1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_primitive_arraycopy_cnt = 0;
 108 int Runtime1::_oop_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_stub_cnt = 0;
 130 static int _short_arraycopy_stub_cnt = 0;
 131 static int _int_arraycopy_stub_cnt = 0;
 132 static int _long_arraycopy_stub_cnt = 0;
 133 static int _oop_arraycopy_stub_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   OopMapSet* oop_maps;
 188   int frame_size;
 189   bool must_gc_arguments;
 190 
 191   if (!CodeCacheExtensions::skip_compiler_support()) {
 192     // bypass useless code generation
 193     Compilation::setup_code_buffer(&code, 0);
 194 
 195     // create assembler for code generation
 196     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 197     // generate code for runtime stub
 198     oop_maps = generate_code_for(id, sasm);
 199     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 200            "if stub has an oop map it must have a valid frame size");
 201 
 202 #ifdef ASSERT
 203     // Make sure that stubs that need oopmaps have them
 204     switch (id) {
 205       // These stubs don't need to have an oopmap
 206     case dtrace_object_alloc_id:
 207     case g1_pre_barrier_slow_id:
 208     case g1_post_barrier_slow_id:
 209     case slow_subtype_check_id:
 210     case fpu2long_stub_id:
 211     case unwind_exception_id:
 212     case counter_overflow_id:
 213 #if defined(SPARC) || defined(PPC)
 214     case handle_exception_nofpu_id:  // Unused on sparc
 215 #endif
 216       break;
 217 
 218       // All other stubs should have oopmaps
 219     default:
 220       assert(oop_maps != NULL, "must have an oopmap");
 221     }
 222 #endif
 223 
 224     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 225     sasm->align(BytesPerWord);
 226     // make sure all code is in code buffer
 227     sasm->flush();
 228 
 229     frame_size = sasm->frame_size();
 230     must_gc_arguments = sasm->must_gc_arguments();
 231   } else {
 232     /* ignored values */
 233     oop_maps = NULL;
 234     frame_size = 0;
 235     must_gc_arguments = false;
 236   }
 237   // create blob - distinguish a few special cases
 238   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 239                                                  &code,
 240                                                  CodeOffsets::frame_never_safe,
 241                                                  frame_size,
 242                                                  oop_maps,
 243                                                  must_gc_arguments);
 244   // install blob
 245   assert(blob != NULL, "blob must exist");
 246   _blobs[id] = blob;
 247 }
 248 
 249 
 250 void Runtime1::initialize(BufferBlob* blob) {
 251   // platform-dependent initialization
 252   initialize_pd();
 253   // generate stubs
 254   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 255   // printing
 256 #ifndef PRODUCT
 257   if (PrintSimpleStubs) {
 258     ResourceMark rm;
 259     for (int id = 0; id < number_of_ids; id++) {
 260       _blobs[id]->print();
 261       if (_blobs[id]->oop_maps() != NULL) {
 262         _blobs[id]->oop_maps()->print();
 263       }
 264     }
 265   }
 266 #endif
 267 }
 268 
 269 
 270 CodeBlob* Runtime1::blob_for(StubID id) {
 271   assert(0 <= id && id < number_of_ids, "illegal stub id");
 272   return _blobs[id];
 273 }
 274 
 275 
 276 const char* Runtime1::name_for(StubID id) {
 277   assert(0 <= id && id < number_of_ids, "illegal stub id");
 278   return _blob_names[id];
 279 }
 280 
 281 const char* Runtime1::name_for_address(address entry) {
 282   for (int id = 0; id < number_of_ids; id++) {
 283     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 284   }
 285 
 286 #define FUNCTION_CASE(a, f) \
 287   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 288 
 289   FUNCTION_CASE(entry, os::javaTimeMillis);
 290   FUNCTION_CASE(entry, os::javaTimeNanos);
 291   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 292   FUNCTION_CASE(entry, SharedRuntime::d2f);
 293   FUNCTION_CASE(entry, SharedRuntime::d2i);
 294   FUNCTION_CASE(entry, SharedRuntime::d2l);
 295   FUNCTION_CASE(entry, SharedRuntime::dcos);
 296   FUNCTION_CASE(entry, SharedRuntime::dexp);
 297   FUNCTION_CASE(entry, SharedRuntime::dlog);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 299   FUNCTION_CASE(entry, SharedRuntime::dpow);
 300   FUNCTION_CASE(entry, SharedRuntime::drem);
 301   FUNCTION_CASE(entry, SharedRuntime::dsin);
 302   FUNCTION_CASE(entry, SharedRuntime::dtan);
 303   FUNCTION_CASE(entry, SharedRuntime::f2i);
 304   FUNCTION_CASE(entry, SharedRuntime::f2l);
 305   FUNCTION_CASE(entry, SharedRuntime::frem);
 306   FUNCTION_CASE(entry, SharedRuntime::l2d);
 307   FUNCTION_CASE(entry, SharedRuntime::l2f);
 308   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 309   FUNCTION_CASE(entry, SharedRuntime::lmul);
 310   FUNCTION_CASE(entry, SharedRuntime::lrem);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 314   FUNCTION_CASE(entry, is_instance_of);
 315   FUNCTION_CASE(entry, trace_block_entry);
 316 #ifdef TRACE_HAVE_INTRINSICS
 317   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 318 #endif
 319   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 320   FUNCTION_CASE(entry, StubRoutines::dexp());
 321   FUNCTION_CASE(entry, StubRoutines::dlog());
 322   FUNCTION_CASE(entry, StubRoutines::dsin());
 323   FUNCTION_CASE(entry, StubRoutines::dcos());
 324 
 325 #undef FUNCTION_CASE
 326 
 327   // Soft float adds more runtime names.
 328   return pd_name_for_address(entry);
 329 }
 330 
 331 
 332 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 333   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 334 
 335   assert(klass->is_klass(), "not a class");
 336   instanceKlassHandle h(thread, klass);
 337   h->check_valid_for_instantiation(true, CHECK);
 338   // make sure klass is initialized
 339   h->initialize(CHECK);
 340   // allocate instance and return via TLS
 341   oop obj = h->allocate_instance(CHECK);
 342   thread->set_vm_result(obj);
 343 JRT_END
 344 
 345 
 346 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 347   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 348   // Note: no handle for klass needed since they are not used
 349   //       anymore after new_typeArray() and no GC can happen before.
 350   //       (This may have to change if this code changes!)
 351   assert(klass->is_klass(), "not a class");
 352   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 353   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 354   thread->set_vm_result(obj);
 355   // This is pretty rare but this runtime patch is stressful to deoptimization
 356   // if we deoptimize here so force a deopt to stress the path.
 357   if (DeoptimizeALot) {
 358     deopt_caller();
 359   }
 360 
 361 JRT_END
 362 
 363 
 364 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 365   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 366 
 367   // Note: no handle for klass needed since they are not used
 368   //       anymore after new_objArray() and no GC can happen before.
 369   //       (This may have to change if this code changes!)
 370   assert(array_klass->is_klass(), "not a class");
 371   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 372   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 373   thread->set_vm_result(obj);
 374   // This is pretty rare but this runtime patch is stressful to deoptimization
 375   // if we deoptimize here so force a deopt to stress the path.
 376   if (DeoptimizeALot) {
 377     deopt_caller();
 378   }
 379 JRT_END
 380 
 381 
 382 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 383   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 384 
 385   assert(klass->is_klass(), "not a class");
 386   assert(rank >= 1, "rank must be nonzero");
 387   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 388   thread->set_vm_result(obj);
 389 JRT_END
 390 
 391 
 392 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 393   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 394 JRT_END
 395 
 396 
 397 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 398   ResourceMark rm(thread);
 399   const char* klass_name = obj->klass()->external_name();
 400   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 401 JRT_END
 402 
 403 
 404 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 405 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 406 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 407 // a constant.
 408 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 409   nmethod* osr_nm = NULL;
 410   methodHandle method(THREAD, m);
 411 
 412   RegisterMap map(THREAD, false);
 413   frame fr =  THREAD->last_frame().sender(&map);
 414   nmethod* nm = (nmethod*) fr.cb();
 415   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 416   methodHandle enclosing_method(THREAD, nm->method());
 417 
 418   CompLevel level = (CompLevel)nm->comp_level();
 419   int bci = InvocationEntryBci;
 420   if (branch_bci != InvocationEntryBci) {
 421     // Compute destination bci
 422     address pc = method()->code_base() + branch_bci;
 423     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 424     int offset = 0;
 425     switch (branch) {
 426       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 427       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 428       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 429       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 430       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 431       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 432       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 433         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 434         break;
 435       case Bytecodes::_goto_w:
 436         offset = Bytes::get_Java_u4(pc + 1);
 437         break;
 438       default: ;
 439     }
 440     bci = branch_bci + offset;
 441   }
 442   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 443   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 444   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 445   return osr_nm;
 446 }
 447 
 448 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 449   nmethod* osr_nm;
 450   JRT_BLOCK
 451     osr_nm = counter_overflow_helper(thread, bci, method);
 452     if (osr_nm != NULL) {
 453       RegisterMap map(thread, false);
 454       frame fr =  thread->last_frame().sender(&map);
 455       Deoptimization::deoptimize_frame(thread, fr.id());
 456     }
 457   JRT_BLOCK_END
 458   return NULL;
 459 JRT_END
 460 
 461 extern void vm_exit(int code);
 462 
 463 // Enter this method from compiled code handler below. This is where we transition
 464 // to VM mode. This is done as a helper routine so that the method called directly
 465 // from compiled code does not have to transition to VM. This allows the entry
 466 // method to see if the nmethod that we have just looked up a handler for has
 467 // been deoptimized while we were in the vm. This simplifies the assembly code
 468 // cpu directories.
 469 //
 470 // We are entering here from exception stub (via the entry method below)
 471 // If there is a compiled exception handler in this method, we will continue there;
 472 // otherwise we will unwind the stack and continue at the caller of top frame method
 473 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 474 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 475 // check to see if the handler we are going to return is now in a nmethod that has
 476 // been deoptimized. If that is the case we return the deopt blob
 477 // unpack_with_exception entry instead. This makes life for the exception blob easier
 478 // because making that same check and diverting is painful from assembly language.
 479 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 480   // Reset method handle flag.
 481   thread->set_is_method_handle_return(false);
 482 
 483   Handle exception(thread, ex);
 484   nm = CodeCache::find_nmethod(pc);
 485   assert(nm != NULL, "this is not an nmethod");
 486   // Adjust the pc as needed/
 487   if (nm->is_deopt_pc(pc)) {
 488     RegisterMap map(thread, false);
 489     frame exception_frame = thread->last_frame().sender(&map);
 490     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 491     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 492     pc = exception_frame.pc();
 493   }
 494 #ifdef ASSERT
 495   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 496   assert(exception->is_oop(), "just checking");
 497   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 498   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 499     if (ExitVMOnVerifyError) vm_exit(-1);
 500     ShouldNotReachHere();
 501   }
 502 #endif
 503 
 504   // Check the stack guard pages and reenable them if necessary and there is
 505   // enough space on the stack to do so.  Use fast exceptions only if the guard
 506   // pages are enabled.
 507   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 508   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 509 
 510   if (JvmtiExport::can_post_on_exceptions()) {
 511     // To ensure correct notification of exception catches and throws
 512     // we have to deoptimize here.  If we attempted to notify the
 513     // catches and throws during this exception lookup it's possible
 514     // we could deoptimize on the way out of the VM and end back in
 515     // the interpreter at the throw site.  This would result in double
 516     // notifications since the interpreter would also notify about
 517     // these same catches and throws as it unwound the frame.
 518 
 519     RegisterMap reg_map(thread);
 520     frame stub_frame = thread->last_frame();
 521     frame caller_frame = stub_frame.sender(&reg_map);
 522 
 523     // We don't really want to deoptimize the nmethod itself since we
 524     // can actually continue in the exception handler ourselves but I
 525     // don't see an easy way to have the desired effect.
 526     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 527     assert(caller_is_deopted(), "Must be deoptimized");
 528 
 529     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 530   }
 531 
 532   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 533   if (guard_pages_enabled) {
 534     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 535     if (fast_continuation != NULL) {
 536       // Set flag if return address is a method handle call site.
 537       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 538       return fast_continuation;
 539     }
 540   }
 541 
 542   // If the stack guard pages are enabled, check whether there is a handler in
 543   // the current method.  Otherwise (guard pages disabled), force an unwind and
 544   // skip the exception cache update (i.e., just leave continuation==NULL).
 545   address continuation = NULL;
 546   if (guard_pages_enabled) {
 547 
 548     // New exception handling mechanism can support inlined methods
 549     // with exception handlers since the mappings are from PC to PC
 550 
 551     // debugging support
 552     // tracing
 553     if (TraceExceptions) {
 554       ttyLocker ttyl;
 555       ResourceMark rm;
 556       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 557                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 558     }
 559     // for AbortVMOnException flag
 560     Exceptions::debug_check_abort(exception);
 561 
 562     // Clear out the exception oop and pc since looking up an
 563     // exception handler can cause class loading, which might throw an
 564     // exception and those fields are expected to be clear during
 565     // normal bytecode execution.
 566     thread->clear_exception_oop_and_pc();
 567 
 568     Handle original_exception(thread, exception());
 569 
 570     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 571     // If an exception was thrown during exception dispatch, the exception oop may have changed
 572     thread->set_exception_oop(exception());
 573     thread->set_exception_pc(pc);
 574 
 575     // the exception cache is used only by non-implicit exceptions
 576     // Update the exception cache only when there didn't happen
 577     // another exception during the computation of the compiled
 578     // exception handler.
 579     if (continuation != NULL && original_exception() == exception()) {
 580       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 581     }
 582   }
 583 
 584   thread->set_vm_result(exception());
 585   // Set flag if return address is a method handle call site.
 586   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 587 
 588   if (TraceExceptions) {
 589     ttyLocker ttyl;
 590     ResourceMark rm;
 591     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 592                   p2i(thread), p2i(continuation), p2i(pc));
 593   }
 594 
 595   return continuation;
 596 JRT_END
 597 
 598 // Enter this method from compiled code only if there is a Java exception handler
 599 // in the method handling the exception.
 600 // We are entering here from exception stub. We don't do a normal VM transition here.
 601 // We do it in a helper. This is so we can check to see if the nmethod we have just
 602 // searched for an exception handler has been deoptimized in the meantime.
 603 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 604   oop exception = thread->exception_oop();
 605   address pc = thread->exception_pc();
 606   // Still in Java mode
 607   DEBUG_ONLY(ResetNoHandleMark rnhm);
 608   nmethod* nm = NULL;
 609   address continuation = NULL;
 610   {
 611     // Enter VM mode by calling the helper
 612     ResetNoHandleMark rnhm;
 613     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 614   }
 615   // Back in JAVA, use no oops DON'T safepoint
 616 
 617   // Now check to see if the nmethod we were called from is now deoptimized.
 618   // If so we must return to the deopt blob and deoptimize the nmethod
 619   if (nm != NULL && caller_is_deopted()) {
 620     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 621   }
 622 
 623   assert(continuation != NULL, "no handler found");
 624   return continuation;
 625 }
 626 
 627 
 628 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 629   NOT_PRODUCT(_throw_range_check_exception_count++;)
 630   char message[jintAsStringSize];
 631   sprintf(message, "%d", index);
 632   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 633 JRT_END
 634 
 635 
 636 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 637   NOT_PRODUCT(_throw_index_exception_count++;)
 638   char message[16];
 639   sprintf(message, "%d", index);
 640   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 641 JRT_END
 642 
 643 
 644 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 645   NOT_PRODUCT(_throw_div0_exception_count++;)
 646   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 647 JRT_END
 648 
 649 
 650 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 651   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 652   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 653 JRT_END
 654 
 655 
 656 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 657   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 658   ResourceMark rm(thread);
 659   char* message = SharedRuntime::generate_class_cast_message(
 660     thread, object->klass()->external_name());
 661   SharedRuntime::throw_and_post_jvmti_exception(
 662     thread, vmSymbols::java_lang_ClassCastException(), message);
 663 JRT_END
 664 
 665 
 666 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 667   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 668   ResourceMark rm(thread);
 669   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 670 JRT_END
 671 
 672 
 673 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 674   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 675   if (PrintBiasedLockingStatistics) {
 676     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 677   }
 678   Handle h_obj(thread, obj);
 679   assert(h_obj()->is_oop(), "must be NULL or an object");
 680   if (UseBiasedLocking) {
 681     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 682     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 683   } else {
 684     if (UseFastLocking) {
 685       // When using fast locking, the compiled code has already tried the fast case
 686       assert(obj == lock->obj(), "must match");
 687       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 688     } else {
 689       lock->set_obj(obj);
 690       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 691     }
 692   }
 693 JRT_END
 694 
 695 
 696 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 697   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 698   assert(thread == JavaThread::current(), "threads must correspond");
 699   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 700   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 701   EXCEPTION_MARK;
 702 
 703   oop obj = lock->obj();
 704   assert(obj->is_oop(), "must be NULL or an object");
 705   if (UseFastLocking) {
 706     // When using fast locking, the compiled code has already tried the fast case
 707     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 708   } else {
 709     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 710   }
 711 JRT_END
 712 
 713 // Cf. OptoRuntime::deoptimize_caller_frame
 714 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 715   // Called from within the owner thread, so no need for safepoint
 716   RegisterMap reg_map(thread, false);
 717   frame stub_frame = thread->last_frame();
 718   assert(stub_frame.is_runtime_frame(), "Sanity check");
 719   frame caller_frame = stub_frame.sender(&reg_map);
 720   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 721   assert(nm != NULL, "Sanity check");
 722   methodHandle method(thread, nm->method());
 723   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 724   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 725   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 726 
 727   if (action == Deoptimization::Action_make_not_entrant) {
 728     if (nm->make_not_entrant()) {
 729       if (reason == Deoptimization::Reason_tenured) {
 730         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 731         if (trap_mdo != NULL) {
 732           trap_mdo->inc_tenure_traps();
 733         }
 734       }
 735     }
 736   }
 737 
 738   // Deoptimize the caller frame.
 739   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 740   // Return to the now deoptimized frame.
 741 JRT_END
 742 
 743 
 744 #ifndef DEOPTIMIZE_WHEN_PATCHING
 745 
 746 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 747   Bytecode_field field_access(caller, bci);
 748   // This can be static or non-static field access
 749   Bytecodes::Code code       = field_access.code();
 750 
 751   // We must load class, initialize class and resolvethe field
 752   fieldDescriptor result; // initialize class if needed
 753   constantPoolHandle constants(THREAD, caller->constants());
 754   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 755   return result.field_holder();
 756 }
 757 
 758 
 759 //
 760 // This routine patches sites where a class wasn't loaded or
 761 // initialized at the time the code was generated.  It handles
 762 // references to classes, fields and forcing of initialization.  Most
 763 // of the cases are straightforward and involving simply forcing
 764 // resolution of a class, rewriting the instruction stream with the
 765 // needed constant and replacing the call in this function with the
 766 // patched code.  The case for static field is more complicated since
 767 // the thread which is in the process of initializing a class can
 768 // access it's static fields but other threads can't so the code
 769 // either has to deoptimize when this case is detected or execute a
 770 // check that the current thread is the initializing thread.  The
 771 // current
 772 //
 773 // Patches basically look like this:
 774 //
 775 //
 776 // patch_site: jmp patch stub     ;; will be patched
 777 // continue:   ...
 778 //             ...
 779 //             ...
 780 //             ...
 781 //
 782 // They have a stub which looks like this:
 783 //
 784 //             ;; patch body
 785 //             movl <const>, reg           (for class constants)
 786 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 787 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 788 //             <being_init offset> <bytes to copy> <bytes to skip>
 789 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 790 //             jmp patch_site
 791 //
 792 //
 793 // A normal patch is done by rewriting the patch body, usually a move,
 794 // and then copying it into place over top of the jmp instruction
 795 // being careful to flush caches and doing it in an MP-safe way.  The
 796 // constants following the patch body are used to find various pieces
 797 // of the patch relative to the call site for Runtime1::patch_code.
 798 // The case for getstatic and putstatic is more complicated because
 799 // getstatic and putstatic have special semantics when executing while
 800 // the class is being initialized.  getstatic/putstatic on a class
 801 // which is being_initialized may be executed by the initializing
 802 // thread but other threads have to block when they execute it.  This
 803 // is accomplished in compiled code by executing a test of the current
 804 // thread against the initializing thread of the class.  It's emitted
 805 // as boilerplate in their stub which allows the patched code to be
 806 // executed before it's copied back into the main body of the nmethod.
 807 //
 808 // being_init: get_thread(<tmp reg>
 809 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 810 //             jne patch_stub
 811 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 812 //             movl reg, [reg1 + <const>]  (for field offsets)
 813 //             jmp continue
 814 //             <being_init offset> <bytes to copy> <bytes to skip>
 815 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 816 //             jmp patch_site
 817 //
 818 // If the class is being initialized the patch body is rewritten and
 819 // the patch site is rewritten to jump to being_init, instead of
 820 // patch_stub.  Whenever this code is executed it checks the current
 821 // thread against the intializing thread so other threads will enter
 822 // the runtime and end up blocked waiting the class to finish
 823 // initializing inside the calls to resolve_field below.  The
 824 // initializing class will continue on it's way.  Once the class is
 825 // fully_initialized, the intializing_thread of the class becomes
 826 // NULL, so the next thread to execute this code will fail the test,
 827 // call into patch_code and complete the patching process by copying
 828 // the patch body back into the main part of the nmethod and resume
 829 // executing.
 830 //
 831 //
 832 
 833 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 834   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 835 
 836   ResourceMark rm(thread);
 837   RegisterMap reg_map(thread, false);
 838   frame runtime_frame = thread->last_frame();
 839   frame caller_frame = runtime_frame.sender(&reg_map);
 840 
 841   // last java frame on stack
 842   vframeStream vfst(thread, true);
 843   assert(!vfst.at_end(), "Java frame must exist");
 844 
 845   methodHandle caller_method(THREAD, vfst.method());
 846   // Note that caller_method->code() may not be same as caller_code because of OSR's
 847   // Note also that in the presence of inlining it is not guaranteed
 848   // that caller_method() == caller_code->method()
 849 
 850   int bci = vfst.bci();
 851   Bytecodes::Code code = caller_method()->java_code_at(bci);
 852 
 853   // this is used by assertions in the access_field_patching_id
 854   BasicType patch_field_type = T_ILLEGAL;
 855   bool deoptimize_for_volatile = false;
 856   bool deoptimize_for_atomic = false;
 857   int patch_field_offset = -1;
 858   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 859   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 860   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 861   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 862   bool load_klass_or_mirror_patch_id =
 863     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 864 
 865   if (stub_id == Runtime1::access_field_patching_id) {
 866 
 867     Bytecode_field field_access(caller_method, bci);
 868     fieldDescriptor result; // initialize class if needed
 869     Bytecodes::Code code = field_access.code();
 870     constantPoolHandle constants(THREAD, caller_method->constants());
 871     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 872     patch_field_offset = result.offset();
 873 
 874     // If we're patching a field which is volatile then at compile it
 875     // must not have been know to be volatile, so the generated code
 876     // isn't correct for a volatile reference.  The nmethod has to be
 877     // deoptimized so that the code can be regenerated correctly.
 878     // This check is only needed for access_field_patching since this
 879     // is the path for patching field offsets.  load_klass is only
 880     // used for patching references to oops which don't need special
 881     // handling in the volatile case.
 882 
 883     deoptimize_for_volatile = result.access_flags().is_volatile();
 884 
 885     // If we are patching a field which should be atomic, then
 886     // the generated code is not correct either, force deoptimizing.
 887     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 888     // break access atomicity only for them.
 889 
 890     // Strictly speaking, the deoptimizaation on 64-bit platforms
 891     // is unnecessary, and T_LONG stores on 32-bit platforms need
 892     // to be handled by special patching code when AlwaysAtomicAccesses
 893     // becomes product feature. At this point, we are still going
 894     // for the deoptimization for consistency against volatile
 895     // accesses.
 896 
 897     patch_field_type = result.field_type();
 898     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 899 
 900   } else if (load_klass_or_mirror_patch_id) {
 901     Klass* k = NULL;
 902     switch (code) {
 903       case Bytecodes::_putstatic:
 904       case Bytecodes::_getstatic:
 905         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 906           init_klass = KlassHandle(THREAD, klass);
 907           mirror = Handle(THREAD, klass->java_mirror());
 908         }
 909         break;
 910       case Bytecodes::_new:
 911         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 912           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 913         }
 914         break;
 915       case Bytecodes::_multianewarray:
 916         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 917           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 918         }
 919         break;
 920       case Bytecodes::_instanceof:
 921         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 922           k = caller_method->constants()->klass_at(io.index(), CHECK);
 923         }
 924         break;
 925       case Bytecodes::_checkcast:
 926         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 927           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 928         }
 929         break;
 930       case Bytecodes::_anewarray:
 931         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 932           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 933           k = ek->array_klass(CHECK);
 934         }
 935         break;
 936       case Bytecodes::_ldc:
 937       case Bytecodes::_ldc_w:
 938         {
 939           Bytecode_loadconstant cc(caller_method, bci);
 940           oop m = cc.resolve_constant(CHECK);
 941           mirror = Handle(THREAD, m);
 942         }
 943         break;
 944       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 945     }
 946     // convert to handle
 947     load_klass = KlassHandle(THREAD, k);
 948   } else if (stub_id == load_appendix_patching_id) {
 949     Bytecode_invoke bytecode(caller_method, bci);
 950     Bytecodes::Code bc = bytecode.invoke_code();
 951 
 952     CallInfo info;
 953     constantPoolHandle pool(thread, caller_method->constants());
 954     int index = bytecode.index();
 955     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 956     appendix = info.resolved_appendix();
 957     switch (bc) {
 958       case Bytecodes::_invokehandle: {
 959         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 960         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 961         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 962         break;
 963       }
 964       case Bytecodes::_invokedynamic: {
 965         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 966         break;
 967       }
 968       default: fatal("unexpected bytecode for load_appendix_patching_id");
 969     }
 970   } else {
 971     ShouldNotReachHere();
 972   }
 973 
 974   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 975     // At compile time we assumed the field wasn't volatile/atomic but after
 976     // loading it turns out it was volatile/atomic so we have to throw the
 977     // compiled code out and let it be regenerated.
 978     if (TracePatching) {
 979       if (deoptimize_for_volatile) {
 980         tty->print_cr("Deoptimizing for patching volatile field reference");
 981       }
 982       if (deoptimize_for_atomic) {
 983         tty->print_cr("Deoptimizing for patching atomic field reference");
 984       }
 985     }
 986 
 987     // It's possible the nmethod was invalidated in the last
 988     // safepoint, but if it's still alive then make it not_entrant.
 989     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 990     if (nm != NULL) {
 991       nm->make_not_entrant();
 992     }
 993 
 994     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 995 
 996     // Return to the now deoptimized frame.
 997   }
 998 
 999   // Now copy code back
1000 
1001   {
1002     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1003     //
1004     // Deoptimization may have happened while we waited for the lock.
1005     // In that case we don't bother to do any patching we just return
1006     // and let the deopt happen
1007     if (!caller_is_deopted()) {
1008       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1009       address instr_pc = jump->jump_destination();
1010       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1011       if (ni->is_jump() ) {
1012         // the jump has not been patched yet
1013         // The jump destination is slow case and therefore not part of the stubs
1014         // (stubs are only for StaticCalls)
1015 
1016         // format of buffer
1017         //    ....
1018         //    instr byte 0     <-- copy_buff
1019         //    instr byte 1
1020         //    ..
1021         //    instr byte n-1
1022         //      n
1023         //    ....             <-- call destination
1024 
1025         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1026         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1027         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1028         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1029         address copy_buff = stub_location - *byte_skip - *byte_count;
1030         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1031         if (TracePatching) {
1032           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1033                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1034           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1035           assert(caller_code != NULL, "nmethod not found");
1036 
1037           // NOTE we use pc() not original_pc() because we already know they are
1038           // identical otherwise we'd have never entered this block of code
1039 
1040           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1041           assert(map != NULL, "null check");
1042           map->print();
1043           tty->cr();
1044 
1045           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1046         }
1047         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1048         bool do_patch = true;
1049         if (stub_id == Runtime1::access_field_patching_id) {
1050           // The offset may not be correct if the class was not loaded at code generation time.
1051           // Set it now.
1052           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1053           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1054           assert(patch_field_offset >= 0, "illegal offset");
1055           n_move->add_offset_in_bytes(patch_field_offset);
1056         } else if (load_klass_or_mirror_patch_id) {
1057           // If a getstatic or putstatic is referencing a klass which
1058           // isn't fully initialized, the patch body isn't copied into
1059           // place until initialization is complete.  In this case the
1060           // patch site is setup so that any threads besides the
1061           // initializing thread are forced to come into the VM and
1062           // block.
1063           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1064                      InstanceKlass::cast(init_klass())->is_initialized();
1065           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1066           if (jump->jump_destination() == being_initialized_entry) {
1067             assert(do_patch == true, "initialization must be complete at this point");
1068           } else {
1069             // patch the instruction <move reg, klass>
1070             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1071 
1072             assert(n_copy->data() == 0 ||
1073                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1074                    "illegal init value");
1075             if (stub_id == Runtime1::load_klass_patching_id) {
1076               assert(load_klass() != NULL, "klass not set");
1077               n_copy->set_data((intx) (load_klass()));
1078             } else {
1079               assert(mirror() != NULL, "klass not set");
1080               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1081               n_copy->set_data(cast_from_oop<intx>(mirror()));
1082             }
1083 
1084             if (TracePatching) {
1085               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1086             }
1087           }
1088         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1089           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1090           assert(n_copy->data() == 0 ||
1091                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1092                  "illegal init value");
1093           n_copy->set_data(cast_from_oop<intx>(appendix()));
1094 
1095           if (TracePatching) {
1096             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1097           }
1098         } else {
1099           ShouldNotReachHere();
1100         }
1101 
1102 #if defined(SPARC) || defined(PPC)
1103         if (load_klass_or_mirror_patch_id ||
1104             stub_id == Runtime1::load_appendix_patching_id) {
1105           // Update the location in the nmethod with the proper
1106           // metadata.  When the code was generated, a NULL was stuffed
1107           // in the metadata table and that table needs to be update to
1108           // have the right value.  On intel the value is kept
1109           // directly in the instruction instead of in the metadata
1110           // table, so set_data above effectively updated the value.
1111           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1112           assert(nm != NULL, "invalid nmethod_pc");
1113           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1114           bool found = false;
1115           while (mds.next() && !found) {
1116             if (mds.type() == relocInfo::oop_type) {
1117               assert(stub_id == Runtime1::load_mirror_patching_id ||
1118                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1119               oop_Relocation* r = mds.oop_reloc();
1120               oop* oop_adr = r->oop_addr();
1121               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1122               r->fix_oop_relocation();
1123               found = true;
1124             } else if (mds.type() == relocInfo::metadata_type) {
1125               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1126               metadata_Relocation* r = mds.metadata_reloc();
1127               Metadata** metadata_adr = r->metadata_addr();
1128               *metadata_adr = load_klass();
1129               r->fix_metadata_relocation();
1130               found = true;
1131             }
1132           }
1133           assert(found, "the metadata must exist!");
1134         }
1135 #endif
1136         if (do_patch) {
1137           // replace instructions
1138           // first replace the tail, then the call
1139 #ifdef ARM
1140           if((load_klass_or_mirror_patch_id ||
1141               stub_id == Runtime1::load_appendix_patching_id) &&
1142               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1143             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1144             address addr = NULL;
1145             assert(nm != NULL, "invalid nmethod_pc");
1146             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1147             while (mds.next()) {
1148               if (mds.type() == relocInfo::oop_type) {
1149                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1150                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1151                 oop_Relocation* r = mds.oop_reloc();
1152                 addr = (address)r->oop_addr();
1153                 break;
1154               } else if (mds.type() == relocInfo::metadata_type) {
1155                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1156                 metadata_Relocation* r = mds.metadata_reloc();
1157                 addr = (address)r->metadata_addr();
1158                 break;
1159               }
1160             }
1161             assert(addr != NULL, "metadata relocation must exist");
1162             copy_buff -= *byte_count;
1163             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1164             n_copy2->set_pc_relative_offset(addr, instr_pc);
1165           }
1166 #endif
1167 
1168           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1169             address ptr = copy_buff + i;
1170             int a_byte = (*ptr) & 0xFF;
1171             address dst = instr_pc + i;
1172             *(unsigned char*)dst = (unsigned char) a_byte;
1173           }
1174           ICache::invalidate_range(instr_pc, *byte_count);
1175           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1176 
1177           if (load_klass_or_mirror_patch_id ||
1178               stub_id == Runtime1::load_appendix_patching_id) {
1179             relocInfo::relocType rtype =
1180               (stub_id == Runtime1::load_klass_patching_id) ?
1181                                    relocInfo::metadata_type :
1182                                    relocInfo::oop_type;
1183             // update relocInfo to metadata
1184             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1185             assert(nm != NULL, "invalid nmethod_pc");
1186 
1187             // The old patch site is now a move instruction so update
1188             // the reloc info so that it will get updated during
1189             // future GCs.
1190             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1191             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1192                                                      relocInfo::none, rtype);
1193 #ifdef SPARC
1194             // Sparc takes two relocations for an metadata so update the second one.
1195             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1196             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1197             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1198                                                      relocInfo::none, rtype);
1199 #endif
1200 #ifdef PPC
1201           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1202             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1203             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1204                                                      relocInfo::none, rtype);
1205           }
1206 #endif
1207           }
1208 
1209         } else {
1210           ICache::invalidate_range(copy_buff, *byte_count);
1211           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1212         }
1213       }
1214     }
1215   }
1216 
1217   // If we are patching in a non-perm oop, make sure the nmethod
1218   // is on the right list.
1219   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1220                               (appendix.not_null() && appendix->is_scavengable()))) {
1221     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1222     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1223     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1224     if (!nm->on_scavenge_root_list()) {
1225       CodeCache::add_scavenge_root_nmethod(nm);
1226     }
1227 
1228     // Since we've patched some oops in the nmethod,
1229     // (re)register it with the heap.
1230     Universe::heap()->register_nmethod(nm);
1231   }
1232 JRT_END
1233 
1234 #else // DEOPTIMIZE_WHEN_PATCHING
1235 
1236 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1237   RegisterMap reg_map(thread, false);
1238 
1239   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1240   if (TracePatching) {
1241     tty->print_cr("Deoptimizing because patch is needed");
1242   }
1243 
1244   frame runtime_frame = thread->last_frame();
1245   frame caller_frame = runtime_frame.sender(&reg_map);
1246 
1247   // It's possible the nmethod was invalidated in the last
1248   // safepoint, but if it's still alive then make it not_entrant.
1249   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1250   if (nm != NULL) {
1251     nm->make_not_entrant();
1252   }
1253 
1254   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1255 
1256   // Return to the now deoptimized frame.
1257 JRT_END
1258 
1259 #endif // DEOPTIMIZE_WHEN_PATCHING
1260 
1261 //
1262 // Entry point for compiled code. We want to patch a nmethod.
1263 // We don't do a normal VM transition here because we want to
1264 // know after the patching is complete and any safepoint(s) are taken
1265 // if the calling nmethod was deoptimized. We do this by calling a
1266 // helper method which does the normal VM transition and when it
1267 // completes we can check for deoptimization. This simplifies the
1268 // assembly code in the cpu directories.
1269 //
1270 int Runtime1::move_klass_patching(JavaThread* thread) {
1271 //
1272 // NOTE: we are still in Java
1273 //
1274   Thread* THREAD = thread;
1275   debug_only(NoHandleMark nhm;)
1276   {
1277     // Enter VM mode
1278 
1279     ResetNoHandleMark rnhm;
1280     patch_code(thread, load_klass_patching_id);
1281   }
1282   // Back in JAVA, use no oops DON'T safepoint
1283 
1284   // Return true if calling code is deoptimized
1285 
1286   return caller_is_deopted();
1287 }
1288 
1289 int Runtime1::move_mirror_patching(JavaThread* thread) {
1290 //
1291 // NOTE: we are still in Java
1292 //
1293   Thread* THREAD = thread;
1294   debug_only(NoHandleMark nhm;)
1295   {
1296     // Enter VM mode
1297 
1298     ResetNoHandleMark rnhm;
1299     patch_code(thread, load_mirror_patching_id);
1300   }
1301   // Back in JAVA, use no oops DON'T safepoint
1302 
1303   // Return true if calling code is deoptimized
1304 
1305   return caller_is_deopted();
1306 }
1307 
1308 int Runtime1::move_appendix_patching(JavaThread* thread) {
1309 //
1310 // NOTE: we are still in Java
1311 //
1312   Thread* THREAD = thread;
1313   debug_only(NoHandleMark nhm;)
1314   {
1315     // Enter VM mode
1316 
1317     ResetNoHandleMark rnhm;
1318     patch_code(thread, load_appendix_patching_id);
1319   }
1320   // Back in JAVA, use no oops DON'T safepoint
1321 
1322   // Return true if calling code is deoptimized
1323 
1324   return caller_is_deopted();
1325 }
1326 //
1327 // Entry point for compiled code. We want to patch a nmethod.
1328 // We don't do a normal VM transition here because we want to
1329 // know after the patching is complete and any safepoint(s) are taken
1330 // if the calling nmethod was deoptimized. We do this by calling a
1331 // helper method which does the normal VM transition and when it
1332 // completes we can check for deoptimization. This simplifies the
1333 // assembly code in the cpu directories.
1334 //
1335 
1336 int Runtime1::access_field_patching(JavaThread* thread) {
1337 //
1338 // NOTE: we are still in Java
1339 //
1340   Thread* THREAD = thread;
1341   debug_only(NoHandleMark nhm;)
1342   {
1343     // Enter VM mode
1344 
1345     ResetNoHandleMark rnhm;
1346     patch_code(thread, access_field_patching_id);
1347   }
1348   // Back in JAVA, use no oops DON'T safepoint
1349 
1350   // Return true if calling code is deoptimized
1351 
1352   return caller_is_deopted();
1353 JRT_END
1354 
1355 
1356 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1357   // for now we just print out the block id
1358   tty->print("%d ", block_id);
1359 JRT_END
1360 
1361 
1362 // Array copy return codes.
1363 enum {
1364   ac_failed = -1, // arraycopy failed
1365   ac_ok = 0       // arraycopy succeeded
1366 };
1367 
1368 
1369 // Below length is the # elements copied.
1370 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1371                                           oopDesc* dst, T* dst_addr,
1372                                           int length) {
1373 
1374   // For performance reasons, we assume we are using a card marking write
1375   // barrier. The assert will fail if this is not the case.
1376   // Note that we use the non-virtual inlineable variant of write_ref_array.
1377   BarrierSet* bs = Universe::heap()->barrier_set();
1378   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1379   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1380   if (src == dst) {
1381     // same object, no check
1382     bs->write_ref_array_pre(dst_addr, length);
1383     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1384     bs->write_ref_array((HeapWord*)dst_addr, length);
1385     return ac_ok;
1386   } else {
1387     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1388     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1389     if (stype == bound || stype->is_subtype_of(bound)) {
1390       // Elements are guaranteed to be subtypes, so no check necessary
1391       bs->write_ref_array_pre(dst_addr, length);
1392       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1393       bs->write_ref_array((HeapWord*)dst_addr, length);
1394       return ac_ok;
1395     }
1396   }
1397   return ac_failed;
1398 }
1399 
1400 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1401 // and we did not copy anything
1402 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1403 #ifndef PRODUCT
1404   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1405 #endif
1406 
1407   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1408   if (!dst->is_array() || !src->is_array()) return ac_failed;
1409   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1410   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1411 
1412   if (length == 0) return ac_ok;
1413   if (src->is_typeArray()) {
1414     Klass* klass_oop = src->klass();
1415     if (klass_oop != dst->klass()) return ac_failed;
1416     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1417     const int l2es = klass->log2_element_size();
1418     const int ihs = klass->array_header_in_bytes() / wordSize;
1419     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1420     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1421     // Potential problem: memmove is not guaranteed to be word atomic
1422     // Revisit in Merlin
1423     memmove(dst_addr, src_addr, length << l2es);
1424     return ac_ok;
1425   } else if (src->is_objArray() && dst->is_objArray()) {
1426     if (UseCompressedOops) {
1427       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1428       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1429       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1430     } else {
1431       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1432       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1433       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1434     }
1435   }
1436   return ac_failed;
1437 JRT_END
1438 
1439 
1440 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1441 #ifndef PRODUCT
1442   _primitive_arraycopy_cnt++;
1443 #endif
1444 
1445   if (length == 0) return;
1446   // Not guaranteed to be word atomic, but that doesn't matter
1447   // for anything but an oop array, which is covered by oop_arraycopy.
1448   Copy::conjoint_jbytes(src, dst, length);
1449 JRT_END
1450 
1451 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1452 #ifndef PRODUCT
1453   _oop_arraycopy_cnt++;
1454 #endif
1455 
1456   if (num == 0) return;
1457   BarrierSet* bs = Universe::heap()->barrier_set();
1458   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1459   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1460   if (UseCompressedOops) {
1461     bs->write_ref_array_pre((narrowOop*)dst, num);
1462     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1463   } else {
1464     bs->write_ref_array_pre((oop*)dst, num);
1465     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1466   }
1467   bs->write_ref_array(dst, num);
1468 JRT_END
1469 
1470 
1471 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1472   // had to return int instead of bool, otherwise there may be a mismatch
1473   // between the C calling convention and the Java one.
1474   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1475   // JVM takes the whole %eax as the return value, which may misinterpret
1476   // the return value as a boolean true.
1477 
1478   assert(mirror != NULL, "should null-check on mirror before calling");
1479   Klass* k = java_lang_Class::as_Klass(mirror);
1480   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1481 JRT_END
1482 
1483 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1484   ResourceMark rm;
1485 
1486   assert(!TieredCompilation, "incompatible with tiered compilation");
1487 
1488   RegisterMap reg_map(thread, false);
1489   frame runtime_frame = thread->last_frame();
1490   frame caller_frame = runtime_frame.sender(&reg_map);
1491 
1492   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1493   assert (nm != NULL, "no more nmethod?");
1494   nm->make_not_entrant();
1495 
1496   methodHandle m(nm->method());
1497   MethodData* mdo = m->method_data();
1498 
1499   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1500     // Build an MDO.  Ignore errors like OutOfMemory;
1501     // that simply means we won't have an MDO to update.
1502     Method::build_interpreter_method_data(m, THREAD);
1503     if (HAS_PENDING_EXCEPTION) {
1504       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1505       CLEAR_PENDING_EXCEPTION;
1506     }
1507     mdo = m->method_data();
1508   }
1509 
1510   if (mdo != NULL) {
1511     mdo->inc_trap_count(Deoptimization::Reason_none);
1512   }
1513 
1514   if (TracePredicateFailedTraps) {
1515     stringStream ss1, ss2;
1516     vframeStream vfst(thread);
1517     methodHandle inlinee = methodHandle(vfst.method());
1518     inlinee->print_short_name(&ss1);
1519     m->print_short_name(&ss2);
1520     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1521   }
1522 
1523 
1524   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1525 
1526 JRT_END
1527 
1528 #ifndef PRODUCT
1529 void Runtime1::print_statistics() {
1530   tty->print_cr("C1 Runtime statistics:");
1531   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1532   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1533   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1534   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1535   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1536   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1537   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1538   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1539   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1540   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1541   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1542   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1543   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1544   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1545   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1546   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1547   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1548 
1549   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1550   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1551   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1552   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1553   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1554   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1555   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1556 
1557   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1558   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1559   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1560   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1561   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1562   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1563   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1564   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1565 
1566   SharedRuntime::print_ic_miss_histogram();
1567   tty->cr();
1568 }
1569 #endif // PRODUCT