1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && (_attributes != NULL) && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x59: // mulpd
 776     case 0x6E: // movd
 777     case 0x7E: // movd
 778     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 779       debug_only(has_disp32 = true);
 780       break;
 781 
 782     case 0xAD: // shrd r, a, %cl
 783     case 0xAF: // imul r, a
 784     case 0xBE: // movsbl r, a (movsxb)
 785     case 0xBF: // movswl r, a (movsxw)
 786     case 0xB6: // movzbl r, a (movzxb)
 787     case 0xB7: // movzwl r, a (movzxw)
 788     case REP16(0x40): // cmovl cc, r, a
 789     case 0xB0: // cmpxchgb
 790     case 0xB1: // cmpxchg
 791     case 0xC1: // xaddl
 792     case 0xC7: // cmpxchg8
 793     case REP16(0x90): // setcc a
 794       debug_only(has_disp32 = true);
 795       // fall out of the switch to decode the address
 796       break;
 797 
 798     case 0xC4: // pinsrw r, a, #8
 799       debug_only(has_disp32 = true);
 800     case 0xC5: // pextrw r, r, #8
 801       tail_size = 1;  // the imm8
 802       break;
 803 
 804     case 0xAC: // shrd r, a, #8
 805       debug_only(has_disp32 = true);
 806       tail_size = 1;  // the imm8
 807       break;
 808 
 809     case REP16(0x80): // jcc rdisp32
 810       if (which == end_pc_operand)  return ip + 4;
 811       assert(which == call32_operand, "jcc has no disp32 or imm");
 812       return ip;
 813     default:
 814       ShouldNotReachHere();
 815     }
 816     break;
 817 
 818   case 0x81: // addl a, #32; addl r, #32
 819     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 820     // on 32bit in the case of cmpl, the imm might be an oop
 821     tail_size = 4;
 822     debug_only(has_disp32 = true); // has both kinds of operands!
 823     break;
 824 
 825   case 0x83: // addl a, #8; addl r, #8
 826     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 827     debug_only(has_disp32 = true); // has both kinds of operands!
 828     tail_size = 1;
 829     break;
 830 
 831   case 0x9B:
 832     switch (0xFF & *ip++) {
 833     case 0xD9: // fnstcw a
 834       debug_only(has_disp32 = true);
 835       break;
 836     default:
 837       ShouldNotReachHere();
 838     }
 839     break;
 840 
 841   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 842   case REP4(0x10): // adc...
 843   case REP4(0x20): // and...
 844   case REP4(0x30): // xor...
 845   case REP4(0x08): // or...
 846   case REP4(0x18): // sbb...
 847   case REP4(0x28): // sub...
 848   case 0xF7: // mull a
 849   case 0x8D: // lea r, a
 850   case 0x87: // xchg r, a
 851   case REP4(0x38): // cmp...
 852   case 0x85: // test r, a
 853     debug_only(has_disp32 = true); // has both kinds of operands!
 854     break;
 855 
 856   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 857   case 0xC6: // movb a, #8
 858   case 0x80: // cmpb a, #8
 859   case 0x6B: // imul r, a, #8
 860     debug_only(has_disp32 = true); // has both kinds of operands!
 861     tail_size = 1; // the imm8
 862     break;
 863 
 864   case 0xC4: // VEX_3bytes
 865   case 0xC5: // VEX_2bytes
 866     assert((UseAVX > 0), "shouldn't have VEX prefix");
 867     assert(ip == inst+1, "no prefixes allowed");
 868     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 869     // but they have prefix 0x0F and processed when 0x0F processed above.
 870     //
 871     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 872     // instructions (these instructions are not supported in 64-bit mode).
 873     // To distinguish them bits [7:6] are set in the VEX second byte since
 874     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 875     // those VEX bits REX and vvvv bits are inverted.
 876     //
 877     // Fortunately C2 doesn't generate these instructions so we don't need
 878     // to check for them in product version.
 879 
 880     // Check second byte
 881     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 882 
 883     int vex_opcode;
 884     // First byte
 885     if ((0xFF & *inst) == VEX_3bytes) {
 886       vex_opcode = VEX_OPCODE_MASK & *ip;
 887       ip++; // third byte
 888       is_64bit = ((VEX_W & *ip) == VEX_W);
 889     } else {
 890       vex_opcode = VEX_OPCODE_0F;
 891     }
 892     ip++; // opcode
 893     // To find the end of instruction (which == end_pc_operand).
 894     switch (vex_opcode) {
 895       case VEX_OPCODE_0F:
 896         switch (0xFF & *ip) {
 897         case 0x70: // pshufd r, r/a, #8
 898         case 0x71: // ps[rl|ra|ll]w r, #8
 899         case 0x72: // ps[rl|ra|ll]d r, #8
 900         case 0x73: // ps[rl|ra|ll]q r, #8
 901         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 902         case 0xC4: // pinsrw r, r, r/a, #8
 903         case 0xC5: // pextrw r/a, r, #8
 904         case 0xC6: // shufp[s|d] r, r, r/a, #8
 905           tail_size = 1;  // the imm8
 906           break;
 907         }
 908         break;
 909       case VEX_OPCODE_0F_3A:
 910         tail_size = 1;
 911         break;
 912     }
 913     ip++; // skip opcode
 914     debug_only(has_disp32 = true); // has both kinds of operands!
 915     break;
 916 
 917   case 0x62: // EVEX_4bytes
 918     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 919     assert(ip == inst+1, "no prefixes allowed");
 920     // no EVEX collisions, all instructions that have 0x62 opcodes
 921     // have EVEX versions and are subopcodes of 0x66
 922     ip++; // skip P0 and exmaine W in P1
 923     is_64bit = ((VEX_W & *ip) == VEX_W);
 924     ip++; // move to P2
 925     ip++; // skip P2, move to opcode
 926     // To find the end of instruction (which == end_pc_operand).
 927     switch (0xFF & *ip) {
 928     case 0x61: // pcmpestri r, r/a, #8
 929     case 0x70: // pshufd r, r/a, #8
 930     case 0x73: // psrldq r, #8
 931       tail_size = 1;  // the imm8
 932       break;
 933     default:
 934       break;
 935     }
 936     ip++; // skip opcode
 937     debug_only(has_disp32 = true); // has both kinds of operands!
 938     break;
 939 
 940   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 941   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 942   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 943   case 0xDD: // fld_d a; fst_d a; fstp_d a
 944   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 945   case 0xDF: // fild_d a; fistp_d a
 946   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 947   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 948   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 949     debug_only(has_disp32 = true);
 950     break;
 951 
 952   case 0xE8: // call rdisp32
 953   case 0xE9: // jmp  rdisp32
 954     if (which == end_pc_operand)  return ip + 4;
 955     assert(which == call32_operand, "call has no disp32 or imm");
 956     return ip;
 957 
 958   case 0xF0:                    // Lock
 959     assert(os::is_MP(), "only on MP");
 960     goto again_after_prefix;
 961 
 962   case 0xF3:                    // For SSE
 963   case 0xF2:                    // For SSE2
 964     switch (0xFF & *ip++) {
 965     case REX:
 966     case REX_B:
 967     case REX_X:
 968     case REX_XB:
 969     case REX_R:
 970     case REX_RB:
 971     case REX_RX:
 972     case REX_RXB:
 973     case REX_W:
 974     case REX_WB:
 975     case REX_WX:
 976     case REX_WXB:
 977     case REX_WR:
 978     case REX_WRB:
 979     case REX_WRX:
 980     case REX_WRXB:
 981       NOT_LP64(assert(false, "found 64bit prefix"));
 982       ip++;
 983     default:
 984       ip++;
 985     }
 986     debug_only(has_disp32 = true); // has both kinds of operands!
 987     break;
 988 
 989   default:
 990     ShouldNotReachHere();
 991 
 992 #undef REP8
 993 #undef REP16
 994   }
 995 
 996   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 997 #ifdef _LP64
 998   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 999 #else
1000   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1001   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1002 #endif // LP64
1003   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1004 
1005   // parse the output of emit_operand
1006   int op2 = 0xFF & *ip++;
1007   int base = op2 & 0x07;
1008   int op3 = -1;
1009   const int b100 = 4;
1010   const int b101 = 5;
1011   if (base == b100 && (op2 >> 6) != 3) {
1012     op3 = 0xFF & *ip++;
1013     base = op3 & 0x07;   // refetch the base
1014   }
1015   // now ip points at the disp (if any)
1016 
1017   switch (op2 >> 6) {
1018   case 0:
1019     // [00 reg  100][ss index base]
1020     // [00 reg  100][00   100  esp]
1021     // [00 reg base]
1022     // [00 reg  100][ss index  101][disp32]
1023     // [00 reg  101]               [disp32]
1024 
1025     if (base == b101) {
1026       if (which == disp32_operand)
1027         return ip;              // caller wants the disp32
1028       ip += 4;                  // skip the disp32
1029     }
1030     break;
1031 
1032   case 1:
1033     // [01 reg  100][ss index base][disp8]
1034     // [01 reg  100][00   100  esp][disp8]
1035     // [01 reg base]               [disp8]
1036     ip += 1;                    // skip the disp8
1037     break;
1038 
1039   case 2:
1040     // [10 reg  100][ss index base][disp32]
1041     // [10 reg  100][00   100  esp][disp32]
1042     // [10 reg base]               [disp32]
1043     if (which == disp32_operand)
1044       return ip;                // caller wants the disp32
1045     ip += 4;                    // skip the disp32
1046     break;
1047 
1048   case 3:
1049     // [11 reg base]  (not a memory addressing mode)
1050     break;
1051   }
1052 
1053   if (which == end_pc_operand) {
1054     return ip + tail_size;
1055   }
1056 
1057 #ifdef _LP64
1058   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1059 #else
1060   assert(which == imm_operand, "instruction has only an imm field");
1061 #endif // LP64
1062   return ip;
1063 }
1064 
1065 address Assembler::locate_next_instruction(address inst) {
1066   // Secretly share code with locate_operand:
1067   return locate_operand(inst, end_pc_operand);
1068 }
1069 
1070 
1071 #ifdef ASSERT
1072 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1073   address inst = inst_mark();
1074   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1075   address opnd;
1076 
1077   Relocation* r = rspec.reloc();
1078   if (r->type() == relocInfo::none) {
1079     return;
1080   } else if (r->is_call() || format == call32_operand) {
1081     // assert(format == imm32_operand, "cannot specify a nonzero format");
1082     opnd = locate_operand(inst, call32_operand);
1083   } else if (r->is_data()) {
1084     assert(format == imm_operand || format == disp32_operand
1085            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1086     opnd = locate_operand(inst, (WhichOperand)format);
1087   } else {
1088     assert(format == imm_operand, "cannot specify a format");
1089     return;
1090   }
1091   assert(opnd == pc(), "must put operand where relocs can find it");
1092 }
1093 #endif // ASSERT
1094 
1095 void Assembler::emit_operand32(Register reg, Address adr) {
1096   assert(reg->encoding() < 8, "no extended registers");
1097   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1098   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1099                adr._rspec);
1100 }
1101 
1102 void Assembler::emit_operand(Register reg, Address adr,
1103                              int rip_relative_correction) {
1104   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1105                adr._rspec,
1106                rip_relative_correction);
1107 }
1108 
1109 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1110   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1111                adr._rspec);
1112 }
1113 
1114 // MMX operations
1115 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1116   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1117   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1118 }
1119 
1120 // work around gcc (3.2.1-7a) bug
1121 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1122   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1123   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1124 }
1125 
1126 
1127 void Assembler::emit_farith(int b1, int b2, int i) {
1128   assert(isByte(b1) && isByte(b2), "wrong opcode");
1129   assert(0 <= i &&  i < 8, "illegal stack offset");
1130   emit_int8(b1);
1131   emit_int8(b2 + i);
1132 }
1133 
1134 
1135 // Now the Assembler instructions (identical for 32/64 bits)
1136 
1137 void Assembler::adcl(Address dst, int32_t imm32) {
1138   InstructionMark im(this);
1139   prefix(dst);
1140   emit_arith_operand(0x81, rdx, dst, imm32);
1141 }
1142 
1143 void Assembler::adcl(Address dst, Register src) {
1144   InstructionMark im(this);
1145   prefix(dst, src);
1146   emit_int8(0x11);
1147   emit_operand(src, dst);
1148 }
1149 
1150 void Assembler::adcl(Register dst, int32_t imm32) {
1151   prefix(dst);
1152   emit_arith(0x81, 0xD0, dst, imm32);
1153 }
1154 
1155 void Assembler::adcl(Register dst, Address src) {
1156   InstructionMark im(this);
1157   prefix(src, dst);
1158   emit_int8(0x13);
1159   emit_operand(dst, src);
1160 }
1161 
1162 void Assembler::adcl(Register dst, Register src) {
1163   (void) prefix_and_encode(dst->encoding(), src->encoding());
1164   emit_arith(0x13, 0xC0, dst, src);
1165 }
1166 
1167 void Assembler::addl(Address dst, int32_t imm32) {
1168   InstructionMark im(this);
1169   prefix(dst);
1170   emit_arith_operand(0x81, rax, dst, imm32);
1171 }
1172 
1173 void Assembler::addl(Address dst, Register src) {
1174   InstructionMark im(this);
1175   prefix(dst, src);
1176   emit_int8(0x01);
1177   emit_operand(src, dst);
1178 }
1179 
1180 void Assembler::addl(Register dst, int32_t imm32) {
1181   prefix(dst);
1182   emit_arith(0x81, 0xC0, dst, imm32);
1183 }
1184 
1185 void Assembler::addl(Register dst, Address src) {
1186   InstructionMark im(this);
1187   prefix(src, dst);
1188   emit_int8(0x03);
1189   emit_operand(dst, src);
1190 }
1191 
1192 void Assembler::addl(Register dst, Register src) {
1193   (void) prefix_and_encode(dst->encoding(), src->encoding());
1194   emit_arith(0x03, 0xC0, dst, src);
1195 }
1196 
1197 void Assembler::addr_nop_4() {
1198   assert(UseAddressNop, "no CPU support");
1199   // 4 bytes: NOP DWORD PTR [EAX+0]
1200   emit_int8(0x0F);
1201   emit_int8(0x1F);
1202   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1203   emit_int8(0);    // 8-bits offset (1 byte)
1204 }
1205 
1206 void Assembler::addr_nop_5() {
1207   assert(UseAddressNop, "no CPU support");
1208   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1209   emit_int8(0x0F);
1210   emit_int8(0x1F);
1211   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1212   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1213   emit_int8(0);    // 8-bits offset (1 byte)
1214 }
1215 
1216 void Assembler::addr_nop_7() {
1217   assert(UseAddressNop, "no CPU support");
1218   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1219   emit_int8(0x0F);
1220   emit_int8(0x1F);
1221   emit_int8((unsigned char)0x80);
1222                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1223   emit_int32(0);   // 32-bits offset (4 bytes)
1224 }
1225 
1226 void Assembler::addr_nop_8() {
1227   assert(UseAddressNop, "no CPU support");
1228   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1229   emit_int8(0x0F);
1230   emit_int8(0x1F);
1231   emit_int8((unsigned char)0x84);
1232                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1233   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1234   emit_int32(0);   // 32-bits offset (4 bytes)
1235 }
1236 
1237 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1238   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1239   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1240   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1241   emit_int8(0x58);
1242   emit_int8((unsigned char)(0xC0 | encode));
1243 }
1244 
1245 void Assembler::addsd(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1247   InstructionMark im(this);
1248   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1249   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1250   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1251   emit_int8(0x58);
1252   emit_operand(dst, src);
1253 }
1254 
1255 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1256   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1257   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1258   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1259   emit_int8(0x58);
1260   emit_int8((unsigned char)(0xC0 | encode));
1261 }
1262 
1263 void Assembler::addss(XMMRegister dst, Address src) {
1264   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1265   InstructionMark im(this);
1266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1267   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1268   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1269   emit_int8(0x58);
1270   emit_operand(dst, src);
1271 }
1272 
1273 void Assembler::aesdec(XMMRegister dst, Address src) {
1274   assert(VM_Version::supports_aes(), "");
1275   InstructionMark im(this);
1276   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1277   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1278   emit_int8((unsigned char)0xDE);
1279   emit_operand(dst, src);
1280 }
1281 
1282 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1283   assert(VM_Version::supports_aes(), "");
1284   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1285   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1286   emit_int8((unsigned char)0xDE);
1287   emit_int8(0xC0 | encode);
1288 }
1289 
1290 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1291   assert(VM_Version::supports_aes(), "");
1292   InstructionMark im(this);
1293   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1294   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1295   emit_int8((unsigned char)0xDF);
1296   emit_operand(dst, src);
1297 }
1298 
1299 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1300   assert(VM_Version::supports_aes(), "");
1301   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1302   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1303   emit_int8((unsigned char)0xDF);
1304   emit_int8((unsigned char)(0xC0 | encode));
1305 }
1306 
1307 void Assembler::aesenc(XMMRegister dst, Address src) {
1308   assert(VM_Version::supports_aes(), "");
1309   InstructionMark im(this);
1310   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1311   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1312   emit_int8((unsigned char)0xDC);
1313   emit_operand(dst, src);
1314 }
1315 
1316 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1317   assert(VM_Version::supports_aes(), "");
1318   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1319   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1320   emit_int8((unsigned char)0xDC);
1321   emit_int8(0xC0 | encode);
1322 }
1323 
1324 void Assembler::aesenclast(XMMRegister dst, Address src) {
1325   assert(VM_Version::supports_aes(), "");
1326   InstructionMark im(this);
1327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1328   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1329   emit_int8((unsigned char)0xDD);
1330   emit_operand(dst, src);
1331 }
1332 
1333 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1334   assert(VM_Version::supports_aes(), "");
1335   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1336   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1337   emit_int8((unsigned char)0xDD);
1338   emit_int8((unsigned char)(0xC0 | encode));
1339 }
1340 
1341 void Assembler::andl(Address dst, int32_t imm32) {
1342   InstructionMark im(this);
1343   prefix(dst);
1344   emit_int8((unsigned char)0x81);
1345   emit_operand(rsp, dst, 4);
1346   emit_int32(imm32);
1347 }
1348 
1349 void Assembler::andl(Register dst, int32_t imm32) {
1350   prefix(dst);
1351   emit_arith(0x81, 0xE0, dst, imm32);
1352 }
1353 
1354 void Assembler::andl(Register dst, Address src) {
1355   InstructionMark im(this);
1356   prefix(src, dst);
1357   emit_int8(0x23);
1358   emit_operand(dst, src);
1359 }
1360 
1361 void Assembler::andl(Register dst, Register src) {
1362   (void) prefix_and_encode(dst->encoding(), src->encoding());
1363   emit_arith(0x23, 0xC0, dst, src);
1364 }
1365 
1366 void Assembler::andnl(Register dst, Register src1, Register src2) {
1367   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1368   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1369   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1370   emit_int8((unsigned char)0xF2);
1371   emit_int8((unsigned char)(0xC0 | encode));
1372 }
1373 
1374 void Assembler::andnl(Register dst, Register src1, Address src2) {
1375   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1376   InstructionMark im(this);
1377   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1378   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1379   emit_int8((unsigned char)0xF2);
1380   emit_operand(dst, src2);
1381 }
1382 
1383 void Assembler::bsfl(Register dst, Register src) {
1384   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1385   emit_int8(0x0F);
1386   emit_int8((unsigned char)0xBC);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::bsrl(Register dst, Register src) {
1391   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1392   emit_int8(0x0F);
1393   emit_int8((unsigned char)0xBD);
1394   emit_int8((unsigned char)(0xC0 | encode));
1395 }
1396 
1397 void Assembler::bswapl(Register reg) { // bswap
1398   int encode = prefix_and_encode(reg->encoding());
1399   emit_int8(0x0F);
1400   emit_int8((unsigned char)(0xC8 | encode));
1401 }
1402 
1403 void Assembler::blsil(Register dst, Register src) {
1404   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1405   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1406   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1407   emit_int8((unsigned char)0xF3);
1408   emit_int8((unsigned char)(0xC0 | encode));
1409 }
1410 
1411 void Assembler::blsil(Register dst, Address src) {
1412   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1413   InstructionMark im(this);
1414   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1415   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1416   emit_int8((unsigned char)0xF3);
1417   emit_operand(rbx, src);
1418 }
1419 
1420 void Assembler::blsmskl(Register dst, Register src) {
1421   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1422   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1423   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1424   emit_int8((unsigned char)0xF3);
1425   emit_int8((unsigned char)(0xC0 | encode));
1426 }
1427 
1428 void Assembler::blsmskl(Register dst, Address src) {
1429   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1430   InstructionMark im(this);
1431   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1432   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1433   emit_int8((unsigned char)0xF3);
1434   emit_operand(rdx, src);
1435 }
1436 
1437 void Assembler::blsrl(Register dst, Register src) {
1438   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1439   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1440   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1441   emit_int8((unsigned char)0xF3);
1442   emit_int8((unsigned char)(0xC0 | encode));
1443 }
1444 
1445 void Assembler::blsrl(Register dst, Address src) {
1446   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1447   InstructionMark im(this);
1448   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1449   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1450   emit_int8((unsigned char)0xF3);
1451   emit_operand(rcx, src);
1452 }
1453 
1454 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1455   // suspect disp32 is always good
1456   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1457 
1458   if (L.is_bound()) {
1459     const int long_size = 5;
1460     int offs = (int)( target(L) - pc() );
1461     assert(offs <= 0, "assembler error");
1462     InstructionMark im(this);
1463     // 1110 1000 #32-bit disp
1464     emit_int8((unsigned char)0xE8);
1465     emit_data(offs - long_size, rtype, operand);
1466   } else {
1467     InstructionMark im(this);
1468     // 1110 1000 #32-bit disp
1469     L.add_patch_at(code(), locator());
1470 
1471     emit_int8((unsigned char)0xE8);
1472     emit_data(int(0), rtype, operand);
1473   }
1474 }
1475 
1476 void Assembler::call(Register dst) {
1477   int encode = prefix_and_encode(dst->encoding());
1478   emit_int8((unsigned char)0xFF);
1479   emit_int8((unsigned char)(0xD0 | encode));
1480 }
1481 
1482 
1483 void Assembler::call(Address adr) {
1484   InstructionMark im(this);
1485   prefix(adr);
1486   emit_int8((unsigned char)0xFF);
1487   emit_operand(rdx, adr);
1488 }
1489 
1490 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1491   assert(entry != NULL, "call most probably wrong");
1492   InstructionMark im(this);
1493   emit_int8((unsigned char)0xE8);
1494   intptr_t disp = entry - (pc() + sizeof(int32_t));
1495   assert(is_simm32(disp), "must be 32bit offset (call2)");
1496   // Technically, should use call32_operand, but this format is
1497   // implied by the fact that we're emitting a call instruction.
1498 
1499   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1500   emit_data((int) disp, rspec, operand);
1501 }
1502 
1503 void Assembler::cdql() {
1504   emit_int8((unsigned char)0x99);
1505 }
1506 
1507 void Assembler::cld() {
1508   emit_int8((unsigned char)0xFC);
1509 }
1510 
1511 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1512   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1513   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1514   emit_int8(0x0F);
1515   emit_int8(0x40 | cc);
1516   emit_int8((unsigned char)(0xC0 | encode));
1517 }
1518 
1519 
1520 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1521   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1522   prefix(src, dst);
1523   emit_int8(0x0F);
1524   emit_int8(0x40 | cc);
1525   emit_operand(dst, src);
1526 }
1527 
1528 void Assembler::cmpb(Address dst, int imm8) {
1529   InstructionMark im(this);
1530   prefix(dst);
1531   emit_int8((unsigned char)0x80);
1532   emit_operand(rdi, dst, 1);
1533   emit_int8(imm8);
1534 }
1535 
1536 void Assembler::cmpl(Address dst, int32_t imm32) {
1537   InstructionMark im(this);
1538   prefix(dst);
1539   emit_int8((unsigned char)0x81);
1540   emit_operand(rdi, dst, 4);
1541   emit_int32(imm32);
1542 }
1543 
1544 void Assembler::cmpl(Register dst, int32_t imm32) {
1545   prefix(dst);
1546   emit_arith(0x81, 0xF8, dst, imm32);
1547 }
1548 
1549 void Assembler::cmpl(Register dst, Register src) {
1550   (void) prefix_and_encode(dst->encoding(), src->encoding());
1551   emit_arith(0x3B, 0xC0, dst, src);
1552 }
1553 
1554 void Assembler::cmpl(Register dst, Address  src) {
1555   InstructionMark im(this);
1556   prefix(src, dst);
1557   emit_int8((unsigned char)0x3B);
1558   emit_operand(dst, src);
1559 }
1560 
1561 void Assembler::cmpw(Address dst, int imm16) {
1562   InstructionMark im(this);
1563   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1564   emit_int8(0x66);
1565   emit_int8((unsigned char)0x81);
1566   emit_operand(rdi, dst, 2);
1567   emit_int16(imm16);
1568 }
1569 
1570 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1571 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1572 // The ZF is set if the compared values were equal, and cleared otherwise.
1573 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1574   InstructionMark im(this);
1575   prefix(adr, reg);
1576   emit_int8(0x0F);
1577   emit_int8((unsigned char)0xB1);
1578   emit_operand(reg, adr);
1579 }
1580 
1581 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1582 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1583 // The ZF is set if the compared values were equal, and cleared otherwise.
1584 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1585   InstructionMark im(this);
1586   prefix(adr, reg, true);
1587   emit_int8(0x0F);
1588   emit_int8((unsigned char)0xB0);
1589   emit_operand(reg, adr);
1590 }
1591 
1592 void Assembler::comisd(XMMRegister dst, Address src) {
1593   // NOTE: dbx seems to decode this as comiss even though the
1594   // 0x66 is there. Strangly ucomisd comes out correct
1595   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1596   InstructionMark im(this);
1597   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1598   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1599   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1600   emit_int8(0x2F);
1601   emit_operand(dst, src);
1602 }
1603 
1604 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1605   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1606   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1607   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1608   emit_int8(0x2F);
1609   emit_int8((unsigned char)(0xC0 | encode));
1610 }
1611 
1612 void Assembler::comiss(XMMRegister dst, Address src) {
1613   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1614   InstructionMark im(this);
1615   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1616   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1617   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1618   emit_int8(0x2F);
1619   emit_operand(dst, src);
1620 }
1621 
1622 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1624   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1625   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1626   emit_int8(0x2F);
1627   emit_int8((unsigned char)(0xC0 | encode));
1628 }
1629 
1630 void Assembler::cpuid() {
1631   emit_int8(0x0F);
1632   emit_int8((unsigned char)0xA2);
1633 }
1634 
1635 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1636 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1637 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1638 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1639 //
1640 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1641 //
1642 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1643 //
1644 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1645 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1646   assert(VM_Version::supports_sse4_2(), "");
1647   int8_t w = 0x01;
1648   Prefix p = Prefix_EMPTY;
1649 
1650   emit_int8((int8_t)0xF2);
1651   switch (sizeInBytes) {
1652   case 1:
1653     w = 0;
1654     break;
1655   case 2:
1656   case 4:
1657     break;
1658   LP64_ONLY(case 8:)
1659     // This instruction is not valid in 32 bits
1660     // Note:
1661     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1662     //
1663     // Page B - 72   Vol. 2C says
1664     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1665     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1666     //                                                                            F0!!!
1667     // while 3 - 208 Vol. 2A
1668     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1669     //
1670     // the 0 on a last bit is reserved for a different flavor of this instruction :
1671     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1672     p = REX_W;
1673     break;
1674   default:
1675     assert(0, "Unsupported value for a sizeInBytes argument");
1676     break;
1677   }
1678   LP64_ONLY(prefix(crc, v, p);)
1679   emit_int8((int8_t)0x0F);
1680   emit_int8(0x38);
1681   emit_int8((int8_t)(0xF0 | w));
1682   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1683 }
1684 
1685 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1686   assert(VM_Version::supports_sse4_2(), "");
1687   InstructionMark im(this);
1688   int8_t w = 0x01;
1689   Prefix p = Prefix_EMPTY;
1690 
1691   emit_int8((int8_t)0xF2);
1692   switch (sizeInBytes) {
1693   case 1:
1694     w = 0;
1695     break;
1696   case 2:
1697   case 4:
1698     break;
1699   LP64_ONLY(case 8:)
1700     // This instruction is not valid in 32 bits
1701     p = REX_W;
1702     break;
1703   default:
1704     assert(0, "Unsupported value for a sizeInBytes argument");
1705     break;
1706   }
1707   LP64_ONLY(prefix(crc, adr, p);)
1708   emit_int8((int8_t)0x0F);
1709   emit_int8(0x38);
1710   emit_int8((int8_t)(0xF0 | w));
1711   emit_operand(crc, adr);
1712 }
1713 
1714 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1717   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1718   emit_int8((unsigned char)0xE6);
1719   emit_int8((unsigned char)(0xC0 | encode));
1720 }
1721 
1722 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1724   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1725   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1726   emit_int8(0x5B);
1727   emit_int8((unsigned char)(0xC0 | encode));
1728 }
1729 
1730 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1732   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1733   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1734   emit_int8(0x5A);
1735   emit_int8((unsigned char)(0xC0 | encode));
1736 }
1737 
1738 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1739   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1740   InstructionMark im(this);
1741   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1742   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1743   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1744   emit_int8(0x5A);
1745   emit_operand(dst, src);
1746 }
1747 
1748 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1750   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1751   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1752   emit_int8(0x2A);
1753   emit_int8((unsigned char)(0xC0 | encode));
1754 }
1755 
1756 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1758   InstructionMark im(this);
1759   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1760   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1761   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1762   emit_int8(0x2A);
1763   emit_operand(dst, src);
1764 }
1765 
1766 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1767   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1768   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1769   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1770   emit_int8(0x2A);
1771   emit_int8((unsigned char)(0xC0 | encode));
1772 }
1773 
1774 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1775   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1776   InstructionMark im(this);
1777   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1778   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1779   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1780   emit_int8(0x2A);
1781   emit_operand(dst, src);
1782 }
1783 
1784 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1785   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1786   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1787   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1788   emit_int8(0x2A);
1789   emit_int8((unsigned char)(0xC0 | encode));
1790 }
1791 
1792 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1795   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1796   emit_int8(0x5A);
1797   emit_int8((unsigned char)(0xC0 | encode));
1798 }
1799 
1800 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1801   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1802   InstructionMark im(this);
1803   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1804   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1805   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1806   emit_int8(0x5A);
1807   emit_operand(dst, src);
1808 }
1809 
1810 
1811 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1812   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1813   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1814   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1815   emit_int8(0x2C);
1816   emit_int8((unsigned char)(0xC0 | encode));
1817 }
1818 
1819 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1820   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1821   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1822   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1823   emit_int8(0x2C);
1824   emit_int8((unsigned char)(0xC0 | encode));
1825 }
1826 
1827 void Assembler::decl(Address dst) {
1828   // Don't use it directly. Use MacroAssembler::decrement() instead.
1829   InstructionMark im(this);
1830   prefix(dst);
1831   emit_int8((unsigned char)0xFF);
1832   emit_operand(rcx, dst);
1833 }
1834 
1835 void Assembler::divsd(XMMRegister dst, Address src) {
1836   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1837   InstructionMark im(this);
1838   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1840   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1841   emit_int8(0x5E);
1842   emit_operand(dst, src);
1843 }
1844 
1845 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1846   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1847   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1848   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1849   emit_int8(0x5E);
1850   emit_int8((unsigned char)(0xC0 | encode));
1851 }
1852 
1853 void Assembler::divss(XMMRegister dst, Address src) {
1854   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1855   InstructionMark im(this);
1856   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1857   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1858   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1859   emit_int8(0x5E);
1860   emit_operand(dst, src);
1861 }
1862 
1863 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1864   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1865   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1866   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1867   emit_int8(0x5E);
1868   emit_int8((unsigned char)(0xC0 | encode));
1869 }
1870 
1871 void Assembler::emms() {
1872   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1873   emit_int8(0x0F);
1874   emit_int8(0x77);
1875 }
1876 
1877 void Assembler::hlt() {
1878   emit_int8((unsigned char)0xF4);
1879 }
1880 
1881 void Assembler::idivl(Register src) {
1882   int encode = prefix_and_encode(src->encoding());
1883   emit_int8((unsigned char)0xF7);
1884   emit_int8((unsigned char)(0xF8 | encode));
1885 }
1886 
1887 void Assembler::divl(Register src) { // Unsigned
1888   int encode = prefix_and_encode(src->encoding());
1889   emit_int8((unsigned char)0xF7);
1890   emit_int8((unsigned char)(0xF0 | encode));
1891 }
1892 
1893 void Assembler::imull(Register dst, Register src) {
1894   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1895   emit_int8(0x0F);
1896   emit_int8((unsigned char)0xAF);
1897   emit_int8((unsigned char)(0xC0 | encode));
1898 }
1899 
1900 
1901 void Assembler::imull(Register dst, Register src, int value) {
1902   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1903   if (is8bit(value)) {
1904     emit_int8(0x6B);
1905     emit_int8((unsigned char)(0xC0 | encode));
1906     emit_int8(value & 0xFF);
1907   } else {
1908     emit_int8(0x69);
1909     emit_int8((unsigned char)(0xC0 | encode));
1910     emit_int32(value);
1911   }
1912 }
1913 
1914 void Assembler::imull(Register dst, Address src) {
1915   InstructionMark im(this);
1916   prefix(src, dst);
1917   emit_int8(0x0F);
1918   emit_int8((unsigned char) 0xAF);
1919   emit_operand(dst, src);
1920 }
1921 
1922 
1923 void Assembler::incl(Address dst) {
1924   // Don't use it directly. Use MacroAssembler::increment() instead.
1925   InstructionMark im(this);
1926   prefix(dst);
1927   emit_int8((unsigned char)0xFF);
1928   emit_operand(rax, dst);
1929 }
1930 
1931 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1932   InstructionMark im(this);
1933   assert((0 <= cc) && (cc < 16), "illegal cc");
1934   if (L.is_bound()) {
1935     address dst = target(L);
1936     assert(dst != NULL, "jcc most probably wrong");
1937 
1938     const int short_size = 2;
1939     const int long_size = 6;
1940     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1941     if (maybe_short && is8bit(offs - short_size)) {
1942       // 0111 tttn #8-bit disp
1943       emit_int8(0x70 | cc);
1944       emit_int8((offs - short_size) & 0xFF);
1945     } else {
1946       // 0000 1111 1000 tttn #32-bit disp
1947       assert(is_simm32(offs - long_size),
1948              "must be 32bit offset (call4)");
1949       emit_int8(0x0F);
1950       emit_int8((unsigned char)(0x80 | cc));
1951       emit_int32(offs - long_size);
1952     }
1953   } else {
1954     // Note: could eliminate cond. jumps to this jump if condition
1955     //       is the same however, seems to be rather unlikely case.
1956     // Note: use jccb() if label to be bound is very close to get
1957     //       an 8-bit displacement
1958     L.add_patch_at(code(), locator());
1959     emit_int8(0x0F);
1960     emit_int8((unsigned char)(0x80 | cc));
1961     emit_int32(0);
1962   }
1963 }
1964 
1965 void Assembler::jccb(Condition cc, Label& L) {
1966   if (L.is_bound()) {
1967     const int short_size = 2;
1968     address entry = target(L);
1969 #ifdef ASSERT
1970     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1971     intptr_t delta = short_branch_delta();
1972     if (delta != 0) {
1973       dist += (dist < 0 ? (-delta) :delta);
1974     }
1975     assert(is8bit(dist), "Dispacement too large for a short jmp");
1976 #endif
1977     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1978     // 0111 tttn #8-bit disp
1979     emit_int8(0x70 | cc);
1980     emit_int8((offs - short_size) & 0xFF);
1981   } else {
1982     InstructionMark im(this);
1983     L.add_patch_at(code(), locator());
1984     emit_int8(0x70 | cc);
1985     emit_int8(0);
1986   }
1987 }
1988 
1989 void Assembler::jmp(Address adr) {
1990   InstructionMark im(this);
1991   prefix(adr);
1992   emit_int8((unsigned char)0xFF);
1993   emit_operand(rsp, adr);
1994 }
1995 
1996 void Assembler::jmp(Label& L, bool maybe_short) {
1997   if (L.is_bound()) {
1998     address entry = target(L);
1999     assert(entry != NULL, "jmp most probably wrong");
2000     InstructionMark im(this);
2001     const int short_size = 2;
2002     const int long_size = 5;
2003     intptr_t offs = entry - pc();
2004     if (maybe_short && is8bit(offs - short_size)) {
2005       emit_int8((unsigned char)0xEB);
2006       emit_int8((offs - short_size) & 0xFF);
2007     } else {
2008       emit_int8((unsigned char)0xE9);
2009       emit_int32(offs - long_size);
2010     }
2011   } else {
2012     // By default, forward jumps are always 32-bit displacements, since
2013     // we can't yet know where the label will be bound.  If you're sure that
2014     // the forward jump will not run beyond 256 bytes, use jmpb to
2015     // force an 8-bit displacement.
2016     InstructionMark im(this);
2017     L.add_patch_at(code(), locator());
2018     emit_int8((unsigned char)0xE9);
2019     emit_int32(0);
2020   }
2021 }
2022 
2023 void Assembler::jmp(Register entry) {
2024   int encode = prefix_and_encode(entry->encoding());
2025   emit_int8((unsigned char)0xFF);
2026   emit_int8((unsigned char)(0xE0 | encode));
2027 }
2028 
2029 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2030   InstructionMark im(this);
2031   emit_int8((unsigned char)0xE9);
2032   assert(dest != NULL, "must have a target");
2033   intptr_t disp = dest - (pc() + sizeof(int32_t));
2034   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2035   emit_data(disp, rspec.reloc(), call32_operand);
2036 }
2037 
2038 void Assembler::jmpb(Label& L) {
2039   if (L.is_bound()) {
2040     const int short_size = 2;
2041     address entry = target(L);
2042     assert(entry != NULL, "jmp most probably wrong");
2043 #ifdef ASSERT
2044     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2045     intptr_t delta = short_branch_delta();
2046     if (delta != 0) {
2047       dist += (dist < 0 ? (-delta) :delta);
2048     }
2049     assert(is8bit(dist), "Dispacement too large for a short jmp");
2050 #endif
2051     intptr_t offs = entry - pc();
2052     emit_int8((unsigned char)0xEB);
2053     emit_int8((offs - short_size) & 0xFF);
2054   } else {
2055     InstructionMark im(this);
2056     L.add_patch_at(code(), locator());
2057     emit_int8((unsigned char)0xEB);
2058     emit_int8(0);
2059   }
2060 }
2061 
2062 void Assembler::ldmxcsr( Address src) {
2063   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2064   InstructionMark im(this);
2065   prefix(src);
2066   emit_int8(0x0F);
2067   emit_int8((unsigned char)0xAE);
2068   emit_operand(as_Register(2), src);
2069 }
2070 
2071 void Assembler::leal(Register dst, Address src) {
2072   InstructionMark im(this);
2073 #ifdef _LP64
2074   emit_int8(0x67); // addr32
2075   prefix(src, dst);
2076 #endif // LP64
2077   emit_int8((unsigned char)0x8D);
2078   emit_operand(dst, src);
2079 }
2080 
2081 void Assembler::lfence() {
2082   emit_int8(0x0F);
2083   emit_int8((unsigned char)0xAE);
2084   emit_int8((unsigned char)0xE8);
2085 }
2086 
2087 void Assembler::lock() {
2088   emit_int8((unsigned char)0xF0);
2089 }
2090 
2091 void Assembler::lzcntl(Register dst, Register src) {
2092   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2093   emit_int8((unsigned char)0xF3);
2094   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2095   emit_int8(0x0F);
2096   emit_int8((unsigned char)0xBD);
2097   emit_int8((unsigned char)(0xC0 | encode));
2098 }
2099 
2100 // Emit mfence instruction
2101 void Assembler::mfence() {
2102   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2103   emit_int8(0x0F);
2104   emit_int8((unsigned char)0xAE);
2105   emit_int8((unsigned char)0xF0);
2106 }
2107 
2108 void Assembler::mov(Register dst, Register src) {
2109   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2110 }
2111 
2112 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2114   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2115   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2116   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2117   emit_int8(0x28);
2118   emit_int8((unsigned char)(0xC0 | encode));
2119 }
2120 
2121 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2123   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2124   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2126   emit_int8(0x28);
2127   emit_int8((unsigned char)(0xC0 | encode));
2128 }
2129 
2130 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2131   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2132   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2133   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2134   emit_int8(0x16);
2135   emit_int8((unsigned char)(0xC0 | encode));
2136 }
2137 
2138 void Assembler::movb(Register dst, Address src) {
2139   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2140   InstructionMark im(this);
2141   prefix(src, dst, true);
2142   emit_int8((unsigned char)0x8A);
2143   emit_operand(dst, src);
2144 }
2145 
2146 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2147   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2148   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
2149   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2150   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2151   emit_int8(0x12);
2152   emit_int8(0xC0 | encode);
2153 }
2154 
2155 void Assembler::kmovql(KRegister dst, KRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2157   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2158   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2159   emit_int8((unsigned char)0x90);
2160   emit_int8((unsigned char)(0xC0 | encode));
2161 }
2162 
2163 void Assembler::kmovql(KRegister dst, Address src) {
2164   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2165   InstructionMark im(this);
2166   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2167   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2168   emit_int8((unsigned char)0x90);
2169   emit_operand((Register)dst, src);
2170 }
2171 
2172 void Assembler::kmovql(Address dst, KRegister src) {
2173   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2174   InstructionMark im(this);
2175   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2176   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2177   emit_int8((unsigned char)0x90);
2178   emit_operand((Register)src, dst);
2179 }
2180 
2181 void Assembler::kmovql(KRegister dst, Register src) {
2182   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2183   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2184   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_bw, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2185   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2186   emit_int8((unsigned char)0x92);
2187   emit_int8((unsigned char)(0xC0 | encode));
2188 }
2189 
2190 void Assembler::kmovdl(KRegister dst, Register src) {
2191   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2192   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2193   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2194   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2195   emit_int8((unsigned char)0x92);
2196   emit_int8((unsigned char)(0xC0 | encode));
2197 }
2198 
2199 void Assembler::kmovwl(KRegister dst, Register src) {
2200   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2201   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2202   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2203   emit_int8((unsigned char)0x92);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::movb(Address dst, int imm8) {
2208   InstructionMark im(this);
2209    prefix(dst);
2210   emit_int8((unsigned char)0xC6);
2211   emit_operand(rax, dst, 1);
2212   emit_int8(imm8);
2213 }
2214 
2215 
2216 void Assembler::movb(Address dst, Register src) {
2217   assert(src->has_byte_register(), "must have byte register");
2218   InstructionMark im(this);
2219   prefix(dst, src, true);
2220   emit_int8((unsigned char)0x88);
2221   emit_operand(src, dst);
2222 }
2223 
2224 void Assembler::movdl(XMMRegister dst, Register src) {
2225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2228   emit_int8(0x6E);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 void Assembler::movdl(Register dst, XMMRegister src) {
2233   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2234   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2235   // swap src/dst to get correct prefix
2236   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2237   emit_int8(0x7E);
2238   emit_int8((unsigned char)(0xC0 | encode));
2239 }
2240 
2241 void Assembler::movdl(XMMRegister dst, Address src) {
2242   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2243   InstructionMark im(this);
2244   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2245   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2246   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2247   emit_int8(0x6E);
2248   emit_operand(dst, src);
2249 }
2250 
2251 void Assembler::movdl(Address dst, XMMRegister src) {
2252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2253   InstructionMark im(this);
2254   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2255   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2256   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2257   emit_int8(0x7E);
2258   emit_operand(src, dst);
2259 }
2260 
2261 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2263   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2264   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2265   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2266   emit_int8(0x6F);
2267   emit_int8((unsigned char)(0xC0 | encode));
2268 }
2269 
2270 void Assembler::movdqa(XMMRegister dst, Address src) {
2271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2272   InstructionMark im(this);
2273   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2274   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2275   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2276   emit_int8(0x6F);
2277   emit_operand(dst, src);
2278 }
2279 
2280 void Assembler::movdqu(XMMRegister dst, Address src) {
2281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2282   InstructionMark im(this);
2283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2284   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2285   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2286   emit_int8(0x6F);
2287   emit_operand(dst, src);
2288 }
2289 
2290 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2292   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2293   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2294   emit_int8(0x6F);
2295   emit_int8((unsigned char)(0xC0 | encode));
2296 }
2297 
2298 void Assembler::movdqu(Address dst, XMMRegister src) {
2299   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2300   InstructionMark im(this);
2301   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2302   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2303   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2304   emit_int8(0x7F);
2305   emit_operand(src, dst);
2306 }
2307 
2308 // Move Unaligned 256bit Vector
2309 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2310   assert(UseAVX > 0, "");
2311   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2312   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2313   emit_int8(0x6F);
2314   emit_int8((unsigned char)(0xC0 | encode));
2315 }
2316 
2317 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2318   assert(UseAVX > 0, "");
2319   InstructionMark im(this);
2320   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2321   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2322   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2323   emit_int8(0x6F);
2324   emit_operand(dst, src);
2325 }
2326 
2327 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2328   assert(UseAVX > 0, "");
2329   InstructionMark im(this);
2330   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2331   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2332   // swap src<->dst for encoding
2333   assert(src != xnoreg, "sanity");
2334   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2335   emit_int8(0x7F);
2336   emit_operand(src, dst);
2337 }
2338 
2339 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2340 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2341   assert(VM_Version::supports_evex(), "");
2342   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2343   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2344   emit_int8(0x6F);
2345   emit_int8((unsigned char)(0xC0 | encode));
2346 }
2347 
2348 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2349   assert(VM_Version::supports_evex(), "");
2350   InstructionMark im(this);
2351   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2352   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2353   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2354   emit_int8(0x6F);
2355   emit_operand(dst, src);
2356 }
2357 
2358 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2359   assert(VM_Version::supports_evex(), "");
2360   assert(src != xnoreg, "sanity");
2361   InstructionMark im(this);
2362   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2363   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2364   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2365   emit_int8(0x7F);
2366   emit_operand(src, dst);
2367 }
2368 
2369 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2370   assert(VM_Version::supports_evex(), "");
2371   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2372   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2373   emit_int8(0x6F);
2374   emit_int8((unsigned char)(0xC0 | encode));
2375 }
2376 
2377 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2378   assert(VM_Version::supports_evex(), "");
2379   InstructionMark im(this);
2380   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2381   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2382   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2383   emit_int8(0x6F);
2384   emit_operand(dst, src);
2385 }
2386 
2387 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2388   assert(VM_Version::supports_evex(), "");
2389   assert(src != xnoreg, "sanity");
2390   InstructionMark im(this);
2391   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2392   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2393   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2394   emit_int8(0x7F);
2395   emit_operand(src, dst);
2396 }
2397 
2398 // Uses zero extension on 64bit
2399 
2400 void Assembler::movl(Register dst, int32_t imm32) {
2401   int encode = prefix_and_encode(dst->encoding());
2402   emit_int8((unsigned char)(0xB8 | encode));
2403   emit_int32(imm32);
2404 }
2405 
2406 void Assembler::movl(Register dst, Register src) {
2407   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2408   emit_int8((unsigned char)0x8B);
2409   emit_int8((unsigned char)(0xC0 | encode));
2410 }
2411 
2412 void Assembler::movl(Register dst, Address src) {
2413   InstructionMark im(this);
2414   prefix(src, dst);
2415   emit_int8((unsigned char)0x8B);
2416   emit_operand(dst, src);
2417 }
2418 
2419 void Assembler::movl(Address dst, int32_t imm32) {
2420   InstructionMark im(this);
2421   prefix(dst);
2422   emit_int8((unsigned char)0xC7);
2423   emit_operand(rax, dst, 4);
2424   emit_int32(imm32);
2425 }
2426 
2427 void Assembler::movl(Address dst, Register src) {
2428   InstructionMark im(this);
2429   prefix(dst, src);
2430   emit_int8((unsigned char)0x89);
2431   emit_operand(src, dst);
2432 }
2433 
2434 // New cpus require to use movsd and movss to avoid partial register stall
2435 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2436 // The selection is done in MacroAssembler::movdbl() and movflt().
2437 void Assembler::movlpd(XMMRegister dst, Address src) {
2438   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2439   InstructionMark im(this);
2440   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2441   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2442   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2443   emit_int8(0x12);
2444   emit_operand(dst, src);
2445 }
2446 
2447 void Assembler::movq( MMXRegister dst, Address src ) {
2448   assert( VM_Version::supports_mmx(), "" );
2449   emit_int8(0x0F);
2450   emit_int8(0x6F);
2451   emit_operand(dst, src);
2452 }
2453 
2454 void Assembler::movq( Address dst, MMXRegister src ) {
2455   assert( VM_Version::supports_mmx(), "" );
2456   emit_int8(0x0F);
2457   emit_int8(0x7F);
2458   // workaround gcc (3.2.1-7a) bug
2459   // In that version of gcc with only an emit_operand(MMX, Address)
2460   // gcc will tail jump and try and reverse the parameters completely
2461   // obliterating dst in the process. By having a version available
2462   // that doesn't need to swap the args at the tail jump the bug is
2463   // avoided.
2464   emit_operand(dst, src);
2465 }
2466 
2467 void Assembler::movq(XMMRegister dst, Address src) {
2468   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2469   InstructionMark im(this);
2470   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2471   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2472   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2473   emit_int8(0x7E);
2474   emit_operand(dst, src);
2475 }
2476 
2477 void Assembler::movq(Address dst, XMMRegister src) {
2478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2479   InstructionMark im(this);
2480   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2481   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2482   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2483   emit_int8((unsigned char)0xD6);
2484   emit_operand(src, dst);
2485 }
2486 
2487 void Assembler::movsbl(Register dst, Address src) { // movsxb
2488   InstructionMark im(this);
2489   prefix(src, dst);
2490   emit_int8(0x0F);
2491   emit_int8((unsigned char)0xBE);
2492   emit_operand(dst, src);
2493 }
2494 
2495 void Assembler::movsbl(Register dst, Register src) { // movsxb
2496   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2497   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2498   emit_int8(0x0F);
2499   emit_int8((unsigned char)0xBE);
2500   emit_int8((unsigned char)(0xC0 | encode));
2501 }
2502 
2503 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2505   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2506   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2507   emit_int8(0x10);
2508   emit_int8((unsigned char)(0xC0 | encode));
2509 }
2510 
2511 void Assembler::movsd(XMMRegister dst, Address src) {
2512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2513   InstructionMark im(this);
2514   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2515   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2516   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2517   emit_int8(0x10);
2518   emit_operand(dst, src);
2519 }
2520 
2521 void Assembler::movsd(Address dst, XMMRegister src) {
2522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2523   InstructionMark im(this);
2524   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2525   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2526   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2527   emit_int8(0x11);
2528   emit_operand(src, dst);
2529 }
2530 
2531 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2532   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2533   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2534   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2535   emit_int8(0x10);
2536   emit_int8((unsigned char)(0xC0 | encode));
2537 }
2538 
2539 void Assembler::movss(XMMRegister dst, Address src) {
2540   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2541   InstructionMark im(this);
2542   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2543   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2544   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2545   emit_int8(0x10);
2546   emit_operand(dst, src);
2547 }
2548 
2549 void Assembler::movss(Address dst, XMMRegister src) {
2550   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2551   InstructionMark im(this);
2552   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2553   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2554   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2555   emit_int8(0x11);
2556   emit_operand(src, dst);
2557 }
2558 
2559 void Assembler::movswl(Register dst, Address src) { // movsxw
2560   InstructionMark im(this);
2561   prefix(src, dst);
2562   emit_int8(0x0F);
2563   emit_int8((unsigned char)0xBF);
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::movswl(Register dst, Register src) { // movsxw
2568   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2569   emit_int8(0x0F);
2570   emit_int8((unsigned char)0xBF);
2571   emit_int8((unsigned char)(0xC0 | encode));
2572 }
2573 
2574 void Assembler::movw(Address dst, int imm16) {
2575   InstructionMark im(this);
2576 
2577   emit_int8(0x66); // switch to 16-bit mode
2578   prefix(dst);
2579   emit_int8((unsigned char)0xC7);
2580   emit_operand(rax, dst, 2);
2581   emit_int16(imm16);
2582 }
2583 
2584 void Assembler::movw(Register dst, Address src) {
2585   InstructionMark im(this);
2586   emit_int8(0x66);
2587   prefix(src, dst);
2588   emit_int8((unsigned char)0x8B);
2589   emit_operand(dst, src);
2590 }
2591 
2592 void Assembler::movw(Address dst, Register src) {
2593   InstructionMark im(this);
2594   emit_int8(0x66);
2595   prefix(dst, src);
2596   emit_int8((unsigned char)0x89);
2597   emit_operand(src, dst);
2598 }
2599 
2600 void Assembler::movzbl(Register dst, Address src) { // movzxb
2601   InstructionMark im(this);
2602   prefix(src, dst);
2603   emit_int8(0x0F);
2604   emit_int8((unsigned char)0xB6);
2605   emit_operand(dst, src);
2606 }
2607 
2608 void Assembler::movzbl(Register dst, Register src) { // movzxb
2609   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2610   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2611   emit_int8(0x0F);
2612   emit_int8((unsigned char)0xB6);
2613   emit_int8(0xC0 | encode);
2614 }
2615 
2616 void Assembler::movzwl(Register dst, Address src) { // movzxw
2617   InstructionMark im(this);
2618   prefix(src, dst);
2619   emit_int8(0x0F);
2620   emit_int8((unsigned char)0xB7);
2621   emit_operand(dst, src);
2622 }
2623 
2624 void Assembler::movzwl(Register dst, Register src) { // movzxw
2625   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2626   emit_int8(0x0F);
2627   emit_int8((unsigned char)0xB7);
2628   emit_int8(0xC0 | encode);
2629 }
2630 
2631 void Assembler::mull(Address src) {
2632   InstructionMark im(this);
2633   prefix(src);
2634   emit_int8((unsigned char)0xF7);
2635   emit_operand(rsp, src);
2636 }
2637 
2638 void Assembler::mull(Register src) {
2639   int encode = prefix_and_encode(src->encoding());
2640   emit_int8((unsigned char)0xF7);
2641   emit_int8((unsigned char)(0xE0 | encode));
2642 }
2643 
2644 void Assembler::mulsd(XMMRegister dst, Address src) {
2645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2646   InstructionMark im(this);
2647   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2648   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2649   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2650   emit_int8(0x59);
2651   emit_operand(dst, src);
2652 }
2653 
2654 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2656   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2657   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2658   emit_int8(0x59);
2659   emit_int8((unsigned char)(0xC0 | encode));
2660 }
2661 
2662 void Assembler::mulss(XMMRegister dst, Address src) {
2663   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2664   InstructionMark im(this);
2665   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2666   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2667   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2668   emit_int8(0x59);
2669   emit_operand(dst, src);
2670 }
2671 
2672 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2674   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2675   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2676   emit_int8(0x59);
2677   emit_int8((unsigned char)(0xC0 | encode));
2678 }
2679 
2680 void Assembler::negl(Register dst) {
2681   int encode = prefix_and_encode(dst->encoding());
2682   emit_int8((unsigned char)0xF7);
2683   emit_int8((unsigned char)(0xD8 | encode));
2684 }
2685 
2686 void Assembler::nop(int i) {
2687 #ifdef ASSERT
2688   assert(i > 0, " ");
2689   // The fancy nops aren't currently recognized by debuggers making it a
2690   // pain to disassemble code while debugging. If asserts are on clearly
2691   // speed is not an issue so simply use the single byte traditional nop
2692   // to do alignment.
2693 
2694   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2695   return;
2696 
2697 #endif // ASSERT
2698 
2699   if (UseAddressNop && VM_Version::is_intel()) {
2700     //
2701     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2702     //  1: 0x90
2703     //  2: 0x66 0x90
2704     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2705     //  4: 0x0F 0x1F 0x40 0x00
2706     //  5: 0x0F 0x1F 0x44 0x00 0x00
2707     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2708     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2709     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2710     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2711     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2712     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2713 
2714     // The rest coding is Intel specific - don't use consecutive address nops
2715 
2716     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2717     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2718     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2719     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2720 
2721     while(i >= 15) {
2722       // For Intel don't generate consecutive addess nops (mix with regular nops)
2723       i -= 15;
2724       emit_int8(0x66);   // size prefix
2725       emit_int8(0x66);   // size prefix
2726       emit_int8(0x66);   // size prefix
2727       addr_nop_8();
2728       emit_int8(0x66);   // size prefix
2729       emit_int8(0x66);   // size prefix
2730       emit_int8(0x66);   // size prefix
2731       emit_int8((unsigned char)0x90);
2732                          // nop
2733     }
2734     switch (i) {
2735       case 14:
2736         emit_int8(0x66); // size prefix
2737       case 13:
2738         emit_int8(0x66); // size prefix
2739       case 12:
2740         addr_nop_8();
2741         emit_int8(0x66); // size prefix
2742         emit_int8(0x66); // size prefix
2743         emit_int8(0x66); // size prefix
2744         emit_int8((unsigned char)0x90);
2745                          // nop
2746         break;
2747       case 11:
2748         emit_int8(0x66); // size prefix
2749       case 10:
2750         emit_int8(0x66); // size prefix
2751       case 9:
2752         emit_int8(0x66); // size prefix
2753       case 8:
2754         addr_nop_8();
2755         break;
2756       case 7:
2757         addr_nop_7();
2758         break;
2759       case 6:
2760         emit_int8(0x66); // size prefix
2761       case 5:
2762         addr_nop_5();
2763         break;
2764       case 4:
2765         addr_nop_4();
2766         break;
2767       case 3:
2768         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2769         emit_int8(0x66); // size prefix
2770       case 2:
2771         emit_int8(0x66); // size prefix
2772       case 1:
2773         emit_int8((unsigned char)0x90);
2774                          // nop
2775         break;
2776       default:
2777         assert(i == 0, " ");
2778     }
2779     return;
2780   }
2781   if (UseAddressNop && VM_Version::is_amd()) {
2782     //
2783     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2784     //  1: 0x90
2785     //  2: 0x66 0x90
2786     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2787     //  4: 0x0F 0x1F 0x40 0x00
2788     //  5: 0x0F 0x1F 0x44 0x00 0x00
2789     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2790     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2791     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2792     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2793     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2794     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2795 
2796     // The rest coding is AMD specific - use consecutive address nops
2797 
2798     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2799     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2800     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2801     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2802     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2803     //     Size prefixes (0x66) are added for larger sizes
2804 
2805     while(i >= 22) {
2806       i -= 11;
2807       emit_int8(0x66); // size prefix
2808       emit_int8(0x66); // size prefix
2809       emit_int8(0x66); // size prefix
2810       addr_nop_8();
2811     }
2812     // Generate first nop for size between 21-12
2813     switch (i) {
2814       case 21:
2815         i -= 1;
2816         emit_int8(0x66); // size prefix
2817       case 20:
2818       case 19:
2819         i -= 1;
2820         emit_int8(0x66); // size prefix
2821       case 18:
2822       case 17:
2823         i -= 1;
2824         emit_int8(0x66); // size prefix
2825       case 16:
2826       case 15:
2827         i -= 8;
2828         addr_nop_8();
2829         break;
2830       case 14:
2831       case 13:
2832         i -= 7;
2833         addr_nop_7();
2834         break;
2835       case 12:
2836         i -= 6;
2837         emit_int8(0x66); // size prefix
2838         addr_nop_5();
2839         break;
2840       default:
2841         assert(i < 12, " ");
2842     }
2843 
2844     // Generate second nop for size between 11-1
2845     switch (i) {
2846       case 11:
2847         emit_int8(0x66); // size prefix
2848       case 10:
2849         emit_int8(0x66); // size prefix
2850       case 9:
2851         emit_int8(0x66); // size prefix
2852       case 8:
2853         addr_nop_8();
2854         break;
2855       case 7:
2856         addr_nop_7();
2857         break;
2858       case 6:
2859         emit_int8(0x66); // size prefix
2860       case 5:
2861         addr_nop_5();
2862         break;
2863       case 4:
2864         addr_nop_4();
2865         break;
2866       case 3:
2867         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2868         emit_int8(0x66); // size prefix
2869       case 2:
2870         emit_int8(0x66); // size prefix
2871       case 1:
2872         emit_int8((unsigned char)0x90);
2873                          // nop
2874         break;
2875       default:
2876         assert(i == 0, " ");
2877     }
2878     return;
2879   }
2880 
2881   // Using nops with size prefixes "0x66 0x90".
2882   // From AMD Optimization Guide:
2883   //  1: 0x90
2884   //  2: 0x66 0x90
2885   //  3: 0x66 0x66 0x90
2886   //  4: 0x66 0x66 0x66 0x90
2887   //  5: 0x66 0x66 0x90 0x66 0x90
2888   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2889   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2890   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2891   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2892   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2893   //
2894   while(i > 12) {
2895     i -= 4;
2896     emit_int8(0x66); // size prefix
2897     emit_int8(0x66);
2898     emit_int8(0x66);
2899     emit_int8((unsigned char)0x90);
2900                      // nop
2901   }
2902   // 1 - 12 nops
2903   if(i > 8) {
2904     if(i > 9) {
2905       i -= 1;
2906       emit_int8(0x66);
2907     }
2908     i -= 3;
2909     emit_int8(0x66);
2910     emit_int8(0x66);
2911     emit_int8((unsigned char)0x90);
2912   }
2913   // 1 - 8 nops
2914   if(i > 4) {
2915     if(i > 6) {
2916       i -= 1;
2917       emit_int8(0x66);
2918     }
2919     i -= 3;
2920     emit_int8(0x66);
2921     emit_int8(0x66);
2922     emit_int8((unsigned char)0x90);
2923   }
2924   switch (i) {
2925     case 4:
2926       emit_int8(0x66);
2927     case 3:
2928       emit_int8(0x66);
2929     case 2:
2930       emit_int8(0x66);
2931     case 1:
2932       emit_int8((unsigned char)0x90);
2933       break;
2934     default:
2935       assert(i == 0, " ");
2936   }
2937 }
2938 
2939 void Assembler::notl(Register dst) {
2940   int encode = prefix_and_encode(dst->encoding());
2941   emit_int8((unsigned char)0xF7);
2942   emit_int8((unsigned char)(0xD0 | encode));
2943 }
2944 
2945 void Assembler::orl(Address dst, int32_t imm32) {
2946   InstructionMark im(this);
2947   prefix(dst);
2948   emit_arith_operand(0x81, rcx, dst, imm32);
2949 }
2950 
2951 void Assembler::orl(Register dst, int32_t imm32) {
2952   prefix(dst);
2953   emit_arith(0x81, 0xC8, dst, imm32);
2954 }
2955 
2956 void Assembler::orl(Register dst, Address src) {
2957   InstructionMark im(this);
2958   prefix(src, dst);
2959   emit_int8(0x0B);
2960   emit_operand(dst, src);
2961 }
2962 
2963 void Assembler::orl(Register dst, Register src) {
2964   (void) prefix_and_encode(dst->encoding(), src->encoding());
2965   emit_arith(0x0B, 0xC0, dst, src);
2966 }
2967 
2968 void Assembler::orl(Address dst, Register src) {
2969   InstructionMark im(this);
2970   prefix(dst, src);
2971   emit_int8(0x09);
2972   emit_operand(src, dst);
2973 }
2974 
2975 void Assembler::packuswb(XMMRegister dst, Address src) {
2976   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2977   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2978   InstructionMark im(this);
2979   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2980   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
2981   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2982   emit_int8(0x67);
2983   emit_operand(dst, src);
2984 }
2985 
2986 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2988   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2989   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2990   emit_int8(0x67);
2991   emit_int8((unsigned char)(0xC0 | encode));
2992 }
2993 
2994 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2995   assert(UseAVX > 0, "some form of AVX must be enabled");
2996   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2997   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
2998   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2999   emit_int8(0x67);
3000   emit_int8((unsigned char)(0xC0 | encode));
3001 }
3002 
3003 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3004   assert(VM_Version::supports_avx2(), "");
3005   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3006   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3007   emit_int8(0x00);
3008   emit_int8(0xC0 | encode);
3009   emit_int8(imm8);
3010 }
3011 
3012 void Assembler::pause() {
3013   emit_int8((unsigned char)0xF3);
3014   emit_int8((unsigned char)0x90);
3015 }
3016 
3017 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3018   assert(VM_Version::supports_sse4_2(), "");
3019   InstructionMark im(this);
3020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3021   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3022   emit_int8(0x61);
3023   emit_operand(dst, src);
3024   emit_int8(imm8);
3025 }
3026 
3027 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3028   assert(VM_Version::supports_sse4_2(), "");
3029   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3030   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3031   emit_int8(0x61);
3032   emit_int8((unsigned char)(0xC0 | encode));
3033   emit_int8(imm8);
3034 }
3035 
3036 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3037   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3038   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3039   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3040   emit_int8(0x75);
3041   emit_int8((unsigned char)(0xC0 | encode));
3042 }
3043 
3044 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3045   assert(VM_Version::supports_avx(), "");
3046   assert(!VM_Version::supports_evex(), "");
3047   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3048   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3049   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3050   emit_int8(0x75);
3051   emit_int8((unsigned char)(0xC0 | encode));
3052 }
3053 
3054 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3055   assert(VM_Version::supports_sse2(), "");
3056   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3057   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3058   emit_int8((unsigned char)0xD7);
3059   emit_int8((unsigned char)(0xC0 | encode));
3060 }
3061 
3062 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3063   assert(VM_Version::supports_avx2(), "");
3064   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3065   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3066   emit_int8((unsigned char)0xD7);
3067   emit_int8((unsigned char)(0xC0 | encode));
3068 }
3069 
3070 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3071   assert(VM_Version::supports_sse4_1(), "");
3072   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3073   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3074   emit_int8(0x16);
3075   emit_int8((unsigned char)(0xC0 | encode));
3076   emit_int8(imm8);
3077 }
3078 
3079 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3080   assert(VM_Version::supports_sse4_1(), "");
3081   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3082   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3083   emit_int8(0x16);
3084   emit_int8((unsigned char)(0xC0 | encode));
3085   emit_int8(imm8);
3086 }
3087 
3088 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3089   assert(VM_Version::supports_sse2(), "");
3090   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3091   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3092   emit_int8((unsigned char)0xC5);
3093   emit_int8((unsigned char)(0xC0 | encode));
3094   emit_int8(imm8);
3095 }
3096 
3097 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3098   assert(VM_Version::supports_sse4_1(), "");
3099   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3100   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3101   emit_int8(0x22);
3102   emit_int8((unsigned char)(0xC0 | encode));
3103   emit_int8(imm8);
3104 }
3105 
3106 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3107   assert(VM_Version::supports_sse4_1(), "");
3108   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3109   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3110   emit_int8(0x22);
3111   emit_int8((unsigned char)(0xC0 | encode));
3112   emit_int8(imm8);
3113 }
3114 
3115 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3116   assert(VM_Version::supports_sse2(), "");
3117   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3118   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3119   emit_int8((unsigned char)0xC4);
3120   emit_int8((unsigned char)(0xC0 | encode));
3121   emit_int8(imm8);
3122 }
3123 
3124 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3125   assert(VM_Version::supports_sse4_1(), "");
3126   InstructionMark im(this);
3127   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3128   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3129   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3130   emit_int8(0x30);
3131   emit_operand(dst, src);
3132 }
3133 
3134 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3135   assert(VM_Version::supports_sse4_1(), "");
3136   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3137   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3138   emit_int8(0x30);
3139   emit_int8((unsigned char)(0xC0 | encode));
3140 }
3141 
3142 void Assembler::vpmovzxbw(XMMRegister dst, Address src) {
3143   assert(VM_Version::supports_avx(), "");
3144   InstructionMark im(this);
3145   assert(dst != xnoreg, "sanity");
3146   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3147   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3148   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3149   emit_int8(0x30);
3150   emit_operand(dst, src);
3151 }
3152 
3153 // generic
3154 void Assembler::pop(Register dst) {
3155   int encode = prefix_and_encode(dst->encoding());
3156   emit_int8(0x58 | encode);
3157 }
3158 
3159 void Assembler::popcntl(Register dst, Address src) {
3160   assert(VM_Version::supports_popcnt(), "must support");
3161   InstructionMark im(this);
3162   emit_int8((unsigned char)0xF3);
3163   prefix(src, dst);
3164   emit_int8(0x0F);
3165   emit_int8((unsigned char)0xB8);
3166   emit_operand(dst, src);
3167 }
3168 
3169 void Assembler::popcntl(Register dst, Register src) {
3170   assert(VM_Version::supports_popcnt(), "must support");
3171   emit_int8((unsigned char)0xF3);
3172   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3173   emit_int8(0x0F);
3174   emit_int8((unsigned char)0xB8);
3175   emit_int8((unsigned char)(0xC0 | encode));
3176 }
3177 
3178 void Assembler::popf() {
3179   emit_int8((unsigned char)0x9D);
3180 }
3181 
3182 #ifndef _LP64 // no 32bit push/pop on amd64
3183 void Assembler::popl(Address dst) {
3184   // NOTE: this will adjust stack by 8byte on 64bits
3185   InstructionMark im(this);
3186   prefix(dst);
3187   emit_int8((unsigned char)0x8F);
3188   emit_operand(rax, dst);
3189 }
3190 #endif
3191 
3192 void Assembler::prefetch_prefix(Address src) {
3193   prefix(src);
3194   emit_int8(0x0F);
3195 }
3196 
3197 void Assembler::prefetchnta(Address src) {
3198   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3199   InstructionMark im(this);
3200   prefetch_prefix(src);
3201   emit_int8(0x18);
3202   emit_operand(rax, src); // 0, src
3203 }
3204 
3205 void Assembler::prefetchr(Address src) {
3206   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3207   InstructionMark im(this);
3208   prefetch_prefix(src);
3209   emit_int8(0x0D);
3210   emit_operand(rax, src); // 0, src
3211 }
3212 
3213 void Assembler::prefetcht0(Address src) {
3214   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3215   InstructionMark im(this);
3216   prefetch_prefix(src);
3217   emit_int8(0x18);
3218   emit_operand(rcx, src); // 1, src
3219 }
3220 
3221 void Assembler::prefetcht1(Address src) {
3222   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3223   InstructionMark im(this);
3224   prefetch_prefix(src);
3225   emit_int8(0x18);
3226   emit_operand(rdx, src); // 2, src
3227 }
3228 
3229 void Assembler::prefetcht2(Address src) {
3230   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3231   InstructionMark im(this);
3232   prefetch_prefix(src);
3233   emit_int8(0x18);
3234   emit_operand(rbx, src); // 3, src
3235 }
3236 
3237 void Assembler::prefetchw(Address src) {
3238   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3239   InstructionMark im(this);
3240   prefetch_prefix(src);
3241   emit_int8(0x0D);
3242   emit_operand(rcx, src); // 1, src
3243 }
3244 
3245 void Assembler::prefix(Prefix p) {
3246   emit_int8(p);
3247 }
3248 
3249 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3250   assert(VM_Version::supports_ssse3(), "");
3251   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3252   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3253   emit_int8(0x00);
3254   emit_int8((unsigned char)(0xC0 | encode));
3255 }
3256 
3257 void Assembler::pshufb(XMMRegister dst, Address src) {
3258   assert(VM_Version::supports_ssse3(), "");
3259   InstructionMark im(this);
3260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3261   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3262   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3263   emit_int8(0x00);
3264   emit_operand(dst, src);
3265 }
3266 
3267 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3268   assert(isByte(mode), "invalid value");
3269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3270   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
3271   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3272   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3273   emit_int8(0x70);
3274   emit_int8((unsigned char)(0xC0 | encode));
3275   emit_int8(mode & 0xFF);
3276 }
3277 
3278 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3279   assert(isByte(mode), "invalid value");
3280   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3281   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3282   InstructionMark im(this);
3283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3284   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3285   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3286   emit_int8(0x70);
3287   emit_operand(dst, src);
3288   emit_int8(mode & 0xFF);
3289 }
3290 
3291 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3292   assert(isByte(mode), "invalid value");
3293   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3295   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3296   emit_int8(0x70);
3297   emit_int8((unsigned char)(0xC0 | encode));
3298   emit_int8(mode & 0xFF);
3299 }
3300 
3301 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3302   assert(isByte(mode), "invalid value");
3303   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3304   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3305   InstructionMark im(this);
3306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3307   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3308   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3309   emit_int8(0x70);
3310   emit_operand(dst, src);
3311   emit_int8(mode & 0xFF);
3312 }
3313 
3314 void Assembler::psrldq(XMMRegister dst, int shift) {
3315   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3318   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3319   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3320   emit_int8(0x73);
3321   emit_int8((unsigned char)(0xC0 | encode));
3322   emit_int8(shift);
3323 }
3324 
3325 void Assembler::pslldq(XMMRegister dst, int shift) {
3326   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3329   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3330   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3331   emit_int8(0x73);
3332   emit_int8((unsigned char)(0xC0 | encode));
3333   emit_int8(shift);
3334 }
3335 
3336 void Assembler::ptest(XMMRegister dst, Address src) {
3337   assert(VM_Version::supports_sse4_1(), "");
3338   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3339   InstructionMark im(this);
3340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3341   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3342   emit_int8(0x17);
3343   emit_operand(dst, src);
3344 }
3345 
3346 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3347   assert(VM_Version::supports_sse4_1(), "");
3348   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3349   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3350   emit_int8(0x17);
3351   emit_int8((unsigned char)(0xC0 | encode));
3352 }
3353 
3354 void Assembler::vptest(XMMRegister dst, Address src) {
3355   assert(VM_Version::supports_avx(), "");
3356   InstructionMark im(this);
3357   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3358   assert(dst != xnoreg, "sanity");
3359   // swap src<->dst for encoding
3360   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3361   emit_int8(0x17);
3362   emit_operand(dst, src);
3363 }
3364 
3365 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3366   assert(VM_Version::supports_avx(), "");
3367   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3368   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3369   emit_int8(0x17);
3370   emit_int8((unsigned char)(0xC0 | encode));
3371 }
3372 
3373 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3375   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3376   InstructionMark im(this);
3377   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3378   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3379   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3380   emit_int8(0x60);
3381   emit_operand(dst, src);
3382 }
3383 
3384 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3385   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3386   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3387   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3388   emit_int8(0x60);
3389   emit_int8((unsigned char)(0xC0 | encode));
3390 }
3391 
3392 void Assembler::punpckldq(XMMRegister dst, Address src) {
3393   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3394   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3395   InstructionMark im(this);
3396   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3397   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3398   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3399   emit_int8(0x62);
3400   emit_operand(dst, src);
3401 }
3402 
3403 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3404   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3407   emit_int8(0x62);
3408   emit_int8((unsigned char)(0xC0 | encode));
3409 }
3410 
3411 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3412   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3413   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3414   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3415   emit_int8(0x6C);
3416   emit_int8((unsigned char)(0xC0 | encode));
3417 }
3418 
3419 void Assembler::push(int32_t imm32) {
3420   // in 64bits we push 64bits onto the stack but only
3421   // take a 32bit immediate
3422   emit_int8(0x68);
3423   emit_int32(imm32);
3424 }
3425 
3426 void Assembler::push(Register src) {
3427   int encode = prefix_and_encode(src->encoding());
3428 
3429   emit_int8(0x50 | encode);
3430 }
3431 
3432 void Assembler::pushf() {
3433   emit_int8((unsigned char)0x9C);
3434 }
3435 
3436 #ifndef _LP64 // no 32bit push/pop on amd64
3437 void Assembler::pushl(Address src) {
3438   // Note this will push 64bit on 64bit
3439   InstructionMark im(this);
3440   prefix(src);
3441   emit_int8((unsigned char)0xFF);
3442   emit_operand(rsi, src);
3443 }
3444 #endif
3445 
3446 void Assembler::rcll(Register dst, int imm8) {
3447   assert(isShiftCount(imm8), "illegal shift count");
3448   int encode = prefix_and_encode(dst->encoding());
3449   if (imm8 == 1) {
3450     emit_int8((unsigned char)0xD1);
3451     emit_int8((unsigned char)(0xD0 | encode));
3452   } else {
3453     emit_int8((unsigned char)0xC1);
3454     emit_int8((unsigned char)0xD0 | encode);
3455     emit_int8(imm8);
3456   }
3457 }
3458 
3459 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3460   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3461   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3462   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3463   emit_int8(0x53);
3464   emit_int8((unsigned char)(0xC0 | encode));
3465 }
3466 
3467 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3468   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3469   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3470   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3471   emit_int8(0x53);
3472   emit_int8((unsigned char)(0xC0 | encode));
3473 }
3474 
3475 void Assembler::rdtsc() {
3476   emit_int8((unsigned char)0x0F);
3477   emit_int8((unsigned char)0x31);
3478 }
3479 
3480 // copies data from [esi] to [edi] using rcx pointer sized words
3481 // generic
3482 void Assembler::rep_mov() {
3483   emit_int8((unsigned char)0xF3);
3484   // MOVSQ
3485   LP64_ONLY(prefix(REX_W));
3486   emit_int8((unsigned char)0xA5);
3487 }
3488 
3489 // sets rcx bytes with rax, value at [edi]
3490 void Assembler::rep_stosb() {
3491   emit_int8((unsigned char)0xF3); // REP
3492   LP64_ONLY(prefix(REX_W));
3493   emit_int8((unsigned char)0xAA); // STOSB
3494 }
3495 
3496 // sets rcx pointer sized words with rax, value at [edi]
3497 // generic
3498 void Assembler::rep_stos() {
3499   emit_int8((unsigned char)0xF3); // REP
3500   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3501   emit_int8((unsigned char)0xAB);
3502 }
3503 
3504 // scans rcx pointer sized words at [edi] for occurance of rax,
3505 // generic
3506 void Assembler::repne_scan() { // repne_scan
3507   emit_int8((unsigned char)0xF2);
3508   // SCASQ
3509   LP64_ONLY(prefix(REX_W));
3510   emit_int8((unsigned char)0xAF);
3511 }
3512 
3513 #ifdef _LP64
3514 // scans rcx 4 byte words at [edi] for occurance of rax,
3515 // generic
3516 void Assembler::repne_scanl() { // repne_scan
3517   emit_int8((unsigned char)0xF2);
3518   // SCASL
3519   emit_int8((unsigned char)0xAF);
3520 }
3521 #endif
3522 
3523 void Assembler::ret(int imm16) {
3524   if (imm16 == 0) {
3525     emit_int8((unsigned char)0xC3);
3526   } else {
3527     emit_int8((unsigned char)0xC2);
3528     emit_int16(imm16);
3529   }
3530 }
3531 
3532 void Assembler::sahf() {
3533 #ifdef _LP64
3534   // Not supported in 64bit mode
3535   ShouldNotReachHere();
3536 #endif
3537   emit_int8((unsigned char)0x9E);
3538 }
3539 
3540 void Assembler::sarl(Register dst, int imm8) {
3541   int encode = prefix_and_encode(dst->encoding());
3542   assert(isShiftCount(imm8), "illegal shift count");
3543   if (imm8 == 1) {
3544     emit_int8((unsigned char)0xD1);
3545     emit_int8((unsigned char)(0xF8 | encode));
3546   } else {
3547     emit_int8((unsigned char)0xC1);
3548     emit_int8((unsigned char)(0xF8 | encode));
3549     emit_int8(imm8);
3550   }
3551 }
3552 
3553 void Assembler::sarl(Register dst) {
3554   int encode = prefix_and_encode(dst->encoding());
3555   emit_int8((unsigned char)0xD3);
3556   emit_int8((unsigned char)(0xF8 | encode));
3557 }
3558 
3559 void Assembler::sbbl(Address dst, int32_t imm32) {
3560   InstructionMark im(this);
3561   prefix(dst);
3562   emit_arith_operand(0x81, rbx, dst, imm32);
3563 }
3564 
3565 void Assembler::sbbl(Register dst, int32_t imm32) {
3566   prefix(dst);
3567   emit_arith(0x81, 0xD8, dst, imm32);
3568 }
3569 
3570 
3571 void Assembler::sbbl(Register dst, Address src) {
3572   InstructionMark im(this);
3573   prefix(src, dst);
3574   emit_int8(0x1B);
3575   emit_operand(dst, src);
3576 }
3577 
3578 void Assembler::sbbl(Register dst, Register src) {
3579   (void) prefix_and_encode(dst->encoding(), src->encoding());
3580   emit_arith(0x1B, 0xC0, dst, src);
3581 }
3582 
3583 void Assembler::setb(Condition cc, Register dst) {
3584   assert(0 <= cc && cc < 16, "illegal cc");
3585   int encode = prefix_and_encode(dst->encoding(), true);
3586   emit_int8(0x0F);
3587   emit_int8((unsigned char)0x90 | cc);
3588   emit_int8((unsigned char)(0xC0 | encode));
3589 }
3590 
3591 void Assembler::shll(Register dst, int imm8) {
3592   assert(isShiftCount(imm8), "illegal shift count");
3593   int encode = prefix_and_encode(dst->encoding());
3594   if (imm8 == 1 ) {
3595     emit_int8((unsigned char)0xD1);
3596     emit_int8((unsigned char)(0xE0 | encode));
3597   } else {
3598     emit_int8((unsigned char)0xC1);
3599     emit_int8((unsigned char)(0xE0 | encode));
3600     emit_int8(imm8);
3601   }
3602 }
3603 
3604 void Assembler::shll(Register dst) {
3605   int encode = prefix_and_encode(dst->encoding());
3606   emit_int8((unsigned char)0xD3);
3607   emit_int8((unsigned char)(0xE0 | encode));
3608 }
3609 
3610 void Assembler::shrl(Register dst, int imm8) {
3611   assert(isShiftCount(imm8), "illegal shift count");
3612   int encode = prefix_and_encode(dst->encoding());
3613   emit_int8((unsigned char)0xC1);
3614   emit_int8((unsigned char)(0xE8 | encode));
3615   emit_int8(imm8);
3616 }
3617 
3618 void Assembler::shrl(Register dst) {
3619   int encode = prefix_and_encode(dst->encoding());
3620   emit_int8((unsigned char)0xD3);
3621   emit_int8((unsigned char)(0xE8 | encode));
3622 }
3623 
3624 // copies a single word from [esi] to [edi]
3625 void Assembler::smovl() {
3626   emit_int8((unsigned char)0xA5);
3627 }
3628 
3629 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3631   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3632   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3633   emit_int8(0x51);
3634   emit_int8((unsigned char)(0xC0 | encode));
3635 }
3636 
3637 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3638   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3639   InstructionMark im(this);
3640   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3641   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3642   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3643   emit_int8(0x51);
3644   emit_operand(dst, src);
3645 }
3646 
3647 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3648   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3650   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3651   emit_int8(0x51);
3652   emit_int8((unsigned char)(0xC0 | encode));
3653 }
3654 
3655 void Assembler::std() {
3656   emit_int8((unsigned char)0xFD);
3657 }
3658 
3659 void Assembler::sqrtss(XMMRegister dst, Address src) {
3660   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3661   InstructionMark im(this);
3662   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3663   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3664   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3665   emit_int8(0x51);
3666   emit_operand(dst, src);
3667 }
3668 
3669 void Assembler::stmxcsr( Address dst) {
3670   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3671   InstructionMark im(this);
3672   prefix(dst);
3673   emit_int8(0x0F);
3674   emit_int8((unsigned char)0xAE);
3675   emit_operand(as_Register(3), dst);
3676 }
3677 
3678 void Assembler::subl(Address dst, int32_t imm32) {
3679   InstructionMark im(this);
3680   prefix(dst);
3681   emit_arith_operand(0x81, rbp, dst, imm32);
3682 }
3683 
3684 void Assembler::subl(Address dst, Register src) {
3685   InstructionMark im(this);
3686   prefix(dst, src);
3687   emit_int8(0x29);
3688   emit_operand(src, dst);
3689 }
3690 
3691 void Assembler::subl(Register dst, int32_t imm32) {
3692   prefix(dst);
3693   emit_arith(0x81, 0xE8, dst, imm32);
3694 }
3695 
3696 // Force generation of a 4 byte immediate value even if it fits into 8bit
3697 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3698   prefix(dst);
3699   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3700 }
3701 
3702 void Assembler::subl(Register dst, Address src) {
3703   InstructionMark im(this);
3704   prefix(src, dst);
3705   emit_int8(0x2B);
3706   emit_operand(dst, src);
3707 }
3708 
3709 void Assembler::subl(Register dst, Register src) {
3710   (void) prefix_and_encode(dst->encoding(), src->encoding());
3711   emit_arith(0x2B, 0xC0, dst, src);
3712 }
3713 
3714 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3716   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3717   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3718   emit_int8(0x5C);
3719   emit_int8((unsigned char)(0xC0 | encode));
3720 }
3721 
3722 void Assembler::subsd(XMMRegister dst, Address src) {
3723   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3724   InstructionMark im(this);
3725   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3726   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3727   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3728   emit_int8(0x5C);
3729   emit_operand(dst, src);
3730 }
3731 
3732 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3733   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3734   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3735   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3736   emit_int8(0x5C);
3737   emit_int8((unsigned char)(0xC0 | encode));
3738 }
3739 
3740 void Assembler::subss(XMMRegister dst, Address src) {
3741   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3742   InstructionMark im(this);
3743   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3744   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3745   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3746   emit_int8(0x5C);
3747   emit_operand(dst, src);
3748 }
3749 
3750 void Assembler::testb(Register dst, int imm8) {
3751   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3752   (void) prefix_and_encode(dst->encoding(), true);
3753   emit_arith_b(0xF6, 0xC0, dst, imm8);
3754 }
3755 
3756 void Assembler::testl(Register dst, int32_t imm32) {
3757   // not using emit_arith because test
3758   // doesn't support sign-extension of
3759   // 8bit operands
3760   int encode = dst->encoding();
3761   if (encode == 0) {
3762     emit_int8((unsigned char)0xA9);
3763   } else {
3764     encode = prefix_and_encode(encode);
3765     emit_int8((unsigned char)0xF7);
3766     emit_int8((unsigned char)(0xC0 | encode));
3767   }
3768   emit_int32(imm32);
3769 }
3770 
3771 void Assembler::testl(Register dst, Register src) {
3772   (void) prefix_and_encode(dst->encoding(), src->encoding());
3773   emit_arith(0x85, 0xC0, dst, src);
3774 }
3775 
3776 void Assembler::testl(Register dst, Address src) {
3777   InstructionMark im(this);
3778   prefix(src, dst);
3779   emit_int8((unsigned char)0x85);
3780   emit_operand(dst, src);
3781 }
3782 
3783 void Assembler::tzcntl(Register dst, Register src) {
3784   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3785   emit_int8((unsigned char)0xF3);
3786   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3787   emit_int8(0x0F);
3788   emit_int8((unsigned char)0xBC);
3789   emit_int8((unsigned char)0xC0 | encode);
3790 }
3791 
3792 void Assembler::tzcntq(Register dst, Register src) {
3793   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3794   emit_int8((unsigned char)0xF3);
3795   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3796   emit_int8(0x0F);
3797   emit_int8((unsigned char)0xBC);
3798   emit_int8((unsigned char)(0xC0 | encode));
3799 }
3800 
3801 void Assembler::ucomisd(XMMRegister dst, Address src) {
3802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3803   InstructionMark im(this);
3804   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3805   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3806   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3807   emit_int8(0x2E);
3808   emit_operand(dst, src);
3809 }
3810 
3811 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3812   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3813   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3814   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3815   emit_int8(0x2E);
3816   emit_int8((unsigned char)(0xC0 | encode));
3817 }
3818 
3819 void Assembler::ucomiss(XMMRegister dst, Address src) {
3820   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3821   InstructionMark im(this);
3822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3823   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3824   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3825   emit_int8(0x2E);
3826   emit_operand(dst, src);
3827 }
3828 
3829 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3831   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3832   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3833   emit_int8(0x2E);
3834   emit_int8((unsigned char)(0xC0 | encode));
3835 }
3836 
3837 void Assembler::xabort(int8_t imm8) {
3838   emit_int8((unsigned char)0xC6);
3839   emit_int8((unsigned char)0xF8);
3840   emit_int8((unsigned char)(imm8 & 0xFF));
3841 }
3842 
3843 void Assembler::xaddl(Address dst, Register src) {
3844   InstructionMark im(this);
3845   prefix(dst, src);
3846   emit_int8(0x0F);
3847   emit_int8((unsigned char)0xC1);
3848   emit_operand(src, dst);
3849 }
3850 
3851 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3852   InstructionMark im(this);
3853   relocate(rtype);
3854   if (abort.is_bound()) {
3855     address entry = target(abort);
3856     assert(entry != NULL, "abort entry NULL");
3857     intptr_t offset = entry - pc();
3858     emit_int8((unsigned char)0xC7);
3859     emit_int8((unsigned char)0xF8);
3860     emit_int32(offset - 6); // 2 opcode + 4 address
3861   } else {
3862     abort.add_patch_at(code(), locator());
3863     emit_int8((unsigned char)0xC7);
3864     emit_int8((unsigned char)0xF8);
3865     emit_int32(0);
3866   }
3867 }
3868 
3869 void Assembler::xchgl(Register dst, Address src) { // xchg
3870   InstructionMark im(this);
3871   prefix(src, dst);
3872   emit_int8((unsigned char)0x87);
3873   emit_operand(dst, src);
3874 }
3875 
3876 void Assembler::xchgl(Register dst, Register src) {
3877   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3878   emit_int8((unsigned char)0x87);
3879   emit_int8((unsigned char)(0xC0 | encode));
3880 }
3881 
3882 void Assembler::xend() {
3883   emit_int8((unsigned char)0x0F);
3884   emit_int8((unsigned char)0x01);
3885   emit_int8((unsigned char)0xD5);
3886 }
3887 
3888 void Assembler::xgetbv() {
3889   emit_int8(0x0F);
3890   emit_int8(0x01);
3891   emit_int8((unsigned char)0xD0);
3892 }
3893 
3894 void Assembler::xorl(Register dst, int32_t imm32) {
3895   prefix(dst);
3896   emit_arith(0x81, 0xF0, dst, imm32);
3897 }
3898 
3899 void Assembler::xorl(Register dst, Address src) {
3900   InstructionMark im(this);
3901   prefix(src, dst);
3902   emit_int8(0x33);
3903   emit_operand(dst, src);
3904 }
3905 
3906 void Assembler::xorl(Register dst, Register src) {
3907   (void) prefix_and_encode(dst->encoding(), src->encoding());
3908   emit_arith(0x33, 0xC0, dst, src);
3909 }
3910 
3911 
3912 // AVX 3-operands scalar float-point arithmetic instructions
3913 
3914 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3915   assert(VM_Version::supports_avx(), "");
3916   InstructionMark im(this);
3917   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3918   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3919   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3920   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3921   emit_int8(0x58);
3922   emit_operand(dst, src);
3923 }
3924 
3925 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3926   assert(VM_Version::supports_avx(), "");
3927   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3928   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3929   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3930   emit_int8(0x58);
3931   emit_int8((unsigned char)(0xC0 | encode));
3932 }
3933 
3934 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3935   assert(VM_Version::supports_avx(), "");
3936   InstructionMark im(this);
3937   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3938   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3939   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3940   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3941   emit_int8(0x58);
3942   emit_operand(dst, src);
3943 }
3944 
3945 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3946   assert(VM_Version::supports_avx(), "");
3947   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3948   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3949   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3950   emit_int8(0x58);
3951   emit_int8((unsigned char)(0xC0 | encode));
3952 }
3953 
3954 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3955   assert(VM_Version::supports_avx(), "");
3956   InstructionMark im(this);
3957   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3958   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3959   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3960   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3961   emit_int8(0x5E);
3962   emit_operand(dst, src);
3963 }
3964 
3965 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3966   assert(VM_Version::supports_avx(), "");
3967   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3968   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3969   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3970   emit_int8(0x5E);
3971   emit_int8((unsigned char)(0xC0 | encode));
3972 }
3973 
3974 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3975   assert(VM_Version::supports_avx(), "");
3976   InstructionMark im(this);
3977   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3978   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3979   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3980   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3981   emit_int8(0x5E);
3982   emit_operand(dst, src);
3983 }
3984 
3985 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3986   assert(VM_Version::supports_avx(), "");
3987   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3988   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3989   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3990   emit_int8(0x5E);
3991   emit_int8((unsigned char)(0xC0 | encode));
3992 }
3993 
3994 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3995   assert(VM_Version::supports_avx(), "");
3996   InstructionMark im(this);
3997   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3998   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3999   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4000   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4001   emit_int8(0x59);
4002   emit_operand(dst, src);
4003 }
4004 
4005 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4006   assert(VM_Version::supports_avx(), "");
4007   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4008   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4009   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4010   emit_int8(0x59);
4011   emit_int8((unsigned char)(0xC0 | encode));
4012 }
4013 
4014 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4015   assert(VM_Version::supports_avx(), "");
4016   InstructionMark im(this);
4017   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4018   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4019   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4020   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4021   emit_int8(0x59);
4022   emit_operand(dst, src);
4023 }
4024 
4025 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4026   assert(VM_Version::supports_avx(), "");
4027   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4028   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4029   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4030   emit_int8(0x59);
4031   emit_int8((unsigned char)(0xC0 | encode));
4032 }
4033 
4034 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4035   assert(VM_Version::supports_avx(), "");
4036   InstructionMark im(this);
4037   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4038   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4039   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4040   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4041   emit_int8(0x5C);
4042   emit_operand(dst, src);
4043 }
4044 
4045 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4046   assert(VM_Version::supports_avx(), "");
4047   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4048   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4049   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4050   emit_int8(0x5C);
4051   emit_int8((unsigned char)(0xC0 | encode));
4052 }
4053 
4054 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4055   assert(VM_Version::supports_avx(), "");
4056   InstructionMark im(this);
4057   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4058   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4059   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4060   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4061   emit_int8(0x5C);
4062   emit_operand(dst, src);
4063 }
4064 
4065 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4066   assert(VM_Version::supports_avx(), "");
4067   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4068   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4069   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4070   emit_int8(0x5C);
4071   emit_int8((unsigned char)(0xC0 | encode));
4072 }
4073 
4074 //====================VECTOR ARITHMETIC=====================================
4075 
4076 // Float-point vector arithmetic
4077 
4078 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4079   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4080   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4081   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4082   emit_int8(0x58);
4083   emit_int8((unsigned char)(0xC0 | encode));
4084 }
4085 
4086 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4088   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4089   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4090   emit_int8(0x58);
4091   emit_int8((unsigned char)(0xC0 | encode));
4092 }
4093 
4094 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4095   assert(VM_Version::supports_avx(), "");
4096   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4097   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4098   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4099   emit_int8(0x58);
4100   emit_int8((unsigned char)(0xC0 | encode));
4101 }
4102 
4103 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4104   assert(VM_Version::supports_avx(), "");
4105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4106   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4107   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4108   emit_int8(0x58);
4109   emit_int8((unsigned char)(0xC0 | encode));
4110 }
4111 
4112 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4113   assert(VM_Version::supports_avx(), "");
4114   InstructionMark im(this);
4115   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4116   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4117   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4118   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4119   emit_int8(0x58);
4120   emit_operand(dst, src);
4121 }
4122 
4123 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4124   assert(VM_Version::supports_avx(), "");
4125   InstructionMark im(this);
4126   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4127   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4128   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4129   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4130   emit_int8(0x58);
4131   emit_operand(dst, src);
4132 }
4133 
4134 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4136   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4137   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4138   emit_int8(0x5C);
4139   emit_int8((unsigned char)(0xC0 | encode));
4140 }
4141 
4142 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4144   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4145   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4146   emit_int8(0x5C);
4147   emit_int8((unsigned char)(0xC0 | encode));
4148 }
4149 
4150 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4151   assert(VM_Version::supports_avx(), "");
4152   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4153   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4154   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4155   emit_int8(0x5C);
4156   emit_int8((unsigned char)(0xC0 | encode));
4157 }
4158 
4159 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4160   assert(VM_Version::supports_avx(), "");
4161   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4162   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4163   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4164   emit_int8(0x5C);
4165   emit_int8((unsigned char)(0xC0 | encode));
4166 }
4167 
4168 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4169   assert(VM_Version::supports_avx(), "");
4170   InstructionMark im(this);
4171   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4172   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4173   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4174   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4175   emit_int8(0x5C);
4176   emit_operand(dst, src);
4177 }
4178 
4179 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4180   assert(VM_Version::supports_avx(), "");
4181   InstructionMark im(this);
4182   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4183   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4184   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4185   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4186   emit_int8(0x5C);
4187   emit_operand(dst, src);
4188 }
4189 
4190 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4192   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4193   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4194   emit_int8(0x59);
4195   emit_int8((unsigned char)(0xC0 | encode));
4196 }
4197 
4198 void Assembler::mulpd(XMMRegister dst, Address src) {
4199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4200   InstructionMark im(this);
4201   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4202   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4203   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4204   emit_int8(0x59);
4205   emit_operand(dst, src);
4206 }
4207 
4208 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4209   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4211   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4212   emit_int8(0x59);
4213   emit_int8((unsigned char)(0xC0 | encode));
4214 }
4215 
4216 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4217   assert(VM_Version::supports_avx(), "");
4218   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4219   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4220   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4221   emit_int8(0x59);
4222   emit_int8((unsigned char)(0xC0 | encode));
4223 }
4224 
4225 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4226   assert(VM_Version::supports_avx(), "");
4227   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4228   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4229   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4230   emit_int8(0x59);
4231   emit_int8((unsigned char)(0xC0 | encode));
4232 }
4233 
4234 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4235   assert(VM_Version::supports_avx(), "");
4236   InstructionMark im(this);
4237   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4238   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4239   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4240   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4241   emit_int8(0x59);
4242   emit_operand(dst, src);
4243 }
4244 
4245 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4246   assert(VM_Version::supports_avx(), "");
4247   InstructionMark im(this);
4248   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4249   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4250   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4251   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4252   emit_int8(0x59);
4253   emit_operand(dst, src);
4254 }
4255 
4256 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4257   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4258   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4260   emit_int8(0x5E);
4261   emit_int8((unsigned char)(0xC0 | encode));
4262 }
4263 
4264 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4267   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4268   emit_int8(0x5E);
4269   emit_int8((unsigned char)(0xC0 | encode));
4270 }
4271 
4272 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4273   assert(VM_Version::supports_avx(), "");
4274   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4275   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4276   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4277   emit_int8(0x5E);
4278   emit_int8((unsigned char)(0xC0 | encode));
4279 }
4280 
4281 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4282   assert(VM_Version::supports_avx(), "");
4283   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4284   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4285   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4286   emit_int8(0x5E);
4287   emit_int8((unsigned char)(0xC0 | encode));
4288 }
4289 
4290 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4291   assert(VM_Version::supports_avx(), "");
4292   InstructionMark im(this);
4293   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4294   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4295   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4296   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4297   emit_int8(0x5E);
4298   emit_operand(dst, src);
4299 }
4300 
4301 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4302   assert(VM_Version::supports_avx(), "");
4303   InstructionMark im(this);
4304   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4305   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4306   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4307   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4308   emit_int8(0x5E);
4309   emit_operand(dst, src);
4310 }
4311 
4312 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4313   assert(VM_Version::supports_avx(), "");
4314   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4315   int nds_enc = 0;
4316   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4317   emit_int8(0x51);
4318   emit_int8((unsigned char)(0xC0 | encode));
4319 }
4320 
4321 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4322   assert(VM_Version::supports_avx(), "");
4323   InstructionMark im(this);
4324   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4325   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4326   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4327   emit_int8(0x51);
4328   emit_operand(dst, src);
4329 }
4330 
4331 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4332   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4333   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4334   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4335   emit_int8(0x54);
4336   emit_int8((unsigned char)(0xC0 | encode));
4337 }
4338 
4339 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4340   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4341   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4342   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4343   emit_int8(0x54);
4344   emit_int8((unsigned char)(0xC0 | encode));
4345 }
4346 
4347 void Assembler::andps(XMMRegister dst, Address src) {
4348   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4349   InstructionMark im(this);
4350   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4351   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4352   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4353   emit_int8(0x54);
4354   emit_operand(dst, src);
4355 }
4356 
4357 void Assembler::andpd(XMMRegister dst, Address src) {
4358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4359   InstructionMark im(this);
4360   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4361   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4362   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4363   emit_int8(0x54);
4364   emit_operand(dst, src);
4365 }
4366 
4367 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4368   assert(VM_Version::supports_avx(), "");
4369   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4370   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4371   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4372   emit_int8(0x54);
4373   emit_int8((unsigned char)(0xC0 | encode));
4374 }
4375 
4376 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4377   assert(VM_Version::supports_avx(), "");
4378   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4379   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4380   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4381   emit_int8(0x54);
4382   emit_int8((unsigned char)(0xC0 | encode));
4383 }
4384 
4385 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4386   assert(VM_Version::supports_avx(), "");
4387   InstructionMark im(this);
4388   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4389   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4390   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4391   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4392   emit_int8(0x54);
4393   emit_operand(dst, src);
4394 }
4395 
4396 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4397   assert(VM_Version::supports_avx(), "");
4398   InstructionMark im(this);
4399   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4400   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4401   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4402   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4403   emit_int8(0x54);
4404   emit_operand(dst, src);
4405 }
4406 
4407 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4409   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4410   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4411   emit_int8(0x15);
4412   emit_int8((unsigned char)(0xC0 | encode));
4413 }
4414 
4415 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4417   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4418   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4419   emit_int8(0x14);
4420   emit_int8((unsigned char)(0xC0 | encode));
4421 }
4422 
4423 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4424   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4425   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4426   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4427   emit_int8(0x57);
4428   emit_int8((unsigned char)(0xC0 | encode));
4429 }
4430 
4431 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4432   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4433   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4434   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4435   emit_int8(0x57);
4436   emit_int8((unsigned char)(0xC0 | encode));
4437 }
4438 
4439 void Assembler::xorpd(XMMRegister dst, Address src) {
4440   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4441   InstructionMark im(this);
4442   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4443   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4444   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4445   emit_int8(0x57);
4446   emit_operand(dst, src);
4447 }
4448 
4449 void Assembler::xorps(XMMRegister dst, Address src) {
4450   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4451   InstructionMark im(this);
4452   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4453   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4454   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4455   emit_int8(0x57);
4456   emit_operand(dst, src);
4457 }
4458 
4459 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4460   assert(VM_Version::supports_avx(), "");
4461   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4462   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4463   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4464   emit_int8(0x57);
4465   emit_int8((unsigned char)(0xC0 | encode));
4466 }
4467 
4468 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4469   assert(VM_Version::supports_avx(), "");
4470   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4471   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4472   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4473   emit_int8(0x57);
4474   emit_int8((unsigned char)(0xC0 | encode));
4475 }
4476 
4477 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4478   assert(VM_Version::supports_avx(), "");
4479   InstructionMark im(this);
4480   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4481   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4482   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4483   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4484   emit_int8(0x57);
4485   emit_operand(dst, src);
4486 }
4487 
4488 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4489   assert(VM_Version::supports_avx(), "");
4490   InstructionMark im(this);
4491   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4492   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4493   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4494   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4495   emit_int8(0x57);
4496   emit_operand(dst, src);
4497 }
4498 
4499 // Integer vector arithmetic
4500 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4501   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4502          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4503   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4504   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4505   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4506   emit_int8(0x01);
4507   emit_int8((unsigned char)(0xC0 | encode));
4508 }
4509 
4510 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4511   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4512          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4513   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4514   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4515   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4516   emit_int8(0x02);
4517   emit_int8((unsigned char)(0xC0 | encode));
4518 }
4519 
4520 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4521   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4522   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4523   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4524   emit_int8((unsigned char)0xFC);
4525   emit_int8((unsigned char)(0xC0 | encode));
4526 }
4527 
4528 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4529   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4530   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4531   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4532   emit_int8((unsigned char)0xFD);
4533   emit_int8((unsigned char)(0xC0 | encode));
4534 }
4535 
4536 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4538   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4539   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4540   emit_int8((unsigned char)0xFE);
4541   emit_int8((unsigned char)(0xC0 | encode));
4542 }
4543 
4544 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4545   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4546   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4547   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4548   emit_int8((unsigned char)0xD4);
4549   emit_int8((unsigned char)(0xC0 | encode));
4550 }
4551 
4552 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4553   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4554   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4555   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4556   emit_int8(0x01);
4557   emit_int8((unsigned char)(0xC0 | encode));
4558 }
4559 
4560 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4561   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4562   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4563   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4564   emit_int8(0x02);
4565   emit_int8((unsigned char)(0xC0 | encode));
4566 }
4567 
4568 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4569   assert(UseAVX > 0, "requires some form of AVX");
4570   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4571   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4572   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4573   emit_int8((unsigned char)0xFC);
4574   emit_int8((unsigned char)(0xC0 | encode));
4575 }
4576 
4577 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4578   assert(UseAVX > 0, "requires some form of AVX");
4579   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4580   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4581   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4582   emit_int8((unsigned char)0xFD);
4583   emit_int8((unsigned char)(0xC0 | encode));
4584 }
4585 
4586 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4587   assert(UseAVX > 0, "requires some form of AVX");
4588   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4589   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4590   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4591   emit_int8((unsigned char)0xFE);
4592   emit_int8((unsigned char)(0xC0 | encode));
4593 }
4594 
4595 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4596   assert(UseAVX > 0, "requires some form of AVX");
4597   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4598   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4599   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4600   emit_int8((unsigned char)0xD4);
4601   emit_int8((unsigned char)(0xC0 | encode));
4602 }
4603 
4604 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4605   assert(UseAVX > 0, "requires some form of AVX");
4606   InstructionMark im(this);
4607   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4609   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4610   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4611   emit_int8((unsigned char)0xFC);
4612   emit_operand(dst, src);
4613 }
4614 
4615 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4616   assert(UseAVX > 0, "requires some form of AVX");
4617   InstructionMark im(this);
4618   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4619   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4620   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4621   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4622   emit_int8((unsigned char)0xFD);
4623   emit_operand(dst, src);
4624 }
4625 
4626 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4627   assert(UseAVX > 0, "requires some form of AVX");
4628   InstructionMark im(this);
4629   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4630   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4631   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4632   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4633   emit_int8((unsigned char)0xFE);
4634   emit_operand(dst, src);
4635 }
4636 
4637 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4638   assert(UseAVX > 0, "requires some form of AVX");
4639   InstructionMark im(this);
4640   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4641   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4642   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4643   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4644   emit_int8((unsigned char)0xD4);
4645   emit_operand(dst, src);
4646 }
4647 
4648 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4649   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4650   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4651   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4652   emit_int8((unsigned char)0xF8);
4653   emit_int8((unsigned char)(0xC0 | encode));
4654 }
4655 
4656 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4658   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4659   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4660   emit_int8((unsigned char)0xF9);
4661   emit_int8((unsigned char)(0xC0 | encode));
4662 }
4663 
4664 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4665   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4666   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4667   emit_int8((unsigned char)0xFA);
4668   emit_int8((unsigned char)(0xC0 | encode));
4669 }
4670 
4671 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4672   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4673   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4674   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4675   emit_int8((unsigned char)0xFB);
4676   emit_int8((unsigned char)(0xC0 | encode));
4677 }
4678 
4679 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4680   assert(UseAVX > 0, "requires some form of AVX");
4681   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4682   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4683   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4684   emit_int8((unsigned char)0xF8);
4685   emit_int8((unsigned char)(0xC0 | encode));
4686 }
4687 
4688 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4689   assert(UseAVX > 0, "requires some form of AVX");
4690   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4691   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4692   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4693   emit_int8((unsigned char)0xF9);
4694   emit_int8((unsigned char)(0xC0 | encode));
4695 }
4696 
4697 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4698   assert(UseAVX > 0, "requires some form of AVX");
4699   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4700   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4701   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4702   emit_int8((unsigned char)0xFA);
4703   emit_int8((unsigned char)(0xC0 | encode));
4704 }
4705 
4706 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4707   assert(UseAVX > 0, "requires some form of AVX");
4708   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4709   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4710   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4711   emit_int8((unsigned char)0xFB);
4712   emit_int8((unsigned char)(0xC0 | encode));
4713 }
4714 
4715 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4716   assert(UseAVX > 0, "requires some form of AVX");
4717   InstructionMark im(this);
4718   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4719   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4720   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4721   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4722   emit_int8((unsigned char)0xF8);
4723   emit_operand(dst, src);
4724 }
4725 
4726 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4727   assert(UseAVX > 0, "requires some form of AVX");
4728   InstructionMark im(this);
4729   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4730   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4731   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4732   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4733   emit_int8((unsigned char)0xF9);
4734   emit_operand(dst, src);
4735 }
4736 
4737 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4738   assert(UseAVX > 0, "requires some form of AVX");
4739   InstructionMark im(this);
4740   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4741   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4742   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4743   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4744   emit_int8((unsigned char)0xFA);
4745   emit_operand(dst, src);
4746 }
4747 
4748 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4749   assert(UseAVX > 0, "requires some form of AVX");
4750   InstructionMark im(this);
4751   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4752   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4753   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4754   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4755   emit_int8((unsigned char)0xFB);
4756   emit_operand(dst, src);
4757 }
4758 
4759 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4761   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4762   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4763   emit_int8((unsigned char)0xD5);
4764   emit_int8((unsigned char)(0xC0 | encode));
4765 }
4766 
4767 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4768   assert(VM_Version::supports_sse4_1(), "");
4769   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4770   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4771   emit_int8(0x40);
4772   emit_int8((unsigned char)(0xC0 | encode));
4773 }
4774 
4775 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4776   assert(UseAVX > 0, "requires some form of AVX");
4777   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4778   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4779   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4780   emit_int8((unsigned char)0xD5);
4781   emit_int8((unsigned char)(0xC0 | encode));
4782 }
4783 
4784 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4785   assert(UseAVX > 0, "requires some form of AVX");
4786   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4787   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4788   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4789   emit_int8(0x40);
4790   emit_int8((unsigned char)(0xC0 | encode));
4791 }
4792 
4793 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4794   assert(UseAVX > 2, "requires some form of AVX");
4795   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4796   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4797   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4798   emit_int8(0x40);
4799   emit_int8((unsigned char)(0xC0 | encode));
4800 }
4801 
4802 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4803   assert(UseAVX > 0, "requires some form of AVX");
4804   InstructionMark im(this);
4805   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4806   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4807   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4808   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4809   emit_int8((unsigned char)0xD5);
4810   emit_operand(dst, src);
4811 }
4812 
4813 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4814   assert(UseAVX > 0, "requires some form of AVX");
4815   InstructionMark im(this);
4816   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4817   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4818   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4819   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4820   emit_int8(0x40);
4821   emit_operand(dst, src);
4822 }
4823 
4824 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4825   assert(UseAVX > 0, "requires some form of AVX");
4826   InstructionMark im(this);
4827   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4828   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4829   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4830   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4831   emit_int8(0x40);
4832   emit_operand(dst, src);
4833 }
4834 
4835 // Shift packed integers left by specified number of bits.
4836 void Assembler::psllw(XMMRegister dst, int shift) {
4837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4839   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4840   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4841   emit_int8(0x71);
4842   emit_int8((unsigned char)(0xC0 | encode));
4843   emit_int8(shift & 0xFF);
4844 }
4845 
4846 void Assembler::pslld(XMMRegister dst, int shift) {
4847   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4848   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4849   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4850   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4851   emit_int8(0x72);
4852   emit_int8((unsigned char)(0xC0 | encode));
4853   emit_int8(shift & 0xFF);
4854 }
4855 
4856 void Assembler::psllq(XMMRegister dst, int shift) {
4857   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4858   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4859   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4860   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4861   emit_int8(0x73);
4862   emit_int8((unsigned char)(0xC0 | encode));
4863   emit_int8(shift & 0xFF);
4864 }
4865 
4866 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4867   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4868   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4869   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4870   emit_int8((unsigned char)0xF1);
4871   emit_int8((unsigned char)(0xC0 | encode));
4872 }
4873 
4874 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4875   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4877   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4878   emit_int8((unsigned char)0xF2);
4879   emit_int8((unsigned char)(0xC0 | encode));
4880 }
4881 
4882 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4883   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4884   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4885   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4886   emit_int8((unsigned char)0xF3);
4887   emit_int8((unsigned char)(0xC0 | encode));
4888 }
4889 
4890 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4891   assert(UseAVX > 0, "requires some form of AVX");
4892   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4893   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4894   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4895   emit_int8(0x71);
4896   emit_int8((unsigned char)(0xC0 | encode));
4897   emit_int8(shift & 0xFF);
4898 }
4899 
4900 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4901   assert(UseAVX > 0, "requires some form of AVX");
4902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4903   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4904   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4905   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4906   emit_int8(0x72);
4907   emit_int8((unsigned char)(0xC0 | encode));
4908   emit_int8(shift & 0xFF);
4909 }
4910 
4911 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4912   assert(UseAVX > 0, "requires some form of AVX");
4913   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4914   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4915   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4916   emit_int8(0x73);
4917   emit_int8((unsigned char)(0xC0 | encode));
4918   emit_int8(shift & 0xFF);
4919 }
4920 
4921 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4922   assert(UseAVX > 0, "requires some form of AVX");
4923   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4924   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4925   emit_int8((unsigned char)0xF1);
4926   emit_int8((unsigned char)(0xC0 | encode));
4927 }
4928 
4929 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4930   assert(UseAVX > 0, "requires some form of AVX");
4931   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4932   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4933   emit_int8((unsigned char)0xF2);
4934   emit_int8((unsigned char)(0xC0 | encode));
4935 }
4936 
4937 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4938   assert(UseAVX > 0, "requires some form of AVX");
4939   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4940   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4941   emit_int8((unsigned char)0xF3);
4942   emit_int8((unsigned char)(0xC0 | encode));
4943 }
4944 
4945 // Shift packed integers logically right by specified number of bits.
4946 void Assembler::psrlw(XMMRegister dst, int shift) {
4947   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4948   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4949   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4950   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4951   emit_int8(0x71);
4952   emit_int8((unsigned char)(0xC0 | encode));
4953   emit_int8(shift & 0xFF);
4954 }
4955 
4956 void Assembler::psrld(XMMRegister dst, int shift) {
4957   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4958   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4959   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4960   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4961   emit_int8(0x72);
4962   emit_int8((unsigned char)(0xC0 | encode));
4963   emit_int8(shift & 0xFF);
4964 }
4965 
4966 void Assembler::psrlq(XMMRegister dst, int shift) {
4967   // Do not confuse it with psrldq SSE2 instruction which
4968   // shifts 128 bit value in xmm register by number of bytes.
4969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4971   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4972   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4973   emit_int8(0x73);
4974   emit_int8((unsigned char)(0xC0 | encode));
4975   emit_int8(shift & 0xFF);
4976 }
4977 
4978 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4979   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4980   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4981   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4982   emit_int8((unsigned char)0xD1);
4983   emit_int8((unsigned char)(0xC0 | encode));
4984 }
4985 
4986 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4988   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4989   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4990   emit_int8((unsigned char)0xD2);
4991   emit_int8((unsigned char)(0xC0 | encode));
4992 }
4993 
4994 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4996   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4997   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4998   emit_int8((unsigned char)0xD3);
4999   emit_int8((unsigned char)(0xC0 | encode));
5000 }
5001 
5002 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5003   assert(UseAVX > 0, "requires some form of AVX");
5004   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5005   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5006   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5007   emit_int8(0x71);
5008   emit_int8((unsigned char)(0xC0 | encode));
5009   emit_int8(shift & 0xFF);
5010 }
5011 
5012 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5013   assert(UseAVX > 0, "requires some form of AVX");
5014   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5015   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5016   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5017   emit_int8(0x72);
5018   emit_int8((unsigned char)(0xC0 | encode));
5019   emit_int8(shift & 0xFF);
5020 }
5021 
5022 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5023   assert(UseAVX > 0, "requires some form of AVX");
5024   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5025   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5026   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5027   emit_int8(0x73);
5028   emit_int8((unsigned char)(0xC0 | encode));
5029   emit_int8(shift & 0xFF);
5030 }
5031 
5032 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5033   assert(UseAVX > 0, "requires some form of AVX");
5034   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5035   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5036   emit_int8((unsigned char)0xD1);
5037   emit_int8((unsigned char)(0xC0 | encode));
5038 }
5039 
5040 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5041   assert(UseAVX > 0, "requires some form of AVX");
5042   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5043   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5044   emit_int8((unsigned char)0xD2);
5045   emit_int8((unsigned char)(0xC0 | encode));
5046 }
5047 
5048 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5049   assert(UseAVX > 0, "requires some form of AVX");
5050   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5051   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5052   emit_int8((unsigned char)0xD3);
5053   emit_int8((unsigned char)(0xC0 | encode));
5054 }
5055 
5056 // Shift packed integers arithmetically right by specified number of bits.
5057 void Assembler::psraw(XMMRegister dst, int shift) {
5058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5059   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5060   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5061   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5062   emit_int8(0x71);
5063   emit_int8((unsigned char)(0xC0 | encode));
5064   emit_int8(shift & 0xFF);
5065 }
5066 
5067 void Assembler::psrad(XMMRegister dst, int shift) {
5068   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5069   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5070   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5071   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5072   emit_int8(0x72);
5073   emit_int8((unsigned char)(0xC0 | encode));
5074   emit_int8(shift & 0xFF);
5075 }
5076 
5077 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5078   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5079   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5080   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5081   emit_int8((unsigned char)0xE1);
5082   emit_int8((unsigned char)(0xC0 | encode));
5083 }
5084 
5085 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5086   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5087   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5088   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5089   emit_int8((unsigned char)0xE2);
5090   emit_int8((unsigned char)(0xC0 | encode));
5091 }
5092 
5093 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5094   assert(UseAVX > 0, "requires some form of AVX");
5095   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5096   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5097   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5098   emit_int8(0x71);
5099   emit_int8((unsigned char)(0xC0 | encode));
5100   emit_int8(shift & 0xFF);
5101 }
5102 
5103 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5104   assert(UseAVX > 0, "requires some form of AVX");
5105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5106   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5107   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5108   emit_int8(0x72);
5109   emit_int8((unsigned char)(0xC0 | encode));
5110   emit_int8(shift & 0xFF);
5111 }
5112 
5113 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5114   assert(UseAVX > 0, "requires some form of AVX");
5115   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5116   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5117   emit_int8((unsigned char)0xE1);
5118   emit_int8((unsigned char)(0xC0 | encode));
5119 }
5120 
5121 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5122   assert(UseAVX > 0, "requires some form of AVX");
5123   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5124   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5125   emit_int8((unsigned char)0xE2);
5126   emit_int8((unsigned char)(0xC0 | encode));
5127 }
5128 
5129 
5130 // logical operations packed integers
5131 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5132   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5133   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5134   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5135   emit_int8((unsigned char)0xDB);
5136   emit_int8((unsigned char)(0xC0 | encode));
5137 }
5138 
5139 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5140   assert(UseAVX > 0, "requires some form of AVX");
5141   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5142   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5143   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5144   emit_int8((unsigned char)0xDB);
5145   emit_int8((unsigned char)(0xC0 | encode));
5146 }
5147 
5148 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5149   assert(UseAVX > 0, "requires some form of AVX");
5150   InstructionMark im(this);
5151   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5152   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5153   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5154   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5155   emit_int8((unsigned char)0xDB);
5156   emit_operand(dst, src);
5157 }
5158 
5159 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5160   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5161   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5162   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5163   emit_int8((unsigned char)0xDF);
5164   emit_int8((unsigned char)(0xC0 | encode));
5165 }
5166 
5167 void Assembler::por(XMMRegister dst, XMMRegister src) {
5168   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5169   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5170   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5171   emit_int8((unsigned char)0xEB);
5172   emit_int8((unsigned char)(0xC0 | encode));
5173 }
5174 
5175 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5176   assert(UseAVX > 0, "requires some form of AVX");
5177   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5178   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5179   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5180   emit_int8((unsigned char)0xEB);
5181   emit_int8((unsigned char)(0xC0 | encode));
5182 }
5183 
5184 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5185   assert(UseAVX > 0, "requires some form of AVX");
5186   InstructionMark im(this);
5187   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5188   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5189   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5190   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5191   emit_int8((unsigned char)0xEB);
5192   emit_operand(dst, src);
5193 }
5194 
5195 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5196   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5197   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5198   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5199   emit_int8((unsigned char)0xEF);
5200   emit_int8((unsigned char)(0xC0 | encode));
5201 }
5202 
5203 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5204   assert(UseAVX > 0, "requires some form of AVX");
5205   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5206   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5207   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5208   emit_int8((unsigned char)0xEF);
5209   emit_int8((unsigned char)(0xC0 | encode));
5210 }
5211 
5212 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5213   assert(UseAVX > 0, "requires some form of AVX");
5214   InstructionMark im(this);
5215   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5216   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5217   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5218   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5219   emit_int8((unsigned char)0xEF);
5220   emit_operand(dst, src);
5221 }
5222 
5223 
5224 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5225   assert(VM_Version::supports_avx(), "");
5226   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5227   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5228   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5229   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5230   emit_int8(0x18);
5231   emit_int8((unsigned char)(0xC0 | encode));
5232   // 0x00 - insert into lower 128 bits
5233   // 0x01 - insert into upper 128 bits
5234   emit_int8(0x01);
5235 }
5236 
5237 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5238   assert(VM_Version::supports_evex(), "");
5239   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5240   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5241   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5242   emit_int8(0x1A);
5243   emit_int8((unsigned char)(0xC0 | encode));
5244   // 0x00 - insert into lower 256 bits
5245   // 0x01 - insert into upper 256 bits
5246   emit_int8(value & 0x01);
5247 }
5248 
5249 void Assembler::vinsertf64x4h(XMMRegister dst, Address src, int value) {
5250   assert(VM_Version::supports_evex(), "");
5251   assert(dst != xnoreg, "sanity");
5252   InstructionMark im(this);
5253   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5254   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5255   // swap src<->dst for encoding
5256   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5257   emit_int8(0x1A);
5258   emit_operand(dst, src);
5259   // 0x00 - insert into lower 256 bits
5260   // 0x01 - insert into upper 128 bits
5261   emit_int8(value & 0x01);
5262 }
5263 
5264 void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5265   assert(VM_Version::supports_evex(), "");
5266   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5267   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5268   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5269   emit_int8(0x18);
5270   emit_int8((unsigned char)(0xC0 | encode));
5271   // 0x00 - insert into q0 128 bits (0..127)
5272   // 0x01 - insert into q1 128 bits (128..255)
5273   // 0x02 - insert into q2 128 bits (256..383)
5274   // 0x03 - insert into q3 128 bits (384..511)
5275   emit_int8(value & 0x3);
5276 }
5277 
5278 void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
5279   assert(VM_Version::supports_avx(), "");
5280   assert(dst != xnoreg, "sanity");
5281   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5282   InstructionMark im(this);
5283   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5284   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5285   // swap src<->dst for encoding
5286   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5287   emit_int8(0x18);
5288   emit_operand(dst, src);
5289   // 0x00 - insert into q0 128 bits (0..127)
5290   // 0x01 - insert into q1 128 bits (128..255)
5291   // 0x02 - insert into q2 128 bits (256..383)
5292   // 0x03 - insert into q3 128 bits (384..511)
5293   emit_int8(value & 0x3);
5294 }
5295 
5296 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
5297   assert(VM_Version::supports_avx(), "");
5298   assert(dst != xnoreg, "sanity");
5299   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5300   InstructionMark im(this);
5301   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5302   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5303   // swap src<->dst for encoding
5304   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5305   emit_int8(0x18);
5306   emit_operand(dst, src);
5307   // 0x01 - insert into upper 128 bits
5308   emit_int8(0x01);
5309 }
5310 
5311 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
5312   assert(VM_Version::supports_avx(), "");
5313   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5314   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5315   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5316   emit_int8(0x19);
5317   emit_int8((unsigned char)(0xC0 | encode));
5318   // 0x00 - insert into lower 128 bits
5319   // 0x01 - insert into upper 128 bits
5320   emit_int8(0x01);
5321 }
5322 
5323 void Assembler::vextractf128h(Address dst, XMMRegister src) {
5324   assert(VM_Version::supports_avx(), "");
5325   assert(src != xnoreg, "sanity");
5326   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5327   InstructionMark im(this);
5328   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5329   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5330   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5331   emit_int8(0x19);
5332   emit_operand(src, dst);
5333   // 0x01 - extract from upper 128 bits
5334   emit_int8(0x01);
5335 }
5336 
5337 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5338   assert(VM_Version::supports_avx2(), "");
5339   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5340   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5341   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5342   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5343   emit_int8(0x38);
5344   emit_int8((unsigned char)(0xC0 | encode));
5345   // 0x00 - insert into lower 128 bits
5346   // 0x01 - insert into upper 128 bits
5347   emit_int8(0x01);
5348 }
5349 
5350 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5351   assert(VM_Version::supports_evex(), "");
5352   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5353   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5354   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5355   emit_int8(0x38);
5356   emit_int8((unsigned char)(0xC0 | encode));
5357   // 0x00 - insert into lower 256 bits
5358   // 0x01 - insert into upper 256 bits
5359   emit_int8(value & 0x01);
5360 }
5361 
5362 void Assembler::vinserti128h(XMMRegister dst, Address src) {
5363   assert(VM_Version::supports_avx2(), "");
5364   assert(dst != xnoreg, "sanity");
5365   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5366   InstructionMark im(this);
5367   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5368   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5369   // swap src<->dst for encoding
5370   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5371   emit_int8(0x38);
5372   emit_operand(dst, src);
5373   // 0x01 - insert into upper 128 bits
5374   emit_int8(0x01);
5375 }
5376 
5377 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
5378   assert(VM_Version::supports_avx(), "");
5379   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5380   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5381   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5382   emit_int8(0x39);
5383   emit_int8((unsigned char)(0xC0 | encode));
5384   // 0x00 - insert into lower 128 bits
5385   // 0x01 - insert into upper 128 bits
5386   emit_int8(0x01);
5387 }
5388 
5389 void Assembler::vextracti128h(Address dst, XMMRegister src) {
5390   assert(VM_Version::supports_avx2(), "");
5391   assert(src != xnoreg, "sanity");
5392   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5393   InstructionMark im(this);
5394   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5395   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5396   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5397   emit_int8(0x39);
5398   emit_operand(src, dst);
5399   // 0x01 - extract from upper 128 bits
5400   emit_int8(0x01);
5401 }
5402 
5403 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src, int value) {
5404   assert(VM_Version::supports_evex(), "");
5405   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5406   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5407   emit_int8(0x3B);
5408   emit_int8((unsigned char)(0xC0 | encode));
5409   // 0x00 - extract from lower 256 bits
5410   // 0x01 - extract from upper 256 bits
5411   emit_int8(value & 0x01);
5412 }
5413 
5414 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
5415   assert(VM_Version::supports_evex(), "");
5416   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5417   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5418   emit_int8(0x39);
5419   emit_int8((unsigned char)(0xC0 | encode));
5420   // 0x01 - extract from bits 255:128
5421   // 0x02 - extract from bits 383:256
5422   // 0x03 - extract from bits 511:384
5423   emit_int8(value & 0x3);
5424 }
5425 
5426 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src, int value) {
5427   assert(VM_Version::supports_evex(), "");
5428   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5429   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5430   emit_int8(0x1B);
5431   emit_int8((unsigned char)(0xC0 | encode));
5432   // 0x00 - extract from lower 256 bits
5433   // 0x01 - extract from upper 256 bits
5434   emit_int8(value & 0x1);
5435 }
5436 
5437 void Assembler::vextractf64x4h(Address dst, XMMRegister src, int value) {
5438   assert(VM_Version::supports_evex(), "");
5439   assert(src != xnoreg, "sanity");
5440   InstructionMark im(this);
5441   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5442   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5443   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5444   emit_int8(0x1B);
5445   emit_operand(src, dst);
5446   // 0x00 - extract from lower 256 bits
5447   // 0x01 - extract from upper 256 bits
5448   emit_int8(value & 0x01);
5449 }
5450 
5451 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5452   assert(VM_Version::supports_avx(), "");
5453   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5454   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5455   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5456   emit_int8(0x19);
5457   emit_int8((unsigned char)(0xC0 | encode));
5458   // 0x00 - extract from bits 127:0
5459   // 0x01 - extract from bits 255:128
5460   // 0x02 - extract from bits 383:256
5461   // 0x03 - extract from bits 511:384
5462   emit_int8(value & 0x3);
5463 }
5464 
5465 void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
5466   assert(VM_Version::supports_evex(), "");
5467   assert(src != xnoreg, "sanity");
5468   InstructionMark im(this);
5469   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5470   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5471   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5472   emit_int8(0x19);
5473   emit_operand(src, dst);
5474   // 0x00 - extract from bits 127:0
5475   // 0x01 - extract from bits 255:128
5476   // 0x02 - extract from bits 383:256
5477   // 0x03 - extract from bits 511:384
5478   emit_int8(value & 0x3);
5479 }
5480 
5481 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5482   assert(VM_Version::supports_evex(), "");
5483   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5484   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5485   emit_int8(0x19);
5486   emit_int8((unsigned char)(0xC0 | encode));
5487   // 0x01 - extract from bits 255:128
5488   // 0x02 - extract from bits 383:256
5489   // 0x03 - extract from bits 511:384
5490   emit_int8(value & 0x3);
5491 }
5492 
5493 // duplicate 4-bytes integer data from src into 8 locations in dest
5494 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5495   assert(VM_Version::supports_avx2(), "");
5496   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5497   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5498   emit_int8(0x58);
5499   emit_int8((unsigned char)(0xC0 | encode));
5500 }
5501 
5502 // duplicate 2-bytes integer data from src into 16 locations in dest
5503 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
5504   assert(VM_Version::supports_avx2(), "");
5505   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5506   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5507   emit_int8(0x79);
5508   emit_int8((unsigned char)(0xC0 | encode));
5509 }
5510 
5511 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5512 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5513   assert(VM_Version::supports_evex(), "");
5514   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5515   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5516   emit_int8(0x78);
5517   emit_int8((unsigned char)(0xC0 | encode));
5518 }
5519 
5520 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5521   assert(VM_Version::supports_evex(), "");
5522   assert(dst != xnoreg, "sanity");
5523   InstructionMark im(this);
5524   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5525   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
5526   // swap src<->dst for encoding
5527   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5528   emit_int8(0x78);
5529   emit_operand(dst, src);
5530 }
5531 
5532 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5533 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5534   assert(VM_Version::supports_evex(), "");
5535   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5536   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5537   emit_int8(0x79);
5538   emit_int8((unsigned char)(0xC0 | encode));
5539 }
5540 
5541 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5542   assert(VM_Version::supports_evex(), "");
5543   assert(dst != xnoreg, "sanity");
5544   InstructionMark im(this);
5545   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5546   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
5547   // swap src<->dst for encoding
5548   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5549   emit_int8(0x79);
5550   emit_operand(dst, src);
5551 }
5552 
5553 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5554 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5555   assert(VM_Version::supports_evex(), "");
5556   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5557   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5558   emit_int8(0x58);
5559   emit_int8((unsigned char)(0xC0 | encode));
5560 }
5561 
5562 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5563   assert(VM_Version::supports_evex(), "");
5564   assert(dst != xnoreg, "sanity");
5565   InstructionMark im(this);
5566   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5567   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5568   // swap src<->dst for encoding
5569   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5570   emit_int8(0x58);
5571   emit_operand(dst, src);
5572 }
5573 
5574 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5575 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5576   assert(VM_Version::supports_evex(), "");
5577   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5578   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5579   emit_int8(0x59);
5580   emit_int8((unsigned char)(0xC0 | encode));
5581 }
5582 
5583 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5584   assert(VM_Version::supports_evex(), "");
5585   assert(dst != xnoreg, "sanity");
5586   InstructionMark im(this);
5587   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5588   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5589   // swap src<->dst for encoding
5590   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5591   emit_int8(0x59);
5592   emit_operand(dst, src);
5593 }
5594 
5595 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5596 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5597   assert(VM_Version::supports_evex(), "");
5598   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5599   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5600   emit_int8(0x18);
5601   emit_int8((unsigned char)(0xC0 | encode));
5602 }
5603 
5604 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5605   assert(VM_Version::supports_evex(), "");
5606   assert(dst != xnoreg, "sanity");
5607   InstructionMark im(this);
5608   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5609   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5610   // swap src<->dst for encoding
5611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5612   emit_int8(0x18);
5613   emit_operand(dst, src);
5614 }
5615 
5616 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5617 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5618   assert(VM_Version::supports_evex(), "");
5619   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5620   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5621   emit_int8(0x19);
5622   emit_int8((unsigned char)(0xC0 | encode));
5623 }
5624 
5625 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5626   assert(VM_Version::supports_evex(), "");
5627   assert(dst != xnoreg, "sanity");
5628   InstructionMark im(this);
5629   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5630   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5631   // swap src<->dst for encoding
5632   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5633   emit_int8(0x19);
5634   emit_operand(dst, src);
5635 }
5636 
5637 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5638 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5639   assert(VM_Version::supports_evex(), "");
5640   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5641   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5642   emit_int8(0x7A);
5643   emit_int8((unsigned char)(0xC0 | encode));
5644 }
5645 
5646 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5647 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5648   assert(VM_Version::supports_evex(), "");
5649   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5650   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5651   emit_int8(0x7B);
5652   emit_int8((unsigned char)(0xC0 | encode));
5653 }
5654 
5655 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5656 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5657   assert(VM_Version::supports_evex(), "");
5658   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5659   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5660   emit_int8(0x7C);
5661   emit_int8((unsigned char)(0xC0 | encode));
5662 }
5663 
5664 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5665 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5666   assert(VM_Version::supports_evex(), "");
5667   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5668   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5669   emit_int8(0x7C);
5670   emit_int8((unsigned char)(0xC0 | encode));
5671 }
5672 
5673 // Carry-Less Multiplication Quadword
5674 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5675   assert(VM_Version::supports_clmul(), "");
5676   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5677   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5678   emit_int8(0x44);
5679   emit_int8((unsigned char)(0xC0 | encode));
5680   emit_int8((unsigned char)mask);
5681 }
5682 
5683 // Carry-Less Multiplication Quadword
5684 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5685   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5686   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5687   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5688   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5689   emit_int8(0x44);
5690   emit_int8((unsigned char)(0xC0 | encode));
5691   emit_int8((unsigned char)mask);
5692 }
5693 
5694 void Assembler::vzeroupper() {
5695   assert(VM_Version::supports_avx(), "");
5696   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5697   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5698   emit_int8(0x77);
5699 }
5700 
5701 
5702 #ifndef _LP64
5703 // 32bit only pieces of the assembler
5704 
5705 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5706   // NO PREFIX AS NEVER 64BIT
5707   InstructionMark im(this);
5708   emit_int8((unsigned char)0x81);
5709   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5710   emit_data(imm32, rspec, 0);
5711 }
5712 
5713 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5714   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5715   InstructionMark im(this);
5716   emit_int8((unsigned char)0x81);
5717   emit_operand(rdi, src1);
5718   emit_data(imm32, rspec, 0);
5719 }
5720 
5721 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5722 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5723 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5724 void Assembler::cmpxchg8(Address adr) {
5725   InstructionMark im(this);
5726   emit_int8(0x0F);
5727   emit_int8((unsigned char)0xC7);
5728   emit_operand(rcx, adr);
5729 }
5730 
5731 void Assembler::decl(Register dst) {
5732   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5733  emit_int8(0x48 | dst->encoding());
5734 }
5735 
5736 #endif // _LP64
5737 
5738 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5739 
5740 void Assembler::fabs() {
5741   emit_int8((unsigned char)0xD9);
5742   emit_int8((unsigned char)0xE1);
5743 }
5744 
5745 void Assembler::fadd(int i) {
5746   emit_farith(0xD8, 0xC0, i);
5747 }
5748 
5749 void Assembler::fadd_d(Address src) {
5750   InstructionMark im(this);
5751   emit_int8((unsigned char)0xDC);
5752   emit_operand32(rax, src);
5753 }
5754 
5755 void Assembler::fadd_s(Address src) {
5756   InstructionMark im(this);
5757   emit_int8((unsigned char)0xD8);
5758   emit_operand32(rax, src);
5759 }
5760 
5761 void Assembler::fadda(int i) {
5762   emit_farith(0xDC, 0xC0, i);
5763 }
5764 
5765 void Assembler::faddp(int i) {
5766   emit_farith(0xDE, 0xC0, i);
5767 }
5768 
5769 void Assembler::fchs() {
5770   emit_int8((unsigned char)0xD9);
5771   emit_int8((unsigned char)0xE0);
5772 }
5773 
5774 void Assembler::fcom(int i) {
5775   emit_farith(0xD8, 0xD0, i);
5776 }
5777 
5778 void Assembler::fcomp(int i) {
5779   emit_farith(0xD8, 0xD8, i);
5780 }
5781 
5782 void Assembler::fcomp_d(Address src) {
5783   InstructionMark im(this);
5784   emit_int8((unsigned char)0xDC);
5785   emit_operand32(rbx, src);
5786 }
5787 
5788 void Assembler::fcomp_s(Address src) {
5789   InstructionMark im(this);
5790   emit_int8((unsigned char)0xD8);
5791   emit_operand32(rbx, src);
5792 }
5793 
5794 void Assembler::fcompp() {
5795   emit_int8((unsigned char)0xDE);
5796   emit_int8((unsigned char)0xD9);
5797 }
5798 
5799 void Assembler::fcos() {
5800   emit_int8((unsigned char)0xD9);
5801   emit_int8((unsigned char)0xFF);
5802 }
5803 
5804 void Assembler::fdecstp() {
5805   emit_int8((unsigned char)0xD9);
5806   emit_int8((unsigned char)0xF6);
5807 }
5808 
5809 void Assembler::fdiv(int i) {
5810   emit_farith(0xD8, 0xF0, i);
5811 }
5812 
5813 void Assembler::fdiv_d(Address src) {
5814   InstructionMark im(this);
5815   emit_int8((unsigned char)0xDC);
5816   emit_operand32(rsi, src);
5817 }
5818 
5819 void Assembler::fdiv_s(Address src) {
5820   InstructionMark im(this);
5821   emit_int8((unsigned char)0xD8);
5822   emit_operand32(rsi, src);
5823 }
5824 
5825 void Assembler::fdiva(int i) {
5826   emit_farith(0xDC, 0xF8, i);
5827 }
5828 
5829 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5830 //       is erroneous for some of the floating-point instructions below.
5831 
5832 void Assembler::fdivp(int i) {
5833   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5834 }
5835 
5836 void Assembler::fdivr(int i) {
5837   emit_farith(0xD8, 0xF8, i);
5838 }
5839 
5840 void Assembler::fdivr_d(Address src) {
5841   InstructionMark im(this);
5842   emit_int8((unsigned char)0xDC);
5843   emit_operand32(rdi, src);
5844 }
5845 
5846 void Assembler::fdivr_s(Address src) {
5847   InstructionMark im(this);
5848   emit_int8((unsigned char)0xD8);
5849   emit_operand32(rdi, src);
5850 }
5851 
5852 void Assembler::fdivra(int i) {
5853   emit_farith(0xDC, 0xF0, i);
5854 }
5855 
5856 void Assembler::fdivrp(int i) {
5857   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5858 }
5859 
5860 void Assembler::ffree(int i) {
5861   emit_farith(0xDD, 0xC0, i);
5862 }
5863 
5864 void Assembler::fild_d(Address adr) {
5865   InstructionMark im(this);
5866   emit_int8((unsigned char)0xDF);
5867   emit_operand32(rbp, adr);
5868 }
5869 
5870 void Assembler::fild_s(Address adr) {
5871   InstructionMark im(this);
5872   emit_int8((unsigned char)0xDB);
5873   emit_operand32(rax, adr);
5874 }
5875 
5876 void Assembler::fincstp() {
5877   emit_int8((unsigned char)0xD9);
5878   emit_int8((unsigned char)0xF7);
5879 }
5880 
5881 void Assembler::finit() {
5882   emit_int8((unsigned char)0x9B);
5883   emit_int8((unsigned char)0xDB);
5884   emit_int8((unsigned char)0xE3);
5885 }
5886 
5887 void Assembler::fist_s(Address adr) {
5888   InstructionMark im(this);
5889   emit_int8((unsigned char)0xDB);
5890   emit_operand32(rdx, adr);
5891 }
5892 
5893 void Assembler::fistp_d(Address adr) {
5894   InstructionMark im(this);
5895   emit_int8((unsigned char)0xDF);
5896   emit_operand32(rdi, adr);
5897 }
5898 
5899 void Assembler::fistp_s(Address adr) {
5900   InstructionMark im(this);
5901   emit_int8((unsigned char)0xDB);
5902   emit_operand32(rbx, adr);
5903 }
5904 
5905 void Assembler::fld1() {
5906   emit_int8((unsigned char)0xD9);
5907   emit_int8((unsigned char)0xE8);
5908 }
5909 
5910 void Assembler::fld_d(Address adr) {
5911   InstructionMark im(this);
5912   emit_int8((unsigned char)0xDD);
5913   emit_operand32(rax, adr);
5914 }
5915 
5916 void Assembler::fld_s(Address adr) {
5917   InstructionMark im(this);
5918   emit_int8((unsigned char)0xD9);
5919   emit_operand32(rax, adr);
5920 }
5921 
5922 
5923 void Assembler::fld_s(int index) {
5924   emit_farith(0xD9, 0xC0, index);
5925 }
5926 
5927 void Assembler::fld_x(Address adr) {
5928   InstructionMark im(this);
5929   emit_int8((unsigned char)0xDB);
5930   emit_operand32(rbp, adr);
5931 }
5932 
5933 void Assembler::fldcw(Address src) {
5934   InstructionMark im(this);
5935   emit_int8((unsigned char)0xD9);
5936   emit_operand32(rbp, src);
5937 }
5938 
5939 void Assembler::fldenv(Address src) {
5940   InstructionMark im(this);
5941   emit_int8((unsigned char)0xD9);
5942   emit_operand32(rsp, src);
5943 }
5944 
5945 void Assembler::fldlg2() {
5946   emit_int8((unsigned char)0xD9);
5947   emit_int8((unsigned char)0xEC);
5948 }
5949 
5950 void Assembler::fldln2() {
5951   emit_int8((unsigned char)0xD9);
5952   emit_int8((unsigned char)0xED);
5953 }
5954 
5955 void Assembler::fldz() {
5956   emit_int8((unsigned char)0xD9);
5957   emit_int8((unsigned char)0xEE);
5958 }
5959 
5960 void Assembler::flog() {
5961   fldln2();
5962   fxch();
5963   fyl2x();
5964 }
5965 
5966 void Assembler::flog10() {
5967   fldlg2();
5968   fxch();
5969   fyl2x();
5970 }
5971 
5972 void Assembler::fmul(int i) {
5973   emit_farith(0xD8, 0xC8, i);
5974 }
5975 
5976 void Assembler::fmul_d(Address src) {
5977   InstructionMark im(this);
5978   emit_int8((unsigned char)0xDC);
5979   emit_operand32(rcx, src);
5980 }
5981 
5982 void Assembler::fmul_s(Address src) {
5983   InstructionMark im(this);
5984   emit_int8((unsigned char)0xD8);
5985   emit_operand32(rcx, src);
5986 }
5987 
5988 void Assembler::fmula(int i) {
5989   emit_farith(0xDC, 0xC8, i);
5990 }
5991 
5992 void Assembler::fmulp(int i) {
5993   emit_farith(0xDE, 0xC8, i);
5994 }
5995 
5996 void Assembler::fnsave(Address dst) {
5997   InstructionMark im(this);
5998   emit_int8((unsigned char)0xDD);
5999   emit_operand32(rsi, dst);
6000 }
6001 
6002 void Assembler::fnstcw(Address src) {
6003   InstructionMark im(this);
6004   emit_int8((unsigned char)0x9B);
6005   emit_int8((unsigned char)0xD9);
6006   emit_operand32(rdi, src);
6007 }
6008 
6009 void Assembler::fnstsw_ax() {
6010   emit_int8((unsigned char)0xDF);
6011   emit_int8((unsigned char)0xE0);
6012 }
6013 
6014 void Assembler::fprem() {
6015   emit_int8((unsigned char)0xD9);
6016   emit_int8((unsigned char)0xF8);
6017 }
6018 
6019 void Assembler::fprem1() {
6020   emit_int8((unsigned char)0xD9);
6021   emit_int8((unsigned char)0xF5);
6022 }
6023 
6024 void Assembler::frstor(Address src) {
6025   InstructionMark im(this);
6026   emit_int8((unsigned char)0xDD);
6027   emit_operand32(rsp, src);
6028 }
6029 
6030 void Assembler::fsin() {
6031   emit_int8((unsigned char)0xD9);
6032   emit_int8((unsigned char)0xFE);
6033 }
6034 
6035 void Assembler::fsqrt() {
6036   emit_int8((unsigned char)0xD9);
6037   emit_int8((unsigned char)0xFA);
6038 }
6039 
6040 void Assembler::fst_d(Address adr) {
6041   InstructionMark im(this);
6042   emit_int8((unsigned char)0xDD);
6043   emit_operand32(rdx, adr);
6044 }
6045 
6046 void Assembler::fst_s(Address adr) {
6047   InstructionMark im(this);
6048   emit_int8((unsigned char)0xD9);
6049   emit_operand32(rdx, adr);
6050 }
6051 
6052 void Assembler::fstp_d(Address adr) {
6053   InstructionMark im(this);
6054   emit_int8((unsigned char)0xDD);
6055   emit_operand32(rbx, adr);
6056 }
6057 
6058 void Assembler::fstp_d(int index) {
6059   emit_farith(0xDD, 0xD8, index);
6060 }
6061 
6062 void Assembler::fstp_s(Address adr) {
6063   InstructionMark im(this);
6064   emit_int8((unsigned char)0xD9);
6065   emit_operand32(rbx, adr);
6066 }
6067 
6068 void Assembler::fstp_x(Address adr) {
6069   InstructionMark im(this);
6070   emit_int8((unsigned char)0xDB);
6071   emit_operand32(rdi, adr);
6072 }
6073 
6074 void Assembler::fsub(int i) {
6075   emit_farith(0xD8, 0xE0, i);
6076 }
6077 
6078 void Assembler::fsub_d(Address src) {
6079   InstructionMark im(this);
6080   emit_int8((unsigned char)0xDC);
6081   emit_operand32(rsp, src);
6082 }
6083 
6084 void Assembler::fsub_s(Address src) {
6085   InstructionMark im(this);
6086   emit_int8((unsigned char)0xD8);
6087   emit_operand32(rsp, src);
6088 }
6089 
6090 void Assembler::fsuba(int i) {
6091   emit_farith(0xDC, 0xE8, i);
6092 }
6093 
6094 void Assembler::fsubp(int i) {
6095   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6096 }
6097 
6098 void Assembler::fsubr(int i) {
6099   emit_farith(0xD8, 0xE8, i);
6100 }
6101 
6102 void Assembler::fsubr_d(Address src) {
6103   InstructionMark im(this);
6104   emit_int8((unsigned char)0xDC);
6105   emit_operand32(rbp, src);
6106 }
6107 
6108 void Assembler::fsubr_s(Address src) {
6109   InstructionMark im(this);
6110   emit_int8((unsigned char)0xD8);
6111   emit_operand32(rbp, src);
6112 }
6113 
6114 void Assembler::fsubra(int i) {
6115   emit_farith(0xDC, 0xE0, i);
6116 }
6117 
6118 void Assembler::fsubrp(int i) {
6119   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6120 }
6121 
6122 void Assembler::ftan() {
6123   emit_int8((unsigned char)0xD9);
6124   emit_int8((unsigned char)0xF2);
6125   emit_int8((unsigned char)0xDD);
6126   emit_int8((unsigned char)0xD8);
6127 }
6128 
6129 void Assembler::ftst() {
6130   emit_int8((unsigned char)0xD9);
6131   emit_int8((unsigned char)0xE4);
6132 }
6133 
6134 void Assembler::fucomi(int i) {
6135   // make sure the instruction is supported (introduced for P6, together with cmov)
6136   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6137   emit_farith(0xDB, 0xE8, i);
6138 }
6139 
6140 void Assembler::fucomip(int i) {
6141   // make sure the instruction is supported (introduced for P6, together with cmov)
6142   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6143   emit_farith(0xDF, 0xE8, i);
6144 }
6145 
6146 void Assembler::fwait() {
6147   emit_int8((unsigned char)0x9B);
6148 }
6149 
6150 void Assembler::fxch(int i) {
6151   emit_farith(0xD9, 0xC8, i);
6152 }
6153 
6154 void Assembler::fyl2x() {
6155   emit_int8((unsigned char)0xD9);
6156   emit_int8((unsigned char)0xF1);
6157 }
6158 
6159 void Assembler::frndint() {
6160   emit_int8((unsigned char)0xD9);
6161   emit_int8((unsigned char)0xFC);
6162 }
6163 
6164 void Assembler::f2xm1() {
6165   emit_int8((unsigned char)0xD9);
6166   emit_int8((unsigned char)0xF0);
6167 }
6168 
6169 void Assembler::fldl2e() {
6170   emit_int8((unsigned char)0xD9);
6171   emit_int8((unsigned char)0xEA);
6172 }
6173 
6174 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6175 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6176 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6177 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6178 
6179 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6180 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6181   if (pre > 0) {
6182     emit_int8(simd_pre[pre]);
6183   }
6184   if (rex_w) {
6185     prefixq(adr, xreg);
6186   } else {
6187     prefix(adr, xreg);
6188   }
6189   if (opc > 0) {
6190     emit_int8(0x0F);
6191     int opc2 = simd_opc[opc];
6192     if (opc2 > 0) {
6193       emit_int8(opc2);
6194     }
6195   }
6196 }
6197 
6198 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6199   if (pre > 0) {
6200     emit_int8(simd_pre[pre]);
6201   }
6202   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6203   if (opc > 0) {
6204     emit_int8(0x0F);
6205     int opc2 = simd_opc[opc];
6206     if (opc2 > 0) {
6207       emit_int8(opc2);
6208     }
6209   }
6210   return encode;
6211 }
6212 
6213 
6214 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6215   int vector_len = _attributes->get_vector_len();
6216   bool vex_w = _attributes->is_rex_vex_w();
6217   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6218     prefix(VEX_3bytes);
6219 
6220     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6221     byte1 = (~byte1) & 0xE0;
6222     byte1 |= opc;
6223     emit_int8(byte1);
6224 
6225     int byte2 = ((~nds_enc) & 0xf) << 3;
6226     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6227     emit_int8(byte2);
6228   } else {
6229     prefix(VEX_2bytes);
6230 
6231     int byte1 = vex_r ? VEX_R : 0;
6232     byte1 = (~byte1) & 0x80;
6233     byte1 |= ((~nds_enc) & 0xf) << 3;
6234     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6235     emit_int8(byte1);
6236   }
6237 }
6238 
6239 // This is a 4 byte encoding
6240 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6241   // EVEX 0x62 prefix
6242   prefix(EVEX_4bytes);
6243   bool vex_w = _attributes->is_rex_vex_w();
6244   int evex_encoding = (vex_w ? VEX_W : 0);
6245   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6246   _attributes->set_evex_encoding(evex_encoding);
6247 
6248   // P0: byte 2, initialized to RXBR`00mm
6249   // instead of not'd
6250   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6251   byte2 = (~byte2) & 0xF0;
6252   // confine opc opcode extensions in mm bits to lower two bits
6253   // of form {0F, 0F_38, 0F_3A}
6254   byte2 |= opc;
6255   emit_int8(byte2);
6256 
6257   // P1: byte 3 as Wvvvv1pp
6258   int byte3 = ((~nds_enc) & 0xf) << 3;
6259   // p[10] is always 1
6260   byte3 |= EVEX_F;
6261   byte3 |= (vex_w & 1) << 7;
6262   // confine pre opcode extensions in pp bits to lower two bits
6263   // of form {66, F3, F2}
6264   byte3 |= pre;
6265   emit_int8(byte3);
6266 
6267   // P2: byte 4 as zL'Lbv'aaa
6268   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6269   // EVEX.v` for extending EVEX.vvvv or VIDX
6270   byte4 |= (evex_v ? 0: EVEX_V);
6271   // third EXEC.b for broadcast actions
6272   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6273   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6274   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6275   // last is EVEX.z for zero/merge actions
6276   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6277   emit_int8(byte4);
6278 }
6279 
6280 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6281   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6282   bool vex_b = adr.base_needs_rex();
6283   bool vex_x = adr.index_needs_rex();
6284   set_attributes(attributes);
6285   attributes->set_current_assembler(this);
6286 
6287   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6288   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6289     switch (attributes->get_vector_len()) {
6290     case AVX_128bit:
6291     case AVX_256bit:
6292       attributes->set_is_legacy_mode();
6293       break;
6294     }
6295   }
6296 
6297   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6298   {
6299     bool evex_r = (xreg_enc >= 16);
6300     bool evex_v = (nds_enc >= 16);
6301     attributes->set_is_evex_instruction();
6302     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6303   } else {
6304     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6305   }
6306 }
6307 
6308 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6309   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6310   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6311   bool vex_x = false;
6312   set_attributes(attributes);
6313   attributes->set_current_assembler(this);
6314 
6315   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6316   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6317     switch (attributes->get_vector_len()) {
6318     case AVX_128bit:
6319     case AVX_256bit:
6320       if ((dst_enc >= 16) | (nds_enc >= 16) | (src_enc >= 16)) {
6321         // up propagate arithmetic instructions to meet RA requirements
6322         attributes->set_vector_len(AVX_512bit);
6323       } else {
6324         attributes->set_is_legacy_mode();
6325       }
6326       break;
6327     }
6328   }
6329 
6330   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6331   {
6332     bool evex_r = (dst_enc >= 16);
6333     bool evex_v = (nds_enc >= 16);
6334     // can use vex_x as bank extender on rm encoding
6335     vex_x = (src_enc >= 16);
6336     attributes->set_is_evex_instruction();
6337     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6338   } else {
6339     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6340   }
6341 
6342   // return modrm byte components for operands
6343   return (((dst_enc & 7) << 3) | (src_enc & 7));
6344 }
6345 
6346 
6347 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6348                             VexOpcode opc, InstructionAttr *attributes) {
6349   if (UseAVX > 0) {
6350     int xreg_enc = xreg->encoding();
6351     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6352     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6353   } else {
6354     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6355     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6356   }
6357 }
6358 
6359 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6360                                       VexOpcode opc, InstructionAttr *attributes) {
6361   int dst_enc = dst->encoding();
6362   int src_enc = src->encoding();
6363   if (UseAVX > 0) {
6364     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6365     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6366   } else {
6367     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6368     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6369   }
6370 }
6371 
6372 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
6373                                       VexOpcode opc, InstructionAttr *attributes) {
6374   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6375   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6376 }
6377 
6378 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
6379                                       VexOpcode opc, InstructionAttr *attributes) {
6380   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6381   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6382 }
6383 
6384 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6385   assert(VM_Version::supports_avx(), "");
6386   assert(!VM_Version::supports_evex(), "");
6387   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6388   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6389   emit_int8((unsigned char)0xC2);
6390   emit_int8((unsigned char)(0xC0 | encode));
6391   emit_int8((unsigned char)(0xF & cop));
6392 }
6393 
6394 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6395   assert(VM_Version::supports_avx(), "");
6396   assert(!VM_Version::supports_evex(), "");
6397   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6398   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6399   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6400   emit_int8((unsigned char)0x4B);
6401   emit_int8((unsigned char)(0xC0 | encode));
6402   int src2_enc = src2->encoding();
6403   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6404 }
6405 
6406 
6407 #ifndef _LP64
6408 
6409 void Assembler::incl(Register dst) {
6410   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6411   emit_int8(0x40 | dst->encoding());
6412 }
6413 
6414 void Assembler::lea(Register dst, Address src) {
6415   leal(dst, src);
6416 }
6417 
6418 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6419   InstructionMark im(this);
6420   emit_int8((unsigned char)0xC7);
6421   emit_operand(rax, dst);
6422   emit_data((int)imm32, rspec, 0);
6423 }
6424 
6425 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6426   InstructionMark im(this);
6427   int encode = prefix_and_encode(dst->encoding());
6428   emit_int8((unsigned char)(0xB8 | encode));
6429   emit_data((int)imm32, rspec, 0);
6430 }
6431 
6432 void Assembler::popa() { // 32bit
6433   emit_int8(0x61);
6434 }
6435 
6436 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6437   InstructionMark im(this);
6438   emit_int8(0x68);
6439   emit_data(imm32, rspec, 0);
6440 }
6441 
6442 void Assembler::pusha() { // 32bit
6443   emit_int8(0x60);
6444 }
6445 
6446 void Assembler::set_byte_if_not_zero(Register dst) {
6447   emit_int8(0x0F);
6448   emit_int8((unsigned char)0x95);
6449   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6450 }
6451 
6452 void Assembler::shldl(Register dst, Register src) {
6453   emit_int8(0x0F);
6454   emit_int8((unsigned char)0xA5);
6455   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6456 }
6457 
6458 // 0F A4 / r ib
6459 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6460   emit_int8(0x0F);
6461   emit_int8((unsigned char)0xA4);
6462   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6463   emit_int8(imm8);
6464 }
6465 
6466 void Assembler::shrdl(Register dst, Register src) {
6467   emit_int8(0x0F);
6468   emit_int8((unsigned char)0xAD);
6469   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6470 }
6471 
6472 #else // LP64
6473 
6474 void Assembler::set_byte_if_not_zero(Register dst) {
6475   int enc = prefix_and_encode(dst->encoding(), true);
6476   emit_int8(0x0F);
6477   emit_int8((unsigned char)0x95);
6478   emit_int8((unsigned char)(0xE0 | enc));
6479 }
6480 
6481 // 64bit only pieces of the assembler
6482 // This should only be used by 64bit instructions that can use rip-relative
6483 // it cannot be used by instructions that want an immediate value.
6484 
6485 bool Assembler::reachable(AddressLiteral adr) {
6486   int64_t disp;
6487   // None will force a 64bit literal to the code stream. Likely a placeholder
6488   // for something that will be patched later and we need to certain it will
6489   // always be reachable.
6490   if (adr.reloc() == relocInfo::none) {
6491     return false;
6492   }
6493   if (adr.reloc() == relocInfo::internal_word_type) {
6494     // This should be rip relative and easily reachable.
6495     return true;
6496   }
6497   if (adr.reloc() == relocInfo::virtual_call_type ||
6498       adr.reloc() == relocInfo::opt_virtual_call_type ||
6499       adr.reloc() == relocInfo::static_call_type ||
6500       adr.reloc() == relocInfo::static_stub_type ) {
6501     // This should be rip relative within the code cache and easily
6502     // reachable until we get huge code caches. (At which point
6503     // ic code is going to have issues).
6504     return true;
6505   }
6506   if (adr.reloc() != relocInfo::external_word_type &&
6507       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6508       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6509       adr.reloc() != relocInfo::runtime_call_type ) {
6510     return false;
6511   }
6512 
6513   // Stress the correction code
6514   if (ForceUnreachable) {
6515     // Must be runtimecall reloc, see if it is in the codecache
6516     // Flipping stuff in the codecache to be unreachable causes issues
6517     // with things like inline caches where the additional instructions
6518     // are not handled.
6519     if (CodeCache::find_blob(adr._target) == NULL) {
6520       return false;
6521     }
6522   }
6523   // For external_word_type/runtime_call_type if it is reachable from where we
6524   // are now (possibly a temp buffer) and where we might end up
6525   // anywhere in the codeCache then we are always reachable.
6526   // This would have to change if we ever save/restore shared code
6527   // to be more pessimistic.
6528   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6529   if (!is_simm32(disp)) return false;
6530   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6531   if (!is_simm32(disp)) return false;
6532 
6533   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6534 
6535   // Because rip relative is a disp + address_of_next_instruction and we
6536   // don't know the value of address_of_next_instruction we apply a fudge factor
6537   // to make sure we will be ok no matter the size of the instruction we get placed into.
6538   // We don't have to fudge the checks above here because they are already worst case.
6539 
6540   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6541   // + 4 because better safe than sorry.
6542   const int fudge = 12 + 4;
6543   if (disp < 0) {
6544     disp -= fudge;
6545   } else {
6546     disp += fudge;
6547   }
6548   return is_simm32(disp);
6549 }
6550 
6551 // Check if the polling page is not reachable from the code cache using rip-relative
6552 // addressing.
6553 bool Assembler::is_polling_page_far() {
6554   intptr_t addr = (intptr_t)os::get_polling_page();
6555   return ForceUnreachable ||
6556          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6557          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6558 }
6559 
6560 void Assembler::emit_data64(jlong data,
6561                             relocInfo::relocType rtype,
6562                             int format) {
6563   if (rtype == relocInfo::none) {
6564     emit_int64(data);
6565   } else {
6566     emit_data64(data, Relocation::spec_simple(rtype), format);
6567   }
6568 }
6569 
6570 void Assembler::emit_data64(jlong data,
6571                             RelocationHolder const& rspec,
6572                             int format) {
6573   assert(imm_operand == 0, "default format must be immediate in this file");
6574   assert(imm_operand == format, "must be immediate");
6575   assert(inst_mark() != NULL, "must be inside InstructionMark");
6576   // Do not use AbstractAssembler::relocate, which is not intended for
6577   // embedded words.  Instead, relocate to the enclosing instruction.
6578   code_section()->relocate(inst_mark(), rspec, format);
6579 #ifdef ASSERT
6580   check_relocation(rspec, format);
6581 #endif
6582   emit_int64(data);
6583 }
6584 
6585 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6586   if (reg_enc >= 8) {
6587     prefix(REX_B);
6588     reg_enc -= 8;
6589   } else if (byteinst && reg_enc >= 4) {
6590     prefix(REX);
6591   }
6592   return reg_enc;
6593 }
6594 
6595 int Assembler::prefixq_and_encode(int reg_enc) {
6596   if (reg_enc < 8) {
6597     prefix(REX_W);
6598   } else {
6599     prefix(REX_WB);
6600     reg_enc -= 8;
6601   }
6602   return reg_enc;
6603 }
6604 
6605 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
6606   if (dst_enc < 8) {
6607     if (src_enc >= 8) {
6608       prefix(REX_B);
6609       src_enc -= 8;
6610     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
6611       prefix(REX);
6612     }
6613   } else {
6614     if (src_enc < 8) {
6615       prefix(REX_R);
6616     } else {
6617       prefix(REX_RB);
6618       src_enc -= 8;
6619     }
6620     dst_enc -= 8;
6621   }
6622   return dst_enc << 3 | src_enc;
6623 }
6624 
6625 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6626   if (dst_enc < 8) {
6627     if (src_enc < 8) {
6628       prefix(REX_W);
6629     } else {
6630       prefix(REX_WB);
6631       src_enc -= 8;
6632     }
6633   } else {
6634     if (src_enc < 8) {
6635       prefix(REX_WR);
6636     } else {
6637       prefix(REX_WRB);
6638       src_enc -= 8;
6639     }
6640     dst_enc -= 8;
6641   }
6642   return dst_enc << 3 | src_enc;
6643 }
6644 
6645 void Assembler::prefix(Register reg) {
6646   if (reg->encoding() >= 8) {
6647     prefix(REX_B);
6648   }
6649 }
6650 
6651 void Assembler::prefix(Register dst, Register src, Prefix p) {
6652   if (src->encoding() >= 8) {
6653     p = (Prefix)(p | REX_B);
6654   }
6655   if (dst->encoding() >= 8) {
6656     p = (Prefix)( p | REX_R);
6657   }
6658   if (p != Prefix_EMPTY) {
6659     // do not generate an empty prefix
6660     prefix(p);
6661   }
6662 }
6663 
6664 void Assembler::prefix(Register dst, Address adr, Prefix p) {
6665   if (adr.base_needs_rex()) {
6666     if (adr.index_needs_rex()) {
6667       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6668     } else {
6669       prefix(REX_B);
6670     }
6671   } else {
6672     if (adr.index_needs_rex()) {
6673       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6674     }
6675   }
6676   if (dst->encoding() >= 8) {
6677     p = (Prefix)(p | REX_R);
6678   }
6679   if (p != Prefix_EMPTY) {
6680     // do not generate an empty prefix
6681     prefix(p);
6682   }
6683 }
6684 
6685 void Assembler::prefix(Address adr) {
6686   if (adr.base_needs_rex()) {
6687     if (adr.index_needs_rex()) {
6688       prefix(REX_XB);
6689     } else {
6690       prefix(REX_B);
6691     }
6692   } else {
6693     if (adr.index_needs_rex()) {
6694       prefix(REX_X);
6695     }
6696   }
6697 }
6698 
6699 void Assembler::prefixq(Address adr) {
6700   if (adr.base_needs_rex()) {
6701     if (adr.index_needs_rex()) {
6702       prefix(REX_WXB);
6703     } else {
6704       prefix(REX_WB);
6705     }
6706   } else {
6707     if (adr.index_needs_rex()) {
6708       prefix(REX_WX);
6709     } else {
6710       prefix(REX_W);
6711     }
6712   }
6713 }
6714 
6715 
6716 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6717   if (reg->encoding() < 8) {
6718     if (adr.base_needs_rex()) {
6719       if (adr.index_needs_rex()) {
6720         prefix(REX_XB);
6721       } else {
6722         prefix(REX_B);
6723       }
6724     } else {
6725       if (adr.index_needs_rex()) {
6726         prefix(REX_X);
6727       } else if (byteinst && reg->encoding() >= 4 ) {
6728         prefix(REX);
6729       }
6730     }
6731   } else {
6732     if (adr.base_needs_rex()) {
6733       if (adr.index_needs_rex()) {
6734         prefix(REX_RXB);
6735       } else {
6736         prefix(REX_RB);
6737       }
6738     } else {
6739       if (adr.index_needs_rex()) {
6740         prefix(REX_RX);
6741       } else {
6742         prefix(REX_R);
6743       }
6744     }
6745   }
6746 }
6747 
6748 void Assembler::prefixq(Address adr, Register src) {
6749   if (src->encoding() < 8) {
6750     if (adr.base_needs_rex()) {
6751       if (adr.index_needs_rex()) {
6752         prefix(REX_WXB);
6753       } else {
6754         prefix(REX_WB);
6755       }
6756     } else {
6757       if (adr.index_needs_rex()) {
6758         prefix(REX_WX);
6759       } else {
6760         prefix(REX_W);
6761       }
6762     }
6763   } else {
6764     if (adr.base_needs_rex()) {
6765       if (adr.index_needs_rex()) {
6766         prefix(REX_WRXB);
6767       } else {
6768         prefix(REX_WRB);
6769       }
6770     } else {
6771       if (adr.index_needs_rex()) {
6772         prefix(REX_WRX);
6773       } else {
6774         prefix(REX_WR);
6775       }
6776     }
6777   }
6778 }
6779 
6780 void Assembler::prefix(Address adr, XMMRegister reg) {
6781   if (reg->encoding() < 8) {
6782     if (adr.base_needs_rex()) {
6783       if (adr.index_needs_rex()) {
6784         prefix(REX_XB);
6785       } else {
6786         prefix(REX_B);
6787       }
6788     } else {
6789       if (adr.index_needs_rex()) {
6790         prefix(REX_X);
6791       }
6792     }
6793   } else {
6794     if (adr.base_needs_rex()) {
6795       if (adr.index_needs_rex()) {
6796         prefix(REX_RXB);
6797       } else {
6798         prefix(REX_RB);
6799       }
6800     } else {
6801       if (adr.index_needs_rex()) {
6802         prefix(REX_RX);
6803       } else {
6804         prefix(REX_R);
6805       }
6806     }
6807   }
6808 }
6809 
6810 void Assembler::prefixq(Address adr, XMMRegister src) {
6811   if (src->encoding() < 8) {
6812     if (adr.base_needs_rex()) {
6813       if (adr.index_needs_rex()) {
6814         prefix(REX_WXB);
6815       } else {
6816         prefix(REX_WB);
6817       }
6818     } else {
6819       if (adr.index_needs_rex()) {
6820         prefix(REX_WX);
6821       } else {
6822         prefix(REX_W);
6823       }
6824     }
6825   } else {
6826     if (adr.base_needs_rex()) {
6827       if (adr.index_needs_rex()) {
6828         prefix(REX_WRXB);
6829       } else {
6830         prefix(REX_WRB);
6831       }
6832     } else {
6833       if (adr.index_needs_rex()) {
6834         prefix(REX_WRX);
6835       } else {
6836         prefix(REX_WR);
6837       }
6838     }
6839   }
6840 }
6841 
6842 void Assembler::adcq(Register dst, int32_t imm32) {
6843   (void) prefixq_and_encode(dst->encoding());
6844   emit_arith(0x81, 0xD0, dst, imm32);
6845 }
6846 
6847 void Assembler::adcq(Register dst, Address src) {
6848   InstructionMark im(this);
6849   prefixq(src, dst);
6850   emit_int8(0x13);
6851   emit_operand(dst, src);
6852 }
6853 
6854 void Assembler::adcq(Register dst, Register src) {
6855   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6856   emit_arith(0x13, 0xC0, dst, src);
6857 }
6858 
6859 void Assembler::addq(Address dst, int32_t imm32) {
6860   InstructionMark im(this);
6861   prefixq(dst);
6862   emit_arith_operand(0x81, rax, dst,imm32);
6863 }
6864 
6865 void Assembler::addq(Address dst, Register src) {
6866   InstructionMark im(this);
6867   prefixq(dst, src);
6868   emit_int8(0x01);
6869   emit_operand(src, dst);
6870 }
6871 
6872 void Assembler::addq(Register dst, int32_t imm32) {
6873   (void) prefixq_and_encode(dst->encoding());
6874   emit_arith(0x81, 0xC0, dst, imm32);
6875 }
6876 
6877 void Assembler::addq(Register dst, Address src) {
6878   InstructionMark im(this);
6879   prefixq(src, dst);
6880   emit_int8(0x03);
6881   emit_operand(dst, src);
6882 }
6883 
6884 void Assembler::addq(Register dst, Register src) {
6885   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6886   emit_arith(0x03, 0xC0, dst, src);
6887 }
6888 
6889 void Assembler::adcxq(Register dst, Register src) {
6890   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6891   emit_int8((unsigned char)0x66);
6892   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6893   emit_int8(0x0F);
6894   emit_int8(0x38);
6895   emit_int8((unsigned char)0xF6);
6896   emit_int8((unsigned char)(0xC0 | encode));
6897 }
6898 
6899 void Assembler::adoxq(Register dst, Register src) {
6900   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6901   emit_int8((unsigned char)0xF3);
6902   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6903   emit_int8(0x0F);
6904   emit_int8(0x38);
6905   emit_int8((unsigned char)0xF6);
6906   emit_int8((unsigned char)(0xC0 | encode));
6907 }
6908 
6909 void Assembler::andq(Address dst, int32_t imm32) {
6910   InstructionMark im(this);
6911   prefixq(dst);
6912   emit_int8((unsigned char)0x81);
6913   emit_operand(rsp, dst, 4);
6914   emit_int32(imm32);
6915 }
6916 
6917 void Assembler::andq(Register dst, int32_t imm32) {
6918   (void) prefixq_and_encode(dst->encoding());
6919   emit_arith(0x81, 0xE0, dst, imm32);
6920 }
6921 
6922 void Assembler::andq(Register dst, Address src) {
6923   InstructionMark im(this);
6924   prefixq(src, dst);
6925   emit_int8(0x23);
6926   emit_operand(dst, src);
6927 }
6928 
6929 void Assembler::andq(Register dst, Register src) {
6930   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6931   emit_arith(0x23, 0xC0, dst, src);
6932 }
6933 
6934 void Assembler::andnq(Register dst, Register src1, Register src2) {
6935   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6936   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6937   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6938   emit_int8((unsigned char)0xF2);
6939   emit_int8((unsigned char)(0xC0 | encode));
6940 }
6941 
6942 void Assembler::andnq(Register dst, Register src1, Address src2) {
6943   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6944   InstructionMark im(this);
6945   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6946   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6947   emit_int8((unsigned char)0xF2);
6948   emit_operand(dst, src2);
6949 }
6950 
6951 void Assembler::bsfq(Register dst, Register src) {
6952   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6953   emit_int8(0x0F);
6954   emit_int8((unsigned char)0xBC);
6955   emit_int8((unsigned char)(0xC0 | encode));
6956 }
6957 
6958 void Assembler::bsrq(Register dst, Register src) {
6959   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6960   emit_int8(0x0F);
6961   emit_int8((unsigned char)0xBD);
6962   emit_int8((unsigned char)(0xC0 | encode));
6963 }
6964 
6965 void Assembler::bswapq(Register reg) {
6966   int encode = prefixq_and_encode(reg->encoding());
6967   emit_int8(0x0F);
6968   emit_int8((unsigned char)(0xC8 | encode));
6969 }
6970 
6971 void Assembler::blsiq(Register dst, Register src) {
6972   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6973   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6974   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6975   emit_int8((unsigned char)0xF3);
6976   emit_int8((unsigned char)(0xC0 | encode));
6977 }
6978 
6979 void Assembler::blsiq(Register dst, Address src) {
6980   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6981   InstructionMark im(this);
6982   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6983   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6984   emit_int8((unsigned char)0xF3);
6985   emit_operand(rbx, src);
6986 }
6987 
6988 void Assembler::blsmskq(Register dst, Register src) {
6989   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6990   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6991   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6992   emit_int8((unsigned char)0xF3);
6993   emit_int8((unsigned char)(0xC0 | encode));
6994 }
6995 
6996 void Assembler::blsmskq(Register dst, Address src) {
6997   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6998   InstructionMark im(this);
6999   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7000   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7001   emit_int8((unsigned char)0xF3);
7002   emit_operand(rdx, src);
7003 }
7004 
7005 void Assembler::blsrq(Register dst, Register src) {
7006   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7007   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7008   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7009   emit_int8((unsigned char)0xF3);
7010   emit_int8((unsigned char)(0xC0 | encode));
7011 }
7012 
7013 void Assembler::blsrq(Register dst, Address src) {
7014   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7015   InstructionMark im(this);
7016   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7017   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7018   emit_int8((unsigned char)0xF3);
7019   emit_operand(rcx, src);
7020 }
7021 
7022 void Assembler::cdqq() {
7023   prefix(REX_W);
7024   emit_int8((unsigned char)0x99);
7025 }
7026 
7027 void Assembler::clflush(Address adr) {
7028   prefix(adr);
7029   emit_int8(0x0F);
7030   emit_int8((unsigned char)0xAE);
7031   emit_operand(rdi, adr);
7032 }
7033 
7034 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7035   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7036   emit_int8(0x0F);
7037   emit_int8(0x40 | cc);
7038   emit_int8((unsigned char)(0xC0 | encode));
7039 }
7040 
7041 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7042   InstructionMark im(this);
7043   prefixq(src, dst);
7044   emit_int8(0x0F);
7045   emit_int8(0x40 | cc);
7046   emit_operand(dst, src);
7047 }
7048 
7049 void Assembler::cmpq(Address dst, int32_t imm32) {
7050   InstructionMark im(this);
7051   prefixq(dst);
7052   emit_int8((unsigned char)0x81);
7053   emit_operand(rdi, dst, 4);
7054   emit_int32(imm32);
7055 }
7056 
7057 void Assembler::cmpq(Register dst, int32_t imm32) {
7058   (void) prefixq_and_encode(dst->encoding());
7059   emit_arith(0x81, 0xF8, dst, imm32);
7060 }
7061 
7062 void Assembler::cmpq(Address dst, Register src) {
7063   InstructionMark im(this);
7064   prefixq(dst, src);
7065   emit_int8(0x3B);
7066   emit_operand(src, dst);
7067 }
7068 
7069 void Assembler::cmpq(Register dst, Register src) {
7070   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7071   emit_arith(0x3B, 0xC0, dst, src);
7072 }
7073 
7074 void Assembler::cmpq(Register dst, Address  src) {
7075   InstructionMark im(this);
7076   prefixq(src, dst);
7077   emit_int8(0x3B);
7078   emit_operand(dst, src);
7079 }
7080 
7081 void Assembler::cmpxchgq(Register reg, Address adr) {
7082   InstructionMark im(this);
7083   prefixq(adr, reg);
7084   emit_int8(0x0F);
7085   emit_int8((unsigned char)0xB1);
7086   emit_operand(reg, adr);
7087 }
7088 
7089 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7091   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7092   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7093   emit_int8(0x2A);
7094   emit_int8((unsigned char)(0xC0 | encode));
7095 }
7096 
7097 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7099   InstructionMark im(this);
7100   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7101   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7102   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7103   emit_int8(0x2A);
7104   emit_operand(dst, src);
7105 }
7106 
7107 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7108   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7109   InstructionMark im(this);
7110   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7111   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7112   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7113   emit_int8(0x2A);
7114   emit_operand(dst, src);
7115 }
7116 
7117 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7118   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7119   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7120   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7121   emit_int8(0x2C);
7122   emit_int8((unsigned char)(0xC0 | encode));
7123 }
7124 
7125 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7126   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7127   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7128   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7129   emit_int8(0x2C);
7130   emit_int8((unsigned char)(0xC0 | encode));
7131 }
7132 
7133 void Assembler::decl(Register dst) {
7134   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7135   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7136   int encode = prefix_and_encode(dst->encoding());
7137   emit_int8((unsigned char)0xFF);
7138   emit_int8((unsigned char)(0xC8 | encode));
7139 }
7140 
7141 void Assembler::decq(Register dst) {
7142   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7143   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7144   int encode = prefixq_and_encode(dst->encoding());
7145   emit_int8((unsigned char)0xFF);
7146   emit_int8(0xC8 | encode);
7147 }
7148 
7149 void Assembler::decq(Address dst) {
7150   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7151   InstructionMark im(this);
7152   prefixq(dst);
7153   emit_int8((unsigned char)0xFF);
7154   emit_operand(rcx, dst);
7155 }
7156 
7157 void Assembler::fxrstor(Address src) {
7158   prefixq(src);
7159   emit_int8(0x0F);
7160   emit_int8((unsigned char)0xAE);
7161   emit_operand(as_Register(1), src);
7162 }
7163 
7164 void Assembler::xrstor(Address src) {
7165   prefixq(src);
7166   emit_int8(0x0F);
7167   emit_int8((unsigned char)0xAE);
7168   emit_operand(as_Register(5), src);
7169 }
7170 
7171 void Assembler::fxsave(Address dst) {
7172   prefixq(dst);
7173   emit_int8(0x0F);
7174   emit_int8((unsigned char)0xAE);
7175   emit_operand(as_Register(0), dst);
7176 }
7177 
7178 void Assembler::xsave(Address dst) {
7179   prefixq(dst);
7180   emit_int8(0x0F);
7181   emit_int8((unsigned char)0xAE);
7182   emit_operand(as_Register(4), dst);
7183 }
7184 
7185 void Assembler::idivq(Register src) {
7186   int encode = prefixq_and_encode(src->encoding());
7187   emit_int8((unsigned char)0xF7);
7188   emit_int8((unsigned char)(0xF8 | encode));
7189 }
7190 
7191 void Assembler::imulq(Register dst, Register src) {
7192   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7193   emit_int8(0x0F);
7194   emit_int8((unsigned char)0xAF);
7195   emit_int8((unsigned char)(0xC0 | encode));
7196 }
7197 
7198 void Assembler::imulq(Register dst, Register src, int value) {
7199   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7200   if (is8bit(value)) {
7201     emit_int8(0x6B);
7202     emit_int8((unsigned char)(0xC0 | encode));
7203     emit_int8(value & 0xFF);
7204   } else {
7205     emit_int8(0x69);
7206     emit_int8((unsigned char)(0xC0 | encode));
7207     emit_int32(value);
7208   }
7209 }
7210 
7211 void Assembler::imulq(Register dst, Address src) {
7212   InstructionMark im(this);
7213   prefixq(src, dst);
7214   emit_int8(0x0F);
7215   emit_int8((unsigned char) 0xAF);
7216   emit_operand(dst, src);
7217 }
7218 
7219 void Assembler::incl(Register dst) {
7220   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7221   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7222   int encode = prefix_and_encode(dst->encoding());
7223   emit_int8((unsigned char)0xFF);
7224   emit_int8((unsigned char)(0xC0 | encode));
7225 }
7226 
7227 void Assembler::incq(Register dst) {
7228   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7229   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7230   int encode = prefixq_and_encode(dst->encoding());
7231   emit_int8((unsigned char)0xFF);
7232   emit_int8((unsigned char)(0xC0 | encode));
7233 }
7234 
7235 void Assembler::incq(Address dst) {
7236   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7237   InstructionMark im(this);
7238   prefixq(dst);
7239   emit_int8((unsigned char)0xFF);
7240   emit_operand(rax, dst);
7241 }
7242 
7243 void Assembler::lea(Register dst, Address src) {
7244   leaq(dst, src);
7245 }
7246 
7247 void Assembler::leaq(Register dst, Address src) {
7248   InstructionMark im(this);
7249   prefixq(src, dst);
7250   emit_int8((unsigned char)0x8D);
7251   emit_operand(dst, src);
7252 }
7253 
7254 void Assembler::mov64(Register dst, int64_t imm64) {
7255   InstructionMark im(this);
7256   int encode = prefixq_and_encode(dst->encoding());
7257   emit_int8((unsigned char)(0xB8 | encode));
7258   emit_int64(imm64);
7259 }
7260 
7261 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7262   InstructionMark im(this);
7263   int encode = prefixq_and_encode(dst->encoding());
7264   emit_int8(0xB8 | encode);
7265   emit_data64(imm64, rspec);
7266 }
7267 
7268 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7269   InstructionMark im(this);
7270   int encode = prefix_and_encode(dst->encoding());
7271   emit_int8((unsigned char)(0xB8 | encode));
7272   emit_data((int)imm32, rspec, narrow_oop_operand);
7273 }
7274 
7275 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7276   InstructionMark im(this);
7277   prefix(dst);
7278   emit_int8((unsigned char)0xC7);
7279   emit_operand(rax, dst, 4);
7280   emit_data((int)imm32, rspec, narrow_oop_operand);
7281 }
7282 
7283 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7284   InstructionMark im(this);
7285   int encode = prefix_and_encode(src1->encoding());
7286   emit_int8((unsigned char)0x81);
7287   emit_int8((unsigned char)(0xF8 | encode));
7288   emit_data((int)imm32, rspec, narrow_oop_operand);
7289 }
7290 
7291 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7292   InstructionMark im(this);
7293   prefix(src1);
7294   emit_int8((unsigned char)0x81);
7295   emit_operand(rax, src1, 4);
7296   emit_data((int)imm32, rspec, narrow_oop_operand);
7297 }
7298 
7299 void Assembler::lzcntq(Register dst, Register src) {
7300   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7301   emit_int8((unsigned char)0xF3);
7302   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7303   emit_int8(0x0F);
7304   emit_int8((unsigned char)0xBD);
7305   emit_int8((unsigned char)(0xC0 | encode));
7306 }
7307 
7308 void Assembler::movdq(XMMRegister dst, Register src) {
7309   // table D-1 says MMX/SSE2
7310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7311   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7312   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7313   emit_int8(0x6E);
7314   emit_int8((unsigned char)(0xC0 | encode));
7315 }
7316 
7317 void Assembler::movdq(Register dst, XMMRegister src) {
7318   // table D-1 says MMX/SSE2
7319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7320   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7321   // swap src/dst to get correct prefix
7322   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7323   emit_int8(0x7E);
7324   emit_int8((unsigned char)(0xC0 | encode));
7325 }
7326 
7327 void Assembler::movq(Register dst, Register src) {
7328   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7329   emit_int8((unsigned char)0x8B);
7330   emit_int8((unsigned char)(0xC0 | encode));
7331 }
7332 
7333 void Assembler::movq(Register dst, Address src) {
7334   InstructionMark im(this);
7335   prefixq(src, dst);
7336   emit_int8((unsigned char)0x8B);
7337   emit_operand(dst, src);
7338 }
7339 
7340 void Assembler::movq(Address dst, Register src) {
7341   InstructionMark im(this);
7342   prefixq(dst, src);
7343   emit_int8((unsigned char)0x89);
7344   emit_operand(src, dst);
7345 }
7346 
7347 void Assembler::movsbq(Register dst, Address src) {
7348   InstructionMark im(this);
7349   prefixq(src, dst);
7350   emit_int8(0x0F);
7351   emit_int8((unsigned char)0xBE);
7352   emit_operand(dst, src);
7353 }
7354 
7355 void Assembler::movsbq(Register dst, Register src) {
7356   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7357   emit_int8(0x0F);
7358   emit_int8((unsigned char)0xBE);
7359   emit_int8((unsigned char)(0xC0 | encode));
7360 }
7361 
7362 void Assembler::movslq(Register dst, int32_t imm32) {
7363   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7364   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7365   // as a result we shouldn't use until tested at runtime...
7366   ShouldNotReachHere();
7367   InstructionMark im(this);
7368   int encode = prefixq_and_encode(dst->encoding());
7369   emit_int8((unsigned char)(0xC7 | encode));
7370   emit_int32(imm32);
7371 }
7372 
7373 void Assembler::movslq(Address dst, int32_t imm32) {
7374   assert(is_simm32(imm32), "lost bits");
7375   InstructionMark im(this);
7376   prefixq(dst);
7377   emit_int8((unsigned char)0xC7);
7378   emit_operand(rax, dst, 4);
7379   emit_int32(imm32);
7380 }
7381 
7382 void Assembler::movslq(Register dst, Address src) {
7383   InstructionMark im(this);
7384   prefixq(src, dst);
7385   emit_int8(0x63);
7386   emit_operand(dst, src);
7387 }
7388 
7389 void Assembler::movslq(Register dst, Register src) {
7390   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7391   emit_int8(0x63);
7392   emit_int8((unsigned char)(0xC0 | encode));
7393 }
7394 
7395 void Assembler::movswq(Register dst, Address src) {
7396   InstructionMark im(this);
7397   prefixq(src, dst);
7398   emit_int8(0x0F);
7399   emit_int8((unsigned char)0xBF);
7400   emit_operand(dst, src);
7401 }
7402 
7403 void Assembler::movswq(Register dst, Register src) {
7404   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7405   emit_int8((unsigned char)0x0F);
7406   emit_int8((unsigned char)0xBF);
7407   emit_int8((unsigned char)(0xC0 | encode));
7408 }
7409 
7410 void Assembler::movzbq(Register dst, Address src) {
7411   InstructionMark im(this);
7412   prefixq(src, dst);
7413   emit_int8((unsigned char)0x0F);
7414   emit_int8((unsigned char)0xB6);
7415   emit_operand(dst, src);
7416 }
7417 
7418 void Assembler::movzbq(Register dst, Register src) {
7419   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7420   emit_int8(0x0F);
7421   emit_int8((unsigned char)0xB6);
7422   emit_int8(0xC0 | encode);
7423 }
7424 
7425 void Assembler::movzwq(Register dst, Address src) {
7426   InstructionMark im(this);
7427   prefixq(src, dst);
7428   emit_int8((unsigned char)0x0F);
7429   emit_int8((unsigned char)0xB7);
7430   emit_operand(dst, src);
7431 }
7432 
7433 void Assembler::movzwq(Register dst, Register src) {
7434   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7435   emit_int8((unsigned char)0x0F);
7436   emit_int8((unsigned char)0xB7);
7437   emit_int8((unsigned char)(0xC0 | encode));
7438 }
7439 
7440 void Assembler::mulq(Address src) {
7441   InstructionMark im(this);
7442   prefixq(src);
7443   emit_int8((unsigned char)0xF7);
7444   emit_operand(rsp, src);
7445 }
7446 
7447 void Assembler::mulq(Register src) {
7448   int encode = prefixq_and_encode(src->encoding());
7449   emit_int8((unsigned char)0xF7);
7450   emit_int8((unsigned char)(0xE0 | encode));
7451 }
7452 
7453 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7454   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7455   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7456   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
7457   emit_int8((unsigned char)0xF6);
7458   emit_int8((unsigned char)(0xC0 | encode));
7459 }
7460 
7461 void Assembler::negq(Register dst) {
7462   int encode = prefixq_and_encode(dst->encoding());
7463   emit_int8((unsigned char)0xF7);
7464   emit_int8((unsigned char)(0xD8 | encode));
7465 }
7466 
7467 void Assembler::notq(Register dst) {
7468   int encode = prefixq_and_encode(dst->encoding());
7469   emit_int8((unsigned char)0xF7);
7470   emit_int8((unsigned char)(0xD0 | encode));
7471 }
7472 
7473 void Assembler::orq(Address dst, int32_t imm32) {
7474   InstructionMark im(this);
7475   prefixq(dst);
7476   emit_int8((unsigned char)0x81);
7477   emit_operand(rcx, dst, 4);
7478   emit_int32(imm32);
7479 }
7480 
7481 void Assembler::orq(Register dst, int32_t imm32) {
7482   (void) prefixq_and_encode(dst->encoding());
7483   emit_arith(0x81, 0xC8, dst, imm32);
7484 }
7485 
7486 void Assembler::orq(Register dst, Address src) {
7487   InstructionMark im(this);
7488   prefixq(src, dst);
7489   emit_int8(0x0B);
7490   emit_operand(dst, src);
7491 }
7492 
7493 void Assembler::orq(Register dst, Register src) {
7494   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7495   emit_arith(0x0B, 0xC0, dst, src);
7496 }
7497 
7498 void Assembler::popa() { // 64bit
7499   movq(r15, Address(rsp, 0));
7500   movq(r14, Address(rsp, wordSize));
7501   movq(r13, Address(rsp, 2 * wordSize));
7502   movq(r12, Address(rsp, 3 * wordSize));
7503   movq(r11, Address(rsp, 4 * wordSize));
7504   movq(r10, Address(rsp, 5 * wordSize));
7505   movq(r9,  Address(rsp, 6 * wordSize));
7506   movq(r8,  Address(rsp, 7 * wordSize));
7507   movq(rdi, Address(rsp, 8 * wordSize));
7508   movq(rsi, Address(rsp, 9 * wordSize));
7509   movq(rbp, Address(rsp, 10 * wordSize));
7510   // skip rsp
7511   movq(rbx, Address(rsp, 12 * wordSize));
7512   movq(rdx, Address(rsp, 13 * wordSize));
7513   movq(rcx, Address(rsp, 14 * wordSize));
7514   movq(rax, Address(rsp, 15 * wordSize));
7515 
7516   addq(rsp, 16 * wordSize);
7517 }
7518 
7519 void Assembler::popcntq(Register dst, Address src) {
7520   assert(VM_Version::supports_popcnt(), "must support");
7521   InstructionMark im(this);
7522   emit_int8((unsigned char)0xF3);
7523   prefixq(src, dst);
7524   emit_int8((unsigned char)0x0F);
7525   emit_int8((unsigned char)0xB8);
7526   emit_operand(dst, src);
7527 }
7528 
7529 void Assembler::popcntq(Register dst, Register src) {
7530   assert(VM_Version::supports_popcnt(), "must support");
7531   emit_int8((unsigned char)0xF3);
7532   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7533   emit_int8((unsigned char)0x0F);
7534   emit_int8((unsigned char)0xB8);
7535   emit_int8((unsigned char)(0xC0 | encode));
7536 }
7537 
7538 void Assembler::popq(Address dst) {
7539   InstructionMark im(this);
7540   prefixq(dst);
7541   emit_int8((unsigned char)0x8F);
7542   emit_operand(rax, dst);
7543 }
7544 
7545 void Assembler::pusha() { // 64bit
7546   // we have to store original rsp.  ABI says that 128 bytes
7547   // below rsp are local scratch.
7548   movq(Address(rsp, -5 * wordSize), rsp);
7549 
7550   subq(rsp, 16 * wordSize);
7551 
7552   movq(Address(rsp, 15 * wordSize), rax);
7553   movq(Address(rsp, 14 * wordSize), rcx);
7554   movq(Address(rsp, 13 * wordSize), rdx);
7555   movq(Address(rsp, 12 * wordSize), rbx);
7556   // skip rsp
7557   movq(Address(rsp, 10 * wordSize), rbp);
7558   movq(Address(rsp, 9 * wordSize), rsi);
7559   movq(Address(rsp, 8 * wordSize), rdi);
7560   movq(Address(rsp, 7 * wordSize), r8);
7561   movq(Address(rsp, 6 * wordSize), r9);
7562   movq(Address(rsp, 5 * wordSize), r10);
7563   movq(Address(rsp, 4 * wordSize), r11);
7564   movq(Address(rsp, 3 * wordSize), r12);
7565   movq(Address(rsp, 2 * wordSize), r13);
7566   movq(Address(rsp, wordSize), r14);
7567   movq(Address(rsp, 0), r15);
7568 }
7569 
7570 void Assembler::pushq(Address src) {
7571   InstructionMark im(this);
7572   prefixq(src);
7573   emit_int8((unsigned char)0xFF);
7574   emit_operand(rsi, src);
7575 }
7576 
7577 void Assembler::rclq(Register dst, int imm8) {
7578   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7579   int encode = prefixq_and_encode(dst->encoding());
7580   if (imm8 == 1) {
7581     emit_int8((unsigned char)0xD1);
7582     emit_int8((unsigned char)(0xD0 | encode));
7583   } else {
7584     emit_int8((unsigned char)0xC1);
7585     emit_int8((unsigned char)(0xD0 | encode));
7586     emit_int8(imm8);
7587   }
7588 }
7589 
7590 void Assembler::rcrq(Register dst, int imm8) {
7591   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7592   int encode = prefixq_and_encode(dst->encoding());
7593   if (imm8 == 1) {
7594     emit_int8((unsigned char)0xD1);
7595     emit_int8((unsigned char)(0xD8 | encode));
7596   } else {
7597     emit_int8((unsigned char)0xC1);
7598     emit_int8((unsigned char)(0xD8 | encode));
7599     emit_int8(imm8);
7600   }
7601 }
7602 
7603 void Assembler::rorq(Register dst, int imm8) {
7604   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7605   int encode = prefixq_and_encode(dst->encoding());
7606   if (imm8 == 1) {
7607     emit_int8((unsigned char)0xD1);
7608     emit_int8((unsigned char)(0xC8 | encode));
7609   } else {
7610     emit_int8((unsigned char)0xC1);
7611     emit_int8((unsigned char)(0xc8 | encode));
7612     emit_int8(imm8);
7613   }
7614 }
7615 
7616 void Assembler::rorxq(Register dst, Register src, int imm8) {
7617   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7618   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7619   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
7620   emit_int8((unsigned char)0xF0);
7621   emit_int8((unsigned char)(0xC0 | encode));
7622   emit_int8(imm8);
7623 }
7624 
7625 void Assembler::sarq(Register dst, int imm8) {
7626   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7627   int encode = prefixq_and_encode(dst->encoding());
7628   if (imm8 == 1) {
7629     emit_int8((unsigned char)0xD1);
7630     emit_int8((unsigned char)(0xF8 | encode));
7631   } else {
7632     emit_int8((unsigned char)0xC1);
7633     emit_int8((unsigned char)(0xF8 | encode));
7634     emit_int8(imm8);
7635   }
7636 }
7637 
7638 void Assembler::sarq(Register dst) {
7639   int encode = prefixq_and_encode(dst->encoding());
7640   emit_int8((unsigned char)0xD3);
7641   emit_int8((unsigned char)(0xF8 | encode));
7642 }
7643 
7644 void Assembler::sbbq(Address dst, int32_t imm32) {
7645   InstructionMark im(this);
7646   prefixq(dst);
7647   emit_arith_operand(0x81, rbx, dst, imm32);
7648 }
7649 
7650 void Assembler::sbbq(Register dst, int32_t imm32) {
7651   (void) prefixq_and_encode(dst->encoding());
7652   emit_arith(0x81, 0xD8, dst, imm32);
7653 }
7654 
7655 void Assembler::sbbq(Register dst, Address src) {
7656   InstructionMark im(this);
7657   prefixq(src, dst);
7658   emit_int8(0x1B);
7659   emit_operand(dst, src);
7660 }
7661 
7662 void Assembler::sbbq(Register dst, Register src) {
7663   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7664   emit_arith(0x1B, 0xC0, dst, src);
7665 }
7666 
7667 void Assembler::shlq(Register dst, int imm8) {
7668   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7669   int encode = prefixq_and_encode(dst->encoding());
7670   if (imm8 == 1) {
7671     emit_int8((unsigned char)0xD1);
7672     emit_int8((unsigned char)(0xE0 | encode));
7673   } else {
7674     emit_int8((unsigned char)0xC1);
7675     emit_int8((unsigned char)(0xE0 | encode));
7676     emit_int8(imm8);
7677   }
7678 }
7679 
7680 void Assembler::shlq(Register dst) {
7681   int encode = prefixq_and_encode(dst->encoding());
7682   emit_int8((unsigned char)0xD3);
7683   emit_int8((unsigned char)(0xE0 | encode));
7684 }
7685 
7686 void Assembler::shrq(Register dst, int imm8) {
7687   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7688   int encode = prefixq_and_encode(dst->encoding());
7689   emit_int8((unsigned char)0xC1);
7690   emit_int8((unsigned char)(0xE8 | encode));
7691   emit_int8(imm8);
7692 }
7693 
7694 void Assembler::shrq(Register dst) {
7695   int encode = prefixq_and_encode(dst->encoding());
7696   emit_int8((unsigned char)0xD3);
7697   emit_int8(0xE8 | encode);
7698 }
7699 
7700 void Assembler::subq(Address dst, int32_t imm32) {
7701   InstructionMark im(this);
7702   prefixq(dst);
7703   emit_arith_operand(0x81, rbp, dst, imm32);
7704 }
7705 
7706 void Assembler::subq(Address dst, Register src) {
7707   InstructionMark im(this);
7708   prefixq(dst, src);
7709   emit_int8(0x29);
7710   emit_operand(src, dst);
7711 }
7712 
7713 void Assembler::subq(Register dst, int32_t imm32) {
7714   (void) prefixq_and_encode(dst->encoding());
7715   emit_arith(0x81, 0xE8, dst, imm32);
7716 }
7717 
7718 // Force generation of a 4 byte immediate value even if it fits into 8bit
7719 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7720   (void) prefixq_and_encode(dst->encoding());
7721   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7722 }
7723 
7724 void Assembler::subq(Register dst, Address src) {
7725   InstructionMark im(this);
7726   prefixq(src, dst);
7727   emit_int8(0x2B);
7728   emit_operand(dst, src);
7729 }
7730 
7731 void Assembler::subq(Register dst, Register src) {
7732   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7733   emit_arith(0x2B, 0xC0, dst, src);
7734 }
7735 
7736 void Assembler::testq(Register dst, int32_t imm32) {
7737   // not using emit_arith because test
7738   // doesn't support sign-extension of
7739   // 8bit operands
7740   int encode = dst->encoding();
7741   if (encode == 0) {
7742     prefix(REX_W);
7743     emit_int8((unsigned char)0xA9);
7744   } else {
7745     encode = prefixq_and_encode(encode);
7746     emit_int8((unsigned char)0xF7);
7747     emit_int8((unsigned char)(0xC0 | encode));
7748   }
7749   emit_int32(imm32);
7750 }
7751 
7752 void Assembler::testq(Register dst, Register src) {
7753   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7754   emit_arith(0x85, 0xC0, dst, src);
7755 }
7756 
7757 void Assembler::xaddq(Address dst, Register src) {
7758   InstructionMark im(this);
7759   prefixq(dst, src);
7760   emit_int8(0x0F);
7761   emit_int8((unsigned char)0xC1);
7762   emit_operand(src, dst);
7763 }
7764 
7765 void Assembler::xchgq(Register dst, Address src) {
7766   InstructionMark im(this);
7767   prefixq(src, dst);
7768   emit_int8((unsigned char)0x87);
7769   emit_operand(dst, src);
7770 }
7771 
7772 void Assembler::xchgq(Register dst, Register src) {
7773   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7774   emit_int8((unsigned char)0x87);
7775   emit_int8((unsigned char)(0xc0 | encode));
7776 }
7777 
7778 void Assembler::xorq(Register dst, Register src) {
7779   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7780   emit_arith(0x33, 0xC0, dst, src);
7781 }
7782 
7783 void Assembler::xorq(Register dst, Address src) {
7784   InstructionMark im(this);
7785   prefixq(src, dst);
7786   emit_int8(0x33);
7787   emit_operand(dst, src);
7788 }
7789 
7790 #endif // !LP64