1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 #ifdef CC_INTERP
  52   // c++ interpreter never wants to use interp_masm version of call_VM
  53   #define VIRTUAL
  54 #else
  55   #define VIRTUAL virtual
  56 #endif
  57 
  58 #define COMMA ,
  59 
  60   VIRTUAL void call_VM_leaf_base(
  61     address entry_point,               // the entry point
  62     int     number_of_arguments        // the number of arguments to pop after the call
  63   );
  64 
  65   // This is the base routine called by the different versions of call_VM. The interpreter
  66   // may customize this version by overriding it for its purposes (e.g., to save/restore
  67   // additional registers when doing a VM call).
  68   //
  69   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  70   // returns the register which contains the thread upon return. If a thread register has been
  71   // specified, the return value will correspond to that register. If no last_java_sp is specified
  72   // (noreg) than rsp will be used instead.
  73   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  74     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  75     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  76     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  77     address  entry_point,              // the entry point
  78     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  79     bool     check_exceptions          // whether to check for pending exceptions after return
  80   );
  81 
  82   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  83   // The implementation is only non-empty for the InterpreterMacroAssembler,
  84   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  85   virtual void check_and_handle_popframe(Register java_thread);
  86   virtual void check_and_handle_earlyret(Register java_thread);
  87 
  88   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  89 
  90   // helpers for FPU flag access
  91   // tmp is a temporary register, if none is available use noreg
  92   void save_rax   (Register tmp);
  93   void restore_rax(Register tmp);
  94 
  95  public:
  96   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  97 
  98   // Support for NULL-checks
  99   //
 100   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 101   // If the accessed location is M[reg + offset] and the offset is known, provide the
 102   // offset. No explicit code generation is needed if the offset is within a certain
 103   // range (0 <= offset <= page_size).
 104 
 105   void null_check(Register reg, int offset = -1);
 106   static bool needs_explicit_null_check(intptr_t offset);
 107 
 108   // Required platform-specific helpers for Label::patch_instructions.
 109   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 110   void pd_patch_instruction(address branch, address target) {
 111     unsigned char op = branch[0];
 112     assert(op == 0xE8 /* call */ ||
 113         op == 0xE9 /* jmp */ ||
 114         op == 0xEB /* short jmp */ ||
 115         (op & 0xF0) == 0x70 /* short jcc */ ||
 116         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 117         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 118         "Invalid opcode at patch point");
 119 
 120     if (op == 0xEB || (op & 0xF0) == 0x70) {
 121       // short offset operators (jmp and jcc)
 122       char* disp = (char*) &branch[1];
 123       int imm8 = target - (address) &disp[1];
 124       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 125       *disp = imm8;
 126     } else {
 127       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 128       int imm32 = target - (address) &disp[1];
 129       *disp = imm32;
 130     }
 131   }
 132 
 133   // The following 4 methods return the offset of the appropriate move instruction
 134 
 135   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 136   int load_unsigned_byte(Register dst, Address src);
 137   int load_unsigned_short(Register dst, Address src);
 138 
 139   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 140   int load_signed_byte(Register dst, Address src);
 141   int load_signed_short(Register dst, Address src);
 142 
 143   // Support for sign-extension (hi:lo = extend_sign(lo))
 144   void extend_sign(Register hi, Register lo);
 145 
 146   // Load and store values by size and signed-ness
 147   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 148   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 149 
 150   // Support for inc/dec with optimal instruction selection depending on value
 151 
 152   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 153   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 154 
 155   void decrementl(Address dst, int value = 1);
 156   void decrementl(Register reg, int value = 1);
 157 
 158   void decrementq(Register reg, int value = 1);
 159   void decrementq(Address dst, int value = 1);
 160 
 161   void incrementl(Address dst, int value = 1);
 162   void incrementl(Register reg, int value = 1);
 163 
 164   void incrementq(Register reg, int value = 1);
 165   void incrementq(Address dst, int value = 1);
 166 
 167   // Support optimal SSE move instructions.
 168   void movflt(XMMRegister dst, XMMRegister src) {
 169     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 170     else                       { movss (dst, src); return; }
 171   }
 172   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 173   void movflt(XMMRegister dst, AddressLiteral src);
 174   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 175 
 176   void movdbl(XMMRegister dst, XMMRegister src) {
 177     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 178     else                       { movsd (dst, src); return; }
 179   }
 180 
 181   void movdbl(XMMRegister dst, AddressLiteral src);
 182 
 183   void movdbl(XMMRegister dst, Address src) {
 184     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 185     else                         { movlpd(dst, src); return; }
 186   }
 187   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 188 
 189   void incrementl(AddressLiteral dst);
 190   void incrementl(ArrayAddress dst);
 191 
 192   void incrementq(AddressLiteral dst);
 193 
 194   // Alignment
 195   void align(int modulus);
 196   void align(int modulus, int target);
 197 
 198   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 199   void fat_nop();
 200 
 201   // Stack frame creation/removal
 202   void enter();
 203   void leave();
 204 
 205   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 206   // The pointer will be loaded into the thread register.
 207   void get_thread(Register thread);
 208 
 209 
 210   // Support for VM calls
 211   //
 212   // It is imperative that all calls into the VM are handled via the call_VM macros.
 213   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 214   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 215 
 216 
 217   void call_VM(Register oop_result,
 218                address entry_point,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2,
 227                bool check_exceptions = true);
 228   void call_VM(Register oop_result,
 229                address entry_point,
 230                Register arg_1, Register arg_2, Register arg_3,
 231                bool check_exceptions = true);
 232 
 233   // Overloadings with last_Java_sp
 234   void call_VM(Register oop_result,
 235                Register last_java_sp,
 236                address entry_point,
 237                int number_of_arguments = 0,
 238                bool check_exceptions = true);
 239   void call_VM(Register oop_result,
 240                Register last_java_sp,
 241                address entry_point,
 242                Register arg_1, bool
 243                check_exceptions = true);
 244   void call_VM(Register oop_result,
 245                Register last_java_sp,
 246                address entry_point,
 247                Register arg_1, Register arg_2,
 248                bool check_exceptions = true);
 249   void call_VM(Register oop_result,
 250                Register last_java_sp,
 251                address entry_point,
 252                Register arg_1, Register arg_2, Register arg_3,
 253                bool check_exceptions = true);
 254 
 255   void get_vm_result  (Register oop_result, Register thread);
 256   void get_vm_result_2(Register metadata_result, Register thread);
 257 
 258   // These always tightly bind to MacroAssembler::call_VM_base
 259   // bypassing the virtual implementation
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 261   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 262   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 263   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 264   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 265 
 266   void call_VM_leaf(address entry_point,
 267                     int number_of_arguments = 0);
 268   void call_VM_leaf(address entry_point,
 269                     Register arg_1);
 270   void call_VM_leaf(address entry_point,
 271                     Register arg_1, Register arg_2);
 272   void call_VM_leaf(address entry_point,
 273                     Register arg_1, Register arg_2, Register arg_3);
 274 
 275   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 276   // bypassing the virtual implementation
 277   void super_call_VM_leaf(address entry_point);
 278   void super_call_VM_leaf(address entry_point, Register arg_1);
 279   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 280   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 281   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 282 
 283   // last Java Frame (fills frame anchor)
 284   void set_last_Java_frame(Register thread,
 285                            Register last_java_sp,
 286                            Register last_java_fp,
 287                            address last_java_pc);
 288 
 289   // thread in the default location (r15_thread on 64bit)
 290   void set_last_Java_frame(Register last_java_sp,
 291                            Register last_java_fp,
 292                            address last_java_pc);
 293 
 294   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
 295 
 296   // thread in the default location (r15_thread on 64bit)
 297   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 298 
 299   // Stores
 300   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 301   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   // oop manipulations
 331   void load_klass(Register dst, Register src);
 332   void store_klass(Register dst, Register src);
 333 
 334   void load_heap_oop(Register dst, Address src);
 335   void load_heap_oop_not_null(Register dst, Address src);
 336   void store_heap_oop(Address dst, Register src);
 337   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 338 
 339   // Used for storing NULL. All other oop constants should be
 340   // stored using routines that take a jobject.
 341   void store_heap_oop_null(Address dst);
 342 
 343   void load_prototype_header(Register dst, Register src);
 344 
 345 #ifdef _LP64
 346   void store_klass_gap(Register dst, Register src);
 347 
 348   // This dummy is to prevent a call to store_heap_oop from
 349   // converting a zero (like NULL) into a Register by giving
 350   // the compiler two choices it can't resolve
 351 
 352   void store_heap_oop(Address dst, void* dummy);
 353 
 354   void encode_heap_oop(Register r);
 355   void decode_heap_oop(Register r);
 356   void encode_heap_oop_not_null(Register r);
 357   void decode_heap_oop_not_null(Register r);
 358   void encode_heap_oop_not_null(Register dst, Register src);
 359   void decode_heap_oop_not_null(Register dst, Register src);
 360 
 361   void set_narrow_oop(Register dst, jobject obj);
 362   void set_narrow_oop(Address dst, jobject obj);
 363   void cmp_narrow_oop(Register dst, jobject obj);
 364   void cmp_narrow_oop(Address dst, jobject obj);
 365 
 366   void encode_klass_not_null(Register r);
 367   void decode_klass_not_null(Register r);
 368   void encode_klass_not_null(Register dst, Register src);
 369   void decode_klass_not_null(Register dst, Register src);
 370   void set_narrow_klass(Register dst, Klass* k);
 371   void set_narrow_klass(Address dst, Klass* k);
 372   void cmp_narrow_klass(Register dst, Klass* k);
 373   void cmp_narrow_klass(Address dst, Klass* k);
 374 
 375   // Returns the byte size of the instructions generated by decode_klass_not_null()
 376   // when compressed klass pointers are being used.
 377   static int instr_size_for_decode_klass_not_null();
 378 
 379   // if heap base register is used - reinit it with the correct value
 380   void reinit_heapbase();
 381 
 382   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 383 
 384 #endif // _LP64
 385 
 386   // Int division/remainder for Java
 387   // (as idivl, but checks for special case as described in JVM spec.)
 388   // returns idivl instruction offset for implicit exception handling
 389   int corrected_idivl(Register reg);
 390 
 391   // Long division/remainder for Java
 392   // (as idivq, but checks for special case as described in JVM spec.)
 393   // returns idivq instruction offset for implicit exception handling
 394   int corrected_idivq(Register reg);
 395 
 396   void int3();
 397 
 398   // Long operation macros for a 32bit cpu
 399   // Long negation for Java
 400   void lneg(Register hi, Register lo);
 401 
 402   // Long multiplication for Java
 403   // (destroys contents of eax, ebx, ecx and edx)
 404   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 405 
 406   // Long shifts for Java
 407   // (semantics as described in JVM spec.)
 408   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 409   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 410 
 411   // Long compare for Java
 412   // (semantics as described in JVM spec.)
 413   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 414 
 415 
 416   // misc
 417 
 418   // Sign extension
 419   void sign_extend_short(Register reg);
 420   void sign_extend_byte(Register reg);
 421 
 422   // Division by power of 2, rounding towards 0
 423   void division_with_shift(Register reg, int shift_value);
 424 
 425   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 426   //
 427   // CF (corresponds to C0) if x < y
 428   // PF (corresponds to C2) if unordered
 429   // ZF (corresponds to C3) if x = y
 430   //
 431   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 432   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 433   void fcmp(Register tmp);
 434   // Variant of the above which allows y to be further down the stack
 435   // and which only pops x and y if specified. If pop_right is
 436   // specified then pop_left must also be specified.
 437   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 438 
 439   // Floating-point comparison for Java
 440   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 441   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 442   // (semantics as described in JVM spec.)
 443   void fcmp2int(Register dst, bool unordered_is_less);
 444   // Variant of the above which allows y to be further down the stack
 445   // and which only pops x and y if specified. If pop_right is
 446   // specified then pop_left must also be specified.
 447   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 448 
 449   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 450   // tmp is a temporary register, if none is available use noreg
 451   void fremr(Register tmp);
 452 
 453 
 454   // same as fcmp2int, but using SSE2
 455   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 456   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 457 
 458   // Inlined sin/cos generator for Java; must not use CPU instruction
 459   // directly on Intel as it does not have high enough precision
 460   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
 461   // number of FPU stack slots in use; all but the topmost will
 462   // require saving if a slow case is necessary. Assumes argument is
 463   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
 464   // this code.
 465   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
 466 
 467   // branch to L if FPU flag C2 is set/not set
 468   // tmp is a temporary register, if none is available use noreg
 469   void jC2 (Register tmp, Label& L);
 470   void jnC2(Register tmp, Label& L);
 471 
 472   // Pop ST (ffree & fincstp combined)
 473   void fpop();
 474 
 475   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 476   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 477   void load_float(Address src);
 478 
 479   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 480   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 481   void store_float(Address dst);
 482 
 483   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 484   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 485   void load_double(Address src);
 486 
 487   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 488   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 489   void store_double(Address dst);
 490 
 491   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 492   void push_fTOS();
 493 
 494   // pops double TOS element from CPU stack and pushes on FPU stack
 495   void pop_fTOS();
 496 
 497   void empty_FPU_stack();
 498 
 499   void push_IU_state();
 500   void pop_IU_state();
 501 
 502   void push_FPU_state();
 503   void pop_FPU_state();
 504 
 505   void push_CPU_state();
 506   void pop_CPU_state();
 507 
 508   // Round up to a power of two
 509   void round_to(Register reg, int modulus);
 510 
 511   // Callee saved registers handling
 512   void push_callee_saved_registers();
 513   void pop_callee_saved_registers();
 514 
 515   // allocation
 516   void eden_allocate(
 517     Register obj,                      // result: pointer to object after successful allocation
 518     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 519     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 520     Register t1,                       // temp register
 521     Label&   slow_case                 // continuation point if fast allocation fails
 522   );
 523   void tlab_allocate(
 524     Register obj,                      // result: pointer to object after successful allocation
 525     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 526     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 527     Register t1,                       // temp register
 528     Register t2,                       // temp register
 529     Label&   slow_case                 // continuation point if fast allocation fails
 530   );
 531   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 532   void incr_allocated_bytes(Register thread,
 533                             Register var_size_in_bytes, int con_size_in_bytes,
 534                             Register t1 = noreg);
 535 
 536   // interface method calling
 537   void lookup_interface_method(Register recv_klass,
 538                                Register intf_klass,
 539                                RegisterOrConstant itable_index,
 540                                Register method_result,
 541                                Register scan_temp,
 542                                Label& no_such_interface);
 543 
 544   // virtual method calling
 545   void lookup_virtual_method(Register recv_klass,
 546                              RegisterOrConstant vtable_index,
 547                              Register method_result);
 548 
 549   // Test sub_klass against super_klass, with fast and slow paths.
 550 
 551   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 552   // One of the three labels can be NULL, meaning take the fall-through.
 553   // If super_check_offset is -1, the value is loaded up from super_klass.
 554   // No registers are killed, except temp_reg.
 555   void check_klass_subtype_fast_path(Register sub_klass,
 556                                      Register super_klass,
 557                                      Register temp_reg,
 558                                      Label* L_success,
 559                                      Label* L_failure,
 560                                      Label* L_slow_path,
 561                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 562 
 563   // The rest of the type check; must be wired to a corresponding fast path.
 564   // It does not repeat the fast path logic, so don't use it standalone.
 565   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 566   // Updates the sub's secondary super cache as necessary.
 567   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 568   void check_klass_subtype_slow_path(Register sub_klass,
 569                                      Register super_klass,
 570                                      Register temp_reg,
 571                                      Register temp2_reg,
 572                                      Label* L_success,
 573                                      Label* L_failure,
 574                                      bool set_cond_codes = false);
 575 
 576   // Simplified, combined version, good for typical uses.
 577   // Falls through on failure.
 578   void check_klass_subtype(Register sub_klass,
 579                            Register super_klass,
 580                            Register temp_reg,
 581                            Label& L_success);
 582 
 583   // method handles (JSR 292)
 584   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 585 
 586   //----
 587   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 588 
 589   // Debugging
 590 
 591   // only if +VerifyOops
 592   // TODO: Make these macros with file and line like sparc version!
 593   void verify_oop(Register reg, const char* s = "broken oop");
 594   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 595 
 596   // TODO: verify method and klass metadata (compare against vptr?)
 597   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 598   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 599 
 600 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 601 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 602 
 603   // only if +VerifyFPU
 604   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 605 
 606   // Verify or restore cpu control state after JNI call
 607   void restore_cpu_control_state_after_jni();
 608 
 609   // prints msg, dumps registers and stops execution
 610   void stop(const char* msg);
 611 
 612   // prints msg and continues
 613   void warn(const char* msg);
 614 
 615   // dumps registers and other state
 616   void print_state();
 617 
 618   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 619   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 620   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 621   static void print_state64(int64_t pc, int64_t regs[]);
 622 
 623   void os_breakpoint();
 624 
 625   void untested()                                { stop("untested"); }
 626 
 627   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 628 
 629   void should_not_reach_here()                   { stop("should not reach here"); }
 630 
 631   void print_CPU_state();
 632 
 633   // Stack overflow checking
 634   void bang_stack_with_offset(int offset) {
 635     // stack grows down, caller passes positive offset
 636     assert(offset > 0, "must bang with negative offset");
 637     movl(Address(rsp, (-offset)), rax);
 638   }
 639 
 640   // Writes to stack successive pages until offset reached to check for
 641   // stack overflow + shadow pages.  Also, clobbers tmp
 642   void bang_stack_size(Register size, Register tmp);
 643 
 644   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 645                                                 Register tmp,
 646                                                 int offset);
 647 
 648   // Support for serializing memory accesses between threads
 649   void serialize_memory(Register thread, Register tmp);
 650 
 651   void verify_tlab();
 652 
 653   // Biased locking support
 654   // lock_reg and obj_reg must be loaded up with the appropriate values.
 655   // swap_reg must be rax, and is killed.
 656   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 657   // be killed; if not supplied, push/pop will be used internally to
 658   // allocate a temporary (inefficient, avoid if possible).
 659   // Optional slow case is for implementations (interpreter and C1) which branch to
 660   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 661   // Returns offset of first potentially-faulting instruction for null
 662   // check info (currently consumed only by C1). If
 663   // swap_reg_contains_mark is true then returns -1 as it is assumed
 664   // the calling code has already passed any potential faults.
 665   int biased_locking_enter(Register lock_reg, Register obj_reg,
 666                            Register swap_reg, Register tmp_reg,
 667                            bool swap_reg_contains_mark,
 668                            Label& done, Label* slow_case = NULL,
 669                            BiasedLockingCounters* counters = NULL);
 670   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 671 #ifdef COMPILER2
 672   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 673   // See full desription in macroAssembler_x86.cpp.
 674   void fast_lock(Register obj, Register box, Register tmp,
 675                  Register scr, Register cx1, Register cx2,
 676                  BiasedLockingCounters* counters,
 677                  RTMLockingCounters* rtm_counters,
 678                  RTMLockingCounters* stack_rtm_counters,
 679                  Metadata* method_data,
 680                  bool use_rtm, bool profile_rtm);
 681   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 682 #if INCLUDE_RTM_OPT
 683   void rtm_counters_update(Register abort_status, Register rtm_counters);
 684   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 685   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 686                                    RTMLockingCounters* rtm_counters,
 687                                    Metadata* method_data);
 688   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 689                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 690   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 691   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 692   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 693                          Register retry_on_abort_count,
 694                          RTMLockingCounters* stack_rtm_counters,
 695                          Metadata* method_data, bool profile_rtm,
 696                          Label& DONE_LABEL, Label& IsInflated);
 697   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 698                             Register scr, Register retry_on_busy_count,
 699                             Register retry_on_abort_count,
 700                             RTMLockingCounters* rtm_counters,
 701                             Metadata* method_data, bool profile_rtm,
 702                             Label& DONE_LABEL);
 703 #endif
 704 #endif
 705 
 706   Condition negate_condition(Condition cond);
 707 
 708   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 709   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 710   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 711   // here in MacroAssembler. The major exception to this rule is call
 712 
 713   // Arithmetics
 714 
 715 
 716   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 717   void addptr(Address dst, Register src);
 718 
 719   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 720   void addptr(Register dst, int32_t src);
 721   void addptr(Register dst, Register src);
 722   void addptr(Register dst, RegisterOrConstant src) {
 723     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 724     else                   addptr(dst,       src.as_register());
 725   }
 726 
 727   void andptr(Register dst, int32_t src);
 728   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 729 
 730   void cmp8(AddressLiteral src1, int imm);
 731 
 732   // renamed to drag out the casting of address to int32_t/intptr_t
 733   void cmp32(Register src1, int32_t imm);
 734 
 735   void cmp32(AddressLiteral src1, int32_t imm);
 736   // compare reg - mem, or reg - &mem
 737   void cmp32(Register src1, AddressLiteral src2);
 738 
 739   void cmp32(Register src1, Address src2);
 740 
 741 #ifndef _LP64
 742   void cmpklass(Address dst, Metadata* obj);
 743   void cmpklass(Register dst, Metadata* obj);
 744   void cmpoop(Address dst, jobject obj);
 745   void cmpoop(Register dst, jobject obj);
 746 #endif // _LP64
 747 
 748   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 749   void cmpptr(Address src1, AddressLiteral src2);
 750 
 751   void cmpptr(Register src1, AddressLiteral src2);
 752 
 753   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 754   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 755   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756 
 757   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 759 
 760   // cmp64 to avoild hiding cmpq
 761   void cmp64(Register src1, AddressLiteral src);
 762 
 763   void cmpxchgptr(Register reg, Address adr);
 764 
 765   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 766 
 767 
 768   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 769   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 770 
 771 
 772   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 773 
 774   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 775 
 776   void shlptr(Register dst, int32_t shift);
 777   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 778 
 779   void shrptr(Register dst, int32_t shift);
 780   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 781 
 782   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 783   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 784 
 785   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 786 
 787   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 788   void subptr(Register dst, int32_t src);
 789   // Force generation of a 4 byte immediate value even if it fits into 8bit
 790   void subptr_imm32(Register dst, int32_t src);
 791   void subptr(Register dst, Register src);
 792   void subptr(Register dst, RegisterOrConstant src) {
 793     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 794     else                   subptr(dst,       src.as_register());
 795   }
 796 
 797   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 798   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 799 
 800   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 801   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 802 
 803   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 804 
 805 
 806 
 807   // Helper functions for statistics gathering.
 808   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 809   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 810   // Unconditional atomic increment.
 811   void atomic_incl(Address counter_addr);
 812   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 813 #ifdef _LP64
 814   void atomic_incq(Address counter_addr);
 815   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 816 #endif
 817   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 818   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 819 
 820   void lea(Register dst, AddressLiteral adr);
 821   void lea(Address dst, AddressLiteral adr);
 822   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 823 
 824   void leal32(Register dst, Address src) { leal(dst, src); }
 825 
 826   // Import other testl() methods from the parent class or else
 827   // they will be hidden by the following overriding declaration.
 828   using Assembler::testl;
 829   void testl(Register dst, AddressLiteral src);
 830 
 831   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 832   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 833   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 835 
 836   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 837   void testptr(Register src1, Register src2);
 838 
 839   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 840   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 841 
 842   // Calls
 843 
 844   void call(Label& L, relocInfo::relocType rtype);
 845   void call(Register entry);
 846 
 847   // NOTE: this call tranfers to the effective address of entry NOT
 848   // the address contained by entry. This is because this is more natural
 849   // for jumps/calls.
 850   void call(AddressLiteral entry);
 851 
 852   // Emit the CompiledIC call idiom
 853   void ic_call(address entry);
 854 
 855   // Jumps
 856 
 857   // NOTE: these jumps tranfer to the effective address of dst NOT
 858   // the address contained by dst. This is because this is more natural
 859   // for jumps/calls.
 860   void jump(AddressLiteral dst);
 861   void jump_cc(Condition cc, AddressLiteral dst);
 862 
 863   // 32bit can do a case table jump in one instruction but we no longer allow the base
 864   // to be installed in the Address class. This jump will tranfers to the address
 865   // contained in the location described by entry (not the address of entry)
 866   void jump(ArrayAddress entry);
 867 
 868   // Floating
 869 
 870   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 871   void andpd(XMMRegister dst, AddressLiteral src);
 872 
 873   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 874   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 875   void andps(XMMRegister dst, AddressLiteral src);
 876 
 877   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 878   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 879   void comiss(XMMRegister dst, AddressLiteral src);
 880 
 881   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 882   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 883   void comisd(XMMRegister dst, AddressLiteral src);
 884 
 885   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 886   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 887 
 888   void fldcw(Address src) { Assembler::fldcw(src); }
 889   void fldcw(AddressLiteral src);
 890 
 891   void fld_s(int index)   { Assembler::fld_s(index); }
 892   void fld_s(Address src) { Assembler::fld_s(src); }
 893   void fld_s(AddressLiteral src);
 894 
 895   void fld_d(Address src) { Assembler::fld_d(src); }
 896   void fld_d(AddressLiteral src);
 897 
 898   void fld_x(Address src) { Assembler::fld_x(src); }
 899   void fld_x(AddressLiteral src);
 900 
 901   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 902   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 903 
 904   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 905   void ldmxcsr(AddressLiteral src);
 906 
 907   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
 908   // all corner cases and may result in NaN and require fallback to a
 909   // runtime call.
 910   void fast_pow();
 911   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 912                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 913                 Register rax, Register rcx, Register rdx, Register tmp);
 914 
 915   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 916                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 917                 Register rax, Register rcx, Register rdx, Register tmp1 LP64_ONLY(COMMA Register tmp2));
 918 
 919   void increase_precision();
 920   void restore_precision();
 921 
 922   // computes pow(x,y). Fallback to runtime call included.
 923   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(num_fpu_regs_in_use); }
 924 
 925 private:
 926 
 927   // call runtime as a fallback for trig functions and pow/exp.
 928   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
 929 
 930   // computes 2^(Ylog2X); Ylog2X in ST(0)
 931   void pow_exp_core_encoding();
 932 
 933   // computes pow(x,y) or exp(x). Fallback to runtime call included.
 934   void pow_or_exp(int num_fpu_regs_in_use);
 935 
 936   // these are private because users should be doing movflt/movdbl
 937 
 938   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
 939   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
 940   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
 941   void movss(XMMRegister dst, AddressLiteral src);
 942 
 943   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
 944   void movlpd(XMMRegister dst, AddressLiteral src);
 945 
 946 public:
 947 
 948   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
 949   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
 950   void addsd(XMMRegister dst, AddressLiteral src);
 951 
 952   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
 953   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
 954   void addss(XMMRegister dst, AddressLiteral src);
 955 
 956   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
 957   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
 958   void divsd(XMMRegister dst, AddressLiteral src);
 959 
 960   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
 961   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
 962   void divss(XMMRegister dst, AddressLiteral src);
 963 
 964   // Move Unaligned Double Quadword
 965   void movdqu(Address     dst, XMMRegister src);
 966   void movdqu(XMMRegister dst, Address src);
 967   void movdqu(XMMRegister dst, XMMRegister src);
 968   void movdqu(XMMRegister dst, AddressLiteral src);
 969   // AVX Unaligned forms
 970   void vmovdqu(Address     dst, XMMRegister src);
 971   void vmovdqu(XMMRegister dst, Address src);
 972   void vmovdqu(XMMRegister dst, XMMRegister src);
 973   void vmovdqu(XMMRegister dst, AddressLiteral src);
 974 
 975   // Move Aligned Double Quadword
 976   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
 977   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
 978   void movdqa(XMMRegister dst, AddressLiteral src);
 979 
 980   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
 981   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
 982   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
 983   void movsd(XMMRegister dst, AddressLiteral src);
 984 
 985   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
 986   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
 987   void mulpd(XMMRegister dst, AddressLiteral src);
 988 
 989   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
 990   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
 991   void mulsd(XMMRegister dst, AddressLiteral src);
 992 
 993   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
 994   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
 995   void mulss(XMMRegister dst, AddressLiteral src);
 996 
 997   // Carry-Less Multiplication Quadword
 998   void pclmulldq(XMMRegister dst, XMMRegister src) {
 999     // 0x00 - multiply lower 64 bits [0:63]
1000     Assembler::pclmulqdq(dst, src, 0x00);
1001   }
1002   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1003     // 0x11 - multiply upper 64 bits [64:127]
1004     Assembler::pclmulqdq(dst, src, 0x11);
1005   }
1006 
1007   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1008   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1009   void sqrtsd(XMMRegister dst, AddressLiteral src);
1010 
1011   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1012   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1013   void sqrtss(XMMRegister dst, AddressLiteral src);
1014 
1015   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1016   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1017   void subsd(XMMRegister dst, AddressLiteral src);
1018 
1019   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1020   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1021   void subss(XMMRegister dst, AddressLiteral src);
1022 
1023   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1024   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1025   void ucomiss(XMMRegister dst, AddressLiteral src);
1026 
1027   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1028   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1029   void ucomisd(XMMRegister dst, AddressLiteral src);
1030 
1031   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1032   void xorpd(XMMRegister dst, XMMRegister src);
1033   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1034   void xorpd(XMMRegister dst, AddressLiteral src);
1035 
1036   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1037   void xorps(XMMRegister dst, XMMRegister src);
1038   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1039   void xorps(XMMRegister dst, AddressLiteral src);
1040 
1041   // Shuffle Bytes
1042   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1043   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1044   void pshufb(XMMRegister dst, AddressLiteral src);
1045   // AVX 3-operands instructions
1046 
1047   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1048   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1049   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1050 
1051   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1052   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1053   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1054 
1055   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1056   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1057 
1058   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1059   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1060 
1061   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1062   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1063 
1064   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1065   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1066 
1067   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1068   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1069 
1070   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1071   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1072 
1073   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1074   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1075 
1076   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1077   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1078 
1079   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1080   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1081 
1082   void punpcklbw(XMMRegister dst, XMMRegister src);
1083   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1084 
1085   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1086   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1087 
1088   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1089   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1090   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1091 
1092   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1093   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1094   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1095 
1096   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1097   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1098   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1099 
1100   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1101   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1102   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1103 
1104   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1105   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1106   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1107 
1108   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1109   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1110   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1111 
1112   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1113   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1114   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1115 
1116   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1117   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1118   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1119 
1120   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1121   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1122 
1123   // AVX Vector instructions
1124 
1125   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1126   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1127   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1128 
1129   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1130   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1131   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1132 
1133   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1134     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1135       Assembler::vpxor(dst, nds, src, vector_len);
1136     else
1137       Assembler::vxorpd(dst, nds, src, vector_len);
1138   }
1139   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1140     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1141       Assembler::vpxor(dst, nds, src, vector_len);
1142     else
1143       Assembler::vxorpd(dst, nds, src, vector_len);
1144   }
1145 
1146   // Simple version for AVX2 256bit vectors
1147   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1148   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1149 
1150   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
1151   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1152     if (UseAVX > 1) // vinserti128h is available only in AVX2
1153       Assembler::vinserti128h(dst, nds, src);
1154     else
1155       Assembler::vinsertf128h(dst, nds, src);
1156   }
1157 
1158   // Carry-Less Multiplication Quadword
1159   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1160     // 0x00 - multiply lower 64 bits [0:63]
1161     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1162   }
1163   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1164     // 0x11 - multiply upper 64 bits [64:127]
1165     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1166   }
1167 
1168   // Data
1169 
1170   void cmov32( Condition cc, Register dst, Address  src);
1171   void cmov32( Condition cc, Register dst, Register src);
1172 
1173   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1174 
1175   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1176   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1177 
1178   void movoop(Register dst, jobject obj);
1179   void movoop(Address dst, jobject obj);
1180 
1181   void mov_metadata(Register dst, Metadata* obj);
1182   void mov_metadata(Address dst, Metadata* obj);
1183 
1184   void movptr(ArrayAddress dst, Register src);
1185   // can this do an lea?
1186   void movptr(Register dst, ArrayAddress src);
1187 
1188   void movptr(Register dst, Address src);
1189 
1190 #ifdef _LP64
1191   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1192 #else
1193   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1194 #endif
1195 
1196   void movptr(Register dst, intptr_t src);
1197   void movptr(Register dst, Register src);
1198   void movptr(Address dst, intptr_t src);
1199 
1200   void movptr(Address dst, Register src);
1201 
1202   void movptr(Register dst, RegisterOrConstant src) {
1203     if (src.is_constant()) movptr(dst, src.as_constant());
1204     else                   movptr(dst, src.as_register());
1205   }
1206 
1207 #ifdef _LP64
1208   // Generally the next two are only used for moving NULL
1209   // Although there are situations in initializing the mark word where
1210   // they could be used. They are dangerous.
1211 
1212   // They only exist on LP64 so that int32_t and intptr_t are not the same
1213   // and we have ambiguous declarations.
1214 
1215   void movptr(Address dst, int32_t imm32);
1216   void movptr(Register dst, int32_t imm32);
1217 #endif // _LP64
1218 
1219   // to avoid hiding movl
1220   void mov32(AddressLiteral dst, Register src);
1221   void mov32(Register dst, AddressLiteral src);
1222 
1223   // to avoid hiding movb
1224   void movbyte(ArrayAddress dst, int src);
1225 
1226   // Import other mov() methods from the parent class or else
1227   // they will be hidden by the following overriding declaration.
1228   using Assembler::movdl;
1229   using Assembler::movq;
1230   void movdl(XMMRegister dst, AddressLiteral src);
1231   void movq(XMMRegister dst, AddressLiteral src);
1232 
1233   // Can push value or effective address
1234   void pushptr(AddressLiteral src);
1235 
1236   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1237   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1238 
1239   void pushoop(jobject obj);
1240   void pushklass(Metadata* obj);
1241 
1242   // sign extend as need a l to ptr sized element
1243   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1244   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1245 
1246   // C2 compiled method's prolog code.
1247   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1248 
1249   // clear memory of size 'cnt' qwords, starting at 'base'.
1250   void clear_mem(Register base, Register cnt, Register rtmp);
1251 
1252 #ifdef COMPILER2
1253   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1254                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1255 
1256   // IndexOf strings.
1257   // Small strings are loaded through stack if they cross page boundary.
1258   void string_indexof(Register str1, Register str2,
1259                       Register cnt1, Register cnt2,
1260                       int int_cnt2,  Register result,
1261                       XMMRegister vec, Register tmp,
1262                       int ae);
1263 
1264   // IndexOf for constant substrings with size >= 8 elements
1265   // which don't need to be loaded through stack.
1266   void string_indexofC8(Register str1, Register str2,
1267                       Register cnt1, Register cnt2,
1268                       int int_cnt2,  Register result,
1269                       XMMRegister vec, Register tmp,
1270                       int ae);
1271 
1272     // Smallest code: we don't need to load through stack,
1273     // check string tail.
1274 
1275   // helper function for string_compare
1276   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1277                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1278                           Address::ScaleFactor scale2, Register index, int ae);
1279   // Compare strings.
1280   void string_compare(Register str1, Register str2,
1281                       Register cnt1, Register cnt2, Register result,
1282                       XMMRegister vec1, int ae);
1283 
1284   // Search for Non-ASCII character (Negative byte value) in a byte array,
1285   // return true if it has any and false otherwise.
1286   void has_negatives(Register ary1, Register len,
1287                      Register result, Register tmp1,
1288                      XMMRegister vec1, XMMRegister vec2);
1289 
1290   // Compare char[] or byte[] arrays.
1291   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1292                      Register limit, Register result, Register chr,
1293                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1294 
1295 #endif
1296 
1297   // Fill primitive arrays
1298   void generate_fill(BasicType t, bool aligned,
1299                      Register to, Register value, Register count,
1300                      Register rtmp, XMMRegister xtmp);
1301 
1302   void encode_iso_array(Register src, Register dst, Register len,
1303                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1304                         XMMRegister tmp4, Register tmp5, Register result);
1305 
1306 #ifdef _LP64
1307   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1308   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1309                              Register y, Register y_idx, Register z,
1310                              Register carry, Register product,
1311                              Register idx, Register kdx);
1312   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1313                               Register yz_idx, Register idx,
1314                               Register carry, Register product, int offset);
1315   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1316                                     Register carry, Register carry2,
1317                                     Register idx, Register jdx,
1318                                     Register yz_idx1, Register yz_idx2,
1319                                     Register tmp, Register tmp3, Register tmp4);
1320   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1321                                Register yz_idx, Register idx, Register jdx,
1322                                Register carry, Register product,
1323                                Register carry2);
1324   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1325                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1326 
1327   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1328                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1329   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1330                             Register tmp2);
1331   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1332                        Register rdxReg, Register raxReg);
1333   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1334   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1335                        Register tmp3, Register tmp4);
1336   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1337                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1338 
1339   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1340                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1341                Register raxReg);
1342   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1343                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1344                Register raxReg);
1345 #endif
1346 
1347   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1348   void update_byte_crc32(Register crc, Register val, Register table);
1349   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1350   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1351   // Note on a naming convention:
1352   // Prefix w = register only used on a Westmere+ architecture
1353   // Prefix n = register only used on a Nehalem architecture
1354 #ifdef _LP64
1355   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1356                        Register tmp1, Register tmp2, Register tmp3);
1357 #else
1358   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1359                        Register tmp1, Register tmp2, Register tmp3,
1360                        XMMRegister xtmp1, XMMRegister xtmp2);
1361 #endif
1362   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1363                         Register in_out,
1364                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1365                         XMMRegister w_xtmp2,
1366                         Register tmp1,
1367                         Register n_tmp2, Register n_tmp3);
1368   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1369                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1370                        Register tmp1, Register tmp2,
1371                        Register n_tmp3);
1372   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1373                          Register in_out1, Register in_out2, Register in_out3,
1374                          Register tmp1, Register tmp2, Register tmp3,
1375                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1376                          Register tmp4, Register tmp5,
1377                          Register n_tmp6);
1378   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1379                             Register tmp1, Register tmp2, Register tmp3,
1380                             Register tmp4, Register tmp5, Register tmp6,
1381                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1382                             bool is_pclmulqdq_supported);
1383   // Fold 128-bit data chunk
1384   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1385   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1386   // Fold 8-bit data
1387   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1388   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1389 
1390   // Compress char[] array to byte[].
1391   void char_array_compress(Register src, Register dst, Register len,
1392                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1393                            XMMRegister tmp4, Register tmp5, Register result);
1394 
1395   // Inflate byte[] array to char[].
1396   void byte_array_inflate(Register src, Register dst, Register len,
1397                           XMMRegister tmp1, Register tmp2);
1398 
1399 #undef VIRTUAL
1400 
1401 };
1402 
1403 /**
1404  * class SkipIfEqual:
1405  *
1406  * Instantiating this class will result in assembly code being output that will
1407  * jump around any code emitted between the creation of the instance and it's
1408  * automatic destruction at the end of a scope block, depending on the value of
1409  * the flag passed to the constructor, which will be checked at run-time.
1410  */
1411 class SkipIfEqual {
1412  private:
1413   MacroAssembler* _masm;
1414   Label _label;
1415 
1416  public:
1417    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1418    ~SkipIfEqual();
1419 };
1420 
1421 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP