1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && (_attributes != NULL) && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780       debug_only(has_disp32 = true);
 781       break;
 782 
 783     case 0xAD: // shrd r, a, %cl
 784     case 0xAF: // imul r, a
 785     case 0xBE: // movsbl r, a (movsxb)
 786     case 0xBF: // movswl r, a (movsxw)
 787     case 0xB6: // movzbl r, a (movzxb)
 788     case 0xB7: // movzwl r, a (movzxw)
 789     case REP16(0x40): // cmovl cc, r, a
 790     case 0xB0: // cmpxchgb
 791     case 0xB1: // cmpxchg
 792     case 0xC1: // xaddl
 793     case 0xC7: // cmpxchg8
 794     case REP16(0x90): // setcc a
 795       debug_only(has_disp32 = true);
 796       // fall out of the switch to decode the address
 797       break;
 798 
 799     case 0xC4: // pinsrw r, a, #8
 800       debug_only(has_disp32 = true);
 801     case 0xC5: // pextrw r, r, #8
 802       tail_size = 1;  // the imm8
 803       break;
 804 
 805     case 0xAC: // shrd r, a, #8
 806       debug_only(has_disp32 = true);
 807       tail_size = 1;  // the imm8
 808       break;
 809 
 810     case REP16(0x80): // jcc rdisp32
 811       if (which == end_pc_operand)  return ip + 4;
 812       assert(which == call32_operand, "jcc has no disp32 or imm");
 813       return ip;
 814     default:
 815       ShouldNotReachHere();
 816     }
 817     break;
 818 
 819   case 0x81: // addl a, #32; addl r, #32
 820     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 821     // on 32bit in the case of cmpl, the imm might be an oop
 822     tail_size = 4;
 823     debug_only(has_disp32 = true); // has both kinds of operands!
 824     break;
 825 
 826   case 0x83: // addl a, #8; addl r, #8
 827     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 828     debug_only(has_disp32 = true); // has both kinds of operands!
 829     tail_size = 1;
 830     break;
 831 
 832   case 0x9B:
 833     switch (0xFF & *ip++) {
 834     case 0xD9: // fnstcw a
 835       debug_only(has_disp32 = true);
 836       break;
 837     default:
 838       ShouldNotReachHere();
 839     }
 840     break;
 841 
 842   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 843   case REP4(0x10): // adc...
 844   case REP4(0x20): // and...
 845   case REP4(0x30): // xor...
 846   case REP4(0x08): // or...
 847   case REP4(0x18): // sbb...
 848   case REP4(0x28): // sub...
 849   case 0xF7: // mull a
 850   case 0x8D: // lea r, a
 851   case 0x87: // xchg r, a
 852   case REP4(0x38): // cmp...
 853   case 0x85: // test r, a
 854     debug_only(has_disp32 = true); // has both kinds of operands!
 855     break;
 856 
 857   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 858   case 0xC6: // movb a, #8
 859   case 0x80: // cmpb a, #8
 860   case 0x6B: // imul r, a, #8
 861     debug_only(has_disp32 = true); // has both kinds of operands!
 862     tail_size = 1; // the imm8
 863     break;
 864 
 865   case 0xC4: // VEX_3bytes
 866   case 0xC5: // VEX_2bytes
 867     assert((UseAVX > 0), "shouldn't have VEX prefix");
 868     assert(ip == inst+1, "no prefixes allowed");
 869     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 870     // but they have prefix 0x0F and processed when 0x0F processed above.
 871     //
 872     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 873     // instructions (these instructions are not supported in 64-bit mode).
 874     // To distinguish them bits [7:6] are set in the VEX second byte since
 875     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 876     // those VEX bits REX and vvvv bits are inverted.
 877     //
 878     // Fortunately C2 doesn't generate these instructions so we don't need
 879     // to check for them in product version.
 880 
 881     // Check second byte
 882     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 883 
 884     int vex_opcode;
 885     // First byte
 886     if ((0xFF & *inst) == VEX_3bytes) {
 887       vex_opcode = VEX_OPCODE_MASK & *ip;
 888       ip++; // third byte
 889       is_64bit = ((VEX_W & *ip) == VEX_W);
 890     } else {
 891       vex_opcode = VEX_OPCODE_0F;
 892     }
 893     ip++; // opcode
 894     // To find the end of instruction (which == end_pc_operand).
 895     switch (vex_opcode) {
 896       case VEX_OPCODE_0F:
 897         switch (0xFF & *ip) {
 898         case 0x70: // pshufd r, r/a, #8
 899         case 0x71: // ps[rl|ra|ll]w r, #8
 900         case 0x72: // ps[rl|ra|ll]d r, #8
 901         case 0x73: // ps[rl|ra|ll]q r, #8
 902         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 903         case 0xC4: // pinsrw r, r, r/a, #8
 904         case 0xC5: // pextrw r/a, r, #8
 905         case 0xC6: // shufp[s|d] r, r, r/a, #8
 906           tail_size = 1;  // the imm8
 907           break;
 908         }
 909         break;
 910       case VEX_OPCODE_0F_3A:
 911         tail_size = 1;
 912         break;
 913     }
 914     ip++; // skip opcode
 915     debug_only(has_disp32 = true); // has both kinds of operands!
 916     break;
 917 
 918   case 0x62: // EVEX_4bytes
 919     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 920     assert(ip == inst+1, "no prefixes allowed");
 921     // no EVEX collisions, all instructions that have 0x62 opcodes
 922     // have EVEX versions and are subopcodes of 0x66
 923     ip++; // skip P0 and exmaine W in P1
 924     is_64bit = ((VEX_W & *ip) == VEX_W);
 925     ip++; // move to P2
 926     ip++; // skip P2, move to opcode
 927     // To find the end of instruction (which == end_pc_operand).
 928     switch (0xFF & *ip) {
 929     case 0x61: // pcmpestri r, r/a, #8
 930     case 0x70: // pshufd r, r/a, #8
 931     case 0x73: // psrldq r, #8
 932       tail_size = 1;  // the imm8
 933       break;
 934     default:
 935       break;
 936     }
 937     ip++; // skip opcode
 938     debug_only(has_disp32 = true); // has both kinds of operands!
 939     break;
 940 
 941   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 942   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 943   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 944   case 0xDD: // fld_d a; fst_d a; fstp_d a
 945   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 946   case 0xDF: // fild_d a; fistp_d a
 947   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 948   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 949   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 950     debug_only(has_disp32 = true);
 951     break;
 952 
 953   case 0xE8: // call rdisp32
 954   case 0xE9: // jmp  rdisp32
 955     if (which == end_pc_operand)  return ip + 4;
 956     assert(which == call32_operand, "call has no disp32 or imm");
 957     return ip;
 958 
 959   case 0xF0:                    // Lock
 960     assert(os::is_MP(), "only on MP");
 961     goto again_after_prefix;
 962 
 963   case 0xF3:                    // For SSE
 964   case 0xF2:                    // For SSE2
 965     switch (0xFF & *ip++) {
 966     case REX:
 967     case REX_B:
 968     case REX_X:
 969     case REX_XB:
 970     case REX_R:
 971     case REX_RB:
 972     case REX_RX:
 973     case REX_RXB:
 974     case REX_W:
 975     case REX_WB:
 976     case REX_WX:
 977     case REX_WXB:
 978     case REX_WR:
 979     case REX_WRB:
 980     case REX_WRX:
 981     case REX_WRXB:
 982       NOT_LP64(assert(false, "found 64bit prefix"));
 983       ip++;
 984     default:
 985       ip++;
 986     }
 987     debug_only(has_disp32 = true); // has both kinds of operands!
 988     break;
 989 
 990   default:
 991     ShouldNotReachHere();
 992 
 993 #undef REP8
 994 #undef REP16
 995   }
 996 
 997   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 998 #ifdef _LP64
 999   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1000 #else
1001   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1002   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1003 #endif // LP64
1004   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1005 
1006   // parse the output of emit_operand
1007   int op2 = 0xFF & *ip++;
1008   int base = op2 & 0x07;
1009   int op3 = -1;
1010   const int b100 = 4;
1011   const int b101 = 5;
1012   if (base == b100 && (op2 >> 6) != 3) {
1013     op3 = 0xFF & *ip++;
1014     base = op3 & 0x07;   // refetch the base
1015   }
1016   // now ip points at the disp (if any)
1017 
1018   switch (op2 >> 6) {
1019   case 0:
1020     // [00 reg  100][ss index base]
1021     // [00 reg  100][00   100  esp]
1022     // [00 reg base]
1023     // [00 reg  100][ss index  101][disp32]
1024     // [00 reg  101]               [disp32]
1025 
1026     if (base == b101) {
1027       if (which == disp32_operand)
1028         return ip;              // caller wants the disp32
1029       ip += 4;                  // skip the disp32
1030     }
1031     break;
1032 
1033   case 1:
1034     // [01 reg  100][ss index base][disp8]
1035     // [01 reg  100][00   100  esp][disp8]
1036     // [01 reg base]               [disp8]
1037     ip += 1;                    // skip the disp8
1038     break;
1039 
1040   case 2:
1041     // [10 reg  100][ss index base][disp32]
1042     // [10 reg  100][00   100  esp][disp32]
1043     // [10 reg base]               [disp32]
1044     if (which == disp32_operand)
1045       return ip;                // caller wants the disp32
1046     ip += 4;                    // skip the disp32
1047     break;
1048 
1049   case 3:
1050     // [11 reg base]  (not a memory addressing mode)
1051     break;
1052   }
1053 
1054   if (which == end_pc_operand) {
1055     return ip + tail_size;
1056   }
1057 
1058 #ifdef _LP64
1059   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1060 #else
1061   assert(which == imm_operand, "instruction has only an imm field");
1062 #endif // LP64
1063   return ip;
1064 }
1065 
1066 address Assembler::locate_next_instruction(address inst) {
1067   // Secretly share code with locate_operand:
1068   return locate_operand(inst, end_pc_operand);
1069 }
1070 
1071 
1072 #ifdef ASSERT
1073 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1074   address inst = inst_mark();
1075   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1076   address opnd;
1077 
1078   Relocation* r = rspec.reloc();
1079   if (r->type() == relocInfo::none) {
1080     return;
1081   } else if (r->is_call() || format == call32_operand) {
1082     // assert(format == imm32_operand, "cannot specify a nonzero format");
1083     opnd = locate_operand(inst, call32_operand);
1084   } else if (r->is_data()) {
1085     assert(format == imm_operand || format == disp32_operand
1086            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1087     opnd = locate_operand(inst, (WhichOperand)format);
1088   } else {
1089     assert(format == imm_operand, "cannot specify a format");
1090     return;
1091   }
1092   assert(opnd == pc(), "must put operand where relocs can find it");
1093 }
1094 #endif // ASSERT
1095 
1096 void Assembler::emit_operand32(Register reg, Address adr) {
1097   assert(reg->encoding() < 8, "no extended registers");
1098   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1099   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1100                adr._rspec);
1101 }
1102 
1103 void Assembler::emit_operand(Register reg, Address adr,
1104                              int rip_relative_correction) {
1105   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1106                adr._rspec,
1107                rip_relative_correction);
1108 }
1109 
1110 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1111   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1112                adr._rspec);
1113 }
1114 
1115 // MMX operations
1116 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1117   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1118   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1119 }
1120 
1121 // work around gcc (3.2.1-7a) bug
1122 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1123   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1124   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1125 }
1126 
1127 
1128 void Assembler::emit_farith(int b1, int b2, int i) {
1129   assert(isByte(b1) && isByte(b2), "wrong opcode");
1130   assert(0 <= i &&  i < 8, "illegal stack offset");
1131   emit_int8(b1);
1132   emit_int8(b2 + i);
1133 }
1134 
1135 
1136 // Now the Assembler instructions (identical for 32/64 bits)
1137 
1138 void Assembler::adcl(Address dst, int32_t imm32) {
1139   InstructionMark im(this);
1140   prefix(dst);
1141   emit_arith_operand(0x81, rdx, dst, imm32);
1142 }
1143 
1144 void Assembler::adcl(Address dst, Register src) {
1145   InstructionMark im(this);
1146   prefix(dst, src);
1147   emit_int8(0x11);
1148   emit_operand(src, dst);
1149 }
1150 
1151 void Assembler::adcl(Register dst, int32_t imm32) {
1152   prefix(dst);
1153   emit_arith(0x81, 0xD0, dst, imm32);
1154 }
1155 
1156 void Assembler::adcl(Register dst, Address src) {
1157   InstructionMark im(this);
1158   prefix(src, dst);
1159   emit_int8(0x13);
1160   emit_operand(dst, src);
1161 }
1162 
1163 void Assembler::adcl(Register dst, Register src) {
1164   (void) prefix_and_encode(dst->encoding(), src->encoding());
1165   emit_arith(0x13, 0xC0, dst, src);
1166 }
1167 
1168 void Assembler::addl(Address dst, int32_t imm32) {
1169   InstructionMark im(this);
1170   prefix(dst);
1171   emit_arith_operand(0x81, rax, dst, imm32);
1172 }
1173 
1174 void Assembler::addl(Address dst, Register src) {
1175   InstructionMark im(this);
1176   prefix(dst, src);
1177   emit_int8(0x01);
1178   emit_operand(src, dst);
1179 }
1180 
1181 void Assembler::addl(Register dst, int32_t imm32) {
1182   prefix(dst);
1183   emit_arith(0x81, 0xC0, dst, imm32);
1184 }
1185 
1186 void Assembler::addl(Register dst, Address src) {
1187   InstructionMark im(this);
1188   prefix(src, dst);
1189   emit_int8(0x03);
1190   emit_operand(dst, src);
1191 }
1192 
1193 void Assembler::addl(Register dst, Register src) {
1194   (void) prefix_and_encode(dst->encoding(), src->encoding());
1195   emit_arith(0x03, 0xC0, dst, src);
1196 }
1197 
1198 void Assembler::addr_nop_4() {
1199   assert(UseAddressNop, "no CPU support");
1200   // 4 bytes: NOP DWORD PTR [EAX+0]
1201   emit_int8(0x0F);
1202   emit_int8(0x1F);
1203   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1204   emit_int8(0);    // 8-bits offset (1 byte)
1205 }
1206 
1207 void Assembler::addr_nop_5() {
1208   assert(UseAddressNop, "no CPU support");
1209   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1210   emit_int8(0x0F);
1211   emit_int8(0x1F);
1212   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1213   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1214   emit_int8(0);    // 8-bits offset (1 byte)
1215 }
1216 
1217 void Assembler::addr_nop_7() {
1218   assert(UseAddressNop, "no CPU support");
1219   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1220   emit_int8(0x0F);
1221   emit_int8(0x1F);
1222   emit_int8((unsigned char)0x80);
1223                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1224   emit_int32(0);   // 32-bits offset (4 bytes)
1225 }
1226 
1227 void Assembler::addr_nop_8() {
1228   assert(UseAddressNop, "no CPU support");
1229   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1230   emit_int8(0x0F);
1231   emit_int8(0x1F);
1232   emit_int8((unsigned char)0x84);
1233                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1234   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1235   emit_int32(0);   // 32-bits offset (4 bytes)
1236 }
1237 
1238 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1239   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1240   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1241   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1242   emit_int8(0x58);
1243   emit_int8((unsigned char)(0xC0 | encode));
1244 }
1245 
1246 void Assembler::addsd(XMMRegister dst, Address src) {
1247   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1248   InstructionMark im(this);
1249   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1250   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1251   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1252   emit_int8(0x58);
1253   emit_operand(dst, src);
1254 }
1255 
1256 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1257   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1258   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1259   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1260   emit_int8(0x58);
1261   emit_int8((unsigned char)(0xC0 | encode));
1262 }
1263 
1264 void Assembler::addss(XMMRegister dst, Address src) {
1265   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1266   InstructionMark im(this);
1267   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1268   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1269   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1270   emit_int8(0x58);
1271   emit_operand(dst, src);
1272 }
1273 
1274 void Assembler::aesdec(XMMRegister dst, Address src) {
1275   assert(VM_Version::supports_aes(), "");
1276   InstructionMark im(this);
1277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1278   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1279   emit_int8((unsigned char)0xDE);
1280   emit_operand(dst, src);
1281 }
1282 
1283 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1284   assert(VM_Version::supports_aes(), "");
1285   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1286   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1287   emit_int8((unsigned char)0xDE);
1288   emit_int8(0xC0 | encode);
1289 }
1290 
1291 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1292   assert(VM_Version::supports_aes(), "");
1293   InstructionMark im(this);
1294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1295   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1296   emit_int8((unsigned char)0xDF);
1297   emit_operand(dst, src);
1298 }
1299 
1300 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1301   assert(VM_Version::supports_aes(), "");
1302   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1303   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1304   emit_int8((unsigned char)0xDF);
1305   emit_int8((unsigned char)(0xC0 | encode));
1306 }
1307 
1308 void Assembler::aesenc(XMMRegister dst, Address src) {
1309   assert(VM_Version::supports_aes(), "");
1310   InstructionMark im(this);
1311   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1312   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1313   emit_int8((unsigned char)0xDC);
1314   emit_operand(dst, src);
1315 }
1316 
1317 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1318   assert(VM_Version::supports_aes(), "");
1319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1320   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1321   emit_int8((unsigned char)0xDC);
1322   emit_int8(0xC0 | encode);
1323 }
1324 
1325 void Assembler::aesenclast(XMMRegister dst, Address src) {
1326   assert(VM_Version::supports_aes(), "");
1327   InstructionMark im(this);
1328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1329   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1330   emit_int8((unsigned char)0xDD);
1331   emit_operand(dst, src);
1332 }
1333 
1334 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1335   assert(VM_Version::supports_aes(), "");
1336   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1337   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1338   emit_int8((unsigned char)0xDD);
1339   emit_int8((unsigned char)(0xC0 | encode));
1340 }
1341 
1342 void Assembler::andl(Address dst, int32_t imm32) {
1343   InstructionMark im(this);
1344   prefix(dst);
1345   emit_int8((unsigned char)0x81);
1346   emit_operand(rsp, dst, 4);
1347   emit_int32(imm32);
1348 }
1349 
1350 void Assembler::andl(Register dst, int32_t imm32) {
1351   prefix(dst);
1352   emit_arith(0x81, 0xE0, dst, imm32);
1353 }
1354 
1355 void Assembler::andl(Register dst, Address src) {
1356   InstructionMark im(this);
1357   prefix(src, dst);
1358   emit_int8(0x23);
1359   emit_operand(dst, src);
1360 }
1361 
1362 void Assembler::andl(Register dst, Register src) {
1363   (void) prefix_and_encode(dst->encoding(), src->encoding());
1364   emit_arith(0x23, 0xC0, dst, src);
1365 }
1366 
1367 void Assembler::andnl(Register dst, Register src1, Register src2) {
1368   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1369   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1370   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1371   emit_int8((unsigned char)0xF2);
1372   emit_int8((unsigned char)(0xC0 | encode));
1373 }
1374 
1375 void Assembler::andnl(Register dst, Register src1, Address src2) {
1376   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1377   InstructionMark im(this);
1378   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1379   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1380   emit_int8((unsigned char)0xF2);
1381   emit_operand(dst, src2);
1382 }
1383 
1384 void Assembler::bsfl(Register dst, Register src) {
1385   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1386   emit_int8(0x0F);
1387   emit_int8((unsigned char)0xBC);
1388   emit_int8((unsigned char)(0xC0 | encode));
1389 }
1390 
1391 void Assembler::bsrl(Register dst, Register src) {
1392   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1393   emit_int8(0x0F);
1394   emit_int8((unsigned char)0xBD);
1395   emit_int8((unsigned char)(0xC0 | encode));
1396 }
1397 
1398 void Assembler::bswapl(Register reg) { // bswap
1399   int encode = prefix_and_encode(reg->encoding());
1400   emit_int8(0x0F);
1401   emit_int8((unsigned char)(0xC8 | encode));
1402 }
1403 
1404 void Assembler::blsil(Register dst, Register src) {
1405   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1406   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1407   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1408   emit_int8((unsigned char)0xF3);
1409   emit_int8((unsigned char)(0xC0 | encode));
1410 }
1411 
1412 void Assembler::blsil(Register dst, Address src) {
1413   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1414   InstructionMark im(this);
1415   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1416   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1417   emit_int8((unsigned char)0xF3);
1418   emit_operand(rbx, src);
1419 }
1420 
1421 void Assembler::blsmskl(Register dst, Register src) {
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1424   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1425   emit_int8((unsigned char)0xF3);
1426   emit_int8((unsigned char)(0xC0 | encode));
1427 }
1428 
1429 void Assembler::blsmskl(Register dst, Address src) {
1430   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1431   InstructionMark im(this);
1432   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1433   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1434   emit_int8((unsigned char)0xF3);
1435   emit_operand(rdx, src);
1436 }
1437 
1438 void Assembler::blsrl(Register dst, Register src) {
1439   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1440   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1441   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1442   emit_int8((unsigned char)0xF3);
1443   emit_int8((unsigned char)(0xC0 | encode));
1444 }
1445 
1446 void Assembler::blsrl(Register dst, Address src) {
1447   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1448   InstructionMark im(this);
1449   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1450   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1451   emit_int8((unsigned char)0xF3);
1452   emit_operand(rcx, src);
1453 }
1454 
1455 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1456   // suspect disp32 is always good
1457   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1458 
1459   if (L.is_bound()) {
1460     const int long_size = 5;
1461     int offs = (int)( target(L) - pc() );
1462     assert(offs <= 0, "assembler error");
1463     InstructionMark im(this);
1464     // 1110 1000 #32-bit disp
1465     emit_int8((unsigned char)0xE8);
1466     emit_data(offs - long_size, rtype, operand);
1467   } else {
1468     InstructionMark im(this);
1469     // 1110 1000 #32-bit disp
1470     L.add_patch_at(code(), locator());
1471 
1472     emit_int8((unsigned char)0xE8);
1473     emit_data(int(0), rtype, operand);
1474   }
1475 }
1476 
1477 void Assembler::call(Register dst) {
1478   int encode = prefix_and_encode(dst->encoding());
1479   emit_int8((unsigned char)0xFF);
1480   emit_int8((unsigned char)(0xD0 | encode));
1481 }
1482 
1483 
1484 void Assembler::call(Address adr) {
1485   InstructionMark im(this);
1486   prefix(adr);
1487   emit_int8((unsigned char)0xFF);
1488   emit_operand(rdx, adr);
1489 }
1490 
1491 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1492   assert(entry != NULL, "call most probably wrong");
1493   InstructionMark im(this);
1494   emit_int8((unsigned char)0xE8);
1495   intptr_t disp = entry - (pc() + sizeof(int32_t));
1496   assert(is_simm32(disp), "must be 32bit offset (call2)");
1497   // Technically, should use call32_operand, but this format is
1498   // implied by the fact that we're emitting a call instruction.
1499 
1500   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1501   emit_data((int) disp, rspec, operand);
1502 }
1503 
1504 void Assembler::cdql() {
1505   emit_int8((unsigned char)0x99);
1506 }
1507 
1508 void Assembler::cld() {
1509   emit_int8((unsigned char)0xFC);
1510 }
1511 
1512 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1513   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1514   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1515   emit_int8(0x0F);
1516   emit_int8(0x40 | cc);
1517   emit_int8((unsigned char)(0xC0 | encode));
1518 }
1519 
1520 
1521 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1522   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1523   prefix(src, dst);
1524   emit_int8(0x0F);
1525   emit_int8(0x40 | cc);
1526   emit_operand(dst, src);
1527 }
1528 
1529 void Assembler::cmpb(Address dst, int imm8) {
1530   InstructionMark im(this);
1531   prefix(dst);
1532   emit_int8((unsigned char)0x80);
1533   emit_operand(rdi, dst, 1);
1534   emit_int8(imm8);
1535 }
1536 
1537 void Assembler::cmpl(Address dst, int32_t imm32) {
1538   InstructionMark im(this);
1539   prefix(dst);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 4);
1542   emit_int32(imm32);
1543 }
1544 
1545 void Assembler::cmpl(Register dst, int32_t imm32) {
1546   prefix(dst);
1547   emit_arith(0x81, 0xF8, dst, imm32);
1548 }
1549 
1550 void Assembler::cmpl(Register dst, Register src) {
1551   (void) prefix_and_encode(dst->encoding(), src->encoding());
1552   emit_arith(0x3B, 0xC0, dst, src);
1553 }
1554 
1555 void Assembler::cmpl(Register dst, Address  src) {
1556   InstructionMark im(this);
1557   prefix(src, dst);
1558   emit_int8((unsigned char)0x3B);
1559   emit_operand(dst, src);
1560 }
1561 
1562 void Assembler::cmpw(Address dst, int imm16) {
1563   InstructionMark im(this);
1564   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1565   emit_int8(0x66);
1566   emit_int8((unsigned char)0x81);
1567   emit_operand(rdi, dst, 2);
1568   emit_int16(imm16);
1569 }
1570 
1571 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1572 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1573 // The ZF is set if the compared values were equal, and cleared otherwise.
1574 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1575   InstructionMark im(this);
1576   prefix(adr, reg);
1577   emit_int8(0x0F);
1578   emit_int8((unsigned char)0xB1);
1579   emit_operand(reg, adr);
1580 }
1581 
1582 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1583 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1584 // The ZF is set if the compared values were equal, and cleared otherwise.
1585 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1586   InstructionMark im(this);
1587   prefix(adr, reg, true);
1588   emit_int8(0x0F);
1589   emit_int8((unsigned char)0xB0);
1590   emit_operand(reg, adr);
1591 }
1592 
1593 void Assembler::comisd(XMMRegister dst, Address src) {
1594   // NOTE: dbx seems to decode this as comiss even though the
1595   // 0x66 is there. Strangly ucomisd comes out correct
1596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1597   InstructionMark im(this);
1598   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1599   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1600   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1601   emit_int8(0x2F);
1602   emit_operand(dst, src);
1603 }
1604 
1605 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1606   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1607   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1608   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1609   emit_int8(0x2F);
1610   emit_int8((unsigned char)(0xC0 | encode));
1611 }
1612 
1613 void Assembler::comiss(XMMRegister dst, Address src) {
1614   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1615   InstructionMark im(this);
1616   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1617   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1618   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1619   emit_int8(0x2F);
1620   emit_operand(dst, src);
1621 }
1622 
1623 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1624   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1625   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1626   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1627   emit_int8(0x2F);
1628   emit_int8((unsigned char)(0xC0 | encode));
1629 }
1630 
1631 void Assembler::cpuid() {
1632   emit_int8(0x0F);
1633   emit_int8((unsigned char)0xA2);
1634 }
1635 
1636 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1637 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1638 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1639 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1640 //
1641 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1642 //
1643 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1644 //
1645 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1646 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1647   assert(VM_Version::supports_sse4_2(), "");
1648   int8_t w = 0x01;
1649   Prefix p = Prefix_EMPTY;
1650 
1651   emit_int8((int8_t)0xF2);
1652   switch (sizeInBytes) {
1653   case 1:
1654     w = 0;
1655     break;
1656   case 2:
1657   case 4:
1658     break;
1659   LP64_ONLY(case 8:)
1660     // This instruction is not valid in 32 bits
1661     // Note:
1662     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1663     //
1664     // Page B - 72   Vol. 2C says
1665     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1666     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1667     //                                                                            F0!!!
1668     // while 3 - 208 Vol. 2A
1669     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1670     //
1671     // the 0 on a last bit is reserved for a different flavor of this instruction :
1672     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1673     p = REX_W;
1674     break;
1675   default:
1676     assert(0, "Unsupported value for a sizeInBytes argument");
1677     break;
1678   }
1679   LP64_ONLY(prefix(crc, v, p);)
1680   emit_int8((int8_t)0x0F);
1681   emit_int8(0x38);
1682   emit_int8((int8_t)(0xF0 | w));
1683   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1684 }
1685 
1686 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1687   assert(VM_Version::supports_sse4_2(), "");
1688   InstructionMark im(this);
1689   int8_t w = 0x01;
1690   Prefix p = Prefix_EMPTY;
1691 
1692   emit_int8((int8_t)0xF2);
1693   switch (sizeInBytes) {
1694   case 1:
1695     w = 0;
1696     break;
1697   case 2:
1698   case 4:
1699     break;
1700   LP64_ONLY(case 8:)
1701     // This instruction is not valid in 32 bits
1702     p = REX_W;
1703     break;
1704   default:
1705     assert(0, "Unsupported value for a sizeInBytes argument");
1706     break;
1707   }
1708   LP64_ONLY(prefix(crc, adr, p);)
1709   emit_int8((int8_t)0x0F);
1710   emit_int8(0x38);
1711   emit_int8((int8_t)(0xF0 | w));
1712   emit_operand(crc, adr);
1713 }
1714 
1715 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1716   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1717   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1718   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1719   emit_int8((unsigned char)0xE6);
1720   emit_int8((unsigned char)(0xC0 | encode));
1721 }
1722 
1723 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1725   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1726   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1727   emit_int8(0x5B);
1728   emit_int8((unsigned char)(0xC0 | encode));
1729 }
1730 
1731 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1733   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1734   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1735   emit_int8(0x5A);
1736   emit_int8((unsigned char)(0xC0 | encode));
1737 }
1738 
1739 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1740   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1741   InstructionMark im(this);
1742   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1743   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1744   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1745   emit_int8(0x5A);
1746   emit_operand(dst, src);
1747 }
1748 
1749 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1750   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1751   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1752   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1753   emit_int8(0x2A);
1754   emit_int8((unsigned char)(0xC0 | encode));
1755 }
1756 
1757 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1758   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1759   InstructionMark im(this);
1760   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1761   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1762   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1763   emit_int8(0x2A);
1764   emit_operand(dst, src);
1765 }
1766 
1767 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1768   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1769   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1770   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1771   emit_int8(0x2A);
1772   emit_int8((unsigned char)(0xC0 | encode));
1773 }
1774 
1775 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1776   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1777   InstructionMark im(this);
1778   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1779   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1780   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1781   emit_int8(0x2A);
1782   emit_operand(dst, src);
1783 }
1784 
1785 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1786   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1787   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1788   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1789   emit_int8(0x2A);
1790   emit_int8((unsigned char)(0xC0 | encode));
1791 }
1792 
1793 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1794   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1796   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1797   emit_int8(0x5A);
1798   emit_int8((unsigned char)(0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionMark im(this);
1804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1805   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1806   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1807   emit_int8(0x5A);
1808   emit_operand(dst, src);
1809 }
1810 
1811 
1812 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1815   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1816   emit_int8(0x2C);
1817   emit_int8((unsigned char)(0xC0 | encode));
1818 }
1819 
1820 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1821   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1824   emit_int8(0x2C);
1825   emit_int8((unsigned char)(0xC0 | encode));
1826 }
1827 
1828 void Assembler::decl(Address dst) {
1829   // Don't use it directly. Use MacroAssembler::decrement() instead.
1830   InstructionMark im(this);
1831   prefix(dst);
1832   emit_int8((unsigned char)0xFF);
1833   emit_operand(rcx, dst);
1834 }
1835 
1836 void Assembler::divsd(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1838   InstructionMark im(this);
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1840   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1841   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x5E);
1843   emit_operand(dst, src);
1844 }
1845 
1846 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1847   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1848   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1849   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1850   emit_int8(0x5E);
1851   emit_int8((unsigned char)(0xC0 | encode));
1852 }
1853 
1854 void Assembler::divss(XMMRegister dst, Address src) {
1855   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1856   InstructionMark im(this);
1857   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1858   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1859   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1860   emit_int8(0x5E);
1861   emit_operand(dst, src);
1862 }
1863 
1864 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1865   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1866   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1867   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1868   emit_int8(0x5E);
1869   emit_int8((unsigned char)(0xC0 | encode));
1870 }
1871 
1872 void Assembler::emms() {
1873   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1874   emit_int8(0x0F);
1875   emit_int8(0x77);
1876 }
1877 
1878 void Assembler::hlt() {
1879   emit_int8((unsigned char)0xF4);
1880 }
1881 
1882 void Assembler::idivl(Register src) {
1883   int encode = prefix_and_encode(src->encoding());
1884   emit_int8((unsigned char)0xF7);
1885   emit_int8((unsigned char)(0xF8 | encode));
1886 }
1887 
1888 void Assembler::divl(Register src) { // Unsigned
1889   int encode = prefix_and_encode(src->encoding());
1890   emit_int8((unsigned char)0xF7);
1891   emit_int8((unsigned char)(0xF0 | encode));
1892 }
1893 
1894 void Assembler::imull(Register src) {
1895   int encode = prefix_and_encode(src->encoding());
1896   emit_int8((unsigned char)0xF7);
1897   emit_int8((unsigned char)(0xE8 | encode));
1898 }
1899 
1900 void Assembler::imull(Register dst, Register src) {
1901   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1902   emit_int8(0x0F);
1903   emit_int8((unsigned char)0xAF);
1904   emit_int8((unsigned char)(0xC0 | encode));
1905 }
1906 
1907 
1908 void Assembler::imull(Register dst, Register src, int value) {
1909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1910   if (is8bit(value)) {
1911     emit_int8(0x6B);
1912     emit_int8((unsigned char)(0xC0 | encode));
1913     emit_int8(value & 0xFF);
1914   } else {
1915     emit_int8(0x69);
1916     emit_int8((unsigned char)(0xC0 | encode));
1917     emit_int32(value);
1918   }
1919 }
1920 
1921 void Assembler::imull(Register dst, Address src) {
1922   InstructionMark im(this);
1923   prefix(src, dst);
1924   emit_int8(0x0F);
1925   emit_int8((unsigned char) 0xAF);
1926   emit_operand(dst, src);
1927 }
1928 
1929 
1930 void Assembler::incl(Address dst) {
1931   // Don't use it directly. Use MacroAssembler::increment() instead.
1932   InstructionMark im(this);
1933   prefix(dst);
1934   emit_int8((unsigned char)0xFF);
1935   emit_operand(rax, dst);
1936 }
1937 
1938 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1939   InstructionMark im(this);
1940   assert((0 <= cc) && (cc < 16), "illegal cc");
1941   if (L.is_bound()) {
1942     address dst = target(L);
1943     assert(dst != NULL, "jcc most probably wrong");
1944 
1945     const int short_size = 2;
1946     const int long_size = 6;
1947     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1948     if (maybe_short && is8bit(offs - short_size)) {
1949       // 0111 tttn #8-bit disp
1950       emit_int8(0x70 | cc);
1951       emit_int8((offs - short_size) & 0xFF);
1952     } else {
1953       // 0000 1111 1000 tttn #32-bit disp
1954       assert(is_simm32(offs - long_size),
1955              "must be 32bit offset (call4)");
1956       emit_int8(0x0F);
1957       emit_int8((unsigned char)(0x80 | cc));
1958       emit_int32(offs - long_size);
1959     }
1960   } else {
1961     // Note: could eliminate cond. jumps to this jump if condition
1962     //       is the same however, seems to be rather unlikely case.
1963     // Note: use jccb() if label to be bound is very close to get
1964     //       an 8-bit displacement
1965     L.add_patch_at(code(), locator());
1966     emit_int8(0x0F);
1967     emit_int8((unsigned char)(0x80 | cc));
1968     emit_int32(0);
1969   }
1970 }
1971 
1972 void Assembler::jccb(Condition cc, Label& L) {
1973   if (L.is_bound()) {
1974     const int short_size = 2;
1975     address entry = target(L);
1976 #ifdef ASSERT
1977     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1978     intptr_t delta = short_branch_delta();
1979     if (delta != 0) {
1980       dist += (dist < 0 ? (-delta) :delta);
1981     }
1982     assert(is8bit(dist), "Dispacement too large for a short jmp");
1983 #endif
1984     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1985     // 0111 tttn #8-bit disp
1986     emit_int8(0x70 | cc);
1987     emit_int8((offs - short_size) & 0xFF);
1988   } else {
1989     InstructionMark im(this);
1990     L.add_patch_at(code(), locator());
1991     emit_int8(0x70 | cc);
1992     emit_int8(0);
1993   }
1994 }
1995 
1996 void Assembler::jmp(Address adr) {
1997   InstructionMark im(this);
1998   prefix(adr);
1999   emit_int8((unsigned char)0xFF);
2000   emit_operand(rsp, adr);
2001 }
2002 
2003 void Assembler::jmp(Label& L, bool maybe_short) {
2004   if (L.is_bound()) {
2005     address entry = target(L);
2006     assert(entry != NULL, "jmp most probably wrong");
2007     InstructionMark im(this);
2008     const int short_size = 2;
2009     const int long_size = 5;
2010     intptr_t offs = entry - pc();
2011     if (maybe_short && is8bit(offs - short_size)) {
2012       emit_int8((unsigned char)0xEB);
2013       emit_int8((offs - short_size) & 0xFF);
2014     } else {
2015       emit_int8((unsigned char)0xE9);
2016       emit_int32(offs - long_size);
2017     }
2018   } else {
2019     // By default, forward jumps are always 32-bit displacements, since
2020     // we can't yet know where the label will be bound.  If you're sure that
2021     // the forward jump will not run beyond 256 bytes, use jmpb to
2022     // force an 8-bit displacement.
2023     InstructionMark im(this);
2024     L.add_patch_at(code(), locator());
2025     emit_int8((unsigned char)0xE9);
2026     emit_int32(0);
2027   }
2028 }
2029 
2030 void Assembler::jmp(Register entry) {
2031   int encode = prefix_and_encode(entry->encoding());
2032   emit_int8((unsigned char)0xFF);
2033   emit_int8((unsigned char)(0xE0 | encode));
2034 }
2035 
2036 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2037   InstructionMark im(this);
2038   emit_int8((unsigned char)0xE9);
2039   assert(dest != NULL, "must have a target");
2040   intptr_t disp = dest - (pc() + sizeof(int32_t));
2041   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2042   emit_data(disp, rspec.reloc(), call32_operand);
2043 }
2044 
2045 void Assembler::jmpb(Label& L) {
2046   if (L.is_bound()) {
2047     const int short_size = 2;
2048     address entry = target(L);
2049     assert(entry != NULL, "jmp most probably wrong");
2050 #ifdef ASSERT
2051     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2052     intptr_t delta = short_branch_delta();
2053     if (delta != 0) {
2054       dist += (dist < 0 ? (-delta) :delta);
2055     }
2056     assert(is8bit(dist), "Dispacement too large for a short jmp");
2057 #endif
2058     intptr_t offs = entry - pc();
2059     emit_int8((unsigned char)0xEB);
2060     emit_int8((offs - short_size) & 0xFF);
2061   } else {
2062     InstructionMark im(this);
2063     L.add_patch_at(code(), locator());
2064     emit_int8((unsigned char)0xEB);
2065     emit_int8(0);
2066   }
2067 }
2068 
2069 void Assembler::ldmxcsr( Address src) {
2070   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2071   InstructionMark im(this);
2072   prefix(src);
2073   emit_int8(0x0F);
2074   emit_int8((unsigned char)0xAE);
2075   emit_operand(as_Register(2), src);
2076 }
2077 
2078 void Assembler::leal(Register dst, Address src) {
2079   InstructionMark im(this);
2080 #ifdef _LP64
2081   emit_int8(0x67); // addr32
2082   prefix(src, dst);
2083 #endif // LP64
2084   emit_int8((unsigned char)0x8D);
2085   emit_operand(dst, src);
2086 }
2087 
2088 void Assembler::lfence() {
2089   emit_int8(0x0F);
2090   emit_int8((unsigned char)0xAE);
2091   emit_int8((unsigned char)0xE8);
2092 }
2093 
2094 void Assembler::lock() {
2095   emit_int8((unsigned char)0xF0);
2096 }
2097 
2098 void Assembler::lzcntl(Register dst, Register src) {
2099   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2100   emit_int8((unsigned char)0xF3);
2101   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2102   emit_int8(0x0F);
2103   emit_int8((unsigned char)0xBD);
2104   emit_int8((unsigned char)(0xC0 | encode));
2105 }
2106 
2107 // Emit mfence instruction
2108 void Assembler::mfence() {
2109   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2110   emit_int8(0x0F);
2111   emit_int8((unsigned char)0xAE);
2112   emit_int8((unsigned char)0xF0);
2113 }
2114 
2115 void Assembler::mov(Register dst, Register src) {
2116   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2117 }
2118 
2119 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2120   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2121   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2122   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2123   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2124   emit_int8(0x28);
2125   emit_int8((unsigned char)(0xC0 | encode));
2126 }
2127 
2128 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2129   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2130   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2131   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2132   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2133   emit_int8(0x28);
2134   emit_int8((unsigned char)(0xC0 | encode));
2135 }
2136 
2137 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2138   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2139   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2140   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2141   emit_int8(0x16);
2142   emit_int8((unsigned char)(0xC0 | encode));
2143 }
2144 
2145 void Assembler::movb(Register dst, Address src) {
2146   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2147   InstructionMark im(this);
2148   prefix(src, dst, true);
2149   emit_int8((unsigned char)0x8A);
2150   emit_operand(dst, src);
2151 }
2152 
2153 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2154   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2155   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
2156   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2157   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2158   emit_int8(0x12);
2159   emit_int8(0xC0 | encode);
2160 }
2161 
2162 void Assembler::kmovwl(KRegister dst, Register src) {
2163   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2164   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2165   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2166   emit_int8((unsigned char)0x92);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::kmovdl(KRegister dst, Register src) {
2171   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2172   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2173   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2174   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2175   emit_int8((unsigned char)0x92);
2176   emit_int8((unsigned char)(0xC0 | encode));
2177 }
2178 
2179 void Assembler::kmovql(KRegister dst, KRegister src) {
2180   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2181   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2182   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2183   emit_int8((unsigned char)0x90);
2184   emit_int8((unsigned char)(0xC0 | encode));
2185 }
2186 
2187 void Assembler::kmovql(KRegister dst, Address src) {
2188   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2189   InstructionMark im(this);
2190   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2191   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2192   emit_int8((unsigned char)0x90);
2193   emit_operand((Register)dst, src);
2194 }
2195 
2196 void Assembler::kmovql(Address dst, KRegister src) {
2197   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2198   InstructionMark im(this);
2199   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2200   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2201   emit_int8((unsigned char)0x90);
2202   emit_operand((Register)src, dst);
2203 }
2204 
2205 void Assembler::kmovql(KRegister dst, Register src) {
2206   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2207   VexSimdPrefix pre = !_legacy_mode_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2208   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_bw, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2209   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, VEX_OPCODE_0F, &attributes);
2210   emit_int8((unsigned char)0x92);
2211   emit_int8((unsigned char)(0xC0 | encode));
2212 }
2213 
2214 // This instruction produces ZF or CF flags
2215 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2216   NOT_LP64(assert(VM_Version::supports_avx512dq(), ""));
2217   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2218   int encode = kreg_prefix_and_encode(src1, knoreg, src2, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2219   emit_int8((unsigned char)0x98);
2220   emit_int8((unsigned char)(0xC0 | encode));
2221 }
2222 
2223 // This instruction produces ZF or CF flags
2224 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2225   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2227   int encode = kreg_prefix_and_encode(src1, knoreg, src2, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2228   emit_int8((unsigned char)0x98);
2229   emit_int8((unsigned char)(0xC0 | encode));
2230 }
2231 
2232 // This instruction produces ZF or CF flags
2233 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2234   NOT_LP64(assert(VM_Version::supports_avx512bw(), ""));
2235   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2236   int encode = kreg_prefix_and_encode(src1, knoreg, src2, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2237   emit_int8((unsigned char)0x98);
2238   emit_int8((unsigned char)(0xC0 | encode));
2239 }
2240 
2241 // This instruction produces ZF or CF flags
2242 void Assembler::kortestql(KRegister src1, KRegister src2) {
2243   NOT_LP64(assert(VM_Version::supports_avx512bw(), ""));
2244   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2245   int encode = kreg_prefix_and_encode(src1, knoreg, src2, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2246   emit_int8((unsigned char)0x98);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movb(Address dst, int imm8) {
2251   InstructionMark im(this);
2252    prefix(dst);
2253   emit_int8((unsigned char)0xC6);
2254   emit_operand(rax, dst, 1);
2255   emit_int8(imm8);
2256 }
2257 
2258 
2259 void Assembler::movb(Address dst, Register src) {
2260   assert(src->has_byte_register(), "must have byte register");
2261   InstructionMark im(this);
2262   prefix(dst, src, true);
2263   emit_int8((unsigned char)0x88);
2264   emit_operand(src, dst);
2265 }
2266 
2267 void Assembler::movdl(XMMRegister dst, Register src) {
2268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2270   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2271   emit_int8(0x6E);
2272   emit_int8((unsigned char)(0xC0 | encode));
2273 }
2274 
2275 void Assembler::movdl(Register dst, XMMRegister src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2278   // swap src/dst to get correct prefix
2279   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2280   emit_int8(0x7E);
2281   emit_int8((unsigned char)(0xC0 | encode));
2282 }
2283 
2284 void Assembler::movdl(XMMRegister dst, Address src) {
2285   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2286   InstructionMark im(this);
2287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2288   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2289   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2290   emit_int8(0x6E);
2291   emit_operand(dst, src);
2292 }
2293 
2294 void Assembler::movdl(Address dst, XMMRegister src) {
2295   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2296   InstructionMark im(this);
2297   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2298   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2299   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2300   emit_int8(0x7E);
2301   emit_operand(src, dst);
2302 }
2303 
2304 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2307   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2308   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2309   emit_int8(0x6F);
2310   emit_int8((unsigned char)(0xC0 | encode));
2311 }
2312 
2313 void Assembler::movdqa(XMMRegister dst, Address src) {
2314   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2315   InstructionMark im(this);
2316   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2317   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2318   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2319   emit_int8(0x6F);
2320   emit_operand(dst, src);
2321 }
2322 
2323 void Assembler::movdqu(XMMRegister dst, Address src) {
2324   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2325   InstructionMark im(this);
2326   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2327   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2328   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2329   emit_int8(0x6F);
2330   emit_operand(dst, src);
2331 }
2332 
2333 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2334   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2335   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2336   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2337   emit_int8(0x6F);
2338   emit_int8((unsigned char)(0xC0 | encode));
2339 }
2340 
2341 void Assembler::movdqu(Address dst, XMMRegister src) {
2342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2343   InstructionMark im(this);
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2345   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2346   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2347   emit_int8(0x7F);
2348   emit_operand(src, dst);
2349 }
2350 
2351 // Move Unaligned 256bit Vector
2352 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2353   assert(UseAVX > 0, "");
2354   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2355   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2356   emit_int8(0x6F);
2357   emit_int8((unsigned char)(0xC0 | encode));
2358 }
2359 
2360 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2361   assert(UseAVX > 0, "");
2362   InstructionMark im(this);
2363   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2364   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2365   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2366   emit_int8(0x6F);
2367   emit_operand(dst, src);
2368 }
2369 
2370 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2371   assert(UseAVX > 0, "");
2372   InstructionMark im(this);
2373   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2374   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2375   // swap src<->dst for encoding
2376   assert(src != xnoreg, "sanity");
2377   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2378   emit_int8(0x7F);
2379   emit_operand(src, dst);
2380 }
2381 
2382 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2383 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2384   assert(VM_Version::supports_evex(), "");
2385   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2386   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2387   emit_int8(0x6F);
2388   emit_int8((unsigned char)(0xC0 | encode));
2389 }
2390 
2391 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2392   assert(VM_Version::supports_evex(), "");
2393   InstructionMark im(this);
2394   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2395   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2396   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2397   emit_int8(0x6F);
2398   emit_operand(dst, src);
2399 }
2400 
2401 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2402   assert(VM_Version::supports_evex(), "");
2403   assert(src != xnoreg, "sanity");
2404   InstructionMark im(this);
2405   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2406   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2407   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2408   emit_int8(0x7F);
2409   emit_operand(src, dst);
2410 }
2411 
2412 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2413   assert(VM_Version::supports_evex(), "");
2414   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2415   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2416   emit_int8(0x6F);
2417   emit_int8((unsigned char)(0xC0 | encode));
2418 }
2419 
2420 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2421   assert(VM_Version::supports_evex(), "");
2422   InstructionMark im(this);
2423   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2424   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2425   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2426   emit_int8(0x6F);
2427   emit_operand(dst, src);
2428 }
2429 
2430 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2431   assert(VM_Version::supports_evex(), "");
2432   assert(src != xnoreg, "sanity");
2433   InstructionMark im(this);
2434   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
2435   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2436   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2437   emit_int8(0x7F);
2438   emit_operand(src, dst);
2439 }
2440 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2441   assert(VM_Version::supports_evex(), "");
2442   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2443   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2444   emit_int8(0x6F);
2445   emit_int8((unsigned char)(0xC0 | encode));
2446 }
2447 
2448 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2449   assert(VM_Version::supports_evex(), "");
2450   InstructionMark im(this);
2451   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2452   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2453   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2454   emit_int8(0x6F);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2459   assert(VM_Version::supports_evex(), "");
2460   assert(src != xnoreg, "sanity");
2461   InstructionMark im(this);
2462   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2463   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2464   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2465   emit_int8(0x7F);
2466   emit_operand(src, dst);
2467 }
2468 
2469 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2470   assert(VM_Version::supports_evex(), "");
2471   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2472   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2473   emit_int8(0x6F);
2474   emit_int8((unsigned char)(0xC0 | encode));
2475 }
2476 
2477 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2478   assert(VM_Version::supports_evex(), "");
2479   InstructionMark im(this);
2480   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2481   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2482   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2483   emit_int8(0x6F);
2484   emit_operand(dst, src);
2485 }
2486 
2487 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2488   assert(VM_Version::supports_evex(), "");
2489   assert(src != xnoreg, "sanity");
2490   InstructionMark im(this);
2491   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2492   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2493   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2494   emit_int8(0x7F);
2495   emit_operand(src, dst);
2496 }
2497 
2498 // Uses zero extension on 64bit
2499 
2500 void Assembler::movl(Register dst, int32_t imm32) {
2501   int encode = prefix_and_encode(dst->encoding());
2502   emit_int8((unsigned char)(0xB8 | encode));
2503   emit_int32(imm32);
2504 }
2505 
2506 void Assembler::movl(Register dst, Register src) {
2507   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2508   emit_int8((unsigned char)0x8B);
2509   emit_int8((unsigned char)(0xC0 | encode));
2510 }
2511 
2512 void Assembler::movl(Register dst, Address src) {
2513   InstructionMark im(this);
2514   prefix(src, dst);
2515   emit_int8((unsigned char)0x8B);
2516   emit_operand(dst, src);
2517 }
2518 
2519 void Assembler::movl(Address dst, int32_t imm32) {
2520   InstructionMark im(this);
2521   prefix(dst);
2522   emit_int8((unsigned char)0xC7);
2523   emit_operand(rax, dst, 4);
2524   emit_int32(imm32);
2525 }
2526 
2527 void Assembler::movl(Address dst, Register src) {
2528   InstructionMark im(this);
2529   prefix(dst, src);
2530   emit_int8((unsigned char)0x89);
2531   emit_operand(src, dst);
2532 }
2533 
2534 // New cpus require to use movsd and movss to avoid partial register stall
2535 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2536 // The selection is done in MacroAssembler::movdbl() and movflt().
2537 void Assembler::movlpd(XMMRegister dst, Address src) {
2538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2539   InstructionMark im(this);
2540   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2541   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2542   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2543   emit_int8(0x12);
2544   emit_operand(dst, src);
2545 }
2546 
2547 void Assembler::movq( MMXRegister dst, Address src ) {
2548   assert( VM_Version::supports_mmx(), "" );
2549   emit_int8(0x0F);
2550   emit_int8(0x6F);
2551   emit_operand(dst, src);
2552 }
2553 
2554 void Assembler::movq( Address dst, MMXRegister src ) {
2555   assert( VM_Version::supports_mmx(), "" );
2556   emit_int8(0x0F);
2557   emit_int8(0x7F);
2558   // workaround gcc (3.2.1-7a) bug
2559   // In that version of gcc with only an emit_operand(MMX, Address)
2560   // gcc will tail jump and try and reverse the parameters completely
2561   // obliterating dst in the process. By having a version available
2562   // that doesn't need to swap the args at the tail jump the bug is
2563   // avoided.
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::movq(XMMRegister dst, Address src) {
2568   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2569   InstructionMark im(this);
2570   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2571   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2572   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2573   emit_int8(0x7E);
2574   emit_operand(dst, src);
2575 }
2576 
2577 void Assembler::movq(Address dst, XMMRegister src) {
2578   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2579   InstructionMark im(this);
2580   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2581   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2582   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2583   emit_int8((unsigned char)0xD6);
2584   emit_operand(src, dst);
2585 }
2586 
2587 void Assembler::movsbl(Register dst, Address src) { // movsxb
2588   InstructionMark im(this);
2589   prefix(src, dst);
2590   emit_int8(0x0F);
2591   emit_int8((unsigned char)0xBE);
2592   emit_operand(dst, src);
2593 }
2594 
2595 void Assembler::movsbl(Register dst, Register src) { // movsxb
2596   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2597   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2598   emit_int8(0x0F);
2599   emit_int8((unsigned char)0xBE);
2600   emit_int8((unsigned char)(0xC0 | encode));
2601 }
2602 
2603 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2605   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2606   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2607   emit_int8(0x10);
2608   emit_int8((unsigned char)(0xC0 | encode));
2609 }
2610 
2611 void Assembler::movsd(XMMRegister dst, Address src) {
2612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2613   InstructionMark im(this);
2614   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2615   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2616   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2617   emit_int8(0x10);
2618   emit_operand(dst, src);
2619 }
2620 
2621 void Assembler::movsd(Address dst, XMMRegister src) {
2622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2623   InstructionMark im(this);
2624   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2625   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2626   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2627   emit_int8(0x11);
2628   emit_operand(src, dst);
2629 }
2630 
2631 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2632   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2633   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2634   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2635   emit_int8(0x10);
2636   emit_int8((unsigned char)(0xC0 | encode));
2637 }
2638 
2639 void Assembler::movss(XMMRegister dst, Address src) {
2640   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2641   InstructionMark im(this);
2642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2643   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2644   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2645   emit_int8(0x10);
2646   emit_operand(dst, src);
2647 }
2648 
2649 void Assembler::movss(Address dst, XMMRegister src) {
2650   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2651   InstructionMark im(this);
2652   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2653   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2654   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2655   emit_int8(0x11);
2656   emit_operand(src, dst);
2657 }
2658 
2659 void Assembler::movswl(Register dst, Address src) { // movsxw
2660   InstructionMark im(this);
2661   prefix(src, dst);
2662   emit_int8(0x0F);
2663   emit_int8((unsigned char)0xBF);
2664   emit_operand(dst, src);
2665 }
2666 
2667 void Assembler::movswl(Register dst, Register src) { // movsxw
2668   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2669   emit_int8(0x0F);
2670   emit_int8((unsigned char)0xBF);
2671   emit_int8((unsigned char)(0xC0 | encode));
2672 }
2673 
2674 void Assembler::movw(Address dst, int imm16) {
2675   InstructionMark im(this);
2676 
2677   emit_int8(0x66); // switch to 16-bit mode
2678   prefix(dst);
2679   emit_int8((unsigned char)0xC7);
2680   emit_operand(rax, dst, 2);
2681   emit_int16(imm16);
2682 }
2683 
2684 void Assembler::movw(Register dst, Address src) {
2685   InstructionMark im(this);
2686   emit_int8(0x66);
2687   prefix(src, dst);
2688   emit_int8((unsigned char)0x8B);
2689   emit_operand(dst, src);
2690 }
2691 
2692 void Assembler::movw(Address dst, Register src) {
2693   InstructionMark im(this);
2694   emit_int8(0x66);
2695   prefix(dst, src);
2696   emit_int8((unsigned char)0x89);
2697   emit_operand(src, dst);
2698 }
2699 
2700 void Assembler::movzbl(Register dst, Address src) { // movzxb
2701   InstructionMark im(this);
2702   prefix(src, dst);
2703   emit_int8(0x0F);
2704   emit_int8((unsigned char)0xB6);
2705   emit_operand(dst, src);
2706 }
2707 
2708 void Assembler::movzbl(Register dst, Register src) { // movzxb
2709   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2710   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2711   emit_int8(0x0F);
2712   emit_int8((unsigned char)0xB6);
2713   emit_int8(0xC0 | encode);
2714 }
2715 
2716 void Assembler::movzwl(Register dst, Address src) { // movzxw
2717   InstructionMark im(this);
2718   prefix(src, dst);
2719   emit_int8(0x0F);
2720   emit_int8((unsigned char)0xB7);
2721   emit_operand(dst, src);
2722 }
2723 
2724 void Assembler::movzwl(Register dst, Register src) { // movzxw
2725   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2726   emit_int8(0x0F);
2727   emit_int8((unsigned char)0xB7);
2728   emit_int8(0xC0 | encode);
2729 }
2730 
2731 void Assembler::mull(Address src) {
2732   InstructionMark im(this);
2733   prefix(src);
2734   emit_int8((unsigned char)0xF7);
2735   emit_operand(rsp, src);
2736 }
2737 
2738 void Assembler::mull(Register src) {
2739   int encode = prefix_and_encode(src->encoding());
2740   emit_int8((unsigned char)0xF7);
2741   emit_int8((unsigned char)(0xE0 | encode));
2742 }
2743 
2744 void Assembler::mulsd(XMMRegister dst, Address src) {
2745   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2746   InstructionMark im(this);
2747   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2748   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2749   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2750   emit_int8(0x59);
2751   emit_operand(dst, src);
2752 }
2753 
2754 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2756   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2757   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2758   emit_int8(0x59);
2759   emit_int8((unsigned char)(0xC0 | encode));
2760 }
2761 
2762 void Assembler::mulss(XMMRegister dst, Address src) {
2763   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2764   InstructionMark im(this);
2765   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2766   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2767   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2768   emit_int8(0x59);
2769   emit_operand(dst, src);
2770 }
2771 
2772 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2773   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2774   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2775   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2776   emit_int8(0x59);
2777   emit_int8((unsigned char)(0xC0 | encode));
2778 }
2779 
2780 void Assembler::negl(Register dst) {
2781   int encode = prefix_and_encode(dst->encoding());
2782   emit_int8((unsigned char)0xF7);
2783   emit_int8((unsigned char)(0xD8 | encode));
2784 }
2785 
2786 void Assembler::nop(int i) {
2787 #ifdef ASSERT
2788   assert(i > 0, " ");
2789   // The fancy nops aren't currently recognized by debuggers making it a
2790   // pain to disassemble code while debugging. If asserts are on clearly
2791   // speed is not an issue so simply use the single byte traditional nop
2792   // to do alignment.
2793 
2794   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2795   return;
2796 
2797 #endif // ASSERT
2798 
2799   if (UseAddressNop && VM_Version::is_intel()) {
2800     //
2801     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2802     //  1: 0x90
2803     //  2: 0x66 0x90
2804     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2805     //  4: 0x0F 0x1F 0x40 0x00
2806     //  5: 0x0F 0x1F 0x44 0x00 0x00
2807     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2808     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2809     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2810     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2811     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2812     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2813 
2814     // The rest coding is Intel specific - don't use consecutive address nops
2815 
2816     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2817     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2818     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2819     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2820 
2821     while(i >= 15) {
2822       // For Intel don't generate consecutive addess nops (mix with regular nops)
2823       i -= 15;
2824       emit_int8(0x66);   // size prefix
2825       emit_int8(0x66);   // size prefix
2826       emit_int8(0x66);   // size prefix
2827       addr_nop_8();
2828       emit_int8(0x66);   // size prefix
2829       emit_int8(0x66);   // size prefix
2830       emit_int8(0x66);   // size prefix
2831       emit_int8((unsigned char)0x90);
2832                          // nop
2833     }
2834     switch (i) {
2835       case 14:
2836         emit_int8(0x66); // size prefix
2837       case 13:
2838         emit_int8(0x66); // size prefix
2839       case 12:
2840         addr_nop_8();
2841         emit_int8(0x66); // size prefix
2842         emit_int8(0x66); // size prefix
2843         emit_int8(0x66); // size prefix
2844         emit_int8((unsigned char)0x90);
2845                          // nop
2846         break;
2847       case 11:
2848         emit_int8(0x66); // size prefix
2849       case 10:
2850         emit_int8(0x66); // size prefix
2851       case 9:
2852         emit_int8(0x66); // size prefix
2853       case 8:
2854         addr_nop_8();
2855         break;
2856       case 7:
2857         addr_nop_7();
2858         break;
2859       case 6:
2860         emit_int8(0x66); // size prefix
2861       case 5:
2862         addr_nop_5();
2863         break;
2864       case 4:
2865         addr_nop_4();
2866         break;
2867       case 3:
2868         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2869         emit_int8(0x66); // size prefix
2870       case 2:
2871         emit_int8(0x66); // size prefix
2872       case 1:
2873         emit_int8((unsigned char)0x90);
2874                          // nop
2875         break;
2876       default:
2877         assert(i == 0, " ");
2878     }
2879     return;
2880   }
2881   if (UseAddressNop && VM_Version::is_amd()) {
2882     //
2883     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2884     //  1: 0x90
2885     //  2: 0x66 0x90
2886     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2887     //  4: 0x0F 0x1F 0x40 0x00
2888     //  5: 0x0F 0x1F 0x44 0x00 0x00
2889     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2890     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2891     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2892     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2893     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2894     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2895 
2896     // The rest coding is AMD specific - use consecutive address nops
2897 
2898     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2899     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2900     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2901     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2902     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2903     //     Size prefixes (0x66) are added for larger sizes
2904 
2905     while(i >= 22) {
2906       i -= 11;
2907       emit_int8(0x66); // size prefix
2908       emit_int8(0x66); // size prefix
2909       emit_int8(0x66); // size prefix
2910       addr_nop_8();
2911     }
2912     // Generate first nop for size between 21-12
2913     switch (i) {
2914       case 21:
2915         i -= 1;
2916         emit_int8(0x66); // size prefix
2917       case 20:
2918       case 19:
2919         i -= 1;
2920         emit_int8(0x66); // size prefix
2921       case 18:
2922       case 17:
2923         i -= 1;
2924         emit_int8(0x66); // size prefix
2925       case 16:
2926       case 15:
2927         i -= 8;
2928         addr_nop_8();
2929         break;
2930       case 14:
2931       case 13:
2932         i -= 7;
2933         addr_nop_7();
2934         break;
2935       case 12:
2936         i -= 6;
2937         emit_int8(0x66); // size prefix
2938         addr_nop_5();
2939         break;
2940       default:
2941         assert(i < 12, " ");
2942     }
2943 
2944     // Generate second nop for size between 11-1
2945     switch (i) {
2946       case 11:
2947         emit_int8(0x66); // size prefix
2948       case 10:
2949         emit_int8(0x66); // size prefix
2950       case 9:
2951         emit_int8(0x66); // size prefix
2952       case 8:
2953         addr_nop_8();
2954         break;
2955       case 7:
2956         addr_nop_7();
2957         break;
2958       case 6:
2959         emit_int8(0x66); // size prefix
2960       case 5:
2961         addr_nop_5();
2962         break;
2963       case 4:
2964         addr_nop_4();
2965         break;
2966       case 3:
2967         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2968         emit_int8(0x66); // size prefix
2969       case 2:
2970         emit_int8(0x66); // size prefix
2971       case 1:
2972         emit_int8((unsigned char)0x90);
2973                          // nop
2974         break;
2975       default:
2976         assert(i == 0, " ");
2977     }
2978     return;
2979   }
2980 
2981   // Using nops with size prefixes "0x66 0x90".
2982   // From AMD Optimization Guide:
2983   //  1: 0x90
2984   //  2: 0x66 0x90
2985   //  3: 0x66 0x66 0x90
2986   //  4: 0x66 0x66 0x66 0x90
2987   //  5: 0x66 0x66 0x90 0x66 0x90
2988   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2989   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2990   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2991   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2992   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2993   //
2994   while(i > 12) {
2995     i -= 4;
2996     emit_int8(0x66); // size prefix
2997     emit_int8(0x66);
2998     emit_int8(0x66);
2999     emit_int8((unsigned char)0x90);
3000                      // nop
3001   }
3002   // 1 - 12 nops
3003   if(i > 8) {
3004     if(i > 9) {
3005       i -= 1;
3006       emit_int8(0x66);
3007     }
3008     i -= 3;
3009     emit_int8(0x66);
3010     emit_int8(0x66);
3011     emit_int8((unsigned char)0x90);
3012   }
3013   // 1 - 8 nops
3014   if(i > 4) {
3015     if(i > 6) {
3016       i -= 1;
3017       emit_int8(0x66);
3018     }
3019     i -= 3;
3020     emit_int8(0x66);
3021     emit_int8(0x66);
3022     emit_int8((unsigned char)0x90);
3023   }
3024   switch (i) {
3025     case 4:
3026       emit_int8(0x66);
3027     case 3:
3028       emit_int8(0x66);
3029     case 2:
3030       emit_int8(0x66);
3031     case 1:
3032       emit_int8((unsigned char)0x90);
3033       break;
3034     default:
3035       assert(i == 0, " ");
3036   }
3037 }
3038 
3039 void Assembler::notl(Register dst) {
3040   int encode = prefix_and_encode(dst->encoding());
3041   emit_int8((unsigned char)0xF7);
3042   emit_int8((unsigned char)(0xD0 | encode));
3043 }
3044 
3045 void Assembler::orl(Address dst, int32_t imm32) {
3046   InstructionMark im(this);
3047   prefix(dst);
3048   emit_arith_operand(0x81, rcx, dst, imm32);
3049 }
3050 
3051 void Assembler::orl(Register dst, int32_t imm32) {
3052   prefix(dst);
3053   emit_arith(0x81, 0xC8, dst, imm32);
3054 }
3055 
3056 void Assembler::orl(Register dst, Address src) {
3057   InstructionMark im(this);
3058   prefix(src, dst);
3059   emit_int8(0x0B);
3060   emit_operand(dst, src);
3061 }
3062 
3063 void Assembler::orl(Register dst, Register src) {
3064   (void) prefix_and_encode(dst->encoding(), src->encoding());
3065   emit_arith(0x0B, 0xC0, dst, src);
3066 }
3067 
3068 void Assembler::orl(Address dst, Register src) {
3069   InstructionMark im(this);
3070   prefix(dst, src);
3071   emit_int8(0x09);
3072   emit_operand(src, dst);
3073 }
3074 
3075 void Assembler::packuswb(XMMRegister dst, Address src) {
3076   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3077   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3078   InstructionMark im(this);
3079   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
3080   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3081   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3082   emit_int8(0x67);
3083   emit_operand(dst, src);
3084 }
3085 
3086 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3088   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
3089   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3090   emit_int8(0x67);
3091   emit_int8((unsigned char)(0xC0 | encode));
3092 }
3093 
3094 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3095   assert(UseAVX > 0, "some form of AVX must be enabled");
3096   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
3097   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3098   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3099   emit_int8(0x67);
3100   emit_int8((unsigned char)(0xC0 | encode));
3101 }
3102 
3103 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3104   assert(VM_Version::supports_avx2(), "");
3105   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3106   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3107   emit_int8(0x00);
3108   emit_int8(0xC0 | encode);
3109   emit_int8(imm8);
3110 }
3111 
3112 void Assembler::pause() {
3113   emit_int8((unsigned char)0xF3);
3114   emit_int8((unsigned char)0x90);
3115 }
3116 
3117 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3118   assert(VM_Version::supports_sse4_2(), "");
3119   InstructionMark im(this);
3120   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3121   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3122   emit_int8(0x61);
3123   emit_operand(dst, src);
3124   emit_int8(imm8);
3125 }
3126 
3127 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3128   assert(VM_Version::supports_sse4_2(), "");
3129   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3130   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3131   emit_int8(0x61);
3132   emit_int8((unsigned char)(0xC0 | encode));
3133   emit_int8(imm8);
3134 }
3135 
3136 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3137 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3138   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3139   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3140   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3141   emit_int8(0x74);
3142   emit_int8((unsigned char)(0xC0 | encode));
3143 }
3144 
3145 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3146 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3147   assert(VM_Version::supports_avx(), "");
3148   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3149   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3150   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3151   emit_int8(0x74);
3152   emit_int8((unsigned char)(0xC0 | encode));
3153 }
3154 
3155 // In this context, kdst is written the mask used to process the equal components
3156 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3157   assert(VM_Version::supports_avx512bw(), "");
3158   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3159   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3160   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3161   emit_int8(0x74);
3162   emit_int8((unsigned char)(0xC0 | encode));
3163 }
3164 
3165 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3166 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3168   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3169   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3170   emit_int8(0x75);
3171   emit_int8((unsigned char)(0xC0 | encode));
3172 }
3173 
3174 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3175 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3176   assert(VM_Version::supports_avx(), "");
3177   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3178   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3179   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3180   emit_int8(0x75);
3181   emit_int8((unsigned char)(0xC0 | encode));
3182 }
3183 
3184 // In this context, kdst is written the mask used to process the equal components
3185 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3186   assert(VM_Version::supports_avx512bw(), "");
3187   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3188   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3189   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3190   emit_int8(0x75);
3191   emit_int8((unsigned char)(0xC0 | encode));
3192 }
3193 
3194 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3195 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3196   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3197   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3198   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3199   emit_int8(0x76);
3200   emit_int8((unsigned char)(0xC0 | encode));
3201 }
3202 
3203 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3204 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3205   assert(VM_Version::supports_avx(), "");
3206   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3207   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3208   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3209   emit_int8(0x76);
3210   emit_int8((unsigned char)(0xC0 | encode));
3211 }
3212 
3213 // In this context, kdst is written the mask used to process the equal components
3214 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3215   assert(VM_Version::supports_evex(), "");
3216   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3217   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3218   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3219   emit_int8(0x76);
3220   emit_int8((unsigned char)(0xC0 | encode));
3221 }
3222 
3223 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3224 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3225   NOT_LP64(assert(VM_Version::supports_sse4_1(), ""));
3226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3227   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3228   emit_int8(0x29);
3229   emit_int8((unsigned char)(0xC0 | encode));
3230 }
3231 
3232 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3233 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3234   assert(VM_Version::supports_avx(), "");
3235   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3236   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3237   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3238   emit_int8(0x29);
3239   emit_int8((unsigned char)(0xC0 | encode));
3240 }
3241 
3242 // In this context, kdst is written the mask used to process the equal components
3243 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3244   assert(VM_Version::supports_evex(), "");
3245   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3246   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3247   int encode = vex_prefix_and_encode(kdst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3248   emit_int8(0x29);
3249   emit_int8((unsigned char)(0xC0 | encode));
3250 }
3251 
3252 // In this context, kdst is written the mask used to process the equal components
3253 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3254   assert(VM_Version::supports_evex(), "");
3255   InstructionMark im(this);
3256   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3257   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3258   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3259   int dst_enc = kdst->encoding();
3260   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3261   emit_int8(0x29);
3262   emit_operand(as_Register(dst_enc), src);
3263 }
3264 
3265 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3266   assert(VM_Version::supports_sse2(), "");
3267   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3268   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3269   emit_int8((unsigned char)0xD7);
3270   emit_int8((unsigned char)(0xC0 | encode));
3271 }
3272 
3273 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3274   assert(VM_Version::supports_avx2(), "");
3275   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3276   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3277   emit_int8((unsigned char)0xD7);
3278   emit_int8((unsigned char)(0xC0 | encode));
3279 }
3280 
3281 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3282   assert(VM_Version::supports_sse4_1(), "");
3283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3284   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3285   emit_int8(0x16);
3286   emit_int8((unsigned char)(0xC0 | encode));
3287   emit_int8(imm8);
3288 }
3289 
3290 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3291   assert(VM_Version::supports_sse4_1(), "");
3292   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3293   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3294   emit_int8(0x16);
3295   emit_int8((unsigned char)(0xC0 | encode));
3296   emit_int8(imm8);
3297 }
3298 
3299 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3300   assert(VM_Version::supports_sse2(), "");
3301   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3302   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3303   emit_int8((unsigned char)0xC5);
3304   emit_int8((unsigned char)(0xC0 | encode));
3305   emit_int8(imm8);
3306 }
3307 
3308 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3309   assert(VM_Version::supports_sse4_1(), "");
3310   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3311   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3312   emit_int8(0x22);
3313   emit_int8((unsigned char)(0xC0 | encode));
3314   emit_int8(imm8);
3315 }
3316 
3317 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3318   assert(VM_Version::supports_sse4_1(), "");
3319   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3320   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3321   emit_int8(0x22);
3322   emit_int8((unsigned char)(0xC0 | encode));
3323   emit_int8(imm8);
3324 }
3325 
3326 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3327   assert(VM_Version::supports_sse2(), "");
3328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3329   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3330   emit_int8((unsigned char)0xC4);
3331   emit_int8((unsigned char)(0xC0 | encode));
3332   emit_int8(imm8);
3333 }
3334 
3335 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3336   assert(VM_Version::supports_sse4_1(), "");
3337   InstructionMark im(this);
3338   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3339   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3340   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3341   emit_int8(0x30);
3342   emit_operand(dst, src);
3343 }
3344 
3345 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3346   assert(VM_Version::supports_sse4_1(), "");
3347   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3348   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3349   emit_int8(0x30);
3350   emit_int8((unsigned char)(0xC0 | encode));
3351 }
3352 
3353 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3354   assert(VM_Version::supports_avx(), "");
3355   InstructionMark im(this);
3356   assert(dst != xnoreg, "sanity");
3357   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3358   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3359   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3360   emit_int8(0x30);
3361   emit_operand(dst, src);
3362 }
3363 
3364 // generic
3365 void Assembler::pop(Register dst) {
3366   int encode = prefix_and_encode(dst->encoding());
3367   emit_int8(0x58 | encode);
3368 }
3369 
3370 void Assembler::popcntl(Register dst, Address src) {
3371   assert(VM_Version::supports_popcnt(), "must support");
3372   InstructionMark im(this);
3373   emit_int8((unsigned char)0xF3);
3374   prefix(src, dst);
3375   emit_int8(0x0F);
3376   emit_int8((unsigned char)0xB8);
3377   emit_operand(dst, src);
3378 }
3379 
3380 void Assembler::popcntl(Register dst, Register src) {
3381   assert(VM_Version::supports_popcnt(), "must support");
3382   emit_int8((unsigned char)0xF3);
3383   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3384   emit_int8(0x0F);
3385   emit_int8((unsigned char)0xB8);
3386   emit_int8((unsigned char)(0xC0 | encode));
3387 }
3388 
3389 void Assembler::popf() {
3390   emit_int8((unsigned char)0x9D);
3391 }
3392 
3393 #ifndef _LP64 // no 32bit push/pop on amd64
3394 void Assembler::popl(Address dst) {
3395   // NOTE: this will adjust stack by 8byte on 64bits
3396   InstructionMark im(this);
3397   prefix(dst);
3398   emit_int8((unsigned char)0x8F);
3399   emit_operand(rax, dst);
3400 }
3401 #endif
3402 
3403 void Assembler::prefetch_prefix(Address src) {
3404   prefix(src);
3405   emit_int8(0x0F);
3406 }
3407 
3408 void Assembler::prefetchnta(Address src) {
3409   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3410   InstructionMark im(this);
3411   prefetch_prefix(src);
3412   emit_int8(0x18);
3413   emit_operand(rax, src); // 0, src
3414 }
3415 
3416 void Assembler::prefetchr(Address src) {
3417   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3418   InstructionMark im(this);
3419   prefetch_prefix(src);
3420   emit_int8(0x0D);
3421   emit_operand(rax, src); // 0, src
3422 }
3423 
3424 void Assembler::prefetcht0(Address src) {
3425   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3426   InstructionMark im(this);
3427   prefetch_prefix(src);
3428   emit_int8(0x18);
3429   emit_operand(rcx, src); // 1, src
3430 }
3431 
3432 void Assembler::prefetcht1(Address src) {
3433   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3434   InstructionMark im(this);
3435   prefetch_prefix(src);
3436   emit_int8(0x18);
3437   emit_operand(rdx, src); // 2, src
3438 }
3439 
3440 void Assembler::prefetcht2(Address src) {
3441   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3442   InstructionMark im(this);
3443   prefetch_prefix(src);
3444   emit_int8(0x18);
3445   emit_operand(rbx, src); // 3, src
3446 }
3447 
3448 void Assembler::prefetchw(Address src) {
3449   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3450   InstructionMark im(this);
3451   prefetch_prefix(src);
3452   emit_int8(0x0D);
3453   emit_operand(rcx, src); // 1, src
3454 }
3455 
3456 void Assembler::prefix(Prefix p) {
3457   emit_int8(p);
3458 }
3459 
3460 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3461   assert(VM_Version::supports_ssse3(), "");
3462   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3463   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3464   emit_int8(0x00);
3465   emit_int8((unsigned char)(0xC0 | encode));
3466 }
3467 
3468 void Assembler::pshufb(XMMRegister dst, Address src) {
3469   assert(VM_Version::supports_ssse3(), "");
3470   InstructionMark im(this);
3471   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3472   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3473   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3474   emit_int8(0x00);
3475   emit_operand(dst, src);
3476 }
3477 
3478 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3479   assert(isByte(mode), "invalid value");
3480   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3481   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_128bit;
3482   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3483   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3484   emit_int8(0x70);
3485   emit_int8((unsigned char)(0xC0 | encode));
3486   emit_int8(mode & 0xFF);
3487 }
3488 
3489 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3490   assert(isByte(mode), "invalid value");
3491   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3492   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3493   InstructionMark im(this);
3494   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3495   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3496   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3497   emit_int8(0x70);
3498   emit_operand(dst, src);
3499   emit_int8(mode & 0xFF);
3500 }
3501 
3502 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3503   assert(isByte(mode), "invalid value");
3504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3505   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3506   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3507   emit_int8(0x70);
3508   emit_int8((unsigned char)(0xC0 | encode));
3509   emit_int8(mode & 0xFF);
3510 }
3511 
3512 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3513   assert(isByte(mode), "invalid value");
3514   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3515   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3516   InstructionMark im(this);
3517   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3518   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3519   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3520   emit_int8(0x70);
3521   emit_operand(dst, src);
3522   emit_int8(mode & 0xFF);
3523 }
3524 
3525 void Assembler::psrldq(XMMRegister dst, int shift) {
3526   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3527   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3528   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3529   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3530   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3531   emit_int8(0x73);
3532   emit_int8((unsigned char)(0xC0 | encode));
3533   emit_int8(shift);
3534 }
3535 
3536 void Assembler::pslldq(XMMRegister dst, int shift) {
3537   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3539   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3540   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3541   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3542   emit_int8(0x73);
3543   emit_int8((unsigned char)(0xC0 | encode));
3544   emit_int8(shift);
3545 }
3546 
3547 void Assembler::ptest(XMMRegister dst, Address src) {
3548   assert(VM_Version::supports_sse4_1(), "");
3549   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3550   InstructionMark im(this);
3551   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3552   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3553   emit_int8(0x17);
3554   emit_operand(dst, src);
3555 }
3556 
3557 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3558   assert(VM_Version::supports_sse4_1(), "");
3559   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3560   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3561   emit_int8(0x17);
3562   emit_int8((unsigned char)(0xC0 | encode));
3563 }
3564 
3565 void Assembler::vptest(XMMRegister dst, Address src) {
3566   assert(VM_Version::supports_avx(), "");
3567   InstructionMark im(this);
3568   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3569   assert(dst != xnoreg, "sanity");
3570   // swap src<->dst for encoding
3571   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3572   emit_int8(0x17);
3573   emit_operand(dst, src);
3574 }
3575 
3576 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3577   assert(VM_Version::supports_avx(), "");
3578   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3579   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3580   emit_int8(0x17);
3581   emit_int8((unsigned char)(0xC0 | encode));
3582 }
3583 
3584 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3585   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3586   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3587   InstructionMark im(this);
3588   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3589   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3590   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3591   emit_int8(0x60);
3592   emit_operand(dst, src);
3593 }
3594 
3595 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3597   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3598   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3599   emit_int8(0x60);
3600   emit_int8((unsigned char)(0xC0 | encode));
3601 }
3602 
3603 void Assembler::punpckldq(XMMRegister dst, Address src) {
3604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3605   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3606   InstructionMark im(this);
3607   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3608   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3609   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3610   emit_int8(0x62);
3611   emit_operand(dst, src);
3612 }
3613 
3614 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3615   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3616   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3617   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3618   emit_int8(0x62);
3619   emit_int8((unsigned char)(0xC0 | encode));
3620 }
3621 
3622 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3623   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3624   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3625   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3626   emit_int8(0x6C);
3627   emit_int8((unsigned char)(0xC0 | encode));
3628 }
3629 
3630 void Assembler::push(int32_t imm32) {
3631   // in 64bits we push 64bits onto the stack but only
3632   // take a 32bit immediate
3633   emit_int8(0x68);
3634   emit_int32(imm32);
3635 }
3636 
3637 void Assembler::push(Register src) {
3638   int encode = prefix_and_encode(src->encoding());
3639 
3640   emit_int8(0x50 | encode);
3641 }
3642 
3643 void Assembler::pushf() {
3644   emit_int8((unsigned char)0x9C);
3645 }
3646 
3647 #ifndef _LP64 // no 32bit push/pop on amd64
3648 void Assembler::pushl(Address src) {
3649   // Note this will push 64bit on 64bit
3650   InstructionMark im(this);
3651   prefix(src);
3652   emit_int8((unsigned char)0xFF);
3653   emit_operand(rsi, src);
3654 }
3655 #endif
3656 
3657 void Assembler::rcll(Register dst, int imm8) {
3658   assert(isShiftCount(imm8), "illegal shift count");
3659   int encode = prefix_and_encode(dst->encoding());
3660   if (imm8 == 1) {
3661     emit_int8((unsigned char)0xD1);
3662     emit_int8((unsigned char)(0xD0 | encode));
3663   } else {
3664     emit_int8((unsigned char)0xC1);
3665     emit_int8((unsigned char)0xD0 | encode);
3666     emit_int8(imm8);
3667   }
3668 }
3669 
3670 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3672   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3673   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3674   emit_int8(0x53);
3675   emit_int8((unsigned char)(0xC0 | encode));
3676 }
3677 
3678 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3679   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3680   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3681   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3682   emit_int8(0x53);
3683   emit_int8((unsigned char)(0xC0 | encode));
3684 }
3685 
3686 void Assembler::rdtsc() {
3687   emit_int8((unsigned char)0x0F);
3688   emit_int8((unsigned char)0x31);
3689 }
3690 
3691 // copies data from [esi] to [edi] using rcx pointer sized words
3692 // generic
3693 void Assembler::rep_mov() {
3694   emit_int8((unsigned char)0xF3);
3695   // MOVSQ
3696   LP64_ONLY(prefix(REX_W));
3697   emit_int8((unsigned char)0xA5);
3698 }
3699 
3700 // sets rcx bytes with rax, value at [edi]
3701 void Assembler::rep_stosb() {
3702   emit_int8((unsigned char)0xF3); // REP
3703   LP64_ONLY(prefix(REX_W));
3704   emit_int8((unsigned char)0xAA); // STOSB
3705 }
3706 
3707 // sets rcx pointer sized words with rax, value at [edi]
3708 // generic
3709 void Assembler::rep_stos() {
3710   emit_int8((unsigned char)0xF3); // REP
3711   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3712   emit_int8((unsigned char)0xAB);
3713 }
3714 
3715 // scans rcx pointer sized words at [edi] for occurance of rax,
3716 // generic
3717 void Assembler::repne_scan() { // repne_scan
3718   emit_int8((unsigned char)0xF2);
3719   // SCASQ
3720   LP64_ONLY(prefix(REX_W));
3721   emit_int8((unsigned char)0xAF);
3722 }
3723 
3724 #ifdef _LP64
3725 // scans rcx 4 byte words at [edi] for occurance of rax,
3726 // generic
3727 void Assembler::repne_scanl() { // repne_scan
3728   emit_int8((unsigned char)0xF2);
3729   // SCASL
3730   emit_int8((unsigned char)0xAF);
3731 }
3732 #endif
3733 
3734 void Assembler::ret(int imm16) {
3735   if (imm16 == 0) {
3736     emit_int8((unsigned char)0xC3);
3737   } else {
3738     emit_int8((unsigned char)0xC2);
3739     emit_int16(imm16);
3740   }
3741 }
3742 
3743 void Assembler::sahf() {
3744 #ifdef _LP64
3745   // Not supported in 64bit mode
3746   ShouldNotReachHere();
3747 #endif
3748   emit_int8((unsigned char)0x9E);
3749 }
3750 
3751 void Assembler::sarl(Register dst, int imm8) {
3752   int encode = prefix_and_encode(dst->encoding());
3753   assert(isShiftCount(imm8), "illegal shift count");
3754   if (imm8 == 1) {
3755     emit_int8((unsigned char)0xD1);
3756     emit_int8((unsigned char)(0xF8 | encode));
3757   } else {
3758     emit_int8((unsigned char)0xC1);
3759     emit_int8((unsigned char)(0xF8 | encode));
3760     emit_int8(imm8);
3761   }
3762 }
3763 
3764 void Assembler::sarl(Register dst) {
3765   int encode = prefix_and_encode(dst->encoding());
3766   emit_int8((unsigned char)0xD3);
3767   emit_int8((unsigned char)(0xF8 | encode));
3768 }
3769 
3770 void Assembler::sbbl(Address dst, int32_t imm32) {
3771   InstructionMark im(this);
3772   prefix(dst);
3773   emit_arith_operand(0x81, rbx, dst, imm32);
3774 }
3775 
3776 void Assembler::sbbl(Register dst, int32_t imm32) {
3777   prefix(dst);
3778   emit_arith(0x81, 0xD8, dst, imm32);
3779 }
3780 
3781 
3782 void Assembler::sbbl(Register dst, Address src) {
3783   InstructionMark im(this);
3784   prefix(src, dst);
3785   emit_int8(0x1B);
3786   emit_operand(dst, src);
3787 }
3788 
3789 void Assembler::sbbl(Register dst, Register src) {
3790   (void) prefix_and_encode(dst->encoding(), src->encoding());
3791   emit_arith(0x1B, 0xC0, dst, src);
3792 }
3793 
3794 void Assembler::setb(Condition cc, Register dst) {
3795   assert(0 <= cc && cc < 16, "illegal cc");
3796   int encode = prefix_and_encode(dst->encoding(), true);
3797   emit_int8(0x0F);
3798   emit_int8((unsigned char)0x90 | cc);
3799   emit_int8((unsigned char)(0xC0 | encode));
3800 }
3801 
3802 void Assembler::shll(Register dst, int imm8) {
3803   assert(isShiftCount(imm8), "illegal shift count");
3804   int encode = prefix_and_encode(dst->encoding());
3805   if (imm8 == 1 ) {
3806     emit_int8((unsigned char)0xD1);
3807     emit_int8((unsigned char)(0xE0 | encode));
3808   } else {
3809     emit_int8((unsigned char)0xC1);
3810     emit_int8((unsigned char)(0xE0 | encode));
3811     emit_int8(imm8);
3812   }
3813 }
3814 
3815 void Assembler::shll(Register dst) {
3816   int encode = prefix_and_encode(dst->encoding());
3817   emit_int8((unsigned char)0xD3);
3818   emit_int8((unsigned char)(0xE0 | encode));
3819 }
3820 
3821 void Assembler::shrl(Register dst, int imm8) {
3822   assert(isShiftCount(imm8), "illegal shift count");
3823   int encode = prefix_and_encode(dst->encoding());
3824   emit_int8((unsigned char)0xC1);
3825   emit_int8((unsigned char)(0xE8 | encode));
3826   emit_int8(imm8);
3827 }
3828 
3829 void Assembler::shrl(Register dst) {
3830   int encode = prefix_and_encode(dst->encoding());
3831   emit_int8((unsigned char)0xD3);
3832   emit_int8((unsigned char)(0xE8 | encode));
3833 }
3834 
3835 // copies a single word from [esi] to [edi]
3836 void Assembler::smovl() {
3837   emit_int8((unsigned char)0xA5);
3838 }
3839 
3840 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3841   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3842   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3843   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3844   emit_int8(0x51);
3845   emit_int8((unsigned char)(0xC0 | encode));
3846 }
3847 
3848 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3850   InstructionMark im(this);
3851   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3852   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3853   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3854   emit_int8(0x51);
3855   emit_operand(dst, src);
3856 }
3857 
3858 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3859   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3860   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3861   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3862   emit_int8(0x51);
3863   emit_int8((unsigned char)(0xC0 | encode));
3864 }
3865 
3866 void Assembler::std() {
3867   emit_int8((unsigned char)0xFD);
3868 }
3869 
3870 void Assembler::sqrtss(XMMRegister dst, Address src) {
3871   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3872   InstructionMark im(this);
3873   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3874   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3875   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3876   emit_int8(0x51);
3877   emit_operand(dst, src);
3878 }
3879 
3880 void Assembler::stmxcsr( Address dst) {
3881   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3882   InstructionMark im(this);
3883   prefix(dst);
3884   emit_int8(0x0F);
3885   emit_int8((unsigned char)0xAE);
3886   emit_operand(as_Register(3), dst);
3887 }
3888 
3889 void Assembler::subl(Address dst, int32_t imm32) {
3890   InstructionMark im(this);
3891   prefix(dst);
3892   emit_arith_operand(0x81, rbp, dst, imm32);
3893 }
3894 
3895 void Assembler::subl(Address dst, Register src) {
3896   InstructionMark im(this);
3897   prefix(dst, src);
3898   emit_int8(0x29);
3899   emit_operand(src, dst);
3900 }
3901 
3902 void Assembler::subl(Register dst, int32_t imm32) {
3903   prefix(dst);
3904   emit_arith(0x81, 0xE8, dst, imm32);
3905 }
3906 
3907 // Force generation of a 4 byte immediate value even if it fits into 8bit
3908 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3909   prefix(dst);
3910   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3911 }
3912 
3913 void Assembler::subl(Register dst, Address src) {
3914   InstructionMark im(this);
3915   prefix(src, dst);
3916   emit_int8(0x2B);
3917   emit_operand(dst, src);
3918 }
3919 
3920 void Assembler::subl(Register dst, Register src) {
3921   (void) prefix_and_encode(dst->encoding(), src->encoding());
3922   emit_arith(0x2B, 0xC0, dst, src);
3923 }
3924 
3925 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3927   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3928   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3929   emit_int8(0x5C);
3930   emit_int8((unsigned char)(0xC0 | encode));
3931 }
3932 
3933 void Assembler::subsd(XMMRegister dst, Address src) {
3934   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3935   InstructionMark im(this);
3936   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3937   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3938   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3939   emit_int8(0x5C);
3940   emit_operand(dst, src);
3941 }
3942 
3943 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3944   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3945   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3946   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3947   emit_int8(0x5C);
3948   emit_int8((unsigned char)(0xC0 | encode));
3949 }
3950 
3951 void Assembler::subss(XMMRegister dst, Address src) {
3952   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3953   InstructionMark im(this);
3954   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
3955   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3956   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3957   emit_int8(0x5C);
3958   emit_operand(dst, src);
3959 }
3960 
3961 void Assembler::testb(Register dst, int imm8) {
3962   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3963   (void) prefix_and_encode(dst->encoding(), true);
3964   emit_arith_b(0xF6, 0xC0, dst, imm8);
3965 }
3966 
3967 void Assembler::testb(Address dst, int imm8) {
3968   InstructionMark im(this);
3969   prefix(dst);
3970   emit_int8((unsigned char)0xF6);
3971   emit_operand(rax, dst, 1);
3972   emit_int8(imm8);
3973 
3974 }
3975 
3976 void Assembler::testl(Register dst, int32_t imm32) {
3977   // not using emit_arith because test
3978   // doesn't support sign-extension of
3979   // 8bit operands
3980   int encode = dst->encoding();
3981   if (encode == 0) {
3982     emit_int8((unsigned char)0xA9);
3983   } else {
3984     encode = prefix_and_encode(encode);
3985     emit_int8((unsigned char)0xF7);
3986     emit_int8((unsigned char)(0xC0 | encode));
3987   }
3988   emit_int32(imm32);
3989 }
3990 
3991 void Assembler::testl(Register dst, Register src) {
3992   (void) prefix_and_encode(dst->encoding(), src->encoding());
3993   emit_arith(0x85, 0xC0, dst, src);
3994 }
3995 
3996 void Assembler::testl(Register dst, Address src) {
3997   InstructionMark im(this);
3998   prefix(src, dst);
3999   emit_int8((unsigned char)0x85);
4000   emit_operand(dst, src);
4001 }
4002 
4003 void Assembler::tzcntl(Register dst, Register src) {
4004   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4005   emit_int8((unsigned char)0xF3);
4006   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4007   emit_int8(0x0F);
4008   emit_int8((unsigned char)0xBC);
4009   emit_int8((unsigned char)0xC0 | encode);
4010 }
4011 
4012 void Assembler::tzcntq(Register dst, Register src) {
4013   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4014   emit_int8((unsigned char)0xF3);
4015   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4016   emit_int8(0x0F);
4017   emit_int8((unsigned char)0xBC);
4018   emit_int8((unsigned char)(0xC0 | encode));
4019 }
4020 
4021 void Assembler::ucomisd(XMMRegister dst, Address src) {
4022   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4023   InstructionMark im(this);
4024   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4025   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4026   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4027   emit_int8(0x2E);
4028   emit_operand(dst, src);
4029 }
4030 
4031 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4032   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4033   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4034   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4035   emit_int8(0x2E);
4036   emit_int8((unsigned char)(0xC0 | encode));
4037 }
4038 
4039 void Assembler::ucomiss(XMMRegister dst, Address src) {
4040   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4041   InstructionMark im(this);
4042   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4043   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4044   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4045   emit_int8(0x2E);
4046   emit_operand(dst, src);
4047 }
4048 
4049 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4050   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4051   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4052   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4053   emit_int8(0x2E);
4054   emit_int8((unsigned char)(0xC0 | encode));
4055 }
4056 
4057 void Assembler::xabort(int8_t imm8) {
4058   emit_int8((unsigned char)0xC6);
4059   emit_int8((unsigned char)0xF8);
4060   emit_int8((unsigned char)(imm8 & 0xFF));
4061 }
4062 
4063 void Assembler::xaddl(Address dst, Register src) {
4064   InstructionMark im(this);
4065   prefix(dst, src);
4066   emit_int8(0x0F);
4067   emit_int8((unsigned char)0xC1);
4068   emit_operand(src, dst);
4069 }
4070 
4071 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4072   InstructionMark im(this);
4073   relocate(rtype);
4074   if (abort.is_bound()) {
4075     address entry = target(abort);
4076     assert(entry != NULL, "abort entry NULL");
4077     intptr_t offset = entry - pc();
4078     emit_int8((unsigned char)0xC7);
4079     emit_int8((unsigned char)0xF8);
4080     emit_int32(offset - 6); // 2 opcode + 4 address
4081   } else {
4082     abort.add_patch_at(code(), locator());
4083     emit_int8((unsigned char)0xC7);
4084     emit_int8((unsigned char)0xF8);
4085     emit_int32(0);
4086   }
4087 }
4088 
4089 void Assembler::xchgl(Register dst, Address src) { // xchg
4090   InstructionMark im(this);
4091   prefix(src, dst);
4092   emit_int8((unsigned char)0x87);
4093   emit_operand(dst, src);
4094 }
4095 
4096 void Assembler::xchgl(Register dst, Register src) {
4097   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4098   emit_int8((unsigned char)0x87);
4099   emit_int8((unsigned char)(0xC0 | encode));
4100 }
4101 
4102 void Assembler::xend() {
4103   emit_int8((unsigned char)0x0F);
4104   emit_int8((unsigned char)0x01);
4105   emit_int8((unsigned char)0xD5);
4106 }
4107 
4108 void Assembler::xgetbv() {
4109   emit_int8(0x0F);
4110   emit_int8(0x01);
4111   emit_int8((unsigned char)0xD0);
4112 }
4113 
4114 void Assembler::xorl(Register dst, int32_t imm32) {
4115   prefix(dst);
4116   emit_arith(0x81, 0xF0, dst, imm32);
4117 }
4118 
4119 void Assembler::xorl(Register dst, Address src) {
4120   InstructionMark im(this);
4121   prefix(src, dst);
4122   emit_int8(0x33);
4123   emit_operand(dst, src);
4124 }
4125 
4126 void Assembler::xorl(Register dst, Register src) {
4127   (void) prefix_and_encode(dst->encoding(), src->encoding());
4128   emit_arith(0x33, 0xC0, dst, src);
4129 }
4130 
4131 
4132 // AVX 3-operands scalar float-point arithmetic instructions
4133 
4134 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4135   assert(VM_Version::supports_avx(), "");
4136   InstructionMark im(this);
4137   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4138   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4139   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4140   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4141   emit_int8(0x58);
4142   emit_operand(dst, src);
4143 }
4144 
4145 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4146   assert(VM_Version::supports_avx(), "");
4147   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4148   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4149   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4150   emit_int8(0x58);
4151   emit_int8((unsigned char)(0xC0 | encode));
4152 }
4153 
4154 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4155   assert(VM_Version::supports_avx(), "");
4156   InstructionMark im(this);
4157   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4158   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4159   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4160   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4161   emit_int8(0x58);
4162   emit_operand(dst, src);
4163 }
4164 
4165 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4166   assert(VM_Version::supports_avx(), "");
4167   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4168   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4169   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4170   emit_int8(0x58);
4171   emit_int8((unsigned char)(0xC0 | encode));
4172 }
4173 
4174 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4175   assert(VM_Version::supports_avx(), "");
4176   InstructionMark im(this);
4177   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4178   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4179   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4180   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4181   emit_int8(0x5E);
4182   emit_operand(dst, src);
4183 }
4184 
4185 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4186   assert(VM_Version::supports_avx(), "");
4187   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4188   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4189   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4190   emit_int8(0x5E);
4191   emit_int8((unsigned char)(0xC0 | encode));
4192 }
4193 
4194 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4195   assert(VM_Version::supports_avx(), "");
4196   InstructionMark im(this);
4197   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4198   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4199   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4200   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4201   emit_int8(0x5E);
4202   emit_operand(dst, src);
4203 }
4204 
4205 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4206   assert(VM_Version::supports_avx(), "");
4207   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4208   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4209   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4210   emit_int8(0x5E);
4211   emit_int8((unsigned char)(0xC0 | encode));
4212 }
4213 
4214 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4215   assert(VM_Version::supports_avx(), "");
4216   InstructionMark im(this);
4217   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4218   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4219   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4220   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4221   emit_int8(0x59);
4222   emit_operand(dst, src);
4223 }
4224 
4225 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4226   assert(VM_Version::supports_avx(), "");
4227   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4228   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4229   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4230   emit_int8(0x59);
4231   emit_int8((unsigned char)(0xC0 | encode));
4232 }
4233 
4234 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4235   assert(VM_Version::supports_avx(), "");
4236   InstructionMark im(this);
4237   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4238   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4239   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4240   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4241   emit_int8(0x59);
4242   emit_operand(dst, src);
4243 }
4244 
4245 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4246   assert(VM_Version::supports_avx(), "");
4247   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4248   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4249   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4250   emit_int8(0x59);
4251   emit_int8((unsigned char)(0xC0 | encode));
4252 }
4253 
4254 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4255   assert(VM_Version::supports_avx(), "");
4256   InstructionMark im(this);
4257   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4258   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4259   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4260   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4261   emit_int8(0x5C);
4262   emit_operand(dst, src);
4263 }
4264 
4265 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4266   assert(VM_Version::supports_avx(), "");
4267   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4268   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4269   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4270   emit_int8(0x5C);
4271   emit_int8((unsigned char)(0xC0 | encode));
4272 }
4273 
4274 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4275   assert(VM_Version::supports_avx(), "");
4276   InstructionMark im(this);
4277   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4278   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4279   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4280   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4281   emit_int8(0x5C);
4282   emit_operand(dst, src);
4283 }
4284 
4285 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4286   assert(VM_Version::supports_avx(), "");
4287   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4288   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4289   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4290   emit_int8(0x5C);
4291   emit_int8((unsigned char)(0xC0 | encode));
4292 }
4293 
4294 //====================VECTOR ARITHMETIC=====================================
4295 
4296 // Float-point vector arithmetic
4297 
4298 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4299   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4300   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4301   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4302   emit_int8(0x58);
4303   emit_int8((unsigned char)(0xC0 | encode));
4304 }
4305 
4306 void Assembler::addpd(XMMRegister dst, Address src) {
4307   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4308   InstructionMark im(this);
4309   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4310   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4311   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4312   emit_int8(0x58);
4313   emit_operand(dst, src);
4314 }
4315 
4316 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4317   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4318   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4319   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4320   emit_int8(0x58);
4321   emit_int8((unsigned char)(0xC0 | encode));
4322 }
4323 
4324 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4325   assert(VM_Version::supports_avx(), "");
4326   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4327   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4328   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4329   emit_int8(0x58);
4330   emit_int8((unsigned char)(0xC0 | encode));
4331 }
4332 
4333 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4334   assert(VM_Version::supports_avx(), "");
4335   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4336   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4337   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4338   emit_int8(0x58);
4339   emit_int8((unsigned char)(0xC0 | encode));
4340 }
4341 
4342 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4343   assert(VM_Version::supports_avx(), "");
4344   InstructionMark im(this);
4345   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4346   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4347   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4348   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4349   emit_int8(0x58);
4350   emit_operand(dst, src);
4351 }
4352 
4353 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4354   assert(VM_Version::supports_avx(), "");
4355   InstructionMark im(this);
4356   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4357   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4358   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4359   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4360   emit_int8(0x58);
4361   emit_operand(dst, src);
4362 }
4363 
4364 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4365   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4366   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4367   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4368   emit_int8(0x5C);
4369   emit_int8((unsigned char)(0xC0 | encode));
4370 }
4371 
4372 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4373   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4374   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4375   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4376   emit_int8(0x5C);
4377   emit_int8((unsigned char)(0xC0 | encode));
4378 }
4379 
4380 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4381   assert(VM_Version::supports_avx(), "");
4382   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4383   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4384   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4385   emit_int8(0x5C);
4386   emit_int8((unsigned char)(0xC0 | encode));
4387 }
4388 
4389 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4390   assert(VM_Version::supports_avx(), "");
4391   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4392   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4393   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4394   emit_int8(0x5C);
4395   emit_int8((unsigned char)(0xC0 | encode));
4396 }
4397 
4398 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4399   assert(VM_Version::supports_avx(), "");
4400   InstructionMark im(this);
4401   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4402   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4403   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4404   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4405   emit_int8(0x5C);
4406   emit_operand(dst, src);
4407 }
4408 
4409 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4410   assert(VM_Version::supports_avx(), "");
4411   InstructionMark im(this);
4412   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4413   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4414   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4415   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4416   emit_int8(0x5C);
4417   emit_operand(dst, src);
4418 }
4419 
4420 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4421   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4422   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4423   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4424   emit_int8(0x59);
4425   emit_int8((unsigned char)(0xC0 | encode));
4426 }
4427 
4428 void Assembler::mulpd(XMMRegister dst, Address src) {
4429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4430   InstructionMark im(this);
4431   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4432   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4433   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4434   emit_int8(0x59);
4435   emit_operand(dst, src);
4436 }
4437 
4438 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4440   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4441   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4442   emit_int8(0x59);
4443   emit_int8((unsigned char)(0xC0 | encode));
4444 }
4445 
4446 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4447   assert(VM_Version::supports_avx(), "");
4448   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4449   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4450   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4451   emit_int8(0x59);
4452   emit_int8((unsigned char)(0xC0 | encode));
4453 }
4454 
4455 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4456   assert(VM_Version::supports_avx(), "");
4457   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4458   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4459   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4460   emit_int8(0x59);
4461   emit_int8((unsigned char)(0xC0 | encode));
4462 }
4463 
4464 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4465   assert(VM_Version::supports_avx(), "");
4466   InstructionMark im(this);
4467   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4468   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4469   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4470   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4471   emit_int8(0x59);
4472   emit_operand(dst, src);
4473 }
4474 
4475 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4476   assert(VM_Version::supports_avx(), "");
4477   InstructionMark im(this);
4478   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4479   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4480   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4481   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4482   emit_int8(0x59);
4483   emit_operand(dst, src);
4484 }
4485 
4486 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4487   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4488   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4489   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4490   emit_int8(0x5E);
4491   emit_int8((unsigned char)(0xC0 | encode));
4492 }
4493 
4494 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4496   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4497   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4498   emit_int8(0x5E);
4499   emit_int8((unsigned char)(0xC0 | encode));
4500 }
4501 
4502 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4503   assert(VM_Version::supports_avx(), "");
4504   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4505   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4506   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4507   emit_int8(0x5E);
4508   emit_int8((unsigned char)(0xC0 | encode));
4509 }
4510 
4511 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4512   assert(VM_Version::supports_avx(), "");
4513   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4514   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4515   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4516   emit_int8(0x5E);
4517   emit_int8((unsigned char)(0xC0 | encode));
4518 }
4519 
4520 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4521   assert(VM_Version::supports_avx(), "");
4522   InstructionMark im(this);
4523   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4524   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4525   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4526   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4527   emit_int8(0x5E);
4528   emit_operand(dst, src);
4529 }
4530 
4531 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4532   assert(VM_Version::supports_avx(), "");
4533   InstructionMark im(this);
4534   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4535   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4536   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4537   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4538   emit_int8(0x5E);
4539   emit_operand(dst, src);
4540 }
4541 
4542 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4543   assert(VM_Version::supports_avx(), "");
4544   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4545   int nds_enc = 0;
4546   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4547   emit_int8(0x51);
4548   emit_int8((unsigned char)(0xC0 | encode));
4549 }
4550 
4551 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4552   assert(VM_Version::supports_avx(), "");
4553   InstructionMark im(this);
4554   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4555   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4556   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4557   emit_int8(0x51);
4558   emit_operand(dst, src);
4559 }
4560 
4561 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4562   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4563   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4564   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4565   emit_int8(0x54);
4566   emit_int8((unsigned char)(0xC0 | encode));
4567 }
4568 
4569 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4570   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4571   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4572   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4573   emit_int8(0x54);
4574   emit_int8((unsigned char)(0xC0 | encode));
4575 }
4576 
4577 void Assembler::andps(XMMRegister dst, Address src) {
4578   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4579   InstructionMark im(this);
4580   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4581   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4582   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4583   emit_int8(0x54);
4584   emit_operand(dst, src);
4585 }
4586 
4587 void Assembler::andpd(XMMRegister dst, Address src) {
4588   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4589   InstructionMark im(this);
4590   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4591   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4592   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4593   emit_int8(0x54);
4594   emit_operand(dst, src);
4595 }
4596 
4597 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4598   assert(VM_Version::supports_avx(), "");
4599   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4600   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4601   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4602   emit_int8(0x54);
4603   emit_int8((unsigned char)(0xC0 | encode));
4604 }
4605 
4606 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4607   assert(VM_Version::supports_avx(), "");
4608   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4609   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4610   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4611   emit_int8(0x54);
4612   emit_int8((unsigned char)(0xC0 | encode));
4613 }
4614 
4615 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4616   assert(VM_Version::supports_avx(), "");
4617   InstructionMark im(this);
4618   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4619   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4620   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4621   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4622   emit_int8(0x54);
4623   emit_operand(dst, src);
4624 }
4625 
4626 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4627   assert(VM_Version::supports_avx(), "");
4628   InstructionMark im(this);
4629   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4630   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4631   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4632   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4633   emit_int8(0x54);
4634   emit_operand(dst, src);
4635 }
4636 
4637 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4638   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4639   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4640   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4641   emit_int8(0x15);
4642   emit_int8((unsigned char)(0xC0 | encode));
4643 }
4644 
4645 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4646   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4647   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4648   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4649   emit_int8(0x14);
4650   emit_int8((unsigned char)(0xC0 | encode));
4651 }
4652 
4653 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4654   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4655   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4656   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4657   emit_int8(0x57);
4658   emit_int8((unsigned char)(0xC0 | encode));
4659 }
4660 
4661 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4663   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4664   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4665   emit_int8(0x57);
4666   emit_int8((unsigned char)(0xC0 | encode));
4667 }
4668 
4669 void Assembler::xorpd(XMMRegister dst, Address src) {
4670   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4671   InstructionMark im(this);
4672   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4673   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4674   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4675   emit_int8(0x57);
4676   emit_operand(dst, src);
4677 }
4678 
4679 void Assembler::xorps(XMMRegister dst, Address src) {
4680   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4681   InstructionMark im(this);
4682   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4683   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4684   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4685   emit_int8(0x57);
4686   emit_operand(dst, src);
4687 }
4688 
4689 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4690   assert(VM_Version::supports_avx(), "");
4691   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4692   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4693   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4694   emit_int8(0x57);
4695   emit_int8((unsigned char)(0xC0 | encode));
4696 }
4697 
4698 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4699   assert(VM_Version::supports_avx(), "");
4700   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4701   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4702   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4703   emit_int8(0x57);
4704   emit_int8((unsigned char)(0xC0 | encode));
4705 }
4706 
4707 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4708   assert(VM_Version::supports_avx(), "");
4709   InstructionMark im(this);
4710   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4711   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4712   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4713   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4714   emit_int8(0x57);
4715   emit_operand(dst, src);
4716 }
4717 
4718 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4719   assert(VM_Version::supports_avx(), "");
4720   InstructionMark im(this);
4721   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4722   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4723   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4724   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4725   emit_int8(0x57);
4726   emit_operand(dst, src);
4727 }
4728 
4729 // Integer vector arithmetic
4730 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4731   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4732          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4733   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4734   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4735   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4736   emit_int8(0x01);
4737   emit_int8((unsigned char)(0xC0 | encode));
4738 }
4739 
4740 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4741   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4742          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4743   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4744   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4745   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4746   emit_int8(0x02);
4747   emit_int8((unsigned char)(0xC0 | encode));
4748 }
4749 
4750 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4752   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4753   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4754   emit_int8((unsigned char)0xFC);
4755   emit_int8((unsigned char)(0xC0 | encode));
4756 }
4757 
4758 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4759   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4760   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4761   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4762   emit_int8((unsigned char)0xFD);
4763   emit_int8((unsigned char)(0xC0 | encode));
4764 }
4765 
4766 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4767   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4768   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4769   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4770   emit_int8((unsigned char)0xFE);
4771   emit_int8((unsigned char)(0xC0 | encode));
4772 }
4773 
4774 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4775   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4776   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4777   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4778   emit_int8((unsigned char)0xD4);
4779   emit_int8((unsigned char)(0xC0 | encode));
4780 }
4781 
4782 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4783   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4785   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4786   emit_int8(0x01);
4787   emit_int8((unsigned char)(0xC0 | encode));
4788 }
4789 
4790 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4791   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4792   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4793   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4794   emit_int8(0x02);
4795   emit_int8((unsigned char)(0xC0 | encode));
4796 }
4797 
4798 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4799   assert(UseAVX > 0, "requires some form of AVX");
4800   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4801   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4802   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4803   emit_int8((unsigned char)0xFC);
4804   emit_int8((unsigned char)(0xC0 | encode));
4805 }
4806 
4807 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4808   assert(UseAVX > 0, "requires some form of AVX");
4809   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4810   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4811   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4812   emit_int8((unsigned char)0xFD);
4813   emit_int8((unsigned char)(0xC0 | encode));
4814 }
4815 
4816 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4817   assert(UseAVX > 0, "requires some form of AVX");
4818   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4819   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4820   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4821   emit_int8((unsigned char)0xFE);
4822   emit_int8((unsigned char)(0xC0 | encode));
4823 }
4824 
4825 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4826   assert(UseAVX > 0, "requires some form of AVX");
4827   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4828   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4829   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4830   emit_int8((unsigned char)0xD4);
4831   emit_int8((unsigned char)(0xC0 | encode));
4832 }
4833 
4834 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4835   assert(UseAVX > 0, "requires some form of AVX");
4836   InstructionMark im(this);
4837   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4838   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4839   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4840   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4841   emit_int8((unsigned char)0xFC);
4842   emit_operand(dst, src);
4843 }
4844 
4845 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4846   assert(UseAVX > 0, "requires some form of AVX");
4847   InstructionMark im(this);
4848   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4849   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4850   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4851   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4852   emit_int8((unsigned char)0xFD);
4853   emit_operand(dst, src);
4854 }
4855 
4856 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4857   assert(UseAVX > 0, "requires some form of AVX");
4858   InstructionMark im(this);
4859   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4860   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4861   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4862   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4863   emit_int8((unsigned char)0xFE);
4864   emit_operand(dst, src);
4865 }
4866 
4867 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4868   assert(UseAVX > 0, "requires some form of AVX");
4869   InstructionMark im(this);
4870   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4871   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4872   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4873   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4874   emit_int8((unsigned char)0xD4);
4875   emit_operand(dst, src);
4876 }
4877 
4878 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4879   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4880   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4881   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4882   emit_int8((unsigned char)0xF8);
4883   emit_int8((unsigned char)(0xC0 | encode));
4884 }
4885 
4886 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4887   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4888   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4889   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4890   emit_int8((unsigned char)0xF9);
4891   emit_int8((unsigned char)(0xC0 | encode));
4892 }
4893 
4894 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4895   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4896   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4897   emit_int8((unsigned char)0xFA);
4898   emit_int8((unsigned char)(0xC0 | encode));
4899 }
4900 
4901 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4902   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4903   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4904   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4905   emit_int8((unsigned char)0xFB);
4906   emit_int8((unsigned char)(0xC0 | encode));
4907 }
4908 
4909 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4910   assert(UseAVX > 0, "requires some form of AVX");
4911   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4912   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4913   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4914   emit_int8((unsigned char)0xF8);
4915   emit_int8((unsigned char)(0xC0 | encode));
4916 }
4917 
4918 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4919   assert(UseAVX > 0, "requires some form of AVX");
4920   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4921   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4922   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4923   emit_int8((unsigned char)0xF9);
4924   emit_int8((unsigned char)(0xC0 | encode));
4925 }
4926 
4927 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4928   assert(UseAVX > 0, "requires some form of AVX");
4929   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4930   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4931   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4932   emit_int8((unsigned char)0xFA);
4933   emit_int8((unsigned char)(0xC0 | encode));
4934 }
4935 
4936 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4937   assert(UseAVX > 0, "requires some form of AVX");
4938   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4939   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4940   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4941   emit_int8((unsigned char)0xFB);
4942   emit_int8((unsigned char)(0xC0 | encode));
4943 }
4944 
4945 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4946   assert(UseAVX > 0, "requires some form of AVX");
4947   InstructionMark im(this);
4948   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4949   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4950   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4951   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4952   emit_int8((unsigned char)0xF8);
4953   emit_operand(dst, src);
4954 }
4955 
4956 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4957   assert(UseAVX > 0, "requires some form of AVX");
4958   InstructionMark im(this);
4959   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4960   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4961   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4962   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4963   emit_int8((unsigned char)0xF9);
4964   emit_operand(dst, src);
4965 }
4966 
4967 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4968   assert(UseAVX > 0, "requires some form of AVX");
4969   InstructionMark im(this);
4970   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4971   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4972   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4973   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4974   emit_int8((unsigned char)0xFA);
4975   emit_operand(dst, src);
4976 }
4977 
4978 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4979   assert(UseAVX > 0, "requires some form of AVX");
4980   InstructionMark im(this);
4981   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4982   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4983   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4984   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4985   emit_int8((unsigned char)0xFB);
4986   emit_operand(dst, src);
4987 }
4988 
4989 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4991   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
4992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4993   emit_int8((unsigned char)0xD5);
4994   emit_int8((unsigned char)(0xC0 | encode));
4995 }
4996 
4997 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4998   assert(VM_Version::supports_sse4_1(), "");
4999   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5000   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5001   emit_int8(0x40);
5002   emit_int8((unsigned char)(0xC0 | encode));
5003 }
5004 
5005 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5006   assert(UseAVX > 0, "requires some form of AVX");
5007   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5008   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5009   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5010   emit_int8((unsigned char)0xD5);
5011   emit_int8((unsigned char)(0xC0 | encode));
5012 }
5013 
5014 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5015   assert(UseAVX > 0, "requires some form of AVX");
5016   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5017   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5018   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5019   emit_int8(0x40);
5020   emit_int8((unsigned char)(0xC0 | encode));
5021 }
5022 
5023 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5024   assert(UseAVX > 2, "requires some form of AVX");
5025   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5026   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5027   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5028   emit_int8(0x40);
5029   emit_int8((unsigned char)(0xC0 | encode));
5030 }
5031 
5032 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5033   assert(UseAVX > 0, "requires some form of AVX");
5034   InstructionMark im(this);
5035   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5036   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5037   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5038   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5039   emit_int8((unsigned char)0xD5);
5040   emit_operand(dst, src);
5041 }
5042 
5043 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5044   assert(UseAVX > 0, "requires some form of AVX");
5045   InstructionMark im(this);
5046   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5047   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5048   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5049   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5050   emit_int8(0x40);
5051   emit_operand(dst, src);
5052 }
5053 
5054 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5055   assert(UseAVX > 0, "requires some form of AVX");
5056   InstructionMark im(this);
5057   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5058   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5059   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5060   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5061   emit_int8(0x40);
5062   emit_operand(dst, src);
5063 }
5064 
5065 // Shift packed integers left by specified number of bits.
5066 void Assembler::psllw(XMMRegister dst, int shift) {
5067   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5068   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5069   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5070   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5071   emit_int8(0x71);
5072   emit_int8((unsigned char)(0xC0 | encode));
5073   emit_int8(shift & 0xFF);
5074 }
5075 
5076 void Assembler::pslld(XMMRegister dst, int shift) {
5077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5078   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5079   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5080   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5081   emit_int8(0x72);
5082   emit_int8((unsigned char)(0xC0 | encode));
5083   emit_int8(shift & 0xFF);
5084 }
5085 
5086 void Assembler::psllq(XMMRegister dst, int shift) {
5087   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5088   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5089   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5090   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5091   emit_int8(0x73);
5092   emit_int8((unsigned char)(0xC0 | encode));
5093   emit_int8(shift & 0xFF);
5094 }
5095 
5096 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5098   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5099   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5100   emit_int8((unsigned char)0xF1);
5101   emit_int8((unsigned char)(0xC0 | encode));
5102 }
5103 
5104 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5105   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5106   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5107   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5108   emit_int8((unsigned char)0xF2);
5109   emit_int8((unsigned char)(0xC0 | encode));
5110 }
5111 
5112 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5113   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5114   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5115   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5116   emit_int8((unsigned char)0xF3);
5117   emit_int8((unsigned char)(0xC0 | encode));
5118 }
5119 
5120 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5121   assert(UseAVX > 0, "requires some form of AVX");
5122   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5123   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5124   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5125   emit_int8(0x71);
5126   emit_int8((unsigned char)(0xC0 | encode));
5127   emit_int8(shift & 0xFF);
5128 }
5129 
5130 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5131   assert(UseAVX > 0, "requires some form of AVX");
5132   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5133   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5134   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5135   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5136   emit_int8(0x72);
5137   emit_int8((unsigned char)(0xC0 | encode));
5138   emit_int8(shift & 0xFF);
5139 }
5140 
5141 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5142   assert(UseAVX > 0, "requires some form of AVX");
5143   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5144   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5145   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5146   emit_int8(0x73);
5147   emit_int8((unsigned char)(0xC0 | encode));
5148   emit_int8(shift & 0xFF);
5149 }
5150 
5151 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5152   assert(UseAVX > 0, "requires some form of AVX");
5153   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5154   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5155   emit_int8((unsigned char)0xF1);
5156   emit_int8((unsigned char)(0xC0 | encode));
5157 }
5158 
5159 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5160   assert(UseAVX > 0, "requires some form of AVX");
5161   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5162   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5163   emit_int8((unsigned char)0xF2);
5164   emit_int8((unsigned char)(0xC0 | encode));
5165 }
5166 
5167 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5168   assert(UseAVX > 0, "requires some form of AVX");
5169   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5170   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5171   emit_int8((unsigned char)0xF3);
5172   emit_int8((unsigned char)(0xC0 | encode));
5173 }
5174 
5175 // Shift packed integers logically right by specified number of bits.
5176 void Assembler::psrlw(XMMRegister dst, int shift) {
5177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5178   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5179   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5180   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5181   emit_int8(0x71);
5182   emit_int8((unsigned char)(0xC0 | encode));
5183   emit_int8(shift & 0xFF);
5184 }
5185 
5186 void Assembler::psrld(XMMRegister dst, int shift) {
5187   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5188   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5189   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5190   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5191   emit_int8(0x72);
5192   emit_int8((unsigned char)(0xC0 | encode));
5193   emit_int8(shift & 0xFF);
5194 }
5195 
5196 void Assembler::psrlq(XMMRegister dst, int shift) {
5197   // Do not confuse it with psrldq SSE2 instruction which
5198   // shifts 128 bit value in xmm register by number of bytes.
5199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5200   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5201   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5202   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5203   emit_int8(0x73);
5204   emit_int8((unsigned char)(0xC0 | encode));
5205   emit_int8(shift & 0xFF);
5206 }
5207 
5208 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5209   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5211   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5212   emit_int8((unsigned char)0xD1);
5213   emit_int8((unsigned char)(0xC0 | encode));
5214 }
5215 
5216 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5217   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5219   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5220   emit_int8((unsigned char)0xD2);
5221   emit_int8((unsigned char)(0xC0 | encode));
5222 }
5223 
5224 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5226   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5227   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5228   emit_int8((unsigned char)0xD3);
5229   emit_int8((unsigned char)(0xC0 | encode));
5230 }
5231 
5232 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5233   assert(UseAVX > 0, "requires some form of AVX");
5234   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5235   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5236   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5237   emit_int8(0x71);
5238   emit_int8((unsigned char)(0xC0 | encode));
5239   emit_int8(shift & 0xFF);
5240 }
5241 
5242 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5243   assert(UseAVX > 0, "requires some form of AVX");
5244   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5245   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5246   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5247   emit_int8(0x72);
5248   emit_int8((unsigned char)(0xC0 | encode));
5249   emit_int8(shift & 0xFF);
5250 }
5251 
5252 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5253   assert(UseAVX > 0, "requires some form of AVX");
5254   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5255   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5256   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5257   emit_int8(0x73);
5258   emit_int8((unsigned char)(0xC0 | encode));
5259   emit_int8(shift & 0xFF);
5260 }
5261 
5262 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5263   assert(UseAVX > 0, "requires some form of AVX");
5264   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5265   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5266   emit_int8((unsigned char)0xD1);
5267   emit_int8((unsigned char)(0xC0 | encode));
5268 }
5269 
5270 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5271   assert(UseAVX > 0, "requires some form of AVX");
5272   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5273   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5274   emit_int8((unsigned char)0xD2);
5275   emit_int8((unsigned char)(0xC0 | encode));
5276 }
5277 
5278 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5279   assert(UseAVX > 0, "requires some form of AVX");
5280   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5281   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5282   emit_int8((unsigned char)0xD3);
5283   emit_int8((unsigned char)(0xC0 | encode));
5284 }
5285 
5286 // Shift packed integers arithmetically right by specified number of bits.
5287 void Assembler::psraw(XMMRegister dst, int shift) {
5288   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5290   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5291   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5292   emit_int8(0x71);
5293   emit_int8((unsigned char)(0xC0 | encode));
5294   emit_int8(shift & 0xFF);
5295 }
5296 
5297 void Assembler::psrad(XMMRegister dst, int shift) {
5298   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5299   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5300   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5301   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5302   emit_int8(0x72);
5303   emit_int8((unsigned char)(0xC0 | encode));
5304   emit_int8(shift & 0xFF);
5305 }
5306 
5307 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5310   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5311   emit_int8((unsigned char)0xE1);
5312   emit_int8((unsigned char)(0xC0 | encode));
5313 }
5314 
5315 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5318   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5319   emit_int8((unsigned char)0xE2);
5320   emit_int8((unsigned char)(0xC0 | encode));
5321 }
5322 
5323 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5324   assert(UseAVX > 0, "requires some form of AVX");
5325   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5326   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5327   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5328   emit_int8(0x71);
5329   emit_int8((unsigned char)(0xC0 | encode));
5330   emit_int8(shift & 0xFF);
5331 }
5332 
5333 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5334   assert(UseAVX > 0, "requires some form of AVX");
5335   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5336   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5337   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5338   emit_int8(0x72);
5339   emit_int8((unsigned char)(0xC0 | encode));
5340   emit_int8(shift & 0xFF);
5341 }
5342 
5343 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5344   assert(UseAVX > 0, "requires some form of AVX");
5345   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5346   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5347   emit_int8((unsigned char)0xE1);
5348   emit_int8((unsigned char)(0xC0 | encode));
5349 }
5350 
5351 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5352   assert(UseAVX > 0, "requires some form of AVX");
5353   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5354   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5355   emit_int8((unsigned char)0xE2);
5356   emit_int8((unsigned char)(0xC0 | encode));
5357 }
5358 
5359 
5360 // logical operations packed integers
5361 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5362   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5363   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5364   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5365   emit_int8((unsigned char)0xDB);
5366   emit_int8((unsigned char)(0xC0 | encode));
5367 }
5368 
5369 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5370   assert(UseAVX > 0, "requires some form of AVX");
5371   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5372   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5373   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5374   emit_int8((unsigned char)0xDB);
5375   emit_int8((unsigned char)(0xC0 | encode));
5376 }
5377 
5378 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5379   assert(UseAVX > 0, "requires some form of AVX");
5380   InstructionMark im(this);
5381   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5382   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5383   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5384   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5385   emit_int8((unsigned char)0xDB);
5386   emit_operand(dst, src);
5387 }
5388 
5389 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5391   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5392   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5393   emit_int8((unsigned char)0xDF);
5394   emit_int8((unsigned char)(0xC0 | encode));
5395 }
5396 
5397 void Assembler::por(XMMRegister dst, XMMRegister src) {
5398   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5399   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5400   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5401   emit_int8((unsigned char)0xEB);
5402   emit_int8((unsigned char)(0xC0 | encode));
5403 }
5404 
5405 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5406   assert(UseAVX > 0, "requires some form of AVX");
5407   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5408   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5409   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5410   emit_int8((unsigned char)0xEB);
5411   emit_int8((unsigned char)(0xC0 | encode));
5412 }
5413 
5414 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5415   assert(UseAVX > 0, "requires some form of AVX");
5416   InstructionMark im(this);
5417   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5418   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5419   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5420   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5421   emit_int8((unsigned char)0xEB);
5422   emit_operand(dst, src);
5423 }
5424 
5425 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5426   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5427   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5428   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5429   emit_int8((unsigned char)0xEF);
5430   emit_int8((unsigned char)(0xC0 | encode));
5431 }
5432 
5433 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5434   assert(UseAVX > 0, "requires some form of AVX");
5435   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5436   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5437   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5438   emit_int8((unsigned char)0xEF);
5439   emit_int8((unsigned char)(0xC0 | encode));
5440 }
5441 
5442 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5443   assert(UseAVX > 0, "requires some form of AVX");
5444   InstructionMark im(this);
5445   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5446   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5447   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5448   vex_prefix(src, nds_enc, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5449   emit_int8((unsigned char)0xEF);
5450   emit_operand(dst, src);
5451 }
5452 
5453 
5454 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5455   assert(VM_Version::supports_avx(), "");
5456   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5457   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5458   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5459   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5460   emit_int8(0x18);
5461   emit_int8((unsigned char)(0xC0 | encode));
5462   // 0x00 - insert into lower 128 bits
5463   // 0x01 - insert into upper 128 bits
5464   emit_int8(0x01);
5465 }
5466 
5467 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5468   assert(VM_Version::supports_evex(), "");
5469   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5470   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5471   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5472   emit_int8(0x1A);
5473   emit_int8((unsigned char)(0xC0 | encode));
5474   // 0x00 - insert into lower 256 bits
5475   // 0x01 - insert into upper 256 bits
5476   emit_int8(value & 0x01);
5477 }
5478 
5479 void Assembler::vinsertf64x4h(XMMRegister dst, Address src, int value) {
5480   assert(VM_Version::supports_evex(), "");
5481   assert(dst != xnoreg, "sanity");
5482   InstructionMark im(this);
5483   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5484   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5485   // swap src<->dst for encoding
5486   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5487   emit_int8(0x1A);
5488   emit_operand(dst, src);
5489   // 0x00 - insert into lower 256 bits
5490   // 0x01 - insert into upper 128 bits
5491   emit_int8(value & 0x01);
5492 }
5493 
5494 void Assembler::vinsertf32x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5495   assert(VM_Version::supports_evex(), "");
5496   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5497   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5498   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5499   emit_int8(0x18);
5500   emit_int8((unsigned char)(0xC0 | encode));
5501   // 0x00 - insert into q0 128 bits (0..127)
5502   // 0x01 - insert into q1 128 bits (128..255)
5503   // 0x02 - insert into q2 128 bits (256..383)
5504   // 0x03 - insert into q3 128 bits (384..511)
5505   emit_int8(value & 0x3);
5506 }
5507 
5508 void Assembler::vinsertf32x4h(XMMRegister dst, Address src, int value) {
5509   assert(VM_Version::supports_avx(), "");
5510   assert(dst != xnoreg, "sanity");
5511   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5512   InstructionMark im(this);
5513   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5514   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5515   // swap src<->dst for encoding
5516   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5517   emit_int8(0x18);
5518   emit_operand(dst, src);
5519   // 0x00 - insert into q0 128 bits (0..127)
5520   // 0x01 - insert into q1 128 bits (128..255)
5521   // 0x02 - insert into q2 128 bits (256..383)
5522   // 0x03 - insert into q3 128 bits (384..511)
5523   emit_int8(value & 0x3);
5524 }
5525 
5526 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
5527   assert(VM_Version::supports_avx(), "");
5528   assert(dst != xnoreg, "sanity");
5529   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5530   InstructionMark im(this);
5531   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5532   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5533   // swap src<->dst for encoding
5534   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5535   emit_int8(0x18);
5536   emit_operand(dst, src);
5537   // 0x01 - insert into upper 128 bits
5538   emit_int8(0x01);
5539 }
5540 
5541 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
5542   assert(VM_Version::supports_avx(), "");
5543   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5544   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5545   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5546   emit_int8(0x19);
5547   emit_int8((unsigned char)(0xC0 | encode));
5548   // 0x00 - insert into lower 128 bits
5549   // 0x01 - insert into upper 128 bits
5550   emit_int8(0x01);
5551 }
5552 
5553 void Assembler::vextractf128h(Address dst, XMMRegister src) {
5554   assert(VM_Version::supports_avx(), "");
5555   assert(src != xnoreg, "sanity");
5556   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5557   InstructionMark im(this);
5558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5559   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5560   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5561   emit_int8(0x19);
5562   emit_operand(src, dst);
5563   // 0x01 - extract from upper 128 bits
5564   emit_int8(0x01);
5565 }
5566 
5567 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5568   assert(VM_Version::supports_avx2(), "");
5569   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5570   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5571   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5572   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5573   emit_int8(0x38);
5574   emit_int8((unsigned char)(0xC0 | encode));
5575   // 0x00 - insert into lower 128 bits
5576   // 0x01 - insert into upper 128 bits
5577   emit_int8(0x01);
5578 }
5579 
5580 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src, int value) {
5581   assert(VM_Version::supports_evex(), "");
5582   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5583   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5584   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5585   emit_int8(0x38);
5586   emit_int8((unsigned char)(0xC0 | encode));
5587   // 0x00 - insert into lower 256 bits
5588   // 0x01 - insert into upper 256 bits
5589   emit_int8(value & 0x01);
5590 }
5591 
5592 void Assembler::vinserti128h(XMMRegister dst, Address src) {
5593   assert(VM_Version::supports_avx2(), "");
5594   assert(dst != xnoreg, "sanity");
5595   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5596   InstructionMark im(this);
5597   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5598   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5599   // swap src<->dst for encoding
5600   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5601   emit_int8(0x38);
5602   emit_operand(dst, src);
5603   // 0x01 - insert into upper 128 bits
5604   emit_int8(0x01);
5605 }
5606 
5607 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
5608   assert(VM_Version::supports_avx(), "");
5609   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5610   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5611   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5612   emit_int8(0x39);
5613   emit_int8((unsigned char)(0xC0 | encode));
5614   // 0x00 - insert into lower 128 bits
5615   // 0x01 - insert into upper 128 bits
5616   emit_int8(0x01);
5617 }
5618 
5619 void Assembler::vextracti128h(Address dst, XMMRegister src) {
5620   assert(VM_Version::supports_avx2(), "");
5621   assert(src != xnoreg, "sanity");
5622   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5623   InstructionMark im(this);
5624   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5625   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5626   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5627   emit_int8(0x39);
5628   emit_operand(src, dst);
5629   // 0x01 - extract from upper 128 bits
5630   emit_int8(0x01);
5631 }
5632 
5633 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src, int value) {
5634   assert(VM_Version::supports_evex(), "");
5635   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5636   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5637   emit_int8(0x3B);
5638   emit_int8((unsigned char)(0xC0 | encode));
5639   // 0x00 - extract from lower 256 bits
5640   // 0x01 - extract from upper 256 bits
5641   emit_int8(value & 0x01);
5642 }
5643 
5644 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
5645   assert(VM_Version::supports_evex(), "");
5646   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5647   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5648   emit_int8(0x39);
5649   emit_int8((unsigned char)(0xC0 | encode));
5650   // 0x01 - extract from bits 255:128
5651   // 0x02 - extract from bits 383:256
5652   // 0x03 - extract from bits 511:384
5653   emit_int8(value & 0x3);
5654 }
5655 
5656 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src, int value) {
5657   assert(VM_Version::supports_evex(), "");
5658   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5659   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5660   emit_int8(0x1B);
5661   emit_int8((unsigned char)(0xC0 | encode));
5662   // 0x00 - extract from lower 256 bits
5663   // 0x01 - extract from upper 256 bits
5664   emit_int8(value & 0x1);
5665 }
5666 
5667 void Assembler::vextractf64x4h(Address dst, XMMRegister src, int value) {
5668   assert(VM_Version::supports_evex(), "");
5669   assert(src != xnoreg, "sanity");
5670   InstructionMark im(this);
5671   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5672   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5673   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5674   emit_int8(0x1B);
5675   emit_operand(src, dst);
5676   // 0x00 - extract from lower 256 bits
5677   // 0x01 - extract from upper 256 bits
5678   emit_int8(value & 0x01);
5679 }
5680 
5681 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
5682   assert(VM_Version::supports_avx(), "");
5683   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5684   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5685   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5686   emit_int8(0x19);
5687   emit_int8((unsigned char)(0xC0 | encode));
5688   // 0x00 - extract from bits 127:0
5689   // 0x01 - extract from bits 255:128
5690   // 0x02 - extract from bits 383:256
5691   // 0x03 - extract from bits 511:384
5692   emit_int8(value & 0x3);
5693 }
5694 
5695 void Assembler::vextractf32x4h(Address dst, XMMRegister src, int value) {
5696   assert(VM_Version::supports_evex(), "");
5697   assert(src != xnoreg, "sanity");
5698   InstructionMark im(this);
5699   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5700   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5701   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5702   emit_int8(0x19);
5703   emit_operand(src, dst);
5704   // 0x00 - extract from bits 127:0
5705   // 0x01 - extract from bits 255:128
5706   // 0x02 - extract from bits 383:256
5707   // 0x03 - extract from bits 511:384
5708   emit_int8(value & 0x3);
5709 }
5710 
5711 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
5712   assert(VM_Version::supports_evex(), "");
5713   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5714   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5715   emit_int8(0x19);
5716   emit_int8((unsigned char)(0xC0 | encode));
5717   // 0x01 - extract from bits 255:128
5718   // 0x02 - extract from bits 383:256
5719   // 0x03 - extract from bits 511:384
5720   emit_int8(value & 0x3);
5721 }
5722 
5723 // duplicate 4-bytes integer data from src into 8 locations in dest
5724 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
5725   assert(VM_Version::supports_avx2(), "");
5726   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5727   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5728   emit_int8(0x58);
5729   emit_int8((unsigned char)(0xC0 | encode));
5730 }
5731 
5732 // duplicate 2-bytes integer data from src into 16 locations in dest
5733 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
5734   assert(VM_Version::supports_avx2(), "");
5735   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ true);
5736   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5737   emit_int8(0x79);
5738   emit_int8((unsigned char)(0xC0 | encode));
5739 }
5740 
5741 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5742 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
5743   assert(VM_Version::supports_evex(), "");
5744   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5745   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5746   emit_int8(0x78);
5747   emit_int8((unsigned char)(0xC0 | encode));
5748 }
5749 
5750 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5751   assert(VM_Version::supports_evex(), "");
5752   assert(dst != xnoreg, "sanity");
5753   InstructionMark im(this);
5754   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
5756   // swap src<->dst for encoding
5757   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5758   emit_int8(0x78);
5759   emit_operand(dst, src);
5760 }
5761 
5762 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5763 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5764   assert(VM_Version::supports_evex(), "");
5765   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5766   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5767   emit_int8(0x79);
5768   emit_int8((unsigned char)(0xC0 | encode));
5769 }
5770 
5771 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5772   assert(VM_Version::supports_evex(), "");
5773   assert(dst != xnoreg, "sanity");
5774   InstructionMark im(this);
5775   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5776   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
5777   // swap src<->dst for encoding
5778   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5779   emit_int8(0x79);
5780   emit_operand(dst, src);
5781 }
5782 
5783 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5784 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5785   assert(VM_Version::supports_evex(), "");
5786   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5787   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5788   emit_int8(0x58);
5789   emit_int8((unsigned char)(0xC0 | encode));
5790 }
5791 
5792 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5793   assert(VM_Version::supports_evex(), "");
5794   assert(dst != xnoreg, "sanity");
5795   InstructionMark im(this);
5796   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5797   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5798   // swap src<->dst for encoding
5799   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5800   emit_int8(0x58);
5801   emit_operand(dst, src);
5802 }
5803 
5804 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5805 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5806   assert(VM_Version::supports_evex(), "");
5807   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5808   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5809   emit_int8(0x59);
5810   emit_int8((unsigned char)(0xC0 | encode));
5811 }
5812 
5813 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5814   assert(VM_Version::supports_evex(), "");
5815   assert(dst != xnoreg, "sanity");
5816   InstructionMark im(this);
5817   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5818   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5819   // swap src<->dst for encoding
5820   vex_prefix(src, dst->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5821   emit_int8(0x59);
5822   emit_operand(dst, src);
5823 }
5824 
5825 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5826 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5827   assert(VM_Version::supports_evex(), "");
5828   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5829   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5830   emit_int8(0x18);
5831   emit_int8((unsigned char)(0xC0 | encode));
5832 }
5833 
5834 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5835   assert(VM_Version::supports_evex(), "");
5836   assert(dst != xnoreg, "sanity");
5837   InstructionMark im(this);
5838   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5840   // swap src<->dst for encoding
5841   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5842   emit_int8(0x18);
5843   emit_operand(dst, src);
5844 }
5845 
5846 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5847 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5848   assert(VM_Version::supports_evex(), "");
5849   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5850   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5851   emit_int8(0x19);
5852   emit_int8((unsigned char)(0xC0 | encode));
5853 }
5854 
5855 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5856   assert(VM_Version::supports_evex(), "");
5857   assert(dst != xnoreg, "sanity");
5858   InstructionMark im(this);
5859   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5860   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5861   // swap src<->dst for encoding
5862   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5863   emit_int8(0x19);
5864   emit_operand(dst, src);
5865 }
5866 
5867 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5868 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5869   assert(VM_Version::supports_evex(), "");
5870   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5871   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5872   emit_int8(0x7A);
5873   emit_int8((unsigned char)(0xC0 | encode));
5874 }
5875 
5876 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5877 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5878   assert(VM_Version::supports_evex(), "");
5879   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5880   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5881   emit_int8(0x7B);
5882   emit_int8((unsigned char)(0xC0 | encode));
5883 }
5884 
5885 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5886 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5887   assert(VM_Version::supports_evex(), "");
5888   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5889   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5890   emit_int8(0x7C);
5891   emit_int8((unsigned char)(0xC0 | encode));
5892 }
5893 
5894 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5895 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5896   assert(VM_Version::supports_evex(), "");
5897   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5898   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5899   emit_int8(0x7C);
5900   emit_int8((unsigned char)(0xC0 | encode));
5901 }
5902 
5903 // Carry-Less Multiplication Quadword
5904 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5905   assert(VM_Version::supports_clmul(), "");
5906   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5907   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5908   emit_int8(0x44);
5909   emit_int8((unsigned char)(0xC0 | encode));
5910   emit_int8((unsigned char)mask);
5911 }
5912 
5913 // Carry-Less Multiplication Quadword
5914 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5915   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5916   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5917   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5918   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5919   emit_int8(0x44);
5920   emit_int8((unsigned char)(0xC0 | encode));
5921   emit_int8((unsigned char)mask);
5922 }
5923 
5924 void Assembler::vzeroupper() {
5925   assert(VM_Version::supports_avx(), "");
5926   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5927   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5928   emit_int8(0x77);
5929 }
5930 
5931 
5932 #ifndef _LP64
5933 // 32bit only pieces of the assembler
5934 
5935 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5936   // NO PREFIX AS NEVER 64BIT
5937   InstructionMark im(this);
5938   emit_int8((unsigned char)0x81);
5939   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5940   emit_data(imm32, rspec, 0);
5941 }
5942 
5943 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5944   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5945   InstructionMark im(this);
5946   emit_int8((unsigned char)0x81);
5947   emit_operand(rdi, src1);
5948   emit_data(imm32, rspec, 0);
5949 }
5950 
5951 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5952 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5953 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5954 void Assembler::cmpxchg8(Address adr) {
5955   InstructionMark im(this);
5956   emit_int8(0x0F);
5957   emit_int8((unsigned char)0xC7);
5958   emit_operand(rcx, adr);
5959 }
5960 
5961 void Assembler::decl(Register dst) {
5962   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5963  emit_int8(0x48 | dst->encoding());
5964 }
5965 
5966 #endif // _LP64
5967 
5968 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5969 
5970 void Assembler::fabs() {
5971   emit_int8((unsigned char)0xD9);
5972   emit_int8((unsigned char)0xE1);
5973 }
5974 
5975 void Assembler::fadd(int i) {
5976   emit_farith(0xD8, 0xC0, i);
5977 }
5978 
5979 void Assembler::fadd_d(Address src) {
5980   InstructionMark im(this);
5981   emit_int8((unsigned char)0xDC);
5982   emit_operand32(rax, src);
5983 }
5984 
5985 void Assembler::fadd_s(Address src) {
5986   InstructionMark im(this);
5987   emit_int8((unsigned char)0xD8);
5988   emit_operand32(rax, src);
5989 }
5990 
5991 void Assembler::fadda(int i) {
5992   emit_farith(0xDC, 0xC0, i);
5993 }
5994 
5995 void Assembler::faddp(int i) {
5996   emit_farith(0xDE, 0xC0, i);
5997 }
5998 
5999 void Assembler::fchs() {
6000   emit_int8((unsigned char)0xD9);
6001   emit_int8((unsigned char)0xE0);
6002 }
6003 
6004 void Assembler::fcom(int i) {
6005   emit_farith(0xD8, 0xD0, i);
6006 }
6007 
6008 void Assembler::fcomp(int i) {
6009   emit_farith(0xD8, 0xD8, i);
6010 }
6011 
6012 void Assembler::fcomp_d(Address src) {
6013   InstructionMark im(this);
6014   emit_int8((unsigned char)0xDC);
6015   emit_operand32(rbx, src);
6016 }
6017 
6018 void Assembler::fcomp_s(Address src) {
6019   InstructionMark im(this);
6020   emit_int8((unsigned char)0xD8);
6021   emit_operand32(rbx, src);
6022 }
6023 
6024 void Assembler::fcompp() {
6025   emit_int8((unsigned char)0xDE);
6026   emit_int8((unsigned char)0xD9);
6027 }
6028 
6029 void Assembler::fcos() {
6030   emit_int8((unsigned char)0xD9);
6031   emit_int8((unsigned char)0xFF);
6032 }
6033 
6034 void Assembler::fdecstp() {
6035   emit_int8((unsigned char)0xD9);
6036   emit_int8((unsigned char)0xF6);
6037 }
6038 
6039 void Assembler::fdiv(int i) {
6040   emit_farith(0xD8, 0xF0, i);
6041 }
6042 
6043 void Assembler::fdiv_d(Address src) {
6044   InstructionMark im(this);
6045   emit_int8((unsigned char)0xDC);
6046   emit_operand32(rsi, src);
6047 }
6048 
6049 void Assembler::fdiv_s(Address src) {
6050   InstructionMark im(this);
6051   emit_int8((unsigned char)0xD8);
6052   emit_operand32(rsi, src);
6053 }
6054 
6055 void Assembler::fdiva(int i) {
6056   emit_farith(0xDC, 0xF8, i);
6057 }
6058 
6059 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6060 //       is erroneous for some of the floating-point instructions below.
6061 
6062 void Assembler::fdivp(int i) {
6063   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6064 }
6065 
6066 void Assembler::fdivr(int i) {
6067   emit_farith(0xD8, 0xF8, i);
6068 }
6069 
6070 void Assembler::fdivr_d(Address src) {
6071   InstructionMark im(this);
6072   emit_int8((unsigned char)0xDC);
6073   emit_operand32(rdi, src);
6074 }
6075 
6076 void Assembler::fdivr_s(Address src) {
6077   InstructionMark im(this);
6078   emit_int8((unsigned char)0xD8);
6079   emit_operand32(rdi, src);
6080 }
6081 
6082 void Assembler::fdivra(int i) {
6083   emit_farith(0xDC, 0xF0, i);
6084 }
6085 
6086 void Assembler::fdivrp(int i) {
6087   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6088 }
6089 
6090 void Assembler::ffree(int i) {
6091   emit_farith(0xDD, 0xC0, i);
6092 }
6093 
6094 void Assembler::fild_d(Address adr) {
6095   InstructionMark im(this);
6096   emit_int8((unsigned char)0xDF);
6097   emit_operand32(rbp, adr);
6098 }
6099 
6100 void Assembler::fild_s(Address adr) {
6101   InstructionMark im(this);
6102   emit_int8((unsigned char)0xDB);
6103   emit_operand32(rax, adr);
6104 }
6105 
6106 void Assembler::fincstp() {
6107   emit_int8((unsigned char)0xD9);
6108   emit_int8((unsigned char)0xF7);
6109 }
6110 
6111 void Assembler::finit() {
6112   emit_int8((unsigned char)0x9B);
6113   emit_int8((unsigned char)0xDB);
6114   emit_int8((unsigned char)0xE3);
6115 }
6116 
6117 void Assembler::fist_s(Address adr) {
6118   InstructionMark im(this);
6119   emit_int8((unsigned char)0xDB);
6120   emit_operand32(rdx, adr);
6121 }
6122 
6123 void Assembler::fistp_d(Address adr) {
6124   InstructionMark im(this);
6125   emit_int8((unsigned char)0xDF);
6126   emit_operand32(rdi, adr);
6127 }
6128 
6129 void Assembler::fistp_s(Address adr) {
6130   InstructionMark im(this);
6131   emit_int8((unsigned char)0xDB);
6132   emit_operand32(rbx, adr);
6133 }
6134 
6135 void Assembler::fld1() {
6136   emit_int8((unsigned char)0xD9);
6137   emit_int8((unsigned char)0xE8);
6138 }
6139 
6140 void Assembler::fld_d(Address adr) {
6141   InstructionMark im(this);
6142   emit_int8((unsigned char)0xDD);
6143   emit_operand32(rax, adr);
6144 }
6145 
6146 void Assembler::fld_s(Address adr) {
6147   InstructionMark im(this);
6148   emit_int8((unsigned char)0xD9);
6149   emit_operand32(rax, adr);
6150 }
6151 
6152 
6153 void Assembler::fld_s(int index) {
6154   emit_farith(0xD9, 0xC0, index);
6155 }
6156 
6157 void Assembler::fld_x(Address adr) {
6158   InstructionMark im(this);
6159   emit_int8((unsigned char)0xDB);
6160   emit_operand32(rbp, adr);
6161 }
6162 
6163 void Assembler::fldcw(Address src) {
6164   InstructionMark im(this);
6165   emit_int8((unsigned char)0xD9);
6166   emit_operand32(rbp, src);
6167 }
6168 
6169 void Assembler::fldenv(Address src) {
6170   InstructionMark im(this);
6171   emit_int8((unsigned char)0xD9);
6172   emit_operand32(rsp, src);
6173 }
6174 
6175 void Assembler::fldlg2() {
6176   emit_int8((unsigned char)0xD9);
6177   emit_int8((unsigned char)0xEC);
6178 }
6179 
6180 void Assembler::fldln2() {
6181   emit_int8((unsigned char)0xD9);
6182   emit_int8((unsigned char)0xED);
6183 }
6184 
6185 void Assembler::fldz() {
6186   emit_int8((unsigned char)0xD9);
6187   emit_int8((unsigned char)0xEE);
6188 }
6189 
6190 void Assembler::flog() {
6191   fldln2();
6192   fxch();
6193   fyl2x();
6194 }
6195 
6196 void Assembler::flog10() {
6197   fldlg2();
6198   fxch();
6199   fyl2x();
6200 }
6201 
6202 void Assembler::fmul(int i) {
6203   emit_farith(0xD8, 0xC8, i);
6204 }
6205 
6206 void Assembler::fmul_d(Address src) {
6207   InstructionMark im(this);
6208   emit_int8((unsigned char)0xDC);
6209   emit_operand32(rcx, src);
6210 }
6211 
6212 void Assembler::fmul_s(Address src) {
6213   InstructionMark im(this);
6214   emit_int8((unsigned char)0xD8);
6215   emit_operand32(rcx, src);
6216 }
6217 
6218 void Assembler::fmula(int i) {
6219   emit_farith(0xDC, 0xC8, i);
6220 }
6221 
6222 void Assembler::fmulp(int i) {
6223   emit_farith(0xDE, 0xC8, i);
6224 }
6225 
6226 void Assembler::fnsave(Address dst) {
6227   InstructionMark im(this);
6228   emit_int8((unsigned char)0xDD);
6229   emit_operand32(rsi, dst);
6230 }
6231 
6232 void Assembler::fnstcw(Address src) {
6233   InstructionMark im(this);
6234   emit_int8((unsigned char)0x9B);
6235   emit_int8((unsigned char)0xD9);
6236   emit_operand32(rdi, src);
6237 }
6238 
6239 void Assembler::fnstsw_ax() {
6240   emit_int8((unsigned char)0xDF);
6241   emit_int8((unsigned char)0xE0);
6242 }
6243 
6244 void Assembler::fprem() {
6245   emit_int8((unsigned char)0xD9);
6246   emit_int8((unsigned char)0xF8);
6247 }
6248 
6249 void Assembler::fprem1() {
6250   emit_int8((unsigned char)0xD9);
6251   emit_int8((unsigned char)0xF5);
6252 }
6253 
6254 void Assembler::frstor(Address src) {
6255   InstructionMark im(this);
6256   emit_int8((unsigned char)0xDD);
6257   emit_operand32(rsp, src);
6258 }
6259 
6260 void Assembler::fsin() {
6261   emit_int8((unsigned char)0xD9);
6262   emit_int8((unsigned char)0xFE);
6263 }
6264 
6265 void Assembler::fsqrt() {
6266   emit_int8((unsigned char)0xD9);
6267   emit_int8((unsigned char)0xFA);
6268 }
6269 
6270 void Assembler::fst_d(Address adr) {
6271   InstructionMark im(this);
6272   emit_int8((unsigned char)0xDD);
6273   emit_operand32(rdx, adr);
6274 }
6275 
6276 void Assembler::fst_s(Address adr) {
6277   InstructionMark im(this);
6278   emit_int8((unsigned char)0xD9);
6279   emit_operand32(rdx, adr);
6280 }
6281 
6282 void Assembler::fstp_d(Address adr) {
6283   InstructionMark im(this);
6284   emit_int8((unsigned char)0xDD);
6285   emit_operand32(rbx, adr);
6286 }
6287 
6288 void Assembler::fstp_d(int index) {
6289   emit_farith(0xDD, 0xD8, index);
6290 }
6291 
6292 void Assembler::fstp_s(Address adr) {
6293   InstructionMark im(this);
6294   emit_int8((unsigned char)0xD9);
6295   emit_operand32(rbx, adr);
6296 }
6297 
6298 void Assembler::fstp_x(Address adr) {
6299   InstructionMark im(this);
6300   emit_int8((unsigned char)0xDB);
6301   emit_operand32(rdi, adr);
6302 }
6303 
6304 void Assembler::fsub(int i) {
6305   emit_farith(0xD8, 0xE0, i);
6306 }
6307 
6308 void Assembler::fsub_d(Address src) {
6309   InstructionMark im(this);
6310   emit_int8((unsigned char)0xDC);
6311   emit_operand32(rsp, src);
6312 }
6313 
6314 void Assembler::fsub_s(Address src) {
6315   InstructionMark im(this);
6316   emit_int8((unsigned char)0xD8);
6317   emit_operand32(rsp, src);
6318 }
6319 
6320 void Assembler::fsuba(int i) {
6321   emit_farith(0xDC, 0xE8, i);
6322 }
6323 
6324 void Assembler::fsubp(int i) {
6325   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6326 }
6327 
6328 void Assembler::fsubr(int i) {
6329   emit_farith(0xD8, 0xE8, i);
6330 }
6331 
6332 void Assembler::fsubr_d(Address src) {
6333   InstructionMark im(this);
6334   emit_int8((unsigned char)0xDC);
6335   emit_operand32(rbp, src);
6336 }
6337 
6338 void Assembler::fsubr_s(Address src) {
6339   InstructionMark im(this);
6340   emit_int8((unsigned char)0xD8);
6341   emit_operand32(rbp, src);
6342 }
6343 
6344 void Assembler::fsubra(int i) {
6345   emit_farith(0xDC, 0xE0, i);
6346 }
6347 
6348 void Assembler::fsubrp(int i) {
6349   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6350 }
6351 
6352 void Assembler::ftan() {
6353   emit_int8((unsigned char)0xD9);
6354   emit_int8((unsigned char)0xF2);
6355   emit_int8((unsigned char)0xDD);
6356   emit_int8((unsigned char)0xD8);
6357 }
6358 
6359 void Assembler::ftst() {
6360   emit_int8((unsigned char)0xD9);
6361   emit_int8((unsigned char)0xE4);
6362 }
6363 
6364 void Assembler::fucomi(int i) {
6365   // make sure the instruction is supported (introduced for P6, together with cmov)
6366   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6367   emit_farith(0xDB, 0xE8, i);
6368 }
6369 
6370 void Assembler::fucomip(int i) {
6371   // make sure the instruction is supported (introduced for P6, together with cmov)
6372   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6373   emit_farith(0xDF, 0xE8, i);
6374 }
6375 
6376 void Assembler::fwait() {
6377   emit_int8((unsigned char)0x9B);
6378 }
6379 
6380 void Assembler::fxch(int i) {
6381   emit_farith(0xD9, 0xC8, i);
6382 }
6383 
6384 void Assembler::fyl2x() {
6385   emit_int8((unsigned char)0xD9);
6386   emit_int8((unsigned char)0xF1);
6387 }
6388 
6389 void Assembler::frndint() {
6390   emit_int8((unsigned char)0xD9);
6391   emit_int8((unsigned char)0xFC);
6392 }
6393 
6394 void Assembler::f2xm1() {
6395   emit_int8((unsigned char)0xD9);
6396   emit_int8((unsigned char)0xF0);
6397 }
6398 
6399 void Assembler::fldl2e() {
6400   emit_int8((unsigned char)0xD9);
6401   emit_int8((unsigned char)0xEA);
6402 }
6403 
6404 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6405 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6406 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6407 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6408 
6409 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6410 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6411   if (pre > 0) {
6412     emit_int8(simd_pre[pre]);
6413   }
6414   if (rex_w) {
6415     prefixq(adr, xreg);
6416   } else {
6417     prefix(adr, xreg);
6418   }
6419   if (opc > 0) {
6420     emit_int8(0x0F);
6421     int opc2 = simd_opc[opc];
6422     if (opc2 > 0) {
6423       emit_int8(opc2);
6424     }
6425   }
6426 }
6427 
6428 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6429   if (pre > 0) {
6430     emit_int8(simd_pre[pre]);
6431   }
6432   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6433   if (opc > 0) {
6434     emit_int8(0x0F);
6435     int opc2 = simd_opc[opc];
6436     if (opc2 > 0) {
6437       emit_int8(opc2);
6438     }
6439   }
6440   return encode;
6441 }
6442 
6443 
6444 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6445   int vector_len = _attributes->get_vector_len();
6446   bool vex_w = _attributes->is_rex_vex_w();
6447   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6448     prefix(VEX_3bytes);
6449 
6450     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6451     byte1 = (~byte1) & 0xE0;
6452     byte1 |= opc;
6453     emit_int8(byte1);
6454 
6455     int byte2 = ((~nds_enc) & 0xf) << 3;
6456     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6457     emit_int8(byte2);
6458   } else {
6459     prefix(VEX_2bytes);
6460 
6461     int byte1 = vex_r ? VEX_R : 0;
6462     byte1 = (~byte1) & 0x80;
6463     byte1 |= ((~nds_enc) & 0xf) << 3;
6464     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6465     emit_int8(byte1);
6466   }
6467 }
6468 
6469 // This is a 4 byte encoding
6470 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6471   // EVEX 0x62 prefix
6472   prefix(EVEX_4bytes);
6473   bool vex_w = _attributes->is_rex_vex_w();
6474   int evex_encoding = (vex_w ? VEX_W : 0);
6475   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6476   _attributes->set_evex_encoding(evex_encoding);
6477 
6478   // P0: byte 2, initialized to RXBR`00mm
6479   // instead of not'd
6480   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6481   byte2 = (~byte2) & 0xF0;
6482   // confine opc opcode extensions in mm bits to lower two bits
6483   // of form {0F, 0F_38, 0F_3A}
6484   byte2 |= opc;
6485   emit_int8(byte2);
6486 
6487   // P1: byte 3 as Wvvvv1pp
6488   int byte3 = ((~nds_enc) & 0xf) << 3;
6489   // p[10] is always 1
6490   byte3 |= EVEX_F;
6491   byte3 |= (vex_w & 1) << 7;
6492   // confine pre opcode extensions in pp bits to lower two bits
6493   // of form {66, F3, F2}
6494   byte3 |= pre;
6495   emit_int8(byte3);
6496 
6497   // P2: byte 4 as zL'Lbv'aaa
6498   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6499   // EVEX.v` for extending EVEX.vvvv or VIDX
6500   byte4 |= (evex_v ? 0: EVEX_V);
6501   // third EXEC.b for broadcast actions
6502   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6503   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6504   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6505   // last is EVEX.z for zero/merge actions
6506   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6507   emit_int8(byte4);
6508 }
6509 
6510 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6511   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6512   bool vex_b = adr.base_needs_rex();
6513   bool vex_x = adr.index_needs_rex();
6514   set_attributes(attributes);
6515   attributes->set_current_assembler(this);
6516 
6517   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6518   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6519     switch (attributes->get_vector_len()) {
6520     case AVX_128bit:
6521     case AVX_256bit:
6522       attributes->set_is_legacy_mode();
6523       break;
6524     }
6525   }
6526 
6527   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6528   {
6529     bool evex_r = (xreg_enc >= 16);
6530     bool evex_v = (nds_enc >= 16);
6531     attributes->set_is_evex_instruction();
6532     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6533   } else {
6534     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6535   }
6536 }
6537 
6538 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6539   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6540   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6541   bool vex_x = false;
6542   set_attributes(attributes);
6543   attributes->set_current_assembler(this);
6544 
6545   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6546   if ((UseAVX > 2) && _legacy_mode_vl && attributes->uses_vl()) {
6547     switch (attributes->get_vector_len()) {
6548     case AVX_128bit:
6549     case AVX_256bit:
6550       if ((dst_enc >= 16) | (nds_enc >= 16) | (src_enc >= 16)) {
6551         // up propagate arithmetic instructions to meet RA requirements
6552         attributes->set_vector_len(AVX_512bit);
6553       } else {
6554         attributes->set_is_legacy_mode();
6555       }
6556       break;
6557     }
6558   }
6559 
6560   if ((UseAVX > 2) && !attributes->is_legacy_mode())
6561   {
6562     bool evex_r = (dst_enc >= 16);
6563     bool evex_v = (nds_enc >= 16);
6564     // can use vex_x as bank extender on rm encoding
6565     vex_x = (src_enc >= 16);
6566     attributes->set_is_evex_instruction();
6567     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6568   } else {
6569     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6570   }
6571 
6572   // return modrm byte components for operands
6573   return (((dst_enc & 7) << 3) | (src_enc & 7));
6574 }
6575 
6576 
6577 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6578                             VexOpcode opc, InstructionAttr *attributes) {
6579   if (UseAVX > 0) {
6580     int xreg_enc = xreg->encoding();
6581     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6582     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6583   } else {
6584     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6585     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6586   }
6587 }
6588 
6589 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6590                                       VexOpcode opc, InstructionAttr *attributes) {
6591   int dst_enc = dst->encoding();
6592   int src_enc = src->encoding();
6593   if (UseAVX > 0) {
6594     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6595     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6596   } else {
6597     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6598     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6599   }
6600 }
6601 
6602 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
6603                                       VexOpcode opc, InstructionAttr *attributes) {
6604   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6605   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6606 }
6607 
6608 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
6609                                       VexOpcode opc, InstructionAttr *attributes) {
6610   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6611   return vex_prefix_and_encode(dst->encoding(), nds_enc, src->encoding(), pre, opc, attributes);
6612 }
6613 
6614 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6615   assert(VM_Version::supports_avx(), "");
6616   assert(!VM_Version::supports_evex(), "");
6617   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6618   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6619   emit_int8((unsigned char)0xC2);
6620   emit_int8((unsigned char)(0xC0 | encode));
6621   emit_int8((unsigned char)(0xF & cop));
6622 }
6623 
6624 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6625   assert(VM_Version::supports_avx(), "");
6626   assert(!VM_Version::supports_evex(), "");
6627   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6628   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6629   int encode = vex_prefix_and_encode(dst->encoding(), nds_enc, src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6630   emit_int8((unsigned char)0x4B);
6631   emit_int8((unsigned char)(0xC0 | encode));
6632   int src2_enc = src2->encoding();
6633   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6634 }
6635 
6636 
6637 #ifndef _LP64
6638 
6639 void Assembler::incl(Register dst) {
6640   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6641   emit_int8(0x40 | dst->encoding());
6642 }
6643 
6644 void Assembler::lea(Register dst, Address src) {
6645   leal(dst, src);
6646 }
6647 
6648 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6649   InstructionMark im(this);
6650   emit_int8((unsigned char)0xC7);
6651   emit_operand(rax, dst);
6652   emit_data((int)imm32, rspec, 0);
6653 }
6654 
6655 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6656   InstructionMark im(this);
6657   int encode = prefix_and_encode(dst->encoding());
6658   emit_int8((unsigned char)(0xB8 | encode));
6659   emit_data((int)imm32, rspec, 0);
6660 }
6661 
6662 void Assembler::popa() { // 32bit
6663   emit_int8(0x61);
6664 }
6665 
6666 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
6667   InstructionMark im(this);
6668   emit_int8(0x68);
6669   emit_data(imm32, rspec, 0);
6670 }
6671 
6672 void Assembler::pusha() { // 32bit
6673   emit_int8(0x60);
6674 }
6675 
6676 void Assembler::set_byte_if_not_zero(Register dst) {
6677   emit_int8(0x0F);
6678   emit_int8((unsigned char)0x95);
6679   emit_int8((unsigned char)(0xE0 | dst->encoding()));
6680 }
6681 
6682 void Assembler::shldl(Register dst, Register src) {
6683   emit_int8(0x0F);
6684   emit_int8((unsigned char)0xA5);
6685   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6686 }
6687 
6688 // 0F A4 / r ib
6689 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
6690   emit_int8(0x0F);
6691   emit_int8((unsigned char)0xA4);
6692   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6693   emit_int8(imm8);
6694 }
6695 
6696 void Assembler::shrdl(Register dst, Register src) {
6697   emit_int8(0x0F);
6698   emit_int8((unsigned char)0xAD);
6699   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6700 }
6701 
6702 #else // LP64
6703 
6704 void Assembler::set_byte_if_not_zero(Register dst) {
6705   int enc = prefix_and_encode(dst->encoding(), true);
6706   emit_int8(0x0F);
6707   emit_int8((unsigned char)0x95);
6708   emit_int8((unsigned char)(0xE0 | enc));
6709 }
6710 
6711 // 64bit only pieces of the assembler
6712 // This should only be used by 64bit instructions that can use rip-relative
6713 // it cannot be used by instructions that want an immediate value.
6714 
6715 bool Assembler::reachable(AddressLiteral adr) {
6716   int64_t disp;
6717   // None will force a 64bit literal to the code stream. Likely a placeholder
6718   // for something that will be patched later and we need to certain it will
6719   // always be reachable.
6720   if (adr.reloc() == relocInfo::none) {
6721     return false;
6722   }
6723   if (adr.reloc() == relocInfo::internal_word_type) {
6724     // This should be rip relative and easily reachable.
6725     return true;
6726   }
6727   if (adr.reloc() == relocInfo::virtual_call_type ||
6728       adr.reloc() == relocInfo::opt_virtual_call_type ||
6729       adr.reloc() == relocInfo::static_call_type ||
6730       adr.reloc() == relocInfo::static_stub_type ) {
6731     // This should be rip relative within the code cache and easily
6732     // reachable until we get huge code caches. (At which point
6733     // ic code is going to have issues).
6734     return true;
6735   }
6736   if (adr.reloc() != relocInfo::external_word_type &&
6737       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6738       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6739       adr.reloc() != relocInfo::runtime_call_type ) {
6740     return false;
6741   }
6742 
6743   // Stress the correction code
6744   if (ForceUnreachable) {
6745     // Must be runtimecall reloc, see if it is in the codecache
6746     // Flipping stuff in the codecache to be unreachable causes issues
6747     // with things like inline caches where the additional instructions
6748     // are not handled.
6749     if (CodeCache::find_blob(adr._target) == NULL) {
6750       return false;
6751     }
6752   }
6753   // For external_word_type/runtime_call_type if it is reachable from where we
6754   // are now (possibly a temp buffer) and where we might end up
6755   // anywhere in the codeCache then we are always reachable.
6756   // This would have to change if we ever save/restore shared code
6757   // to be more pessimistic.
6758   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6759   if (!is_simm32(disp)) return false;
6760   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6761   if (!is_simm32(disp)) return false;
6762 
6763   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6764 
6765   // Because rip relative is a disp + address_of_next_instruction and we
6766   // don't know the value of address_of_next_instruction we apply a fudge factor
6767   // to make sure we will be ok no matter the size of the instruction we get placed into.
6768   // We don't have to fudge the checks above here because they are already worst case.
6769 
6770   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6771   // + 4 because better safe than sorry.
6772   const int fudge = 12 + 4;
6773   if (disp < 0) {
6774     disp -= fudge;
6775   } else {
6776     disp += fudge;
6777   }
6778   return is_simm32(disp);
6779 }
6780 
6781 // Check if the polling page is not reachable from the code cache using rip-relative
6782 // addressing.
6783 bool Assembler::is_polling_page_far() {
6784   intptr_t addr = (intptr_t)os::get_polling_page();
6785   return ForceUnreachable ||
6786          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6787          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6788 }
6789 
6790 void Assembler::emit_data64(jlong data,
6791                             relocInfo::relocType rtype,
6792                             int format) {
6793   if (rtype == relocInfo::none) {
6794     emit_int64(data);
6795   } else {
6796     emit_data64(data, Relocation::spec_simple(rtype), format);
6797   }
6798 }
6799 
6800 void Assembler::emit_data64(jlong data,
6801                             RelocationHolder const& rspec,
6802                             int format) {
6803   assert(imm_operand == 0, "default format must be immediate in this file");
6804   assert(imm_operand == format, "must be immediate");
6805   assert(inst_mark() != NULL, "must be inside InstructionMark");
6806   // Do not use AbstractAssembler::relocate, which is not intended for
6807   // embedded words.  Instead, relocate to the enclosing instruction.
6808   code_section()->relocate(inst_mark(), rspec, format);
6809 #ifdef ASSERT
6810   check_relocation(rspec, format);
6811 #endif
6812   emit_int64(data);
6813 }
6814 
6815 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6816   if (reg_enc >= 8) {
6817     prefix(REX_B);
6818     reg_enc -= 8;
6819   } else if (byteinst && reg_enc >= 4) {
6820     prefix(REX);
6821   }
6822   return reg_enc;
6823 }
6824 
6825 int Assembler::prefixq_and_encode(int reg_enc) {
6826   if (reg_enc < 8) {
6827     prefix(REX_W);
6828   } else {
6829     prefix(REX_WB);
6830     reg_enc -= 8;
6831   }
6832   return reg_enc;
6833 }
6834 
6835 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
6836   if (dst_enc < 8) {
6837     if (src_enc >= 8) {
6838       prefix(REX_B);
6839       src_enc -= 8;
6840     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
6841       prefix(REX);
6842     }
6843   } else {
6844     if (src_enc < 8) {
6845       prefix(REX_R);
6846     } else {
6847       prefix(REX_RB);
6848       src_enc -= 8;
6849     }
6850     dst_enc -= 8;
6851   }
6852   return dst_enc << 3 | src_enc;
6853 }
6854 
6855 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6856   if (dst_enc < 8) {
6857     if (src_enc < 8) {
6858       prefix(REX_W);
6859     } else {
6860       prefix(REX_WB);
6861       src_enc -= 8;
6862     }
6863   } else {
6864     if (src_enc < 8) {
6865       prefix(REX_WR);
6866     } else {
6867       prefix(REX_WRB);
6868       src_enc -= 8;
6869     }
6870     dst_enc -= 8;
6871   }
6872   return dst_enc << 3 | src_enc;
6873 }
6874 
6875 void Assembler::prefix(Register reg) {
6876   if (reg->encoding() >= 8) {
6877     prefix(REX_B);
6878   }
6879 }
6880 
6881 void Assembler::prefix(Register dst, Register src, Prefix p) {
6882   if (src->encoding() >= 8) {
6883     p = (Prefix)(p | REX_B);
6884   }
6885   if (dst->encoding() >= 8) {
6886     p = (Prefix)( p | REX_R);
6887   }
6888   if (p != Prefix_EMPTY) {
6889     // do not generate an empty prefix
6890     prefix(p);
6891   }
6892 }
6893 
6894 void Assembler::prefix(Register dst, Address adr, Prefix p) {
6895   if (adr.base_needs_rex()) {
6896     if (adr.index_needs_rex()) {
6897       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6898     } else {
6899       prefix(REX_B);
6900     }
6901   } else {
6902     if (adr.index_needs_rex()) {
6903       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
6904     }
6905   }
6906   if (dst->encoding() >= 8) {
6907     p = (Prefix)(p | REX_R);
6908   }
6909   if (p != Prefix_EMPTY) {
6910     // do not generate an empty prefix
6911     prefix(p);
6912   }
6913 }
6914 
6915 void Assembler::prefix(Address adr) {
6916   if (adr.base_needs_rex()) {
6917     if (adr.index_needs_rex()) {
6918       prefix(REX_XB);
6919     } else {
6920       prefix(REX_B);
6921     }
6922   } else {
6923     if (adr.index_needs_rex()) {
6924       prefix(REX_X);
6925     }
6926   }
6927 }
6928 
6929 void Assembler::prefixq(Address adr) {
6930   if (adr.base_needs_rex()) {
6931     if (adr.index_needs_rex()) {
6932       prefix(REX_WXB);
6933     } else {
6934       prefix(REX_WB);
6935     }
6936   } else {
6937     if (adr.index_needs_rex()) {
6938       prefix(REX_WX);
6939     } else {
6940       prefix(REX_W);
6941     }
6942   }
6943 }
6944 
6945 
6946 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6947   if (reg->encoding() < 8) {
6948     if (adr.base_needs_rex()) {
6949       if (adr.index_needs_rex()) {
6950         prefix(REX_XB);
6951       } else {
6952         prefix(REX_B);
6953       }
6954     } else {
6955       if (adr.index_needs_rex()) {
6956         prefix(REX_X);
6957       } else if (byteinst && reg->encoding() >= 4 ) {
6958         prefix(REX);
6959       }
6960     }
6961   } else {
6962     if (adr.base_needs_rex()) {
6963       if (adr.index_needs_rex()) {
6964         prefix(REX_RXB);
6965       } else {
6966         prefix(REX_RB);
6967       }
6968     } else {
6969       if (adr.index_needs_rex()) {
6970         prefix(REX_RX);
6971       } else {
6972         prefix(REX_R);
6973       }
6974     }
6975   }
6976 }
6977 
6978 void Assembler::prefixq(Address adr, Register src) {
6979   if (src->encoding() < 8) {
6980     if (adr.base_needs_rex()) {
6981       if (adr.index_needs_rex()) {
6982         prefix(REX_WXB);
6983       } else {
6984         prefix(REX_WB);
6985       }
6986     } else {
6987       if (adr.index_needs_rex()) {
6988         prefix(REX_WX);
6989       } else {
6990         prefix(REX_W);
6991       }
6992     }
6993   } else {
6994     if (adr.base_needs_rex()) {
6995       if (adr.index_needs_rex()) {
6996         prefix(REX_WRXB);
6997       } else {
6998         prefix(REX_WRB);
6999       }
7000     } else {
7001       if (adr.index_needs_rex()) {
7002         prefix(REX_WRX);
7003       } else {
7004         prefix(REX_WR);
7005       }
7006     }
7007   }
7008 }
7009 
7010 void Assembler::prefix(Address adr, XMMRegister reg) {
7011   if (reg->encoding() < 8) {
7012     if (adr.base_needs_rex()) {
7013       if (adr.index_needs_rex()) {
7014         prefix(REX_XB);
7015       } else {
7016         prefix(REX_B);
7017       }
7018     } else {
7019       if (adr.index_needs_rex()) {
7020         prefix(REX_X);
7021       }
7022     }
7023   } else {
7024     if (adr.base_needs_rex()) {
7025       if (adr.index_needs_rex()) {
7026         prefix(REX_RXB);
7027       } else {
7028         prefix(REX_RB);
7029       }
7030     } else {
7031       if (adr.index_needs_rex()) {
7032         prefix(REX_RX);
7033       } else {
7034         prefix(REX_R);
7035       }
7036     }
7037   }
7038 }
7039 
7040 void Assembler::prefixq(Address adr, XMMRegister src) {
7041   if (src->encoding() < 8) {
7042     if (adr.base_needs_rex()) {
7043       if (adr.index_needs_rex()) {
7044         prefix(REX_WXB);
7045       } else {
7046         prefix(REX_WB);
7047       }
7048     } else {
7049       if (adr.index_needs_rex()) {
7050         prefix(REX_WX);
7051       } else {
7052         prefix(REX_W);
7053       }
7054     }
7055   } else {
7056     if (adr.base_needs_rex()) {
7057       if (adr.index_needs_rex()) {
7058         prefix(REX_WRXB);
7059       } else {
7060         prefix(REX_WRB);
7061       }
7062     } else {
7063       if (adr.index_needs_rex()) {
7064         prefix(REX_WRX);
7065       } else {
7066         prefix(REX_WR);
7067       }
7068     }
7069   }
7070 }
7071 
7072 void Assembler::adcq(Register dst, int32_t imm32) {
7073   (void) prefixq_and_encode(dst->encoding());
7074   emit_arith(0x81, 0xD0, dst, imm32);
7075 }
7076 
7077 void Assembler::adcq(Register dst, Address src) {
7078   InstructionMark im(this);
7079   prefixq(src, dst);
7080   emit_int8(0x13);
7081   emit_operand(dst, src);
7082 }
7083 
7084 void Assembler::adcq(Register dst, Register src) {
7085   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7086   emit_arith(0x13, 0xC0, dst, src);
7087 }
7088 
7089 void Assembler::addq(Address dst, int32_t imm32) {
7090   InstructionMark im(this);
7091   prefixq(dst);
7092   emit_arith_operand(0x81, rax, dst,imm32);
7093 }
7094 
7095 void Assembler::addq(Address dst, Register src) {
7096   InstructionMark im(this);
7097   prefixq(dst, src);
7098   emit_int8(0x01);
7099   emit_operand(src, dst);
7100 }
7101 
7102 void Assembler::addq(Register dst, int32_t imm32) {
7103   (void) prefixq_and_encode(dst->encoding());
7104   emit_arith(0x81, 0xC0, dst, imm32);
7105 }
7106 
7107 void Assembler::addq(Register dst, Address src) {
7108   InstructionMark im(this);
7109   prefixq(src, dst);
7110   emit_int8(0x03);
7111   emit_operand(dst, src);
7112 }
7113 
7114 void Assembler::addq(Register dst, Register src) {
7115   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7116   emit_arith(0x03, 0xC0, dst, src);
7117 }
7118 
7119 void Assembler::adcxq(Register dst, Register src) {
7120   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7121   emit_int8((unsigned char)0x66);
7122   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7123   emit_int8(0x0F);
7124   emit_int8(0x38);
7125   emit_int8((unsigned char)0xF6);
7126   emit_int8((unsigned char)(0xC0 | encode));
7127 }
7128 
7129 void Assembler::adoxq(Register dst, Register src) {
7130   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7131   emit_int8((unsigned char)0xF3);
7132   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7133   emit_int8(0x0F);
7134   emit_int8(0x38);
7135   emit_int8((unsigned char)0xF6);
7136   emit_int8((unsigned char)(0xC0 | encode));
7137 }
7138 
7139 void Assembler::andq(Address dst, int32_t imm32) {
7140   InstructionMark im(this);
7141   prefixq(dst);
7142   emit_int8((unsigned char)0x81);
7143   emit_operand(rsp, dst, 4);
7144   emit_int32(imm32);
7145 }
7146 
7147 void Assembler::andq(Register dst, int32_t imm32) {
7148   (void) prefixq_and_encode(dst->encoding());
7149   emit_arith(0x81, 0xE0, dst, imm32);
7150 }
7151 
7152 void Assembler::andq(Register dst, Address src) {
7153   InstructionMark im(this);
7154   prefixq(src, dst);
7155   emit_int8(0x23);
7156   emit_operand(dst, src);
7157 }
7158 
7159 void Assembler::andq(Register dst, Register src) {
7160   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7161   emit_arith(0x23, 0xC0, dst, src);
7162 }
7163 
7164 void Assembler::andnq(Register dst, Register src1, Register src2) {
7165   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7166   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7167   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7168   emit_int8((unsigned char)0xF2);
7169   emit_int8((unsigned char)(0xC0 | encode));
7170 }
7171 
7172 void Assembler::andnq(Register dst, Register src1, Address src2) {
7173   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7174   InstructionMark im(this);
7175   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7176   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7177   emit_int8((unsigned char)0xF2);
7178   emit_operand(dst, src2);
7179 }
7180 
7181 void Assembler::bsfq(Register dst, Register src) {
7182   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7183   emit_int8(0x0F);
7184   emit_int8((unsigned char)0xBC);
7185   emit_int8((unsigned char)(0xC0 | encode));
7186 }
7187 
7188 void Assembler::bsrq(Register dst, Register src) {
7189   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7190   emit_int8(0x0F);
7191   emit_int8((unsigned char)0xBD);
7192   emit_int8((unsigned char)(0xC0 | encode));
7193 }
7194 
7195 void Assembler::bswapq(Register reg) {
7196   int encode = prefixq_and_encode(reg->encoding());
7197   emit_int8(0x0F);
7198   emit_int8((unsigned char)(0xC8 | encode));
7199 }
7200 
7201 void Assembler::blsiq(Register dst, Register src) {
7202   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7203   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7204   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7205   emit_int8((unsigned char)0xF3);
7206   emit_int8((unsigned char)(0xC0 | encode));
7207 }
7208 
7209 void Assembler::blsiq(Register dst, Address src) {
7210   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7211   InstructionMark im(this);
7212   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7213   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7214   emit_int8((unsigned char)0xF3);
7215   emit_operand(rbx, src);
7216 }
7217 
7218 void Assembler::blsmskq(Register dst, Register src) {
7219   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7220   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7221   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7222   emit_int8((unsigned char)0xF3);
7223   emit_int8((unsigned char)(0xC0 | encode));
7224 }
7225 
7226 void Assembler::blsmskq(Register dst, Address src) {
7227   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7228   InstructionMark im(this);
7229   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7230   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7231   emit_int8((unsigned char)0xF3);
7232   emit_operand(rdx, src);
7233 }
7234 
7235 void Assembler::blsrq(Register dst, Register src) {
7236   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7237   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7238   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7239   emit_int8((unsigned char)0xF3);
7240   emit_int8((unsigned char)(0xC0 | encode));
7241 }
7242 
7243 void Assembler::blsrq(Register dst, Address src) {
7244   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7245   InstructionMark im(this);
7246   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7247   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7248   emit_int8((unsigned char)0xF3);
7249   emit_operand(rcx, src);
7250 }
7251 
7252 void Assembler::cdqq() {
7253   prefix(REX_W);
7254   emit_int8((unsigned char)0x99);
7255 }
7256 
7257 void Assembler::clflush(Address adr) {
7258   prefix(adr);
7259   emit_int8(0x0F);
7260   emit_int8((unsigned char)0xAE);
7261   emit_operand(rdi, adr);
7262 }
7263 
7264 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7265   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7266   emit_int8(0x0F);
7267   emit_int8(0x40 | cc);
7268   emit_int8((unsigned char)(0xC0 | encode));
7269 }
7270 
7271 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7272   InstructionMark im(this);
7273   prefixq(src, dst);
7274   emit_int8(0x0F);
7275   emit_int8(0x40 | cc);
7276   emit_operand(dst, src);
7277 }
7278 
7279 void Assembler::cmpq(Address dst, int32_t imm32) {
7280   InstructionMark im(this);
7281   prefixq(dst);
7282   emit_int8((unsigned char)0x81);
7283   emit_operand(rdi, dst, 4);
7284   emit_int32(imm32);
7285 }
7286 
7287 void Assembler::cmpq(Register dst, int32_t imm32) {
7288   (void) prefixq_and_encode(dst->encoding());
7289   emit_arith(0x81, 0xF8, dst, imm32);
7290 }
7291 
7292 void Assembler::cmpq(Address dst, Register src) {
7293   InstructionMark im(this);
7294   prefixq(dst, src);
7295   emit_int8(0x3B);
7296   emit_operand(src, dst);
7297 }
7298 
7299 void Assembler::cmpq(Register dst, Register src) {
7300   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7301   emit_arith(0x3B, 0xC0, dst, src);
7302 }
7303 
7304 void Assembler::cmpq(Register dst, Address  src) {
7305   InstructionMark im(this);
7306   prefixq(src, dst);
7307   emit_int8(0x3B);
7308   emit_operand(dst, src);
7309 }
7310 
7311 void Assembler::cmpxchgq(Register reg, Address adr) {
7312   InstructionMark im(this);
7313   prefixq(adr, reg);
7314   emit_int8(0x0F);
7315   emit_int8((unsigned char)0xB1);
7316   emit_operand(reg, adr);
7317 }
7318 
7319 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7320   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7321   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7322   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7323   emit_int8(0x2A);
7324   emit_int8((unsigned char)(0xC0 | encode));
7325 }
7326 
7327 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7328   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7329   InstructionMark im(this);
7330   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7331   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7332   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7333   emit_int8(0x2A);
7334   emit_operand(dst, src);
7335 }
7336 
7337 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7338   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7339   InstructionMark im(this);
7340   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7341   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7342   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7343   emit_int8(0x2A);
7344   emit_operand(dst, src);
7345 }
7346 
7347 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7348   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7349   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7350   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7351   emit_int8(0x2C);
7352   emit_int8((unsigned char)(0xC0 | encode));
7353 }
7354 
7355 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7356   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7357   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7358   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7359   emit_int8(0x2C);
7360   emit_int8((unsigned char)(0xC0 | encode));
7361 }
7362 
7363 void Assembler::decl(Register dst) {
7364   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7365   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7366   int encode = prefix_and_encode(dst->encoding());
7367   emit_int8((unsigned char)0xFF);
7368   emit_int8((unsigned char)(0xC8 | encode));
7369 }
7370 
7371 void Assembler::decq(Register dst) {
7372   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7373   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7374   int encode = prefixq_and_encode(dst->encoding());
7375   emit_int8((unsigned char)0xFF);
7376   emit_int8(0xC8 | encode);
7377 }
7378 
7379 void Assembler::decq(Address dst) {
7380   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7381   InstructionMark im(this);
7382   prefixq(dst);
7383   emit_int8((unsigned char)0xFF);
7384   emit_operand(rcx, dst);
7385 }
7386 
7387 void Assembler::fxrstor(Address src) {
7388   prefixq(src);
7389   emit_int8(0x0F);
7390   emit_int8((unsigned char)0xAE);
7391   emit_operand(as_Register(1), src);
7392 }
7393 
7394 void Assembler::xrstor(Address src) {
7395   prefixq(src);
7396   emit_int8(0x0F);
7397   emit_int8((unsigned char)0xAE);
7398   emit_operand(as_Register(5), src);
7399 }
7400 
7401 void Assembler::fxsave(Address dst) {
7402   prefixq(dst);
7403   emit_int8(0x0F);
7404   emit_int8((unsigned char)0xAE);
7405   emit_operand(as_Register(0), dst);
7406 }
7407 
7408 void Assembler::xsave(Address dst) {
7409   prefixq(dst);
7410   emit_int8(0x0F);
7411   emit_int8((unsigned char)0xAE);
7412   emit_operand(as_Register(4), dst);
7413 }
7414 
7415 void Assembler::idivq(Register src) {
7416   int encode = prefixq_and_encode(src->encoding());
7417   emit_int8((unsigned char)0xF7);
7418   emit_int8((unsigned char)(0xF8 | encode));
7419 }
7420 
7421 void Assembler::imulq(Register dst, Register src) {
7422   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7423   emit_int8(0x0F);
7424   emit_int8((unsigned char)0xAF);
7425   emit_int8((unsigned char)(0xC0 | encode));
7426 }
7427 
7428 void Assembler::imulq(Register dst, Register src, int value) {
7429   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7430   if (is8bit(value)) {
7431     emit_int8(0x6B);
7432     emit_int8((unsigned char)(0xC0 | encode));
7433     emit_int8(value & 0xFF);
7434   } else {
7435     emit_int8(0x69);
7436     emit_int8((unsigned char)(0xC0 | encode));
7437     emit_int32(value);
7438   }
7439 }
7440 
7441 void Assembler::imulq(Register dst, Address src) {
7442   InstructionMark im(this);
7443   prefixq(src, dst);
7444   emit_int8(0x0F);
7445   emit_int8((unsigned char) 0xAF);
7446   emit_operand(dst, src);
7447 }
7448 
7449 void Assembler::incl(Register dst) {
7450   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7451   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7452   int encode = prefix_and_encode(dst->encoding());
7453   emit_int8((unsigned char)0xFF);
7454   emit_int8((unsigned char)(0xC0 | encode));
7455 }
7456 
7457 void Assembler::incq(Register dst) {
7458   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7459   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7460   int encode = prefixq_and_encode(dst->encoding());
7461   emit_int8((unsigned char)0xFF);
7462   emit_int8((unsigned char)(0xC0 | encode));
7463 }
7464 
7465 void Assembler::incq(Address dst) {
7466   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7467   InstructionMark im(this);
7468   prefixq(dst);
7469   emit_int8((unsigned char)0xFF);
7470   emit_operand(rax, dst);
7471 }
7472 
7473 void Assembler::lea(Register dst, Address src) {
7474   leaq(dst, src);
7475 }
7476 
7477 void Assembler::leaq(Register dst, Address src) {
7478   InstructionMark im(this);
7479   prefixq(src, dst);
7480   emit_int8((unsigned char)0x8D);
7481   emit_operand(dst, src);
7482 }
7483 
7484 void Assembler::mov64(Register dst, int64_t imm64) {
7485   InstructionMark im(this);
7486   int encode = prefixq_and_encode(dst->encoding());
7487   emit_int8((unsigned char)(0xB8 | encode));
7488   emit_int64(imm64);
7489 }
7490 
7491 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7492   InstructionMark im(this);
7493   int encode = prefixq_and_encode(dst->encoding());
7494   emit_int8(0xB8 | encode);
7495   emit_data64(imm64, rspec);
7496 }
7497 
7498 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7499   InstructionMark im(this);
7500   int encode = prefix_and_encode(dst->encoding());
7501   emit_int8((unsigned char)(0xB8 | encode));
7502   emit_data((int)imm32, rspec, narrow_oop_operand);
7503 }
7504 
7505 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7506   InstructionMark im(this);
7507   prefix(dst);
7508   emit_int8((unsigned char)0xC7);
7509   emit_operand(rax, dst, 4);
7510   emit_data((int)imm32, rspec, narrow_oop_operand);
7511 }
7512 
7513 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7514   InstructionMark im(this);
7515   int encode = prefix_and_encode(src1->encoding());
7516   emit_int8((unsigned char)0x81);
7517   emit_int8((unsigned char)(0xF8 | encode));
7518   emit_data((int)imm32, rspec, narrow_oop_operand);
7519 }
7520 
7521 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7522   InstructionMark im(this);
7523   prefix(src1);
7524   emit_int8((unsigned char)0x81);
7525   emit_operand(rax, src1, 4);
7526   emit_data((int)imm32, rspec, narrow_oop_operand);
7527 }
7528 
7529 void Assembler::lzcntq(Register dst, Register src) {
7530   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7531   emit_int8((unsigned char)0xF3);
7532   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7533   emit_int8(0x0F);
7534   emit_int8((unsigned char)0xBD);
7535   emit_int8((unsigned char)(0xC0 | encode));
7536 }
7537 
7538 void Assembler::movdq(XMMRegister dst, Register src) {
7539   // table D-1 says MMX/SSE2
7540   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7541   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7542   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7543   emit_int8(0x6E);
7544   emit_int8((unsigned char)(0xC0 | encode));
7545 }
7546 
7547 void Assembler::movdq(Register dst, XMMRegister src) {
7548   // table D-1 says MMX/SSE2
7549   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7550   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7551   // swap src/dst to get correct prefix
7552   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7553   emit_int8(0x7E);
7554   emit_int8((unsigned char)(0xC0 | encode));
7555 }
7556 
7557 void Assembler::movq(Register dst, Register src) {
7558   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7559   emit_int8((unsigned char)0x8B);
7560   emit_int8((unsigned char)(0xC0 | encode));
7561 }
7562 
7563 void Assembler::movq(Register dst, Address src) {
7564   InstructionMark im(this);
7565   prefixq(src, dst);
7566   emit_int8((unsigned char)0x8B);
7567   emit_operand(dst, src);
7568 }
7569 
7570 void Assembler::movq(Address dst, Register src) {
7571   InstructionMark im(this);
7572   prefixq(dst, src);
7573   emit_int8((unsigned char)0x89);
7574   emit_operand(src, dst);
7575 }
7576 
7577 void Assembler::movsbq(Register dst, Address src) {
7578   InstructionMark im(this);
7579   prefixq(src, dst);
7580   emit_int8(0x0F);
7581   emit_int8((unsigned char)0xBE);
7582   emit_operand(dst, src);
7583 }
7584 
7585 void Assembler::movsbq(Register dst, Register src) {
7586   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7587   emit_int8(0x0F);
7588   emit_int8((unsigned char)0xBE);
7589   emit_int8((unsigned char)(0xC0 | encode));
7590 }
7591 
7592 void Assembler::movslq(Register dst, int32_t imm32) {
7593   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7594   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7595   // as a result we shouldn't use until tested at runtime...
7596   ShouldNotReachHere();
7597   InstructionMark im(this);
7598   int encode = prefixq_and_encode(dst->encoding());
7599   emit_int8((unsigned char)(0xC7 | encode));
7600   emit_int32(imm32);
7601 }
7602 
7603 void Assembler::movslq(Address dst, int32_t imm32) {
7604   assert(is_simm32(imm32), "lost bits");
7605   InstructionMark im(this);
7606   prefixq(dst);
7607   emit_int8((unsigned char)0xC7);
7608   emit_operand(rax, dst, 4);
7609   emit_int32(imm32);
7610 }
7611 
7612 void Assembler::movslq(Register dst, Address src) {
7613   InstructionMark im(this);
7614   prefixq(src, dst);
7615   emit_int8(0x63);
7616   emit_operand(dst, src);
7617 }
7618 
7619 void Assembler::movslq(Register dst, Register src) {
7620   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7621   emit_int8(0x63);
7622   emit_int8((unsigned char)(0xC0 | encode));
7623 }
7624 
7625 void Assembler::movswq(Register dst, Address src) {
7626   InstructionMark im(this);
7627   prefixq(src, dst);
7628   emit_int8(0x0F);
7629   emit_int8((unsigned char)0xBF);
7630   emit_operand(dst, src);
7631 }
7632 
7633 void Assembler::movswq(Register dst, Register src) {
7634   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7635   emit_int8((unsigned char)0x0F);
7636   emit_int8((unsigned char)0xBF);
7637   emit_int8((unsigned char)(0xC0 | encode));
7638 }
7639 
7640 void Assembler::movzbq(Register dst, Address src) {
7641   InstructionMark im(this);
7642   prefixq(src, dst);
7643   emit_int8((unsigned char)0x0F);
7644   emit_int8((unsigned char)0xB6);
7645   emit_operand(dst, src);
7646 }
7647 
7648 void Assembler::movzbq(Register dst, Register src) {
7649   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7650   emit_int8(0x0F);
7651   emit_int8((unsigned char)0xB6);
7652   emit_int8(0xC0 | encode);
7653 }
7654 
7655 void Assembler::movzwq(Register dst, Address src) {
7656   InstructionMark im(this);
7657   prefixq(src, dst);
7658   emit_int8((unsigned char)0x0F);
7659   emit_int8((unsigned char)0xB7);
7660   emit_operand(dst, src);
7661 }
7662 
7663 void Assembler::movzwq(Register dst, Register src) {
7664   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7665   emit_int8((unsigned char)0x0F);
7666   emit_int8((unsigned char)0xB7);
7667   emit_int8((unsigned char)(0xC0 | encode));
7668 }
7669 
7670 void Assembler::mulq(Address src) {
7671   InstructionMark im(this);
7672   prefixq(src);
7673   emit_int8((unsigned char)0xF7);
7674   emit_operand(rsp, src);
7675 }
7676 
7677 void Assembler::mulq(Register src) {
7678   int encode = prefixq_and_encode(src->encoding());
7679   emit_int8((unsigned char)0xF7);
7680   emit_int8((unsigned char)(0xE0 | encode));
7681 }
7682 
7683 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
7684   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7685   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7686   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
7687   emit_int8((unsigned char)0xF6);
7688   emit_int8((unsigned char)(0xC0 | encode));
7689 }
7690 
7691 void Assembler::negq(Register dst) {
7692   int encode = prefixq_and_encode(dst->encoding());
7693   emit_int8((unsigned char)0xF7);
7694   emit_int8((unsigned char)(0xD8 | encode));
7695 }
7696 
7697 void Assembler::notq(Register dst) {
7698   int encode = prefixq_and_encode(dst->encoding());
7699   emit_int8((unsigned char)0xF7);
7700   emit_int8((unsigned char)(0xD0 | encode));
7701 }
7702 
7703 void Assembler::orq(Address dst, int32_t imm32) {
7704   InstructionMark im(this);
7705   prefixq(dst);
7706   emit_int8((unsigned char)0x81);
7707   emit_operand(rcx, dst, 4);
7708   emit_int32(imm32);
7709 }
7710 
7711 void Assembler::orq(Register dst, int32_t imm32) {
7712   (void) prefixq_and_encode(dst->encoding());
7713   emit_arith(0x81, 0xC8, dst, imm32);
7714 }
7715 
7716 void Assembler::orq(Register dst, Address src) {
7717   InstructionMark im(this);
7718   prefixq(src, dst);
7719   emit_int8(0x0B);
7720   emit_operand(dst, src);
7721 }
7722 
7723 void Assembler::orq(Register dst, Register src) {
7724   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7725   emit_arith(0x0B, 0xC0, dst, src);
7726 }
7727 
7728 void Assembler::popa() { // 64bit
7729   movq(r15, Address(rsp, 0));
7730   movq(r14, Address(rsp, wordSize));
7731   movq(r13, Address(rsp, 2 * wordSize));
7732   movq(r12, Address(rsp, 3 * wordSize));
7733   movq(r11, Address(rsp, 4 * wordSize));
7734   movq(r10, Address(rsp, 5 * wordSize));
7735   movq(r9,  Address(rsp, 6 * wordSize));
7736   movq(r8,  Address(rsp, 7 * wordSize));
7737   movq(rdi, Address(rsp, 8 * wordSize));
7738   movq(rsi, Address(rsp, 9 * wordSize));
7739   movq(rbp, Address(rsp, 10 * wordSize));
7740   // skip rsp
7741   movq(rbx, Address(rsp, 12 * wordSize));
7742   movq(rdx, Address(rsp, 13 * wordSize));
7743   movq(rcx, Address(rsp, 14 * wordSize));
7744   movq(rax, Address(rsp, 15 * wordSize));
7745 
7746   addq(rsp, 16 * wordSize);
7747 }
7748 
7749 void Assembler::popcntq(Register dst, Address src) {
7750   assert(VM_Version::supports_popcnt(), "must support");
7751   InstructionMark im(this);
7752   emit_int8((unsigned char)0xF3);
7753   prefixq(src, dst);
7754   emit_int8((unsigned char)0x0F);
7755   emit_int8((unsigned char)0xB8);
7756   emit_operand(dst, src);
7757 }
7758 
7759 void Assembler::popcntq(Register dst, Register src) {
7760   assert(VM_Version::supports_popcnt(), "must support");
7761   emit_int8((unsigned char)0xF3);
7762   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7763   emit_int8((unsigned char)0x0F);
7764   emit_int8((unsigned char)0xB8);
7765   emit_int8((unsigned char)(0xC0 | encode));
7766 }
7767 
7768 void Assembler::popq(Address dst) {
7769   InstructionMark im(this);
7770   prefixq(dst);
7771   emit_int8((unsigned char)0x8F);
7772   emit_operand(rax, dst);
7773 }
7774 
7775 void Assembler::pusha() { // 64bit
7776   // we have to store original rsp.  ABI says that 128 bytes
7777   // below rsp are local scratch.
7778   movq(Address(rsp, -5 * wordSize), rsp);
7779 
7780   subq(rsp, 16 * wordSize);
7781 
7782   movq(Address(rsp, 15 * wordSize), rax);
7783   movq(Address(rsp, 14 * wordSize), rcx);
7784   movq(Address(rsp, 13 * wordSize), rdx);
7785   movq(Address(rsp, 12 * wordSize), rbx);
7786   // skip rsp
7787   movq(Address(rsp, 10 * wordSize), rbp);
7788   movq(Address(rsp, 9 * wordSize), rsi);
7789   movq(Address(rsp, 8 * wordSize), rdi);
7790   movq(Address(rsp, 7 * wordSize), r8);
7791   movq(Address(rsp, 6 * wordSize), r9);
7792   movq(Address(rsp, 5 * wordSize), r10);
7793   movq(Address(rsp, 4 * wordSize), r11);
7794   movq(Address(rsp, 3 * wordSize), r12);
7795   movq(Address(rsp, 2 * wordSize), r13);
7796   movq(Address(rsp, wordSize), r14);
7797   movq(Address(rsp, 0), r15);
7798 }
7799 
7800 void Assembler::pushq(Address src) {
7801   InstructionMark im(this);
7802   prefixq(src);
7803   emit_int8((unsigned char)0xFF);
7804   emit_operand(rsi, src);
7805 }
7806 
7807 void Assembler::rclq(Register dst, int imm8) {
7808   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7809   int encode = prefixq_and_encode(dst->encoding());
7810   if (imm8 == 1) {
7811     emit_int8((unsigned char)0xD1);
7812     emit_int8((unsigned char)(0xD0 | encode));
7813   } else {
7814     emit_int8((unsigned char)0xC1);
7815     emit_int8((unsigned char)(0xD0 | encode));
7816     emit_int8(imm8);
7817   }
7818 }
7819 
7820 void Assembler::rcrq(Register dst, int imm8) {
7821   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7822   int encode = prefixq_and_encode(dst->encoding());
7823   if (imm8 == 1) {
7824     emit_int8((unsigned char)0xD1);
7825     emit_int8((unsigned char)(0xD8 | encode));
7826   } else {
7827     emit_int8((unsigned char)0xC1);
7828     emit_int8((unsigned char)(0xD8 | encode));
7829     emit_int8(imm8);
7830   }
7831 }
7832 
7833 void Assembler::rorq(Register dst, int imm8) {
7834   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7835   int encode = prefixq_and_encode(dst->encoding());
7836   if (imm8 == 1) {
7837     emit_int8((unsigned char)0xD1);
7838     emit_int8((unsigned char)(0xC8 | encode));
7839   } else {
7840     emit_int8((unsigned char)0xC1);
7841     emit_int8((unsigned char)(0xc8 | encode));
7842     emit_int8(imm8);
7843   }
7844 }
7845 
7846 void Assembler::rorxq(Register dst, Register src, int imm8) {
7847   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7848   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7849   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
7850   emit_int8((unsigned char)0xF0);
7851   emit_int8((unsigned char)(0xC0 | encode));
7852   emit_int8(imm8);
7853 }
7854 
7855 void Assembler::sarq(Register dst, int imm8) {
7856   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7857   int encode = prefixq_and_encode(dst->encoding());
7858   if (imm8 == 1) {
7859     emit_int8((unsigned char)0xD1);
7860     emit_int8((unsigned char)(0xF8 | encode));
7861   } else {
7862     emit_int8((unsigned char)0xC1);
7863     emit_int8((unsigned char)(0xF8 | encode));
7864     emit_int8(imm8);
7865   }
7866 }
7867 
7868 void Assembler::sarq(Register dst) {
7869   int encode = prefixq_and_encode(dst->encoding());
7870   emit_int8((unsigned char)0xD3);
7871   emit_int8((unsigned char)(0xF8 | encode));
7872 }
7873 
7874 void Assembler::sbbq(Address dst, int32_t imm32) {
7875   InstructionMark im(this);
7876   prefixq(dst);
7877   emit_arith_operand(0x81, rbx, dst, imm32);
7878 }
7879 
7880 void Assembler::sbbq(Register dst, int32_t imm32) {
7881   (void) prefixq_and_encode(dst->encoding());
7882   emit_arith(0x81, 0xD8, dst, imm32);
7883 }
7884 
7885 void Assembler::sbbq(Register dst, Address src) {
7886   InstructionMark im(this);
7887   prefixq(src, dst);
7888   emit_int8(0x1B);
7889   emit_operand(dst, src);
7890 }
7891 
7892 void Assembler::sbbq(Register dst, Register src) {
7893   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7894   emit_arith(0x1B, 0xC0, dst, src);
7895 }
7896 
7897 void Assembler::shlq(Register dst, int imm8) {
7898   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7899   int encode = prefixq_and_encode(dst->encoding());
7900   if (imm8 == 1) {
7901     emit_int8((unsigned char)0xD1);
7902     emit_int8((unsigned char)(0xE0 | encode));
7903   } else {
7904     emit_int8((unsigned char)0xC1);
7905     emit_int8((unsigned char)(0xE0 | encode));
7906     emit_int8(imm8);
7907   }
7908 }
7909 
7910 void Assembler::shlq(Register dst) {
7911   int encode = prefixq_and_encode(dst->encoding());
7912   emit_int8((unsigned char)0xD3);
7913   emit_int8((unsigned char)(0xE0 | encode));
7914 }
7915 
7916 void Assembler::shrq(Register dst, int imm8) {
7917   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7918   int encode = prefixq_and_encode(dst->encoding());
7919   emit_int8((unsigned char)0xC1);
7920   emit_int8((unsigned char)(0xE8 | encode));
7921   emit_int8(imm8);
7922 }
7923 
7924 void Assembler::shrq(Register dst) {
7925   int encode = prefixq_and_encode(dst->encoding());
7926   emit_int8((unsigned char)0xD3);
7927   emit_int8(0xE8 | encode);
7928 }
7929 
7930 void Assembler::subq(Address dst, int32_t imm32) {
7931   InstructionMark im(this);
7932   prefixq(dst);
7933   emit_arith_operand(0x81, rbp, dst, imm32);
7934 }
7935 
7936 void Assembler::subq(Address dst, Register src) {
7937   InstructionMark im(this);
7938   prefixq(dst, src);
7939   emit_int8(0x29);
7940   emit_operand(src, dst);
7941 }
7942 
7943 void Assembler::subq(Register dst, int32_t imm32) {
7944   (void) prefixq_and_encode(dst->encoding());
7945   emit_arith(0x81, 0xE8, dst, imm32);
7946 }
7947 
7948 // Force generation of a 4 byte immediate value even if it fits into 8bit
7949 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7950   (void) prefixq_and_encode(dst->encoding());
7951   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7952 }
7953 
7954 void Assembler::subq(Register dst, Address src) {
7955   InstructionMark im(this);
7956   prefixq(src, dst);
7957   emit_int8(0x2B);
7958   emit_operand(dst, src);
7959 }
7960 
7961 void Assembler::subq(Register dst, Register src) {
7962   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7963   emit_arith(0x2B, 0xC0, dst, src);
7964 }
7965 
7966 void Assembler::testq(Register dst, int32_t imm32) {
7967   // not using emit_arith because test
7968   // doesn't support sign-extension of
7969   // 8bit operands
7970   int encode = dst->encoding();
7971   if (encode == 0) {
7972     prefix(REX_W);
7973     emit_int8((unsigned char)0xA9);
7974   } else {
7975     encode = prefixq_and_encode(encode);
7976     emit_int8((unsigned char)0xF7);
7977     emit_int8((unsigned char)(0xC0 | encode));
7978   }
7979   emit_int32(imm32);
7980 }
7981 
7982 void Assembler::testq(Register dst, Register src) {
7983   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7984   emit_arith(0x85, 0xC0, dst, src);
7985 }
7986 
7987 void Assembler::xaddq(Address dst, Register src) {
7988   InstructionMark im(this);
7989   prefixq(dst, src);
7990   emit_int8(0x0F);
7991   emit_int8((unsigned char)0xC1);
7992   emit_operand(src, dst);
7993 }
7994 
7995 void Assembler::xchgq(Register dst, Address src) {
7996   InstructionMark im(this);
7997   prefixq(src, dst);
7998   emit_int8((unsigned char)0x87);
7999   emit_operand(dst, src);
8000 }
8001 
8002 void Assembler::xchgq(Register dst, Register src) {
8003   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8004   emit_int8((unsigned char)0x87);
8005   emit_int8((unsigned char)(0xc0 | encode));
8006 }
8007 
8008 void Assembler::xorq(Register dst, Register src) {
8009   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8010   emit_arith(0x33, 0xC0, dst, src);
8011 }
8012 
8013 void Assembler::xorq(Register dst, Address src) {
8014   InstructionMark im(this);
8015   prefixq(src, dst);
8016   emit_int8(0x33);
8017   emit_operand(dst, src);
8018 }
8019 
8020 #endif // !LP64