1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/codeCacheExtensions.hpp"
  37 #include "code/compiledIC.hpp"
  38 #include "code/pcDesc.hpp"
  39 #include "code/scopeDesc.hpp"
  40 #include "code/vtableStubs.hpp"
  41 #include "compiler/disassembler.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_primitive_arraycopy_cnt = 0;
 108 int Runtime1::_oop_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_stub_cnt = 0;
 130 static int _short_arraycopy_stub_cnt = 0;
 131 static int _int_arraycopy_stub_cnt = 0;
 132 static int _long_arraycopy_stub_cnt = 0;
 133 static int _oop_arraycopy_stub_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   OopMapSet* oop_maps;
 188   int frame_size;
 189   bool must_gc_arguments;
 190 
 191   if (!CodeCacheExtensions::skip_compiler_support()) {
 192     // bypass useless code generation
 193     Compilation::setup_code_buffer(&code, 0);
 194 
 195     // create assembler for code generation
 196     StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 197     // generate code for runtime stub
 198     oop_maps = generate_code_for(id, sasm);
 199     assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 200            "if stub has an oop map it must have a valid frame size");
 201 
 202 #ifdef ASSERT
 203     // Make sure that stubs that need oopmaps have them
 204     switch (id) {
 205       // These stubs don't need to have an oopmap
 206     case dtrace_object_alloc_id:
 207     case g1_pre_barrier_slow_id:
 208     case g1_post_barrier_slow_id:
 209     case slow_subtype_check_id:
 210     case fpu2long_stub_id:
 211     case unwind_exception_id:
 212     case counter_overflow_id:
 213 #if defined(SPARC) || defined(PPC32)
 214     case handle_exception_nofpu_id:  // Unused on sparc
 215 #endif
 216       break;
 217 
 218       // All other stubs should have oopmaps
 219     default:
 220       assert(oop_maps != NULL, "must have an oopmap");
 221     }
 222 #endif
 223 
 224     // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 225     sasm->align(BytesPerWord);
 226     // make sure all code is in code buffer
 227     sasm->flush();
 228 
 229     frame_size = sasm->frame_size();
 230     must_gc_arguments = sasm->must_gc_arguments();
 231   } else {
 232     /* ignored values */
 233     oop_maps = NULL;
 234     frame_size = 0;
 235     must_gc_arguments = false;
 236   }
 237   // create blob - distinguish a few special cases
 238   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 239                                                  &code,
 240                                                  CodeOffsets::frame_never_safe,
 241                                                  frame_size,
 242                                                  oop_maps,
 243                                                  must_gc_arguments);
 244   // install blob
 245   assert(blob != NULL, "blob must exist");
 246   _blobs[id] = blob;
 247 }
 248 
 249 
 250 void Runtime1::initialize(BufferBlob* blob) {
 251   // platform-dependent initialization
 252   initialize_pd();
 253   // generate stubs
 254   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 255   // printing
 256 #ifndef PRODUCT
 257   if (PrintSimpleStubs) {
 258     ResourceMark rm;
 259     for (int id = 0; id < number_of_ids; id++) {
 260       _blobs[id]->print();
 261       if (_blobs[id]->oop_maps() != NULL) {
 262         _blobs[id]->oop_maps()->print();
 263       }
 264     }
 265   }
 266 #endif
 267 }
 268 
 269 
 270 CodeBlob* Runtime1::blob_for(StubID id) {
 271   assert(0 <= id && id < number_of_ids, "illegal stub id");
 272   return _blobs[id];
 273 }
 274 
 275 
 276 const char* Runtime1::name_for(StubID id) {
 277   assert(0 <= id && id < number_of_ids, "illegal stub id");
 278   return _blob_names[id];
 279 }
 280 
 281 const char* Runtime1::name_for_address(address entry) {
 282   for (int id = 0; id < number_of_ids; id++) {
 283     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 284   }
 285 
 286 #define FUNCTION_CASE(a, f) \
 287   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 288 
 289   FUNCTION_CASE(entry, os::javaTimeMillis);
 290   FUNCTION_CASE(entry, os::javaTimeNanos);
 291   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 292   FUNCTION_CASE(entry, SharedRuntime::d2f);
 293   FUNCTION_CASE(entry, SharedRuntime::d2i);
 294   FUNCTION_CASE(entry, SharedRuntime::d2l);
 295   FUNCTION_CASE(entry, SharedRuntime::dcos);
 296   FUNCTION_CASE(entry, SharedRuntime::dexp);
 297   FUNCTION_CASE(entry, SharedRuntime::dlog);
 298   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 299   FUNCTION_CASE(entry, SharedRuntime::dpow);
 300   FUNCTION_CASE(entry, SharedRuntime::drem);
 301   FUNCTION_CASE(entry, SharedRuntime::dsin);
 302   FUNCTION_CASE(entry, SharedRuntime::dtan);
 303   FUNCTION_CASE(entry, SharedRuntime::f2i);
 304   FUNCTION_CASE(entry, SharedRuntime::f2l);
 305   FUNCTION_CASE(entry, SharedRuntime::frem);
 306   FUNCTION_CASE(entry, SharedRuntime::l2d);
 307   FUNCTION_CASE(entry, SharedRuntime::l2f);
 308   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 309   FUNCTION_CASE(entry, SharedRuntime::lmul);
 310   FUNCTION_CASE(entry, SharedRuntime::lrem);
 311   FUNCTION_CASE(entry, SharedRuntime::lrem);
 312   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 313   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 314   FUNCTION_CASE(entry, is_instance_of);
 315   FUNCTION_CASE(entry, trace_block_entry);
 316 #ifdef TRACE_HAVE_INTRINSICS
 317   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 318 #endif
 319   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 320   FUNCTION_CASE(entry, StubRoutines::dexp());
 321   FUNCTION_CASE(entry, StubRoutines::dlog());
 322 
 323 #undef FUNCTION_CASE
 324 
 325   // Soft float adds more runtime names.
 326   return pd_name_for_address(entry);
 327 }
 328 
 329 
 330 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 331   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 332 
 333   assert(klass->is_klass(), "not a class");
 334   instanceKlassHandle h(thread, klass);
 335   h->check_valid_for_instantiation(true, CHECK);
 336   // make sure klass is initialized
 337   h->initialize(CHECK);
 338   // allocate instance and return via TLS
 339   oop obj = h->allocate_instance(CHECK);
 340   thread->set_vm_result(obj);
 341 JRT_END
 342 
 343 
 344 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 345   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 346   // Note: no handle for klass needed since they are not used
 347   //       anymore after new_typeArray() and no GC can happen before.
 348   //       (This may have to change if this code changes!)
 349   assert(klass->is_klass(), "not a class");
 350   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 351   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 352   thread->set_vm_result(obj);
 353   // This is pretty rare but this runtime patch is stressful to deoptimization
 354   // if we deoptimize here so force a deopt to stress the path.
 355   if (DeoptimizeALot) {
 356     deopt_caller();
 357   }
 358 
 359 JRT_END
 360 
 361 
 362 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 363   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 364 
 365   // Note: no handle for klass needed since they are not used
 366   //       anymore after new_objArray() and no GC can happen before.
 367   //       (This may have to change if this code changes!)
 368   assert(array_klass->is_klass(), "not a class");
 369   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 370   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 371   thread->set_vm_result(obj);
 372   // This is pretty rare but this runtime patch is stressful to deoptimization
 373   // if we deoptimize here so force a deopt to stress the path.
 374   if (DeoptimizeALot) {
 375     deopt_caller();
 376   }
 377 JRT_END
 378 
 379 
 380 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 381   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 382 
 383   assert(klass->is_klass(), "not a class");
 384   assert(rank >= 1, "rank must be nonzero");
 385   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 386   thread->set_vm_result(obj);
 387 JRT_END
 388 
 389 
 390 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 391   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 392 JRT_END
 393 
 394 
 395 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 396   ResourceMark rm(thread);
 397   const char* klass_name = obj->klass()->external_name();
 398   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 399 JRT_END
 400 
 401 
 402 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 403 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 404 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 405 // a constant.
 406 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 407   nmethod* osr_nm = NULL;
 408   methodHandle method(THREAD, m);
 409 
 410   RegisterMap map(THREAD, false);
 411   frame fr =  THREAD->last_frame().sender(&map);
 412   nmethod* nm = (nmethod*) fr.cb();
 413   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 414   methodHandle enclosing_method(THREAD, nm->method());
 415 
 416   CompLevel level = (CompLevel)nm->comp_level();
 417   int bci = InvocationEntryBci;
 418   if (branch_bci != InvocationEntryBci) {
 419     // Compute destination bci
 420     address pc = method()->code_base() + branch_bci;
 421     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 422     int offset = 0;
 423     switch (branch) {
 424       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 425       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 426       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 427       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 428       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 429       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 430       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 431         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 432         break;
 433       case Bytecodes::_goto_w:
 434         offset = Bytes::get_Java_u4(pc + 1);
 435         break;
 436       default: ;
 437     }
 438     bci = branch_bci + offset;
 439   }
 440   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 441   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 442   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 443   return osr_nm;
 444 }
 445 
 446 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 447   nmethod* osr_nm;
 448   JRT_BLOCK
 449     osr_nm = counter_overflow_helper(thread, bci, method);
 450     if (osr_nm != NULL) {
 451       RegisterMap map(thread, false);
 452       frame fr =  thread->last_frame().sender(&map);
 453       Deoptimization::deoptimize_frame(thread, fr.id());
 454     }
 455   JRT_BLOCK_END
 456   return NULL;
 457 JRT_END
 458 
 459 extern void vm_exit(int code);
 460 
 461 // Enter this method from compiled code handler below. This is where we transition
 462 // to VM mode. This is done as a helper routine so that the method called directly
 463 // from compiled code does not have to transition to VM. This allows the entry
 464 // method to see if the nmethod that we have just looked up a handler for has
 465 // been deoptimized while we were in the vm. This simplifies the assembly code
 466 // cpu directories.
 467 //
 468 // We are entering here from exception stub (via the entry method below)
 469 // If there is a compiled exception handler in this method, we will continue there;
 470 // otherwise we will unwind the stack and continue at the caller of top frame method
 471 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 472 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 473 // check to see if the handler we are going to return is now in a nmethod that has
 474 // been deoptimized. If that is the case we return the deopt blob
 475 // unpack_with_exception entry instead. This makes life for the exception blob easier
 476 // because making that same check and diverting is painful from assembly language.
 477 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 478   // Reset method handle flag.
 479   thread->set_is_method_handle_return(false);
 480 
 481   Handle exception(thread, ex);
 482   nm = CodeCache::find_nmethod(pc);
 483   assert(nm != NULL, "this is not an nmethod");
 484   // Adjust the pc as needed/
 485   if (nm->is_deopt_pc(pc)) {
 486     RegisterMap map(thread, false);
 487     frame exception_frame = thread->last_frame().sender(&map);
 488     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 489     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 490     pc = exception_frame.pc();
 491   }
 492 #ifdef ASSERT
 493   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 494   assert(exception->is_oop(), "just checking");
 495   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 496   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 497     if (ExitVMOnVerifyError) vm_exit(-1);
 498     ShouldNotReachHere();
 499   }
 500 #endif
 501 
 502   // Check the stack guard pages and reenable them if necessary and there is
 503   // enough space on the stack to do so.  Use fast exceptions only if the guard
 504   // pages are enabled.
 505   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 506   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 507 
 508   if (JvmtiExport::can_post_on_exceptions()) {
 509     // To ensure correct notification of exception catches and throws
 510     // we have to deoptimize here.  If we attempted to notify the
 511     // catches and throws during this exception lookup it's possible
 512     // we could deoptimize on the way out of the VM and end back in
 513     // the interpreter at the throw site.  This would result in double
 514     // notifications since the interpreter would also notify about
 515     // these same catches and throws as it unwound the frame.
 516 
 517     RegisterMap reg_map(thread);
 518     frame stub_frame = thread->last_frame();
 519     frame caller_frame = stub_frame.sender(&reg_map);
 520 
 521     // We don't really want to deoptimize the nmethod itself since we
 522     // can actually continue in the exception handler ourselves but I
 523     // don't see an easy way to have the desired effect.
 524     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 525     assert(caller_is_deopted(), "Must be deoptimized");
 526 
 527     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 528   }
 529 
 530   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 531   if (guard_pages_enabled) {
 532     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 533     if (fast_continuation != NULL) {
 534       // Set flag if return address is a method handle call site.
 535       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 536       return fast_continuation;
 537     }
 538   }
 539 
 540   // If the stack guard pages are enabled, check whether there is a handler in
 541   // the current method.  Otherwise (guard pages disabled), force an unwind and
 542   // skip the exception cache update (i.e., just leave continuation==NULL).
 543   address continuation = NULL;
 544   if (guard_pages_enabled) {
 545 
 546     // New exception handling mechanism can support inlined methods
 547     // with exception handlers since the mappings are from PC to PC
 548 
 549     // debugging support
 550     // tracing
 551     if (TraceExceptions) {
 552       ttyLocker ttyl;
 553       ResourceMark rm;
 554       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
 555                     exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
 556     }
 557     // for AbortVMOnException flag
 558     Exceptions::debug_check_abort(exception);
 559 
 560     // Clear out the exception oop and pc since looking up an
 561     // exception handler can cause class loading, which might throw an
 562     // exception and those fields are expected to be clear during
 563     // normal bytecode execution.
 564     thread->clear_exception_oop_and_pc();
 565 
 566     Handle original_exception(thread, exception());
 567 
 568     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 569     // If an exception was thrown during exception dispatch, the exception oop may have changed
 570     thread->set_exception_oop(exception());
 571     thread->set_exception_pc(pc);
 572 
 573     // the exception cache is used only by non-implicit exceptions
 574     // Update the exception cache only when there didn't happen
 575     // another exception during the computation of the compiled
 576     // exception handler.
 577     if (continuation != NULL && original_exception() == exception()) {
 578       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 579     }
 580   }
 581 
 582   thread->set_vm_result(exception());
 583   // Set flag if return address is a method handle call site.
 584   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 585 
 586   if (TraceExceptions) {
 587     ttyLocker ttyl;
 588     ResourceMark rm;
 589     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 590                   p2i(thread), p2i(continuation), p2i(pc));
 591   }
 592 
 593   return continuation;
 594 JRT_END
 595 
 596 // Enter this method from compiled code only if there is a Java exception handler
 597 // in the method handling the exception.
 598 // We are entering here from exception stub. We don't do a normal VM transition here.
 599 // We do it in a helper. This is so we can check to see if the nmethod we have just
 600 // searched for an exception handler has been deoptimized in the meantime.
 601 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 602   oop exception = thread->exception_oop();
 603   address pc = thread->exception_pc();
 604   // Still in Java mode
 605   DEBUG_ONLY(ResetNoHandleMark rnhm);
 606   nmethod* nm = NULL;
 607   address continuation = NULL;
 608   {
 609     // Enter VM mode by calling the helper
 610     ResetNoHandleMark rnhm;
 611     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 612   }
 613   // Back in JAVA, use no oops DON'T safepoint
 614 
 615   // Now check to see if the nmethod we were called from is now deoptimized.
 616   // If so we must return to the deopt blob and deoptimize the nmethod
 617   if (nm != NULL && caller_is_deopted()) {
 618     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 619   }
 620 
 621   assert(continuation != NULL, "no handler found");
 622   return continuation;
 623 }
 624 
 625 
 626 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 627   NOT_PRODUCT(_throw_range_check_exception_count++;)
 628   char message[jintAsStringSize];
 629   sprintf(message, "%d", index);
 630   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 631 JRT_END
 632 
 633 
 634 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 635   NOT_PRODUCT(_throw_index_exception_count++;)
 636   char message[16];
 637   sprintf(message, "%d", index);
 638   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 639 JRT_END
 640 
 641 
 642 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 643   NOT_PRODUCT(_throw_div0_exception_count++;)
 644   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 645 JRT_END
 646 
 647 
 648 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 649   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 650   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 651 JRT_END
 652 
 653 
 654 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 655   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 656   ResourceMark rm(thread);
 657   char* message = SharedRuntime::generate_class_cast_message(
 658     thread, object->klass()->external_name());
 659   SharedRuntime::throw_and_post_jvmti_exception(
 660     thread, vmSymbols::java_lang_ClassCastException(), message);
 661 JRT_END
 662 
 663 
 664 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 665   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 666   ResourceMark rm(thread);
 667   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 668 JRT_END
 669 
 670 
 671 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 672   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 673   if (PrintBiasedLockingStatistics) {
 674     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 675   }
 676   Handle h_obj(thread, obj);
 677   assert(h_obj()->is_oop(), "must be NULL or an object");
 678   if (UseBiasedLocking) {
 679     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 680     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 681   } else {
 682     if (UseFastLocking) {
 683       // When using fast locking, the compiled code has already tried the fast case
 684       assert(obj == lock->obj(), "must match");
 685       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 686     } else {
 687       lock->set_obj(obj);
 688       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 689     }
 690   }
 691 JRT_END
 692 
 693 
 694 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 695   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 696   assert(thread == JavaThread::current(), "threads must correspond");
 697   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 698   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 699   EXCEPTION_MARK;
 700 
 701   oop obj = lock->obj();
 702   assert(obj->is_oop(), "must be NULL or an object");
 703   if (UseFastLocking) {
 704     // When using fast locking, the compiled code has already tried the fast case
 705     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 706   } else {
 707     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 708   }
 709 JRT_END
 710 
 711 // Cf. OptoRuntime::deoptimize_caller_frame
 712 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 713   // Called from within the owner thread, so no need for safepoint
 714   RegisterMap reg_map(thread, false);
 715   frame stub_frame = thread->last_frame();
 716   assert(stub_frame.is_runtime_frame(), "Sanity check");
 717   frame caller_frame = stub_frame.sender(&reg_map);
 718   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 719   assert(nm != NULL, "Sanity check");
 720   methodHandle method(thread, nm->method());
 721   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 722   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 723   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 724 
 725   if (action == Deoptimization::Action_make_not_entrant) {
 726     if (nm->make_not_entrant()) {
 727       if (reason == Deoptimization::Reason_tenured) {
 728         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 729         if (trap_mdo != NULL) {
 730           trap_mdo->inc_tenure_traps();
 731         }
 732       }
 733     }
 734   }
 735 
 736   // Deoptimize the caller frame.
 737   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 738   // Return to the now deoptimized frame.
 739 JRT_END
 740 
 741 
 742 #ifndef DEOPTIMIZE_WHEN_PATCHING
 743 
 744 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 745   Bytecode_field field_access(caller, bci);
 746   // This can be static or non-static field access
 747   Bytecodes::Code code       = field_access.code();
 748 
 749   // We must load class, initialize class and resolvethe field
 750   fieldDescriptor result; // initialize class if needed
 751   constantPoolHandle constants(THREAD, caller->constants());
 752   LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
 753   return result.field_holder();
 754 }
 755 
 756 
 757 //
 758 // This routine patches sites where a class wasn't loaded or
 759 // initialized at the time the code was generated.  It handles
 760 // references to classes, fields and forcing of initialization.  Most
 761 // of the cases are straightforward and involving simply forcing
 762 // resolution of a class, rewriting the instruction stream with the
 763 // needed constant and replacing the call in this function with the
 764 // patched code.  The case for static field is more complicated since
 765 // the thread which is in the process of initializing a class can
 766 // access it's static fields but other threads can't so the code
 767 // either has to deoptimize when this case is detected or execute a
 768 // check that the current thread is the initializing thread.  The
 769 // current
 770 //
 771 // Patches basically look like this:
 772 //
 773 //
 774 // patch_site: jmp patch stub     ;; will be patched
 775 // continue:   ...
 776 //             ...
 777 //             ...
 778 //             ...
 779 //
 780 // They have a stub which looks like this:
 781 //
 782 //             ;; patch body
 783 //             movl <const>, reg           (for class constants)
 784 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 785 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 786 //             <being_init offset> <bytes to copy> <bytes to skip>
 787 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 788 //             jmp patch_site
 789 //
 790 //
 791 // A normal patch is done by rewriting the patch body, usually a move,
 792 // and then copying it into place over top of the jmp instruction
 793 // being careful to flush caches and doing it in an MP-safe way.  The
 794 // constants following the patch body are used to find various pieces
 795 // of the patch relative to the call site for Runtime1::patch_code.
 796 // The case for getstatic and putstatic is more complicated because
 797 // getstatic and putstatic have special semantics when executing while
 798 // the class is being initialized.  getstatic/putstatic on a class
 799 // which is being_initialized may be executed by the initializing
 800 // thread but other threads have to block when they execute it.  This
 801 // is accomplished in compiled code by executing a test of the current
 802 // thread against the initializing thread of the class.  It's emitted
 803 // as boilerplate in their stub which allows the patched code to be
 804 // executed before it's copied back into the main body of the nmethod.
 805 //
 806 // being_init: get_thread(<tmp reg>
 807 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 808 //             jne patch_stub
 809 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 810 //             movl reg, [reg1 + <const>]  (for field offsets)
 811 //             jmp continue
 812 //             <being_init offset> <bytes to copy> <bytes to skip>
 813 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 814 //             jmp patch_site
 815 //
 816 // If the class is being initialized the patch body is rewritten and
 817 // the patch site is rewritten to jump to being_init, instead of
 818 // patch_stub.  Whenever this code is executed it checks the current
 819 // thread against the intializing thread so other threads will enter
 820 // the runtime and end up blocked waiting the class to finish
 821 // initializing inside the calls to resolve_field below.  The
 822 // initializing class will continue on it's way.  Once the class is
 823 // fully_initialized, the intializing_thread of the class becomes
 824 // NULL, so the next thread to execute this code will fail the test,
 825 // call into patch_code and complete the patching process by copying
 826 // the patch body back into the main part of the nmethod and resume
 827 // executing.
 828 //
 829 //
 830 
 831 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 832   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 833 
 834   ResourceMark rm(thread);
 835   RegisterMap reg_map(thread, false);
 836   frame runtime_frame = thread->last_frame();
 837   frame caller_frame = runtime_frame.sender(&reg_map);
 838 
 839   // last java frame on stack
 840   vframeStream vfst(thread, true);
 841   assert(!vfst.at_end(), "Java frame must exist");
 842 
 843   methodHandle caller_method(THREAD, vfst.method());
 844   // Note that caller_method->code() may not be same as caller_code because of OSR's
 845   // Note also that in the presence of inlining it is not guaranteed
 846   // that caller_method() == caller_code->method()
 847 
 848   int bci = vfst.bci();
 849   Bytecodes::Code code = caller_method()->java_code_at(bci);
 850 
 851   // this is used by assertions in the access_field_patching_id
 852   BasicType patch_field_type = T_ILLEGAL;
 853   bool deoptimize_for_volatile = false;
 854   bool deoptimize_for_atomic = false;
 855   int patch_field_offset = -1;
 856   KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
 857   KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
 858   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 859   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 860   bool load_klass_or_mirror_patch_id =
 861     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 862 
 863   if (stub_id == Runtime1::access_field_patching_id) {
 864 
 865     Bytecode_field field_access(caller_method, bci);
 866     fieldDescriptor result; // initialize class if needed
 867     Bytecodes::Code code = field_access.code();
 868     constantPoolHandle constants(THREAD, caller_method->constants());
 869     LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
 870     patch_field_offset = result.offset();
 871 
 872     // If we're patching a field which is volatile then at compile it
 873     // must not have been know to be volatile, so the generated code
 874     // isn't correct for a volatile reference.  The nmethod has to be
 875     // deoptimized so that the code can be regenerated correctly.
 876     // This check is only needed for access_field_patching since this
 877     // is the path for patching field offsets.  load_klass is only
 878     // used for patching references to oops which don't need special
 879     // handling in the volatile case.
 880 
 881     deoptimize_for_volatile = result.access_flags().is_volatile();
 882 
 883     // If we are patching a field which should be atomic, then
 884     // the generated code is not correct either, force deoptimizing.
 885     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 886     // break access atomicity only for them.
 887 
 888     // Strictly speaking, the deoptimizaation on 64-bit platforms
 889     // is unnecessary, and T_LONG stores on 32-bit platforms need
 890     // to be handled by special patching code when AlwaysAtomicAccesses
 891     // becomes product feature. At this point, we are still going
 892     // for the deoptimization for consistency against volatile
 893     // accesses.
 894 
 895     patch_field_type = result.field_type();
 896     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 897 
 898   } else if (load_klass_or_mirror_patch_id) {
 899     Klass* k = NULL;
 900     switch (code) {
 901       case Bytecodes::_putstatic:
 902       case Bytecodes::_getstatic:
 903         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 904           init_klass = KlassHandle(THREAD, klass);
 905           mirror = Handle(THREAD, klass->java_mirror());
 906         }
 907         break;
 908       case Bytecodes::_new:
 909         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 910           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 911         }
 912         break;
 913       case Bytecodes::_multianewarray:
 914         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 915           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 916         }
 917         break;
 918       case Bytecodes::_instanceof:
 919         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 920           k = caller_method->constants()->klass_at(io.index(), CHECK);
 921         }
 922         break;
 923       case Bytecodes::_checkcast:
 924         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 925           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 926         }
 927         break;
 928       case Bytecodes::_anewarray:
 929         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 930           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 931           k = ek->array_klass(CHECK);
 932         }
 933         break;
 934       case Bytecodes::_ldc:
 935       case Bytecodes::_ldc_w:
 936         {
 937           Bytecode_loadconstant cc(caller_method, bci);
 938           oop m = cc.resolve_constant(CHECK);
 939           mirror = Handle(THREAD, m);
 940         }
 941         break;
 942       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 943     }
 944     // convert to handle
 945     load_klass = KlassHandle(THREAD, k);
 946   } else if (stub_id == load_appendix_patching_id) {
 947     Bytecode_invoke bytecode(caller_method, bci);
 948     Bytecodes::Code bc = bytecode.invoke_code();
 949 
 950     CallInfo info;
 951     constantPoolHandle pool(thread, caller_method->constants());
 952     int index = bytecode.index();
 953     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 954     appendix = info.resolved_appendix();
 955     switch (bc) {
 956       case Bytecodes::_invokehandle: {
 957         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 958         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 959         pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
 960         break;
 961       }
 962       case Bytecodes::_invokedynamic: {
 963         pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
 964         break;
 965       }
 966       default: fatal("unexpected bytecode for load_appendix_patching_id");
 967     }
 968   } else {
 969     ShouldNotReachHere();
 970   }
 971 
 972   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 973     // At compile time we assumed the field wasn't volatile/atomic but after
 974     // loading it turns out it was volatile/atomic so we have to throw the
 975     // compiled code out and let it be regenerated.
 976     if (TracePatching) {
 977       if (deoptimize_for_volatile) {
 978         tty->print_cr("Deoptimizing for patching volatile field reference");
 979       }
 980       if (deoptimize_for_atomic) {
 981         tty->print_cr("Deoptimizing for patching atomic field reference");
 982       }
 983     }
 984 
 985     // It's possible the nmethod was invalidated in the last
 986     // safepoint, but if it's still alive then make it not_entrant.
 987     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 988     if (nm != NULL) {
 989       nm->make_not_entrant();
 990     }
 991 
 992     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 993 
 994     // Return to the now deoptimized frame.
 995   }
 996 
 997   // Now copy code back
 998 
 999   {
1000     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1001     //
1002     // Deoptimization may have happened while we waited for the lock.
1003     // In that case we don't bother to do any patching we just return
1004     // and let the deopt happen
1005     if (!caller_is_deopted()) {
1006       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1007       address instr_pc = jump->jump_destination();
1008       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1009       if (ni->is_jump() ) {
1010         // the jump has not been patched yet
1011         // The jump destination is slow case and therefore not part of the stubs
1012         // (stubs are only for StaticCalls)
1013 
1014         // format of buffer
1015         //    ....
1016         //    instr byte 0     <-- copy_buff
1017         //    instr byte 1
1018         //    ..
1019         //    instr byte n-1
1020         //      n
1021         //    ....             <-- call destination
1022 
1023         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1024         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1025         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1026         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1027         address copy_buff = stub_location - *byte_skip - *byte_count;
1028         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1029         if (TracePatching) {
1030           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1031                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1032           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1033           assert(caller_code != NULL, "nmethod not found");
1034 
1035           // NOTE we use pc() not original_pc() because we already know they are
1036           // identical otherwise we'd have never entered this block of code
1037 
1038           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1039           assert(map != NULL, "null check");
1040           map->print();
1041           tty->cr();
1042 
1043           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1044         }
1045         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1046         bool do_patch = true;
1047         if (stub_id == Runtime1::access_field_patching_id) {
1048           // The offset may not be correct if the class was not loaded at code generation time.
1049           // Set it now.
1050           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1051           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1052           assert(patch_field_offset >= 0, "illegal offset");
1053           n_move->add_offset_in_bytes(patch_field_offset);
1054         } else if (load_klass_or_mirror_patch_id) {
1055           // If a getstatic or putstatic is referencing a klass which
1056           // isn't fully initialized, the patch body isn't copied into
1057           // place until initialization is complete.  In this case the
1058           // patch site is setup so that any threads besides the
1059           // initializing thread are forced to come into the VM and
1060           // block.
1061           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1062                      InstanceKlass::cast(init_klass())->is_initialized();
1063           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1064           if (jump->jump_destination() == being_initialized_entry) {
1065             assert(do_patch == true, "initialization must be complete at this point");
1066           } else {
1067             // patch the instruction <move reg, klass>
1068             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1069 
1070             assert(n_copy->data() == 0 ||
1071                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1072                    "illegal init value");
1073             if (stub_id == Runtime1::load_klass_patching_id) {
1074               assert(load_klass() != NULL, "klass not set");
1075               n_copy->set_data((intx) (load_klass()));
1076             } else {
1077               assert(mirror() != NULL, "klass not set");
1078               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1079               n_copy->set_data(cast_from_oop<intx>(mirror()));
1080             }
1081 
1082             if (TracePatching) {
1083               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1084             }
1085           }
1086         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1087           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1088           assert(n_copy->data() == 0 ||
1089                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1090                  "illegal init value");
1091           n_copy->set_data(cast_from_oop<intx>(appendix()));
1092 
1093           if (TracePatching) {
1094             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1095           }
1096         } else {
1097           ShouldNotReachHere();
1098         }
1099 
1100 #if defined(SPARC) || defined(PPC32)
1101         if (load_klass_or_mirror_patch_id ||
1102             stub_id == Runtime1::load_appendix_patching_id) {
1103           // Update the location in the nmethod with the proper
1104           // metadata.  When the code was generated, a NULL was stuffed
1105           // in the metadata table and that table needs to be update to
1106           // have the right value.  On intel the value is kept
1107           // directly in the instruction instead of in the metadata
1108           // table, so set_data above effectively updated the value.
1109           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1110           assert(nm != NULL, "invalid nmethod_pc");
1111           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1112           bool found = false;
1113           while (mds.next() && !found) {
1114             if (mds.type() == relocInfo::oop_type) {
1115               assert(stub_id == Runtime1::load_mirror_patching_id ||
1116                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1117               oop_Relocation* r = mds.oop_reloc();
1118               oop* oop_adr = r->oop_addr();
1119               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1120               r->fix_oop_relocation();
1121               found = true;
1122             } else if (mds.type() == relocInfo::metadata_type) {
1123               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1124               metadata_Relocation* r = mds.metadata_reloc();
1125               Metadata** metadata_adr = r->metadata_addr();
1126               *metadata_adr = load_klass();
1127               r->fix_metadata_relocation();
1128               found = true;
1129             }
1130           }
1131           assert(found, "the metadata must exist!");
1132         }
1133 #endif
1134         if (do_patch) {
1135           // replace instructions
1136           // first replace the tail, then the call
1137 #ifdef ARM
1138           if((load_klass_or_mirror_patch_id ||
1139               stub_id == Runtime1::load_appendix_patching_id) &&
1140               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1141             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1142             address addr = NULL;
1143             assert(nm != NULL, "invalid nmethod_pc");
1144             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1145             while (mds.next()) {
1146               if (mds.type() == relocInfo::oop_type) {
1147                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1148                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1149                 oop_Relocation* r = mds.oop_reloc();
1150                 addr = (address)r->oop_addr();
1151                 break;
1152               } else if (mds.type() == relocInfo::metadata_type) {
1153                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1154                 metadata_Relocation* r = mds.metadata_reloc();
1155                 addr = (address)r->metadata_addr();
1156                 break;
1157               }
1158             }
1159             assert(addr != NULL, "metadata relocation must exist");
1160             copy_buff -= *byte_count;
1161             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1162             n_copy2->set_pc_relative_offset(addr, instr_pc);
1163           }
1164 #endif
1165 
1166           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1167             address ptr = copy_buff + i;
1168             int a_byte = (*ptr) & 0xFF;
1169             address dst = instr_pc + i;
1170             *(unsigned char*)dst = (unsigned char) a_byte;
1171           }
1172           ICache::invalidate_range(instr_pc, *byte_count);
1173           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1174 
1175           if (load_klass_or_mirror_patch_id ||
1176               stub_id == Runtime1::load_appendix_patching_id) {
1177             relocInfo::relocType rtype =
1178               (stub_id == Runtime1::load_klass_patching_id) ?
1179                                    relocInfo::metadata_type :
1180                                    relocInfo::oop_type;
1181             // update relocInfo to metadata
1182             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1183             assert(nm != NULL, "invalid nmethod_pc");
1184 
1185             // The old patch site is now a move instruction so update
1186             // the reloc info so that it will get updated during
1187             // future GCs.
1188             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1189             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1190                                                      relocInfo::none, rtype);
1191 #ifdef SPARC
1192             // Sparc takes two relocations for an metadata so update the second one.
1193             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1194             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1195             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1196                                                      relocInfo::none, rtype);
1197 #endif
1198 #ifdef PPC32
1199           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1200             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1201             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1202                                                      relocInfo::none, rtype);
1203           }
1204 #endif
1205           }
1206 
1207         } else {
1208           ICache::invalidate_range(copy_buff, *byte_count);
1209           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1210         }
1211       }
1212     }
1213   }
1214 
1215   // If we are patching in a non-perm oop, make sure the nmethod
1216   // is on the right list.
1217   if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1218                               (appendix.not_null() && appendix->is_scavengable()))) {
1219     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1220     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1221     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1222     if (!nm->on_scavenge_root_list()) {
1223       CodeCache::add_scavenge_root_nmethod(nm);
1224     }
1225 
1226     // Since we've patched some oops in the nmethod,
1227     // (re)register it with the heap.
1228     Universe::heap()->register_nmethod(nm);
1229   }
1230 JRT_END
1231 
1232 #else // DEOPTIMIZE_WHEN_PATCHING
1233 
1234 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1235   RegisterMap reg_map(thread, false);
1236 
1237   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1238   if (TracePatching) {
1239     tty->print_cr("Deoptimizing because patch is needed");
1240   }
1241 
1242   frame runtime_frame = thread->last_frame();
1243   frame caller_frame = runtime_frame.sender(&reg_map);
1244 
1245   // It's possible the nmethod was invalidated in the last
1246   // safepoint, but if it's still alive then make it not_entrant.
1247   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1248   if (nm != NULL) {
1249     nm->make_not_entrant();
1250   }
1251 
1252   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1253 
1254   // Return to the now deoptimized frame.
1255 JRT_END
1256 
1257 #endif // DEOPTIMIZE_WHEN_PATCHING
1258 
1259 //
1260 // Entry point for compiled code. We want to patch a nmethod.
1261 // We don't do a normal VM transition here because we want to
1262 // know after the patching is complete and any safepoint(s) are taken
1263 // if the calling nmethod was deoptimized. We do this by calling a
1264 // helper method which does the normal VM transition and when it
1265 // completes we can check for deoptimization. This simplifies the
1266 // assembly code in the cpu directories.
1267 //
1268 int Runtime1::move_klass_patching(JavaThread* thread) {
1269 //
1270 // NOTE: we are still in Java
1271 //
1272   Thread* THREAD = thread;
1273   debug_only(NoHandleMark nhm;)
1274   {
1275     // Enter VM mode
1276 
1277     ResetNoHandleMark rnhm;
1278     patch_code(thread, load_klass_patching_id);
1279   }
1280   // Back in JAVA, use no oops DON'T safepoint
1281 
1282   // Return true if calling code is deoptimized
1283 
1284   return caller_is_deopted();
1285 }
1286 
1287 int Runtime1::move_mirror_patching(JavaThread* thread) {
1288 //
1289 // NOTE: we are still in Java
1290 //
1291   Thread* THREAD = thread;
1292   debug_only(NoHandleMark nhm;)
1293   {
1294     // Enter VM mode
1295 
1296     ResetNoHandleMark rnhm;
1297     patch_code(thread, load_mirror_patching_id);
1298   }
1299   // Back in JAVA, use no oops DON'T safepoint
1300 
1301   // Return true if calling code is deoptimized
1302 
1303   return caller_is_deopted();
1304 }
1305 
1306 int Runtime1::move_appendix_patching(JavaThread* thread) {
1307 //
1308 // NOTE: we are still in Java
1309 //
1310   Thread* THREAD = thread;
1311   debug_only(NoHandleMark nhm;)
1312   {
1313     // Enter VM mode
1314 
1315     ResetNoHandleMark rnhm;
1316     patch_code(thread, load_appendix_patching_id);
1317   }
1318   // Back in JAVA, use no oops DON'T safepoint
1319 
1320   // Return true if calling code is deoptimized
1321 
1322   return caller_is_deopted();
1323 }
1324 //
1325 // Entry point for compiled code. We want to patch a nmethod.
1326 // We don't do a normal VM transition here because we want to
1327 // know after the patching is complete and any safepoint(s) are taken
1328 // if the calling nmethod was deoptimized. We do this by calling a
1329 // helper method which does the normal VM transition and when it
1330 // completes we can check for deoptimization. This simplifies the
1331 // assembly code in the cpu directories.
1332 //
1333 
1334 int Runtime1::access_field_patching(JavaThread* thread) {
1335 //
1336 // NOTE: we are still in Java
1337 //
1338   Thread* THREAD = thread;
1339   debug_only(NoHandleMark nhm;)
1340   {
1341     // Enter VM mode
1342 
1343     ResetNoHandleMark rnhm;
1344     patch_code(thread, access_field_patching_id);
1345   }
1346   // Back in JAVA, use no oops DON'T safepoint
1347 
1348   // Return true if calling code is deoptimized
1349 
1350   return caller_is_deopted();
1351 JRT_END
1352 
1353 
1354 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1355   // for now we just print out the block id
1356   tty->print("%d ", block_id);
1357 JRT_END
1358 
1359 
1360 // Array copy return codes.
1361 enum {
1362   ac_failed = -1, // arraycopy failed
1363   ac_ok = 0       // arraycopy succeeded
1364 };
1365 
1366 
1367 // Below length is the # elements copied.
1368 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1369                                           oopDesc* dst, T* dst_addr,
1370                                           int length) {
1371 
1372   // For performance reasons, we assume we are using a card marking write
1373   // barrier. The assert will fail if this is not the case.
1374   // Note that we use the non-virtual inlineable variant of write_ref_array.
1375   BarrierSet* bs = Universe::heap()->barrier_set();
1376   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1377   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1378   if (src == dst) {
1379     // same object, no check
1380     bs->write_ref_array_pre(dst_addr, length);
1381     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1382     bs->write_ref_array((HeapWord*)dst_addr, length);
1383     return ac_ok;
1384   } else {
1385     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1386     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1387     if (stype == bound || stype->is_subtype_of(bound)) {
1388       // Elements are guaranteed to be subtypes, so no check necessary
1389       bs->write_ref_array_pre(dst_addr, length);
1390       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1391       bs->write_ref_array((HeapWord*)dst_addr, length);
1392       return ac_ok;
1393     }
1394   }
1395   return ac_failed;
1396 }
1397 
1398 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1399 // and we did not copy anything
1400 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1401 #ifndef PRODUCT
1402   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1403 #endif
1404 
1405   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1406   if (!dst->is_array() || !src->is_array()) return ac_failed;
1407   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1408   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1409 
1410   if (length == 0) return ac_ok;
1411   if (src->is_typeArray()) {
1412     Klass* klass_oop = src->klass();
1413     if (klass_oop != dst->klass()) return ac_failed;
1414     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1415     const int l2es = klass->log2_element_size();
1416     const int ihs = klass->array_header_in_bytes() / wordSize;
1417     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1418     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1419     // Potential problem: memmove is not guaranteed to be word atomic
1420     // Revisit in Merlin
1421     memmove(dst_addr, src_addr, length << l2es);
1422     return ac_ok;
1423   } else if (src->is_objArray() && dst->is_objArray()) {
1424     if (UseCompressedOops) {
1425       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1426       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1427       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1428     } else {
1429       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1430       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1431       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1432     }
1433   }
1434   return ac_failed;
1435 JRT_END
1436 
1437 
1438 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1439 #ifndef PRODUCT
1440   _primitive_arraycopy_cnt++;
1441 #endif
1442 
1443   if (length == 0) return;
1444   // Not guaranteed to be word atomic, but that doesn't matter
1445   // for anything but an oop array, which is covered by oop_arraycopy.
1446   Copy::conjoint_jbytes(src, dst, length);
1447 JRT_END
1448 
1449 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1450 #ifndef PRODUCT
1451   _oop_arraycopy_cnt++;
1452 #endif
1453 
1454   if (num == 0) return;
1455   BarrierSet* bs = Universe::heap()->barrier_set();
1456   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1457   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1458   if (UseCompressedOops) {
1459     bs->write_ref_array_pre((narrowOop*)dst, num);
1460     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1461   } else {
1462     bs->write_ref_array_pre((oop*)dst, num);
1463     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1464   }
1465   bs->write_ref_array(dst, num);
1466 JRT_END
1467 
1468 
1469 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1470   // had to return int instead of bool, otherwise there may be a mismatch
1471   // between the C calling convention and the Java one.
1472   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1473   // JVM takes the whole %eax as the return value, which may misinterpret
1474   // the return value as a boolean true.
1475 
1476   assert(mirror != NULL, "should null-check on mirror before calling");
1477   Klass* k = java_lang_Class::as_Klass(mirror);
1478   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1479 JRT_END
1480 
1481 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1482   ResourceMark rm;
1483 
1484   assert(!TieredCompilation, "incompatible with tiered compilation");
1485 
1486   RegisterMap reg_map(thread, false);
1487   frame runtime_frame = thread->last_frame();
1488   frame caller_frame = runtime_frame.sender(&reg_map);
1489 
1490   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1491   assert (nm != NULL, "no more nmethod?");
1492   nm->make_not_entrant();
1493 
1494   methodHandle m(nm->method());
1495   MethodData* mdo = m->method_data();
1496 
1497   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1498     // Build an MDO.  Ignore errors like OutOfMemory;
1499     // that simply means we won't have an MDO to update.
1500     Method::build_interpreter_method_data(m, THREAD);
1501     if (HAS_PENDING_EXCEPTION) {
1502       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1503       CLEAR_PENDING_EXCEPTION;
1504     }
1505     mdo = m->method_data();
1506   }
1507 
1508   if (mdo != NULL) {
1509     mdo->inc_trap_count(Deoptimization::Reason_none);
1510   }
1511 
1512   if (TracePredicateFailedTraps) {
1513     stringStream ss1, ss2;
1514     vframeStream vfst(thread);
1515     methodHandle inlinee = methodHandle(vfst.method());
1516     inlinee->print_short_name(&ss1);
1517     m->print_short_name(&ss2);
1518     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1519   }
1520 
1521 
1522   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1523 
1524 JRT_END
1525 
1526 #ifndef PRODUCT
1527 void Runtime1::print_statistics() {
1528   tty->print_cr("C1 Runtime statistics:");
1529   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1530   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1531   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1532   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1533   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1534   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1535   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1536   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1537   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1538   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1539   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1540   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1541   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1542   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1543   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1544   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1545   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1546 
1547   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1548   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1549   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1550   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1551   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1552   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1553   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1554 
1555   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1556   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1557   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1558   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1559   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1560   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1561   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1562   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1563 
1564   SharedRuntime::print_ic_miss_histogram();
1565   tty->cr();
1566 }
1567 #endif // PRODUCT