1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 
  32 class BlockBegin;
  33 class BlockList;
  34 class LIR_Assembler;
  35 class CodeEmitInfo;
  36 class CodeStub;
  37 class CodeStubList;
  38 class ArrayCopyStub;
  39 class LIR_Op;
  40 class ciType;
  41 class ValueType;
  42 class LIR_OpVisitState;
  43 class FpuStackSim;
  44 
  45 //---------------------------------------------------------------------
  46 //                 LIR Operands
  47 //  LIR_OprDesc
  48 //    LIR_OprPtr
  49 //      LIR_Const
  50 //      LIR_Address
  51 //---------------------------------------------------------------------
  52 class LIR_OprDesc;
  53 class LIR_OprPtr;
  54 class LIR_Const;
  55 class LIR_Address;
  56 class LIR_OprVisitor;
  57 
  58 
  59 typedef LIR_OprDesc* LIR_Opr;
  60 typedef int          RegNr;
  61 
  62 define_array(LIR_OprArray, LIR_Opr)
  63 define_stack(LIR_OprList, LIR_OprArray)
  64 
  65 define_array(LIR_OprRefArray, LIR_Opr*)
  66 define_stack(LIR_OprRefList, LIR_OprRefArray)
  67 
  68 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  69 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  70 
  71 define_array(LIR_OpArray, LIR_Op*)
  72 define_stack(LIR_OpList, LIR_OpArray)
  73 
  74 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  75 class LIR_OprPtr: public CompilationResourceObj {
  76  public:
  77   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  78   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  79 
  80   virtual LIR_Const*  as_constant()              { return NULL; }
  81   virtual LIR_Address* as_address()              { return NULL; }
  82   virtual BasicType type() const                 = 0;
  83   virtual void print_value_on(outputStream* out) const = 0;
  84 };
  85 
  86 
  87 
  88 // LIR constants
  89 class LIR_Const: public LIR_OprPtr {
  90  private:
  91   JavaValue _value;
  92 
  93   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  94   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  95   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  96 
  97  public:
  98   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  99   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
 100   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
 101   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 102   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 103   LIR_Const(void* p) {
 104 #ifdef _LP64
 105     assert(sizeof(jlong) >= sizeof(p), "too small");;
 106     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 107 #else
 108     assert(sizeof(jint) >= sizeof(p), "too small");;
 109     _value.set_type(T_INT);     _value.set_jint((jint)p);
 110 #endif
 111   }
 112   LIR_Const(Metadata* m) {
 113     _value.set_type(T_METADATA);
 114 #ifdef _LP64
 115     _value.set_jlong((jlong)m);
 116 #else
 117     _value.set_jint((jint)m);
 118 #endif // _LP64
 119   }
 120 
 121   virtual BasicType type()       const { return _value.get_type(); }
 122   virtual LIR_Const* as_constant()     { return this; }
 123 
 124   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 126   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 127   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 128   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 129   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 130   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 131 
 132 #ifdef _LP64
 133   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 134   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 135 #else
 136   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 137   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 138 #endif
 139 
 140 
 141   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 142   jint      as_jint_lo_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return low(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_lo();
 147     }
 148   }
 149   jint      as_jint_hi_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return high(jlong_cast(_value.get_jdouble()));
 152     } else {
 153       return as_jint_hi();
 154     }
 155   }
 156   jlong      as_jlong_bits() const    {
 157     if (type() == T_DOUBLE) {
 158       return jlong_cast(_value.get_jdouble());
 159     } else {
 160       return as_jlong();
 161     }
 162   }
 163 
 164   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 165 
 166 
 167   bool is_zero_float() {
 168     jfloat f = as_jfloat();
 169     jfloat ok = 0.0f;
 170     return jint_cast(f) == jint_cast(ok);
 171   }
 172 
 173   bool is_one_float() {
 174     jfloat f = as_jfloat();
 175     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 176   }
 177 
 178   bool is_zero_double() {
 179     jdouble d = as_jdouble();
 180     jdouble ok = 0.0;
 181     return jlong_cast(d) == jlong_cast(ok);
 182   }
 183 
 184   bool is_one_double() {
 185     jdouble d = as_jdouble();
 186     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 187   }
 188 };
 189 
 190 
 191 //---------------------LIR Operand descriptor------------------------------------
 192 //
 193 // The class LIR_OprDesc represents a LIR instruction operand;
 194 // it can be a register (ALU/FPU), stack location or a constant;
 195 // Constants and addresses are represented as resource area allocated
 196 // structures (see above).
 197 // Registers and stack locations are inlined into the this pointer
 198 // (see value function).
 199 
 200 class LIR_OprDesc: public CompilationResourceObj {
 201  public:
 202   // value structure:
 203   //     data       opr-type opr-kind
 204   // +--------------+-------+-------+
 205   // [max...........|7 6 5 4|3 2 1 0]
 206   //                             ^
 207   //                    is_pointer bit
 208   //
 209   // lowest bit cleared, means it is a structure pointer
 210   // we need  4 bits to represent types
 211 
 212  private:
 213   friend class LIR_OprFact;
 214 
 215   // Conversion
 216   intptr_t value() const                         { return (intptr_t) this; }
 217 
 218   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 219     return (value() & mask) == masked_value;
 220   }
 221 
 222   enum OprKind {
 223       pointer_value      = 0
 224     , stack_value        = 1
 225     , cpu_register       = 3
 226     , fpu_register       = 5
 227     , illegal_value      = 7
 228   };
 229 
 230   enum OprBits {
 231       pointer_bits   = 1
 232     , kind_bits      = 3
 233     , type_bits      = 4
 234     , size_bits      = 2
 235     , destroys_bits  = 1
 236     , virtual_bits   = 1
 237     , is_xmm_bits    = 1
 238     , last_use_bits  = 1
 239     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 240     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 241                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 242     , data_bits      = BitsPerInt - non_data_bits
 243     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 244   };
 245 
 246   enum OprShift {
 247       kind_shift     = 0
 248     , type_shift     = kind_shift     + kind_bits
 249     , size_shift     = type_shift     + type_bits
 250     , destroys_shift = size_shift     + size_bits
 251     , last_use_shift = destroys_shift + destroys_bits
 252     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 253     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 254     , is_xmm_shift   = virtual_shift + virtual_bits
 255     , data_shift     = is_xmm_shift + is_xmm_bits
 256     , reg1_shift = data_shift
 257     , reg2_shift = data_shift + reg_bits
 258 
 259   };
 260 
 261   enum OprSize {
 262       single_size = 0 << size_shift
 263     , double_size = 1 << size_shift
 264   };
 265 
 266   enum OprMask {
 267       kind_mask      = right_n_bits(kind_bits)
 268     , type_mask      = right_n_bits(type_bits) << type_shift
 269     , size_mask      = right_n_bits(size_bits) << size_shift
 270     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 271     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 272     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 273     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 274     , pointer_mask   = right_n_bits(pointer_bits)
 275     , lower_reg_mask = right_n_bits(reg_bits)
 276     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 277   };
 278 
 279   uintptr_t data() const                         { return value() >> data_shift; }
 280   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 281   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 282   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 283   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 284 
 285   static char type_char(BasicType t);
 286 
 287  public:
 288   enum {
 289     vreg_base = ConcreteRegisterImpl::number_of_registers,
 290     vreg_max = (1 << data_bits) - 1
 291   };
 292 
 293   static inline LIR_Opr illegalOpr();
 294 
 295   enum OprType {
 296       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 297     , int_type      = 1 << type_shift
 298     , long_type     = 2 << type_shift
 299     , object_type   = 3 << type_shift
 300     , address_type  = 4 << type_shift
 301     , float_type    = 5 << type_shift
 302     , double_type   = 6 << type_shift
 303     , metadata_type = 7 << type_shift
 304   };
 305   friend OprType as_OprType(BasicType t);
 306   friend BasicType as_BasicType(OprType t);
 307 
 308   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 309   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 310 
 311   static OprSize size_for(BasicType t) {
 312     switch (t) {
 313       case T_LONG:
 314       case T_DOUBLE:
 315         return double_size;
 316         break;
 317 
 318       case T_FLOAT:
 319       case T_BOOLEAN:
 320       case T_CHAR:
 321       case T_BYTE:
 322       case T_SHORT:
 323       case T_INT:
 324       case T_ADDRESS:
 325       case T_OBJECT:
 326       case T_ARRAY:
 327       case T_METADATA:
 328         return single_size;
 329         break;
 330 
 331       default:
 332         ShouldNotReachHere();
 333         return single_size;
 334       }
 335   }
 336 
 337 
 338   void validate_type() const PRODUCT_RETURN;
 339 
 340   BasicType type() const {
 341     if (is_pointer()) {
 342       return pointer()->type();
 343     }
 344     return as_BasicType(type_field());
 345   }
 346 
 347 
 348   ValueType* value_type() const                  { return as_ValueType(type()); }
 349 
 350   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 351 
 352   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 353   // checks whether types are same
 354   bool is_same_type(LIR_Opr opr) const     {
 355     assert(type_field() != unknown_type &&
 356            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 357     return type_field() == opr->type_field();
 358   }
 359   bool is_same_register(LIR_Opr opr) {
 360     return (is_register() && opr->is_register() &&
 361             kind_field() == opr->kind_field() &&
 362             (value() & no_type_mask) == (opr->value() & no_type_mask));
 363   }
 364 
 365   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 366   bool is_illegal() const      { return kind_field() == illegal_value; }
 367   bool is_valid() const        { return kind_field() != illegal_value; }
 368 
 369   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 370   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 371 
 372   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 373   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 374 
 375   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 376   bool is_oop() const;
 377 
 378   // semantic for fpu- and xmm-registers:
 379   // * is_float and is_double return true for xmm_registers
 380   //   (so is_single_fpu and is_single_xmm are true)
 381   // * So you must always check for is_???_xmm prior to is_???_fpu to
 382   //   distinguish between fpu- and xmm-registers
 383 
 384   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 385   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 386   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 387 
 388   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 389   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 390   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 391   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 392   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 393 
 394   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 395   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 396   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 397   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 398   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 399 
 400   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 401   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 402   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 403 
 404   // fast accessor functions for special bits that do not work for pointers
 405   // (in this functions, the check for is_pointer() is omitted)
 406   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 407   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 408   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 409   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 410   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 411 
 412   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 413   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 414   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 415   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 416 
 417 
 418   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 419   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 420   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 424   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 425   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 426   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 427   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 428   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 429   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 430 
 431   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 432   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 433   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 434 
 435   Register as_register()    const;
 436   Register as_register_lo() const;
 437   Register as_register_hi() const;
 438 
 439   Register as_pointer_register() {
 440 #ifdef _LP64
 441     if (is_double_cpu()) {
 442       assert(as_register_lo() == as_register_hi(), "should be a single register");
 443       return as_register_lo();
 444     }
 445 #endif
 446     return as_register();
 447   }
 448 
 449 #ifdef X86
 450   XMMRegister as_xmm_float_reg() const;
 451   XMMRegister as_xmm_double_reg() const;
 452   // for compatibility with RInfo
 453   int fpu () const                                  { return lo_reg_half(); }
 454 #endif
 455 #if defined(SPARC) || defined(ARM) || defined(PPC) || defined(AARCH64)
 456   FloatRegister as_float_reg   () const;
 457   FloatRegister as_double_reg  () const;
 458 #endif
 459 
 460   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 461   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 462   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 463   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 464   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 465 
 466   void print() const PRODUCT_RETURN;
 467   void print(outputStream* out) const PRODUCT_RETURN;
 468 };
 469 
 470 
 471 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 472   switch (type) {
 473   case T_INT:      return LIR_OprDesc::int_type;
 474   case T_LONG:     return LIR_OprDesc::long_type;
 475   case T_FLOAT:    return LIR_OprDesc::float_type;
 476   case T_DOUBLE:   return LIR_OprDesc::double_type;
 477   case T_OBJECT:
 478   case T_ARRAY:    return LIR_OprDesc::object_type;
 479   case T_ADDRESS:  return LIR_OprDesc::address_type;
 480   case T_METADATA: return LIR_OprDesc::metadata_type;
 481   case T_ILLEGAL:  // fall through
 482   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 483   }
 484 }
 485 
 486 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 487   switch (t) {
 488   case LIR_OprDesc::int_type:     return T_INT;
 489   case LIR_OprDesc::long_type:    return T_LONG;
 490   case LIR_OprDesc::float_type:   return T_FLOAT;
 491   case LIR_OprDesc::double_type:  return T_DOUBLE;
 492   case LIR_OprDesc::object_type:  return T_OBJECT;
 493   case LIR_OprDesc::address_type: return T_ADDRESS;
 494   case LIR_OprDesc::metadata_type:return T_METADATA;
 495   case LIR_OprDesc::unknown_type: // fall through
 496   default: ShouldNotReachHere();  return T_ILLEGAL;
 497   }
 498 }
 499 
 500 
 501 // LIR_Address
 502 class LIR_Address: public LIR_OprPtr {
 503  friend class LIR_OpVisitState;
 504 
 505  public:
 506   // NOTE: currently these must be the log2 of the scale factor (and
 507   // must also be equivalent to the ScaleFactor enum in
 508   // assembler_i486.hpp)
 509   enum Scale {
 510     times_1  =  0,
 511     times_2  =  1,
 512     times_4  =  2,
 513     times_8  =  3
 514   };
 515 
 516  private:
 517   LIR_Opr   _base;
 518   LIR_Opr   _index;
 519   Scale     _scale;
 520   intx      _disp;
 521   BasicType _type;
 522 
 523  public:
 524   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 525        _base(base)
 526      , _index(index)
 527      , _scale(times_1)
 528      , _type(type)
 529      , _disp(0) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _type(type)
 536      , _disp(disp) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, BasicType type):
 539        _base(base)
 540      , _index(LIR_OprDesc::illegalOpr())
 541      , _scale(times_1)
 542      , _type(type)
 543      , _disp(0) { verify(); }
 544 
 545 #if defined(X86) || defined(ARM) || defined(AARCH64)
 546   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 547        _base(base)
 548      , _index(index)
 549      , _scale(scale)
 550      , _type(type)
 551      , _disp(disp) { verify(); }
 552 #endif // X86 || ARM
 553 
 554   LIR_Opr base()  const                          { return _base;  }
 555   LIR_Opr index() const                          { return _index; }
 556   Scale   scale() const                          { return _scale; }
 557   intx    disp()  const                          { return _disp;  }
 558 
 559   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 560 
 561   virtual LIR_Address* as_address()              { return this;   }
 562   virtual BasicType type() const                 { return _type; }
 563   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 564 
 565   void verify0() const PRODUCT_RETURN;
 566 #if defined(LIR_ADDRESS_PD_VERIFY) && !defined(PRODUCT)
 567   void pd_verify() const;
 568   void verify() const { pd_verify(); }
 569 #else
 570   void verify() const { verify0(); }
 571 #endif
 572 
 573   static Scale scale(BasicType type);
 574 };
 575 
 576 
 577 // operand factory
 578 class LIR_OprFact: public AllStatic {
 579  public:
 580 
 581   static LIR_Opr illegalOpr;
 582 
 583   static LIR_Opr single_cpu(int reg) {
 584     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 585                                LIR_OprDesc::int_type             |
 586                                LIR_OprDesc::cpu_register         |
 587                                LIR_OprDesc::single_size);
 588   }
 589   static LIR_Opr single_cpu_oop(int reg) {
 590     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 591                                LIR_OprDesc::object_type          |
 592                                LIR_OprDesc::cpu_register         |
 593                                LIR_OprDesc::single_size);
 594   }
 595   static LIR_Opr single_cpu_address(int reg) {
 596     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 597                                LIR_OprDesc::address_type         |
 598                                LIR_OprDesc::cpu_register         |
 599                                LIR_OprDesc::single_size);
 600   }
 601   static LIR_Opr single_cpu_metadata(int reg) {
 602     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 603                                LIR_OprDesc::metadata_type        |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::single_size);
 606   }
 607   static LIR_Opr double_cpu(int reg1, int reg2) {
 608     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 609     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 610                                (reg2 << LIR_OprDesc::reg2_shift) |
 611                                LIR_OprDesc::long_type            |
 612                                LIR_OprDesc::cpu_register         |
 613                                LIR_OprDesc::double_size);
 614   }
 615 
 616   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 617                                                                              LIR_OprDesc::float_type           |
 618                                                                              LIR_OprDesc::fpu_register         |
 619                                                                              LIR_OprDesc::single_size); }
 620 #if defined(ARM32)
 621   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 622   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 623   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 624 #endif
 625 #ifdef SPARC
 626   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 627                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 628                                                                              LIR_OprDesc::double_type          |
 629                                                                              LIR_OprDesc::fpu_register         |
 630                                                                              LIR_OprDesc::double_size); }
 631 #endif
 632 #if defined(X86) || defined(AARCH64)
 633   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 634                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 635                                                                              LIR_OprDesc::double_type          |
 636                                                                              LIR_OprDesc::fpu_register         |
 637                                                                              LIR_OprDesc::double_size); }
 638 
 639   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 640                                                                              LIR_OprDesc::float_type           |
 641                                                                              LIR_OprDesc::fpu_register         |
 642                                                                              LIR_OprDesc::single_size          |
 643                                                                              LIR_OprDesc::is_xmm_mask); }
 644   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 645                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 646                                                                              LIR_OprDesc::double_type          |
 647                                                                              LIR_OprDesc::fpu_register         |
 648                                                                              LIR_OprDesc::double_size          |
 649                                                                              LIR_OprDesc::is_xmm_mask); }
 650 #endif // X86
 651 #ifdef PPC
 652   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 653                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 654                                                                              LIR_OprDesc::double_type          |
 655                                                                              LIR_OprDesc::fpu_register         |
 656                                                                              LIR_OprDesc::double_size); }
 657   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 658                                                                              LIR_OprDesc::float_type           |
 659                                                                              LIR_OprDesc::cpu_register         |
 660                                                                              LIR_OprDesc::single_size); }
 661   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 662                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 663                                                                              LIR_OprDesc::double_type          |
 664                                                                              LIR_OprDesc::cpu_register         |
 665                                                                              LIR_OprDesc::double_size); }
 666 #endif // PPC
 667 
 668   static LIR_Opr virtual_register(int index, BasicType type) {
 669     LIR_Opr res;
 670     switch (type) {
 671       case T_OBJECT: // fall through
 672       case T_ARRAY:
 673         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 674                                             LIR_OprDesc::object_type  |
 675                                             LIR_OprDesc::cpu_register |
 676                                             LIR_OprDesc::single_size  |
 677                                             LIR_OprDesc::virtual_mask);
 678         break;
 679 
 680       case T_METADATA:
 681         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 682                                             LIR_OprDesc::metadata_type|
 683                                             LIR_OprDesc::cpu_register |
 684                                             LIR_OprDesc::single_size  |
 685                                             LIR_OprDesc::virtual_mask);
 686         break;
 687 
 688       case T_INT:
 689         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 690                                   LIR_OprDesc::int_type              |
 691                                   LIR_OprDesc::cpu_register          |
 692                                   LIR_OprDesc::single_size           |
 693                                   LIR_OprDesc::virtual_mask);
 694         break;
 695 
 696       case T_ADDRESS:
 697         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 698                                   LIR_OprDesc::address_type          |
 699                                   LIR_OprDesc::cpu_register          |
 700                                   LIR_OprDesc::single_size           |
 701                                   LIR_OprDesc::virtual_mask);
 702         break;
 703 
 704       case T_LONG:
 705         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 706                                   LIR_OprDesc::long_type             |
 707                                   LIR_OprDesc::cpu_register          |
 708                                   LIR_OprDesc::double_size           |
 709                                   LIR_OprDesc::virtual_mask);
 710         break;
 711 
 712 #ifdef __SOFTFP__
 713       case T_FLOAT:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::float_type  |
 716                                   LIR_OprDesc::cpu_register |
 717                                   LIR_OprDesc::single_size |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720       case T_DOUBLE:
 721         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 722                                   LIR_OprDesc::double_type |
 723                                   LIR_OprDesc::cpu_register |
 724                                   LIR_OprDesc::double_size |
 725                                   LIR_OprDesc::virtual_mask);
 726         break;
 727 #else // __SOFTFP__
 728       case T_FLOAT:
 729         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 730                                   LIR_OprDesc::float_type           |
 731                                   LIR_OprDesc::fpu_register         |
 732                                   LIR_OprDesc::single_size          |
 733                                   LIR_OprDesc::virtual_mask);
 734         break;
 735 
 736       case
 737         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 738                                             LIR_OprDesc::double_type           |
 739                                             LIR_OprDesc::fpu_register          |
 740                                             LIR_OprDesc::double_size           |
 741                                             LIR_OprDesc::virtual_mask);
 742         break;
 743 #endif // __SOFTFP__
 744       default:       ShouldNotReachHere(); res = illegalOpr;
 745     }
 746 
 747 #ifdef ASSERT
 748     res->validate_type();
 749     assert(res->vreg_number() == index, "conversion check");
 750     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 751     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 752 
 753     // old-style calculation; check if old and new method are equal
 754     LIR_OprDesc::OprType t = as_OprType(type);
 755 #ifdef __SOFTFP__
 756     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 757                                t |
 758                                LIR_OprDesc::cpu_register |
 759                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 760 #else // __SOFTFP__
 761     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 762                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 763                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 764     assert(res == old_res, "old and new method not equal");
 765 #endif // __SOFTFP__
 766 #endif // ASSERT
 767 
 768     return res;
 769   }
 770 
 771   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 772   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 773   // index 2.
 774   static LIR_Opr stack(int index, BasicType type) {
 775     LIR_Opr res;
 776     switch (type) {
 777       case T_OBJECT: // fall through
 778       case T_ARRAY:
 779         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 780                                   LIR_OprDesc::object_type           |
 781                                   LIR_OprDesc::stack_value           |
 782                                   LIR_OprDesc::single_size);
 783         break;
 784 
 785       case T_METADATA:
 786         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 787                                   LIR_OprDesc::metadata_type         |
 788                                   LIR_OprDesc::stack_value           |
 789                                   LIR_OprDesc::single_size);
 790         break;
 791       case T_INT:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::int_type              |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::single_size);
 796         break;
 797 
 798       case T_ADDRESS:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::address_type          |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::single_size);
 803         break;
 804 
 805       case T_LONG:
 806         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 807                                   LIR_OprDesc::long_type             |
 808                                   LIR_OprDesc::stack_value           |
 809                                   LIR_OprDesc::double_size);
 810         break;
 811 
 812       case T_FLOAT:
 813         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 814                                   LIR_OprDesc::float_type            |
 815                                   LIR_OprDesc::stack_value           |
 816                                   LIR_OprDesc::single_size);
 817         break;
 818       case T_DOUBLE:
 819         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 820                                   LIR_OprDesc::double_type           |
 821                                   LIR_OprDesc::stack_value           |
 822                                   LIR_OprDesc::double_size);
 823         break;
 824 
 825       default:       ShouldNotReachHere(); res = illegalOpr;
 826     }
 827 
 828 #ifdef ASSERT
 829     assert(index >= 0, "index must be positive");
 830     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 831 
 832     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 833                                           LIR_OprDesc::stack_value           |
 834                                           as_OprType(type)                   |
 835                                           LIR_OprDesc::size_for(type));
 836     assert(res == old_res, "old and new method not equal");
 837 #endif
 838 
 839     return res;
 840   }
 841 
 842   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 843   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 844   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 845   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 846   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 847   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 848   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 849   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 850   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 851   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 852   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 853 
 854   static LIR_Opr value_type(ValueType* type);
 855   static LIR_Opr dummy_value_type(ValueType* type);
 856 };
 857 
 858 
 859 //-------------------------------------------------------------------------------
 860 //                   LIR Instructions
 861 //-------------------------------------------------------------------------------
 862 //
 863 // Note:
 864 //  - every instruction has a result operand
 865 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 866 //  - every instruction has a LIR_OpCode operand
 867 //  - LIR_OpN, means an instruction that has N input operands
 868 //
 869 // class hierarchy:
 870 //
 871 class  LIR_Op;
 872 class    LIR_Op0;
 873 class      LIR_OpLabel;
 874 class    LIR_Op1;
 875 class      LIR_OpBranch;
 876 class      LIR_OpConvert;
 877 class      LIR_OpAllocObj;
 878 class      LIR_OpRoundFP;
 879 class    LIR_Op2;
 880 class    LIR_OpDelay;
 881 class    LIR_Op3;
 882 class      LIR_OpAllocArray;
 883 class    LIR_OpCall;
 884 class      LIR_OpJavaCall;
 885 class      LIR_OpRTCall;
 886 class    LIR_OpArrayCopy;
 887 class    LIR_OpUpdateCRC32;
 888 class    LIR_OpLock;
 889 class    LIR_OpTypeCheck;
 890 class    LIR_OpCompareAndSwap;
 891 class    LIR_OpProfileCall;
 892 class    LIR_OpProfileType;
 893 #ifdef ASSERT
 894 class    LIR_OpAssert;
 895 #endif
 896 
 897 // LIR operation codes
 898 enum LIR_Code {
 899     lir_none
 900   , begin_op0
 901       , lir_word_align
 902       , lir_label
 903       , lir_nop
 904       , lir_backwardbranch_target
 905       , lir_std_entry
 906       , lir_osr_entry
 907       , lir_build_frame
 908       , lir_fpop_raw
 909       , lir_24bit_FPU
 910       , lir_reset_FPU
 911       , lir_breakpoint
 912       , lir_rtcall
 913       , lir_membar
 914       , lir_membar_acquire
 915       , lir_membar_release
 916       , lir_membar_loadload
 917       , lir_membar_storestore
 918       , lir_membar_loadstore
 919       , lir_membar_storeload
 920       , lir_get_thread
 921   , end_op0
 922   , begin_op1
 923       , lir_fxch
 924       , lir_fld
 925       , lir_ffree
 926       , lir_push
 927       , lir_pop
 928       , lir_null_check
 929       , lir_return
 930       , lir_leal
 931       , lir_neg
 932       , lir_branch
 933       , lir_cond_float_branch
 934       , lir_move
 935       , lir_convert
 936       , lir_alloc_object
 937       , lir_monaddr
 938       , lir_roundfp
 939       , lir_safepoint
 940       , lir_pack64
 941       , lir_unpack64
 942       , lir_unwind
 943   , end_op1
 944   , begin_op2
 945       , lir_cmp
 946       , lir_cmp_l2i
 947       , lir_ucmp_fd2i
 948       , lir_cmp_fd2i
 949       , lir_cmove
 950       , lir_add
 951       , lir_sub
 952       , lir_mul
 953       , lir_mul_strictfp
 954       , lir_div
 955       , lir_div_strictfp
 956       , lir_rem
 957       , lir_sqrt
 958       , lir_abs
 959       , lir_tan
 960       , lir_log10
 961       , lir_pow
 962       , lir_logic_and
 963       , lir_logic_or
 964       , lir_logic_xor
 965       , lir_shl
 966       , lir_shr
 967       , lir_ushr
 968       , lir_alloc_array
 969       , lir_throw
 970       , lir_compare_to
 971       , lir_xadd
 972       , lir_xchg
 973   , end_op2
 974   , begin_op3
 975       , lir_idiv
 976       , lir_irem
 977   , end_op3
 978   , begin_opJavaCall
 979       , lir_static_call
 980       , lir_optvirtual_call
 981       , lir_icvirtual_call
 982       , lir_virtual_call
 983       , lir_dynamic_call
 984   , end_opJavaCall
 985   , begin_opArrayCopy
 986       , lir_arraycopy
 987   , end_opArrayCopy
 988   , begin_opUpdateCRC32
 989       , lir_updatecrc32
 990   , end_opUpdateCRC32
 991   , begin_opLock
 992     , lir_lock
 993     , lir_unlock
 994   , end_opLock
 995   , begin_delay_slot
 996     , lir_delay_slot
 997   , end_delay_slot
 998   , begin_opTypeCheck
 999     , lir_instanceof
1000     , lir_checkcast
1001     , lir_store_check
1002   , end_opTypeCheck
1003   , begin_opCompareAndSwap
1004     , lir_cas_long
1005     , lir_cas_obj
1006     , lir_cas_int
1007   , end_opCompareAndSwap
1008   , begin_opMDOProfile
1009     , lir_profile_call
1010     , lir_profile_type
1011   , end_opMDOProfile
1012   , begin_opAssert
1013     , lir_assert
1014   , end_opAssert
1015 };
1016 
1017 
1018 enum LIR_Condition {
1019     lir_cond_equal
1020   , lir_cond_notEqual
1021   , lir_cond_less
1022   , lir_cond_lessEqual
1023   , lir_cond_greaterEqual
1024   , lir_cond_greater
1025   , lir_cond_belowEqual
1026   , lir_cond_aboveEqual
1027   , lir_cond_always
1028   , lir_cond_unknown = -1
1029 };
1030 
1031 
1032 enum LIR_PatchCode {
1033   lir_patch_none,
1034   lir_patch_low,
1035   lir_patch_high,
1036   lir_patch_normal
1037 };
1038 
1039 
1040 enum LIR_MoveKind {
1041   lir_move_normal,
1042   lir_move_volatile,
1043   lir_move_unaligned,
1044   lir_move_wide,
1045   lir_move_max_flag
1046 };
1047 
1048 
1049 // --------------------------------------------------
1050 // LIR_Op
1051 // --------------------------------------------------
1052 class LIR_Op: public CompilationResourceObj {
1053  friend class LIR_OpVisitState;
1054 
1055 #ifdef ASSERT
1056  private:
1057   const char *  _file;
1058   int           _line;
1059 #endif
1060 
1061  protected:
1062   LIR_Opr       _result;
1063   unsigned short _code;
1064   unsigned short _flags;
1065   CodeEmitInfo* _info;
1066   int           _id;     // value id for register allocation
1067   int           _fpu_pop_count;
1068   Instruction*  _source; // for debugging
1069 
1070   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1071 
1072  protected:
1073   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1074 
1075  public:
1076   LIR_Op()
1077     : _result(LIR_OprFact::illegalOpr)
1078     , _code(lir_none)
1079     , _flags(0)
1080     , _info(NULL)
1081 #ifdef ASSERT
1082     , _file(NULL)
1083     , _line(0)
1084 #endif
1085     , _fpu_pop_count(0)
1086     , _source(NULL)
1087     , _id(-1)                             {}
1088 
1089   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1090     : _result(result)
1091     , _code(code)
1092     , _flags(0)
1093     , _info(info)
1094 #ifdef ASSERT
1095     , _file(NULL)
1096     , _line(0)
1097 #endif
1098     , _fpu_pop_count(0)
1099     , _source(NULL)
1100     , _id(-1)                             {}
1101 
1102   CodeEmitInfo* info() const                  { return _info;   }
1103   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1104   LIR_Opr result_opr() const                  { return _result; }
1105   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1106 
1107 #ifdef ASSERT
1108   void set_file_and_line(const char * file, int line) {
1109     _file = file;
1110     _line = line;
1111   }
1112 #endif
1113 
1114   virtual const char * name() const PRODUCT_RETURN0;
1115 
1116   int id()             const                  { return _id;     }
1117   void set_id(int id)                         { _id = id; }
1118 
1119   // FPU stack simulation helpers -- only used on Intel
1120   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1121   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1122   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1123 
1124   Instruction* source() const                 { return _source; }
1125   void set_source(Instruction* ins)           { _source = ins; }
1126 
1127   virtual void emit_code(LIR_Assembler* masm) = 0;
1128   virtual void print_instr(outputStream* out) const   = 0;
1129   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1130 
1131   virtual bool is_patching() { return false; }
1132   virtual LIR_OpCall* as_OpCall() { return NULL; }
1133   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1134   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1135   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1136   virtual LIR_OpLock* as_OpLock() { return NULL; }
1137   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1138   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1139   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1140   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1141   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1142   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1143   virtual LIR_Op0* as_Op0() { return NULL; }
1144   virtual LIR_Op1* as_Op1() { return NULL; }
1145   virtual LIR_Op2* as_Op2() { return NULL; }
1146   virtual LIR_Op3* as_Op3() { return NULL; }
1147   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1148   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1149   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1150   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1151   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1152   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1153 #ifdef ASSERT
1154   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1155 #endif
1156 
1157   virtual void verify() const {}
1158 };
1159 
1160 // for calls
1161 class LIR_OpCall: public LIR_Op {
1162  friend class LIR_OpVisitState;
1163 
1164  protected:
1165   address      _addr;
1166   LIR_OprList* _arguments;
1167  protected:
1168   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1169              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1170     : LIR_Op(code, result, info)
1171     , _arguments(arguments)
1172     , _addr(addr) {}
1173 
1174  public:
1175   address addr() const                           { return _addr; }
1176   const LIR_OprList* arguments() const           { return _arguments; }
1177   virtual LIR_OpCall* as_OpCall()                { return this; }
1178 };
1179 
1180 
1181 // --------------------------------------------------
1182 // LIR_OpJavaCall
1183 // --------------------------------------------------
1184 class LIR_OpJavaCall: public LIR_OpCall {
1185  friend class LIR_OpVisitState;
1186 
1187  private:
1188   ciMethod* _method;
1189   LIR_Opr   _receiver;
1190   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1191 
1192  public:
1193   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1194                  LIR_Opr receiver, LIR_Opr result,
1195                  address addr, LIR_OprList* arguments,
1196                  CodeEmitInfo* info)
1197   : LIR_OpCall(code, addr, result, arguments, info)
1198   , _receiver(receiver)
1199   , _method(method)
1200   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1201   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1202 
1203   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1204                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1205                  LIR_OprList* arguments, CodeEmitInfo* info)
1206   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1207   , _receiver(receiver)
1208   , _method(method)
1209   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1210   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1211 
1212   LIR_Opr receiver() const                       { return _receiver; }
1213   ciMethod* method() const                       { return _method;   }
1214 
1215   // JSR 292 support.
1216   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1217   bool is_method_handle_invoke() const {
1218     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1219            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1220   }
1221 
1222   intptr_t vtable_offset() const {
1223     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1224     return (intptr_t) addr();
1225   }
1226 
1227   virtual void emit_code(LIR_Assembler* masm);
1228   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1229   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1230 };
1231 
1232 // --------------------------------------------------
1233 // LIR_OpLabel
1234 // --------------------------------------------------
1235 // Location where a branch can continue
1236 class LIR_OpLabel: public LIR_Op {
1237  friend class LIR_OpVisitState;
1238 
1239  private:
1240   Label* _label;
1241  public:
1242   LIR_OpLabel(Label* lbl)
1243    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1244    , _label(lbl)                                 {}
1245   Label* label() const                           { return _label; }
1246 
1247   virtual void emit_code(LIR_Assembler* masm);
1248   virtual LIR_OpLabel* as_OpLabel() { return this; }
1249   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1250 };
1251 
1252 // LIR_OpArrayCopy
1253 class LIR_OpArrayCopy: public LIR_Op {
1254  friend class LIR_OpVisitState;
1255 
1256  private:
1257   ArrayCopyStub*  _stub;
1258   LIR_Opr   _src;
1259   LIR_Opr   _src_pos;
1260   LIR_Opr   _dst;
1261   LIR_Opr   _dst_pos;
1262   LIR_Opr   _length;
1263   LIR_Opr   _tmp;
1264   ciArrayKlass* _expected_type;
1265   int       _flags;
1266 
1267 public:
1268   enum Flags {
1269     src_null_check         = 1 << 0,
1270     dst_null_check         = 1 << 1,
1271     src_pos_positive_check = 1 << 2,
1272     dst_pos_positive_check = 1 << 3,
1273     length_positive_check  = 1 << 4,
1274     src_range_check        = 1 << 5,
1275     dst_range_check        = 1 << 6,
1276     type_check             = 1 << 7,
1277     overlapping            = 1 << 8,
1278     unaligned              = 1 << 9,
1279     src_objarray           = 1 << 10,
1280     dst_objarray           = 1 << 11,
1281     all_flags              = (1 << 12) - 1
1282   };
1283 
1284   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1285                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1286 
1287   LIR_Opr src() const                            { return _src; }
1288   LIR_Opr src_pos() const                        { return _src_pos; }
1289   LIR_Opr dst() const                            { return _dst; }
1290   LIR_Opr dst_pos() const                        { return _dst_pos; }
1291   LIR_Opr length() const                         { return _length; }
1292   LIR_Opr tmp() const                            { return _tmp; }
1293   int flags() const                              { return _flags; }
1294   ciArrayKlass* expected_type() const            { return _expected_type; }
1295   ArrayCopyStub* stub() const                    { return _stub; }
1296 
1297   virtual void emit_code(LIR_Assembler* masm);
1298   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1299   void print_instr(outputStream* out) const PRODUCT_RETURN;
1300 };
1301 
1302 // LIR_OpUpdateCRC32
1303 class LIR_OpUpdateCRC32: public LIR_Op {
1304   friend class LIR_OpVisitState;
1305 
1306 private:
1307   LIR_Opr   _crc;
1308   LIR_Opr   _val;
1309 
1310 public:
1311 
1312   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1313 
1314   LIR_Opr crc() const                            { return _crc; }
1315   LIR_Opr val() const                            { return _val; }
1316 
1317   virtual void emit_code(LIR_Assembler* masm);
1318   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1319   void print_instr(outputStream* out) const PRODUCT_RETURN;
1320 };
1321 
1322 // --------------------------------------------------
1323 // LIR_Op0
1324 // --------------------------------------------------
1325 class LIR_Op0: public LIR_Op {
1326  friend class LIR_OpVisitState;
1327 
1328  public:
1329   LIR_Op0(LIR_Code code)
1330    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1331   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1332    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1333 
1334   virtual void emit_code(LIR_Assembler* masm);
1335   virtual LIR_Op0* as_Op0() { return this; }
1336   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1337 };
1338 
1339 
1340 // --------------------------------------------------
1341 // LIR_Op1
1342 // --------------------------------------------------
1343 
1344 class LIR_Op1: public LIR_Op {
1345  friend class LIR_OpVisitState;
1346 
1347  protected:
1348   LIR_Opr         _opr;   // input operand
1349   BasicType       _type;  // Operand types
1350   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1351 
1352   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1353 
1354   void set_kind(LIR_MoveKind kind) {
1355     assert(code() == lir_move, "must be");
1356     _flags = kind;
1357   }
1358 
1359  public:
1360   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1361     : LIR_Op(code, result, info)
1362     , _opr(opr)
1363     , _patch(patch)
1364     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1365 
1366   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1367     : LIR_Op(code, result, info)
1368     , _opr(opr)
1369     , _patch(patch)
1370     , _type(type)                      {
1371     assert(code == lir_move, "must be");
1372     set_kind(kind);
1373   }
1374 
1375   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1376     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1377     , _opr(opr)
1378     , _patch(lir_patch_none)
1379     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1380 
1381   LIR_Opr in_opr()           const               { return _opr;   }
1382   LIR_PatchCode patch_code() const               { return _patch; }
1383   BasicType type()           const               { return _type;  }
1384 
1385   LIR_MoveKind move_kind() const {
1386     assert(code() == lir_move, "must be");
1387     return (LIR_MoveKind)_flags;
1388   }
1389 
1390   virtual bool is_patching() { return _patch != lir_patch_none; }
1391   virtual void emit_code(LIR_Assembler* masm);
1392   virtual LIR_Op1* as_Op1() { return this; }
1393   virtual const char * name() const PRODUCT_RETURN0;
1394 
1395   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1396 
1397   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1398   virtual void verify() const;
1399 };
1400 
1401 
1402 // for runtime calls
1403 class LIR_OpRTCall: public LIR_OpCall {
1404  friend class LIR_OpVisitState;
1405 
1406  private:
1407   LIR_Opr _tmp;
1408  public:
1409   LIR_OpRTCall(address addr, LIR_Opr tmp,
1410                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1411     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1412     , _tmp(tmp) {}
1413 
1414   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1415   virtual void emit_code(LIR_Assembler* masm);
1416   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1417 
1418   LIR_Opr tmp() const                            { return _tmp; }
1419 
1420   virtual void verify() const;
1421 };
1422 
1423 
1424 class LIR_OpBranch: public LIR_Op {
1425  friend class LIR_OpVisitState;
1426 
1427  private:
1428   LIR_Condition _cond;
1429   BasicType     _type;
1430   Label*        _label;
1431   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1432   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1433   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1434 
1435  public:
1436   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1437     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1438     , _cond(cond)
1439     , _type(type)
1440     , _label(lbl)
1441     , _block(NULL)
1442     , _ublock(NULL)
1443     , _stub(NULL) { }
1444 
1445   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1446   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1447 
1448   // for unordered comparisons
1449   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1450 
1451   LIR_Condition cond()        const              { return _cond;        }
1452   BasicType     type()        const              { return _type;        }
1453   Label*        label()       const              { return _label;       }
1454   BlockBegin*   block()       const              { return _block;       }
1455   BlockBegin*   ublock()      const              { return _ublock;      }
1456   CodeStub*     stub()        const              { return _stub;       }
1457 
1458   void          change_block(BlockBegin* b);
1459   void          change_ublock(BlockBegin* b);
1460   void          negate_cond();
1461 
1462   virtual void emit_code(LIR_Assembler* masm);
1463   virtual LIR_OpBranch* as_OpBranch() { return this; }
1464   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1465 };
1466 
1467 
1468 class ConversionStub;
1469 
1470 class LIR_OpConvert: public LIR_Op1 {
1471  friend class LIR_OpVisitState;
1472 
1473  private:
1474    Bytecodes::Code _bytecode;
1475    ConversionStub* _stub;
1476 #ifdef PPC
1477   LIR_Opr _tmp1;
1478   LIR_Opr _tmp2;
1479 #endif
1480 
1481  public:
1482    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1483      : LIR_Op1(lir_convert, opr, result)
1484      , _stub(stub)
1485 #ifdef PPC
1486      , _tmp1(LIR_OprDesc::illegalOpr())
1487      , _tmp2(LIR_OprDesc::illegalOpr())
1488 #endif
1489      , _bytecode(code)                           {}
1490 
1491 #ifdef PPC
1492    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1493                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1494      : LIR_Op1(lir_convert, opr, result)
1495      , _stub(stub)
1496      , _tmp1(tmp1)
1497      , _tmp2(tmp2)
1498      , _bytecode(code)                           {}
1499 #endif
1500 
1501   Bytecodes::Code bytecode() const               { return _bytecode; }
1502   ConversionStub* stub() const                   { return _stub; }
1503 #ifdef PPC
1504   LIR_Opr tmp1() const                           { return _tmp1; }
1505   LIR_Opr tmp2() const                           { return _tmp2; }
1506 #endif
1507 
1508   virtual void emit_code(LIR_Assembler* masm);
1509   virtual LIR_OpConvert* as_OpConvert() { return this; }
1510   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1511 
1512   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1513 };
1514 
1515 
1516 // LIR_OpAllocObj
1517 class LIR_OpAllocObj : public LIR_Op1 {
1518  friend class LIR_OpVisitState;
1519 
1520  private:
1521   LIR_Opr _tmp1;
1522   LIR_Opr _tmp2;
1523   LIR_Opr _tmp3;
1524   LIR_Opr _tmp4;
1525   int     _hdr_size;
1526   int     _obj_size;
1527   CodeStub* _stub;
1528   bool    _init_check;
1529 
1530  public:
1531   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1532                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1533                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1534     : LIR_Op1(lir_alloc_object, klass, result)
1535     , _tmp1(t1)
1536     , _tmp2(t2)
1537     , _tmp3(t3)
1538     , _tmp4(t4)
1539     , _hdr_size(hdr_size)
1540     , _obj_size(obj_size)
1541     , _init_check(init_check)
1542     , _stub(stub)                                { }
1543 
1544   LIR_Opr klass()        const                   { return in_opr();     }
1545   LIR_Opr obj()          const                   { return result_opr(); }
1546   LIR_Opr tmp1()         const                   { return _tmp1;        }
1547   LIR_Opr tmp2()         const                   { return _tmp2;        }
1548   LIR_Opr tmp3()         const                   { return _tmp3;        }
1549   LIR_Opr tmp4()         const                   { return _tmp4;        }
1550   int     header_size()  const                   { return _hdr_size;    }
1551   int     object_size()  const                   { return _obj_size;    }
1552   bool    init_check()   const                   { return _init_check;  }
1553   CodeStub* stub()       const                   { return _stub;        }
1554 
1555   virtual void emit_code(LIR_Assembler* masm);
1556   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1557   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1558 };
1559 
1560 
1561 // LIR_OpRoundFP
1562 class LIR_OpRoundFP : public LIR_Op1 {
1563  friend class LIR_OpVisitState;
1564 
1565  private:
1566   LIR_Opr _tmp;
1567 
1568  public:
1569   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1570     : LIR_Op1(lir_roundfp, reg, result)
1571     , _tmp(stack_loc_temp) {}
1572 
1573   LIR_Opr tmp() const                            { return _tmp; }
1574   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1575   void print_instr(outputStream* out) const PRODUCT_RETURN;
1576 };
1577 
1578 // LIR_OpTypeCheck
1579 class LIR_OpTypeCheck: public LIR_Op {
1580  friend class LIR_OpVisitState;
1581 
1582  private:
1583   LIR_Opr       _object;
1584   LIR_Opr       _array;
1585   ciKlass*      _klass;
1586   LIR_Opr       _tmp1;
1587   LIR_Opr       _tmp2;
1588   LIR_Opr       _tmp3;
1589   bool          _fast_check;
1590   CodeEmitInfo* _info_for_patch;
1591   CodeEmitInfo* _info_for_exception;
1592   CodeStub*     _stub;
1593   ciMethod*     _profiled_method;
1594   int           _profiled_bci;
1595   bool          _should_profile;
1596 
1597 public:
1598   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1599                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1600                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1601   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1602                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1603 
1604   LIR_Opr object() const                         { return _object;         }
1605   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1606   LIR_Opr tmp1() const                           { return _tmp1;           }
1607   LIR_Opr tmp2() const                           { return _tmp2;           }
1608   LIR_Opr tmp3() const                           { return _tmp3;           }
1609   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1610   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1611   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1612   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1613   CodeStub* stub() const                         { return _stub;           }
1614 
1615   // MethodData* profiling
1616   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1617   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1618   void set_should_profile(bool b)                { _should_profile = b;       }
1619   ciMethod* profiled_method() const              { return _profiled_method;   }
1620   int       profiled_bci() const                 { return _profiled_bci;      }
1621   bool      should_profile() const               { return _should_profile;    }
1622 
1623   virtual bool is_patching() { return _info_for_patch != NULL; }
1624   virtual void emit_code(LIR_Assembler* masm);
1625   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1626   void print_instr(outputStream* out) const PRODUCT_RETURN;
1627 };
1628 
1629 // LIR_Op2
1630 class LIR_Op2: public LIR_Op {
1631  friend class LIR_OpVisitState;
1632 
1633   int  _fpu_stack_size; // for sin/cos implementation on Intel
1634 
1635  protected:
1636   LIR_Opr   _opr1;
1637   LIR_Opr   _opr2;
1638   BasicType _type;
1639   LIR_Opr   _tmp1;
1640   LIR_Opr   _tmp2;
1641   LIR_Opr   _tmp3;
1642   LIR_Opr   _tmp4;
1643   LIR_Opr   _tmp5;
1644   LIR_Condition _condition;
1645 
1646   void verify() const;
1647 
1648  public:
1649   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1650     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1651     , _opr1(opr1)
1652     , _opr2(opr2)
1653     , _type(T_ILLEGAL)
1654     , _condition(condition)
1655     , _fpu_stack_size(0)
1656     , _tmp1(LIR_OprFact::illegalOpr)
1657     , _tmp2(LIR_OprFact::illegalOpr)
1658     , _tmp3(LIR_OprFact::illegalOpr)
1659     , _tmp4(LIR_OprFact::illegalOpr)
1660     , _tmp5(LIR_OprFact::illegalOpr) {
1661     assert(code == lir_cmp || code == lir_assert, "code check");
1662   }
1663 
1664   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1665     : LIR_Op(code, result, NULL)
1666     , _opr1(opr1)
1667     , _opr2(opr2)
1668     , _type(type)
1669     , _condition(condition)
1670     , _fpu_stack_size(0)
1671     , _tmp1(LIR_OprFact::illegalOpr)
1672     , _tmp2(LIR_OprFact::illegalOpr)
1673     , _tmp3(LIR_OprFact::illegalOpr)
1674     , _tmp4(LIR_OprFact::illegalOpr)
1675     , _tmp5(LIR_OprFact::illegalOpr) {
1676     assert(code == lir_cmove, "code check");
1677     assert(type != T_ILLEGAL, "cmove should have type");
1678   }
1679 
1680   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1681           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1682     : LIR_Op(code, result, info)
1683     , _opr1(opr1)
1684     , _opr2(opr2)
1685     , _type(type)
1686     , _condition(lir_cond_unknown)
1687     , _fpu_stack_size(0)
1688     , _tmp1(LIR_OprFact::illegalOpr)
1689     , _tmp2(LIR_OprFact::illegalOpr)
1690     , _tmp3(LIR_OprFact::illegalOpr)
1691     , _tmp4(LIR_OprFact::illegalOpr)
1692     , _tmp5(LIR_OprFact::illegalOpr) {
1693     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1694   }
1695 
1696   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1697           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1698     : LIR_Op(code, result, NULL)
1699     , _opr1(opr1)
1700     , _opr2(opr2)
1701     , _type(T_ILLEGAL)
1702     , _condition(lir_cond_unknown)
1703     , _fpu_stack_size(0)
1704     , _tmp1(tmp1)
1705     , _tmp2(tmp2)
1706     , _tmp3(tmp3)
1707     , _tmp4(tmp4)
1708     , _tmp5(tmp5) {
1709     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1710   }
1711 
1712   LIR_Opr in_opr1() const                        { return _opr1; }
1713   LIR_Opr in_opr2() const                        { return _opr2; }
1714   BasicType type()  const                        { return _type; }
1715   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1716   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1717   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1718   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1719   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1720   LIR_Condition condition() const  {
1721     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1722   }
1723   void set_condition(LIR_Condition condition) {
1724     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1725   }
1726 
1727   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1728   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1729 
1730   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1731   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1732 
1733   virtual void emit_code(LIR_Assembler* masm);
1734   virtual LIR_Op2* as_Op2() { return this; }
1735   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1736 };
1737 
1738 class LIR_OpAllocArray : public LIR_Op {
1739  friend class LIR_OpVisitState;
1740 
1741  private:
1742   LIR_Opr   _klass;
1743   LIR_Opr   _len;
1744   LIR_Opr   _tmp1;
1745   LIR_Opr   _tmp2;
1746   LIR_Opr   _tmp3;
1747   LIR_Opr   _tmp4;
1748   BasicType _type;
1749   CodeStub* _stub;
1750 
1751  public:
1752   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1753     : LIR_Op(lir_alloc_array, result, NULL)
1754     , _klass(klass)
1755     , _len(len)
1756     , _tmp1(t1)
1757     , _tmp2(t2)
1758     , _tmp3(t3)
1759     , _tmp4(t4)
1760     , _type(type)
1761     , _stub(stub) {}
1762 
1763   LIR_Opr   klass()   const                      { return _klass;       }
1764   LIR_Opr   len()     const                      { return _len;         }
1765   LIR_Opr   obj()     const                      { return result_opr(); }
1766   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1767   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1768   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1769   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1770   BasicType type()    const                      { return _type;        }
1771   CodeStub* stub()    const                      { return _stub;        }
1772 
1773   virtual void emit_code(LIR_Assembler* masm);
1774   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1775   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1776 };
1777 
1778 
1779 class LIR_Op3: public LIR_Op {
1780  friend class LIR_OpVisitState;
1781 
1782  private:
1783   LIR_Opr _opr1;
1784   LIR_Opr _opr2;
1785   LIR_Opr _opr3;
1786  public:
1787   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1788     : LIR_Op(code, result, info)
1789     , _opr1(opr1)
1790     , _opr2(opr2)
1791     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1792   LIR_Opr in_opr1() const                        { return _opr1; }
1793   LIR_Opr in_opr2() const                        { return _opr2; }
1794   LIR_Opr in_opr3() const                        { return _opr3; }
1795 
1796   virtual void emit_code(LIR_Assembler* masm);
1797   virtual LIR_Op3* as_Op3() { return this; }
1798   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1799 };
1800 
1801 
1802 //--------------------------------
1803 class LabelObj: public CompilationResourceObj {
1804  private:
1805   Label _label;
1806  public:
1807   LabelObj()                                     {}
1808   Label* label()                                 { return &_label; }
1809 };
1810 
1811 
1812 class LIR_OpLock: public LIR_Op {
1813  friend class LIR_OpVisitState;
1814 
1815  private:
1816   LIR_Opr _hdr;
1817   LIR_Opr _obj;
1818   LIR_Opr _lock;
1819   LIR_Opr _scratch;
1820   CodeStub* _stub;
1821  public:
1822   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1823     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1824     , _hdr(hdr)
1825     , _obj(obj)
1826     , _lock(lock)
1827     , _scratch(scratch)
1828     , _stub(stub)                      {}
1829 
1830   LIR_Opr hdr_opr() const                        { return _hdr; }
1831   LIR_Opr obj_opr() const                        { return _obj; }
1832   LIR_Opr lock_opr() const                       { return _lock; }
1833   LIR_Opr scratch_opr() const                    { return _scratch; }
1834   CodeStub* stub() const                         { return _stub; }
1835 
1836   virtual void emit_code(LIR_Assembler* masm);
1837   virtual LIR_OpLock* as_OpLock() { return this; }
1838   void print_instr(outputStream* out) const PRODUCT_RETURN;
1839 };
1840 
1841 
1842 class LIR_OpDelay: public LIR_Op {
1843  friend class LIR_OpVisitState;
1844 
1845  private:
1846   LIR_Op* _op;
1847 
1848  public:
1849   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1850     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1851     _op(op) {
1852     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1853   }
1854   virtual void emit_code(LIR_Assembler* masm);
1855   virtual LIR_OpDelay* as_OpDelay() { return this; }
1856   void print_instr(outputStream* out) const PRODUCT_RETURN;
1857   LIR_Op* delay_op() const { return _op; }
1858   CodeEmitInfo* call_info() const { return info(); }
1859 };
1860 
1861 #ifdef ASSERT
1862 // LIR_OpAssert
1863 class LIR_OpAssert : public LIR_Op2 {
1864  friend class LIR_OpVisitState;
1865 
1866  private:
1867   const char* _msg;
1868   bool        _halt;
1869 
1870  public:
1871   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1872     : LIR_Op2(lir_assert, condition, opr1, opr2)
1873     , _halt(halt)
1874     , _msg(msg) {
1875   }
1876 
1877   const char* msg() const                        { return _msg; }
1878   bool        halt() const                       { return _halt; }
1879 
1880   virtual void emit_code(LIR_Assembler* masm);
1881   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1882   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1883 };
1884 #endif
1885 
1886 // LIR_OpCompareAndSwap
1887 class LIR_OpCompareAndSwap : public LIR_Op {
1888  friend class LIR_OpVisitState;
1889 
1890  private:
1891   LIR_Opr _addr;
1892   LIR_Opr _cmp_value;
1893   LIR_Opr _new_value;
1894   LIR_Opr _tmp1;
1895   LIR_Opr _tmp2;
1896 
1897  public:
1898   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1899                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1900     : LIR_Op(code, result, NULL)  // no result, no info
1901     , _addr(addr)
1902     , _cmp_value(cmp_value)
1903     , _new_value(new_value)
1904     , _tmp1(t1)
1905     , _tmp2(t2)                                  { }
1906 
1907   LIR_Opr addr()        const                    { return _addr;  }
1908   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1909   LIR_Opr new_value()   const                    { return _new_value; }
1910   LIR_Opr tmp1()        const                    { return _tmp1;      }
1911   LIR_Opr tmp2()        const                    { return _tmp2;      }
1912 
1913   virtual void emit_code(LIR_Assembler* masm);
1914   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1915   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1916 };
1917 
1918 // LIR_OpProfileCall
1919 class LIR_OpProfileCall : public LIR_Op {
1920  friend class LIR_OpVisitState;
1921 
1922  private:
1923   ciMethod* _profiled_method;
1924   int       _profiled_bci;
1925   ciMethod* _profiled_callee;
1926   LIR_Opr   _mdo;
1927   LIR_Opr   _recv;
1928   LIR_Opr   _tmp1;
1929   ciKlass*  _known_holder;
1930 
1931  public:
1932   // Destroys recv
1933   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1934     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1935     , _profiled_method(profiled_method)
1936     , _profiled_bci(profiled_bci)
1937     , _profiled_callee(profiled_callee)
1938     , _mdo(mdo)
1939     , _recv(recv)
1940     , _tmp1(t1)
1941     , _known_holder(known_holder)                { }
1942 
1943   ciMethod* profiled_method() const              { return _profiled_method;  }
1944   int       profiled_bci()    const              { return _profiled_bci;     }
1945   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1946   LIR_Opr   mdo()             const              { return _mdo;              }
1947   LIR_Opr   recv()            const              { return _recv;             }
1948   LIR_Opr   tmp1()            const              { return _tmp1;             }
1949   ciKlass*  known_holder()    const              { return _known_holder;     }
1950 
1951   virtual void emit_code(LIR_Assembler* masm);
1952   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1953   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1954 };
1955 
1956 // LIR_OpProfileType
1957 class LIR_OpProfileType : public LIR_Op {
1958  friend class LIR_OpVisitState;
1959 
1960  private:
1961   LIR_Opr      _mdp;
1962   LIR_Opr      _obj;
1963   LIR_Opr      _tmp;
1964   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1965   intptr_t     _current_klass; // what the profiling currently reports
1966   bool         _not_null;      // true if we know statically that _obj cannot be null
1967   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1968                                // _exact_klass it the only possible type for this parameter in any context.
1969 
1970  public:
1971   // Destroys recv
1972   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1973     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1974     , _mdp(mdp)
1975     , _obj(obj)
1976     , _exact_klass(exact_klass)
1977     , _current_klass(current_klass)
1978     , _tmp(tmp)
1979     , _not_null(not_null)
1980     , _no_conflict(no_conflict) { }
1981 
1982   LIR_Opr      mdp()              const             { return _mdp;              }
1983   LIR_Opr      obj()              const             { return _obj;              }
1984   LIR_Opr      tmp()              const             { return _tmp;              }
1985   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1986   intptr_t     current_klass()    const             { return _current_klass;    }
1987   bool         not_null()         const             { return _not_null;         }
1988   bool         no_conflict()      const             { return _no_conflict;      }
1989 
1990   virtual void emit_code(LIR_Assembler* masm);
1991   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1992   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1993 };
1994 
1995 class LIR_InsertionBuffer;
1996 
1997 //--------------------------------LIR_List---------------------------------------------------
1998 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1999 // The LIR instructions are appended by the LIR_List class itself;
2000 //
2001 // Notes:
2002 // - all offsets are(should be) in bytes
2003 // - local positions are specified with an offset, with offset 0 being local 0
2004 
2005 class LIR_List: public CompilationResourceObj {
2006  private:
2007   LIR_OpList  _operations;
2008 
2009   Compilation*  _compilation;
2010 #ifndef PRODUCT
2011   BlockBegin*   _block;
2012 #endif
2013 #ifdef ASSERT
2014   const char *  _file;
2015   int           _line;
2016 #endif
2017 
2018   void append(LIR_Op* op) {
2019     if (op->source() == NULL)
2020       op->set_source(_compilation->current_instruction());
2021 #ifndef PRODUCT
2022     if (PrintIRWithLIR) {
2023       _compilation->maybe_print_current_instruction();
2024       op->print(); tty->cr();
2025     }
2026 #endif // PRODUCT
2027 
2028     _operations.append(op);
2029 
2030 #ifdef ASSERT
2031     op->verify();
2032     op->set_file_and_line(_file, _line);
2033     _file = NULL;
2034     _line = 0;
2035 #endif
2036   }
2037 
2038  public:
2039   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2040 
2041 #ifdef ASSERT
2042   void set_file_and_line(const char * file, int line);
2043 #endif
2044 
2045   //---------- accessors ---------------
2046   LIR_OpList* instructions_list()                { return &_operations; }
2047   int         length() const                     { return _operations.length(); }
2048   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2049 
2050   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2051 
2052   // insert LIR_Ops in buffer to right places in LIR_List
2053   void append(LIR_InsertionBuffer* buffer);
2054 
2055   //---------- mutators ---------------
2056   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2057   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2058   void remove_at(int i)                          { _operations.remove_at(i); }
2059 
2060   //---------- printing -------------
2061   void print_instructions() PRODUCT_RETURN;
2062 
2063 
2064   //---------- instructions -------------
2065   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2066                         address dest, LIR_OprList* arguments,
2067                         CodeEmitInfo* info) {
2068     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2069   }
2070   void call_static(ciMethod* method, LIR_Opr result,
2071                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2072     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2073   }
2074   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2075                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2076     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2077   }
2078   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2079                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2080     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2081   }
2082   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2083                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2084     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2085   }
2086 
2087   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2088   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2089   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2090   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2091   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2092   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2093   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2094   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2095   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2096 
2097   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2098   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2099 
2100   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2101   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2102 
2103   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2104 
2105   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2106   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
2107 
2108   // result is a stack location for old backend and vreg for UseLinearScan
2109   // stack_loc_temp is an illegal register for old backend
2110   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2111   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2112   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2113   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2114   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2115   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2116   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2117   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2118     if (UseCompressedOops) {
2119       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2120     } else {
2121       move(src, dst, info);
2122     }
2123   }
2124   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2125     if (UseCompressedOops) {
2126       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2127     } else {
2128       move(src, dst, info);
2129     }
2130   }
2131   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2132 
2133   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2134   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2135 
2136   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2137   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2138 
2139   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2140 
2141   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2142 
2143 #ifdef PPC
2144   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
2145 #endif
2146   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2147 
2148   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2149   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2150   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2151 
2152   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2153   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2154 
2155   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
2156   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2157     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2158   }
2159   void unwind_exception(LIR_Opr exceptionOop) {
2160     append(new LIR_Op1(lir_unwind, exceptionOop));
2161   }
2162 
2163   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2164     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2165   }
2166 
2167   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2168   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2169 
2170   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2171     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2172   }
2173   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2174     cmp(condition, left, LIR_OprFact::intConst(right), info);
2175   }
2176 
2177   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2178   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2179 
2180   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2181     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2182   }
2183 
2184   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2185                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2186   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2187                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2188   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2189                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2190 
2191   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2192   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2193   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2194   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2195   void pow (LIR_Opr arg1, LIR_Opr arg2, LIR_Opr res, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, LIR_Opr tmp4, LIR_Opr tmp5) { append(new LIR_Op2(lir_pow, arg1, arg2, res, tmp1, tmp2, tmp3, tmp4, tmp5)); }
2196 
2197   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2198   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2199   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2200   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2201   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2202   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2203   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2204 
2205   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2206   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2207 
2208   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2209 
2210   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2211   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2212   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2213   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2214   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2215 
2216   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2217   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2218   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2219   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2220 
2221   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2222   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2223 
2224   // jump is an unconditional branch
2225   void jump(BlockBegin* block) {
2226     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2227   }
2228   void jump(CodeStub* stub) {
2229     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2230   }
2231   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2232   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2233     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2234     append(new LIR_OpBranch(cond, type, block));
2235   }
2236   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2237     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2238     append(new LIR_OpBranch(cond, type, stub));
2239   }
2240   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2241     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2242     append(new LIR_OpBranch(cond, type, block, unordered));
2243   }
2244 
2245   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2246   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2247   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2248 
2249   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2250   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2251   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2252 
2253   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2254   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2255 
2256   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2257     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2258   }
2259 
2260   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2261                     LIR_OprList* arguments, CodeEmitInfo* info) {
2262     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2263   }
2264 
2265   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2266   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2267   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2268 
2269   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2270   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2271   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2272 
2273   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2274 
2275   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2276 
2277   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2278 
2279   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2280   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2281 
2282   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2283                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2284                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2285                   ciMethod* profiled_method, int profiled_bci);
2286   // MethodData* profiling
2287   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2288     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2289   }
2290   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2291     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2292   }
2293 
2294   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2295   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2296 #ifdef ASSERT
2297   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2298 #endif
2299 };
2300 
2301 void print_LIR(BlockList* blocks);
2302 
2303 class LIR_InsertionBuffer : public CompilationResourceObj {
2304  private:
2305   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2306 
2307   // list of insertion points. index and count are stored alternately:
2308   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2309   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2310   intStack    _index_and_count;
2311 
2312   // the LIR_Ops to be inserted
2313   LIR_OpList  _ops;
2314 
2315   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2316   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2317   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2318 
2319 #ifdef ASSERT
2320   void verify();
2321 #endif
2322  public:
2323   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2324 
2325   // must be called before using the insertion buffer
2326   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2327   bool initialized() const  { return _lir != NULL; }
2328   // called automatically when the buffer is appended to the LIR_List
2329   void finish()             { _lir = NULL; }
2330 
2331   // accessors
2332   LIR_List*  lir_list() const             { return _lir; }
2333   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2334   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2335   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2336 
2337   int number_of_ops() const               { return _ops.length(); }
2338   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2339 
2340   // append an instruction to the buffer
2341   void append(int index, LIR_Op* op);
2342 
2343   // instruction
2344   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2345 };
2346 
2347 
2348 //
2349 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2350 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2351 // information about the input, output and temporaries used by the
2352 // op to be recorded.  It also records whether the op has call semantics
2353 // and also records all the CodeEmitInfos used by this op.
2354 //
2355 
2356 
2357 class LIR_OpVisitState: public StackObj {
2358  public:
2359   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2360 
2361   enum {
2362     maxNumberOfOperands = 20,
2363     maxNumberOfInfos = 4
2364   };
2365 
2366  private:
2367   LIR_Op*          _op;
2368 
2369   // optimization: the operands and infos are not stored in a variable-length
2370   //               list, but in a fixed-size array to save time of size checks and resizing
2371   int              _oprs_len[numModes];
2372   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2373   int _info_len;
2374   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2375 
2376   bool             _has_call;
2377   bool             _has_slow_case;
2378 
2379 
2380   // only include register operands
2381   // addresses are decomposed to the base and index registers
2382   // constants and stack operands are ignored
2383   void append(LIR_Opr& opr, OprMode mode) {
2384     assert(opr->is_valid(), "should not call this otherwise");
2385     assert(mode >= 0 && mode < numModes, "bad mode");
2386 
2387     if (opr->is_register()) {
2388        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2389       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2390 
2391     } else if (opr->is_pointer()) {
2392       LIR_Address* address = opr->as_address_ptr();
2393       if (address != NULL) {
2394         // special handling for addresses: add base and index register of the address
2395         // both are always input operands or temp if we want to extend
2396         // their liveness!
2397         if (mode == outputMode) {
2398           mode = inputMode;
2399         }
2400         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2401         if (address->_base->is_valid()) {
2402           assert(address->_base->is_register(), "must be");
2403           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2404           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2405         }
2406         if (address->_index->is_valid()) {
2407           assert(address->_index->is_register(), "must be");
2408           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2409           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2410         }
2411 
2412       } else {
2413         assert(opr->is_constant(), "constant operands are not processed");
2414       }
2415     } else {
2416       assert(opr->is_stack(), "stack operands are not processed");
2417     }
2418   }
2419 
2420   void append(CodeEmitInfo* info) {
2421     assert(info != NULL, "should not call this otherwise");
2422     assert(_info_len < maxNumberOfInfos, "array overflow");
2423     _info_new[_info_len++] = info;
2424   }
2425 
2426  public:
2427   LIR_OpVisitState()         { reset(); }
2428 
2429   LIR_Op* op() const         { return _op; }
2430   void set_op(LIR_Op* op)    { reset(); _op = op; }
2431 
2432   bool has_call() const      { return _has_call; }
2433   bool has_slow_case() const { return _has_slow_case; }
2434 
2435   void reset() {
2436     _op = NULL;
2437     _has_call = false;
2438     _has_slow_case = false;
2439 
2440     _oprs_len[inputMode] = 0;
2441     _oprs_len[tempMode] = 0;
2442     _oprs_len[outputMode] = 0;
2443     _info_len = 0;
2444   }
2445 
2446 
2447   int opr_count(OprMode mode) const {
2448     assert(mode >= 0 && mode < numModes, "bad mode");
2449     return _oprs_len[mode];
2450   }
2451 
2452   LIR_Opr opr_at(OprMode mode, int index) const {
2453     assert(mode >= 0 && mode < numModes, "bad mode");
2454     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2455     return *_oprs_new[mode][index];
2456   }
2457 
2458   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2459     assert(mode >= 0 && mode < numModes, "bad mode");
2460     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2461     *_oprs_new[mode][index] = opr;
2462   }
2463 
2464   int info_count() const {
2465     return _info_len;
2466   }
2467 
2468   CodeEmitInfo* info_at(int index) const {
2469     assert(index < _info_len, "index out of bounds");
2470     return _info_new[index];
2471   }
2472 
2473   XHandlers* all_xhandler();
2474 
2475   // collects all register operands of the instruction
2476   void visit(LIR_Op* op);
2477 
2478 #ifdef ASSERT
2479   // check that an operation has no operands
2480   bool no_operands(LIR_Op* op);
2481 #endif
2482 
2483   // LIR_Op visitor functions use these to fill in the state
2484   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2485   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2486   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2487   void do_info(CodeEmitInfo* info)        { append(info); }
2488 
2489   void do_stub(CodeStub* stub);
2490   void do_call()                          { _has_call = true; }
2491   void do_slow_case()                     { _has_slow_case = true; }
2492   void do_slow_case(CodeEmitInfo* info) {
2493     _has_slow_case = true;
2494     append(info);
2495   }
2496 };
2497 
2498 
2499 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2500 
2501 #endif // SHARE_VM_C1_C1_LIR_HPP