 %}
7310 
7311 // Integer Division
7312 // Register Division
7313 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7314   match(Set dst (DivI src1 src2));
7315   ins_cost((2+71)*DEFAULT_COST);
7316 
7317   format %{ "SRA     $src2,0,$src2\n\t"
7318             "SRA     $src1,0,$src1\n\t"
7319             "SDIVX   $src1,$src2,$dst" %}
7320   ins_encode( idiv_reg( src1, src2, dst ) );
7321   ins_pipe(sdiv_reg_reg);
7322 %}
7323 
7324 // Immediate Division
7325 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7326   match(Set dst (DivI src1 src2));
7327   ins_cost((2+71)*DEFAULT_COST);
7328 
7329   format %{ "SRA     $src1,0,$src1\n\t"
7330             "SDIVX   $src1,$src2,$dst" %}
7331   ins_encode( idiv_imm( src1, src2, dst ) );
7332   ins_pipe(sdiv_reg_imm);
7333 %}
7334 
7335 //----------Div-By-10-Expansion------------------------------------------------
7336 // Extract hi bits of a 32x32->64 bit multiply.
7337 // Expand rule only, not matched
7338 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7339   effect( DEF dst, USE src1, USE src2 );
7340   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7341             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7342   ins_encode( enc_mul_hi(dst,src1,src2));
7343   ins_pipe(sdiv_reg_reg);
7344 %}
7345 
7346 // Magic constant, reciprocal of 10
7347 instruct loadConI_x66666667(iRegIsafe dst) %{
7348   effect( DEF dst );
7349 
7350   size(8);
7351   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7352   ins_encode( Set32(0x66666667, dst) );
7353   ins_pipe(ialu_hi_lo_reg);
7354 %}
7355 
7356 // Register Shift Right Arithmetic Long by 32-63
7357 instruct sra_31( iRegI dst, iRegI src ) %{
7358   effect( DEF dst, USE src );
7359   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7360   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7361   ins_pipe(ialu_reg_reg);
7362 %}
7363 
7364 // Arithmetic Shift Right by 8-bit immediate
7365 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7366   effect( DEF dst, USE src );
7367   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7368   opcode(Assembler::sra_op3, Assembler::arith_op);
7369   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7370   ins_pipe(ialu_reg_imm);
7371 %}
7372 
7373 // Integer DIV with 10
7374 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7375   match(Set dst (DivI src div));
7376   ins_cost((6+6)*DEFAULT_COST);
7377   expand %{
7378     iRegIsafe tmp1;               // Killed temps;
7379     iRegIsafe tmp2;               // Killed temps;
7380     iRegI tmp3;                   // Killed temps;
7381     iRegI tmp4;                   // Killed temps;
7382     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7383     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7384     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7385     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7386     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7387   %}
7388 %}
7389 
7390 // Register Long Division
7391 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7392   match(Set dst (DivL src1 src2));
7393   ins_cost(DEFAULT_COST*71);
7394   size(4);
7395   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7396   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7397   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7398   ins_pipe(divL_reg_reg);
7399 %}
7400 
7401 // Register Long Division
7402 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7403   match(Set dst (DivL src1 src2));
7404   ins_cost(DEFAULT_COST*71);
7405   size(4);
7406   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7407   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7408   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7409   ins_pipe(divL_reg_imm);
7410 %}
7411 
7412 // Integer Remainder
7413 // Register Remainder
7414 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7415   match(Set dst (ModI src1 src2));
7416   effect( KILL ccr, KILL temp);
7417 
7418   format %{ "SREM   $src1,$src2,$dst" %}
7419   ins_encode( irem_reg(src1, src2, dst, temp) );
7420   ins_pipe(sdiv_reg_reg);
7421 %}
7422 
7423 // Immediate Remainder
7424 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7425   match(Set dst (ModI src1 src2));
7426   effect( KILL ccr, KILL temp);
7427 
7428   format %{ "SREM   $src1,$src2,$dst" %}
7429   ins_encode( irem_imm(src1, src2, dst, temp) );
7430   ins_pipe(sdiv_reg_imm);
7431 %}
7432 
7433 // Register Long Remainder
7434 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7435   effect(DEF dst, USE src1, USE src2);
7436   size(4);
7437   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7438   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7439   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7440   ins_pipe(divL_reg_reg);
7441 %}
7442 
7443 // Register Long Division
7444 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7445   effect(DEF dst, USE src1, USE src2);
7446   size(4);
7447   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7448   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7449   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7450   ins_pipe(divL_reg_imm);
7451 %}
7452 
7453 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7454   effect(DEF dst, USE src1, USE src2);
7455   size(4);
7456   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7457   opcode(Assembler::mulx_op3, Assembler::arith_op);
7458   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7459   ins_pipe(mulL_reg_reg);
7460 %}
7461 
7462 // Immediate Multiplication
7463 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7464   effect(DEF dst, USE src1, USE src2);
7465   size(4);
7466   format %{ "MULX   $src1,$src2,$dst" %}
7467   opcode(Assembler::mulx_op3, Assembler::arith_op);
7468   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7469   ins_pipe(mulL_reg_imm);
7470 %}
7471 
7472 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7473   effect(DEF dst, USE src1, USE src2);
7474   size(4);
7475   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7476   opcode(Assembler::sub_op3, Assembler::arith_op);
7477   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7478   ins_pipe(ialu_reg_reg);
7479 %}
7480 
7481 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7482   effect(DEF dst, USE src1, USE src2);
7483   size(4);
7484   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7485   opcode(Assembler::sub_op3, Assembler::arith_op);
7486   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7487   ins_pipe(ialu_reg_reg);
7488 %}
7489 
7490 // Register Long Remainder
7491 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7492   match(Set dst (ModL src1 src2));
7493   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7494   expand %{
7495     iRegL tmp1;
7496     iRegL tmp2;
7497     divL_reg_reg_1(tmp1, src1, src2);
7498     mulL_reg_reg_1(tmp2, tmp1, src2);
7499     subL_reg_reg_1(dst,  src1, tmp2);
7500   %}
7501 %}
7502 
7503 // Register Long Remainder
7504 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7505   match(Set dst (ModL src1 src2));
7506   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7507   expand %{
7508     iRegL tmp1;
7509     iRegL tmp2;
7510     divL_reg_imm13_1(tmp1, src1, src2);
7511     mulL_reg_imm13_1(tmp2, tmp1, src2);
7512     subL_reg_reg_2  (dst,  src1, tmp2);
7513   %}
7514 %}
7515 
7516 // Integer Shift Instructions
7517 // Register Shift Left
7518 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7519   match(Set dst (LShiftI src1 src2));
7520 
7521   size(4);
7522   format %{ "SLL    $src1,$src2,$dst" %}
7523   opcode(Assembler::sll_op3, Assembler::arith_op);
7524   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7525   ins_pipe(ialu_reg_reg);
7526 %}
7527 
7528 // Register Shift Left Immediate
7529 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7530   match(Set dst (LShiftI src1 src2));
7531 
7532   size(4);
7533   format %{ "SLL    $src1,$src2,$dst" %}
7534   opcode(Assembler::sll_op3, Assembler::arith_op);
7535   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7536   ins_pipe(ialu_reg_imm);
7537 %}
7538 
7539 // Register Shift Left
7540 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7541   match(Set dst (LShiftL src1 src2));
7542 
7543   size(4);
7544   format %{ "SLLX   $src1,$src2,$dst" %}
7545   opcode(Assembler::sllx_op3, Assembler::arith_op);
7546   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7547   ins_pipe(ialu_reg_reg);
7548 %}
7549 
7550 // Register Shift Left Immediate
7551 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7552   match(Set dst (LShiftL src1 src2));
7553 
7554   size(4);
7555   format %{ "SLLX   $src1,$src2,$dst" %}
7556   opcode(Assembler::sllx_op3, Assembler::arith_op);
7557   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7558   ins_pipe(ialu_reg_imm);
7559 %}
7560 
7561 // Register Arithmetic Shift Right
7562 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7563   match(Set dst (RShiftI src1 src2));
7564   size(4);
7565   format %{ "SRA    $src1,$src2,$dst" %}
7566   opcode(Assembler::sra_op3, Assembler::arith_op);
7567   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7568   ins_pipe(ialu_reg_reg);
7569 %}
7570 
7571 // Register Arithmetic Shift Right Immediate
7572 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7573   match(Set dst (RShiftI src1 src2));
7574 
7575   size(4);
7576   format %{ "SRA    $src1,$src2,$dst" %}
7577   opcode(Assembler::sra_op3, Assembler::arith_op);
7578   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7579   ins_pipe(ialu_reg_imm);
7580 %}
7581 
7582 // Register Shift Right Arithmatic Long
7583 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7584   match(Set dst (RShiftL src1 src2));
7585 
7586   size(4);
7587   format %{ "SRAX   $src1,$src2,$dst" %}
7588   opcode(Assembler::srax_op3, Assembler::arith_op);
7589   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7590   ins_pipe(ialu_reg_reg);
7591 %}
7592 
7593 // Register Shift Left Immediate
7594 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7595   match(Set dst (RShiftL src1 src2));
7596 
7597   size(4);
7598   format %{ "SRAX   $src1,$src2,$dst" %}
7599   opcode(Assembler::srax_op3, Assembler::arith_op);
7600   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7601   ins_pipe(ialu_reg_imm);
7602 %}
7603 
7604 // Register Shift Right
7605 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7606   match(Set dst (URShiftI src1 src2));
7607 
7608   size(4);
7609   format %{ "SRL    $src1,$src2,$dst" %}
7610   opcode(Assembler::srl_op3, Assembler::arith_op);
7611   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7612   ins_pipe(ialu_reg_reg);
7613 %}
7614 
7615 // Register Shift Right Immediate
7616 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7617   match(Set dst (URShiftI src1 src2));
7618 
7619   size(4);
7620   format %{ "SRL    $src1,$src2,$dst" %}
7621   opcode(Assembler::srl_op3, Assembler::arith_op);
7622   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7623   ins_pipe(ialu_reg_imm);
7624 %}
7625 
7626 // Register Shift Right
7627 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7628   match(Set dst (URShiftL src1 src2));
7629 
7630   size(4);
7631   format %{ "SRLX   $src1,$src2,$dst" %}
7632   opcode(Assembler::srlx_op3, Assembler::arith_op);
7633   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7634   ins_pipe(ialu_reg_reg);
7635 %}
7636 
7637 // Register Shift Right Immediate
7638 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7639   match(Set dst (URShiftL src1 src2));
7640 
7641   size(4);
7642   format %{ "SRLX   $src1,$src2,$dst" %}
7643   opcode(Assembler::srlx_op3, Assembler::arith_op);
7644   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7645   ins_pipe(ialu_reg_imm);
7646 %}
7647 
7648 // Register Shift Right Immediate with a CastP2X
7649 #ifdef _LP64
7650 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7651   match(Set dst (URShiftL (CastP2X src1) src2));
7652   size(4);
7653   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7654   opcode(Assembler::srlx_op3, Assembler::arith_op);
7655   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7656   ins_pipe(ialu_reg_imm);
7657 %}
7658 #else
7659 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7660   match(Set dst (URShiftI (CastP2X src1) src2));
7661   size(4);
7662   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7663   opcode(Assembler::srl_op3, Assembler::arith_op);
7664   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7665   ins_pipe(ialu_reg_imm);
7666 %}
7667 #endif
7668 
7669 
7670 //----------Floating Point Arithmetic Instructions-----------------------------
7671 
7672 //  Add float single precision
7673 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7674   match(Set dst (AddF src1 src2));
7675 
7676   size(4);
7677   format %{ "FADDS  $src1,$src2,$dst" %}
7678   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7679   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7680   ins_pipe(faddF_reg_reg);
7681 %}
7682 
7683 //  Add float double precision
7684 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7685   match(Set dst (AddD src1 src2));
7686 
7687   size(4);
7688   format %{ "FADDD  $src1,$src2,$dst" %}
7689   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7690   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7691   ins_pipe(faddD_reg_reg);
7692 %}
7693 
7694 //  Sub float single precision
7695 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7696   match(Set dst (SubF src1 src2));
7697 
7698   size(4);
7699   format %{ "FSUBS  $src1,$src2,$dst" %}
7700   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7701   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7702   ins_pipe(faddF_reg_reg);
7703 %}
7704 
7705 //  Sub float double precision
7706 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7707   match(Set dst (SubD src1 src2));
7708 
7709   size(4);
7710   format %{ "FSUBD  $src1,$src2,$dst" %}
7711   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7712   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7713   ins_pipe(faddD_reg_reg);
7714 %}
7715 
7716 //  Mul float single precision
7717 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7718   match(Set dst (MulF src1 src2));
7719 
7720   size(4);
7721   format %{ "FMULS  $src1,$src2,$dst" %}
7722   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7723   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7724   ins_pipe(fmulF_reg_reg);
7725 %}
7726 
7727 //  Mul float double precision
7728 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7729   match(Set dst (MulD src1 src2));
7730 
7731   size(4);
7732   format %{ "FMULD  $src1,$src2,$dst" %}
7733   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7734   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7735   ins_pipe(fmulD_reg_reg);
7736 %}
7737 
7738 //  Div float single precision
7739 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7740   match(Set dst (DivF src1 src2));
7741 
7742   size(4);
7743   format %{ "FDIVS  $src1,$src2,$dst" %}
7744   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7745   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7746   ins_pipe(fdivF_reg_reg);
7747 %}
7748 
7749 //  Div float double precision
7750 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7751   match(Set dst (DivD src1 src2));
7752 
7753   size(4);
7754   format %{ "FDIVD  $src1,$src2,$dst" %}
7755   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7756   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7757   ins_pipe(fdivD_reg_reg);
7758 %}
7759 
7760 //  Absolute float double precision
7761 instruct absD_reg(regD dst, regD src) %{
7762   match(Set dst (AbsD src));
7763 
7764   format %{ "FABSd  $src,$dst" %}
7765   ins_encode(fabsd(dst, src));
7766   ins_pipe(faddD_reg);
7767 %}
7768 
7769 //  Absolute float single precision
7770 instruct absF_reg(regF dst, regF src) %{
7771   match(Set dst (AbsF src));
7772 
7773   format %{ "FABSs  $src,$dst" %}
7774   ins_encode(fabss(dst, src));
7775   ins_pipe(faddF_reg);
7776 %}
7777 
7778 instruct negF_reg(regF dst, regF src) %{
7779   match(Set dst (NegF src));
7780 
7781   size(4);
7782   format %{ "FNEGs  $src,$dst" %}
7783   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7784   ins_encode(form3_opf_rs2F_rdF(src, dst));
7785   ins_pipe(faddF_reg);
7786 %}
7787 
7788 instruct negD_reg(regD dst, regD src) %{
7789   match(Set dst (NegD src));
7790 
7791   format %{ "FNEGd  $src,$dst" %}
7792   ins_encode(fnegd(dst, src));
7793   ins_pipe(faddD_reg);
7794 %}
7795 
7796 //  Sqrt float double precision
7797 instruct sqrtF_reg_reg(regF dst, regF src) %{
7798   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7799 
7800   size(4);
7801   format %{ "FSQRTS $src,$dst" %}
7802   ins_encode(fsqrts(dst, src));
7803   ins_pipe(fdivF_reg_reg);
7804 %}
7805 
7806 //  Sqrt float double precision
7807 instruct sqrtD_reg_reg(regD dst, regD src) %{
7808   match(Set dst (SqrtD src));
7809 
7810   size(4);
7811   format %{ "FSQRTD $src,$dst" %}
7812   ins_encode(fsqrtd(dst, src));
7813   ins_pipe(fdivD_reg_reg);
7814 %}
7815 
7816 //----------Logical Instructions-----------------------------------------------
7817 // And Instructions
7818 // Register And
7819 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7820   match(Set dst (AndI src1 src2));
7821 
7822   size(4);
7823   format %{ "AND    $src1,$src2,$dst" %}
7824   opcode(Assembler::and_op3, Assembler::arith_op);
7825   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_reg);
7827 %}
7828 
7829 // Immediate And
7830 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7831   match(Set dst (AndI src1 src2));
7832 
7833   size(4);
7834   format %{ "AND    $src1,$src2,$dst" %}
7835   opcode(Assembler::and_op3, Assembler::arith_op);
7836   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7837   ins_pipe(ialu_reg_imm);
7838 %}
7839 
7840 // Register And Long
7841 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7842   match(Set dst (AndL src1 src2));
7843 
7844   ins_cost(DEFAULT_COST);
7845   size(4);
7846   format %{ "AND    $src1,$src2,$dst\t! long" %}
7847   opcode(Assembler::and_op3, Assembler::arith_op);
7848   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7849   ins_pipe(ialu_reg_reg);
7850 %}
7851 
7852 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7853   match(Set dst (AndL src1 con));
7854 
7855   ins_cost(DEFAULT_COST);
7856   size(4);
7857   format %{ "AND    $src1,$con,$dst\t! long" %}
7858   opcode(Assembler::and_op3, Assembler::arith_op);
7859   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7860   ins_pipe(ialu_reg_imm);
7861 %}
7862 
7863 // Or Instructions
7864 // Register Or
7865 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7866   match(Set dst (OrI src1 src2));
7867 
7868   size(4);
7869   format %{ "OR     $src1,$src2,$dst" %}
7870   opcode(Assembler::or_op3, Assembler::arith_op);
7871   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7872   ins_pipe(ialu_reg_reg);
7873 %}
7874 
7875 // Immediate Or
7876 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7877   match(Set dst (OrI src1 src2));
7878 
7879   size(4);
7880   format %{ "OR     $src1,$src2,$dst" %}
7881   opcode(Assembler::or_op3, Assembler::arith_op);
7882   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7883   ins_pipe(ialu_reg_imm);
7884 %}
7885 
7886 // Register Or Long
7887 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7888   match(Set dst (OrL src1 src2));
7889 
7890   ins_cost(DEFAULT_COST);
7891   size(4);
7892   format %{ "OR     $src1,$src2,$dst\t! long" %}
7893   opcode(Assembler::or_op3, Assembler::arith_op);
7894   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7895   ins_pipe(ialu_reg_reg);
7896 %}
7897 
7898 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7899   match(Set dst (OrL src1 con));
7900   ins_cost(DEFAULT_COST*2);
7901 
7902   ins_cost(DEFAULT_COST);
7903   size(4);
7904   format %{ "OR     $src1,$con,$dst\t! long" %}
7905   opcode(Assembler::or_op3, Assembler::arith_op);
7906   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7907   ins_pipe(ialu_reg_imm);
7908 %}
7909 
7910 #ifndef _LP64
7911 
7912 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
7913 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
7914   match(Set dst (OrI src1 (CastP2X src2)));
7915 
7916   size(4);
7917   format %{ "OR     $src1,$src2,$dst" %}
7918   opcode(Assembler::or_op3, Assembler::arith_op);
7919   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7920   ins_pipe(ialu_reg_reg);
7921 %}
7922 
7923 #else
7924 
7925 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7926   match(Set dst (OrL src1 (CastP2X src2)));
7927 
7928   ins_cost(DEFAULT_COST);
7929   size(4);
7930   format %{ "OR     $src1,$src2,$dst\t! long" %}
7931   opcode(Assembler::or_op3, Assembler::arith_op);
7932   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7933   ins_pipe(ialu_reg_reg);
7934 %}
7935 
7936 #endif
7937 
7938 // Xor Instructions
7939 // Register Xor
7940 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7941   match(Set dst (XorI src1 src2));
7942 
7943   size(4);
7944   format %{ "XOR    $src1,$src2,$dst" %}
7945   opcode(Assembler::xor_op3, Assembler::arith_op);
7946   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7947   ins_pipe(ialu_reg_reg);
7948 %}
7949 
7950 // Immediate Xor
7951 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7952   match(Set dst (XorI src1 src2));
7953 
7954   size(4);
7955   format %{ "XOR    $src1,$src2,$dst" %}
7956   opcode(Assembler::xor_op3, Assembler::arith_op);
7957   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7958   ins_pipe(ialu_reg_imm);
7959 %}
7960 
7961 // Register Xor Long
7962 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7963   match(Set dst (XorL src1 src2));
7964 
7965   ins_cost(DEFAULT_COST);
7966   size(4);
7967   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7968   opcode(Assembler::xor_op3, Assembler::arith_op);
7969   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7970   ins_pipe(ialu_reg_reg);
7971 %}
7972 
7973 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7974   match(Set dst (XorL src1 con));
7975 
7976   ins_cost(DEFAULT_COST);
7977   size(4);
7978   format %{ "XOR    $src1,$con,$dst\t! long" %}
7979   opcode(Assembler::xor_op3, Assembler::arith_op);
7980   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7981   ins_pipe(ialu_reg_imm);
7982 %}
7983 
7984 //----------Convert to Boolean-------------------------------------------------
7985 // Nice hack for 32-bit tests but doesn't work for
7986 // 64-bit pointers.
7987 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7988   match(Set dst (Conv2B src));
7989   effect( KILL ccr );
7990   ins_cost(DEFAULT_COST*2);
7991   format %{ "CMP    R_G0,$src\n\t"
7992             "ADDX   R_G0,0,$dst" %}
7993   ins_encode( enc_to_bool( src, dst ) );
7994   ins_pipe(ialu_reg_ialu);
7995 %}
7996 
7997 #ifndef _LP64
7998 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
7999   match(Set dst (Conv2B src));
8000   effect( KILL ccr );
8001   ins_cost(DEFAULT_COST*2);
8002   format %{ "CMP    R_G0,$src\n\t"
8003             "ADDX   R_G0,0,$dst" %}
8004   ins_encode( enc_to_bool( src, dst ) );
8005   ins_pipe(ialu_reg_ialu);
8006 %}
8007 #else
8008 instruct convP2B( iRegI dst, iRegP src ) %{
8009   match(Set dst (Conv2B src));
8010   ins_cost(DEFAULT_COST*2);
8011   format %{ "MOV    $src,$dst\n\t"
8012             "MOVRNZ $src,1,$dst" %}
8013   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8014   ins_pipe(ialu_clr_and_mover);
8015 %}
8016 #endif
8017 
8018 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8019   match(Set dst (CmpLTMask src zero));
8020   effect(KILL ccr);
8021   size(4);
8022   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8023   ins_encode %{
8024     __ sra($src$$Register, 31, $dst$$Register);
8025   %}
8026   ins_pipe(ialu_reg_imm);
8027 %}
8028 
8029 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8030   match(Set dst (CmpLTMask p q));
8031   effect( KILL ccr );
8032   ins_cost(DEFAULT_COST*4);
8033   format %{ "CMP    $p,$q\n\t"
8034             "MOV    #0,$dst\n\t"
8035             "BLT,a  .+8\n\t"
8036             "MOV    #-1,$dst" %}
8037   ins_encode( enc_ltmask(p,q,dst) );
8038   ins_pipe(ialu_reg_reg_ialu);
8039 %}
8040 
8041 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8042   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8043   effect(KILL ccr, TEMP tmp);
8044   ins_cost(DEFAULT_COST*3);
8045 
8046   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8047             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8048             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8049   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8050   ins_pipe(cadd_cmpltmask);
8051 %}
8052 
8053 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8054   match(Set p (AndI (CmpLTMask p q) y));
8055   effect(KILL ccr);
8056   ins_cost(DEFAULT_COST*3);
8057 
8058   format %{ "CMP  $p,$q\n\t"
8059             "MOV  $y,$p\n\t"
8060             "MOVge G0,$p" %}
8061   ins_encode %{
8062     __ cmp($p$$Register, $q$$Register);
8063     __ mov($y$$Register, $p$$Register);
8064     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8065   %}
8066   ins_pipe(ialu_reg_reg_ialu);
8067 %}
8068 
8069 //-----------------------------------------------------------------
8070 // Direct raw moves between float and general registers using VIS3.
8071 
8072 //  ins_pipe(faddF_reg);
8073 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8074   predicate(UseVIS >= 3);
8075   match(Set dst (MoveF2I src));
8076 
8077   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8078   ins_encode %{
8079     __ movstouw($src$$FloatRegister, $dst$$Register);
8080   %}
8081   ins_pipe(ialu_reg_reg);
8082 %}
8083 
8084 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8085   predicate(UseVIS >= 3);
8086   match(Set dst (MoveI2F src));
8087 
8088   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8089   ins_encode %{
8090     __ movwtos($src$$Register, $dst$$FloatRegister);
8091   %}
8092   ins_pipe(ialu_reg_reg);
8093 %}
8094 
8095 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8096   predicate(UseVIS >= 3);
8097   match(Set dst (MoveD2L src));
8098 
8099   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8100   ins_encode %{
8101     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8102   %}
8103   ins_pipe(ialu_reg_reg);
8104 %}
8105 
8106 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8107   predicate(UseVIS >= 3);
8108   match(Set dst (MoveL2D src));
8109 
8110   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8111   ins_encode %{
8112     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8113   %}
8114   ins_pipe(ialu_reg_reg);
8115 %}
8116 
8117 
8118 // Raw moves between float and general registers using stack.
8119 
8120 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8121   match(Set dst (MoveF2I src));
8122   effect(DEF dst, USE src);
8123   ins_cost(MEMORY_REF_COST);
8124 
8125   size(4);
8126   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8127   opcode(Assembler::lduw_op3);
8128   ins_encode(simple_form3_mem_reg( src, dst ) );
8129   ins_pipe(iload_mem);
8130 %}
8131 
8132 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8133   match(Set dst (MoveI2F src));
8134   effect(DEF dst, USE src);
8135   ins_cost(MEMORY_REF_COST);
8136 
8137   size(4);
8138   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8139   opcode(Assembler::ldf_op3);
8140   ins_encode(simple_form3_mem_reg(src, dst));
8141   ins_pipe(floadF_stk);
8142 %}
8143 
8144 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8145   match(Set dst (MoveD2L src));
8146   effect(DEF dst, USE src);
8147   ins_cost(MEMORY_REF_COST);
8148 
8149   size(4);
8150   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8151   opcode(Assembler::ldx_op3);
8152   ins_encode(simple_form3_mem_reg( src, dst ) );
8153   ins_pipe(iload_mem);
8154 %}
8155 
8156 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8157   match(Set dst (MoveL2D src));
8158   effect(DEF dst, USE src);
8159   ins_cost(MEMORY_REF_COST);
8160 
8161   size(4);
8162   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8163   opcode(Assembler::lddf_op3);
8164   ins_encode(simple_form3_mem_reg(src, dst));
8165   ins_pipe(floadD_stk);
8166 %}
8167 
8168 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8169   match(Set dst (MoveF2I src));
8170   effect(DEF dst, USE src);
8171   ins_cost(MEMORY_REF_COST);
8172 
8173   size(4);
8174   format %{ "STF   $src,$dst\t! MoveF2I" %}
8175   opcode(Assembler::stf_op3);
8176   ins_encode(simple_form3_mem_reg(dst, src));
8177   ins_pipe(fstoreF_stk_reg);
8178 %}
8179 
8180 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8181   match(Set dst (MoveI2F src));
8182   effect(DEF dst, USE src);
8183   ins_cost(MEMORY_REF_COST);
8184 
8185   size(4);
8186   format %{ "STW    $src,$dst\t! MoveI2F" %}
8187   opcode(Assembler::stw_op3);
8188   ins_encode(simple_form3_mem_reg( dst, src ) );
8189   ins_pipe(istore_mem_reg);
8190 %}
8191 
8192 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8193   match(Set dst (MoveD2L src));
8194   effect(DEF dst, USE src);
8195   ins_cost(MEMORY_REF_COST);
8196 
8197   size(4);
8198   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8199   opcode(Assembler::stdf_op3);
8200   ins_encode(simple_form3_mem_reg(dst, src));
8201   ins_pipe(fstoreD_stk_reg);
8202 %}
8203 
8204 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8205   match(Set dst (MoveL2D src));
8206   effect(DEF dst, USE src);
8207   ins_cost(MEMORY_REF_COST);
8208 
8209   size(4);
8210   format %{ "STX    $src,$dst\t! MoveL2D" %}
8211   opcode(Assembler::stx_op3);
8212   ins_encode(simple_form3_mem_reg( dst, src ) );
8213   ins_pipe(istore_mem_reg);
8214 %}
8215 
8216 
8217 //----------Arithmetic Conversion Instructions---------------------------------
8218 // The conversions operations are all Alpha sorted.  Please keep it that way!
8219 
8220 instruct convD2F_reg(regF dst, regD src) %{
8221   match(Set dst (ConvD2F src));
8222   size(4);
8223   format %{ "FDTOS  $src,$dst" %}
8224   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8225   ins_encode(form3_opf_rs2D_rdF(src, dst));
8226   ins_pipe(fcvtD2F);
8227 %}
8228 
8229 
8230 // Convert a double to an int in a float register.
8231 // If the double is a NAN, stuff a zero in instead.
8232 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8233   effect(DEF dst, USE src, KILL fcc0);
8234   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8235             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8236             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8237             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8238             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8239       "skip:" %}
8240   ins_encode(form_d2i_helper(src,dst));
8241   ins_pipe(fcvtD2I);
8242 %}
8243 
8244 instruct convD2I_stk(stackSlotI dst, regD src) %{
8245   match(Set dst (ConvD2I src));
8246   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8247   expand %{
8248     regF tmp;
8249     convD2I_helper(tmp, src);
8250     regF_to_stkI(dst, tmp);
8251   %}
8252 %}
8253 
8254 instruct convD2I_reg(iRegI dst, regD src) %{
8255   predicate(UseVIS >= 3);
8256   match(Set dst (ConvD2I src));
8257   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8258   expand %{
8259     regF tmp;
8260     convD2I_helper(tmp, src);
8261     MoveF2I_reg_reg(dst, tmp);
8262   %}
8263 %}
8264 
8265 
8266 // Convert a double to a long in a double register.
8267 // If the double is a NAN, stuff a zero in instead.
8268 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8269   effect(DEF dst, USE src, KILL fcc0);
8270   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8271             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8272             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8273             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8274             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8275       "skip:" %}
8276   ins_encode(form_d2l_helper(src,dst));
8277   ins_pipe(fcvtD2L);
8278 %}
8279 
8280 instruct convD2L_stk(stackSlotL dst, regD src) %{
8281   match(Set dst (ConvD2L src));
8282   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8283   expand %{
8284     regD tmp;
8285     convD2L_helper(tmp, src);
8286     regD_to_stkL(dst, tmp);
8287   %}
8288 %}
8289 
8290 instruct convD2L_reg(iRegL dst, regD src) %{
8291   predicate(UseVIS >= 3);
8292   match(Set dst (ConvD2L src));
8293   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8294   expand %{
8295     regD tmp;
8296     convD2L_helper(tmp, src);
8297     MoveD2L_reg_reg(dst, tmp);
8298   %}
8299 %}
8300 
8301 
8302 instruct convF2D_reg(regD dst, regF src) %{
8303   match(Set dst (ConvF2D src));
8304   format %{ "FSTOD  $src,$dst" %}
8305   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8306   ins_encode(form3_opf_rs2F_rdD(src, dst));
8307   ins_pipe(fcvtF2D);
8308 %}
8309 
8310 
8311 // Convert a float to an int in a float register.
8312 // If the float is a NAN, stuff a zero in instead.
8313 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8314   effect(DEF dst, USE src, KILL fcc0);
8315   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8316             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8317             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8318             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8319             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8320       "skip:" %}
8321   ins_encode(form_f2i_helper(src,dst));
8322   ins_pipe(fcvtF2I);
8323 %}
8324 
8325 instruct convF2I_stk(stackSlotI dst, regF src) %{
8326   match(Set dst (ConvF2I src));
8327   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8328   expand %{
8329     regF tmp;
8330     convF2I_helper(tmp, src);
8331     regF_to_stkI(dst, tmp);
8332   %}
8333 %}
8334 
8335 instruct convF2I_reg(iRegI dst, regF src) %{
8336   predicate(UseVIS >= 3);
8337   match(Set dst (ConvF2I src));
8338   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8339   expand %{
8340     regF tmp;
8341     convF2I_helper(tmp, src);
8342     MoveF2I_reg_reg(dst, tmp);
8343   %}
8344 %}
8345 
8346 
8347 // Convert a float to a long in a float register.
8348 // If the float is a NAN, stuff a zero in instead.
8349 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8350   effect(DEF dst, USE src, KILL fcc0);
8351   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8352             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8353             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8354             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8355             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8356       "skip:" %}
8357   ins_encode(form_f2l_helper(src,dst));
8358   ins_pipe(fcvtF2L);
8359 %}
8360 
8361 instruct convF2L_stk(stackSlotL dst, regF src) %{
8362   match(Set dst (ConvF2L src));
8363   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8364   expand %{
8365     regD tmp;
8366     convF2L_helper(tmp, src);
8367     regD_to_stkL(dst, tmp);
8368   %}
8369 %}
8370 
8371 instruct convF2L_reg(iRegL dst, regF src) %{
8372   predicate(UseVIS >= 3);
8373   match(Set dst (ConvF2L src));
8374   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8375   expand %{
8376     regD tmp;
8377     convF2L_helper(tmp, src);
8378     MoveD2L_reg_reg(dst, tmp);
8379   %}
8380 %}
8381 
8382 
8383 instruct convI2D_helper(regD dst, regF tmp) %{
8384   effect(USE tmp, DEF dst);
8385   format %{ "FITOD  $tmp,$dst" %}
8386   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8387   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8388   ins_pipe(fcvtI2D);
8389 %}
8390 
8391 instruct convI2D_stk(stackSlotI src, regD dst) %{
8392   match(Set dst (ConvI2D src));
8393   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8394   expand %{
8395     regF tmp;
8396     stkI_to_regF(tmp, src);
8397     convI2D_helper(dst, tmp);
8398   %}
8399 %}
8400 
8401 instruct convI2D_reg(regD_low dst, iRegI src) %{
8402   predicate(UseVIS >= 3);
8403   match(Set dst (ConvI2D src));
8404   expand %{
8405     regF tmp;
8406     MoveI2F_reg_reg(tmp, src);
8407     convI2D_helper(dst, tmp);
8408   %}
8409 %}
8410 
8411 instruct convI2D_mem(regD_low dst, memory mem) %{
8412   match(Set dst (ConvI2D (LoadI mem)));
8413   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8414   size(8);
8415   format %{ "LDF    $mem,$dst\n\t"
8416             "FITOD  $dst,$dst" %}
8417   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8418   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8419   ins_pipe(floadF_mem);
8420 %}
8421 
8422 
8423 instruct convI2F_helper(regF dst, regF tmp) %{
8424   effect(DEF dst, USE tmp);
8425   format %{ "FITOS  $tmp,$dst" %}
8426   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8427   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8428   ins_pipe(fcvtI2F);
8429 %}
8430 
8431 instruct convI2F_stk(regF dst, stackSlotI src) %{
8432   match(Set dst (ConvI2F src));
8433   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8434   expand %{
8435     regF tmp;
8436     stkI_to_regF(tmp,src);
8437     convI2F_helper(dst, tmp);
8438   %}
8439 %}
8440 
8441 instruct convI2F_reg(regF dst, iRegI src) %{
8442   predicate(UseVIS >= 3);
8443   match(Set dst (ConvI2F src));
8444   ins_cost(DEFAULT_COST);
8445   expand %{
8446     regF tmp;
8447     MoveI2F_reg_reg(tmp, src);
8448     convI2F_helper(dst, tmp);
8449   %}
8450 %}
8451 
8452 instruct convI2F_mem( regF dst, memory mem ) %{
8453   match(Set dst (ConvI2F (LoadI mem)));
8454   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8455   size(8);
8456   format %{ "LDF    $mem,$dst\n\t"
8457             "FITOS  $dst,$dst" %}
8458   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8459   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8460   ins_pipe(floadF_mem);
8461 %}
8462 
8463 
8464 instruct convI2L_reg(iRegL dst, iRegI src) %{
8465   match(Set dst (ConvI2L src));
8466   size(4);
8467   format %{ "SRA    $src,0,$dst\t! int->long" %}
8468   opcode(Assembler::sra_op3, Assembler::arith_op);
8469   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8470   ins_pipe(ialu_reg_reg);
8471 %}
8472 
8473 // Zero-extend convert int to long
8474 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8475   match(Set dst (AndL (ConvI2L src) mask) );
8476   size(4);
8477   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8478   opcode(Assembler::srl_op3, Assembler::arith_op);
8479   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8480   ins_pipe(ialu_reg_reg);
8481 %}
8482 
8483 // Zero-extend long
8484 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8485   match(Set dst (AndL src mask) );
8486   size(4);
8487   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8488   opcode(Assembler::srl_op3, Assembler::arith_op);
8489   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8490   ins_pipe(ialu_reg_reg);
8491 %}
8492 
8493 
8494 //-----------
8495 // Long to Double conversion using V8 opcodes.
8496 // Still useful because cheetah traps and becomes
8497 // amazingly slow for some common numbers.
8498 
8499 // Magic constant, 0x43300000
8500 instruct loadConI_x43300000(iRegI dst) %{
8501   effect(DEF dst);
8502   size(4);
8503   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8504   ins_encode(SetHi22(0x43300000, dst));
8505   ins_pipe(ialu_none);
8506 %}
8507 
8508 // Magic constant, 0x41f00000
8509 instruct loadConI_x41f00000(iRegI dst) %{
8510   effect(DEF dst);
8511   size(4);
8512   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8513   ins_encode(SetHi22(0x41f00000, dst));
8514   ins_pipe(ialu_none);
8515 %}
8516 
8517 // Construct a double from two float halves
8518 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8519   effect(DEF dst, USE src1, USE src2);
8520   size(8);
8521   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8522             "FMOVS  $src2.lo,$dst.lo" %}
8523   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8524   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8525   ins_pipe(faddD_reg_reg);
8526 %}
8527 
8528 // Convert integer in high half of a double register (in the lower half of
8529 // the double register file) to double
8530 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8531   effect(DEF dst, USE src);
8532   size(4);
8533   format %{ "FITOD  $src,$dst" %}
8534   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8535   ins_encode(form3_opf_rs2D_rdD(src, dst));
8536   ins_pipe(fcvtLHi2D);
8537 %}
8538 
8539 // Add float double precision
8540 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8541   effect(DEF dst, USE src1, USE src2);
8542   size(4);
8543   format %{ "FADDD  $src1,$src2,$dst" %}
8544   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8545   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8546   ins_pipe(faddD_reg_reg);
8547 %}
8548 
8549 // Sub float double precision
8550 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8551   effect(DEF dst, USE src1, USE src2);
8552   size(4);
8553   format %{ "FSUBD  $src1,$src2,$dst" %}
8554   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8555   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8556   ins_pipe(faddD_reg_reg);
8557 %}
8558 
8559 // Mul float double precision
8560 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8561   effect(DEF dst, USE src1, USE src2);
8562   size(4);
8563   format %{ "FMULD  $src1,$src2,$dst" %}
8564   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8565   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8566   ins_pipe(fmulD_reg_reg);
8567 %}
8568 
8569 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8570   match(Set dst (ConvL2D src));
8571   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8572 
8573   expand %{
8574     regD_low   tmpsrc;
8575     iRegI      ix43300000;
8576     iRegI      ix41f00000;
8577     stackSlotL lx43300000;
8578     stackSlotL lx41f00000;
8579     regD_low   dx43300000;
8580     regD       dx41f00000;
8581     regD       tmp1;
8582     regD_low   tmp2;
8583     regD       tmp3;
8584     regD       tmp4;
8585 
8586     stkL_to_regD(tmpsrc, src);
8587 
8588     loadConI_x43300000(ix43300000);
8589     loadConI_x41f00000(ix41f00000);
8590     regI_to_stkLHi(lx43300000, ix43300000);
8591     regI_to_stkLHi(lx41f00000, ix41f00000);
8592     stkL_to_regD(dx43300000, lx43300000);
8593     stkL_to_regD(dx41f00000, lx41f00000);
8594 
8595     convI2D_regDHi_regD(tmp1, tmpsrc);
8596     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8597     subD_regD_regD(tmp3, tmp2, dx43300000);
8598     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8599     addD_regD_regD(dst, tmp3, tmp4);
8600   %}
8601 %}
8602 
8603 // Long to Double conversion using fast fxtof
8604 instruct convL2D_helper(regD dst, regD tmp) %{
8605   effect(DEF dst, USE tmp);
8606   size(4);
8607   format %{ "FXTOD  $tmp,$dst" %}
8608   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8609   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8610   ins_pipe(fcvtL2D);
8611 %}
8612 
8613 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8614   predicate(VM_Version::has_fast_fxtof());
8615   match(Set dst (ConvL2D src));
8616   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8617   expand %{
8618     regD tmp;
8619     stkL_to_regD(tmp, src);
8620     convL2D_helper(dst, tmp);
8621   %}
8622 %}
8623 
8624 instruct convL2D_reg(regD dst, iRegL src) %{
8625   predicate(UseVIS >= 3);
8626   match(Set dst (ConvL2D src));
8627   expand %{
8628     regD tmp;
8629     MoveL2D_reg_reg(tmp, src);
8630     convL2D_helper(dst, tmp);
8631   %}
8632 %}
8633 
8634 // Long to Float conversion using fast fxtof
8635 instruct convL2F_helper(regF dst, regD tmp) %{
8636   effect(DEF dst, USE tmp);
8637   size(4);
8638   format %{ "FXTOS  $tmp,$dst" %}
8639   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8640   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8641   ins_pipe(fcvtL2F);
8642 %}
8643 
8644 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8645   match(Set dst (ConvL2F src));
8646   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8647   expand %{
8648     regD tmp;
8649     stkL_to_regD(tmp, src);
8650     convL2F_helper(dst, tmp);
8651   %}
8652 %}
8653 
8654 instruct convL2F_reg(regF dst, iRegL src) %{
8655   predicate(UseVIS >= 3);
8656   match(Set dst (ConvL2F src));
8657   ins_cost(DEFAULT_COST);
8658   expand %{
8659     regD tmp;
8660     MoveL2D_reg_reg(tmp, src);
8661     convL2F_helper(dst, tmp);
8662   %}
8663 %}
8664 
8665 //-----------
8666 
8667 instruct convL2I_reg(iRegI dst, iRegL src) %{
8668   match(Set dst (ConvL2I src));
8669 #ifndef _LP64
8670   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8671   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8672   ins_pipe(ialu_move_reg_I_to_L);
8673 #else
8674   size(4);
8675   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8676   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8677   ins_pipe(ialu_reg);
8678 #endif
8679 %}
8680 
8681 // Register Shift Right Immediate
8682 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8683   match(Set dst (ConvL2I (RShiftL src cnt)));
8684 
8685   size(4);
8686   format %{ "SRAX   $src,$cnt,$dst" %}
8687   opcode(Assembler::srax_op3, Assembler::arith_op);
8688   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8689   ins_pipe(ialu_reg_imm);
8690 %}
8691 
8692 //----------Control Flow Instructions------------------------------------------
8693 // Compare Instructions
8694 // Compare Integers
8695 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8696   match(Set icc (CmpI op1 op2));
8697   effect( DEF icc, USE op1, USE op2 );
8698 
8699   size(4);
8700   format %{ "CMP    $op1,$op2" %}
8701   opcode(Assembler::subcc_op3, Assembler::arith_op);
8702   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8703   ins_pipe(ialu_cconly_reg_reg);
8704 %}
8705 
8706 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8707   match(Set icc (CmpU op1 op2));
8708 
8709   size(4);
8710   format %{ "CMP    $op1,$op2\t! unsigned" %}
8711   opcode(Assembler::subcc_op3, Assembler::arith_op);
8712   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8713   ins_pipe(ialu_cconly_reg_reg);
8714 %}
8715 
8716 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8717   match(Set icc (CmpI op1 op2));
8718   effect( DEF icc, USE op1 );
8719 
8720   size(4);
8721   format %{ "CMP    $op1,$op2" %}
8722   opcode(Assembler::subcc_op3, Assembler::arith_op);
8723   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8724   ins_pipe(ialu_cconly_reg_imm);
8725 %}
8726 
8727 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8728   match(Set icc (CmpI (AndI op1 op2) zero));
8729 
8730   size(4);
8731   format %{ "BTST   $op2,$op1" %}
8732   opcode(Assembler::andcc_op3, Assembler::arith_op);
8733   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8734   ins_pipe(ialu_cconly_reg_reg_zero);
8735 %}
8736 
8737 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8738   match(Set icc (CmpI (AndI op1 op2) zero));
8739 
8740   size(4);
8741   format %{ "BTST   $op2,$op1" %}
8742   opcode(Assembler::andcc_op3, Assembler::arith_op);
8743   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8744   ins_pipe(ialu_cconly_reg_imm_zero);
8745 %}
8746 
8747 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8748   match(Set xcc (CmpL op1 op2));
8749   effect( DEF xcc, USE op1, USE op2 );
8750 
8751   size(4);
8752   format %{ "CMP    $op1,$op2\t\t! long" %}
8753   opcode(Assembler::subcc_op3, Assembler::arith_op);
8754   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8755   ins_pipe(ialu_cconly_reg_reg);
8756 %}
8757 
8758 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8759   match(Set xcc (CmpL op1 con));
8760   effect( DEF xcc, USE op1, USE con );
8761 
8762   size(4);
8763   format %{ "CMP    $op1,$con\t\t! long" %}
8764   opcode(Assembler::subcc_op3, Assembler::arith_op);
8765   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8766   ins_pipe(ialu_cconly_reg_reg);
8767 %}
8768 
8769 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8770   match(Set xcc (CmpL (AndL op1 op2) zero));
8771   effect( DEF xcc, USE op1, USE op2 );
8772 
8773   size(4);
8774   format %{ "BTST   $op1,$op2\t\t! long" %}
8775   opcode(Assembler::andcc_op3, Assembler::arith_op);
8776   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8777   ins_pipe(ialu_cconly_reg_reg);
8778 %}
8779 
8780 // useful for checking the alignment of a pointer:
8781 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8782   match(Set xcc (CmpL (AndL op1 con) zero));
8783   effect( DEF xcc, USE op1, USE con );
8784 
8785   size(4);
8786   format %{ "BTST   $op1,$con\t\t! long" %}
8787   opcode(Assembler::andcc_op3, Assembler::arith_op);
8788   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8789   ins_pipe(ialu_cconly_reg_reg);
8790 %}
8791 
8792 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8793   match(Set icc (CmpU op1 op2));
8794 
8795   size(4);
8796   format %{ "CMP    $op1,$op2\t! unsigned" %}
8797   opcode(Assembler::subcc_op3, Assembler::arith_op);
8798   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8799   ins_pipe(ialu_cconly_reg_imm);
8800 %}
8801 
8802 // Compare Pointers
8803 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8804   match(Set pcc (CmpP op1 op2));
8805 
8806   size(4);
8807   format %{ "CMP    $op1,$op2\t! ptr" %}
8808   opcode(Assembler::subcc_op3, Assembler::arith_op);
8809   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8810   ins_pipe(ialu_cconly_reg_reg);
8811 %}
8812 
8813 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8814   match(Set pcc (CmpP op1 op2));
8815 
8816   size(4);
8817   format %{ "CMP    $op1,$op2\t! ptr" %}
8818   opcode(Assembler::subcc_op3, Assembler::arith_op);
8819   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8820   ins_pipe(ialu_cconly_reg_imm);
8821 %}
8822 
8823 // Compare Narrow oops
8824 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8825   match(Set icc (CmpN op1 op2));
8826 
8827   size(4);
8828   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8829   opcode(Assembler::subcc_op3, Assembler::arith_op);
8830   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8831   ins_pipe(ialu_cconly_reg_reg);
8832 %}
8833 
8834 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8835   match(Set icc (CmpN op1 op2));
8836 
8837   size(4);
8838   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8839   opcode(Assembler::subcc_op3, Assembler::arith_op);
8840   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8841   ins_pipe(ialu_cconly_reg_imm);
8842 %}
8843 
8844 //----------Max and Min--------------------------------------------------------
8845 // Min Instructions
8846 // Conditional move for min
8847 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8848   effect( USE_DEF op2, USE op1, USE icc );
8849 
8850   size(4);
8851   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8852   opcode(Assembler::less);
8853   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8854   ins_pipe(ialu_reg_flags);
8855 %}
8856 
8857 // Min Register with Register.
8858 instruct minI_eReg(iRegI op1, iRegI op2) %{
8859   match(Set op2 (MinI op1 op2));
8860   ins_cost(DEFAULT_COST*2);
8861   expand %{
8862     flagsReg icc;
8863     compI_iReg(icc,op1,op2);
8864     cmovI_reg_lt(op2,op1,icc);
8865   %}
8866 %}
8867 
8868 // Max Instructions
8869 // Conditional move for max
8870 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8871   effect( USE_DEF op2, USE op1, USE icc );
8872   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8873   opcode(Assembler::greater);
8874   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8875   ins_pipe(ialu_reg_flags);
8876 %}
8877 
8878 // Max Register with Register
8879 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8880   match(Set op2 (MaxI op1 op2));
8881   ins_cost(DEFAULT_COST*2);
8882   expand %{
8883     flagsReg icc;
8884     compI_iReg(icc,op1,op2);
8885     cmovI_reg_gt(op2,op1,icc);
8886   %}
8887 %}
8888 
8889 
8890 //----------Float Compares----------------------------------------------------
8891 // Compare floating, generate condition code
8892 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8893   match(Set fcc (CmpF src1 src2));
8894 
8895   size(4);
8896   format %{ "FCMPs  $fcc,$src1,$src2" %}
8897   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8898   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8899   ins_pipe(faddF_fcc_reg_reg_zero);
8900 %}
8901 
8902 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8903   match(Set fcc (CmpD src1 src2));
8904 
8905   size(4);
8906   format %{ "FCMPd  $fcc,$src1,$src2" %}
8907   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8908   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8909   ins_pipe(faddD_fcc_reg_reg_zero);
8910 %}
8911 
8912 
8913 // Compare floating, generate -1,0,1
8914 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8915   match(Set dst (CmpF3 src1 src2));
8916   effect(KILL fcc0);
8917   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8918   format %{ "fcmpl  $dst,$src1,$src2" %}
8919   // Primary = float
8920   opcode( true );
8921   ins_encode( floating_cmp( dst, src1, src2 ) );
8922   ins_pipe( floating_cmp );
8923 %}
8924 
8925 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8926   match(Set dst (CmpD3 src1 src2));
8927   effect(KILL fcc0);
8928   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8929   format %{ "dcmpl  $dst,$src1,$src2" %}
8930   // Primary = double (not float)
8931   opcode( false );
8932   ins_encode( floating_cmp( dst, src1, src2 ) );
8933   ins_pipe( floating_cmp );
8934 %}
8935 
8936 //----------Branches---------------------------------------------------------
8937 // Jump
8938 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8939 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8940   match(Jump switch_val);
8941   effect(TEMP table);
8942 
8943   ins_cost(350);
8944 
8945   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8946              "LD     [O7 + $switch_val], O7\n\t"
8947              "JUMP   O7" %}
8948   ins_encode %{
8949     // Calculate table address into a register.
8950     Register table_reg;
8951     Register label_reg = O7;
8952     // If we are calculating the size of this instruction don't trust
8953     // zero offsets because they might change when
8954     // MachConstantBaseNode decides to optimize the constant table
8955     // base.
8956     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
8957       table_reg = $constanttablebase;
8958     } else {
8959       table_reg = O7;
8960       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8961       __ add($constanttablebase, con_offset, table_reg);
8962     }
8963 
8964     // Jump to base address + switch value
8965     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8966     __ jmp(label_reg, G0);
8967     __ delayed()->nop();
8968   %}
8969   ins_pipe(ialu_reg_reg);
8970 %}
8971 
8972 // Direct Branch.  Use V8 version with longer range.
8973 instruct branch(label labl) %{
8974   match(Goto);
8975   effect(USE labl);
8976 
8977   size(8);
8978   ins_cost(BRANCH_COST);
8979   format %{ "BA     $labl" %}
8980   ins_encode %{
8981     Label* L = $labl$$label;
8982     __ ba(*L);
8983     __ delayed()->nop();
8984   %}
8985   ins_avoid_back_to_back(AVOID_BEFORE);
8986   ins_pipe(br);
8987 %}
8988 
8989 // Direct Branch, short with no delay slot
8990 instruct branch_short(label labl) %{
8991   match(Goto);
8992   predicate(UseCBCond);
8993   effect(USE labl);
8994 
8995   size(4);
8996   ins_cost(BRANCH_COST);
8997   format %{ "BA     $labl\t! short branch" %}
8998   ins_encode %{
8999     Label* L = $labl$$label;
9000     assert(__ use_cbcond(*L), "back to back cbcond");
9001     __ ba_short(*L);
9002   %}
9003   ins_short_branch(1);
9004   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9005   ins_pipe(cbcond_reg_imm);
9006 %}
9007 
9008 // Conditional Direct Branch
9009 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9010   match(If cmp icc);
9011   effect(USE labl);
9012 
9013   size(8);
9014   ins_cost(BRANCH_COST);
9015   format %{ "BP$cmp   $icc,$labl" %}
9016   // Prim = bits 24-22, Secnd = bits 31-30
9017   ins_encode( enc_bp( labl, cmp, icc ) );
9018   ins_avoid_back_to_back(AVOID_BEFORE);
9019   ins_pipe(br_cc);
9020 %}
9021 
9022 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9023   match(If cmp icc);
9024   effect(USE labl);
9025 
9026   ins_cost(BRANCH_COST);
9027   format %{ "BP$cmp  $icc,$labl" %}
9028   // Prim = bits 24-22, Secnd = bits 31-30
9029   ins_encode( enc_bp( labl, cmp, icc ) );
9030   ins_avoid_back_to_back(AVOID_BEFORE);
9031   ins_pipe(br_cc);
9032 %}
9033 
9034 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9035   match(If cmp pcc);
9036   effect(USE labl);
9037 
9038   size(8);
9039   ins_cost(BRANCH_COST);
9040   format %{ "BP$cmp  $pcc,$labl" %}
9041   ins_encode %{
9042     Label* L = $labl$$label;
9043     Assembler::Predict predict_taken =
9044       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9045 
9046     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9047     __ delayed()->nop();
9048   %}
9049   ins_avoid_back_to_back(AVOID_BEFORE);
9050   ins_pipe(br_cc);
9051 %}
9052 
9053 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9054   match(If cmp fcc);
9055   effect(USE labl);
9056 
9057   size(8);
9058   ins_cost(BRANCH_COST);
9059   format %{ "FBP$cmp $fcc,$labl" %}
9060   ins_encode %{
9061     Label* L = $labl$$label;
9062     Assembler::Predict predict_taken =
9063       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9064 
9065     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9066     __ delayed()->nop();
9067   %}
9068   ins_avoid_back_to_back(AVOID_BEFORE);
9069   ins_pipe(br_fcc);
9070 %}
9071 
9072 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9073   match(CountedLoopEnd cmp icc);
9074   effect(USE labl);
9075 
9076   size(8);
9077   ins_cost(BRANCH_COST);
9078   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9079   // Prim = bits 24-22, Secnd = bits 31-30
9080   ins_encode( enc_bp( labl, cmp, icc ) );
9081   ins_avoid_back_to_back(AVOID_BEFORE);
9082   ins_pipe(br_cc);
9083 %}
9084 
9085 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9086   match(CountedLoopEnd cmp icc);
9087   effect(USE labl);
9088 
9089   size(8);
9090   ins_cost(BRANCH_COST);
9091   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9092   // Prim = bits 24-22, Secnd = bits 31-30
9093   ins_encode( enc_bp( labl, cmp, icc ) );
9094   ins_avoid_back_to_back(AVOID_BEFORE);
9095   ins_pipe(br_cc);
9096 %}
9097 
9098 // Compare and branch instructions
9099 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9100   match(If cmp (CmpI op1 op2));
9101   effect(USE labl, KILL icc);
9102 
9103   size(12);
9104   ins_cost(BRANCH_COST);
9105   format %{ "CMP    $op1,$op2\t! int\n\t"
9106             "BP$cmp   $labl" %}
9107   ins_encode %{
9108     Label* L = $labl$$label;
9109     Assembler::Predict predict_taken =
9110       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9111     __ cmp($op1$$Register, $op2$$Register);
9112     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9113     __ delayed()->nop();
9114   %}
9115   ins_pipe(cmp_br_reg_reg);
9116 %}
9117 
9118 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9119   match(If cmp (CmpI op1 op2));
9120   effect(USE labl, KILL icc);
9121 
9122   size(12);
9123   ins_cost(BRANCH_COST);
9124   format %{ "CMP    $op1,$op2\t! int\n\t"
9125             "BP$cmp   $labl" %}
9126   ins_encode %{
9127     Label* L = $labl$$label;
9128     Assembler::Predict predict_taken =
9129       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9130     __ cmp($op1$$Register, $op2$$constant);
9131     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9132     __ delayed()->nop();
9133   %}
9134   ins_pipe(cmp_br_reg_imm);
9135 %}
9136 
9137 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9138   match(If cmp (CmpU op1 op2));
9139   effect(USE labl, KILL icc);
9140 
9141   size(12);
9142   ins_cost(BRANCH_COST);
9143   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9144             "BP$cmp  $labl" %}
9145   ins_encode %{
9146     Label* L = $labl$$label;
9147     Assembler::Predict predict_taken =
9148       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9149     __ cmp($op1$$Register, $op2$$Register);
9150     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9151     __ delayed()->nop();
9152   %}
9153   ins_pipe(cmp_br_reg_reg);
9154 %}
9155 
9156 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9157   match(If cmp (CmpU op1 op2));
9158   effect(USE labl, KILL icc);
9159 
9160   size(12);
9161   ins_cost(BRANCH_COST);
9162   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9163             "BP$cmp  $labl" %}
9164   ins_encode %{
9165     Label* L = $labl$$label;
9166     Assembler::Predict predict_taken =
9167       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9168     __ cmp($op1$$Register, $op2$$constant);
9169     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9170     __ delayed()->nop();
9171   %}
9172   ins_pipe(cmp_br_reg_imm);
9173 %}
9174 
9175 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9176   match(If cmp (CmpL op1 op2));
9177   effect(USE labl, KILL xcc);
9178 
9179   size(12);
9180   ins_cost(BRANCH_COST);
9181   format %{ "CMP    $op1,$op2\t! long\n\t"
9182             "BP$cmp   $labl" %}
9183   ins_encode %{
9184     Label* L = $labl$$label;
9185     Assembler::Predict predict_taken =
9186       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9187     __ cmp($op1$$Register, $op2$$Register);
9188     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9189     __ delayed()->nop();
9190   %}
9191   ins_pipe(cmp_br_reg_reg);
9192 %}
9193 
9194 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9195   match(If cmp (CmpL op1 op2));
9196   effect(USE labl, KILL xcc);
9197 
9198   size(12);
9199   ins_cost(BRANCH_COST);
9200   format %{ "CMP    $op1,$op2\t! long\n\t"
9201             "BP$cmp   $labl" %}
9202   ins_encode %{
9203     Label* L = $labl$$label;
9204     Assembler::Predict predict_taken =
9205       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9206     __ cmp($op1$$Register, $op2$$constant);
9207     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9208     __ delayed()->nop();
9209   %}
9210   ins_pipe(cmp_br_reg_imm);
9211 %}
9212 
9213 // Compare Pointers and branch
9214 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9215   match(If cmp (CmpP op1 op2));
9216   effect(USE labl, KILL pcc);
9217 
9218   size(12);
9219   ins_cost(BRANCH_COST);
9220   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9221             "B$cmp   $labl" %}
9222   ins_encode %{
9223     Label* L = $labl$$label;
9224     Assembler::Predict predict_taken =
9225       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9226     __ cmp($op1$$Register, $op2$$Register);
9227     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9228     __ delayed()->nop();
9229   %}
9230   ins_pipe(cmp_br_reg_reg);
9231 %}
9232 
9233 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9234   match(If cmp (CmpP op1 null));
9235   effect(USE labl, KILL pcc);
9236 
9237   size(12);
9238   ins_cost(BRANCH_COST);
9239   format %{ "CMP    $op1,0\t! ptr\n\t"
9240             "B$cmp   $labl" %}
9241   ins_encode %{
9242     Label* L = $labl$$label;
9243     Assembler::Predict predict_taken =
9244       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9245     __ cmp($op1$$Register, G0);
9246     // bpr() is not used here since it has shorter distance.
9247     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9248     __ delayed()->nop();
9249   %}
9250   ins_pipe(cmp_br_reg_reg);
9251 %}
9252 
9253 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9254   match(If cmp (CmpN op1 op2));
9255   effect(USE labl, KILL icc);
9256 
9257   size(12);
9258   ins_cost(BRANCH_COST);
9259   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9260             "BP$cmp   $labl" %}
9261   ins_encode %{
9262     Label* L = $labl$$label;
9263     Assembler::Predict predict_taken =
9264       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9265     __ cmp($op1$$Register, $op2$$Register);
9266     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9267     __ delayed()->nop();
9268   %}
9269   ins_pipe(cmp_br_reg_reg);
9270 %}
9271 
9272 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9273   match(If cmp (CmpN op1 null));
9274   effect(USE labl, KILL icc);
9275 
9276   size(12);
9277   ins_cost(BRANCH_COST);
9278   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9279             "BP$cmp   $labl" %}
9280   ins_encode %{
9281     Label* L = $labl$$label;
9282     Assembler::Predict predict_taken =
9283       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9284     __ cmp($op1$$Register, G0);
9285     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9286     __ delayed()->nop();
9287   %}
9288   ins_pipe(cmp_br_reg_reg);
9289 %}
9290 
9291 // Loop back branch
9292 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9293   match(CountedLoopEnd cmp (CmpI op1 op2));
9294   effect(USE labl, KILL icc);
9295 
9296   size(12);
9297   ins_cost(BRANCH_COST);
9298   format %{ "CMP    $op1,$op2\t! int\n\t"
9299             "BP$cmp   $labl\t! Loop end" %}
9300   ins_encode %{
9301     Label* L = $labl$$label;
9302     Assembler::Predict predict_taken =
9303       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9304     __ cmp($op1$$Register, $op2$$Register);
9305     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9306     __ delayed()->nop();
9307   %}
9308   ins_pipe(cmp_br_reg_reg);
9309 %}
9310 
9311 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9312   match(CountedLoopEnd cmp (CmpI op1 op2));
9313   effect(USE labl, KILL icc);
9314 
9315   size(12);
9316   ins_cost(BRANCH_COST);
9317   format %{ "CMP    $op1,$op2\t! int\n\t"
9318             "BP$cmp   $labl\t! Loop end" %}
9319   ins_encode %{
9320     Label* L = $labl$$label;
9321     Assembler::Predict predict_taken =
9322       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9323     __ cmp($op1$$Register, $op2$$constant);
9324     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9325     __ delayed()->nop();
9326   %}
9327   ins_pipe(cmp_br_reg_imm);
9328 %}
9329 
9330 // Short compare and branch instructions
9331 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9332   match(If cmp (CmpI op1 op2));
9333   predicate(UseCBCond);
9334   effect(USE labl, KILL icc);
9335 
9336   size(4);
9337   ins_cost(BRANCH_COST);
9338   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9339   ins_encode %{
9340     Label* L = $labl$$label;
9341     assert(__ use_cbcond(*L), "back to back cbcond");
9342     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9343   %}
9344   ins_short_branch(1);
9345   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9346   ins_pipe(cbcond_reg_reg);
9347 %}
9348 
9349 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9350   match(If cmp (CmpI op1 op2));
9351   predicate(UseCBCond);
9352   effect(USE labl, KILL icc);
9353 
9354   size(4);
9355   ins_cost(BRANCH_COST);
9356   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9357   ins_encode %{
9358     Label* L = $labl$$label;
9359     assert(__ use_cbcond(*L), "back to back cbcond");
9360     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9361   %}
9362   ins_short_branch(1);
9363   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9364   ins_pipe(cbcond_reg_imm);
9365 %}
9366 
9367 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9368   match(If cmp (CmpU op1 op2));
9369   predicate(UseCBCond);
9370   effect(USE labl, KILL icc);
9371 
9372   size(4);
9373   ins_cost(BRANCH_COST);
9374   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9375   ins_encode %{
9376     Label* L = $labl$$label;
9377     assert(__ use_cbcond(*L), "back to back cbcond");
9378     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9379   %}
9380   ins_short_branch(1);
9381   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9382   ins_pipe(cbcond_reg_reg);
9383 %}
9384 
9385 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9386   match(If cmp (CmpU op1 op2));
9387   predicate(UseCBCond);
9388   effect(USE labl, KILL icc);
9389 
9390   size(4);
9391   ins_cost(BRANCH_COST);
9392   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9393   ins_encode %{
9394     Label* L = $labl$$label;
9395     assert(__ use_cbcond(*L), "back to back cbcond");
9396     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9397   %}
9398   ins_short_branch(1);
9399   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9400   ins_pipe(cbcond_reg_imm);
9401 %}
9402 
9403 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9404   match(If cmp (CmpL op1 op2));
9405   predicate(UseCBCond);
9406   effect(USE labl, KILL xcc);
9407 
9408   size(4);
9409   ins_cost(BRANCH_COST);
9410   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9411   ins_encode %{
9412     Label* L = $labl$$label;
9413     assert(__ use_cbcond(*L), "back to back cbcond");
9414     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9415   %}
9416   ins_short_branch(1);
9417   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9418   ins_pipe(cbcond_reg_reg);
9419 %}
9420 
9421 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9422   match(If cmp (CmpL op1 op2));
9423   predicate(UseCBCond);
9424   effect(USE labl, KILL xcc);
9425 
9426   size(4);
9427   ins_cost(BRANCH_COST);
9428   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9429   ins_encode %{
9430     Label* L = $labl$$label;
9431     assert(__ use_cbcond(*L), "back to back cbcond");
9432     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9433   %}
9434   ins_short_branch(1);
9435   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9436   ins_pipe(cbcond_reg_imm);
9437 %}
9438 
9439 // Compare Pointers and branch
9440 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9441   match(If cmp (CmpP op1 op2));
9442   predicate(UseCBCond);
9443   effect(USE labl, KILL pcc);
9444 
9445   size(4);
9446   ins_cost(BRANCH_COST);
9447 #ifdef _LP64
9448   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9449 #else
9450   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9451 #endif
9452   ins_encode %{
9453     Label* L = $labl$$label;
9454     assert(__ use_cbcond(*L), "back to back cbcond");
9455     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9456   %}
9457   ins_short_branch(1);
9458   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9459   ins_pipe(cbcond_reg_reg);
9460 %}
9461 
9462 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9463   match(If cmp (CmpP op1 null));
9464   predicate(UseCBCond);
9465   effect(USE labl, KILL pcc);
9466 
9467   size(4);
9468   ins_cost(BRANCH_COST);
9469 #ifdef _LP64
9470   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9471 #else
9472   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9473 #endif
9474   ins_encode %{
9475     Label* L = $labl$$label;
9476     assert(__ use_cbcond(*L), "back to back cbcond");
9477     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9478   %}
9479   ins_short_branch(1);
9480   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9481   ins_pipe(cbcond_reg_reg);
9482 %}
9483 
9484 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9485   match(If cmp (CmpN op1 op2));
9486   predicate(UseCBCond);
9487   effect(USE labl, KILL icc);
9488 
9489   size(4);
9490   ins_cost(BRANCH_COST);
9491   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9492   ins_encode %{
9493     Label* L = $labl$$label;
9494     assert(__ use_cbcond(*L), "back to back cbcond");
9495     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9496   %}
9497   ins_short_branch(1);
9498   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9499   ins_pipe(cbcond_reg_reg);
9500 %}
9501 
9502 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9503   match(If cmp (CmpN op1 null));
9504   predicate(UseCBCond);
9505   effect(USE labl, KILL icc);
9506 
9507   size(4);
9508   ins_cost(BRANCH_COST);
9509   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9510   ins_encode %{
9511     Label* L = $labl$$label;
9512     assert(__ use_cbcond(*L), "back to back cbcond");
9513     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9514   %}
9515   ins_short_branch(1);
9516   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9517   ins_pipe(cbcond_reg_reg);
9518 %}
9519 
9520 // Loop back branch
9521 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9522   match(CountedLoopEnd cmp (CmpI op1 op2));
9523   predicate(UseCBCond);
9524   effect(USE labl, KILL icc);
9525 
9526   size(4);
9527   ins_cost(BRANCH_COST);
9528   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9529   ins_encode %{
9530     Label* L = $labl$$label;
9531     assert(__ use_cbcond(*L), "back to back cbcond");
9532     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9533   %}
9534   ins_short_branch(1);
9535   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9536   ins_pipe(cbcond_reg_reg);
9537 %}
9538 
9539 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9540   match(CountedLoopEnd cmp (CmpI op1 op2));
9541   predicate(UseCBCond);
9542   effect(USE labl, KILL icc);
9543 
9544   size(4);
9545   ins_cost(BRANCH_COST);
9546   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9547   ins_encode %{
9548     Label* L = $labl$$label;
9549     assert(__ use_cbcond(*L), "back to back cbcond");
9550     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9551   %}
9552   ins_short_branch(1);
9553   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9554   ins_pipe(cbcond_reg_imm);
9555 %}
9556 
9557 // Branch-on-register tests all 64 bits.  We assume that values
9558 // in 64-bit registers always remains zero or sign extended
9559 // unless our code munges the high bits.  Interrupts can chop
9560 // the high order bits to zero or sign at any time.
9561 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9562   match(If cmp (CmpI op1 zero));
9563   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9564   effect(USE labl);
9565 
9566   size(8);
9567   ins_cost(BRANCH_COST);
9568   format %{ "BR$cmp   $op1,$labl" %}
9569   ins_encode( enc_bpr( labl, cmp, op1 ) );
9570   ins_avoid_back_to_back(AVOID_BEFORE);
9571   ins_pipe(br_reg);
9572 %}
9573 
9574 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9575   match(If cmp (CmpP op1 null));
9576   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9577   effect(USE labl);
9578 
9579   size(8);
9580   ins_cost(BRANCH_COST);
9581   format %{ "BR$cmp   $op1,$labl" %}
9582   ins_encode( enc_bpr( labl, cmp, op1 ) );
9583   ins_avoid_back_to_back(AVOID_BEFORE);
9584   ins_pipe(br_reg);
9585 %}
9586 
9587 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9588   match(If cmp (CmpL op1 zero));
9589   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9590   effect(USE labl);
9591 
9592   size(8);
9593   ins_cost(BRANCH_COST);
9594   format %{ "BR$cmp   $op1,$labl" %}
9595   ins_encode( enc_bpr( labl, cmp, op1 ) );
9596   ins_avoid_back_to_back(AVOID_BEFORE);
9597   ins_pipe(br_reg);
9598 %}
9599 
9600 
9601 // ============================================================================
9602 // Long Compare
9603 //
9604 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9605 // is tricky.  The flavor of compare used depends on whether we are testing
9606 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9607 // The GE test is the negated LT test.  The LE test can be had by commuting
9608 // the operands (yielding a GE test) and then negating; negate again for the
9609 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9610 // NE test is negated from that.
9611 
9612 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9613 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9614 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9615 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9616 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9617 // foo match ends up with the wrong leaf.  One fix is to not match both
9618 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9619 // both forms beat the trinary form of long-compare and both are very useful
9620 // on Intel which has so few registers.
9621 
9622 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9623   match(If cmp xcc);
9624   effect(USE labl);
9625 
9626   size(8);
9627   ins_cost(BRANCH_COST);
9628   format %{ "BP$cmp   $xcc,$labl" %}
9629   ins_encode %{
9630     Label* L = $labl$$label;
9631     Assembler::Predict predict_taken =
9632       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9633 
9634     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9635     __ delayed()->nop();
9636   %}
9637   ins_avoid_back_to_back(AVOID_BEFORE);
9638   ins_pipe(br_cc);
9639 %}
9640 
9641 // Manifest a CmpL3 result in an integer register.  Very painful.
9642 // This is the test to avoid.
9643 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9644   match(Set dst (CmpL3 src1 src2) );
9645   effect( KILL ccr );
9646   ins_cost(6*DEFAULT_COST);
9647   size(24);
9648   format %{ "CMP    $src1,$src2\t\t! long\n"
9649           "\tBLT,a,pn done\n"
9650           "\tMOV    -1,$dst\t! delay slot\n"
9651           "\tBGT,a,pn done\n"
9652           "\tMOV    1,$dst\t! delay slot\n"
9653           "\tCLR    $dst\n"
9654     "done:"     %}
9655   ins_encode( cmpl_flag(src1,src2,dst) );
9656   ins_pipe(cmpL_reg);
9657 %}
9658 
9659 // Conditional move
9660 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9661   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9662   ins_cost(150);
9663   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9664   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9665   ins_pipe(ialu_reg);
9666 %}
9667 
9668 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9669   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9670   ins_cost(140);
9671   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9672   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9673   ins_pipe(ialu_imm);
9674 %}
9675 
9676 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9677   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9678   ins_cost(150);
9679   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9680   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9681   ins_pipe(ialu_reg);
9682 %}
9683 
9684 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9685   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9686   ins_cost(140);
9687   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9688   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9689   ins_pipe(ialu_imm);
9690 %}
9691 
9692 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9693   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9694   ins_cost(150);
9695   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9696   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9697   ins_pipe(ialu_reg);
9698 %}
9699 
9700 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9701   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9702   ins_cost(150);
9703   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9704   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9705   ins_pipe(ialu_reg);
9706 %}
9707 
9708 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9709   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9710   ins_cost(140);
9711   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9712   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9713   ins_pipe(ialu_imm);
9714 %}
9715 
9716 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9717   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9718   ins_cost(150);
9719   opcode(0x101);
9720   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9721   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9722   ins_pipe(int_conditional_float_move);
9723 %}
9724 
9725 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9726   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9727   ins_cost(150);
9728   opcode(0x102);
9729   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9730   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9731   ins_pipe(int_conditional_float_move);
9732 %}
9733 
9734 // ============================================================================
9735 // Safepoint Instruction
9736 instruct safePoint_poll(iRegP poll) %{
9737   match(SafePoint poll);
9738   effect(USE poll);
9739 
9740   size(4);
9741 #ifdef _LP64
9742   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9743 #else
9744   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9745 #endif
9746   ins_encode %{
9747     __ relocate(relocInfo::poll_type);
9748     __ ld_ptr($poll$$Register, 0, G0);
9749   %}
9750   ins_pipe(loadPollP);
9751 %}
9752 
9753 // ============================================================================
9754 // Call Instructions
9755 // Call Java Static Instruction
9756 instruct CallStaticJavaDirect( method meth ) %{
9757   match(CallStaticJava);
9758   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9759   effect(USE meth);
9760 
9761   size(8);
9762   ins_cost(CALL_COST);
9763   format %{ "CALL,static  ; NOP ==> " %}
9764   ins_encode( Java_Static_Call( meth ), call_epilog );
9765   ins_avoid_back_to_back(AVOID_BEFORE);
9766   ins_pipe(simple_call);
9767 %}
9768 
9769 // Call Java Static Instruction (method handle version)
9770 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9771   match(CallStaticJava);
9772   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9773   effect(USE meth, KILL l7_mh_SP_save);
9774 
9775   size(16);
9776   ins_cost(CALL_COST);
9777   format %{ "CALL,static/MethodHandle" %}
9778   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9779   ins_pipe(simple_call);
9780 %}
9781 
9782 // Call Java Dynamic Instruction
9783 instruct CallDynamicJavaDirect( method meth ) %{
9784   match(CallDynamicJava);
9785   effect(USE meth);
9786 
9787   ins_cost(CALL_COST);
9788   format %{ "SET    (empty),R_G5\n\t"
9789             "CALL,dynamic  ; NOP ==> " %}
9790   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9791   ins_pipe(call);
9792 %}
9793 
9794 // Call Runtime Instruction
9795 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9796   match(CallRuntime);
9797   effect(USE meth, KILL l7);
9798   ins_cost(CALL_COST);
9799   format %{ "CALL,runtime" %}
9800   ins_encode( Java_To_Runtime( meth ),
9801               call_epilog, adjust_long_from_native_call );
9802   ins_avoid_back_to_back(AVOID_BEFORE);
9803   ins_pipe(simple_call);
9804 %}
9805 
9806 // Call runtime without safepoint - same as CallRuntime
9807 instruct CallLeafDirect(method meth, l7RegP l7) %{
9808   match(CallLeaf);
9809   effect(USE meth, KILL l7);
9810   ins_cost(CALL_COST);
9811   format %{ "CALL,runtime leaf" %}
9812   ins_encode( Java_To_Runtime( meth ),
9813               call_epilog,
9814               adjust_long_from_native_call );
9815   ins_avoid_back_to_back(AVOID_BEFORE);
9816   ins_pipe(simple_call);
9817 %}
9818 
9819 // Call runtime without safepoint - same as CallLeaf
9820 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9821   match(CallLeafNoFP);
9822   effect(USE meth, KILL l7);
9823   ins_cost(CALL_COST);
9824   format %{ "CALL,runtime leaf nofp" %}
9825   ins_encode( Java_To_Runtime( meth ),
9826               call_epilog,
9827               adjust_long_from_native_call );
9828   ins_avoid_back_to_back(AVOID_BEFORE);
9829   ins_pipe(simple_call);
9830 %}
9831 
9832 // Tail Call; Jump from runtime stub to Java code.
9833 // Also known as an 'interprocedural jump'.
9834 // Target of jump will eventually return to caller.
9835 // TailJump below removes the return address.
9836 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9837   match(TailCall jump_target method_oop );
9838 
9839   ins_cost(CALL_COST);
9840   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9841   ins_encode(form_jmpl(jump_target));
9842   ins_avoid_back_to_back(AVOID_BEFORE);
9843   ins_pipe(tail_call);
9844 %}
9845 
9846 
9847 // Return Instruction
9848 instruct Ret() %{
9849   match(Return);
9850 
9851   // The epilogue node did the ret already.
9852   size(0);
9853   format %{ "! return" %}
9854   ins_encode();
9855   ins_pipe(empty);
9856 %}
9857 
9858 
9859 // Tail Jump; remove the return address; jump to target.
9860 // TailCall above leaves the return address around.
9861 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9862 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9863 // "restore" before this instruction (in Epilogue), we need to materialize it
9864 // in %i0.
9865 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9866   match( TailJump jump_target ex_oop );
9867   ins_cost(CALL_COST);
9868   format %{ "! discard R_O7\n\t"
9869             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9870   ins_encode(form_jmpl_set_exception_pc(jump_target));
9871   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9872   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9873   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9874   ins_avoid_back_to_back(AVOID_BEFORE);
9875   ins_pipe(tail_call);
9876 %}
9877 
9878 // Create exception oop: created by stack-crawling runtime code.
9879 // Created exception is now available to this handler, and is setup
9880 // just prior to jumping to this handler.  No code emitted.
9881 instruct CreateException( o0RegP ex_oop )
9882 %{
9883   match(Set ex_oop (CreateEx));
9884   ins_cost(0);
9885 
9886   size(0);
9887   // use the following format syntax
9888   format %{ "! exception oop is in R_O0; no code emitted" %}
9889   ins_encode();
9890   ins_pipe(empty);
9891 %}
9892 
9893 
9894 // Rethrow exception:
9895 // The exception oop will come in the first argument position.
9896 // Then JUMP (not call) to the rethrow stub code.
9897 instruct RethrowException()
9898 %{
9899   match(Rethrow);
9900   ins_cost(CALL_COST);
9901 
9902   // use the following format syntax
9903   format %{ "Jmp    rethrow_stub" %}
9904   ins_encode(enc_rethrow);
9905   ins_avoid_back_to_back(AVOID_BEFORE);
9906   ins_pipe(tail_call);
9907 %}
9908 
9909 
9910 // Die now
9911 instruct ShouldNotReachHere( )
9912 %{
9913   match(Halt);
9914   ins_cost(CALL_COST);
9915 
9916   size(4);
9917   // Use the following format syntax
9918   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9919   ins_encode( form2_illtrap() );
9920   ins_pipe(tail_call);
9921 %}
9922 
9923 // ============================================================================
9924 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9925 // array for an instance of the superklass.  Set a hidden internal cache on a
9926 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9927 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9928 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9929   match(Set index (PartialSubtypeCheck sub super));
9930   effect( KILL pcc, KILL o7 );
9931   ins_cost(DEFAULT_COST*10);
9932   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9933   ins_encode( enc_PartialSubtypeCheck() );
9934   ins_avoid_back_to_back(AVOID_BEFORE);
9935   ins_pipe(partial_subtype_check_pipe);
9936 %}
9937 
9938 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9939   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9940   effect( KILL idx, KILL o7 );
9941   ins_cost(DEFAULT_COST*10);
9942   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9943   ins_encode( enc_PartialSubtypeCheck() );
9944   ins_avoid_back_to_back(AVOID_BEFORE);
9945   ins_pipe(partial_subtype_check_pipe);
9946 %}
9947 
9948 
9949 // ============================================================================
9950 // inlined locking and unlocking
9951 
9952 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9953   match(Set pcc (FastLock object box));
9954 
9955   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9956   ins_cost(100);
9957 
9958   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9959   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9960   ins_pipe(long_memory_op);
9961 %}
9962 
9963 
9964 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9965   match(Set pcc (FastUnlock object box));
9966   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9967   ins_cost(100);
9968 
9969   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9970   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9971   ins_pipe(long_memory_op);
9972 %}
9973 
9974 // The encodings are generic.
9975 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9976   predicate(!use_block_zeroing(n->in(2)) );
9977   match(Set dummy (ClearArray cnt base));
9978   effect(TEMP temp, KILL ccr);
9979   ins_cost(300);
9980   format %{ "MOV    $cnt,$temp\n"
9981     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9982     "        BRge   loop\t\t! Clearing loop\n"
9983     "        STX    G0,[$base+$temp]\t! delay slot" %}
9984 
9985   ins_encode %{
9986     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
9987     Register nof_bytes_arg    = $cnt$$Register;
9988     Register nof_bytes_tmp    = $temp$$Register;
9989     Register base_pointer_arg = $base$$Register;
9990 
9991     Label loop;
9992     __ mov(nof_bytes_arg, nof_bytes_tmp);
9993 
9994     // Loop and clear, walking backwards through the array.
9995     // nof_bytes_tmp (if >0) is always the number of bytes to zero
9996     __ bind(loop);
9997     __ deccc(nof_bytes_tmp, 8);
9998     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
9999     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10000     // %%%% this mini-loop must not cross a cache boundary!
10001   %}
10002   ins_pipe(long_memory_op);
10003 %}
10004 
10005 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10006   predicate(use_block_zeroing(n->in(2)));
10007   match(Set dummy (ClearArray cnt base));
10008   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10009   ins_cost(300);
10010   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10011 
10012   ins_encode %{
10013 
10014     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10015     Register to    = $base$$Register;
10016     Register count = $cnt$$Register;
10017 
10018     Label Ldone;
10019     __ nop(); // Separate short branches
10020     // Use BIS for zeroing (temp is not used).
10021     __ bis_zeroing(to, count, G0, Ldone);
10022     __ bind(Ldone);
10023 
10024   %}
10025   ins_pipe(long_memory_op);
10026 %}
10027 
10028 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10029   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10030   match(Set dummy (ClearArray cnt base));
10031   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10032   ins_cost(300);
10033   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10034 
10035   ins_encode %{
10036 
10037     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10038     Register to    = $base$$Register;
10039     Register count = $cnt$$Register;
10040     Register temp  = $tmp$$Register;
10041 
10042     Label Ldone;
10043     __ nop(); // Separate short branches
10044     // Use BIS for zeroing
10045     __ bis_zeroing(to, count, temp, Ldone);
10046     __ bind(Ldone);
10047 
10048   %}
10049   ins_pipe(long_memory_op);
10050 %}
10051 
10052 instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10053                          o7RegI tmp, flagsReg ccr) %{
10054   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
10055   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10056   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10057   ins_cost(300);
10058   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10059   ins_encode %{
10060     __ string_compare($str1$$Register, $str2$$Register,
10061                       $cnt1$$Register, $cnt2$$Register, 
10062                       $tmp$$Register, $tmp$$Register,
10063                       $result$$Register, StrIntrinsicNode::LL);
10064   %}                    
10065   ins_pipe(long_memory_op);
10066 %}
10067 
10068 instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10069                          o7RegI tmp, flagsReg ccr) %{
10070   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
10071   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10072   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10073   ins_cost(300);
10074   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10075   ins_encode %{
10076     __ string_compare($str1$$Register, $str2$$Register,
10077                       $cnt1$$Register, $cnt2$$Register,
10078                       $tmp$$Register, $tmp$$Register,
10079                       $result$$Register, StrIntrinsicNode::UU);
10080   %}                    
10081   ins_pipe(long_memory_op);
10082 %}
10083 
10084 instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10085                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10086   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
10087   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10088   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10089   ins_cost(300);
10090   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10091   ins_encode %{
10092     __ string_compare($str1$$Register, $str2$$Register,
10093                       $cnt1$$Register, $cnt2$$Register,
10094                       $tmp1$$Register, $tmp2$$Register,
10095                       $result$$Register, StrIntrinsicNode::LU);
10096   %}                    
10097   ins_pipe(long_memory_op);
10098 %}
10099 
10100 instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10101                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
10102   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
10103   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10104   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
10105   ins_cost(300);
10106   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
10107   ins_encode %{
10108     __ string_compare($str2$$Register, $str1$$Register,
10109                       $cnt2$$Register, $cnt1$$Register, 
10110                       $tmp1$$Register, $tmp2$$Register,
10111                       $result$$Register, StrIntrinsicNode::UL);
10112   %}                    
10113   ins_pipe(long_memory_op);
10114 %}
10115 
10116 instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10117                         o7RegI tmp, flagsReg ccr) %{
10118   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
10119   match(Set result (StrEquals (Binary str1 str2) cnt));
10120   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10121   ins_cost(300);
10122   format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10123   ins_encode %{
10124     __ array_equals(false, $str1$$Register, $str2$$Register,
10125                     $cnt$$Register, $tmp$$Register,
10126                     $result$$Register, true /* byte */);
10127   %}
10128   ins_pipe(long_memory_op);
10129 %}
10130 
10131 instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10132                         o7RegI tmp, flagsReg ccr) %{
10133   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
10134   match(Set result (StrEquals (Binary str1 str2) cnt));
10135   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10136   ins_cost(300);
10137   format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10138   ins_encode %{
10139     __ array_equals(false, $str1$$Register, $str2$$Register,
10140                     $cnt$$Register, $tmp$$Register,
10141                     $result$$Register, false /* byte */);
10142   %}
10143   ins_pipe(long_memory_op);
10144 %}
10145 
10146 instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10147                        o7RegI tmp2, flagsReg ccr) %{
10148   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
10149   match(Set result (AryEq ary1 ary2));
10150   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10151   ins_cost(300);
10152   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10153   ins_encode %{
10154     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10155                     $tmp1$$Register, $tmp2$$Register,
10156                     $result$$Register, true /* byte */);
10157   %}
10158   ins_pipe(long_memory_op);
10159 %}
10160 
10161 instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10162                        o7RegI tmp2, flagsReg ccr) %{
10163   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
10164   match(Set result (AryEq ary1 ary2));
10165   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10166   ins_cost(300);
10167   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10168   ins_encode %{
10169     __ array_equals(true, $ary1$$Register, $ary2$$Register,
10170                     $tmp1$$Register, $tmp2$$Register,
10171                     $result$$Register, false /* byte */);
10172   %}
10173   ins_pipe(long_memory_op);
10174 %}
10175 
10176 // char[] to byte[] compression
10177 instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
10178   predicate(UseVIS < 3);
10179   match(Set result (StrCompressedCopy src (Binary dst len)));
10180   effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10181   ins_cost(300);
10182   format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
10183   ins_encode %{
10184     Label Ldone;
10185     __ signx($len$$Register);
10186     __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
10187     __ delayed()->mov($len$$Register, $result$$Register); // copy count
10188     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
10189     __ bind(Ldone);
10190   %}
10191   ins_pipe(long_memory_op);
10192 %}
10193 
10194 // fast char[] to byte[] compression using VIS instructions
10195 instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
10196                               iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
10197                               regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
10198   predicate(UseVIS >= 3);
10199   match(Set result (StrCompressedCopy src (Binary dst len)));
10200   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10201   ins_cost(300);
10202   format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
10203   ins_encode %{
10204     Label Ldone;
10205     __ signx($len$$Register);
10206     __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
10207                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
10208                           $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
10209     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10210     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
10211     __ bind(Ldone);
10212   %}
10213   ins_pipe(long_memory_op);
10214 %}
10215 
10216 // byte[] to char[] inflation
10217 instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10218                         iRegL tmp, flagsReg ccr) %{
10219   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10220   effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10221   ins_cost(300);
10222   format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
10223   ins_encode %{
10224     Label Ldone;
10225     __ signx($len$$Register);
10226     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10227     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10228     __ bind(Ldone);
10229   %}
10230   ins_pipe(long_memory_op);
10231 %}
10232 
10233 // fast byte[] to char[] inflation using VIS instructions
10234 instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
10235                              iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
10236   predicate(UseVIS >= 3);
10237   match(Set dummy (StrInflatedCopy src (Binary dst len)));
10238   effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
10239   ins_cost(300);
10240   format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
10241   ins_encode %{
10242     Label Ldone;
10243     __ signx($len$$Register);
10244     __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
10245                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
10246     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
10247     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
10248     __ bind(Ldone);
10249   %}
10250   ins_pipe(long_memory_op);
10251 %}
10252 
10253 
10254 //---------- Zeros Count Instructions ------------------------------------------
10255 
10256 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10257   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10258   match(Set dst (CountLeadingZerosI src));
10259   effect(TEMP dst, TEMP tmp, KILL cr);
10260 
10261   // x |= (x >> 1);
10262   // x |= (x >> 2);
10263   // x |= (x >> 4);
10264   // x |= (x >> 8);
10265   // x |= (x >> 16);
10266   // return (WORDBITS - popc(x));
10267   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10268             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10269             "OR      $dst,$tmp,$dst\n\t"
10270             "SRL     $dst,2,$tmp\n\t"
10271             "OR      $dst,$tmp,$dst\n\t"
10272             "SRL     $dst,4,$tmp\n\t"
10273             "OR      $dst,$tmp,$dst\n\t"
10274             "SRL     $dst,8,$tmp\n\t"
10275             "OR      $dst,$tmp,$dst\n\t"
10276             "SRL     $dst,16,$tmp\n\t"
10277             "OR      $dst,$tmp,$dst\n\t"
10278             "POPC    $dst,$dst\n\t"
10279             "MOV     32,$tmp\n\t"
10280             "SUB     $tmp,$dst,$dst" %}
10281   ins_encode %{
10282     Register Rdst = $dst$$Register;
10283     Register Rsrc = $src$$Register;
10284     Register Rtmp = $tmp$$Register;
10285     __ srl(Rsrc, 1,    Rtmp);
10286     __ srl(Rsrc, 0,    Rdst);
10287     __ or3(Rdst, Rtmp, Rdst);
10288     __ srl(Rdst, 2,    Rtmp);
10289     __ or3(Rdst, Rtmp, Rdst);
10290     __ srl(Rdst, 4,    Rtmp);
10291     __ or3(Rdst, Rtmp, Rdst);
10292     __ srl(Rdst, 8,    Rtmp);
10293     __ or3(Rdst, Rtmp, Rdst);
10294     __ srl(Rdst, 16,   Rtmp);
10295     __ or3(Rdst, Rtmp, Rdst);
10296     __ popc(Rdst, Rdst);
10297     __ mov(BitsPerInt, Rtmp);
10298     __ sub(Rtmp, Rdst, Rdst);
10299   %}
10300   ins_pipe(ialu_reg);
10301 %}
10302 
10303 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10304   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10305   match(Set dst (CountLeadingZerosL src));
10306   effect(TEMP dst, TEMP tmp, KILL cr);
10307 
10308   // x |= (x >> 1);
10309   // x |= (x >> 2);
10310   // x |= (x >> 4);
10311   // x |= (x >> 8);
10312   // x |= (x >> 16);
10313   // x |= (x >> 32);
10314   // return (WORDBITS - popc(x));
10315   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10316             "OR      $src,$tmp,$dst\n\t"
10317             "SRLX    $dst,2,$tmp\n\t"
10318             "OR      $dst,$tmp,$dst\n\t"
10319             "SRLX    $dst,4,$tmp\n\t"
10320             "OR      $dst,$tmp,$dst\n\t"
10321             "SRLX    $dst,8,$tmp\n\t"
10322             "OR      $dst,$tmp,$dst\n\t"
10323             "SRLX    $dst,16,$tmp\n\t"
10324             "OR      $dst,$tmp,$dst\n\t"
10325             "SRLX    $dst,32,$tmp\n\t"
10326             "OR      $dst,$tmp,$dst\n\t"
10327             "POPC    $dst,$dst\n\t"
10328             "MOV     64,$tmp\n\t"
10329             "SUB     $tmp,$dst,$dst" %}
10330   ins_encode %{
10331     Register Rdst = $dst$$Register;
10332     Register Rsrc = $src$$Register;
10333     Register Rtmp = $tmp$$Register;
10334     __ srlx(Rsrc, 1,    Rtmp);
10335     __ or3( Rsrc, Rtmp, Rdst);
10336     __ srlx(Rdst, 2,    Rtmp);
10337     __ or3( Rdst, Rtmp, Rdst);
10338     __ srlx(Rdst, 4,    Rtmp);
10339     __ or3( Rdst, Rtmp, Rdst);
10340     __ srlx(Rdst, 8,    Rtmp);
10341     __ or3( Rdst, Rtmp, Rdst);
10342     __ srlx(Rdst, 16,   Rtmp);
10343     __ or3( Rdst, Rtmp, Rdst);
10344     __ srlx(Rdst, 32,   Rtmp);
10345     __ or3( Rdst, Rtmp, Rdst);
10346     __ popc(Rdst, Rdst);
10347     __ mov(BitsPerLong, Rtmp);
10348     __ sub(Rtmp, Rdst, Rdst);
10349   %}
10350   ins_pipe(ialu_reg);
10351 %}
10352 
10353 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10354   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10355   match(Set dst (CountTrailingZerosI src));
10356   effect(TEMP dst, KILL cr);
10357 
10358   // return popc(~x & (x - 1));
10359   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10360             "ANDN    $dst,$src,$dst\n\t"
10361             "SRL     $dst,R_G0,$dst\n\t"
10362             "POPC    $dst,$dst" %}
10363   ins_encode %{
10364     Register Rdst = $dst$$Register;
10365     Register Rsrc = $src$$Register;
10366     __ sub(Rsrc, 1, Rdst);
10367     __ andn(Rdst, Rsrc, Rdst);
10368     __ srl(Rdst, G0, Rdst);
10369     __ popc(Rdst, Rdst);
10370   %}
10371   ins_pipe(ialu_reg);
10372 %}
10373 
10374 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10375   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10376   match(Set dst (CountTrailingZerosL src));
10377   effect(TEMP dst, KILL cr);
10378 
10379   // return popc(~x & (x - 1));
10380   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10381             "ANDN    $dst,$src,$dst\n\t"
10382             "POPC    $dst,$dst" %}
10383   ins_encode %{
10384     Register Rdst = $dst$$Register;
10385     Register Rsrc = $src$$Register;
10386     __ sub(Rsrc, 1, Rdst);
10387     __ andn(Rdst, Rsrc, Rdst);
10388     __ popc(Rdst, Rdst);
10389   %}
10390   ins_pipe(ialu_reg);
10391 %}
10392 
10393 
10394 //---------- Population Count Instructions -------------------------------------
10395 
10396 instruct popCountI(iRegIsafe dst, iRegI src) %{
10397   predicate(UsePopCountInstruction);
10398   match(Set dst (PopCountI src));
10399 
10400   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10401             "POPC   $dst, $dst" %}
10402   ins_encode %{
10403     __ srl($src$$Register, G0, $dst$$Register);
10404     __ popc($dst$$Register, $dst$$Register);
10405   %}
10406   ins_pipe(ialu_reg);
10407 %}
10408 
10409 // Note: Long.bitCount(long) returns an int.
10410 instruct popCountL(iRegIsafe dst, iRegL src) %{
10411   predicate(UsePopCountInstruction);
10412   match(Set dst (PopCountL src));
10413 
10414   format %{ "POPC   $src, $dst" %}
10415   ins_encode %{
10416     __ popc($src$$Register, $dst$$Register);
10417   %}
10418   ins_pipe(ialu_reg);
10419 %}
10420 
10421 
10422 // ============================================================================
10423 //------------Bytes reverse--------------------------------------------------
10424 
10425 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10426   match(Set dst (ReverseBytesI src));
10427 
10428   // Op cost is artificially doubled to make sure that load or store
10429   // instructions are preferred over this one which requires a spill
10430   // onto a stack slot.
10431   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10432   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10433 
10434   ins_encode %{
10435     __ set($src$$disp + STACK_BIAS, O7);
10436     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10437   %}
10438   ins_pipe( iload_mem );
10439 %}
10440 
10441 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10442   match(Set dst (ReverseBytesL src));
10443 
10444   // Op cost is artificially doubled to make sure that load or store
10445   // instructions are preferred over this one which requires a spill
10446   // onto a stack slot.
10447   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10448   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10449 
10450   ins_encode %{
10451     __ set($src$$disp + STACK_BIAS, O7);
10452     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10453   %}
10454   ins_pipe( iload_mem );
10455 %}
10456 
10457 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10458   match(Set dst (ReverseBytesUS src));
10459 
10460   // Op cost is artificially doubled to make sure that load or store
10461   // instructions are preferred over this one which requires a spill
10462   // onto a stack slot.
10463   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10464   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10465 
10466   ins_encode %{
10467     // the value was spilled as an int so bias the load
10468     __ set($src$$disp + STACK_BIAS + 2, O7);
10469     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10470   %}
10471   ins_pipe( iload_mem );
10472 %}
10473 
10474 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10475   match(Set dst (ReverseBytesS src));
10476 
10477   // Op cost is artificially doubled to make sure that load or store
10478   // instructions are preferred over this one which requires a spill
10479   // onto a stack slot.
10480   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10481   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10482 
10483   ins_encode %{
10484     // the value was spilled as an int so bias the load
10485     __ set($src$$disp + STACK_BIAS + 2, O7);
10486     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10487   %}
10488   ins_pipe( iload_mem );
10489 %}
10490 
10491 // Load Integer reversed byte order
10492 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10493   match(Set dst (ReverseBytesI (LoadI src)));
10494 
10495   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10496   size(4);
10497   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10498 
10499   ins_encode %{
10500     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10501   %}
10502   ins_pipe(iload_mem);
10503 %}
10504 
10505 // Load Long - aligned and reversed
10506 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10507   match(Set dst (ReverseBytesL (LoadL src)));
10508 
10509   ins_cost(MEMORY_REF_COST);
10510   size(4);
10511   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10512 
10513   ins_encode %{
10514     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10515   %}
10516   ins_pipe(iload_mem);
10517 %}
10518 
10519 // Load unsigned short / char reversed byte order
10520 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10521   match(Set dst (ReverseBytesUS (LoadUS src)));
10522 
10523   ins_cost(MEMORY_REF_COST);
10524   size(4);
10525   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10526 
10527   ins_encode %{
10528     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10529   %}
10530   ins_pipe(iload_mem);
10531 %}
10532 
10533 // Load short reversed byte order
10534 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10535   match(Set dst (ReverseBytesS (LoadS src)));
10536 
10537   ins_cost(MEMORY_REF_COST);
10538   size(4);
10539   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10540 
10541   ins_encode %{
10542     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10543   %}
10544   ins_pipe(iload_mem);
10545 %}
10546 
10547 // Store Integer reversed byte order
10548 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10549   match(Set dst (StoreI dst (ReverseBytesI src)));
10550 
10551   ins_cost(MEMORY_REF_COST);
10552   size(4);
10553   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10554 
10555   ins_encode %{
10556     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10557   %}
10558   ins_pipe(istore_mem_reg);
10559 %}
10560 
10561 // Store Long reversed byte order
10562 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10563   match(Set dst (StoreL dst (ReverseBytesL src)));
10564 
10565   ins_cost(MEMORY_REF_COST);
10566   size(4);
10567   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10568 
10569   ins_encode %{
10570     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10571   %}
10572   ins_pipe(istore_mem_reg);
10573 %}
10574 
10575 // Store unsighed short/char reversed byte order
10576 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10577   match(Set dst (StoreC dst (ReverseBytesUS src)));
10578 
10579   ins_cost(MEMORY_REF_COST);
10580   size(4);
10581   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10582 
10583   ins_encode %{
10584     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10585   %}
10586   ins_pipe(istore_mem_reg);
10587 %}
10588 
10589 // Store short reversed byte order
10590 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10591   match(Set dst (StoreC dst (ReverseBytesS src)));
10592 
10593   ins_cost(MEMORY_REF_COST);
10594   size(4);
10595   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10596 
10597   ins_encode %{
10598     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10599   %}
10600   ins_pipe(istore_mem_reg);
10601 %}
10602 
10603 // ====================VECTOR INSTRUCTIONS=====================================
10604 
10605 // Load Aligned Packed values into a Double Register
10606 instruct loadV8(regD dst, memory mem) %{
10607   predicate(n->as_LoadVector()->memory_size() == 8);
10608   match(Set dst (LoadVector mem));
10609   ins_cost(MEMORY_REF_COST);
10610   size(4);
10611   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10612   ins_encode %{
10613     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10614   %}
10615   ins_pipe(floadD_mem);
10616 %}
10617 
10618 // Store Vector in Double register to memory
10619 instruct storeV8(memory mem, regD src) %{
10620   predicate(n->as_StoreVector()->memory_size() == 8);
10621   match(Set mem (StoreVector mem src));
10622   ins_cost(MEMORY_REF_COST);
10623   size(4);
10624   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10625   ins_encode %{
10626     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10627   %}
10628   ins_pipe(fstoreD_mem_reg);
10629 %}
10630 
10631 // Store Zero into vector in memory
10632 instruct storeV8B_zero(memory mem, immI0 zero) %{
10633   predicate(n->as_StoreVector()->memory_size() == 8);
10634   match(Set mem (StoreVector mem (ReplicateB zero)));
10635   ins_cost(MEMORY_REF_COST);
10636   size(4);
10637   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10638   ins_encode %{
10639     __ stx(G0, $mem$$Address);
10640   %}
10641   ins_pipe(fstoreD_mem_zero);
10642 %}
10643 
10644 instruct storeV4S_zero(memory mem, immI0 zero) %{
10645   predicate(n->as_StoreVector()->memory_size() == 8);
10646   match(Set mem (StoreVector mem (ReplicateS zero)));
10647   ins_cost(MEMORY_REF_COST);
10648   size(4);
10649   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10650   ins_encode %{
10651     __ stx(G0, $mem$$Address);
10652   %}
10653   ins_pipe(fstoreD_mem_zero);
10654 %}
10655 
10656 instruct storeV2I_zero(memory mem, immI0 zero) %{
10657   predicate(n->as_StoreVector()->memory_size() == 8);
10658   match(Set mem (StoreVector mem (ReplicateI zero)));
10659   ins_cost(MEMORY_REF_COST);
10660   size(4);
10661   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10662   ins_encode %{
10663     __ stx(G0, $mem$$Address);
10664   %}
10665   ins_pipe(fstoreD_mem_zero);
10666 %}
10667 
10668 instruct storeV2F_zero(memory mem, immF0 zero) %{
10669   predicate(n->as_StoreVector()->memory_size() == 8);
10670   match(Set mem (StoreVector mem (ReplicateF zero)));
10671   ins_cost(MEMORY_REF_COST);
10672   size(4);
10673   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10674   ins_encode %{
10675     __ stx(G0, $mem$$Address);
10676   %}
10677   ins_pipe(fstoreD_mem_zero);
10678 %}
10679 
10680 // Replicate scalar to packed byte values into Double register
10681 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10682   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10683   match(Set dst (ReplicateB src));
10684   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10685   format %{ "SLLX  $src,56,$tmp\n\t"
10686             "SRLX  $tmp, 8,$tmp2\n\t"
10687             "OR    $tmp,$tmp2,$tmp\n\t"
10688             "SRLX  $tmp,16,$tmp2\n\t"
10689             "OR    $tmp,$tmp2,$tmp\n\t"
10690             "SRLX  $tmp,32,$tmp2\n\t"
10691             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10692             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10693   ins_encode %{
10694     Register Rsrc = $src$$Register;
10695     Register Rtmp = $tmp$$Register;
10696     Register Rtmp2 = $tmp2$$Register;
10697     __ sllx(Rsrc,    56, Rtmp);
10698     __ srlx(Rtmp,     8, Rtmp2);
10699     __ or3 (Rtmp, Rtmp2, Rtmp);
10700     __ srlx(Rtmp,    16, Rtmp2);
10701     __ or3 (Rtmp, Rtmp2, Rtmp);
10702     __ srlx(Rtmp,    32, Rtmp2);
10703     __ or3 (Rtmp, Rtmp2, Rtmp);
10704     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10705   %}
10706   ins_pipe(ialu_reg);
10707 %}
10708 
10709 // Replicate scalar to packed byte values into Double stack
10710 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10711   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10712   match(Set dst (ReplicateB src));
10713   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10714   format %{ "SLLX  $src,56,$tmp\n\t"
10715             "SRLX  $tmp, 8,$tmp2\n\t"
10716             "OR    $tmp,$tmp2,$tmp\n\t"
10717             "SRLX  $tmp,16,$tmp2\n\t"
10718             "OR    $tmp,$tmp2,$tmp\n\t"
10719             "SRLX  $tmp,32,$tmp2\n\t"
10720             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10721             "STX   $tmp,$dst\t! regL to stkD" %}
10722   ins_encode %{
10723     Register Rsrc = $src$$Register;
10724     Register Rtmp = $tmp$$Register;
10725     Register Rtmp2 = $tmp2$$Register;
10726     __ sllx(Rsrc,    56, Rtmp);
10727     __ srlx(Rtmp,     8, Rtmp2);
10728     __ or3 (Rtmp, Rtmp2, Rtmp);
10729     __ srlx(Rtmp,    16, Rtmp2);
10730     __ or3 (Rtmp, Rtmp2, Rtmp);
10731     __ srlx(Rtmp,    32, Rtmp2);
10732     __ or3 (Rtmp, Rtmp2, Rtmp);
10733     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10734     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10735   %}
10736   ins_pipe(ialu_reg);
10737 %}
10738 
10739 // Replicate scalar constant to packed byte values in Double register
10740 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10741   predicate(n->as_Vector()->length() == 8);
10742   match(Set dst (ReplicateB con));
10743   effect(KILL tmp);
10744   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10745   ins_encode %{
10746     // XXX This is a quick fix for 6833573.
10747     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10748     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10749     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10750   %}
10751   ins_pipe(loadConFD);
10752 %}
10753 
10754 // Replicate scalar to packed char/short values into Double register
10755 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10756   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10757   match(Set dst (ReplicateS src));
10758   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10759   format %{ "SLLX  $src,48,$tmp\n\t"
10760             "SRLX  $tmp,16,$tmp2\n\t"
10761             "OR    $tmp,$tmp2,$tmp\n\t"
10762             "SRLX  $tmp,32,$tmp2\n\t"
10763             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10764             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10765   ins_encode %{
10766     Register Rsrc = $src$$Register;
10767     Register Rtmp = $tmp$$Register;
10768     Register Rtmp2 = $tmp2$$Register;
10769     __ sllx(Rsrc,    48, Rtmp);
10770     __ srlx(Rtmp,    16, Rtmp2);
10771     __ or3 (Rtmp, Rtmp2, Rtmp);
10772     __ srlx(Rtmp,    32, Rtmp2);
10773     __ or3 (Rtmp, Rtmp2, Rtmp);
10774     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10775   %}
10776   ins_pipe(ialu_reg);
10777 %}
10778 
10779 // Replicate scalar to packed char/short values into Double stack
10780 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10781   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10782   match(Set dst (ReplicateS src));
10783   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10784   format %{ "SLLX  $src,48,$tmp\n\t"
10785             "SRLX  $tmp,16,$tmp2\n\t"
10786             "OR    $tmp,$tmp2,$tmp\n\t"
10787             "SRLX  $tmp,32,$tmp2\n\t"
10788             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10789             "STX   $tmp,$dst\t! regL to stkD" %}
10790   ins_encode %{
10791     Register Rsrc = $src$$Register;
10792     Register Rtmp = $tmp$$Register;
10793     Register Rtmp2 = $tmp2$$Register;
10794     __ sllx(Rsrc,    48, Rtmp);
10795     __ srlx(Rtmp,    16, Rtmp2);
10796     __ or3 (Rtmp, Rtmp2, Rtmp);
10797     __ srlx(Rtmp,    32, Rtmp2);
10798     __ or3 (Rtmp, Rtmp2, Rtmp);
10799     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10800     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10801   %}
10802   ins_pipe(ialu_reg);
10803 %}
10804 
10805 // Replicate scalar constant to packed char/short values in Double register
10806 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10807   predicate(n->as_Vector()->length() == 4);
10808   match(Set dst (ReplicateS con));
10809   effect(KILL tmp);
10810   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10811   ins_encode %{
10812     // XXX This is a quick fix for 6833573.
10813     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10814     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10815     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10816   %}
10817   ins_pipe(loadConFD);
10818 %}
10819 
10820 // Replicate scalar to packed int values into Double register
10821 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10822   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10823   match(Set dst (ReplicateI src));
10824   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10825   format %{ "SLLX  $src,32,$tmp\n\t"
10826             "SRLX  $tmp,32,$tmp2\n\t"
10827             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10828             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10829   ins_encode %{
10830     Register Rsrc = $src$$Register;
10831     Register Rtmp = $tmp$$Register;
10832     Register Rtmp2 = $tmp2$$Register;
10833     __ sllx(Rsrc,    32, Rtmp);
10834     __ srlx(Rtmp,    32, Rtmp2);
10835     __ or3 (Rtmp, Rtmp2, Rtmp);
10836     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10837   %}
10838   ins_pipe(ialu_reg);
10839 %}
10840 
10841 // Replicate scalar to packed int values into Double stack
10842 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10843   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10844   match(Set dst (ReplicateI src));
10845   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10846   format %{ "SLLX  $src,32,$tmp\n\t"
10847             "SRLX  $tmp,32,$tmp2\n\t"
10848             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10849             "STX   $tmp,$dst\t! regL to stkD" %}
10850   ins_encode %{
10851     Register Rsrc = $src$$Register;
10852     Register Rtmp = $tmp$$Register;
10853     Register Rtmp2 = $tmp2$$Register;
10854     __ sllx(Rsrc,    32, Rtmp);
10855     __ srlx(Rtmp,    32, Rtmp2);
10856     __ or3 (Rtmp, Rtmp2, Rtmp);
10857     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10858     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10859   %}
10860   ins_pipe(ialu_reg);
10861 %}
10862 
10863 // Replicate scalar zero constant to packed int values in Double register
10864 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10865   predicate(n->as_Vector()->length() == 2);
10866   match(Set dst (ReplicateI con));
10867   effect(KILL tmp);
10868   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10869   ins_encode %{
10870     // XXX This is a quick fix for 6833573.
10871     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10872     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10873     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10874   %}
10875   ins_pipe(loadConFD);
10876 %}
10877 
10878 // Replicate scalar to packed float values into Double stack
10879 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10880   predicate(n->as_Vector()->length() == 2);
10881   match(Set dst (ReplicateF src));
10882   ins_cost(MEMORY_REF_COST*2);
10883   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10884             "STF    $src,$dst.lo" %}
10885   opcode(Assembler::stf_op3);
10886   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10887   ins_pipe(fstoreF_stk_reg);
10888 %}
10889 
10890 // Replicate scalar zero constant to packed float values in Double register
10891 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10892   predicate(n->as_Vector()->length() == 2);
10893   match(Set dst (ReplicateF con));
10894   effect(KILL tmp);
10895   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10896   ins_encode %{
10897     // XXX This is a quick fix for 6833573.
10898     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10899     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10900     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10901   %}
10902   ins_pipe(loadConFD);
10903 %}
10904 
10905 //----------PEEPHOLE RULES-----------------------------------------------------
10906 // These must follow all instruction definitions as they use the names
10907 // defined in the instructions definitions.
10908 //
10909 // peepmatch ( root_instr_name [preceding_instruction]* );
10910 //
10911 // peepconstraint %{
10912 // (instruction_number.operand_name relational_op instruction_number.operand_name
10913 //  [, ...] );
10914 // // instruction numbers are zero-based using left to right order in peepmatch
10915 //
10916 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10917 // // provide an instruction_number.operand_name for each operand that appears
10918 // // in the replacement instruction's match rule
10919 //
10920 // ---------VM FLAGS---------------------------------------------------------
10921 //
10922 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10923 //
10924 // Each peephole rule is given an identifying number starting with zero and
10925 // increasing by one in the order seen by the parser.  An individual peephole
10926 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10927 // on the command-line.
10928 //
10929 // ---------CURRENT LIMITATIONS----------------------------------------------
10930 //
10931 // Only match adjacent instructions in same basic block
10932 // Only equality constraints
10933 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10934 // Only one replacement instruction
10935 //
10936 // ---------EXAMPLE----------------------------------------------------------
10937 //
10938 // // pertinent parts of existing instructions in architecture description
10939 // instruct movI(eRegI dst, eRegI src) %{
10940 //   match(Set dst (CopyI src));
10941 // %}
10942 //
10943 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10944 //   match(Set dst (AddI dst src));
10945 //   effect(KILL cr);
10946 // %}
10947 //
10948 // // Change (inc mov) to lea
10949 // peephole %{
10950 //   // increment preceeded by register-register move
10951 //   peepmatch ( incI_eReg movI );
10952 //   // require that the destination register of the increment
10953 //   // match the destination register of the move
10954 //   peepconstraint ( 0.dst == 1.dst );
10955 //   // construct a replacement instruction that sets
10956 //   // the destination to ( move's source register + one )
10957 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10958 // %}
10959 //
10960 
10961 // // Change load of spilled value to only a spill
10962 // instruct storeI(memory mem, eRegI src) %{
10963 //   match(Set mem (StoreI mem src));
10964 // %}
10965 //
10966 // instruct loadI(eRegI dst, memory mem) %{
10967 //   match(Set dst (LoadI mem));
10968 // %}
10969 //
10970 // peephole %{
10971 //   peepmatch ( loadI storeI );
10972 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10973 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10974 // %}
10975 
10976 //----------SMARTSPILL RULES---------------------------------------------------
10977 // These must follow all instruction definitions as they use the names
10978 // defined in the instructions definitions.
10979 //
10980 // SPARC will probably not have any of these rules due to RISC instruction set.
10981 
10982 //----------PIPELINE-----------------------------------------------------------
10983 // Rules which define the behavior of the target architectures pipeline.