1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && (_attributes != NULL) && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780       debug_only(has_disp32 = true);
 781       break;
 782 
 783     case 0xAD: // shrd r, a, %cl
 784     case 0xAF: // imul r, a
 785     case 0xBE: // movsbl r, a (movsxb)
 786     case 0xBF: // movswl r, a (movsxw)
 787     case 0xB6: // movzbl r, a (movzxb)
 788     case 0xB7: // movzwl r, a (movzxw)
 789     case REP16(0x40): // cmovl cc, r, a
 790     case 0xB0: // cmpxchgb
 791     case 0xB1: // cmpxchg
 792     case 0xC1: // xaddl
 793     case 0xC7: // cmpxchg8
 794     case REP16(0x90): // setcc a
 795       debug_only(has_disp32 = true);
 796       // fall out of the switch to decode the address
 797       break;
 798 
 799     case 0xC4: // pinsrw r, a, #8
 800       debug_only(has_disp32 = true);
 801     case 0xC5: // pextrw r, r, #8
 802       tail_size = 1;  // the imm8
 803       break;
 804 
 805     case 0xAC: // shrd r, a, #8
 806       debug_only(has_disp32 = true);
 807       tail_size = 1;  // the imm8
 808       break;
 809 
 810     case REP16(0x80): // jcc rdisp32
 811       if (which == end_pc_operand)  return ip + 4;
 812       assert(which == call32_operand, "jcc has no disp32 or imm");
 813       return ip;
 814     default:
 815       ShouldNotReachHere();
 816     }
 817     break;
 818 
 819   case 0x81: // addl a, #32; addl r, #32
 820     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 821     // on 32bit in the case of cmpl, the imm might be an oop
 822     tail_size = 4;
 823     debug_only(has_disp32 = true); // has both kinds of operands!
 824     break;
 825 
 826   case 0x83: // addl a, #8; addl r, #8
 827     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 828     debug_only(has_disp32 = true); // has both kinds of operands!
 829     tail_size = 1;
 830     break;
 831 
 832   case 0x9B:
 833     switch (0xFF & *ip++) {
 834     case 0xD9: // fnstcw a
 835       debug_only(has_disp32 = true);
 836       break;
 837     default:
 838       ShouldNotReachHere();
 839     }
 840     break;
 841 
 842   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 843   case REP4(0x10): // adc...
 844   case REP4(0x20): // and...
 845   case REP4(0x30): // xor...
 846   case REP4(0x08): // or...
 847   case REP4(0x18): // sbb...
 848   case REP4(0x28): // sub...
 849   case 0xF7: // mull a
 850   case 0x8D: // lea r, a
 851   case 0x87: // xchg r, a
 852   case REP4(0x38): // cmp...
 853   case 0x85: // test r, a
 854     debug_only(has_disp32 = true); // has both kinds of operands!
 855     break;
 856 
 857   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 858   case 0xC6: // movb a, #8
 859   case 0x80: // cmpb a, #8
 860   case 0x6B: // imul r, a, #8
 861     debug_only(has_disp32 = true); // has both kinds of operands!
 862     tail_size = 1; // the imm8
 863     break;
 864 
 865   case 0xC4: // VEX_3bytes
 866   case 0xC5: // VEX_2bytes
 867     assert((UseAVX > 0), "shouldn't have VEX prefix");
 868     assert(ip == inst+1, "no prefixes allowed");
 869     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 870     // but they have prefix 0x0F and processed when 0x0F processed above.
 871     //
 872     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 873     // instructions (these instructions are not supported in 64-bit mode).
 874     // To distinguish them bits [7:6] are set in the VEX second byte since
 875     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 876     // those VEX bits REX and vvvv bits are inverted.
 877     //
 878     // Fortunately C2 doesn't generate these instructions so we don't need
 879     // to check for them in product version.
 880 
 881     // Check second byte
 882     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 883 
 884     int vex_opcode;
 885     // First byte
 886     if ((0xFF & *inst) == VEX_3bytes) {
 887       vex_opcode = VEX_OPCODE_MASK & *ip;
 888       ip++; // third byte
 889       is_64bit = ((VEX_W & *ip) == VEX_W);
 890     } else {
 891       vex_opcode = VEX_OPCODE_0F;
 892     }
 893     ip++; // opcode
 894     // To find the end of instruction (which == end_pc_operand).
 895     switch (vex_opcode) {
 896       case VEX_OPCODE_0F:
 897         switch (0xFF & *ip) {
 898         case 0x70: // pshufd r, r/a, #8
 899         case 0x71: // ps[rl|ra|ll]w r, #8
 900         case 0x72: // ps[rl|ra|ll]d r, #8
 901         case 0x73: // ps[rl|ra|ll]q r, #8
 902         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 903         case 0xC4: // pinsrw r, r, r/a, #8
 904         case 0xC5: // pextrw r/a, r, #8
 905         case 0xC6: // shufp[s|d] r, r, r/a, #8
 906           tail_size = 1;  // the imm8
 907           break;
 908         }
 909         break;
 910       case VEX_OPCODE_0F_3A:
 911         tail_size = 1;
 912         break;
 913     }
 914     ip++; // skip opcode
 915     debug_only(has_disp32 = true); // has both kinds of operands!
 916     break;
 917 
 918   case 0x62: // EVEX_4bytes
 919     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 920     assert(ip == inst+1, "no prefixes allowed");
 921     // no EVEX collisions, all instructions that have 0x62 opcodes
 922     // have EVEX versions and are subopcodes of 0x66
 923     ip++; // skip P0 and exmaine W in P1
 924     is_64bit = ((VEX_W & *ip) == VEX_W);
 925     ip++; // move to P2
 926     ip++; // skip P2, move to opcode
 927     // To find the end of instruction (which == end_pc_operand).
 928     switch (0xFF & *ip) {
 929     case 0x61: // pcmpestri r, r/a, #8
 930     case 0x70: // pshufd r, r/a, #8
 931     case 0x73: // psrldq r, #8
 932       tail_size = 1;  // the imm8
 933       break;
 934     default:
 935       break;
 936     }
 937     ip++; // skip opcode
 938     debug_only(has_disp32 = true); // has both kinds of operands!
 939     break;
 940 
 941   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 942   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 943   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 944   case 0xDD: // fld_d a; fst_d a; fstp_d a
 945   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 946   case 0xDF: // fild_d a; fistp_d a
 947   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 948   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 949   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 950     debug_only(has_disp32 = true);
 951     break;
 952 
 953   case 0xE8: // call rdisp32
 954   case 0xE9: // jmp  rdisp32
 955     if (which == end_pc_operand)  return ip + 4;
 956     assert(which == call32_operand, "call has no disp32 or imm");
 957     return ip;
 958 
 959   case 0xF0:                    // Lock
 960     assert(os::is_MP(), "only on MP");
 961     goto again_after_prefix;
 962 
 963   case 0xF3:                    // For SSE
 964   case 0xF2:                    // For SSE2
 965     switch (0xFF & *ip++) {
 966     case REX:
 967     case REX_B:
 968     case REX_X:
 969     case REX_XB:
 970     case REX_R:
 971     case REX_RB:
 972     case REX_RX:
 973     case REX_RXB:
 974     case REX_W:
 975     case REX_WB:
 976     case REX_WX:
 977     case REX_WXB:
 978     case REX_WR:
 979     case REX_WRB:
 980     case REX_WRX:
 981     case REX_WRXB:
 982       NOT_LP64(assert(false, "found 64bit prefix"));
 983       ip++;
 984     default:
 985       ip++;
 986     }
 987     debug_only(has_disp32 = true); // has both kinds of operands!
 988     break;
 989 
 990   default:
 991     ShouldNotReachHere();
 992 
 993 #undef REP8
 994 #undef REP16
 995   }
 996 
 997   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 998 #ifdef _LP64
 999   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1000 #else
1001   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1002   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1003 #endif // LP64
1004   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1005 
1006   // parse the output of emit_operand
1007   int op2 = 0xFF & *ip++;
1008   int base = op2 & 0x07;
1009   int op3 = -1;
1010   const int b100 = 4;
1011   const int b101 = 5;
1012   if (base == b100 && (op2 >> 6) != 3) {
1013     op3 = 0xFF & *ip++;
1014     base = op3 & 0x07;   // refetch the base
1015   }
1016   // now ip points at the disp (if any)
1017 
1018   switch (op2 >> 6) {
1019   case 0:
1020     // [00 reg  100][ss index base]
1021     // [00 reg  100][00   100  esp]
1022     // [00 reg base]
1023     // [00 reg  100][ss index  101][disp32]
1024     // [00 reg  101]               [disp32]
1025 
1026     if (base == b101) {
1027       if (which == disp32_operand)
1028         return ip;              // caller wants the disp32
1029       ip += 4;                  // skip the disp32
1030     }
1031     break;
1032 
1033   case 1:
1034     // [01 reg  100][ss index base][disp8]
1035     // [01 reg  100][00   100  esp][disp8]
1036     // [01 reg base]               [disp8]
1037     ip += 1;                    // skip the disp8
1038     break;
1039 
1040   case 2:
1041     // [10 reg  100][ss index base][disp32]
1042     // [10 reg  100][00   100  esp][disp32]
1043     // [10 reg base]               [disp32]
1044     if (which == disp32_operand)
1045       return ip;                // caller wants the disp32
1046     ip += 4;                    // skip the disp32
1047     break;
1048 
1049   case 3:
1050     // [11 reg base]  (not a memory addressing mode)
1051     break;
1052   }
1053 
1054   if (which == end_pc_operand) {
1055     return ip + tail_size;
1056   }
1057 
1058 #ifdef _LP64
1059   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1060 #else
1061   assert(which == imm_operand, "instruction has only an imm field");
1062 #endif // LP64
1063   return ip;
1064 }
1065 
1066 address Assembler::locate_next_instruction(address inst) {
1067   // Secretly share code with locate_operand:
1068   return locate_operand(inst, end_pc_operand);
1069 }
1070 
1071 
1072 #ifdef ASSERT
1073 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1074   address inst = inst_mark();
1075   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1076   address opnd;
1077 
1078   Relocation* r = rspec.reloc();
1079   if (r->type() == relocInfo::none) {
1080     return;
1081   } else if (r->is_call() || format == call32_operand) {
1082     // assert(format == imm32_operand, "cannot specify a nonzero format");
1083     opnd = locate_operand(inst, call32_operand);
1084   } else if (r->is_data()) {
1085     assert(format == imm_operand || format == disp32_operand
1086            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1087     opnd = locate_operand(inst, (WhichOperand)format);
1088   } else {
1089     assert(format == imm_operand, "cannot specify a format");
1090     return;
1091   }
1092   assert(opnd == pc(), "must put operand where relocs can find it");
1093 }
1094 #endif // ASSERT
1095 
1096 void Assembler::emit_operand32(Register reg, Address adr) {
1097   assert(reg->encoding() < 8, "no extended registers");
1098   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1099   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1100                adr._rspec);
1101 }
1102 
1103 void Assembler::emit_operand(Register reg, Address adr,
1104                              int rip_relative_correction) {
1105   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1106                adr._rspec,
1107                rip_relative_correction);
1108 }
1109 
1110 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1111   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1112                adr._rspec);
1113 }
1114 
1115 // MMX operations
1116 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1117   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1118   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1119 }
1120 
1121 // work around gcc (3.2.1-7a) bug
1122 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1123   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1124   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1125 }
1126 
1127 
1128 void Assembler::emit_farith(int b1, int b2, int i) {
1129   assert(isByte(b1) && isByte(b2), "wrong opcode");
1130   assert(0 <= i &&  i < 8, "illegal stack offset");
1131   emit_int8(b1);
1132   emit_int8(b2 + i);
1133 }
1134 
1135 
1136 // Now the Assembler instructions (identical for 32/64 bits)
1137 
1138 void Assembler::adcl(Address dst, int32_t imm32) {
1139   InstructionMark im(this);
1140   prefix(dst);
1141   emit_arith_operand(0x81, rdx, dst, imm32);
1142 }
1143 
1144 void Assembler::adcl(Address dst, Register src) {
1145   InstructionMark im(this);
1146   prefix(dst, src);
1147   emit_int8(0x11);
1148   emit_operand(src, dst);
1149 }
1150 
1151 void Assembler::adcl(Register dst, int32_t imm32) {
1152   prefix(dst);
1153   emit_arith(0x81, 0xD0, dst, imm32);
1154 }
1155 
1156 void Assembler::adcl(Register dst, Address src) {
1157   InstructionMark im(this);
1158   prefix(src, dst);
1159   emit_int8(0x13);
1160   emit_operand(dst, src);
1161 }
1162 
1163 void Assembler::adcl(Register dst, Register src) {
1164   (void) prefix_and_encode(dst->encoding(), src->encoding());
1165   emit_arith(0x13, 0xC0, dst, src);
1166 }
1167 
1168 void Assembler::addl(Address dst, int32_t imm32) {
1169   InstructionMark im(this);
1170   prefix(dst);
1171   emit_arith_operand(0x81, rax, dst, imm32);
1172 }
1173 
1174 void Assembler::addl(Address dst, Register src) {
1175   InstructionMark im(this);
1176   prefix(dst, src);
1177   emit_int8(0x01);
1178   emit_operand(src, dst);
1179 }
1180 
1181 void Assembler::addl(Register dst, int32_t imm32) {
1182   prefix(dst);
1183   emit_arith(0x81, 0xC0, dst, imm32);
1184 }
1185 
1186 void Assembler::addl(Register dst, Address src) {
1187   InstructionMark im(this);
1188   prefix(src, dst);
1189   emit_int8(0x03);
1190   emit_operand(dst, src);
1191 }
1192 
1193 void Assembler::addl(Register dst, Register src) {
1194   (void) prefix_and_encode(dst->encoding(), src->encoding());
1195   emit_arith(0x03, 0xC0, dst, src);
1196 }
1197 
1198 void Assembler::addr_nop_4() {
1199   assert(UseAddressNop, "no CPU support");
1200   // 4 bytes: NOP DWORD PTR [EAX+0]
1201   emit_int8(0x0F);
1202   emit_int8(0x1F);
1203   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1204   emit_int8(0);    // 8-bits offset (1 byte)
1205 }
1206 
1207 void Assembler::addr_nop_5() {
1208   assert(UseAddressNop, "no CPU support");
1209   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1210   emit_int8(0x0F);
1211   emit_int8(0x1F);
1212   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1213   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1214   emit_int8(0);    // 8-bits offset (1 byte)
1215 }
1216 
1217 void Assembler::addr_nop_7() {
1218   assert(UseAddressNop, "no CPU support");
1219   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1220   emit_int8(0x0F);
1221   emit_int8(0x1F);
1222   emit_int8((unsigned char)0x80);
1223                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1224   emit_int32(0);   // 32-bits offset (4 bytes)
1225 }
1226 
1227 void Assembler::addr_nop_8() {
1228   assert(UseAddressNop, "no CPU support");
1229   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1230   emit_int8(0x0F);
1231   emit_int8(0x1F);
1232   emit_int8((unsigned char)0x84);
1233                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1234   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1235   emit_int32(0);   // 32-bits offset (4 bytes)
1236 }
1237 
1238 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1240   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1241   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1242   emit_int8(0x58);
1243   emit_int8((unsigned char)(0xC0 | encode));
1244 }
1245 
1246 void Assembler::addsd(XMMRegister dst, Address src) {
1247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1248   InstructionMark im(this);
1249   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1250   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1251   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1252   emit_int8(0x58);
1253   emit_operand(dst, src);
1254 }
1255 
1256 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1257   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1258   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1260   emit_int8(0x58);
1261   emit_int8((unsigned char)(0xC0 | encode));
1262 }
1263 
1264 void Assembler::addss(XMMRegister dst, Address src) {
1265   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1266   InstructionMark im(this);
1267   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1268   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1269   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1270   emit_int8(0x58);
1271   emit_operand(dst, src);
1272 }
1273 
1274 void Assembler::aesdec(XMMRegister dst, Address src) {
1275   assert(VM_Version::supports_aes(), "");
1276   InstructionMark im(this);
1277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1278   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1279   emit_int8((unsigned char)0xDE);
1280   emit_operand(dst, src);
1281 }
1282 
1283 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1284   assert(VM_Version::supports_aes(), "");
1285   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1286   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1287   emit_int8((unsigned char)0xDE);
1288   emit_int8(0xC0 | encode);
1289 }
1290 
1291 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1292   assert(VM_Version::supports_aes(), "");
1293   InstructionMark im(this);
1294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1295   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1296   emit_int8((unsigned char)0xDF);
1297   emit_operand(dst, src);
1298 }
1299 
1300 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1301   assert(VM_Version::supports_aes(), "");
1302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1303   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1304   emit_int8((unsigned char)0xDF);
1305   emit_int8((unsigned char)(0xC0 | encode));
1306 }
1307 
1308 void Assembler::aesenc(XMMRegister dst, Address src) {
1309   assert(VM_Version::supports_aes(), "");
1310   InstructionMark im(this);
1311   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1312   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1313   emit_int8((unsigned char)0xDC);
1314   emit_operand(dst, src);
1315 }
1316 
1317 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1318   assert(VM_Version::supports_aes(), "");
1319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1320   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1321   emit_int8((unsigned char)0xDC);
1322   emit_int8(0xC0 | encode);
1323 }
1324 
1325 void Assembler::aesenclast(XMMRegister dst, Address src) {
1326   assert(VM_Version::supports_aes(), "");
1327   InstructionMark im(this);
1328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1329   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1330   emit_int8((unsigned char)0xDD);
1331   emit_operand(dst, src);
1332 }
1333 
1334 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1335   assert(VM_Version::supports_aes(), "");
1336   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1337   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1338   emit_int8((unsigned char)0xDD);
1339   emit_int8((unsigned char)(0xC0 | encode));
1340 }
1341 
1342 void Assembler::andl(Address dst, int32_t imm32) {
1343   InstructionMark im(this);
1344   prefix(dst);
1345   emit_int8((unsigned char)0x81);
1346   emit_operand(rsp, dst, 4);
1347   emit_int32(imm32);
1348 }
1349 
1350 void Assembler::andl(Register dst, int32_t imm32) {
1351   prefix(dst);
1352   emit_arith(0x81, 0xE0, dst, imm32);
1353 }
1354 
1355 void Assembler::andl(Register dst, Address src) {
1356   InstructionMark im(this);
1357   prefix(src, dst);
1358   emit_int8(0x23);
1359   emit_operand(dst, src);
1360 }
1361 
1362 void Assembler::andl(Register dst, Register src) {
1363   (void) prefix_and_encode(dst->encoding(), src->encoding());
1364   emit_arith(0x23, 0xC0, dst, src);
1365 }
1366 
1367 void Assembler::andnl(Register dst, Register src1, Register src2) {
1368   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1369   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1370   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1371   emit_int8((unsigned char)0xF2);
1372   emit_int8((unsigned char)(0xC0 | encode));
1373 }
1374 
1375 void Assembler::andnl(Register dst, Register src1, Address src2) {
1376   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1377   InstructionMark im(this);
1378   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1379   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1380   emit_int8((unsigned char)0xF2);
1381   emit_operand(dst, src2);
1382 }
1383 
1384 void Assembler::bsfl(Register dst, Register src) {
1385   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1386   emit_int8(0x0F);
1387   emit_int8((unsigned char)0xBC);
1388   emit_int8((unsigned char)(0xC0 | encode));
1389 }
1390 
1391 void Assembler::bsrl(Register dst, Register src) {
1392   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1393   emit_int8(0x0F);
1394   emit_int8((unsigned char)0xBD);
1395   emit_int8((unsigned char)(0xC0 | encode));
1396 }
1397 
1398 void Assembler::bswapl(Register reg) { // bswap
1399   int encode = prefix_and_encode(reg->encoding());
1400   emit_int8(0x0F);
1401   emit_int8((unsigned char)(0xC8 | encode));
1402 }
1403 
1404 void Assembler::blsil(Register dst, Register src) {
1405   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1406   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1407   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1408   emit_int8((unsigned char)0xF3);
1409   emit_int8((unsigned char)(0xC0 | encode));
1410 }
1411 
1412 void Assembler::blsil(Register dst, Address src) {
1413   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1414   InstructionMark im(this);
1415   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1416   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1417   emit_int8((unsigned char)0xF3);
1418   emit_operand(rbx, src);
1419 }
1420 
1421 void Assembler::blsmskl(Register dst, Register src) {
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1424   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1425   emit_int8((unsigned char)0xF3);
1426   emit_int8((unsigned char)(0xC0 | encode));
1427 }
1428 
1429 void Assembler::blsmskl(Register dst, Address src) {
1430   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1431   InstructionMark im(this);
1432   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1433   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1434   emit_int8((unsigned char)0xF3);
1435   emit_operand(rdx, src);
1436 }
1437 
1438 void Assembler::blsrl(Register dst, Register src) {
1439   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1440   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1441   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1442   emit_int8((unsigned char)0xF3);
1443   emit_int8((unsigned char)(0xC0 | encode));
1444 }
1445 
1446 void Assembler::blsrl(Register dst, Address src) {
1447   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1448   InstructionMark im(this);
1449   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1450   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1451   emit_int8((unsigned char)0xF3);
1452   emit_operand(rcx, src);
1453 }
1454 
1455 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1456   // suspect disp32 is always good
1457   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1458 
1459   if (L.is_bound()) {
1460     const int long_size = 5;
1461     int offs = (int)( target(L) - pc() );
1462     assert(offs <= 0, "assembler error");
1463     InstructionMark im(this);
1464     // 1110 1000 #32-bit disp
1465     emit_int8((unsigned char)0xE8);
1466     emit_data(offs - long_size, rtype, operand);
1467   } else {
1468     InstructionMark im(this);
1469     // 1110 1000 #32-bit disp
1470     L.add_patch_at(code(), locator());
1471 
1472     emit_int8((unsigned char)0xE8);
1473     emit_data(int(0), rtype, operand);
1474   }
1475 }
1476 
1477 void Assembler::call(Register dst) {
1478   int encode = prefix_and_encode(dst->encoding());
1479   emit_int8((unsigned char)0xFF);
1480   emit_int8((unsigned char)(0xD0 | encode));
1481 }
1482 
1483 
1484 void Assembler::call(Address adr) {
1485   InstructionMark im(this);
1486   prefix(adr);
1487   emit_int8((unsigned char)0xFF);
1488   emit_operand(rdx, adr);
1489 }
1490 
1491 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1492   assert(entry != NULL, "call most probably wrong");
1493   InstructionMark im(this);
1494   emit_int8((unsigned char)0xE8);
1495   intptr_t disp = entry - (pc() + sizeof(int32_t));
1496   assert(is_simm32(disp), "must be 32bit offset (call2)");
1497   // Technically, should use call32_operand, but this format is
1498   // implied by the fact that we're emitting a call instruction.
1499 
1500   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1501   emit_data((int) disp, rspec, operand);
1502 }
1503 
1504 void Assembler::cdql() {
1505   emit_int8((unsigned char)0x99);
1506 }
1507 
1508 void Assembler::cld() {
1509   emit_int8((unsigned char)0xFC);
1510 }
1511 
1512 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1513   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1514   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1515   emit_int8(0x0F);
1516   emit_int8(0x40 | cc);
1517   emit_int8((unsigned char)(0xC0 | encode));
1518 }
1519 
1520 
1521 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1522   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1523   prefix(src, dst);
1524   emit_int8(0x0F);
1525   emit_int8(0x40 | cc);
1526   emit_operand(dst, src);
1527 }
1528 
1529 void Assembler::cmpb(Address dst, int imm8) {
1530   InstructionMark im(this);
1531   prefix(dst);
1532   emit_int8((unsigned char)0x80);
1533   emit_operand(rdi, dst, 1);
1534   emit_int8(imm8);
1535 }
1536 
1537 void Assembler::cmpl(Address dst, int32_t imm32) {
1538   InstructionMark im(this);
1539   prefix(dst);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 4);
1542   emit_int32(imm32);
1543 }
1544 
1545 void Assembler::cmpl(Register dst, int32_t imm32) {
1546   prefix(dst);
1547   emit_arith(0x81, 0xF8, dst, imm32);
1548 }
1549 
1550 void Assembler::cmpl(Register dst, Register src) {
1551   (void) prefix_and_encode(dst->encoding(), src->encoding());
1552   emit_arith(0x3B, 0xC0, dst, src);
1553 }
1554 
1555 void Assembler::cmpl(Register dst, Address  src) {
1556   InstructionMark im(this);
1557   prefix(src, dst);
1558   emit_int8((unsigned char)0x3B);
1559   emit_operand(dst, src);
1560 }
1561 
1562 void Assembler::cmpw(Address dst, int imm16) {
1563   InstructionMark im(this);
1564   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1565   emit_int8(0x66);
1566   emit_int8((unsigned char)0x81);
1567   emit_operand(rdi, dst, 2);
1568   emit_int16(imm16);
1569 }
1570 
1571 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1572 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1573 // The ZF is set if the compared values were equal, and cleared otherwise.
1574 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1575   InstructionMark im(this);
1576   prefix(adr, reg);
1577   emit_int8(0x0F);
1578   emit_int8((unsigned char)0xB1);
1579   emit_operand(reg, adr);
1580 }
1581 
1582 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1583 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1584 // The ZF is set if the compared values were equal, and cleared otherwise.
1585 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1586   InstructionMark im(this);
1587   prefix(adr, reg, true);
1588   emit_int8(0x0F);
1589   emit_int8((unsigned char)0xB0);
1590   emit_operand(reg, adr);
1591 }
1592 
1593 void Assembler::comisd(XMMRegister dst, Address src) {
1594   // NOTE: dbx seems to decode this as comiss even though the
1595   // 0x66 is there. Strangly ucomisd comes out correct
1596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1597   InstructionMark im(this);
1598   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1599   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1600   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1601   emit_int8(0x2F);
1602   emit_operand(dst, src);
1603 }
1604 
1605 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1607   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1608   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1609   emit_int8(0x2F);
1610   emit_int8((unsigned char)(0xC0 | encode));
1611 }
1612 
1613 void Assembler::comiss(XMMRegister dst, Address src) {
1614   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1615   InstructionMark im(this);
1616   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1617   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1618   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1619   emit_int8(0x2F);
1620   emit_operand(dst, src);
1621 }
1622 
1623 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1624   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1625   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1626   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1627   emit_int8(0x2F);
1628   emit_int8((unsigned char)(0xC0 | encode));
1629 }
1630 
1631 void Assembler::cpuid() {
1632   emit_int8(0x0F);
1633   emit_int8((unsigned char)0xA2);
1634 }
1635 
1636 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1637 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1638 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1639 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1640 //
1641 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1642 //
1643 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1644 //
1645 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1646 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1647   assert(VM_Version::supports_sse4_2(), "");
1648   int8_t w = 0x01;
1649   Prefix p = Prefix_EMPTY;
1650 
1651   emit_int8((int8_t)0xF2);
1652   switch (sizeInBytes) {
1653   case 1:
1654     w = 0;
1655     break;
1656   case 2:
1657   case 4:
1658     break;
1659   LP64_ONLY(case 8:)
1660     // This instruction is not valid in 32 bits
1661     // Note:
1662     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1663     //
1664     // Page B - 72   Vol. 2C says
1665     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1666     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1667     //                                                                            F0!!!
1668     // while 3 - 208 Vol. 2A
1669     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1670     //
1671     // the 0 on a last bit is reserved for a different flavor of this instruction :
1672     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1673     p = REX_W;
1674     break;
1675   default:
1676     assert(0, "Unsupported value for a sizeInBytes argument");
1677     break;
1678   }
1679   LP64_ONLY(prefix(crc, v, p);)
1680   emit_int8((int8_t)0x0F);
1681   emit_int8(0x38);
1682   emit_int8((int8_t)(0xF0 | w));
1683   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1684 }
1685 
1686 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1687   assert(VM_Version::supports_sse4_2(), "");
1688   InstructionMark im(this);
1689   int8_t w = 0x01;
1690   Prefix p = Prefix_EMPTY;
1691 
1692   emit_int8((int8_t)0xF2);
1693   switch (sizeInBytes) {
1694   case 1:
1695     w = 0;
1696     break;
1697   case 2:
1698   case 4:
1699     break;
1700   LP64_ONLY(case 8:)
1701     // This instruction is not valid in 32 bits
1702     p = REX_W;
1703     break;
1704   default:
1705     assert(0, "Unsupported value for a sizeInBytes argument");
1706     break;
1707   }
1708   LP64_ONLY(prefix(crc, adr, p);)
1709   emit_int8((int8_t)0x0F);
1710   emit_int8(0x38);
1711   emit_int8((int8_t)(0xF0 | w));
1712   emit_operand(crc, adr);
1713 }
1714 
1715 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1717   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1718   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1719   emit_int8((unsigned char)0xE6);
1720   emit_int8((unsigned char)(0xC0 | encode));
1721 }
1722 
1723 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1725   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1726   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1727   emit_int8(0x5B);
1728   emit_int8((unsigned char)(0xC0 | encode));
1729 }
1730 
1731 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1733   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1734   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1735   emit_int8(0x5A);
1736   emit_int8((unsigned char)(0xC0 | encode));
1737 }
1738 
1739 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1741   InstructionMark im(this);
1742   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1743   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1744   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1745   emit_int8(0x5A);
1746   emit_operand(dst, src);
1747 }
1748 
1749 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1752   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x2A);
1754   emit_int8((unsigned char)(0xC0 | encode));
1755 }
1756 
1757 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionMark im(this);
1760   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1761   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1762   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1763   emit_int8(0x2A);
1764   emit_operand(dst, src);
1765 }
1766 
1767 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1768   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1769   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1770   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x2A);
1772   emit_int8((unsigned char)(0xC0 | encode));
1773 }
1774 
1775 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1776   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1777   InstructionMark im(this);
1778   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1779   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1780   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1781   emit_int8(0x2A);
1782   emit_operand(dst, src);
1783 }
1784 
1785 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1787   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1788   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1789   emit_int8(0x2A);
1790   emit_int8((unsigned char)(0xC0 | encode));
1791 }
1792 
1793 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1794   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1796   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1797   emit_int8(0x5A);
1798   emit_int8((unsigned char)(0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionMark im(this);
1804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1805   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1806   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1807   emit_int8(0x5A);
1808   emit_operand(dst, src);
1809 }
1810 
1811 
1812 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1815   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1816   emit_int8(0x2C);
1817   emit_int8((unsigned char)(0xC0 | encode));
1818 }
1819 
1820 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1821   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2C);
1825   emit_int8((unsigned char)(0xC0 | encode));
1826 }
1827 
1828 void Assembler::decl(Address dst) {
1829   // Don't use it directly. Use MacroAssembler::decrement() instead.
1830   InstructionMark im(this);
1831   prefix(dst);
1832   emit_int8((unsigned char)0xFF);
1833   emit_operand(rcx, dst);
1834 }
1835 
1836 void Assembler::divsd(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   InstructionMark im(this);
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1840   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1841   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x5E);
1843   emit_operand(dst, src);
1844 }
1845 
1846 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1847   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1848   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1849   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1850   emit_int8(0x5E);
1851   emit_int8((unsigned char)(0xC0 | encode));
1852 }
1853 
1854 void Assembler::divss(XMMRegister dst, Address src) {
1855   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1856   InstructionMark im(this);
1857   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1858   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1859   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x5E);
1861   emit_operand(dst, src);
1862 }
1863 
1864 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1865   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1866   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1867   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1868   emit_int8(0x5E);
1869   emit_int8((unsigned char)(0xC0 | encode));
1870 }
1871 
1872 void Assembler::emms() {
1873   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1874   emit_int8(0x0F);
1875   emit_int8(0x77);
1876 }
1877 
1878 void Assembler::hlt() {
1879   emit_int8((unsigned char)0xF4);
1880 }
1881 
1882 void Assembler::idivl(Register src) {
1883   int encode = prefix_and_encode(src->encoding());
1884   emit_int8((unsigned char)0xF7);
1885   emit_int8((unsigned char)(0xF8 | encode));
1886 }
1887 
1888 void Assembler::divl(Register src) { // Unsigned
1889   int encode = prefix_and_encode(src->encoding());
1890   emit_int8((unsigned char)0xF7);
1891   emit_int8((unsigned char)(0xF0 | encode));
1892 }
1893 
1894 void Assembler::imull(Register src) {
1895   int encode = prefix_and_encode(src->encoding());
1896   emit_int8((unsigned char)0xF7);
1897   emit_int8((unsigned char)(0xE8 | encode));
1898 }
1899 
1900 void Assembler::imull(Register dst, Register src) {
1901   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1902   emit_int8(0x0F);
1903   emit_int8((unsigned char)0xAF);
1904   emit_int8((unsigned char)(0xC0 | encode));
1905 }
1906 
1907 
1908 void Assembler::imull(Register dst, Register src, int value) {
1909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1910   if (is8bit(value)) {
1911     emit_int8(0x6B);
1912     emit_int8((unsigned char)(0xC0 | encode));
1913     emit_int8(value & 0xFF);
1914   } else {
1915     emit_int8(0x69);
1916     emit_int8((unsigned char)(0xC0 | encode));
1917     emit_int32(value);
1918   }
1919 }
1920 
1921 void Assembler::imull(Register dst, Address src) {
1922   InstructionMark im(this);
1923   prefix(src, dst);
1924   emit_int8(0x0F);
1925   emit_int8((unsigned char) 0xAF);
1926   emit_operand(dst, src);
1927 }
1928 
1929 
1930 void Assembler::incl(Address dst) {
1931   // Don't use it directly. Use MacroAssembler::increment() instead.
1932   InstructionMark im(this);
1933   prefix(dst);
1934   emit_int8((unsigned char)0xFF);
1935   emit_operand(rax, dst);
1936 }
1937 
1938 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1939   InstructionMark im(this);
1940   assert((0 <= cc) && (cc < 16), "illegal cc");
1941   if (L.is_bound()) {
1942     address dst = target(L);
1943     assert(dst != NULL, "jcc most probably wrong");
1944 
1945     const int short_size = 2;
1946     const int long_size = 6;
1947     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1948     if (maybe_short && is8bit(offs - short_size)) {
1949       // 0111 tttn #8-bit disp
1950       emit_int8(0x70 | cc);
1951       emit_int8((offs - short_size) & 0xFF);
1952     } else {
1953       // 0000 1111 1000 tttn #32-bit disp
1954       assert(is_simm32(offs - long_size),
1955              "must be 32bit offset (call4)");
1956       emit_int8(0x0F);
1957       emit_int8((unsigned char)(0x80 | cc));
1958       emit_int32(offs - long_size);
1959     }
1960   } else {
1961     // Note: could eliminate cond. jumps to this jump if condition
1962     //       is the same however, seems to be rather unlikely case.
1963     // Note: use jccb() if label to be bound is very close to get
1964     //       an 8-bit displacement
1965     L.add_patch_at(code(), locator());
1966     emit_int8(0x0F);
1967     emit_int8((unsigned char)(0x80 | cc));
1968     emit_int32(0);
1969   }
1970 }
1971 
1972 void Assembler::jccb(Condition cc, Label& L) {
1973   if (L.is_bound()) {
1974     const int short_size = 2;
1975     address entry = target(L);
1976 #ifdef ASSERT
1977     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1978     intptr_t delta = short_branch_delta();
1979     if (delta != 0) {
1980       dist += (dist < 0 ? (-delta) :delta);
1981     }
1982     assert(is8bit(dist), "Dispacement too large for a short jmp");
1983 #endif
1984     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1985     // 0111 tttn #8-bit disp
1986     emit_int8(0x70 | cc);
1987     emit_int8((offs - short_size) & 0xFF);
1988   } else {
1989     InstructionMark im(this);
1990     L.add_patch_at(code(), locator());
1991     emit_int8(0x70 | cc);
1992     emit_int8(0);
1993   }
1994 }
1995 
1996 void Assembler::jmp(Address adr) {
1997   InstructionMark im(this);
1998   prefix(adr);
1999   emit_int8((unsigned char)0xFF);
2000   emit_operand(rsp, adr);
2001 }
2002 
2003 void Assembler::jmp(Label& L, bool maybe_short) {
2004   if (L.is_bound()) {
2005     address entry = target(L);
2006     assert(entry != NULL, "jmp most probably wrong");
2007     InstructionMark im(this);
2008     const int short_size = 2;
2009     const int long_size = 5;
2010     intptr_t offs = entry - pc();
2011     if (maybe_short && is8bit(offs - short_size)) {
2012       emit_int8((unsigned char)0xEB);
2013       emit_int8((offs - short_size) & 0xFF);
2014     } else {
2015       emit_int8((unsigned char)0xE9);
2016       emit_int32(offs - long_size);
2017     }
2018   } else {
2019     // By default, forward jumps are always 32-bit displacements, since
2020     // we can't yet know where the label will be bound.  If you're sure that
2021     // the forward jump will not run beyond 256 bytes, use jmpb to
2022     // force an 8-bit displacement.
2023     InstructionMark im(this);
2024     L.add_patch_at(code(), locator());
2025     emit_int8((unsigned char)0xE9);
2026     emit_int32(0);
2027   }
2028 }
2029 
2030 void Assembler::jmp(Register entry) {
2031   int encode = prefix_and_encode(entry->encoding());
2032   emit_int8((unsigned char)0xFF);
2033   emit_int8((unsigned char)(0xE0 | encode));
2034 }
2035 
2036 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2037   InstructionMark im(this);
2038   emit_int8((unsigned char)0xE9);
2039   assert(dest != NULL, "must have a target");
2040   intptr_t disp = dest - (pc() + sizeof(int32_t));
2041   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2042   emit_data(disp, rspec.reloc(), call32_operand);
2043 }
2044 
2045 void Assembler::jmpb(Label& L) {
2046   if (L.is_bound()) {
2047     const int short_size = 2;
2048     address entry = target(L);
2049     assert(entry != NULL, "jmp most probably wrong");
2050 #ifdef ASSERT
2051     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2052     intptr_t delta = short_branch_delta();
2053     if (delta != 0) {
2054       dist += (dist < 0 ? (-delta) :delta);
2055     }
2056     assert(is8bit(dist), "Dispacement too large for a short jmp");
2057 #endif
2058     intptr_t offs = entry - pc();
2059     emit_int8((unsigned char)0xEB);
2060     emit_int8((offs - short_size) & 0xFF);
2061   } else {
2062     InstructionMark im(this);
2063     L.add_patch_at(code(), locator());
2064     emit_int8((unsigned char)0xEB);
2065     emit_int8(0);
2066   }
2067 }
2068 
2069 void Assembler::ldmxcsr( Address src) {
2070   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2071   InstructionMark im(this);
2072   prefix(src);
2073   emit_int8(0x0F);
2074   emit_int8((unsigned char)0xAE);
2075   emit_operand(as_Register(2), src);
2076 }
2077 
2078 void Assembler::leal(Register dst, Address src) {
2079   InstructionMark im(this);
2080 #ifdef _LP64
2081   emit_int8(0x67); // addr32
2082   prefix(src, dst);
2083 #endif // LP64
2084   emit_int8((unsigned char)0x8D);
2085   emit_operand(dst, src);
2086 }
2087 
2088 void Assembler::lfence() {
2089   emit_int8(0x0F);
2090   emit_int8((unsigned char)0xAE);
2091   emit_int8((unsigned char)0xE8);
2092 }
2093 
2094 void Assembler::lock() {
2095   emit_int8((unsigned char)0xF0);
2096 }
2097 
2098 void Assembler::lzcntl(Register dst, Register src) {
2099   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2100   emit_int8((unsigned char)0xF3);
2101   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2102   emit_int8(0x0F);
2103   emit_int8((unsigned char)0xBD);
2104   emit_int8((unsigned char)(0xC0 | encode));
2105 }
2106 
2107 // Emit mfence instruction
2108 void Assembler::mfence() {
2109   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2110   emit_int8(0x0F);
2111   emit_int8((unsigned char)0xAE);
2112   emit_int8((unsigned char)0xF0);
2113 }
2114 
2115 void Assembler::mov(Register dst, Register src) {
2116   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2117 }
2118 
2119 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2121   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2122   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2123   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2124   emit_int8(0x28);
2125   emit_int8((unsigned char)(0xC0 | encode));
2126 }
2127 
2128 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2129   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2130   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2131   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2132   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2133   emit_int8(0x28);
2134   emit_int8((unsigned char)(0xC0 | encode));
2135 }
2136 
2137 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2138   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2139   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2140   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2141   emit_int8(0x16);
2142   emit_int8((unsigned char)(0xC0 | encode));
2143 }
2144 
2145 void Assembler::movb(Register dst, Address src) {
2146   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2147   InstructionMark im(this);
2148   prefix(src, dst, true);
2149   emit_int8((unsigned char)0x8A);
2150   emit_operand(dst, src);
2151 }
2152 
2153 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2154   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2155   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
2156   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2157   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2158   emit_int8(0x12);
2159   emit_int8(0xC0 | encode);
2160 }
2161 
2162 void Assembler::kmovql(KRegister dst, KRegister src) {
2163   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2164   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2165   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2166   emit_int8((unsigned char)0x90);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::kmovql(KRegister dst, Address src) {
2171   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2172   InstructionMark im(this);
2173   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2174   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2175   emit_int8((unsigned char)0x90);
2176   emit_operand((Register)dst, src);
2177 }
2178 
2179 void Assembler::kmovql(Address dst, KRegister src) {
2180   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2181   InstructionMark im(this);
2182   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2183   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2184   emit_int8((unsigned char)0x90);
2185   emit_operand((Register)src, dst);
2186 }
2187 
2188 void Assembler::kmovql(KRegister dst, Register src) {
2189   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2190   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2191   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_bw, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2192   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2193   emit_int8((unsigned char)0x92);
2194   emit_int8((unsigned char)(0xC0 | encode));
2195 }
2196 
2197 void Assembler::kmovdl(KRegister dst, Register src) {
2198   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2199   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2200   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2201   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2202   emit_int8((unsigned char)0x92);
2203   emit_int8((unsigned char)(0xC0 | encode));
2204 }
2205 
2206 void Assembler::kmovwl(KRegister dst, Register src) {
2207   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2208   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2209   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2210   emit_int8((unsigned char)0x92);
2211   emit_int8((unsigned char)(0xC0 | encode));
2212 }
2213 
2214 void Assembler::movb(Address dst, int imm8) {
2215   InstructionMark im(this);
2216    prefix(dst);
2217   emit_int8((unsigned char)0xC6);
2218   emit_operand(rax, dst, 1);
2219   emit_int8(imm8);
2220 }
2221 
2222 
2223 void Assembler::movb(Address dst, Register src) {
2224   assert(src->has_byte_register(), "must have byte register");
2225   InstructionMark im(this);
2226   prefix(dst, src, true);
2227   emit_int8((unsigned char)0x88);
2228   emit_operand(src, dst);
2229 }
2230 
2231 void Assembler::movdl(XMMRegister dst, Register src) {
2232   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2233   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2234   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2235   emit_int8(0x6E);
2236   emit_int8((unsigned char)(0xC0 | encode));
2237 }
2238 
2239 void Assembler::movdl(Register dst, XMMRegister src) {
2240   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2241   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2242   // swap src/dst to get correct prefix
2243   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2244   emit_int8(0x7E);
2245   emit_int8((unsigned char)(0xC0 | encode));
2246 }
2247 
2248 void Assembler::movdl(XMMRegister dst, Address src) {
2249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2250   InstructionMark im(this);
2251   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2252   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2253   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2254   emit_int8(0x6E);
2255   emit_operand(dst, src);
2256 }
2257 
2258 void Assembler::movdl(Address dst, XMMRegister src) {
2259   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2260   InstructionMark im(this);
2261   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2262   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2263   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2264   emit_int8(0x7E);
2265   emit_operand(src, dst);
2266 }
2267 
2268 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2269   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2270   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2271   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2272   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2273   emit_int8(0x6F);
2274   emit_int8((unsigned char)(0xC0 | encode));
2275 }
2276 
2277 void Assembler::movdqa(XMMRegister dst, Address src) {
2278   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2279   InstructionMark im(this);
2280   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2281   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2282   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2283   emit_int8(0x6F);
2284   emit_operand(dst, src);
2285 }
2286 
2287 void Assembler::movdqu(XMMRegister dst, Address src) {
2288   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2289   InstructionMark im(this);
2290   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2291   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2292   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2293   emit_int8(0x6F);
2294   emit_operand(dst, src);
2295 }
2296 
2297 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2298   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2299   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2300   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2301   emit_int8(0x6F);
2302   emit_int8((unsigned char)(0xC0 | encode));
2303 }
2304 
2305 void Assembler::movdqu(Address dst, XMMRegister src) {
2306   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2307   InstructionMark im(this);
2308   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2309   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2310   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2311   emit_int8(0x7F);
2312   emit_operand(src, dst);
2313 }
2314 
2315 // Move Unaligned 256bit Vector
2316 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2317   assert(UseAVX > 0, "");
2318   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2319   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2320   emit_int8(0x6F);
2321   emit_int8((unsigned char)(0xC0 | encode));
2322 }
2323 
2324 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2325   assert(UseAVX > 0, "");
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2328   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2329   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2330   emit_int8(0x6F);
2331   emit_operand(dst, src);
2332 }
2333 
2334 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2335   assert(UseAVX > 0, "");
2336   InstructionMark im(this);
2337   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2338   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2339   // swap src<->dst for encoding
2340   assert(src != xnoreg, "sanity");
2341   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2342   emit_int8(0x7F);
2343   emit_operand(src, dst);
2344 }
2345 
2346 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2347 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2348   assert(VM_Version::supports_evex(), "");
2349   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2350   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2351   emit_int8(0x6F);
2352   emit_int8((unsigned char)(0xC0 | encode));
2353 }
2354 
2355 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2356   assert(VM_Version::supports_evex(), "");
2357   InstructionMark im(this);
2358   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2359   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2360   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2361   emit_int8(0x6F);
2362   emit_operand(dst, src);
2363 }
2364 
2365 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2366   assert(VM_Version::supports_evex(), "");
2367   assert(src != xnoreg, "sanity");
2368   InstructionMark im(this);
2369   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2370   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2371   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2372   emit_int8(0x7F);
2373   emit_operand(src, dst);
2374 }
2375 
2376 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2377   assert(VM_Version::supports_evex(), "");
2378   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2379   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2380   emit_int8(0x6F);
2381   emit_int8((unsigned char)(0xC0 | encode));
2382 }
2383 
2384 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2385   assert(VM_Version::supports_evex(), "");
2386   InstructionMark im(this);
2387   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2388   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2389   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2390   emit_int8(0x6F);
2391   emit_operand(dst, src);
2392 }
2393 
2394 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2395   assert(VM_Version::supports_evex(), "");
2396   assert(src != xnoreg, "sanity");
2397   InstructionMark im(this);
2398   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2399   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2400   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2401   emit_int8(0x7F);
2402   emit_operand(src, dst);
2403 }
2404 
2405 // Uses zero extension on 64bit
2406 
2407 void Assembler::movl(Register dst, int32_t imm32) {
2408   int encode = prefix_and_encode(dst->encoding());
2409   emit_int8((unsigned char)(0xB8 | encode));
2410   emit_int32(imm32);
2411 }
2412 
2413 void Assembler::movl(Register dst, Register src) {
2414   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2415   emit_int8((unsigned char)0x8B);
2416   emit_int8((unsigned char)(0xC0 | encode));
2417 }
2418 
2419 void Assembler::movl(Register dst, Address src) {
2420   InstructionMark im(this);
2421   prefix(src, dst);
2422   emit_int8((unsigned char)0x8B);
2423   emit_operand(dst, src);
2424 }
2425 
2426 void Assembler::movl(Address dst, int32_t imm32) {
2427   InstructionMark im(this);
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 4);
2431   emit_int32(imm32);
2432 }
2433 
2434 void Assembler::movl(Address dst, Register src) {
2435   InstructionMark im(this);
2436   prefix(dst, src);
2437   emit_int8((unsigned char)0x89);
2438   emit_operand(src, dst);
2439 }
2440 
2441 // New cpus require to use movsd and movss to avoid partial register stall
2442 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2443 // The selection is done in MacroAssembler::movdbl() and movflt().
2444 void Assembler::movlpd(XMMRegister dst, Address src) {
2445   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2446   InstructionMark im(this);
2447   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2448   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2449   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2450   emit_int8(0x12);
2451   emit_operand(dst, src);
2452 }
2453 
2454 void Assembler::movq( MMXRegister dst, Address src ) {
2455   assert( VM_Version::supports_mmx(), "" );
2456   emit_int8(0x0F);
2457   emit_int8(0x6F);
2458   emit_operand(dst, src);
2459 }
2460 
2461 void Assembler::movq( Address dst, MMXRegister src ) {
2462   assert( VM_Version::supports_mmx(), "" );
2463   emit_int8(0x0F);
2464   emit_int8(0x7F);
2465   // workaround gcc (3.2.1-7a) bug
2466   // In that version of gcc with only an emit_operand(MMX, Address)
2467   // gcc will tail jump and try and reverse the parameters completely
2468   // obliterating dst in the process. By having a version available
2469   // that doesn't need to swap the args at the tail jump the bug is
2470   // avoided.
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movq(XMMRegister dst, Address src) {
2475   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2476   InstructionMark im(this);
2477   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2478   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2479   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2480   emit_int8(0x7E);
2481   emit_operand(dst, src);
2482 }
2483 
2484 void Assembler::movq(Address dst, XMMRegister src) {
2485   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2486   InstructionMark im(this);
2487   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2488   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2489   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2490   emit_int8((unsigned char)0xD6);
2491   emit_operand(src, dst);
2492 }
2493 
2494 void Assembler::movsbl(Register dst, Address src) { // movsxb
2495   InstructionMark im(this);
2496   prefix(src, dst);
2497   emit_int8(0x0F);
2498   emit_int8((unsigned char)0xBE);
2499   emit_operand(dst, src);
2500 }
2501 
2502 void Assembler::movsbl(Register dst, Register src) { // movsxb
2503   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2504   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2505   emit_int8(0x0F);
2506   emit_int8((unsigned char)0xBE);
2507   emit_int8((unsigned char)(0xC0 | encode));
2508 }
2509 
2510 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2512   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2513   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2514   emit_int8(0x10);
2515   emit_int8((unsigned char)(0xC0 | encode));
2516 }
2517 
2518 void Assembler::movsd(XMMRegister dst, Address src) {
2519   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2520   InstructionMark im(this);
2521   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2522   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2523   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2524   emit_int8(0x10);
2525   emit_operand(dst, src);
2526 }
2527 
2528 void Assembler::movsd(Address dst, XMMRegister src) {
2529   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2530   InstructionMark im(this);
2531   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2532   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2533   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2534   emit_int8(0x11);
2535   emit_operand(src, dst);
2536 }
2537 
2538 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2539   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2540   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2541   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2542   emit_int8(0x10);
2543   emit_int8((unsigned char)(0xC0 | encode));
2544 }
2545 
2546 void Assembler::movss(XMMRegister dst, Address src) {
2547   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2548   InstructionMark im(this);
2549   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2550   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2551   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2552   emit_int8(0x10);
2553   emit_operand(dst, src);
2554 }
2555 
2556 void Assembler::movss(Address dst, XMMRegister src) {
2557   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2558   InstructionMark im(this);
2559   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2560   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2561   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2562   emit_int8(0x11);
2563   emit_operand(src, dst);
2564 }
2565 
2566 void Assembler::movswl(Register dst, Address src) { // movsxw
2567   InstructionMark im(this);
2568   prefix(src, dst);
2569   emit_int8(0x0F);
2570   emit_int8((unsigned char)0xBF);
2571   emit_operand(dst, src);
2572 }
2573 
2574 void Assembler::movswl(Register dst, Register src) { // movsxw
2575   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2576   emit_int8(0x0F);
2577   emit_int8((unsigned char)0xBF);
2578   emit_int8((unsigned char)(0xC0 | encode));
2579 }
2580 
2581 void Assembler::movw(Address dst, int imm16) {
2582   InstructionMark im(this);
2583 
2584   emit_int8(0x66); // switch to 16-bit mode
2585   prefix(dst);
2586   emit_int8((unsigned char)0xC7);
2587   emit_operand(rax, dst, 2);
2588   emit_int16(imm16);
2589 }
2590 
2591 void Assembler::movw(Register dst, Address src) {
2592   InstructionMark im(this);
2593   emit_int8(0x66);
2594   prefix(src, dst);
2595   emit_int8((unsigned char)0x8B);
2596   emit_operand(dst, src);
2597 }
2598 
2599 void Assembler::movw(Address dst, Register src) {
2600   InstructionMark im(this);
2601   emit_int8(0x66);
2602   prefix(dst, src);
2603   emit_int8((unsigned char)0x89);
2604   emit_operand(src, dst);
2605 }
2606 
2607 void Assembler::movzbl(Register dst, Address src) { // movzxb
2608   InstructionMark im(this);
2609   prefix(src, dst);
2610   emit_int8(0x0F);
2611   emit_int8((unsigned char)0xB6);
2612   emit_operand(dst, src);
2613 }
2614 
2615 void Assembler::movzbl(Register dst, Register src) { // movzxb
2616   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2617   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2618   emit_int8(0x0F);
2619   emit_int8((unsigned char)0xB6);
2620   emit_int8(0xC0 | encode);
2621 }
2622 
2623 void Assembler::movzwl(Register dst, Address src) { // movzxw
2624   InstructionMark im(this);
2625   prefix(src, dst);
2626   emit_int8(0x0F);
2627   emit_int8((unsigned char)0xB7);
2628   emit_operand(dst, src);
2629 }
2630 
2631 void Assembler::movzwl(Register dst, Register src) { // movzxw
2632   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2633   emit_int8(0x0F);
2634   emit_int8((unsigned char)0xB7);
2635   emit_int8(0xC0 | encode);
2636 }
2637 
2638 void Assembler::mull(Address src) {
2639   InstructionMark im(this);
2640   prefix(src);
2641   emit_int8((unsigned char)0xF7);
2642   emit_operand(rsp, src);
2643 }
2644 
2645 void Assembler::mull(Register src) {
2646   int encode = prefix_and_encode(src->encoding());
2647   emit_int8((unsigned char)0xF7);
2648   emit_int8((unsigned char)(0xE0 | encode));
2649 }
2650 
2651 void Assembler::mulsd(XMMRegister dst, Address src) {
2652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2653   InstructionMark im(this);
2654   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2655   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2656   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2657   emit_int8(0x59);
2658   emit_operand(dst, src);
2659 }
2660 
2661 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2663   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2664   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2665   emit_int8(0x59);
2666   emit_int8((unsigned char)(0xC0 | encode));
2667 }
2668 
2669 void Assembler::mulss(XMMRegister dst, Address src) {
2670   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2671   InstructionMark im(this);
2672   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2673   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2674   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2675   emit_int8(0x59);
2676   emit_operand(dst, src);
2677 }
2678 
2679 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2680   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2681   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2682   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2683   emit_int8(0x59);
2684   emit_int8((unsigned char)(0xC0 | encode));
2685 }
2686 
2687 void Assembler::negl(Register dst) {
2688   int encode = prefix_and_encode(dst->encoding());
2689   emit_int8((unsigned char)0xF7);
2690   emit_int8((unsigned char)(0xD8 | encode));
2691 }
2692 
2693 void Assembler::nop(int i) {
2694 #ifdef ASSERT
2695   assert(i > 0, " ");
2696   // The fancy nops aren't currently recognized by debuggers making it a
2697   // pain to disassemble code while debugging. If asserts are on clearly
2698   // speed is not an issue so simply use the single byte traditional nop
2699   // to do alignment.
2700 
2701   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2702   return;
2703 
2704 #endif // ASSERT
2705 
2706   if (UseAddressNop && VM_Version::is_intel()) {
2707     //
2708     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2709     //  1: 0x90
2710     //  2: 0x66 0x90
2711     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2712     //  4: 0x0F 0x1F 0x40 0x00
2713     //  5: 0x0F 0x1F 0x44 0x00 0x00
2714     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2715     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2716     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2717     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2718     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2719     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2720 
2721     // The rest coding is Intel specific - don't use consecutive address nops
2722 
2723     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2724     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2725     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2726     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2727 
2728     while(i >= 15) {
2729       // For Intel don't generate consecutive addess nops (mix with regular nops)
2730       i -= 15;
2731       emit_int8(0x66);   // size prefix
2732       emit_int8(0x66);   // size prefix
2733       emit_int8(0x66);   // size prefix
2734       addr_nop_8();
2735       emit_int8(0x66);   // size prefix
2736       emit_int8(0x66);   // size prefix
2737       emit_int8(0x66);   // size prefix
2738       emit_int8((unsigned char)0x90);
2739                          // nop
2740     }
2741     switch (i) {
2742       case 14:
2743         emit_int8(0x66); // size prefix
2744       case 13:
2745         emit_int8(0x66); // size prefix
2746       case 12:
2747         addr_nop_8();
2748         emit_int8(0x66); // size prefix
2749         emit_int8(0x66); // size prefix
2750         emit_int8(0x66); // size prefix
2751         emit_int8((unsigned char)0x90);
2752                          // nop
2753         break;
2754       case 11:
2755         emit_int8(0x66); // size prefix
2756       case 10:
2757         emit_int8(0x66); // size prefix
2758       case 9:
2759         emit_int8(0x66); // size prefix
2760       case 8:
2761         addr_nop_8();
2762         break;
2763       case 7:
2764         addr_nop_7();
2765         break;
2766       case 6:
2767         emit_int8(0x66); // size prefix
2768       case 5:
2769         addr_nop_5();
2770         break;
2771       case 4:
2772         addr_nop_4();
2773         break;
2774       case 3:
2775         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2776         emit_int8(0x66); // size prefix
2777       case 2:
2778         emit_int8(0x66); // size prefix
2779       case 1:
2780         emit_int8((unsigned char)0x90);
2781                          // nop
2782         break;
2783       default:
2784         assert(i == 0, " ");
2785     }
2786     return;
2787   }
2788   if (UseAddressNop && VM_Version::is_amd()) {
2789     //
2790     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2791     //  1: 0x90
2792     //  2: 0x66 0x90
2793     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2794     //  4: 0x0F 0x1F 0x40 0x00
2795     //  5: 0x0F 0x1F 0x44 0x00 0x00
2796     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2797     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2798     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2799     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2800     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2801     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2802 
2803     // The rest coding is AMD specific - use consecutive address nops
2804 
2805     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2806     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2807     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2808     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2809     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2810     //     Size prefixes (0x66) are added for larger sizes
2811 
2812     while(i >= 22) {
2813       i -= 11;
2814       emit_int8(0x66); // size prefix
2815       emit_int8(0x66); // size prefix
2816       emit_int8(0x66); // size prefix
2817       addr_nop_8();
2818     }
2819     // Generate first nop for size between 21-12
2820     switch (i) {
2821       case 21:
2822         i -= 1;
2823         emit_int8(0x66); // size prefix
2824       case 20:
2825       case 19:
2826         i -= 1;
2827         emit_int8(0x66); // size prefix
2828       case 18:
2829       case 17:
2830         i -= 1;
2831         emit_int8(0x66); // size prefix
2832       case 16:
2833       case 15:
2834         i -= 8;
2835         addr_nop_8();
2836         break;
2837       case 14:
2838       case 13:
2839         i -= 7;
2840         addr_nop_7();
2841         break;
2842       case 12:
2843         i -= 6;
2844         emit_int8(0x66); // size prefix
2845         addr_nop_5();
2846         break;
2847       default:
2848         assert(i < 12, " ");
2849     }
2850 
2851     // Generate second nop for size between 11-1
2852     switch (i) {
2853       case 11:
2854         emit_int8(0x66); // size prefix
2855       case 10:
2856         emit_int8(0x66); // size prefix
2857       case 9:
2858         emit_int8(0x66); // size prefix
2859       case 8:
2860         addr_nop_8();
2861         break;
2862       case 7:
2863         addr_nop_7();
2864         break;
2865       case 6:
2866         emit_int8(0x66); // size prefix
2867       case 5:
2868         addr_nop_5();
2869         break;
2870       case 4:
2871         addr_nop_4();
2872         break;
2873       case 3:
2874         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2875         emit_int8(0x66); // size prefix
2876       case 2:
2877         emit_int8(0x66); // size prefix
2878       case 1:
2879         emit_int8((unsigned char)0x90);
2880                          // nop
2881         break;
2882       default:
2883         assert(i == 0, " ");
2884     }
2885     return;
2886   }
2887 
2888   // Using nops with size prefixes "0x66 0x90".
2889   // From AMD Optimization Guide:
2890   //  1: 0x90
2891   //  2: 0x66 0x90
2892   //  3: 0x66 0x66 0x90
2893   //  4: 0x66 0x66 0x66 0x90
2894   //  5: 0x66 0x66 0x90 0x66 0x90
2895   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2896   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2897   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2898   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2899   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2900   //
2901   while(i > 12) {
2902     i -= 4;
2903     emit_int8(0x66); // size prefix
2904     emit_int8(0x66);
2905     emit_int8(0x66);
2906     emit_int8((unsigned char)0x90);
2907                      // nop
2908   }
2909   // 1 - 12 nops
2910   if(i > 8) {
2911     if(i > 9) {
2912       i -= 1;
2913       emit_int8(0x66);
2914     }
2915     i -= 3;
2916     emit_int8(0x66);
2917     emit_int8(0x66);
2918     emit_int8((unsigned char)0x90);
2919   }
2920   // 1 - 8 nops
2921   if(i > 4) {
2922     if(i > 6) {
2923       i -= 1;
2924       emit_int8(0x66);
2925     }
2926     i -= 3;
2927     emit_int8(0x66);
2928     emit_int8(0x66);
2929     emit_int8((unsigned char)0x90);
2930   }
2931   switch (i) {
2932     case 4:
2933       emit_int8(0x66);
2934     case 3:
2935       emit_int8(0x66);
2936     case 2:
2937       emit_int8(0x66);
2938     case 1:
2939       emit_int8((unsigned char)0x90);
2940       break;
2941     default:
2942       assert(i == 0, " ");
2943   }
2944 }
2945 
2946 void Assembler::notl(Register dst) {
2947   int encode = prefix_and_encode(dst->encoding());
2948   emit_int8((unsigned char)0xF7);
2949   emit_int8((unsigned char)(0xD0 | encode));
2950 }
2951 
2952 void Assembler::orl(Address dst, int32_t imm32) {
2953   InstructionMark im(this);
2954   prefix(dst);
2955   emit_arith_operand(0x81, rcx, dst, imm32);
2956 }
2957 
2958 void Assembler::orl(Register dst, int32_t imm32) {
2959   prefix(dst);
2960   emit_arith(0x81, 0xC8, dst, imm32);
2961 }
2962 
2963 void Assembler::orl(Register dst, Address src) {
2964   InstructionMark im(this);
2965   prefix(src, dst);
2966   emit_int8(0x0B);
2967   emit_operand(dst, src);
2968 }
2969 
2970 void Assembler::orl(Register dst, Register src) {
2971   (void) prefix_and_encode(dst->encoding(), src->encoding());
2972   emit_arith(0x0B, 0xC0, dst, src);
2973 }
2974 
2975 void Assembler::orl(Address dst, Register src) {
2976   InstructionMark im(this);
2977   prefix(dst, src);
2978   emit_int8(0x09);
2979   emit_operand(src, dst);
2980 }
2981 
2982 void Assembler::packuswb(XMMRegister dst, Address src) {
2983   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2984   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2985   InstructionMark im(this);
2986   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2987   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
2988   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2989   emit_int8(0x67);
2990   emit_operand(dst, src);
2991 }
2992 
2993 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2994   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2995   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2996   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2997   emit_int8(0x67);
2998   emit_int8((unsigned char)(0xC0 | encode));
2999 }
3000 
3001 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3002   assert(UseAVX > 0, "some form of AVX must be enabled");
3003   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
3004   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3005   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3006   emit_int8(0x67);
3007   emit_int8((unsigned char)(0xC0 | encode));
3008 }
3009 
3010 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3011   assert(VM_Version::supports_avx2(), "");
3012   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3013   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3014   emit_int8(0x00);
3015   emit_int8(0xC0 | encode);
3016   emit_int8(imm8);
3017 }
3018 
3019 void Assembler::pause() {
3020   emit_int8((unsigned char)0xF3);
3021   emit_int8((unsigned char)0x90);
3022 }
3023 
3024 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3025   assert(VM_Version::supports_sse4_2(), "");
3026   InstructionMark im(this);
3027   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3028   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3029   emit_int8(0x61);
3030   emit_operand(dst, src);
3031   emit_int8(imm8);
3032 }
3033 
3034 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3035   assert(VM_Version::supports_sse4_2(), "");
3036   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3037   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3038   emit_int8(0x61);
3039   emit_int8((unsigned char)(0xC0 | encode));
3040   emit_int8(imm8);
3041 }
3042 
3043 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3044   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3045   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3047   emit_int8(0x75);
3048   emit_int8((unsigned char)(0xC0 | encode));
3049 }
3050 
3051 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3052   assert(VM_Version::supports_avx(), "");
3053   assert(!VM_Version::supports_evex(), "");
3054   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3055   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3056   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3057   emit_int8(0x75);
3058   emit_int8((unsigned char)(0xC0 | encode));
3059 }
3060 
3061 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3062   assert(VM_Version::supports_sse2(), "");
3063   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3064   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3065   emit_int8((unsigned char)0xD7);
3066   emit_int8((unsigned char)(0xC0 | encode));
3067 }
3068 
3069 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3070   assert(VM_Version::supports_avx2(), "");
3071   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3072   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3073   emit_int8((unsigned char)0xD7);
3074   emit_int8((unsigned char)(0xC0 | encode));
3075 }
3076 
3077 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3078   assert(VM_Version::supports_sse4_1(), "");
3079   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3080   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3081   emit_int8(0x16);
3082   emit_int8((unsigned char)(0xC0 | encode));
3083   emit_int8(imm8);
3084 }
3085 
3086 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3087   assert(VM_Version::supports_sse4_1(), "");
3088   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3089   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3090   emit_int8(0x16);
3091   emit_int8((unsigned char)(0xC0 | encode));
3092   emit_int8(imm8);
3093 }
3094 
3095 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3096   assert(VM_Version::supports_sse2(), "");
3097   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3098   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3099   emit_int8((unsigned char)0xC5);
3100   emit_int8((unsigned char)(0xC0 | encode));
3101   emit_int8(imm8);
3102 }
3103 
3104 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3105   assert(VM_Version::supports_sse4_1(), "");
3106   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3107   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3108   emit_int8(0x22);
3109   emit_int8((unsigned char)(0xC0 | encode));
3110   emit_int8(imm8);
3111 }
3112 
3113 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3114   assert(VM_Version::supports_sse4_1(), "");
3115   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3116   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3117   emit_int8(0x22);
3118   emit_int8((unsigned char)(0xC0 | encode));
3119   emit_int8(imm8);
3120 }
3121 
3122 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3123   assert(VM_Version::supports_sse2(), "");
3124   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3125   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3126   emit_int8((unsigned char)0xC4);
3127   emit_int8((unsigned char)(0xC0 | encode));
3128   emit_int8(imm8);
3129 }
3130 
3131 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3132   assert(VM_Version::supports_sse4_1(), "");
3133   InstructionMark im(this);
3134   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3135   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3136   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3137   emit_int8(0x30);
3138   emit_operand(dst, src);
3139 }
3140 
3141 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3142   assert(VM_Version::supports_sse4_1(), "");
3143   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3144   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3145   emit_int8(0x30);
3146   emit_int8((unsigned char)(0xC0 | encode));
3147 }
3148 
3149 void Assembler::vpmovzxbw(XMMRegister dst, Address src) {
3150   assert(VM_Version::supports_avx(), "");
3151   InstructionMark im(this);
3152   assert(dst != xnoreg, "sanity");
3153   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3154   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3155   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3156   emit_int8(0x30);
3157   emit_operand(dst, src);
3158 }
3159 
3160 // generic
3161 void Assembler::pop(Register dst) {
3162   int encode = prefix_and_encode(dst->encoding());
3163   emit_int8(0x58 | encode);
3164 }
3165 
3166 void Assembler::popcntl(Register dst, Address src) {
3167   assert(VM_Version::supports_popcnt(), "must support");
3168   InstructionMark im(this);
3169   emit_int8((unsigned char)0xF3);
3170   prefix(src, dst);
3171   emit_int8(0x0F);
3172   emit_int8((unsigned char)0xB8);
3173   emit_operand(dst, src);
3174 }
3175 
3176 void Assembler::popcntl(Register dst, Register src) {
3177   assert(VM_Version::supports_popcnt(), "must support");
3178   emit_int8((unsigned char)0xF3);
3179   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3180   emit_int8(0x0F);
3181   emit_int8((unsigned char)0xB8);
3182   emit_int8((unsigned char)(0xC0 | encode));
3183 }
3184 
3185 void Assembler::popf() {
3186   emit_int8((unsigned char)0x9D);
3187 }
3188 
3189 #ifndef _LP64 // no 32bit push/pop on amd64
3190 void Assembler::popl(Address dst) {
3191   // NOTE: this will adjust stack by 8byte on 64bits
3192   InstructionMark im(this);
3193   prefix(dst);
3194   emit_int8((unsigned char)0x8F);
3195   emit_operand(rax, dst);
3196 }
3197 #endif
3198 
3199 void Assembler::prefetch_prefix(Address src) {
3200   prefix(src);
3201   emit_int8(0x0F);
3202 }
3203 
3204 void Assembler::prefetchnta(Address src) {
3205   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3206   InstructionMark im(this);
3207   prefetch_prefix(src);
3208   emit_int8(0x18);
3209   emit_operand(rax, src); // 0, src
3210 }
3211 
3212 void Assembler::prefetchr(Address src) {
3213   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3214   InstructionMark im(this);
3215   prefetch_prefix(src);
3216   emit_int8(0x0D);
3217   emit_operand(rax, src); // 0, src
3218 }
3219 
3220 void Assembler::prefetcht0(Address src) {
3221   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3222   InstructionMark im(this);
3223   prefetch_prefix(src);
3224   emit_int8(0x18);
3225   emit_operand(rcx, src); // 1, src
3226 }
3227 
3228 void Assembler::prefetcht1(Address src) {
3229   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3230   InstructionMark im(this);
3231   prefetch_prefix(src);
3232   emit_int8(0x18);
3233   emit_operand(rdx, src); // 2, src
3234 }
3235 
3236 void Assembler::prefetcht2(Address src) {
3237   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3238   InstructionMark im(this);
3239   prefetch_prefix(src);
3240   emit_int8(0x18);
3241   emit_operand(rbx, src); // 3, src
3242 }
3243 
3244 void Assembler::prefetchw(Address src) {
3245   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3246   InstructionMark im(this);
3247   prefetch_prefix(src);
3248   emit_int8(0x0D);
3249   emit_operand(rcx, src); // 1, src
3250 }
3251 
3252 void Assembler::prefix(Prefix p) {
3253   emit_int8(p);
3254 }
3255 
3256 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3257   assert(VM_Version::supports_ssse3(), "");
3258   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3260   emit_int8(0x00);
3261   emit_int8((unsigned char)(0xC0 | encode));
3262 }
3263 
3264 void Assembler::pshufb(XMMRegister dst, Address src) {
3265   assert(VM_Version::supports_ssse3(), "");
3266   InstructionMark im(this);
3267   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3268   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3269   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3270   emit_int8(0x00);
3271   emit_operand(dst, src);
3272 }
3273 
3274 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3275   assert(isByte(mode), "invalid value");
3276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3277   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
3278   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3279   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3280   emit_int8(0x70);
3281   emit_int8((unsigned char)(0xC0 | encode));
3282   emit_int8(mode & 0xFF);
3283 }
3284 
3285 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3286   assert(isByte(mode), "invalid value");
3287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3288   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3289   InstructionMark im(this);
3290   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3291   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3292   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3293   emit_int8(0x70);
3294   emit_operand(dst, src);
3295   emit_int8(mode & 0xFF);
3296 }
3297 
3298 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3299   assert(isByte(mode), "invalid value");
3300   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3301   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3302   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3303   emit_int8(0x70);
3304   emit_int8((unsigned char)(0xC0 | encode));
3305   emit_int8(mode & 0xFF);
3306 }
3307 
3308 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3309   assert(isByte(mode), "invalid value");
3310   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3311   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3312   InstructionMark im(this);
3313   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3314   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3315   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3316   emit_int8(0x70);
3317   emit_operand(dst, src);
3318   emit_int8(mode & 0xFF);
3319 }
3320 
3321 void Assembler::psrldq(XMMRegister dst, int shift) {
3322   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3324   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3325   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3326   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3327   emit_int8(0x73);
3328   emit_int8((unsigned char)(0xC0 | encode));
3329   emit_int8(shift);
3330 }
3331 
3332 void Assembler::pslldq(XMMRegister dst, int shift) {
3333   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3335   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3336   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3337   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3338   emit_int8(0x73);
3339   emit_int8((unsigned char)(0xC0 | encode));
3340   emit_int8(shift);
3341 }
3342 
3343 void Assembler::ptest(XMMRegister dst, Address src) {
3344   assert(VM_Version::supports_sse4_1(), "");
3345   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3346   InstructionMark im(this);
3347   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3348   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3349   emit_int8(0x17);
3350   emit_operand(dst, src);
3351 }
3352 
3353 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3354   assert(VM_Version::supports_sse4_1(), "");
3355   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3356   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3357   emit_int8(0x17);
3358   emit_int8((unsigned char)(0xC0 | encode));
3359 }
3360 
3361 void Assembler::vptest(XMMRegister dst, Address src) {
3362   assert(VM_Version::supports_avx(), "");
3363   InstructionMark im(this);
3364   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3365   assert(dst != xnoreg, "sanity");
3366   // swap src<->dst for encoding
3367   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3368   emit_int8(0x17);
3369   emit_operand(dst, src);
3370 }
3371 
3372 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3373   assert(VM_Version::supports_avx(), "");
3374   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3375   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3376   emit_int8(0x17);
3377   emit_int8((unsigned char)(0xC0 | encode));
3378 }
3379 
3380 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3382   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3383   InstructionMark im(this);
3384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3385   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3386   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3387   emit_int8(0x60);
3388   emit_operand(dst, src);
3389 }
3390 
3391 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3392   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3393   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3394   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3395   emit_int8(0x60);
3396   emit_int8((unsigned char)(0xC0 | encode));
3397 }
3398 
3399 void Assembler::punpckldq(XMMRegister dst, Address src) {
3400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3401   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3402   InstructionMark im(this);
3403   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3404   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3405   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3406   emit_int8(0x62);
3407   emit_operand(dst, src);
3408 }
3409 
3410 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3411   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3412   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3413   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3414   emit_int8(0x62);
3415   emit_int8((unsigned char)(0xC0 | encode));
3416 }
3417 
3418 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3419   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3420   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3421   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3422   emit_int8(0x6C);
3423   emit_int8((unsigned char)(0xC0 | encode));
3424 }
3425 
3426 void Assembler::push(int32_t imm32) {
3427   // in 64bits we push 64bits onto the stack but only
3428   // take a 32bit immediate
3429   emit_int8(0x68);
3430   emit_int32(imm32);
3431 }
3432 
3433 void Assembler::push(Register src) {
3434   int encode = prefix_and_encode(src->encoding());
3435 
3436   emit_int8(0x50 | encode);
3437 }
3438 
3439 void Assembler::pushf() {
3440   emit_int8((unsigned char)0x9C);
3441 }
3442 
3443 #ifndef _LP64 // no 32bit push/pop on amd64
3444 void Assembler::pushl(Address src) {
3445   // Note this will push 64bit on 64bit
3446   InstructionMark im(this);
3447   prefix(src);
3448   emit_int8((unsigned char)0xFF);
3449   emit_operand(rsi, src);
3450 }
3451 #endif
3452 
3453 void Assembler::rcll(Register dst, int imm8) {
3454   assert(isShiftCount(imm8), "illegal shift count");
3455   int encode = prefix_and_encode(dst->encoding());
3456   if (imm8 == 1) {
3457     emit_int8((unsigned char)0xD1);
3458     emit_int8((unsigned char)(0xD0 | encode));
3459   } else {
3460     emit_int8((unsigned char)0xC1);
3461     emit_int8((unsigned char)0xD0 | encode);
3462     emit_int8(imm8);
3463   }
3464 }
3465 
3466 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3467   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3468   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3469   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3470   emit_int8(0x53);
3471   emit_int8((unsigned char)(0xC0 | encode));
3472 }
3473 
3474 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3475   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3476   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3477   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3478   emit_int8(0x53);
3479   emit_int8((unsigned char)(0xC0 | encode));
3480 }
3481 
3482 void Assembler::rdtsc() {
3483   emit_int8((unsigned char)0x0F);
3484   emit_int8((unsigned char)0x31);
3485 }
3486 
3487 // copies data from [esi] to [edi] using rcx pointer sized words
3488 // generic
3489 void Assembler::rep_mov() {
3490   emit_int8((unsigned char)0xF3);
3491   // MOVSQ
3492   LP64_ONLY(prefix(REX_W));
3493   emit_int8((unsigned char)0xA5);
3494 }
3495 
3496 // sets rcx bytes with rax, value at [edi]
3497 void Assembler::rep_stosb() {
3498   emit_int8((unsigned char)0xF3); // REP
3499   LP64_ONLY(prefix(REX_W));
3500   emit_int8((unsigned char)0xAA); // STOSB
3501 }
3502 
3503 // sets rcx pointer sized words with rax, value at [edi]
3504 // generic
3505 void Assembler::rep_stos() {
3506   emit_int8((unsigned char)0xF3); // REP
3507   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3508   emit_int8((unsigned char)0xAB);
3509 }
3510 
3511 // scans rcx pointer sized words at [edi] for occurance of rax,
3512 // generic
3513 void Assembler::repne_scan() { // repne_scan
3514   emit_int8((unsigned char)0xF2);
3515   // SCASQ
3516   LP64_ONLY(prefix(REX_W));
3517   emit_int8((unsigned char)0xAF);
3518 }
3519 
3520 #ifdef _LP64
3521 // scans rcx 4 byte words at [edi] for occurance of rax,
3522 // generic
3523 void Assembler::repne_scanl() { // repne_scan
3524   emit_int8((unsigned char)0xF2);
3525   // SCASL
3526   emit_int8((unsigned char)0xAF);
3527 }
3528 #endif
3529 
3530 void Assembler::ret(int imm16) {
3531   if (imm16 == 0) {
3532     emit_int8((unsigned char)0xC3);
3533   } else {
3534     emit_int8((unsigned char)0xC2);
3535     emit_int16(imm16);
3536   }
3537 }
3538 
3539 void Assembler::sahf() {
3540 #ifdef _LP64
3541   // Not supported in 64bit mode
3542   ShouldNotReachHere();
3543 #endif
3544   emit_int8((unsigned char)0x9E);
3545 }
3546 
3547 void Assembler::sarl(Register dst, int imm8) {
3548   int encode = prefix_and_encode(dst->encoding());
3549   assert(isShiftCount(imm8), "illegal shift count");
3550   if (imm8 == 1) {
3551     emit_int8((unsigned char)0xD1);
3552     emit_int8((unsigned char)(0xF8 | encode));
3553   } else {
3554     emit_int8((unsigned char)0xC1);
3555     emit_int8((unsigned char)(0xF8 | encode));
3556     emit_int8(imm8);
3557   }
3558 }
3559 
3560 void Assembler::sarl(Register dst) {
3561   int encode = prefix_and_encode(dst->encoding());
3562   emit_int8((unsigned char)0xD3);
3563   emit_int8((unsigned char)(0xF8 | encode));
3564 }
3565 
3566 void Assembler::sbbl(Address dst, int32_t imm32) {
3567   InstructionMark im(this);
3568   prefix(dst);
3569   emit_arith_operand(0x81, rbx, dst, imm32);
3570 }
3571 
3572 void Assembler::sbbl(Register dst, int32_t imm32) {
3573   prefix(dst);
3574   emit_arith(0x81, 0xD8, dst, imm32);
3575 }
3576 
3577 
3578 void Assembler::sbbl(Register dst, Address src) {
3579   InstructionMark im(this);
3580   prefix(src, dst);
3581   emit_int8(0x1B);
3582   emit_operand(dst, src);
3583 }
3584 
3585 void Assembler::sbbl(Register dst, Register src) {
3586   (void) prefix_and_encode(dst->encoding(), src->encoding());
3587   emit_arith(0x1B, 0xC0, dst, src);
3588 }
3589 
3590 void Assembler::setb(Condition cc, Register dst) {
3591   assert(0 <= cc && cc < 16, "illegal cc");
3592   int encode = prefix_and_encode(dst->encoding(), true);
3593   emit_int8(0x0F);
3594   emit_int8((unsigned char)0x90 | cc);
3595   emit_int8((unsigned char)(0xC0 | encode));
3596 }
3597 
3598 void Assembler::shll(Register dst, int imm8) {
3599   assert(isShiftCount(imm8), "illegal shift count");
3600   int encode = prefix_and_encode(dst->encoding());
3601   if (imm8 == 1 ) {
3602     emit_int8((unsigned char)0xD1);
3603     emit_int8((unsigned char)(0xE0 | encode));
3604   } else {
3605     emit_int8((unsigned char)0xC1);
3606     emit_int8((unsigned char)(0xE0 | encode));
3607     emit_int8(imm8);
3608   }
3609 }
3610 
3611 void Assembler::shll(Register dst) {
3612   int encode = prefix_and_encode(dst->encoding());
3613   emit_int8((unsigned char)0xD3);
3614   emit_int8((unsigned char)(0xE0 | encode));
3615 }
3616 
3617 void Assembler::shrl(Register dst, int imm8) {
3618   assert(isShiftCount(imm8), "illegal shift count");
3619   int encode = prefix_and_encode(dst->encoding());
3620   emit_int8((unsigned char)0xC1);
3621   emit_int8((unsigned char)(0xE8 | encode));
3622   emit_int8(imm8);
3623 }
3624 
3625 void Assembler::shrl(Register dst) {
3626   int encode = prefix_and_encode(dst->encoding());
3627   emit_int8((unsigned char)0xD3);
3628   emit_int8((unsigned char)(0xE8 | encode));
3629 }
3630 
3631 // copies a single word from [esi] to [edi]
3632 void Assembler::smovl() {
3633   emit_int8((unsigned char)0xA5);
3634 }
3635 
3636 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3637   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3638   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3639   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3640   emit_int8(0x51);
3641   emit_int8((unsigned char)(0xC0 | encode));
3642 }
3643 
3644 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3646   InstructionMark im(this);
3647   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3648   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3649   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3650   emit_int8(0x51);
3651   emit_operand(dst, src);
3652 }
3653 
3654 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3655   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3656   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3657   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3658   emit_int8(0x51);
3659   emit_int8((unsigned char)(0xC0 | encode));
3660 }
3661 
3662 void Assembler::std() {
3663   emit_int8((unsigned char)0xFD);
3664 }
3665 
3666 void Assembler::sqrtss(XMMRegister dst, Address src) {
3667   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3668   InstructionMark im(this);
3669   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3670   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3671   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3672   emit_int8(0x51);
3673   emit_operand(dst, src);
3674 }
3675 
3676 void Assembler::stmxcsr( Address dst) {
3677   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3678   InstructionMark im(this);
3679   prefix(dst);
3680   emit_int8(0x0F);
3681   emit_int8((unsigned char)0xAE);
3682   emit_operand(as_Register(3), dst);
3683 }
3684 
3685 void Assembler::subl(Address dst, int32_t imm32) {
3686   InstructionMark im(this);
3687   prefix(dst);
3688   emit_arith_operand(0x81, rbp, dst, imm32);
3689 }
3690 
3691 void Assembler::subl(Address dst, Register src) {
3692   InstructionMark im(this);
3693   prefix(dst, src);
3694   emit_int8(0x29);
3695   emit_operand(src, dst);
3696 }
3697 
3698 void Assembler::subl(Register dst, int32_t imm32) {
3699   prefix(dst);
3700   emit_arith(0x81, 0xE8, dst, imm32);
3701 }
3702 
3703 // Force generation of a 4 byte immediate value even if it fits into 8bit
3704 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3705   prefix(dst);
3706   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3707 }
3708 
3709 void Assembler::subl(Register dst, Address src) {
3710   InstructionMark im(this);
3711   prefix(src, dst);
3712   emit_int8(0x2B);
3713   emit_operand(dst, src);
3714 }
3715 
3716 void Assembler::subl(Register dst, Register src) {
3717   (void) prefix_and_encode(dst->encoding(), src->encoding());
3718   emit_arith(0x2B, 0xC0, dst, src);
3719 }
3720 
3721 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3722   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3723   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3724   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3725   emit_int8(0x5C);
3726   emit_int8((unsigned char)(0xC0 | encode));
3727 }
3728 
3729 void Assembler::subsd(XMMRegister dst, Address src) {
3730   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3731   InstructionMark im(this);
3732   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3733   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3734   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3735   emit_int8(0x5C);
3736   emit_operand(dst, src);
3737 }
3738 
3739 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3740   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3741   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3742   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3743   emit_int8(0x5C);
3744   emit_int8((unsigned char)(0xC0 | encode));
3745 }
3746 
3747 void Assembler::subss(XMMRegister dst, Address src) {
3748   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3749   InstructionMark im(this);
3750   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3751   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3752   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3753   emit_int8(0x5C);
3754   emit_operand(dst, src);
3755 }
3756 
3757 void Assembler::testb(Register dst, int imm8) {
3758   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3759   (void) prefix_and_encode(dst->encoding(), true);
3760   emit_arith_b(0xF6, 0xC0, dst, imm8);
3761 }
3762 
3763 void Assembler::testb(Address dst, int imm8) {
3764   InstructionMark im(this);
3765   prefix(dst);
3766   emit_int8((unsigned char)0xF6);
3767   emit_operand(rax, dst, 1);
3768   emit_int8(imm8);
3769 
3770 }
3771 
3772 void Assembler::testl(Register dst, int32_t imm32) {
3773   // not using emit_arith because test
3774   // doesn't support sign-extension of
3775   // 8bit operands
3776   int encode = dst->encoding();
3777   if (encode == 0) {
3778     emit_int8((unsigned char)0xA9);
3779   } else {
3780     encode = prefix_and_encode(encode);
3781     emit_int8((unsigned char)0xF7);
3782     emit_int8((unsigned char)(0xC0 | encode));
3783   }
3784   emit_int32(imm32);
3785 }
3786 
3787 void Assembler::testl(Register dst, Register src) {
3788   (void) prefix_and_encode(dst->encoding(), src->encoding());
3789   emit_arith(0x85, 0xC0, dst, src);
3790 }
3791 
3792 void Assembler::testl(Register dst, Address src) {
3793   InstructionMark im(this);
3794   prefix(src, dst);
3795   emit_int8((unsigned char)0x85);
3796   emit_operand(dst, src);
3797 }
3798 
3799 void Assembler::tzcntl(Register dst, Register src) {
3800   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3801   emit_int8((unsigned char)0xF3);
3802   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3803   emit_int8(0x0F);
3804   emit_int8((unsigned char)0xBC);
3805   emit_int8((unsigned char)0xC0 | encode);
3806 }
3807 
3808 void Assembler::tzcntq(Register dst, Register src) {
3809   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3810   emit_int8((unsigned char)0xF3);
3811   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3812   emit_int8(0x0F);
3813   emit_int8((unsigned char)0xBC);
3814   emit_int8((unsigned char)(0xC0 | encode));
3815 }
3816 
3817 void Assembler::ucomisd(XMMRegister dst, Address src) {
3818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3819   InstructionMark im(this);
3820   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3821   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3822   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3823   emit_int8(0x2E);
3824   emit_operand(dst, src);
3825 }
3826 
3827 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3828   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3829   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3830   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3831   emit_int8(0x2E);
3832   emit_int8((unsigned char)(0xC0 | encode));
3833 }
3834 
3835 void Assembler::ucomiss(XMMRegister dst, Address src) {
3836   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3837   InstructionMark im(this);
3838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3840   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3841   emit_int8(0x2E);
3842   emit_operand(dst, src);
3843 }
3844 
3845 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3847   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3849   emit_int8(0x2E);
3850   emit_int8((unsigned char)(0xC0 | encode));
3851 }
3852 
3853 void Assembler::xabort(int8_t imm8) {
3854   emit_int8((unsigned char)0xC6);
3855   emit_int8((unsigned char)0xF8);
3856   emit_int8((unsigned char)(imm8 & 0xFF));
3857 }
3858 
3859 void Assembler::xaddl(Address dst, Register src) {
3860   InstructionMark im(this);
3861   prefix(dst, src);
3862   emit_int8(0x0F);
3863   emit_int8((unsigned char)0xC1);
3864   emit_operand(src, dst);
3865 }
3866 
3867 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3868   InstructionMark im(this);
3869   relocate(rtype);
3870   if (abort.is_bound()) {
3871     address entry = target(abort);
3872     assert(entry != NULL, "abort entry NULL");
3873     intptr_t offset = entry - pc();
3874     emit_int8((unsigned char)0xC7);
3875     emit_int8((unsigned char)0xF8);
3876     emit_int32(offset - 6); // 2 opcode + 4 address
3877   } else {
3878     abort.add_patch_at(code(), locator());
3879     emit_int8((unsigned char)0xC7);
3880     emit_int8((unsigned char)0xF8);
3881     emit_int32(0);
3882   }
3883 }
3884 
3885 void Assembler::xchgl(Register dst, Address src) { // xchg
3886   InstructionMark im(this);
3887   prefix(src, dst);
3888   emit_int8((unsigned char)0x87);
3889   emit_operand(dst, src);
3890 }
3891 
3892 void Assembler::xchgl(Register dst, Register src) {
3893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3894   emit_int8((unsigned char)0x87);
3895   emit_int8((unsigned char)(0xC0 | encode));
3896 }
3897 
3898 void Assembler::xend() {
3899   emit_int8((unsigned char)0x0F);
3900   emit_int8((unsigned char)0x01);
3901   emit_int8((unsigned char)0xD5);
3902 }
3903 
3904 void Assembler::xgetbv() {
3905   emit_int8(0x0F);
3906   emit_int8(0x01);
3907   emit_int8((unsigned char)0xD0);
3908 }
3909 
3910 void Assembler::xorl(Register dst, int32_t imm32) {
3911   prefix(dst);
3912   emit_arith(0x81, 0xF0, dst, imm32);
3913 }
3914 
3915 void Assembler::xorl(Register dst, Address src) {
3916   InstructionMark im(this);
3917   prefix(src, dst);
3918   emit_int8(0x33);
3919   emit_operand(dst, src);
3920 }
3921 
3922 void Assembler::xorl(Register dst, Register src) {
3923   (void) prefix_and_encode(dst->encoding(), src->encoding());
3924   emit_arith(0x33, 0xC0, dst, src);
3925 }
3926 
3927 
3928 // AVX 3-operands scalar float-point arithmetic instructions
3929 
3930 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3931   assert(VM_Version::supports_avx(), "");
3932   InstructionMark im(this);
3933   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3934   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3935   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3936   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3937   emit_int8(0x58);
3938   emit_operand(dst, src);
3939 }
3940 
3941 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3942   assert(VM_Version::supports_avx(), "");
3943   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3944   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3945   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3946   emit_int8(0x58);
3947   emit_int8((unsigned char)(0xC0 | encode));
3948 }
3949 
3950 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3951   assert(VM_Version::supports_avx(), "");
3952   InstructionMark im(this);
3953   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3954   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3955   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3956   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3957   emit_int8(0x58);
3958   emit_operand(dst, src);
3959 }
3960 
3961 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3962   assert(VM_Version::supports_avx(), "");
3963   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3964   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3965   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3966   emit_int8(0x58);
3967   emit_int8((unsigned char)(0xC0 | encode));
3968 }
3969 
3970 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3971   assert(VM_Version::supports_avx(), "");
3972   InstructionMark im(this);
3973   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3974   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3975   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3976   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3977   emit_int8(0x5E);
3978   emit_operand(dst, src);
3979 }
3980 
3981 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3982   assert(VM_Version::supports_avx(), "");
3983   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3984   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3985   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3986   emit_int8(0x5E);
3987   emit_int8((unsigned char)(0xC0 | encode));
3988 }
3989 
3990 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3991   assert(VM_Version::supports_avx(), "");
3992   InstructionMark im(this);
3993   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3994   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3995   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3996   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3997   emit_int8(0x5E);
3998   emit_operand(dst, src);
3999 }
4000 
4001 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4002   assert(VM_Version::supports_avx(), "");
4003   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4004   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4005   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4006   emit_int8(0x5E);
4007   emit_int8((unsigned char)(0xC0 | encode));
4008 }
4009 
4010 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4011   assert(VM_Version::supports_avx(), "");
4012   InstructionMark im(this);
4013   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4014   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4015   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4016   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4017   emit_int8(0x59);
4018   emit_operand(dst, src);
4019 }
4020 
4021 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4022   assert(VM_Version::supports_avx(), "");
4023   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4024   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4025   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4026   emit_int8(0x59);
4027   emit_int8((unsigned char)(0xC0 | encode));
4028 }
4029 
4030 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4031   assert(VM_Version::supports_avx(), "");
4032   InstructionMark im(this);
4033   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4034   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4035   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4036   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4037   emit_int8(0x59);
4038   emit_operand(dst, src);
4039 }
4040 
4041 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4042   assert(VM_Version::supports_avx(), "");
4043   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4044   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4045   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4046   emit_int8(0x59);
4047   emit_int8((unsigned char)(0xC0 | encode));
4048 }
4049 
4050 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4051   assert(VM_Version::supports_avx(), "");
4052   InstructionMark im(this);
4053   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4054   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4055   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4056   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4057   emit_int8(0x5C);
4058   emit_operand(dst, src);
4059 }
4060 
4061 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4062   assert(VM_Version::supports_avx(), "");
4063   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4064   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4065   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4066   emit_int8(0x5C);
4067   emit_int8((unsigned char)(0xC0 | encode));
4068 }
4069 
4070 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4071   assert(VM_Version::supports_avx(), "");
4072   InstructionMark im(this);
4073   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4074   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4075   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4076   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4077   emit_int8(0x5C);
4078   emit_operand(dst, src);
4079 }
4080 
4081 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4082   assert(VM_Version::supports_avx(), "");
4083   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4084   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4085   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4086   emit_int8(0x5C);
4087   emit_int8((unsigned char)(0xC0 | encode));
4088 }
4089 
4090 //====================VECTOR ARITHMETIC=====================================
4091 
4092 // Float-point vector arithmetic
4093 
4094 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4095   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4096   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4097   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4098   emit_int8(0x58);
4099   emit_int8((unsigned char)(0xC0 | encode));
4100 }
4101 
4102 void Assembler::addpd(XMMRegister dst, Address src) {
4103   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4104   InstructionMark im(this);
4105   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4106   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4107   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4108   emit_int8(0x58);
4109   emit_operand(dst, src);
4110 }
4111 
4112 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4114   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4115   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4116   emit_int8(0x58);
4117   emit_int8((unsigned char)(0xC0 | encode));
4118 }
4119 
4120 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4121   assert(VM_Version::supports_avx(), "");
4122   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4123   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4124   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4125   emit_int8(0x58);
4126   emit_int8((unsigned char)(0xC0 | encode));
4127 }
4128 
4129 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4130   assert(VM_Version::supports_avx(), "");
4131   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4132   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4133   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4134   emit_int8(0x58);
4135   emit_int8((unsigned char)(0xC0 | encode));
4136 }
4137 
4138 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4139   assert(VM_Version::supports_avx(), "");
4140   InstructionMark im(this);
4141   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4142   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4143   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4144   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4145   emit_int8(0x58);
4146   emit_operand(dst, src);
4147 }
4148 
4149 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4150   assert(VM_Version::supports_avx(), "");
4151   InstructionMark im(this);
4152   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4153   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4154   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4155   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4156   emit_int8(0x58);
4157   emit_operand(dst, src);
4158 }
4159 
4160 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4162   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4163   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4164   emit_int8(0x5C);
4165   emit_int8((unsigned char)(0xC0 | encode));
4166 }
4167 
4168 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4170   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4171   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4172   emit_int8(0x5C);
4173   emit_int8((unsigned char)(0xC0 | encode));
4174 }
4175 
4176 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4177   assert(VM_Version::supports_avx(), "");
4178   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4179   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4180   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4181   emit_int8(0x5C);
4182   emit_int8((unsigned char)(0xC0 | encode));
4183 }
4184 
4185 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4186   assert(VM_Version::supports_avx(), "");
4187   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4188   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4189   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4190   emit_int8(0x5C);
4191   emit_int8((unsigned char)(0xC0 | encode));
4192 }
4193 
4194 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4195   assert(VM_Version::supports_avx(), "");
4196   InstructionMark im(this);
4197   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4198   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4199   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4200   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4201   emit_int8(0x5C);
4202   emit_operand(dst, src);
4203 }
4204 
4205 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4206   assert(VM_Version::supports_avx(), "");
4207   InstructionMark im(this);
4208   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4209   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4210   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4211   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4212   emit_int8(0x5C);
4213   emit_operand(dst, src);
4214 }
4215 
4216 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4217   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4218   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4219   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4220   emit_int8(0x59);
4221   emit_int8((unsigned char)(0xC0 | encode));
4222 }
4223 
4224 void Assembler::mulpd(XMMRegister dst, Address src) {
4225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4226   InstructionMark im(this);
4227   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4228   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4229   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4230   emit_int8(0x59);
4231   emit_operand(dst, src);
4232 }
4233 
4234 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4235   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4236   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4237   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4238   emit_int8(0x59);
4239   emit_int8((unsigned char)(0xC0 | encode));
4240 }
4241 
4242 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4243   assert(VM_Version::supports_avx(), "");
4244   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4245   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4246   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4247   emit_int8(0x59);
4248   emit_int8((unsigned char)(0xC0 | encode));
4249 }
4250 
4251 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4252   assert(VM_Version::supports_avx(), "");
4253   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4254   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4255   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4256   emit_int8(0x59);
4257   emit_int8((unsigned char)(0xC0 | encode));
4258 }
4259 
4260 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4261   assert(VM_Version::supports_avx(), "");
4262   InstructionMark im(this);
4263   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4264   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4265   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4266   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4267   emit_int8(0x59);
4268   emit_operand(dst, src);
4269 }
4270 
4271 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4272   assert(VM_Version::supports_avx(), "");
4273   InstructionMark im(this);
4274   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4275   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4276   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4277   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4278   emit_int8(0x59);
4279   emit_operand(dst, src);
4280 }
4281 
4282 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4284   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4285   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4286   emit_int8(0x5E);
4287   emit_int8((unsigned char)(0xC0 | encode));
4288 }
4289 
4290 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4291   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4292   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4294   emit_int8(0x5E);
4295   emit_int8((unsigned char)(0xC0 | encode));
4296 }
4297 
4298 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4299   assert(VM_Version::supports_avx(), "");
4300   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4301   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4302   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4303   emit_int8(0x5E);
4304   emit_int8((unsigned char)(0xC0 | encode));
4305 }
4306 
4307 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4308   assert(VM_Version::supports_avx(), "");
4309   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4310   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4311   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4312   emit_int8(0x5E);
4313   emit_int8((unsigned char)(0xC0 | encode));
4314 }
4315 
4316 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4317   assert(VM_Version::supports_avx(), "");
4318   InstructionMark im(this);
4319   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4320   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4321   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4322   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4323   emit_int8(0x5E);
4324   emit_operand(dst, src);
4325 }
4326 
4327 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4328   assert(VM_Version::supports_avx(), "");
4329   InstructionMark im(this);
4330   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4331   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4332   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4333   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4334   emit_int8(0x5E);
4335   emit_operand(dst, src);
4336 }
4337 
4338 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4339   assert(VM_Version::supports_avx(), "");
4340   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4341   int nds_enc = 0;
4342   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4343   emit_int8(0x51);
4344   emit_int8((unsigned char)(0xC0 | encode));
4345 }
4346 
4347 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4348   assert(VM_Version::supports_avx(), "");
4349   InstructionMark im(this);
4350   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4351   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4352   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4353   emit_int8(0x51);
4354   emit_operand(dst, src);
4355 }
4356 
4357 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4359   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4360   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4361   emit_int8(0x54);
4362   emit_int8((unsigned char)(0xC0 | encode));
4363 }
4364 
4365 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4366   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4368   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4369   emit_int8(0x54);
4370   emit_int8((unsigned char)(0xC0 | encode));
4371 }
4372 
4373 void Assembler::andps(XMMRegister dst, Address src) {
4374   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4375   InstructionMark im(this);
4376   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4377   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4378   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4379   emit_int8(0x54);
4380   emit_operand(dst, src);
4381 }
4382 
4383 void Assembler::andpd(XMMRegister dst, Address src) {
4384   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4385   InstructionMark im(this);
4386   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4387   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4388   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4389   emit_int8(0x54);
4390   emit_operand(dst, src);
4391 }
4392 
4393 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4394   assert(VM_Version::supports_avx(), "");
4395   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4396   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4397   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4398   emit_int8(0x54);
4399   emit_int8((unsigned char)(0xC0 | encode));
4400 }
4401 
4402 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4403   assert(VM_Version::supports_avx(), "");
4404   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4405   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4406   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4407   emit_int8(0x54);
4408   emit_int8((unsigned char)(0xC0 | encode));
4409 }
4410 
4411 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4412   assert(VM_Version::supports_avx(), "");
4413   InstructionMark im(this);
4414   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4415   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4416   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4417   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4418   emit_int8(0x54);
4419   emit_operand(dst, src);
4420 }
4421 
4422 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4423   assert(VM_Version::supports_avx(), "");
4424   InstructionMark im(this);
4425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4426   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4427   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4428   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4429   emit_int8(0x54);
4430   emit_operand(dst, src);
4431 }
4432 
4433 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4434   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4435   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4436   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4437   emit_int8(0x15);
4438   emit_int8((unsigned char)(0xC0 | encode));
4439 }
4440 
4441 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4443   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4444   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4445   emit_int8(0x14);
4446   emit_int8((unsigned char)(0xC0 | encode));
4447 }
4448 
4449 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4451   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4452   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4453   emit_int8(0x57);
4454   emit_int8((unsigned char)(0xC0 | encode));
4455 }
4456 
4457 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4458   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4459   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4460   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4461   emit_int8(0x57);
4462   emit_int8((unsigned char)(0xC0 | encode));
4463 }
4464 
4465 void Assembler::xorpd(XMMRegister dst, Address src) {
4466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4467   InstructionMark im(this);
4468   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4469   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4470   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4471   emit_int8(0x57);
4472   emit_operand(dst, src);
4473 }
4474 
4475 void Assembler::xorps(XMMRegister dst, Address src) {
4476   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4477   InstructionMark im(this);
4478   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4479   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4480   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4481   emit_int8(0x57);
4482   emit_operand(dst, src);
4483 }
4484 
4485 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4486   assert(VM_Version::supports_avx(), "");
4487   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4488   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4489   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4490   emit_int8(0x57);
4491   emit_int8((unsigned char)(0xC0 | encode));
4492 }
4493 
4494 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4495   assert(VM_Version::supports_avx(), "");
4496   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4497   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4498   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4499   emit_int8(0x57);
4500   emit_int8((unsigned char)(0xC0 | encode));
4501 }
4502 
4503 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4504   assert(VM_Version::supports_avx(), "");
4505   InstructionMark im(this);
4506   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4507   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4508   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4509   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4510   emit_int8(0x57);
4511   emit_operand(dst, src);
4512 }
4513 
4514 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4515   assert(VM_Version::supports_avx(), "");
4516   InstructionMark im(this);
4517   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4518   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4519   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4520   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4521   emit_int8(0x57);
4522   emit_operand(dst, src);
4523 }
4524 
4525 // Integer vector arithmetic
4526 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4527   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4528          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4529   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4530   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4531   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4532   emit_int8(0x01);
4533   emit_int8((unsigned char)(0xC0 | encode));
4534 }
4535 
4536 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4537   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4538          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4539   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4540   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4541   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4542   emit_int8(0x02);
4543   emit_int8((unsigned char)(0xC0 | encode));
4544 }
4545 
4546 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4548   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4549   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4550   emit_int8((unsigned char)0xFC);
4551   emit_int8((unsigned char)(0xC0 | encode));
4552 }
4553 
4554 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4555   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4556   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4557   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4558   emit_int8((unsigned char)0xFD);
4559   emit_int8((unsigned char)(0xC0 | encode));
4560 }
4561 
4562 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4563   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4564   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4565   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4566   emit_int8((unsigned char)0xFE);
4567   emit_int8((unsigned char)(0xC0 | encode));
4568 }
4569 
4570 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4571   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4572   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4573   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4574   emit_int8((unsigned char)0xD4);
4575   emit_int8((unsigned char)(0xC0 | encode));
4576 }
4577 
4578 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4579   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4580   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4581   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4582   emit_int8(0x01);
4583   emit_int8((unsigned char)(0xC0 | encode));
4584 }
4585 
4586 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4587   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4588   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4589   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4590   emit_int8(0x02);
4591   emit_int8((unsigned char)(0xC0 | encode));
4592 }
4593 
4594 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4595   assert(UseAVX > 0, "requires some form of AVX");
4596   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4597   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4598   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4599   emit_int8((unsigned char)0xFC);
4600   emit_int8((unsigned char)(0xC0 | encode));
4601 }
4602 
4603 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4604   assert(UseAVX > 0, "requires some form of AVX");
4605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4606   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4607   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4608   emit_int8((unsigned char)0xFD);
4609   emit_int8((unsigned char)(0xC0 | encode));
4610 }
4611 
4612 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4613   assert(UseAVX > 0, "requires some form of AVX");
4614   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4615   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4616   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4617   emit_int8((unsigned char)0xFE);
4618   emit_int8((unsigned char)(0xC0 | encode));
4619 }
4620 
4621 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4622   assert(UseAVX > 0, "requires some form of AVX");
4623   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4624   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4625   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4626   emit_int8((unsigned char)0xD4);
4627   emit_int8((unsigned char)(0xC0 | encode));
4628 }
4629 
4630 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4631   assert(UseAVX > 0, "requires some form of AVX");
4632   InstructionMark im(this);
4633   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4634   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4635   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4636   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4637   emit_int8((unsigned char)0xFC);
4638   emit_operand(dst, src);
4639 }
4640 
4641 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4642   assert(UseAVX > 0, "requires some form of AVX");
4643   InstructionMark im(this);
4644   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4645   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4646   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4647   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4648   emit_int8((unsigned char)0xFD);
4649   emit_operand(dst, src);
4650 }
4651 
4652 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4653   assert(UseAVX > 0, "requires some form of AVX");
4654   InstructionMark im(this);
4655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4656   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4657   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4658   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4659   emit_int8((unsigned char)0xFE);
4660   emit_operand(dst, src);
4661 }
4662 
4663 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4664   assert(UseAVX > 0, "requires some form of AVX");
4665   InstructionMark im(this);
4666   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4667   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4668   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4669   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4670   emit_int8((unsigned char)0xD4);
4671   emit_operand(dst, src);
4672 }
4673 
4674 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4676   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4677   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4678   emit_int8((unsigned char)0xF8);
4679   emit_int8((unsigned char)(0xC0 | encode));
4680 }
4681 
4682 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4683   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4685   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4686   emit_int8((unsigned char)0xF9);
4687   emit_int8((unsigned char)(0xC0 | encode));
4688 }
4689 
4690 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4691   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4692   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4693   emit_int8((unsigned char)0xFA);
4694   emit_int8((unsigned char)(0xC0 | encode));
4695 }
4696 
4697 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4698   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4699   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4700   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4701   emit_int8((unsigned char)0xFB);
4702   emit_int8((unsigned char)(0xC0 | encode));
4703 }
4704 
4705 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4706   assert(UseAVX > 0, "requires some form of AVX");
4707   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4708   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4709   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4710   emit_int8((unsigned char)0xF8);
4711   emit_int8((unsigned char)(0xC0 | encode));
4712 }
4713 
4714 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4715   assert(UseAVX > 0, "requires some form of AVX");
4716   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4717   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4718   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4719   emit_int8((unsigned char)0xF9);
4720   emit_int8((unsigned char)(0xC0 | encode));
4721 }
4722 
4723 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4724   assert(UseAVX > 0, "requires some form of AVX");
4725   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4726   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4727   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4728   emit_int8((unsigned char)0xFA);
4729   emit_int8((unsigned char)(0xC0 | encode));
4730 }
4731 
4732 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4733   assert(UseAVX > 0, "requires some form of AVX");
4734   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4735   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4736   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4737   emit_int8((unsigned char)0xFB);
4738   emit_int8((unsigned char)(0xC0 | encode));
4739 }
4740 
4741 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4742   assert(UseAVX > 0, "requires some form of AVX");
4743   InstructionMark im(this);
4744   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4745   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4746   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4747   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4748   emit_int8((unsigned char)0xF8);
4749   emit_operand(dst, src);
4750 }
4751 
4752 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4753   assert(UseAVX > 0, "requires some form of AVX");
4754   InstructionMark im(this);
4755   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4756   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4757   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4758   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4759   emit_int8((unsigned char)0xF9);
4760   emit_operand(dst, src);
4761 }
4762 
4763 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4764   assert(UseAVX > 0, "requires some form of AVX");
4765   InstructionMark im(this);
4766   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4767   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4768   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4769   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4770   emit_int8((unsigned char)0xFA);
4771   emit_operand(dst, src);
4772 }
4773 
4774 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4775   assert(UseAVX > 0, "requires some form of AVX");
4776   InstructionMark im(this);
4777   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4778   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4779   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4780   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4781   emit_int8((unsigned char)0xFB);
4782   emit_operand(dst, src);
4783 }
4784 
4785 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4786   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4787   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4788   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4789   emit_int8((unsigned char)0xD5);
4790   emit_int8((unsigned char)(0xC0 | encode));
4791 }
4792 
4793 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4794   assert(VM_Version::supports_sse4_1(), "");
4795   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4796   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4797   emit_int8(0x40);
4798   emit_int8((unsigned char)(0xC0 | encode));
4799 }
4800 
4801 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4802   assert(UseAVX > 0, "requires some form of AVX");
4803   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4804   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4805   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4806   emit_int8((unsigned char)0xD5);
4807   emit_int8((unsigned char)(0xC0 | encode));
4808 }
4809 
4810 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4811   assert(UseAVX > 0, "requires some form of AVX");
4812   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4813   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4814   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4815   emit_int8(0x40);
4816   emit_int8((unsigned char)(0xC0 | encode));
4817 }
4818 
4819 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4820   assert(UseAVX > 2, "requires some form of AVX");
4821   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4822   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4823   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4824   emit_int8(0x40);
4825   emit_int8((unsigned char)(0xC0 | encode));
4826 }
4827 
4828 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4829   assert(UseAVX > 0, "requires some form of AVX");
4830   InstructionMark im(this);
4831   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4832   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4833   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4834   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4835   emit_int8((unsigned char)0xD5);
4836   emit_operand(dst, src);
4837 }
4838 
4839 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4840   assert(UseAVX > 0, "requires some form of AVX");
4841   InstructionMark im(this);
4842   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4843   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4844   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4845   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4846   emit_int8(0x40);
4847   emit_operand(dst, src);
4848 }
4849 
4850 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4851   assert(UseAVX > 0, "requires some form of AVX");
4852   InstructionMark im(this);
4853   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4854   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4855   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4856   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4857   emit_int8(0x40);
4858   emit_operand(dst, src);
4859 }
4860 
4861 // Shift packed integers left by specified number of bits.
4862 void Assembler::psllw(XMMRegister dst, int shift) {
4863   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4864   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4865   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4866   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4867   emit_int8(0x71);
4868   emit_int8((unsigned char)(0xC0 | encode));
4869   emit_int8(shift & 0xFF);
4870 }
4871 
4872 void Assembler::pslld(XMMRegister dst, int shift) {
4873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4874   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4875   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4876   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4877   emit_int8(0x72);
4878   emit_int8((unsigned char)(0xC0 | encode));
4879   emit_int8(shift & 0xFF);
4880 }
4881 
4882 void Assembler::psllq(XMMRegister dst, int shift) {
4883   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4884   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4885   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4886   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4887   emit_int8(0x73);
4888   emit_int8((unsigned char)(0xC0 | encode));
4889   emit_int8(shift & 0xFF);
4890 }
4891 
4892 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4893   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4894   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4895   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4896   emit_int8((unsigned char)0xF1);
4897   emit_int8((unsigned char)(0xC0 | encode));
4898 }
4899 
4900 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4901   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4903   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4904   emit_int8((unsigned char)0xF2);
4905   emit_int8((unsigned char)(0xC0 | encode));
4906 }
4907 
4908 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4910   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4911   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4912   emit_int8((unsigned char)0xF3);
4913   emit_int8((unsigned char)(0xC0 | encode));
4914 }
4915 
4916 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4917   assert(UseAVX > 0, "requires some form of AVX");
4918   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4919   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4920   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4921   emit_int8(0x71);
4922   emit_int8((unsigned char)(0xC0 | encode));
4923   emit_int8(shift & 0xFF);
4924 }
4925 
4926 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4927   assert(UseAVX > 0, "requires some form of AVX");
4928   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4929   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4930   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4931   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4932   emit_int8(0x72);
4933   emit_int8((unsigned char)(0xC0 | encode));
4934   emit_int8(shift & 0xFF);
4935 }
4936 
4937 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4938   assert(UseAVX > 0, "requires some form of AVX");
4939   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4940   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4941   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4942   emit_int8(0x73);
4943   emit_int8((unsigned char)(0xC0 | encode));
4944   emit_int8(shift & 0xFF);
4945 }
4946 
4947 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4948   assert(UseAVX > 0, "requires some form of AVX");
4949   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4950   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4951   emit_int8((unsigned char)0xF1);
4952   emit_int8((unsigned char)(0xC0 | encode));
4953 }
4954 
4955 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4956   assert(UseAVX > 0, "requires some form of AVX");
4957   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4958   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4959   emit_int8((unsigned char)0xF2);
4960   emit_int8((unsigned char)(0xC0 | encode));
4961 }
4962 
4963 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4964   assert(UseAVX > 0, "requires some form of AVX");
4965   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4966   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4967   emit_int8((unsigned char)0xF3);
4968   emit_int8((unsigned char)(0xC0 | encode));
4969 }
4970 
4971 // Shift packed integers logically right by specified number of bits.
4972 void Assembler::psrlw(XMMRegister dst, int shift) {
4973   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4974   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4975   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4976   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4977   emit_int8(0x71);
4978   emit_int8((unsigned char)(0xC0 | encode));
4979   emit_int8(shift & 0xFF);
4980 }
4981 
4982 void Assembler::psrld(XMMRegister dst, int shift) {
4983   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4984   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4985   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4986   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4987   emit_int8(0x72);
4988   emit_int8((unsigned char)(0xC0 | encode));
4989   emit_int8(shift & 0xFF);
4990 }
4991 
4992 void Assembler::psrlq(XMMRegister dst, int shift) {
4993   // Do not confuse it with psrldq SSE2 instruction which
4994   // shifts 128 bit value in xmm register by number of bytes.
4995   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4996   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4997   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4998   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4999   emit_int8(0x73);
5000   emit_int8((unsigned char)(0xC0 | encode));
5001   emit_int8(shift & 0xFF);
5002 }
5003 
5004 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5005   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5006   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5007   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5008   emit_int8((unsigned char)0xD1);
5009   emit_int8((unsigned char)(0xC0 | encode));
5010 }
5011 
5012 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5013   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5014   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5015   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5016   emit_int8((unsigned char)0xD2);
5017   emit_int8((unsigned char)(0xC0 | encode));
5018 }
5019 
5020 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5021   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5022   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5023   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5024   emit_int8((unsigned char)0xD3);
5025   emit_int8((unsigned char)(0xC0 | encode));
5026 }
5027 
5028 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5029   assert(UseAVX > 0, "requires some form of AVX");
5030   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5031   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5032   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5033   emit_int8(0x71);
5034   emit_int8((unsigned char)(0xC0 | encode));
5035   emit_int8(shift & 0xFF);
5036 }
5037 
5038 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5039   assert(UseAVX > 0, "requires some form of AVX");
5040   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5041   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5042   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5043   emit_int8(0x72);
5044   emit_int8((unsigned char)(0xC0 | encode));
5045   emit_int8(shift & 0xFF);
5046 }
5047 
5048 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5049   assert(UseAVX > 0, "requires some form of AVX");
5050   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5051   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5052   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5053   emit_int8(0x73);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055   emit_int8(shift & 0xFF);
5056 }
5057 
5058 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5059   assert(UseAVX > 0, "requires some form of AVX");
5060   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5061   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5062   emit_int8((unsigned char)0xD1);
5063   emit_int8((unsigned char)(0xC0 | encode));
5064 }
5065 
5066 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5067   assert(UseAVX > 0, "requires some form of AVX");
5068   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5069   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5070   emit_int8((unsigned char)0xD2);
5071   emit_int8((unsigned char)(0xC0 | encode));
5072 }
5073 
5074 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5075   assert(UseAVX > 0, "requires some form of AVX");
5076   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5077   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5078   emit_int8((unsigned char)0xD3);
5079   emit_int8((unsigned char)(0xC0 | encode));
5080 }
5081 
5082 // Shift packed integers arithmetically right by specified number of bits.
5083 void Assembler::psraw(XMMRegister dst, int shift) {
5084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5085   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5086   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5087   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5088   emit_int8(0x71);
5089   emit_int8((unsigned char)(0xC0 | encode));
5090   emit_int8(shift & 0xFF);
5091 }
5092 
5093 void Assembler::psrad(XMMRegister dst, int shift) {
5094   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5095   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5096   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5097   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5098   emit_int8(0x72);
5099   emit_int8((unsigned char)(0xC0 | encode));
5100   emit_int8(shift & 0xFF);
5101 }
5102 
5103 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5104   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5105   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5106   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5107   emit_int8((unsigned char)0xE1);
5108   emit_int8((unsigned char)(0xC0 | encode));
5109 }
5110 
5111 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5112   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5113   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5114   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5115   emit_int8((unsigned char)0xE2);
5116   emit_int8((unsigned char)(0xC0 | encode));
5117 }
5118 
5119 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5120   assert(UseAVX > 0, "requires some form of AVX");
5121   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5122   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5123   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5124   emit_int8(0x71);
5125   emit_int8((unsigned char)(0xC0 | encode));
5126   emit_int8(shift & 0xFF);
5127 }
5128 
5129 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5130   assert(UseAVX > 0, "requires some form of AVX");
5131   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5132   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5133   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5134   emit_int8(0x72);
5135   emit_int8((unsigned char)(0xC0 | encode));
5136   emit_int8(shift & 0xFF);
5137 }
5138 
5139 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5140   assert(UseAVX > 0, "requires some form of AVX");
5141   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5142   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5143   emit_int8((unsigned char)0xE1);
5144   emit_int8((unsigned char)(0xC0 | encode));
5145 }
5146 
5147 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5148   assert(UseAVX > 0, "requires some form of AVX");
5149   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5150   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5151   emit_int8((unsigned char)0xE2);
5152   emit_int8((unsigned char)(0xC0 | encode));
5153 }
5154 
5155 
5156 // logical operations packed integers
5157 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5158   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5159   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5160   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5161   emit_int8((unsigned char)0xDB);
5162   emit_int8((unsigned char)(0xC0 | encode));
5163 }
5164 
5165 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5166   assert(UseAVX > 0, "requires some form of AVX");
5167   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5168   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5169   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5170   emit_int8((unsigned char)0xDB);
5171   emit_int8((unsigned char)(0xC0 | encode));
5172 }
5173 
5174 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5175   assert(UseAVX > 0, "requires some form of AVX");
5176   InstructionMark im(this);
5177   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5178   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5179   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5180   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5181   emit_int8((unsigned char)0xDB);
5182   emit_operand(dst, src);
5183 }
5184 
5185 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5186   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5187   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5188   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5189   emit_int8((unsigned char)0xDF);
5190   emit_int8((unsigned char)(0xC0 | encode));
5191 }
5192 
5193 void Assembler::por(XMMRegister dst, XMMRegister src) {
5194   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5195   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5196   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5197   emit_int8((unsigned char)0xEB);
5198   emit_int8((unsigned char)(0xC0 | encode));
5199 }
5200 
5201 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5202   assert(UseAVX > 0, "requires some form of AVX");
5203   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5204   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5205   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5206   emit_int8((unsigned char)0xEB);
5207   emit_int8((unsigned char)(0xC0 | encode));
5208 }
5209 
5210 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5211   assert(UseAVX > 0, "requires some form of AVX");
5212   InstructionMark im(this);
5213   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5214   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5215   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5216   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5217   emit_int8((unsigned char)0xEB);
5218   emit_operand(dst, src);
5219 }
5220 
5221 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5222   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5223   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5224   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5225   emit_int8((unsigned char)0xEF);
5226   emit_int8((unsigned char)(0xC0 | encode));
5227 }
5228 
5229 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5230   assert(UseAVX > 0, "requires some form of AVX");
5231   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5232   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5233   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5234   emit_int8((unsigned char)0xEF);
5235   emit_int8((unsigned char)(0xC0 | encode));
5236 }
5237 
5238 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5239   assert(UseAVX > 0, "requires some form of AVX");
5240   InstructionMark im(this);
5241   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5242   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5243   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5244   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5245   emit_int8((unsigned char)0xEF);
5246   emit_operand(dst, src);
5247 }
5248 
5249 
5250 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5251   assert(VM_Version::supports_avx(), "");
5252   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5253   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5254   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5255   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5256   emit_int8(0x18);
5257   emit_int8((unsigned char)(0xC0 | encode));
5258   // 0x00 - insert into lower 128 bits
5259   // 0x01 - insert into upper 128 bits
5260   emit_int8(0x01);
5261 }
5262 
5263 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5264   assert(VM_Version::supports_evex(), "");
5265   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5266   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5267   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5268   emit_int8(0x1A);
5269   emit_int8((unsigned char)(0xC0 | encode));
5270   // 0x00 - insert into lower 256 bits
5271   // 0x01 - insert into upper 256 bits
5272   emit_int8(value & 0x01);
5273 }
5274 
5275 void Assembler::vinsertf64x4h(XMMRegister dst, Address src, int value) {
5276   assert(VM_Version::supports_evex(), "");
5277   assert(dst != xnoreg, "sanity");
5278   InstructionMark im(this);
5279   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5280   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5281   // swap src<->dst for encoding
5282   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5283   emit_int8(0x1A);
5284   emit_operand(dst, src);
5285   // 0x00 - insert into lower 256 bits
5286   // 0x01 - insert into upper 128 bits
5287   emit_int8(value & 0x01);
5288 }
5289 
5290 void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5291   assert(VM_Version::supports_evex(), "");
5292   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5293   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5294   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5295   emit_int8(0x18);
5296   emit_int8((unsigned char)(0xC0 | encode));
5297   // 0x00 - insert into q0 128 bits (0..127)
5298   // 0x01 - insert into q1 128 bits (128..255)
5299   // 0x02 - insert into q2 128 bits (256..383)
5300   // 0x03 - insert into q3 128 bits (384..511)
5301   emit_int8(value & 0x3);
5302 }
5303 
5304 void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
5305   assert(VM_Version::supports_avx(), "");
5306   assert(dst != xnoreg, "sanity");
5307   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5308   InstructionMark im(this);
5309   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5310   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5311   // swap src<->dst for encoding
5312   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5313   emit_int8(0x18);
5314   emit_operand(dst, src);
5315   // 0x00 - insert into q0 128 bits (0..127)
5316   // 0x01 - insert into q1 128 bits (128..255)
5317   // 0x02 - insert into q2 128 bits (256..383)
5318   // 0x03 - insert into q3 128 bits (384..511)
5319   emit_int8(value & 0x3);
5320 }
5321 
5322 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
5323   assert(VM_Version::supports_avx(), "");
5324   assert(dst != xnoreg, "sanity");
5325   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5326   InstructionMark im(this);
5327   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5328   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5329   // swap src<->dst for encoding
5330   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5331   emit_int8(0x18);
5332   emit_operand(dst, src);
5333   // 0x01 - insert into upper 128 bits
5334   emit_int8(0x01);
5335 }
5336 
5337 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
5338   assert(VM_Version::supports_avx(), "");
5339   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5340   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5341   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5342   emit_int8(0x19);
5343   emit_int8((unsigned char)(0xC0 | encode));
5344   // 0x00 - insert into lower 128 bits
5345   // 0x01 - insert into upper 128 bits
5346   emit_int8(0x01);
5347 }
5348 
5349 void Assembler::vextractf128h(Address dst, XMMRegister src) {
5350   assert(VM_Version::supports_avx(), "");
5351   assert(src != xnoreg, "sanity");
5352   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5353   InstructionMark im(this);
5354   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5355   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5356   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5357   emit_int8(0x19);
5358   emit_operand(src, dst);
5359   // 0x01 - extract from upper 128 bits
5360   emit_int8(0x01);
5361 }
5362 
5363 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5364   assert(VM_Version::supports_avx2(), "");
5365   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5366   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5367   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5368   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5369   emit_int8(0x38);
5370   emit_int8((unsigned char)(0xC0 | encode));
5371   // 0x00 - insert into lower 128 bits
5372   // 0x01 - insert into upper 128 bits
5373   emit_int8(0x01);
5374 }
5375 
5376 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5377   assert(VM_Version::supports_evex(), "");
5378   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5379   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5380   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5381   emit_int8(0x38);
5382   emit_int8((unsigned char)(0xC0 | encode));
5383   // 0x00 - insert into lower 256 bits
5384   // 0x01 - insert into upper 256 bits
5385   emit_int8(value & 0x01);
5386 }
5387 
5388 void Assembler::vinserti128h(XMMRegister dst, Address src) {
5389   assert(VM_Version::supports_avx2(), "");
5390   assert(dst != xnoreg, "sanity");
5391   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5392   InstructionMark im(this);
5393   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5394   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5395   // swap src<->dst for encoding
5396   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5397   emit_int8(0x38);
5398   emit_operand(dst, src);
5399   // 0x01 - insert into upper 128 bits
5400   emit_int8(0x01);
5401 }
5402 
5403 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
5404   assert(VM_Version::supports_avx(), "");
5405   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5406   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5407   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5408   emit_int8(0x39);
5409   emit_int8((unsigned char)(0xC0 | encode));
5410   // 0x00 - insert into lower 128 bits
5411   // 0x01 - insert into upper 128 bits
5412   emit_int8(0x01);
5413 }
5414 
5415 void Assembler::vextracti128h(Address dst, XMMRegister src) {
5416   assert(VM_Version::supports_avx2(), "");
5417   assert(src != xnoreg, "sanity");
5418   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5419   InstructionMark im(this);
5420   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5421   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5422   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5423   emit_int8(0x39);
5424   emit_operand(src, dst);
5425   // 0x01 - extract from upper 128 bits
5426   emit_int8(0x01);
5427 }
5428 
5429 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src, int value) {
5430   assert(VM_Version::supports_evex(), "");
5431   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5432   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5433   emit_int8(0x3B);
5434   emit_int8((unsigned char)(0xC0 | encode));
5435   // 0x00 - extract from lower 256 bits
5436   // 0x01 - extract from upper 256 bits
5437   emit_int8(value & 0x01);
5438 }
5439 
5440 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
5441   assert(VM_Version::supports_evex(), "");
5442   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5443   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5444   emit_int8(0x39);
5445   emit_int8((unsigned char)(0xC0 | encode));
5446   // 0x01 - extract from bits 255:128
5447   // 0x02 - extract from bits 383:256
5448   // 0x03 - extract from bits 511:384
5449   emit_int8(value & 0x3);
5450 }
5451 
5452 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src, int value) {
5453   assert(VM_Version::supports_evex(), "");
5454   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5455   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5456   emit_int8(0x1B);
5457   emit_int8((unsigned char)(0xC0 | encode));
5458   // 0x00 - extract from lower 256 bits
5459   // 0x01 - extract from upper 256 bits
5460   emit_int8(value & 0x1);
5461 }
5462 
5463 void Assembler::vextractf64x4h(Address dst, XMMRegister src, int value) {
5464   assert(VM_Version::supports_evex(), "");
5465   assert(src != xnoreg, "sanity");
5466   InstructionMark im(this);
5467   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5468   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5469   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5470   emit_int8(0x1B);
5471   emit_operand(src, dst);
5472   // 0x00 - extract from lower 256 bits
5473   // 0x01 - extract from upper 256 bits
5474   emit_int8(value & 0x01);
5475 }
5476 
5477 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5478   assert(VM_Version::supports_avx(), "");
5479   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5480   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5481   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5482   emit_int8(0x19);
5483   emit_int8((unsigned char)(0xC0 | encode));
5484   // 0x00 - extract from bits 127:0
5485   // 0x01 - extract from bits 255:128
5486   // 0x02 - extract from bits 383:256
5487   // 0x03 - extract from bits 511:384
5488   emit_int8(value & 0x3);
5489 }
5490 
5491 void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
5492   assert(VM_Version::supports_evex(), "");
5493   assert(src != xnoreg, "sanity");
5494   InstructionMark im(this);
5495   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5496   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5497   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5498   emit_int8(0x19);
5499   emit_operand(src, dst);
5500   // 0x00 - extract from bits 127:0
5501   // 0x01 - extract from bits 255:128
5502   // 0x02 - extract from bits 383:256
5503   // 0x03 - extract from bits 511:384
5504   emit_int8(value & 0x3);
5505 }
5506 
5507 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5508   assert(VM_Version::supports_evex(), "");
5509   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5510   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5511   emit_int8(0x19);
5512   emit_int8((unsigned char)(0xC0 | encode));
5513   // 0x01 - extract from bits 255:128
5514   // 0x02 - extract from bits 383:256
5515   // 0x03 - extract from bits 511:384
5516   emit_int8(value & 0x3);
5517 }
5518 
5519 // duplicate 4-bytes integer data from src into 8 locations in dest
5520 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5521   assert(VM_Version::supports_avx2(), "");
5522   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5523   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5524   emit_int8(0x58);
5525   emit_int8((unsigned char)(0xC0 | encode));
5526 }
5527 
5528 // duplicate 2-bytes integer data from src into 16 locations in dest
5529 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
5530   assert(VM_Version::supports_avx2(), "");
5531   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5532   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5533   emit_int8(0x79);
5534   emit_int8((unsigned char)(0xC0 | encode));
5535 }
5536 
5537 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5538 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5539   assert(VM_Version::supports_evex(), "");
5540   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5541   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5542   emit_int8(0x78);
5543   emit_int8((unsigned char)(0xC0 | encode));
5544 }
5545 
5546 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5547   assert(VM_Version::supports_evex(), "");
5548   assert(dst != xnoreg, "sanity");
5549   InstructionMark im(this);
5550   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5551   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
5552   // swap src<->dst for encoding
5553   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5554   emit_int8(0x78);
5555   emit_operand(dst, src);
5556 }
5557 
5558 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5559 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5560   assert(VM_Version::supports_evex(), "");
5561   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5562   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5563   emit_int8(0x79);
5564   emit_int8((unsigned char)(0xC0 | encode));
5565 }
5566 
5567 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5568   assert(VM_Version::supports_evex(), "");
5569   assert(dst != xnoreg, "sanity");
5570   InstructionMark im(this);
5571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5572   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
5573   // swap src<->dst for encoding
5574   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5575   emit_int8(0x79);
5576   emit_operand(dst, src);
5577 }
5578 
5579 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5580 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5581   assert(VM_Version::supports_evex(), "");
5582   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5583   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5584   emit_int8(0x58);
5585   emit_int8((unsigned char)(0xC0 | encode));
5586 }
5587 
5588 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5589   assert(VM_Version::supports_evex(), "");
5590   assert(dst != xnoreg, "sanity");
5591   InstructionMark im(this);
5592   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5593   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5594   // swap src<->dst for encoding
5595   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5596   emit_int8(0x58);
5597   emit_operand(dst, src);
5598 }
5599 
5600 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5601 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5602   assert(VM_Version::supports_evex(), "");
5603   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5604   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5605   emit_int8(0x59);
5606   emit_int8((unsigned char)(0xC0 | encode));
5607 }
5608 
5609 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5610   assert(VM_Version::supports_evex(), "");
5611   assert(dst != xnoreg, "sanity");
5612   InstructionMark im(this);
5613   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5614   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5615   // swap src<->dst for encoding
5616   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5617   emit_int8(0x59);
5618   emit_operand(dst, src);
5619 }
5620 
5621 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5622 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5623   assert(VM_Version::supports_evex(), "");
5624   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5625   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5626   emit_int8(0x18);
5627   emit_int8((unsigned char)(0xC0 | encode));
5628 }
5629 
5630 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5631   assert(VM_Version::supports_evex(), "");
5632   assert(dst != xnoreg, "sanity");
5633   InstructionMark im(this);
5634   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5635   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5636   // swap src<->dst for encoding
5637   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5638   emit_int8(0x18);
5639   emit_operand(dst, src);
5640 }
5641 
5642 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5643 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5644   assert(VM_Version::supports_evex(), "");
5645   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5646   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5647   emit_int8(0x19);
5648   emit_int8((unsigned char)(0xC0 | encode));
5649 }
5650 
5651 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5652   assert(VM_Version::supports_evex(), "");
5653   assert(dst != xnoreg, "sanity");
5654   InstructionMark im(this);
5655   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5656   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5657   // swap src<->dst for encoding
5658   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5659   emit_int8(0x19);
5660   emit_operand(dst, src);
5661 }
5662 
5663 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5664 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5665   assert(VM_Version::supports_evex(), "");
5666   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5667   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5668   emit_int8(0x7A);
5669   emit_int8((unsigned char)(0xC0 | encode));
5670 }
5671 
5672 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5673 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5674   assert(VM_Version::supports_evex(), "");
5675   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5676   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5677   emit_int8(0x7B);
5678   emit_int8((unsigned char)(0xC0 | encode));
5679 }
5680 
5681 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5682 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5683   assert(VM_Version::supports_evex(), "");
5684   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5685   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5686   emit_int8(0x7C);
5687   emit_int8((unsigned char)(0xC0 | encode));
5688 }
5689 
5690 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5691 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5692   assert(VM_Version::supports_evex(), "");
5693   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5694   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5695   emit_int8(0x7C);
5696   emit_int8((unsigned char)(0xC0 | encode));
5697 }
5698 
5699 // Carry-Less Multiplication Quadword
5700 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5701   assert(VM_Version::supports_clmul(), "");
5702   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5703   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5704   emit_int8(0x44);
5705   emit_int8((unsigned char)(0xC0 | encode));
5706   emit_int8((unsigned char)mask);
5707 }
5708 
5709 // Carry-Less Multiplication Quadword
5710 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5711   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5712   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5713   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5714   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5715   emit_int8(0x44);
5716   emit_int8((unsigned char)(0xC0 | encode));
5717   emit_int8((unsigned char)mask);
5718 }
5719 
5720 void Assembler::vzeroupper() {
5721   assert(VM_Version::supports_avx(), "");
5722   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5723   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5724   emit_int8(0x77);
5725 }
5726 
5727 
5728 #ifndef _LP64
5729 // 32bit only pieces of the assembler
5730 
5731 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5732   // NO PREFIX AS NEVER 64BIT
5733   InstructionMark im(this);
5734   emit_int8((unsigned char)0x81);
5735   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5736   emit_data(imm32, rspec, 0);
5737 }
5738 
5739 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5740   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5741   InstructionMark im(this);
5742   emit_int8((unsigned char)0x81);
5743   emit_operand(rdi, src1);
5744   emit_data(imm32, rspec, 0);
5745 }
5746 
5747 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5748 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5749 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5750 void Assembler::cmpxchg8(Address adr) {
5751   InstructionMark im(this);
5752   emit_int8(0x0F);
5753   emit_int8((unsigned char)0xC7);
5754   emit_operand(rcx, adr);
5755 }
5756 
5757 void Assembler::decl(Register dst) {
5758   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5759  emit_int8(0x48 | dst->encoding());
5760 }
5761 
5762 #endif // _LP64
5763 
5764 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5765 
5766 void Assembler::fabs() {
5767   emit_int8((unsigned char)0xD9);
5768   emit_int8((unsigned char)0xE1);
5769 }
5770 
5771 void Assembler::fadd(int i) {
5772   emit_farith(0xD8, 0xC0, i);
5773 }
5774 
5775 void Assembler::fadd_d(Address src) {
5776   InstructionMark im(this);
5777   emit_int8((unsigned char)0xDC);
5778   emit_operand32(rax, src);
5779 }
5780 
5781 void Assembler::fadd_s(Address src) {
5782   InstructionMark im(this);
5783   emit_int8((unsigned char)0xD8);
5784   emit_operand32(rax, src);
5785 }
5786 
5787 void Assembler::fadda(int i) {
5788   emit_farith(0xDC, 0xC0, i);
5789 }
5790 
5791 void Assembler::faddp(int i) {
5792   emit_farith(0xDE, 0xC0, i);
5793 }
5794 
5795 void Assembler::fchs() {
5796   emit_int8((unsigned char)0xD9);
5797   emit_int8((unsigned char)0xE0);
5798 }
5799 
5800 void Assembler::fcom(int i) {
5801   emit_farith(0xD8, 0xD0, i);
5802 }
5803 
5804 void Assembler::fcomp(int i) {
5805   emit_farith(0xD8, 0xD8, i);
5806 }
5807 
5808 void Assembler::fcomp_d(Address src) {
5809   InstructionMark im(this);
5810   emit_int8((unsigned char)0xDC);
5811   emit_operand32(rbx, src);
5812 }
5813 
5814 void Assembler::fcomp_s(Address src) {
5815   InstructionMark im(this);
5816   emit_int8((unsigned char)0xD8);
5817   emit_operand32(rbx, src);
5818 }
5819 
5820 void Assembler::fcompp() {
5821   emit_int8((unsigned char)0xDE);
5822   emit_int8((unsigned char)0xD9);
5823 }
5824 
5825 void Assembler::fcos() {
5826   emit_int8((unsigned char)0xD9);
5827   emit_int8((unsigned char)0xFF);
5828 }
5829 
5830 void Assembler::fdecstp() {
5831   emit_int8((unsigned char)0xD9);
5832   emit_int8((unsigned char)0xF6);
5833 }
5834 
5835 void Assembler::fdiv(int i) {
5836   emit_farith(0xD8, 0xF0, i);
5837 }
5838 
5839 void Assembler::fdiv_d(Address src) {
5840   InstructionMark im(this);
5841   emit_int8((unsigned char)0xDC);
5842   emit_operand32(rsi, src);
5843 }
5844 
5845 void Assembler::fdiv_s(Address src) {
5846   InstructionMark im(this);
5847   emit_int8((unsigned char)0xD8);
5848   emit_operand32(rsi, src);
5849 }
5850 
5851 void Assembler::fdiva(int i) {
5852   emit_farith(0xDC, 0xF8, i);
5853 }
5854 
5855 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5856 //       is erroneous for some of the floating-point instructions below.
5857 
5858 void Assembler::fdivp(int i) {
5859   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5860 }
5861 
5862 void Assembler::fdivr(int i) {
5863   emit_farith(0xD8, 0xF8, i);
5864 }
5865 
5866 void Assembler::fdivr_d(Address src) {
5867   InstructionMark im(this);
5868   emit_int8((unsigned char)0xDC);
5869   emit_operand32(rdi, src);
5870 }
5871 
5872 void Assembler::fdivr_s(Address src) {
5873   InstructionMark im(this);
5874   emit_int8((unsigned char)0xD8);
5875   emit_operand32(rdi, src);
5876 }
5877 
5878 void Assembler::fdivra(int i) {
5879   emit_farith(0xDC, 0xF0, i);
5880 }
5881 
5882 void Assembler::fdivrp(int i) {
5883   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5884 }
5885 
5886 void Assembler::ffree(int i) {
5887   emit_farith(0xDD, 0xC0, i);
5888 }
5889 
5890 void Assembler::fild_d(Address adr) {
5891   InstructionMark im(this);
5892   emit_int8((unsigned char)0xDF);
5893   emit_operand32(rbp, adr);
5894 }
5895 
5896 void Assembler::fild_s(Address adr) {
5897   InstructionMark im(this);
5898   emit_int8((unsigned char)0xDB);
5899   emit_operand32(rax, adr);
5900 }
5901 
5902 void Assembler::fincstp() {
5903   emit_int8((unsigned char)0xD9);
5904   emit_int8((unsigned char)0xF7);
5905 }
5906 
5907 void Assembler::finit() {
5908   emit_int8((unsigned char)0x9B);
5909   emit_int8((unsigned char)0xDB);
5910   emit_int8((unsigned char)0xE3);
5911 }
5912 
5913 void Assembler::fist_s(Address adr) {
5914   InstructionMark im(this);
5915   emit_int8((unsigned char)0xDB);
5916   emit_operand32(rdx, adr);
5917 }
5918 
5919 void Assembler::fistp_d(Address adr) {
5920   InstructionMark im(this);
5921   emit_int8((unsigned char)0xDF);
5922   emit_operand32(rdi, adr);
5923 }
5924 
5925 void Assembler::fistp_s(Address adr) {
5926   InstructionMark im(this);
5927   emit_int8((unsigned char)0xDB);
5928   emit_operand32(rbx, adr);
5929 }
5930 
5931 void Assembler::fld1() {
5932   emit_int8((unsigned char)0xD9);
5933   emit_int8((unsigned char)0xE8);
5934 }
5935 
5936 void Assembler::fld_d(Address adr) {
5937   InstructionMark im(this);
5938   emit_int8((unsigned char)0xDD);
5939   emit_operand32(rax, adr);
5940 }
5941 
5942 void Assembler::fld_s(Address adr) {
5943   InstructionMark im(this);
5944   emit_int8((unsigned char)0xD9);
5945   emit_operand32(rax, adr);
5946 }
5947 
5948 
5949 void Assembler::fld_s(int index) {
5950   emit_farith(0xD9, 0xC0, index);
5951 }
5952 
5953 void Assembler::fld_x(Address adr) {
5954   InstructionMark im(this);
5955   emit_int8((unsigned char)0xDB);
5956   emit_operand32(rbp, adr);
5957 }
5958 
5959 void Assembler::fldcw(Address src) {
5960   InstructionMark im(this);
5961   emit_int8((unsigned char)0xD9);
5962   emit_operand32(rbp, src);
5963 }
5964 
5965 void Assembler::fldenv(Address src) {
5966   InstructionMark im(this);
5967   emit_int8((unsigned char)0xD9);
5968   emit_operand32(rsp, src);
5969 }
5970 
5971 void Assembler::fldlg2() {
5972   emit_int8((unsigned char)0xD9);
5973   emit_int8((unsigned char)0xEC);
5974 }
5975 
5976 void Assembler::fldln2() {
5977   emit_int8((unsigned char)0xD9);
5978   emit_int8((unsigned char)0xED);
5979 }
5980 
5981 void Assembler::fldz() {
5982   emit_int8((unsigned char)0xD9);
5983   emit_int8((unsigned char)0xEE);
5984 }
5985 
5986 void Assembler::flog() {
5987   fldln2();
5988   fxch();
5989   fyl2x();
5990 }
5991 
5992 void Assembler::flog10() {
5993   fldlg2();
5994   fxch();
5995   fyl2x();
5996 }
5997 
5998 void Assembler::fmul(int i) {
5999   emit_farith(0xD8, 0xC8, i);
6000 }
6001 
6002 void Assembler::fmul_d(Address src) {
6003   InstructionMark im(this);
6004   emit_int8((unsigned char)0xDC);
6005   emit_operand32(rcx, src);
6006 }
6007 
6008 void Assembler::fmul_s(Address src) {
6009   InstructionMark im(this);
6010   emit_int8((unsigned char)0xD8);
6011   emit_operand32(rcx, src);
6012 }
6013 
6014 void Assembler::fmula(int i) {
6015   emit_farith(0xDC, 0xC8, i);
6016 }
6017 
6018 void Assembler::fmulp(int i) {
6019   emit_farith(0xDE, 0xC8, i);
6020 }
6021 
6022 void Assembler::fnsave(Address dst) {
6023   InstructionMark im(this);
6024   emit_int8((unsigned char)0xDD);
6025   emit_operand32(rsi, dst);
6026 }
6027 
6028 void Assembler::fnstcw(Address src) {
6029   InstructionMark im(this);
6030   emit_int8((unsigned char)0x9B);
6031   emit_int8((unsigned char)0xD9);
6032   emit_operand32(rdi, src);
6033 }
6034 
6035 void Assembler::fnstsw_ax() {
6036   emit_int8((unsigned char)0xDF);
6037   emit_int8((unsigned char)0xE0);
6038 }
6039 
6040 void Assembler::fprem() {
6041   emit_int8((unsigned char)0xD9);
6042   emit_int8((unsigned char)0xF8);
6043 }
6044 
6045 void Assembler::fprem1() {
6046   emit_int8((unsigned char)0xD9);
6047   emit_int8((unsigned char)0xF5);
6048 }
6049 
6050 void Assembler::frstor(Address src) {
6051   InstructionMark im(this);
6052   emit_int8((unsigned char)0xDD);
6053   emit_operand32(rsp, src);
6054 }
6055 
6056 void Assembler::fsin() {
6057   emit_int8((unsigned char)0xD9);
6058   emit_int8((unsigned char)0xFE);
6059 }
6060 
6061 void Assembler::fsqrt() {
6062   emit_int8((unsigned char)0xD9);
6063   emit_int8((unsigned char)0xFA);
6064 }
6065 
6066 void Assembler::fst_d(Address adr) {
6067   InstructionMark im(this);
6068   emit_int8((unsigned char)0xDD);
6069   emit_operand32(rdx, adr);
6070 }
6071 
6072 void Assembler::fst_s(Address adr) {
6073   InstructionMark im(this);
6074   emit_int8((unsigned char)0xD9);
6075   emit_operand32(rdx, adr);
6076 }
6077 
6078 void Assembler::fstp_d(Address adr) {
6079   InstructionMark im(this);
6080   emit_int8((unsigned char)0xDD);
6081   emit_operand32(rbx, adr);
6082 }
6083 
6084 void Assembler::fstp_d(int index) {
6085   emit_farith(0xDD, 0xD8, index);
6086 }
6087 
6088 void Assembler::fstp_s(Address adr) {
6089   InstructionMark im(this);
6090   emit_int8((unsigned char)0xD9);
6091   emit_operand32(rbx, adr);
6092 }
6093 
6094 void Assembler::fstp_x(Address adr) {
6095   InstructionMark im(this);
6096   emit_int8((unsigned char)0xDB);
6097   emit_operand32(rdi, adr);
6098 }
6099 
6100 void Assembler::fsub(int i) {
6101   emit_farith(0xD8, 0xE0, i);
6102 }
6103 
6104 void Assembler::fsub_d(Address src) {
6105   InstructionMark im(this);
6106   emit_int8((unsigned char)0xDC);
6107   emit_operand32(rsp, src);
6108 }
6109 
6110 void Assembler::fsub_s(Address src) {
6111   InstructionMark im(this);
6112   emit_int8((unsigned char)0xD8);
6113   emit_operand32(rsp, src);
6114 }
6115 
6116 void Assembler::fsuba(int i) {
6117   emit_farith(0xDC, 0xE8, i);
6118 }
6119 
6120 void Assembler::fsubp(int i) {
6121   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6122 }
6123 
6124 void Assembler::fsubr(int i) {
6125   emit_farith(0xD8, 0xE8, i);
6126 }
6127 
6128 void Assembler::fsubr_d(Address src) {
6129   InstructionMark im(this);
6130   emit_int8((unsigned char)0xDC);
6131   emit_operand32(rbp, src);
6132 }
6133 
6134 void Assembler::fsubr_s(Address src) {
6135   InstructionMark im(this);
6136   emit_int8((unsigned char)0xD8);
6137   emit_operand32(rbp, src);
6138 }
6139 
6140 void Assembler::fsubra(int i) {
6141   emit_farith(0xDC, 0xE0, i);
6142 }
6143 
6144 void Assembler::fsubrp(int i) {
6145   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6146 }
6147 
6148 void Assembler::ftan() {
6149   emit_int8((unsigned char)0xD9);
6150   emit_int8((unsigned char)0xF2);
6151   emit_int8((unsigned char)0xDD);
6152   emit_int8((unsigned char)0xD8);
6153 }
6154 
6155 void Assembler::ftst() {
6156   emit_int8((unsigned char)0xD9);
6157   emit_int8((unsigned char)0xE4);
6158 }
6159 
6160 void Assembler::fucomi(int i) {
6161   // make sure the instruction is supported (introduced for P6, together with cmov)
6162   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6163   emit_farith(0xDB, 0xE8, i);
6164 }
6165 
6166 void Assembler::fucomip(int i) {
6167   // make sure the instruction is supported (introduced for P6, together with cmov)
6168   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6169   emit_farith(0xDF, 0xE8, i);
6170 }
6171 
6172 void Assembler::fwait() {
6173   emit_int8((unsigned char)0x9B);
6174 }
6175 
6176 void Assembler::fxch(int i) {
6177   emit_farith(0xD9, 0xC8, i);
6178 }
6179 
6180 void Assembler::fyl2x() {
6181   emit_int8((unsigned char)0xD9);
6182   emit_int8((unsigned char)0xF1);
6183 }
6184 
6185 void Assembler::frndint() {
6186   emit_int8((unsigned char)0xD9);
6187   emit_int8((unsigned char)0xFC);
6188 }
6189 
6190 void Assembler::f2xm1() {
6191   emit_int8((unsigned char)0xD9);
6192   emit_int8((unsigned char)0xF0);
6193 }
6194 
6195 void Assembler::fldl2e() {
6196   emit_int8((unsigned char)0xD9);
6197   emit_int8((unsigned char)0xEA);
6198 }
6199 
6200 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6201 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6202 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6203 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6204 
6205 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6206 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6207   if (pre > 0) {
6208     emit_int8(simd_pre[pre]);
6209   }
6210   if (rex_w) {
6211     prefixq(adr, xreg);
6212   } else {
6213     prefix(adr, xreg);
6214   }
6215   if (opc > 0) {
6216     emit_int8(0x0F);
6217     int opc2 = simd_opc[opc];
6218     if (opc2 > 0) {
6219       emit_int8(opc2);
6220     }
6221   }
6222 }
6223 
6224 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6225   if (pre > 0) {
6226     emit_int8(simd_pre[pre]);
6227   }
6228   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6229   if (opc > 0) {
6230     emit_int8(0x0F);
6231     int opc2 = simd_opc[opc];
6232     if (opc2 > 0) {
6233       emit_int8(opc2);
6234     }
6235   }
6236   return encode;
6237 }
6238 
6239 
6240 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6241   int vector_len = _attributes->get_vector_len();
6242   bool vex_w = _attributes->is_rex_vex_w();
6243   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6244     prefix(VEX_3bytes);
6245 
6246     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6247     byte1 = (~byte1) & 0xE0;
6248     byte1 |= opc;
6249     emit_int8(byte1);
6250 
6251     int byte2 = ((~nds_enc) & 0xf) << 3;
6252     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6253     emit_int8(byte2);
6254   } else {
6255     prefix(VEX_2bytes);
6256 
6257     int byte1 = vex_r ? VEX_R : 0;
6258     byte1 = (~byte1) & 0x80;
6259     byte1 |= ((~nds_enc) & 0xf) << 3;
6260     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6261     emit_int8(byte1);
6262   }
6263 }
6264 
6265 // This is a 4 byte encoding
6266 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6267   // EVEX 0x62 prefix
6268   prefix(EVEX_4bytes);
6269   bool vex_w = _attributes->is_rex_vex_w();
6270   int evex_encoding = (vex_w ? VEX_W : 0);
6271   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6272   _attributes->set_evex_encoding(evex_encoding);
6273 
6274   // P0: byte 2, initialized to RXBR`00mm
6275   // instead of not'd
6276   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6277   byte2 = (~byte2) & 0xF0;
6278   // confine opc opcode extensions in mm bits to lower two bits
6279   // of form {0F, 0F_38, 0F_3A}
6280   byte2 |= opc;
6281   emit_int8(byte2);
6282 
6283   // P1: byte 3 as Wvvvv1pp
6284   int byte3 = ((~nds_enc) & 0xf) << 3;
6285   // p[10] is always 1
6286   byte3 |= EVEX_F;
6287   byte3 |= (vex_w & 1) << 7;
6288   // confine pre opcode extensions in pp bits to lower two bits
6289   // of form {66, F3, F2}
6290   byte3 |= pre;
6291   emit_int8(byte3);
6292 
6293   // P2: byte 4 as zL'Lbv'aaa
6294   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6295   // EVEX.v` for extending EVEX.vvvv or VIDX
6296   byte4 |= (evex_v ? 0: EVEX_V);
6297   // third EXEC.b for broadcast actions
6298   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6299   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6300   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6301   // last is EVEX.z for zero/merge actions
6302   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6303   emit_int8(byte4);
6304 }
6305 
6306 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6307   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6308   bool vex_b = adr.base_needs_rex();
6309   bool vex_x = adr.index_needs_rex();
6310   set_attributes(attributes);
6311   attributes->set_current_assembler(this);
6312 
6313   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6314   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6315     switch (attributes->get_vector_len()) {
6316     case AVX_128bit:
6317     case AVX_256bit:
6318       attributes->set_is_legacy_mode();
6319       break;
6320     }
6321   }
6322 
6323   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6324   {
6325     bool evex_r = (xreg_enc >= 16);
6326     bool evex_v = (nds_enc >= 16);
6327     attributes->set_is_evex_instruction();
6328     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6329   } else {
6330     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6331   }
6332 }
6333 
6334 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6335   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6336   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6337   bool vex_x = false;
6338   set_attributes(attributes);
6339   attributes->set_current_assembler(this);
6340 
6341   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6342   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6343     switch (attributes->get_vector_len()) {
6344     case AVX_128bit:
6345     case AVX_256bit:
6346       if ((dst_enc >= 16) | (nds_enc >= 16) | (src_enc >= 16)) {
6347         // up propagate arithmetic instructions to meet RA requirements
6348         attributes->set_vector_len(AVX_512bit);
6349       } else {
6350         attributes->set_is_legacy_mode();
6351       }
6352       break;
6353     }
6354   }
6355 
6356   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6357   {
6358     bool evex_r = (dst_enc >= 16);
6359     bool evex_v = (nds_enc >= 16);
6360     // can use vex_x as bank extender on rm encoding
6361     vex_x = (src_enc >= 16);
6362     attributes->set_is_evex_instruction();
6363     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6364   } else {
6365     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6366   }
6367 
6368   // return modrm byte components for operands
6369   return (((dst_enc & 7) << 3) | (src_enc & 7));
6370 }
6371 
6372 
6373 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6374                             VexOpcode opc, InstructionAttr *attributes) {
6375   if (UseAVX > 0) {
6376     int xreg_enc = xreg->encoding();
6377     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6378     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6379   } else {
6380     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6381     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6382   }
6383 }
6384 
6385 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6386                                       VexOpcode opc, InstructionAttr *attributes) {
6387   int dst_enc = dst->encoding();
6388   int src_enc = src->encoding();
6389   if (UseAVX > 0) {
6390     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6391     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6392   } else {
6393     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6394     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6395   }
6396 }
6397 
6398 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
6399                                       VexOpcode opc, InstructionAttr *attributes) {
6400   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6401   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6402 }
6403 
6404 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
6405                                       VexOpcode opc, InstructionAttr *attributes) {
6406   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6407   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6408 }
6409 
6410 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6411   assert(VM_Version::supports_avx(), "");
6412   assert(!VM_Version::supports_evex(), "");
6413   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6414   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6415   emit_int8((unsigned char)0xC2);
6416   emit_int8((unsigned char)(0xC0 | encode));
6417   emit_int8((unsigned char)(0xF & cop));
6418 }
6419 
6420 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6421   assert(VM_Version::supports_avx(), "");
6422   assert(!VM_Version::supports_evex(), "");
6423   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6424   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6425   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6426   emit_int8((unsigned char)0x4B);
6427   emit_int8((unsigned char)(0xC0 | encode));
6428   int src2_enc = src2->encoding();
6429   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6430 }
6431 
6432 
6433 #ifndef _LP64
6434 
6435 void Assembler::incl(Register dst) {
6436   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6437   emit_int8(0x40 | dst->encoding());
6438 }
6439 
6440 void Assembler::lea(Register dst, Address src) {
6441   leal(dst, src);
6442 }
6443 
6444 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6445   InstructionMark im(this);
6446   emit_int8((unsigned char)0xC7);
6447   emit_operand(rax, dst);
6448   emit_data((int)imm32, rspec, 0);
6449 }
6450 
6451 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6452   InstructionMark im(this);
6453   int encode = prefix_and_encode(dst->encoding());
6454   emit_int8((unsigned char)(0xB8 | encode));
6455   emit_data((int)imm32, rspec, 0);
6456 }
6457 
6458 void Assembler::popa() { // 32bit
6459   emit_int8(0x61);
6460 }
6461 
6462 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6463   InstructionMark im(this);
6464   emit_int8(0x68);
6465   emit_data(imm32, rspec, 0);
6466 }
6467 
6468 void Assembler::pusha() { // 32bit
6469   emit_int8(0x60);
6470 }
6471 
6472 void Assembler::set_byte_if_not_zero(Register dst) {
6473   emit_int8(0x0F);
6474   emit_int8((unsigned char)0x95);
6475   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6476 }
6477 
6478 void Assembler::shldl(Register dst, Register src) {
6479   emit_int8(0x0F);
6480   emit_int8((unsigned char)0xA5);
6481   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6482 }
6483 
6484 // 0F A4 / r ib
6485 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6486   emit_int8(0x0F);
6487   emit_int8((unsigned char)0xA4);
6488   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6489   emit_int8(imm8);
6490 }
6491 
6492 void Assembler::shrdl(Register dst, Register src) {
6493   emit_int8(0x0F);
6494   emit_int8((unsigned char)0xAD);
6495   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6496 }
6497 
6498 #else // LP64
6499 
6500 void Assembler::set_byte_if_not_zero(Register dst) {
6501   int enc = prefix_and_encode(dst->encoding(), true);
6502   emit_int8(0x0F);
6503   emit_int8((unsigned char)0x95);
6504   emit_int8((unsigned char)(0xE0 | enc));
6505 }
6506 
6507 // 64bit only pieces of the assembler
6508 // This should only be used by 64bit instructions that can use rip-relative
6509 // it cannot be used by instructions that want an immediate value.
6510 
6511 bool Assembler::reachable(AddressLiteral adr) {
6512   int64_t disp;
6513   // None will force a 64bit literal to the code stream. Likely a placeholder
6514   // for something that will be patched later and we need to certain it will
6515   // always be reachable.
6516   if (adr.reloc() == relocInfo::none) {
6517     return false;
6518   }
6519   if (adr.reloc() == relocInfo::internal_word_type) {
6520     // This should be rip relative and easily reachable.
6521     return true;
6522   }
6523   if (adr.reloc() == relocInfo::virtual_call_type ||
6524       adr.reloc() == relocInfo::opt_virtual_call_type ||
6525       adr.reloc() == relocInfo::static_call_type ||
6526       adr.reloc() == relocInfo::static_stub_type ) {
6527     // This should be rip relative within the code cache and easily
6528     // reachable until we get huge code caches. (At which point
6529     // ic code is going to have issues).
6530     return true;
6531   }
6532   if (adr.reloc() != relocInfo::external_word_type &&
6533       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6534       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6535       adr.reloc() != relocInfo::runtime_call_type ) {
6536     return false;
6537   }
6538 
6539   // Stress the correction code
6540   if (ForceUnreachable) {
6541     // Must be runtimecall reloc, see if it is in the codecache
6542     // Flipping stuff in the codecache to be unreachable causes issues
6543     // with things like inline caches where the additional instructions
6544     // are not handled.
6545     if (CodeCache::find_blob(adr._target) == NULL) {
6546       return false;
6547     }
6548   }
6549   // For external_word_type/runtime_call_type if it is reachable from where we
6550   // are now (possibly a temp buffer) and where we might end up
6551   // anywhere in the codeCache then we are always reachable.
6552   // This would have to change if we ever save/restore shared code
6553   // to be more pessimistic.
6554   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6555   if (!is_simm32(disp)) return false;
6556   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6557   if (!is_simm32(disp)) return false;
6558 
6559   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6560 
6561   // Because rip relative is a disp + address_of_next_instruction and we
6562   // don't know the value of address_of_next_instruction we apply a fudge factor
6563   // to make sure we will be ok no matter the size of the instruction we get placed into.
6564   // We don't have to fudge the checks above here because they are already worst case.
6565 
6566   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6567   // + 4 because better safe than sorry.
6568   const int fudge = 12 + 4;
6569   if (disp < 0) {
6570     disp -= fudge;
6571   } else {
6572     disp += fudge;
6573   }
6574   return is_simm32(disp);
6575 }
6576 
6577 // Check if the polling page is not reachable from the code cache using rip-relative
6578 // addressing.
6579 bool Assembler::is_polling_page_far() {
6580   intptr_t addr = (intptr_t)os::get_polling_page();
6581   return ForceUnreachable ||
6582          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6583          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6584 }
6585 
6586 void Assembler::emit_data64(jlong data,
6587                             relocInfo::relocType rtype,
6588                             int format) {
6589   if (rtype == relocInfo::none) {
6590     emit_int64(data);
6591   } else {
6592     emit_data64(data, Relocation::spec_simple(rtype), format);
6593   }
6594 }
6595 
6596 void Assembler::emit_data64(jlong data,
6597                             RelocationHolder const& rspec,
6598                             int format) {
6599   assert(imm_operand == 0, "default format must be immediate in this file");
6600   assert(imm_operand == format, "must be immediate");
6601   assert(inst_mark() != NULL, "must be inside InstructionMark");
6602   // Do not use AbstractAssembler::relocate, which is not intended for
6603   // embedded words.  Instead, relocate to the enclosing instruction.
6604   code_section()->relocate(inst_mark(), rspec, format);
6605 #ifdef ASSERT
6606   check_relocation(rspec, format);
6607 #endif
6608   emit_int64(data);
6609 }
6610 
6611 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6612   if (reg_enc >= 8) {
6613     prefix(REX_B);
6614     reg_enc -= 8;
6615   } else if (byteinst && reg_enc >= 4) {
6616     prefix(REX);
6617   }
6618   return reg_enc;
6619 }
6620 
6621 int Assembler::prefixq_and_encode(int reg_enc) {
6622   if (reg_enc < 8) {
6623     prefix(REX_W);
6624   } else {
6625     prefix(REX_WB);
6626     reg_enc -= 8;
6627   }
6628   return reg_enc;
6629 }
6630 
6631 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
6632   if (dst_enc < 8) {
6633     if (src_enc >= 8) {
6634       prefix(REX_B);
6635       src_enc -= 8;
6636     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
6637       prefix(REX);
6638     }
6639   } else {
6640     if (src_enc < 8) {
6641       prefix(REX_R);
6642     } else {
6643       prefix(REX_RB);
6644       src_enc -= 8;
6645     }
6646     dst_enc -= 8;
6647   }
6648   return dst_enc << 3 | src_enc;
6649 }
6650 
6651 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6652   if (dst_enc < 8) {
6653     if (src_enc < 8) {
6654       prefix(REX_W);
6655     } else {
6656       prefix(REX_WB);
6657       src_enc -= 8;
6658     }
6659   } else {
6660     if (src_enc < 8) {
6661       prefix(REX_WR);
6662     } else {
6663       prefix(REX_WRB);
6664       src_enc -= 8;
6665     }
6666     dst_enc -= 8;
6667   }
6668   return dst_enc << 3 | src_enc;
6669 }
6670 
6671 void Assembler::prefix(Register reg) {
6672   if (reg->encoding() >= 8) {
6673     prefix(REX_B);
6674   }
6675 }
6676 
6677 void Assembler::prefix(Register dst, Register src, Prefix p) {
6678   if (src->encoding() >= 8) {
6679     p = (Prefix)(p | REX_B);
6680   }
6681   if (dst->encoding() >= 8) {
6682     p = (Prefix)( p | REX_R);
6683   }
6684   if (p != Prefix_EMPTY) {
6685     // do not generate an empty prefix
6686     prefix(p);
6687   }
6688 }
6689 
6690 void Assembler::prefix(Register dst, Address adr, Prefix p) {
6691   if (adr.base_needs_rex()) {
6692     if (adr.index_needs_rex()) {
6693       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6694     } else {
6695       prefix(REX_B);
6696     }
6697   } else {
6698     if (adr.index_needs_rex()) {
6699       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6700     }
6701   }
6702   if (dst->encoding() >= 8) {
6703     p = (Prefix)(p | REX_R);
6704   }
6705   if (p != Prefix_EMPTY) {
6706     // do not generate an empty prefix
6707     prefix(p);
6708   }
6709 }
6710 
6711 void Assembler::prefix(Address adr) {
6712   if (adr.base_needs_rex()) {
6713     if (adr.index_needs_rex()) {
6714       prefix(REX_XB);
6715     } else {
6716       prefix(REX_B);
6717     }
6718   } else {
6719     if (adr.index_needs_rex()) {
6720       prefix(REX_X);
6721     }
6722   }
6723 }
6724 
6725 void Assembler::prefixq(Address adr) {
6726   if (adr.base_needs_rex()) {
6727     if (adr.index_needs_rex()) {
6728       prefix(REX_WXB);
6729     } else {
6730       prefix(REX_WB);
6731     }
6732   } else {
6733     if (adr.index_needs_rex()) {
6734       prefix(REX_WX);
6735     } else {
6736       prefix(REX_W);
6737     }
6738   }
6739 }
6740 
6741 
6742 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6743   if (reg->encoding() < 8) {
6744     if (adr.base_needs_rex()) {
6745       if (adr.index_needs_rex()) {
6746         prefix(REX_XB);
6747       } else {
6748         prefix(REX_B);
6749       }
6750     } else {
6751       if (adr.index_needs_rex()) {
6752         prefix(REX_X);
6753       } else if (byteinst && reg->encoding() >= 4 ) {
6754         prefix(REX);
6755       }
6756     }
6757   } else {
6758     if (adr.base_needs_rex()) {
6759       if (adr.index_needs_rex()) {
6760         prefix(REX_RXB);
6761       } else {
6762         prefix(REX_RB);
6763       }
6764     } else {
6765       if (adr.index_needs_rex()) {
6766         prefix(REX_RX);
6767       } else {
6768         prefix(REX_R);
6769       }
6770     }
6771   }
6772 }
6773 
6774 void Assembler::prefixq(Address adr, Register src) {
6775   if (src->encoding() < 8) {
6776     if (adr.base_needs_rex()) {
6777       if (adr.index_needs_rex()) {
6778         prefix(REX_WXB);
6779       } else {
6780         prefix(REX_WB);
6781       }
6782     } else {
6783       if (adr.index_needs_rex()) {
6784         prefix(REX_WX);
6785       } else {
6786         prefix(REX_W);
6787       }
6788     }
6789   } else {
6790     if (adr.base_needs_rex()) {
6791       if (adr.index_needs_rex()) {
6792         prefix(REX_WRXB);
6793       } else {
6794         prefix(REX_WRB);
6795       }
6796     } else {
6797       if (adr.index_needs_rex()) {
6798         prefix(REX_WRX);
6799       } else {
6800         prefix(REX_WR);
6801       }
6802     }
6803   }
6804 }
6805 
6806 void Assembler::prefix(Address adr, XMMRegister reg) {
6807   if (reg->encoding() < 8) {
6808     if (adr.base_needs_rex()) {
6809       if (adr.index_needs_rex()) {
6810         prefix(REX_XB);
6811       } else {
6812         prefix(REX_B);
6813       }
6814     } else {
6815       if (adr.index_needs_rex()) {
6816         prefix(REX_X);
6817       }
6818     }
6819   } else {
6820     if (adr.base_needs_rex()) {
6821       if (adr.index_needs_rex()) {
6822         prefix(REX_RXB);
6823       } else {
6824         prefix(REX_RB);
6825       }
6826     } else {
6827       if (adr.index_needs_rex()) {
6828         prefix(REX_RX);
6829       } else {
6830         prefix(REX_R);
6831       }
6832     }
6833   }
6834 }
6835 
6836 void Assembler::prefixq(Address adr, XMMRegister src) {
6837   if (src->encoding() < 8) {
6838     if (adr.base_needs_rex()) {
6839       if (adr.index_needs_rex()) {
6840         prefix(REX_WXB);
6841       } else {
6842         prefix(REX_WB);
6843       }
6844     } else {
6845       if (adr.index_needs_rex()) {
6846         prefix(REX_WX);
6847       } else {
6848         prefix(REX_W);
6849       }
6850     }
6851   } else {
6852     if (adr.base_needs_rex()) {
6853       if (adr.index_needs_rex()) {
6854         prefix(REX_WRXB);
6855       } else {
6856         prefix(REX_WRB);
6857       }
6858     } else {
6859       if (adr.index_needs_rex()) {
6860         prefix(REX_WRX);
6861       } else {
6862         prefix(REX_WR);
6863       }
6864     }
6865   }
6866 }
6867 
6868 void Assembler::adcq(Register dst, int32_t imm32) {
6869   (void) prefixq_and_encode(dst->encoding());
6870   emit_arith(0x81, 0xD0, dst, imm32);
6871 }
6872 
6873 void Assembler::adcq(Register dst, Address src) {
6874   InstructionMark im(this);
6875   prefixq(src, dst);
6876   emit_int8(0x13);
6877   emit_operand(dst, src);
6878 }
6879 
6880 void Assembler::adcq(Register dst, Register src) {
6881   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6882   emit_arith(0x13, 0xC0, dst, src);
6883 }
6884 
6885 void Assembler::addq(Address dst, int32_t imm32) {
6886   InstructionMark im(this);
6887   prefixq(dst);
6888   emit_arith_operand(0x81, rax, dst,imm32);
6889 }
6890 
6891 void Assembler::addq(Address dst, Register src) {
6892   InstructionMark im(this);
6893   prefixq(dst, src);
6894   emit_int8(0x01);
6895   emit_operand(src, dst);
6896 }
6897 
6898 void Assembler::addq(Register dst, int32_t imm32) {
6899   (void) prefixq_and_encode(dst->encoding());
6900   emit_arith(0x81, 0xC0, dst, imm32);
6901 }
6902 
6903 void Assembler::addq(Register dst, Address src) {
6904   InstructionMark im(this);
6905   prefixq(src, dst);
6906   emit_int8(0x03);
6907   emit_operand(dst, src);
6908 }
6909 
6910 void Assembler::addq(Register dst, Register src) {
6911   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6912   emit_arith(0x03, 0xC0, dst, src);
6913 }
6914 
6915 void Assembler::adcxq(Register dst, Register src) {
6916   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6917   emit_int8((unsigned char)0x66);
6918   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6919   emit_int8(0x0F);
6920   emit_int8(0x38);
6921   emit_int8((unsigned char)0xF6);
6922   emit_int8((unsigned char)(0xC0 | encode));
6923 }
6924 
6925 void Assembler::adoxq(Register dst, Register src) {
6926   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6927   emit_int8((unsigned char)0xF3);
6928   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6929   emit_int8(0x0F);
6930   emit_int8(0x38);
6931   emit_int8((unsigned char)0xF6);
6932   emit_int8((unsigned char)(0xC0 | encode));
6933 }
6934 
6935 void Assembler::andq(Address dst, int32_t imm32) {
6936   InstructionMark im(this);
6937   prefixq(dst);
6938   emit_int8((unsigned char)0x81);
6939   emit_operand(rsp, dst, 4);
6940   emit_int32(imm32);
6941 }
6942 
6943 void Assembler::andq(Register dst, int32_t imm32) {
6944   (void) prefixq_and_encode(dst->encoding());
6945   emit_arith(0x81, 0xE0, dst, imm32);
6946 }
6947 
6948 void Assembler::andq(Register dst, Address src) {
6949   InstructionMark im(this);
6950   prefixq(src, dst);
6951   emit_int8(0x23);
6952   emit_operand(dst, src);
6953 }
6954 
6955 void Assembler::andq(Register dst, Register src) {
6956   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6957   emit_arith(0x23, 0xC0, dst, src);
6958 }
6959 
6960 void Assembler::andnq(Register dst, Register src1, Register src2) {
6961   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6962   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6963   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6964   emit_int8((unsigned char)0xF2);
6965   emit_int8((unsigned char)(0xC0 | encode));
6966 }
6967 
6968 void Assembler::andnq(Register dst, Register src1, Address src2) {
6969   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6970   InstructionMark im(this);
6971   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6972   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
6973   emit_int8((unsigned char)0xF2);
6974   emit_operand(dst, src2);
6975 }
6976 
6977 void Assembler::bsfq(Register dst, Register src) {
6978   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6979   emit_int8(0x0F);
6980   emit_int8((unsigned char)0xBC);
6981   emit_int8((unsigned char)(0xC0 | encode));
6982 }
6983 
6984 void Assembler::bsrq(Register dst, Register src) {
6985   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6986   emit_int8(0x0F);
6987   emit_int8((unsigned char)0xBD);
6988   emit_int8((unsigned char)(0xC0 | encode));
6989 }
6990 
6991 void Assembler::bswapq(Register reg) {
6992   int encode = prefixq_and_encode(reg->encoding());
6993   emit_int8(0x0F);
6994   emit_int8((unsigned char)(0xC8 | encode));
6995 }
6996 
6997 void Assembler::blsiq(Register dst, Register src) {
6998   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6999   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7000   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7001   emit_int8((unsigned char)0xF3);
7002   emit_int8((unsigned char)(0xC0 | encode));
7003 }
7004 
7005 void Assembler::blsiq(Register dst, Address src) {
7006   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7007   InstructionMark im(this);
7008   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7009   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7010   emit_int8((unsigned char)0xF3);
7011   emit_operand(rbx, src);
7012 }
7013 
7014 void Assembler::blsmskq(Register dst, Register src) {
7015   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7016   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7017   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7018   emit_int8((unsigned char)0xF3);
7019   emit_int8((unsigned char)(0xC0 | encode));
7020 }
7021 
7022 void Assembler::blsmskq(Register dst, Address src) {
7023   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7024   InstructionMark im(this);
7025   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7026   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7027   emit_int8((unsigned char)0xF3);
7028   emit_operand(rdx, src);
7029 }
7030 
7031 void Assembler::blsrq(Register dst, Register src) {
7032   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7033   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7034   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7035   emit_int8((unsigned char)0xF3);
7036   emit_int8((unsigned char)(0xC0 | encode));
7037 }
7038 
7039 void Assembler::blsrq(Register dst, Address src) {
7040   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7041   InstructionMark im(this);
7042   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7043   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7044   emit_int8((unsigned char)0xF3);
7045   emit_operand(rcx, src);
7046 }
7047 
7048 void Assembler::cdqq() {
7049   prefix(REX_W);
7050   emit_int8((unsigned char)0x99);
7051 }
7052 
7053 void Assembler::clflush(Address adr) {
7054   prefix(adr);
7055   emit_int8(0x0F);
7056   emit_int8((unsigned char)0xAE);
7057   emit_operand(rdi, adr);
7058 }
7059 
7060 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7061   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7062   emit_int8(0x0F);
7063   emit_int8(0x40 | cc);
7064   emit_int8((unsigned char)(0xC0 | encode));
7065 }
7066 
7067 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7068   InstructionMark im(this);
7069   prefixq(src, dst);
7070   emit_int8(0x0F);
7071   emit_int8(0x40 | cc);
7072   emit_operand(dst, src);
7073 }
7074 
7075 void Assembler::cmpq(Address dst, int32_t imm32) {
7076   InstructionMark im(this);
7077   prefixq(dst);
7078   emit_int8((unsigned char)0x81);
7079   emit_operand(rdi, dst, 4);
7080   emit_int32(imm32);
7081 }
7082 
7083 void Assembler::cmpq(Register dst, int32_t imm32) {
7084   (void) prefixq_and_encode(dst->encoding());
7085   emit_arith(0x81, 0xF8, dst, imm32);
7086 }
7087 
7088 void Assembler::cmpq(Address dst, Register src) {
7089   InstructionMark im(this);
7090   prefixq(dst, src);
7091   emit_int8(0x3B);
7092   emit_operand(src, dst);
7093 }
7094 
7095 void Assembler::cmpq(Register dst, Register src) {
7096   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7097   emit_arith(0x3B, 0xC0, dst, src);
7098 }
7099 
7100 void Assembler::cmpq(Register dst, Address  src) {
7101   InstructionMark im(this);
7102   prefixq(src, dst);
7103   emit_int8(0x3B);
7104   emit_operand(dst, src);
7105 }
7106 
7107 void Assembler::cmpxchgq(Register reg, Address adr) {
7108   InstructionMark im(this);
7109   prefixq(adr, reg);
7110   emit_int8(0x0F);
7111   emit_int8((unsigned char)0xB1);
7112   emit_operand(reg, adr);
7113 }
7114 
7115 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7116   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7117   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7118   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7119   emit_int8(0x2A);
7120   emit_int8((unsigned char)(0xC0 | encode));
7121 }
7122 
7123 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7124   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7125   InstructionMark im(this);
7126   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7127   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7128   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7129   emit_int8(0x2A);
7130   emit_operand(dst, src);
7131 }
7132 
7133 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7134   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7135   InstructionMark im(this);
7136   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7137   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7138   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7139   emit_int8(0x2A);
7140   emit_operand(dst, src);
7141 }
7142 
7143 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7144   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7145   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7146   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7147   emit_int8(0x2C);
7148   emit_int8((unsigned char)(0xC0 | encode));
7149 }
7150 
7151 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7152   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7153   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7154   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7155   emit_int8(0x2C);
7156   emit_int8((unsigned char)(0xC0 | encode));
7157 }
7158 
7159 void Assembler::decl(Register dst) {
7160   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7161   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7162   int encode = prefix_and_encode(dst->encoding());
7163   emit_int8((unsigned char)0xFF);
7164   emit_int8((unsigned char)(0xC8 | encode));
7165 }
7166 
7167 void Assembler::decq(Register dst) {
7168   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7169   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7170   int encode = prefixq_and_encode(dst->encoding());
7171   emit_int8((unsigned char)0xFF);
7172   emit_int8(0xC8 | encode);
7173 }
7174 
7175 void Assembler::decq(Address dst) {
7176   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7177   InstructionMark im(this);
7178   prefixq(dst);
7179   emit_int8((unsigned char)0xFF);
7180   emit_operand(rcx, dst);
7181 }
7182 
7183 void Assembler::fxrstor(Address src) {
7184   prefixq(src);
7185   emit_int8(0x0F);
7186   emit_int8((unsigned char)0xAE);
7187   emit_operand(as_Register(1), src);
7188 }
7189 
7190 void Assembler::xrstor(Address src) {
7191   prefixq(src);
7192   emit_int8(0x0F);
7193   emit_int8((unsigned char)0xAE);
7194   emit_operand(as_Register(5), src);
7195 }
7196 
7197 void Assembler::fxsave(Address dst) {
7198   prefixq(dst);
7199   emit_int8(0x0F);
7200   emit_int8((unsigned char)0xAE);
7201   emit_operand(as_Register(0), dst);
7202 }
7203 
7204 void Assembler::xsave(Address dst) {
7205   prefixq(dst);
7206   emit_int8(0x0F);
7207   emit_int8((unsigned char)0xAE);
7208   emit_operand(as_Register(4), dst);
7209 }
7210 
7211 void Assembler::idivq(Register src) {
7212   int encode = prefixq_and_encode(src->encoding());
7213   emit_int8((unsigned char)0xF7);
7214   emit_int8((unsigned char)(0xF8 | encode));
7215 }
7216 
7217 void Assembler::imulq(Register dst, Register src) {
7218   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7219   emit_int8(0x0F);
7220   emit_int8((unsigned char)0xAF);
7221   emit_int8((unsigned char)(0xC0 | encode));
7222 }
7223 
7224 void Assembler::imulq(Register dst, Register src, int value) {
7225   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7226   if (is8bit(value)) {
7227     emit_int8(0x6B);
7228     emit_int8((unsigned char)(0xC0 | encode));
7229     emit_int8(value & 0xFF);
7230   } else {
7231     emit_int8(0x69);
7232     emit_int8((unsigned char)(0xC0 | encode));
7233     emit_int32(value);
7234   }
7235 }
7236 
7237 void Assembler::imulq(Register dst, Address src) {
7238   InstructionMark im(this);
7239   prefixq(src, dst);
7240   emit_int8(0x0F);
7241   emit_int8((unsigned char) 0xAF);
7242   emit_operand(dst, src);
7243 }
7244 
7245 void Assembler::incl(Register dst) {
7246   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7247   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7248   int encode = prefix_and_encode(dst->encoding());
7249   emit_int8((unsigned char)0xFF);
7250   emit_int8((unsigned char)(0xC0 | encode));
7251 }
7252 
7253 void Assembler::incq(Register dst) {
7254   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7255   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7256   int encode = prefixq_and_encode(dst->encoding());
7257   emit_int8((unsigned char)0xFF);
7258   emit_int8((unsigned char)(0xC0 | encode));
7259 }
7260 
7261 void Assembler::incq(Address dst) {
7262   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7263   InstructionMark im(this);
7264   prefixq(dst);
7265   emit_int8((unsigned char)0xFF);
7266   emit_operand(rax, dst);
7267 }
7268 
7269 void Assembler::lea(Register dst, Address src) {
7270   leaq(dst, src);
7271 }
7272 
7273 void Assembler::leaq(Register dst, Address src) {
7274   InstructionMark im(this);
7275   prefixq(src, dst);
7276   emit_int8((unsigned char)0x8D);
7277   emit_operand(dst, src);
7278 }
7279 
7280 void Assembler::mov64(Register dst, int64_t imm64) {
7281   InstructionMark im(this);
7282   int encode = prefixq_and_encode(dst->encoding());
7283   emit_int8((unsigned char)(0xB8 | encode));
7284   emit_int64(imm64);
7285 }
7286 
7287 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7288   InstructionMark im(this);
7289   int encode = prefixq_and_encode(dst->encoding());
7290   emit_int8(0xB8 | encode);
7291   emit_data64(imm64, rspec);
7292 }
7293 
7294 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7295   InstructionMark im(this);
7296   int encode = prefix_and_encode(dst->encoding());
7297   emit_int8((unsigned char)(0xB8 | encode));
7298   emit_data((int)imm32, rspec, narrow_oop_operand);
7299 }
7300 
7301 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7302   InstructionMark im(this);
7303   prefix(dst);
7304   emit_int8((unsigned char)0xC7);
7305   emit_operand(rax, dst, 4);
7306   emit_data((int)imm32, rspec, narrow_oop_operand);
7307 }
7308 
7309 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7310   InstructionMark im(this);
7311   int encode = prefix_and_encode(src1->encoding());
7312   emit_int8((unsigned char)0x81);
7313   emit_int8((unsigned char)(0xF8 | encode));
7314   emit_data((int)imm32, rspec, narrow_oop_operand);
7315 }
7316 
7317 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7318   InstructionMark im(this);
7319   prefix(src1);
7320   emit_int8((unsigned char)0x81);
7321   emit_operand(rax, src1, 4);
7322   emit_data((int)imm32, rspec, narrow_oop_operand);
7323 }
7324 
7325 void Assembler::lzcntq(Register dst, Register src) {
7326   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7327   emit_int8((unsigned char)0xF3);
7328   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7329   emit_int8(0x0F);
7330   emit_int8((unsigned char)0xBD);
7331   emit_int8((unsigned char)(0xC0 | encode));
7332 }
7333 
7334 void Assembler::movdq(XMMRegister dst, Register src) {
7335   // table D-1 says MMX/SSE2
7336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7337   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7338   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7339   emit_int8(0x6E);
7340   emit_int8((unsigned char)(0xC0 | encode));
7341 }
7342 
7343 void Assembler::movdq(Register dst, XMMRegister src) {
7344   // table D-1 says MMX/SSE2
7345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7346   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7347   // swap src/dst to get correct prefix
7348   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7349   emit_int8(0x7E);
7350   emit_int8((unsigned char)(0xC0 | encode));
7351 }
7352 
7353 void Assembler::movq(Register dst, Register src) {
7354   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7355   emit_int8((unsigned char)0x8B);
7356   emit_int8((unsigned char)(0xC0 | encode));
7357 }
7358 
7359 void Assembler::movq(Register dst, Address src) {
7360   InstructionMark im(this);
7361   prefixq(src, dst);
7362   emit_int8((unsigned char)0x8B);
7363   emit_operand(dst, src);
7364 }
7365 
7366 void Assembler::movq(Address dst, Register src) {
7367   InstructionMark im(this);
7368   prefixq(dst, src);
7369   emit_int8((unsigned char)0x89);
7370   emit_operand(src, dst);
7371 }
7372 
7373 void Assembler::movsbq(Register dst, Address src) {
7374   InstructionMark im(this);
7375   prefixq(src, dst);
7376   emit_int8(0x0F);
7377   emit_int8((unsigned char)0xBE);
7378   emit_operand(dst, src);
7379 }
7380 
7381 void Assembler::movsbq(Register dst, Register src) {
7382   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7383   emit_int8(0x0F);
7384   emit_int8((unsigned char)0xBE);
7385   emit_int8((unsigned char)(0xC0 | encode));
7386 }
7387 
7388 void Assembler::movslq(Register dst, int32_t imm32) {
7389   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7390   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7391   // as a result we shouldn't use until tested at runtime...
7392   ShouldNotReachHere();
7393   InstructionMark im(this);
7394   int encode = prefixq_and_encode(dst->encoding());
7395   emit_int8((unsigned char)(0xC7 | encode));
7396   emit_int32(imm32);
7397 }
7398 
7399 void Assembler::movslq(Address dst, int32_t imm32) {
7400   assert(is_simm32(imm32), "lost bits");
7401   InstructionMark im(this);
7402   prefixq(dst);
7403   emit_int8((unsigned char)0xC7);
7404   emit_operand(rax, dst, 4);
7405   emit_int32(imm32);
7406 }
7407 
7408 void Assembler::movslq(Register dst, Address src) {
7409   InstructionMark im(this);
7410   prefixq(src, dst);
7411   emit_int8(0x63);
7412   emit_operand(dst, src);
7413 }
7414 
7415 void Assembler::movslq(Register dst, Register src) {
7416   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7417   emit_int8(0x63);
7418   emit_int8((unsigned char)(0xC0 | encode));
7419 }
7420 
7421 void Assembler::movswq(Register dst, Address src) {
7422   InstructionMark im(this);
7423   prefixq(src, dst);
7424   emit_int8(0x0F);
7425   emit_int8((unsigned char)0xBF);
7426   emit_operand(dst, src);
7427 }
7428 
7429 void Assembler::movswq(Register dst, Register src) {
7430   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7431   emit_int8((unsigned char)0x0F);
7432   emit_int8((unsigned char)0xBF);
7433   emit_int8((unsigned char)(0xC0 | encode));
7434 }
7435 
7436 void Assembler::movzbq(Register dst, Address src) {
7437   InstructionMark im(this);
7438   prefixq(src, dst);
7439   emit_int8((unsigned char)0x0F);
7440   emit_int8((unsigned char)0xB6);
7441   emit_operand(dst, src);
7442 }
7443 
7444 void Assembler::movzbq(Register dst, Register src) {
7445   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7446   emit_int8(0x0F);
7447   emit_int8((unsigned char)0xB6);
7448   emit_int8(0xC0 | encode);
7449 }
7450 
7451 void Assembler::movzwq(Register dst, Address src) {
7452   InstructionMark im(this);
7453   prefixq(src, dst);
7454   emit_int8((unsigned char)0x0F);
7455   emit_int8((unsigned char)0xB7);
7456   emit_operand(dst, src);
7457 }
7458 
7459 void Assembler::movzwq(Register dst, Register src) {
7460   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7461   emit_int8((unsigned char)0x0F);
7462   emit_int8((unsigned char)0xB7);
7463   emit_int8((unsigned char)(0xC0 | encode));
7464 }
7465 
7466 void Assembler::mulq(Address src) {
7467   InstructionMark im(this);
7468   prefixq(src);
7469   emit_int8((unsigned char)0xF7);
7470   emit_operand(rsp, src);
7471 }
7472 
7473 void Assembler::mulq(Register src) {
7474   int encode = prefixq_and_encode(src->encoding());
7475   emit_int8((unsigned char)0xF7);
7476   emit_int8((unsigned char)(0xE0 | encode));
7477 }
7478 
7479 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7480   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7481   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7482   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
7483   emit_int8((unsigned char)0xF6);
7484   emit_int8((unsigned char)(0xC0 | encode));
7485 }
7486 
7487 void Assembler::negq(Register dst) {
7488   int encode = prefixq_and_encode(dst->encoding());
7489   emit_int8((unsigned char)0xF7);
7490   emit_int8((unsigned char)(0xD8 | encode));
7491 }
7492 
7493 void Assembler::notq(Register dst) {
7494   int encode = prefixq_and_encode(dst->encoding());
7495   emit_int8((unsigned char)0xF7);
7496   emit_int8((unsigned char)(0xD0 | encode));
7497 }
7498 
7499 void Assembler::orq(Address dst, int32_t imm32) {
7500   InstructionMark im(this);
7501   prefixq(dst);
7502   emit_int8((unsigned char)0x81);
7503   emit_operand(rcx, dst, 4);
7504   emit_int32(imm32);
7505 }
7506 
7507 void Assembler::orq(Register dst, int32_t imm32) {
7508   (void) prefixq_and_encode(dst->encoding());
7509   emit_arith(0x81, 0xC8, dst, imm32);
7510 }
7511 
7512 void Assembler::orq(Register dst, Address src) {
7513   InstructionMark im(this);
7514   prefixq(src, dst);
7515   emit_int8(0x0B);
7516   emit_operand(dst, src);
7517 }
7518 
7519 void Assembler::orq(Register dst, Register src) {
7520   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7521   emit_arith(0x0B, 0xC0, dst, src);
7522 }
7523 
7524 void Assembler::popa() { // 64bit
7525   movq(r15, Address(rsp, 0));
7526   movq(r14, Address(rsp, wordSize));
7527   movq(r13, Address(rsp, 2 * wordSize));
7528   movq(r12, Address(rsp, 3 * wordSize));
7529   movq(r11, Address(rsp, 4 * wordSize));
7530   movq(r10, Address(rsp, 5 * wordSize));
7531   movq(r9,  Address(rsp, 6 * wordSize));
7532   movq(r8,  Address(rsp, 7 * wordSize));
7533   movq(rdi, Address(rsp, 8 * wordSize));
7534   movq(rsi, Address(rsp, 9 * wordSize));
7535   movq(rbp, Address(rsp, 10 * wordSize));
7536   // skip rsp
7537   movq(rbx, Address(rsp, 12 * wordSize));
7538   movq(rdx, Address(rsp, 13 * wordSize));
7539   movq(rcx, Address(rsp, 14 * wordSize));
7540   movq(rax, Address(rsp, 15 * wordSize));
7541 
7542   addq(rsp, 16 * wordSize);
7543 }
7544 
7545 void Assembler::popcntq(Register dst, Address src) {
7546   assert(VM_Version::supports_popcnt(), "must support");
7547   InstructionMark im(this);
7548   emit_int8((unsigned char)0xF3);
7549   prefixq(src, dst);
7550   emit_int8((unsigned char)0x0F);
7551   emit_int8((unsigned char)0xB8);
7552   emit_operand(dst, src);
7553 }
7554 
7555 void Assembler::popcntq(Register dst, Register src) {
7556   assert(VM_Version::supports_popcnt(), "must support");
7557   emit_int8((unsigned char)0xF3);
7558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7559   emit_int8((unsigned char)0x0F);
7560   emit_int8((unsigned char)0xB8);
7561   emit_int8((unsigned char)(0xC0 | encode));
7562 }
7563 
7564 void Assembler::popq(Address dst) {
7565   InstructionMark im(this);
7566   prefixq(dst);
7567   emit_int8((unsigned char)0x8F);
7568   emit_operand(rax, dst);
7569 }
7570 
7571 void Assembler::pusha() { // 64bit
7572   // we have to store original rsp.  ABI says that 128 bytes
7573   // below rsp are local scratch.
7574   movq(Address(rsp, -5 * wordSize), rsp);
7575 
7576   subq(rsp, 16 * wordSize);
7577 
7578   movq(Address(rsp, 15 * wordSize), rax);
7579   movq(Address(rsp, 14 * wordSize), rcx);
7580   movq(Address(rsp, 13 * wordSize), rdx);
7581   movq(Address(rsp, 12 * wordSize), rbx);
7582   // skip rsp
7583   movq(Address(rsp, 10 * wordSize), rbp);
7584   movq(Address(rsp, 9 * wordSize), rsi);
7585   movq(Address(rsp, 8 * wordSize), rdi);
7586   movq(Address(rsp, 7 * wordSize), r8);
7587   movq(Address(rsp, 6 * wordSize), r9);
7588   movq(Address(rsp, 5 * wordSize), r10);
7589   movq(Address(rsp, 4 * wordSize), r11);
7590   movq(Address(rsp, 3 * wordSize), r12);
7591   movq(Address(rsp, 2 * wordSize), r13);
7592   movq(Address(rsp, wordSize), r14);
7593   movq(Address(rsp, 0), r15);
7594 }
7595 
7596 void Assembler::pushq(Address src) {
7597   InstructionMark im(this);
7598   prefixq(src);
7599   emit_int8((unsigned char)0xFF);
7600   emit_operand(rsi, src);
7601 }
7602 
7603 void Assembler::rclq(Register dst, int imm8) {
7604   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7605   int encode = prefixq_and_encode(dst->encoding());
7606   if (imm8 == 1) {
7607     emit_int8((unsigned char)0xD1);
7608     emit_int8((unsigned char)(0xD0 | encode));
7609   } else {
7610     emit_int8((unsigned char)0xC1);
7611     emit_int8((unsigned char)(0xD0 | encode));
7612     emit_int8(imm8);
7613   }
7614 }
7615 
7616 void Assembler::rcrq(Register dst, int imm8) {
7617   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7618   int encode = prefixq_and_encode(dst->encoding());
7619   if (imm8 == 1) {
7620     emit_int8((unsigned char)0xD1);
7621     emit_int8((unsigned char)(0xD8 | encode));
7622   } else {
7623     emit_int8((unsigned char)0xC1);
7624     emit_int8((unsigned char)(0xD8 | encode));
7625     emit_int8(imm8);
7626   }
7627 }
7628 
7629 void Assembler::rorq(Register dst, int imm8) {
7630   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7631   int encode = prefixq_and_encode(dst->encoding());
7632   if (imm8 == 1) {
7633     emit_int8((unsigned char)0xD1);
7634     emit_int8((unsigned char)(0xC8 | encode));
7635   } else {
7636     emit_int8((unsigned char)0xC1);
7637     emit_int8((unsigned char)(0xc8 | encode));
7638     emit_int8(imm8);
7639   }
7640 }
7641 
7642 void Assembler::rorxq(Register dst, Register src, int imm8) {
7643   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7644   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7645   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
7646   emit_int8((unsigned char)0xF0);
7647   emit_int8((unsigned char)(0xC0 | encode));
7648   emit_int8(imm8);
7649 }
7650 
7651 void Assembler::sarq(Register dst, int imm8) {
7652   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7653   int encode = prefixq_and_encode(dst->encoding());
7654   if (imm8 == 1) {
7655     emit_int8((unsigned char)0xD1);
7656     emit_int8((unsigned char)(0xF8 | encode));
7657   } else {
7658     emit_int8((unsigned char)0xC1);
7659     emit_int8((unsigned char)(0xF8 | encode));
7660     emit_int8(imm8);
7661   }
7662 }
7663 
7664 void Assembler::sarq(Register dst) {
7665   int encode = prefixq_and_encode(dst->encoding());
7666   emit_int8((unsigned char)0xD3);
7667   emit_int8((unsigned char)(0xF8 | encode));
7668 }
7669 
7670 void Assembler::sbbq(Address dst, int32_t imm32) {
7671   InstructionMark im(this);
7672   prefixq(dst);
7673   emit_arith_operand(0x81, rbx, dst, imm32);
7674 }
7675 
7676 void Assembler::sbbq(Register dst, int32_t imm32) {
7677   (void) prefixq_and_encode(dst->encoding());
7678   emit_arith(0x81, 0xD8, dst, imm32);
7679 }
7680 
7681 void Assembler::sbbq(Register dst, Address src) {
7682   InstructionMark im(this);
7683   prefixq(src, dst);
7684   emit_int8(0x1B);
7685   emit_operand(dst, src);
7686 }
7687 
7688 void Assembler::sbbq(Register dst, Register src) {
7689   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7690   emit_arith(0x1B, 0xC0, dst, src);
7691 }
7692 
7693 void Assembler::shlq(Register dst, int imm8) {
7694   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7695   int encode = prefixq_and_encode(dst->encoding());
7696   if (imm8 == 1) {
7697     emit_int8((unsigned char)0xD1);
7698     emit_int8((unsigned char)(0xE0 | encode));
7699   } else {
7700     emit_int8((unsigned char)0xC1);
7701     emit_int8((unsigned char)(0xE0 | encode));
7702     emit_int8(imm8);
7703   }
7704 }
7705 
7706 void Assembler::shlq(Register dst) {
7707   int encode = prefixq_and_encode(dst->encoding());
7708   emit_int8((unsigned char)0xD3);
7709   emit_int8((unsigned char)(0xE0 | encode));
7710 }
7711 
7712 void Assembler::shrq(Register dst, int imm8) {
7713   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7714   int encode = prefixq_and_encode(dst->encoding());
7715   emit_int8((unsigned char)0xC1);
7716   emit_int8((unsigned char)(0xE8 | encode));
7717   emit_int8(imm8);
7718 }
7719 
7720 void Assembler::shrq(Register dst) {
7721   int encode = prefixq_and_encode(dst->encoding());
7722   emit_int8((unsigned char)0xD3);
7723   emit_int8(0xE8 | encode);
7724 }
7725 
7726 void Assembler::subq(Address dst, int32_t imm32) {
7727   InstructionMark im(this);
7728   prefixq(dst);
7729   emit_arith_operand(0x81, rbp, dst, imm32);
7730 }
7731 
7732 void Assembler::subq(Address dst, Register src) {
7733   InstructionMark im(this);
7734   prefixq(dst, src);
7735   emit_int8(0x29);
7736   emit_operand(src, dst);
7737 }
7738 
7739 void Assembler::subq(Register dst, int32_t imm32) {
7740   (void) prefixq_and_encode(dst->encoding());
7741   emit_arith(0x81, 0xE8, dst, imm32);
7742 }
7743 
7744 // Force generation of a 4 byte immediate value even if it fits into 8bit
7745 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7746   (void) prefixq_and_encode(dst->encoding());
7747   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7748 }
7749 
7750 void Assembler::subq(Register dst, Address src) {
7751   InstructionMark im(this);
7752   prefixq(src, dst);
7753   emit_int8(0x2B);
7754   emit_operand(dst, src);
7755 }
7756 
7757 void Assembler::subq(Register dst, Register src) {
7758   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7759   emit_arith(0x2B, 0xC0, dst, src);
7760 }
7761 
7762 void Assembler::testq(Register dst, int32_t imm32) {
7763   // not using emit_arith because test
7764   // doesn't support sign-extension of
7765   // 8bit operands
7766   int encode = dst->encoding();
7767   if (encode == 0) {
7768     prefix(REX_W);
7769     emit_int8((unsigned char)0xA9);
7770   } else {
7771     encode = prefixq_and_encode(encode);
7772     emit_int8((unsigned char)0xF7);
7773     emit_int8((unsigned char)(0xC0 | encode));
7774   }
7775   emit_int32(imm32);
7776 }
7777 
7778 void Assembler::testq(Register dst, Register src) {
7779   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7780   emit_arith(0x85, 0xC0, dst, src);
7781 }
7782 
7783 void Assembler::xaddq(Address dst, Register src) {
7784   InstructionMark im(this);
7785   prefixq(dst, src);
7786   emit_int8(0x0F);
7787   emit_int8((unsigned char)0xC1);
7788   emit_operand(src, dst);
7789 }
7790 
7791 void Assembler::xchgq(Register dst, Address src) {
7792   InstructionMark im(this);
7793   prefixq(src, dst);
7794   emit_int8((unsigned char)0x87);
7795   emit_operand(dst, src);
7796 }
7797 
7798 void Assembler::xchgq(Register dst, Register src) {
7799   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7800   emit_int8((unsigned char)0x87);
7801   emit_int8((unsigned char)(0xc0 | encode));
7802 }
7803 
7804 void Assembler::xorq(Register dst, Register src) {
7805   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7806   emit_arith(0x33, 0xC0, dst, src);
7807 }
7808 
7809 void Assembler::xorq(Register dst, Address src) {
7810   InstructionMark im(this);
7811   prefixq(src, dst);
7812   emit_int8(0x33);
7813   emit_operand(dst, src);
7814 }
7815 
7816 #endif // !LP64