1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/arraycopynode.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/escape.hpp"
  36 #include "opto/phaseX.hpp"
  37 #include "opto/movenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 
  40 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  41   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  42   _in_worklist(C->comp_arena()),
  43   _next_pidx(0),
  44   _collecting(true),
  45   _verify(false),
  46   _compile(C),
  47   _igvn(igvn),
  48   _node_map(C->comp_arena()) {
  49   // Add unknown java object.
  50   add_java_object(C->top(), PointsToNode::GlobalEscape);
  51   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  52   // Add ConP(#NULL) and ConN(#NULL) nodes.
  53   Node* oop_null = igvn->zerocon(T_OBJECT);
  54   assert(oop_null->_idx < nodes_size(), "should be created already");
  55   add_java_object(oop_null, PointsToNode::NoEscape);
  56   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  57   if (UseCompressedOops) {
  58     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  59     assert(noop_null->_idx < nodes_size(), "should be created already");
  60     map_ideal_node(noop_null, null_obj);
  61   }
  62   _pcmp_neq = NULL; // Should be initialized
  63   _pcmp_eq  = NULL;
  64 }
  65 
  66 bool ConnectionGraph::has_candidates(Compile *C) {
  67   // EA brings benefits only when the code has allocations and/or locks which
  68   // are represented by ideal Macro nodes.
  69   int cnt = C->macro_count();
  70   for (int i = 0; i < cnt; i++) {
  71     Node *n = C->macro_node(i);
  72     if (n->is_Allocate())
  73       return true;
  74     if (n->is_Lock()) {
  75       Node* obj = n->as_Lock()->obj_node()->uncast();
  76       if (!(obj->is_Parm() || obj->is_Con()))
  77         return true;
  78     }
  79     if (n->is_CallStaticJava() &&
  80         n->as_CallStaticJava()->is_boxing_method()) {
  81       return true;
  82     }
  83   }
  84   return false;
  85 }
  86 
  87 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  88   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  89   ResourceMark rm;
  90 
  91   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  92   // to create space for them in ConnectionGraph::_nodes[].
  93   Node* oop_null = igvn->zerocon(T_OBJECT);
  94   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  95   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  96   // Perform escape analysis
  97   if (congraph->compute_escape()) {
  98     // There are non escaping objects.
  99     C->set_congraph(congraph);
 100   }
 101   // Cleanup.
 102   if (oop_null->outcnt() == 0)
 103     igvn->hash_delete(oop_null);
 104   if (noop_null->outcnt() == 0)
 105     igvn->hash_delete(noop_null);
 106 }
 107 
 108 bool ConnectionGraph::compute_escape() {
 109   Compile* C = _compile;
 110   PhaseGVN* igvn = _igvn;
 111 
 112   // Worklists used by EA.
 113   Unique_Node_List delayed_worklist;
 114   GrowableArray<Node*> alloc_worklist;
 115   GrowableArray<Node*> ptr_cmp_worklist;
 116   GrowableArray<Node*> storestore_worklist;
 117   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 118   GrowableArray<PointsToNode*>   ptnodes_worklist;
 119   GrowableArray<JavaObjectNode*> java_objects_worklist;
 120   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 121   GrowableArray<FieldNode*>      oop_fields_worklist;
 122   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 123 
 124   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 125 
 126   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 127   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 128   // Initialize worklist
 129   if (C->root() != NULL) {
 130     ideal_nodes.push(C->root());
 131   }
 132   // Processed ideal nodes are unique on ideal_nodes list
 133   // but several ideal nodes are mapped to the phantom_obj.
 134   // To avoid duplicated entries on the following worklists
 135   // add the phantom_obj only once to them.
 136   ptnodes_worklist.append(phantom_obj);
 137   java_objects_worklist.append(phantom_obj);
 138   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 139     Node* n = ideal_nodes.at(next);
 140     // Create PointsTo nodes and add them to Connection Graph. Called
 141     // only once per ideal node since ideal_nodes is Unique_Node list.
 142     add_node_to_connection_graph(n, &delayed_worklist);
 143     PointsToNode* ptn = ptnode_adr(n->_idx);
 144     if (ptn != NULL && ptn != phantom_obj) {
 145       ptnodes_worklist.append(ptn);
 146       if (ptn->is_JavaObject()) {
 147         java_objects_worklist.append(ptn->as_JavaObject());
 148         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 149             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 150           // Only allocations and java static calls results are interesting.
 151           non_escaped_worklist.append(ptn->as_JavaObject());
 152         }
 153       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 154         oop_fields_worklist.append(ptn->as_Field());
 155       }
 156     }
 157     if (n->is_MergeMem()) {
 158       // Collect all MergeMem nodes to add memory slices for
 159       // scalar replaceable objects in split_unique_types().
 160       _mergemem_worklist.append(n->as_MergeMem());
 161     } else if (OptimizePtrCompare && n->is_Cmp() &&
 162                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 163       // Collect compare pointers nodes.
 164       ptr_cmp_worklist.append(n);
 165     } else if (n->is_MemBarStoreStore()) {
 166       // Collect all MemBarStoreStore nodes so that depending on the
 167       // escape status of the associated Allocate node some of them
 168       // may be eliminated.
 169       storestore_worklist.append(n);
 170     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 171                (n->req() > MemBarNode::Precedent)) {
 172       record_for_optimizer(n);
 173 #ifdef ASSERT
 174     } else if (n->is_AddP()) {
 175       // Collect address nodes for graph verification.
 176       addp_worklist.append(n);
 177 #endif
 178     } else if (n->is_ArrayCopy()) {
 179       // Keep a list of ArrayCopy nodes so if one of its input is non
 180       // escaping, we can record a unique type
 181       arraycopy_worklist.append(n->as_ArrayCopy());
 182     }
 183     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 184       Node* m = n->fast_out(i);   // Get user
 185       ideal_nodes.push(m);
 186     }
 187   }
 188   if (non_escaped_worklist.length() == 0) {
 189     _collecting = false;
 190     return false; // Nothing to do.
 191   }
 192   // Add final simple edges to graph.
 193   while(delayed_worklist.size() > 0) {
 194     Node* n = delayed_worklist.pop();
 195     add_final_edges(n);
 196   }
 197   int ptnodes_length = ptnodes_worklist.length();
 198 
 199 #ifdef ASSERT
 200   if (VerifyConnectionGraph) {
 201     // Verify that no new simple edges could be created and all
 202     // local vars has edges.
 203     _verify = true;
 204     for (int next = 0; next < ptnodes_length; ++next) {
 205       PointsToNode* ptn = ptnodes_worklist.at(next);
 206       add_final_edges(ptn->ideal_node());
 207       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 208         ptn->dump();
 209         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 210       }
 211     }
 212     _verify = false;
 213   }
 214 #endif
 215   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 216   // processing, calls to CI to resolve symbols (types, fields, methods)
 217   // referenced in bytecode. During symbol resolution VM may throw
 218   // an exception which CI cleans and converts to compilation failure.
 219   if (C->failing())  return false;
 220 
 221   // 2. Finish Graph construction by propagating references to all
 222   //    java objects through graph.
 223   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 224                                  java_objects_worklist, oop_fields_worklist)) {
 225     // All objects escaped or hit time or iterations limits.
 226     _collecting = false;
 227     return false;
 228   }
 229 
 230   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 231   //    scalar replaceable allocations on alloc_worklist for processing
 232   //    in split_unique_types().
 233   int non_escaped_length = non_escaped_worklist.length();
 234   for (int next = 0; next < non_escaped_length; next++) {
 235     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 236     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 237     Node* n = ptn->ideal_node();
 238     if (n->is_Allocate()) {
 239       n->as_Allocate()->_is_non_escaping = noescape;
 240     }
 241     if (n->is_CallStaticJava()) {
 242       n->as_CallStaticJava()->_is_non_escaping = noescape;
 243     }
 244     if (noescape && ptn->scalar_replaceable()) {
 245       adjust_scalar_replaceable_state(ptn);
 246       if (ptn->scalar_replaceable()) {
 247         alloc_worklist.append(ptn->ideal_node());
 248       }
 249     }
 250   }
 251 
 252 #ifdef ASSERT
 253   if (VerifyConnectionGraph) {
 254     // Verify that graph is complete - no new edges could be added or needed.
 255     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 256                             java_objects_worklist, addp_worklist);
 257   }
 258   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 259   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 260          null_obj->edge_count() == 0 &&
 261          !null_obj->arraycopy_src() &&
 262          !null_obj->arraycopy_dst(), "sanity");
 263 #endif
 264 
 265   _collecting = false;
 266 
 267   } // TracePhase t3("connectionGraph")
 268 
 269   // 4. Optimize ideal graph based on EA information.
 270   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 271   if (has_non_escaping_obj) {
 272     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 273   }
 274 
 275 #ifndef PRODUCT
 276   if (PrintEscapeAnalysis) {
 277     dump(ptnodes_worklist); // Dump ConnectionGraph
 278   }
 279 #endif
 280 
 281   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 282 #ifdef ASSERT
 283   if (VerifyConnectionGraph) {
 284     int alloc_length = alloc_worklist.length();
 285     for (int next = 0; next < alloc_length; ++next) {
 286       Node* n = alloc_worklist.at(next);
 287       PointsToNode* ptn = ptnode_adr(n->_idx);
 288       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 289     }
 290   }
 291 #endif
 292 
 293   // 5. Separate memory graph for scalar replaceable allcations.
 294   if (has_scalar_replaceable_candidates &&
 295       C->AliasLevel() >= 3 && EliminateAllocations) {
 296     // Now use the escape information to create unique types for
 297     // scalar replaceable objects.
 298     split_unique_types(alloc_worklist, arraycopy_worklist);
 299     if (C->failing())  return false;
 300     C->print_method(PHASE_AFTER_EA, 2);
 301 
 302 #ifdef ASSERT
 303   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 304     tty->print("=== No allocations eliminated for ");
 305     C->method()->print_short_name();
 306     if(!EliminateAllocations) {
 307       tty->print(" since EliminateAllocations is off ===");
 308     } else if(!has_scalar_replaceable_candidates) {
 309       tty->print(" since there are no scalar replaceable candidates ===");
 310     } else if(C->AliasLevel() < 3) {
 311       tty->print(" since AliasLevel < 3 ===");
 312     }
 313     tty->cr();
 314 #endif
 315   }
 316   return has_non_escaping_obj;
 317 }
 318 
 319 // Utility function for nodes that load an object
 320 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 321   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 322   // ThreadLocal has RawPtr type.
 323   const Type* t = _igvn->type(n);
 324   if (t->make_ptr() != NULL) {
 325     Node* adr = n->in(MemNode::Address);
 326 #ifdef ASSERT
 327     if (!adr->is_AddP()) {
 328       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 329     } else {
 330       assert((ptnode_adr(adr->_idx) == NULL ||
 331               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 332     }
 333 #endif
 334     add_local_var_and_edge(n, PointsToNode::NoEscape,
 335                            adr, delayed_worklist);
 336   }
 337 }
 338 
 339 // Populate Connection Graph with PointsTo nodes and create simple
 340 // connection graph edges.
 341 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 342   assert(!_verify, "this method should not be called for verification");
 343   PhaseGVN* igvn = _igvn;
 344   uint n_idx = n->_idx;
 345   PointsToNode* n_ptn = ptnode_adr(n_idx);
 346   if (n_ptn != NULL)
 347     return; // No need to redefine PointsTo node during first iteration.
 348 
 349   if (n->is_Call()) {
 350     // Arguments to allocation and locking don't escape.
 351     if (n->is_AbstractLock()) {
 352       // Put Lock and Unlock nodes on IGVN worklist to process them during
 353       // first IGVN optimization when escape information is still available.
 354       record_for_optimizer(n);
 355     } else if (n->is_Allocate()) {
 356       add_call_node(n->as_Call());
 357       record_for_optimizer(n);
 358     } else {
 359       if (n->is_CallStaticJava()) {
 360         const char* name = n->as_CallStaticJava()->_name;
 361         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 362           return; // Skip uncommon traps
 363       }
 364       // Don't mark as processed since call's arguments have to be processed.
 365       delayed_worklist->push(n);
 366       // Check if a call returns an object.
 367       if ((n->as_Call()->returns_pointer() &&
 368            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 369           (n->is_CallStaticJava() &&
 370            n->as_CallStaticJava()->is_boxing_method())) {
 371         add_call_node(n->as_Call());
 372       }
 373     }
 374     return;
 375   }
 376   // Put this check here to process call arguments since some call nodes
 377   // point to phantom_obj.
 378   if (n_ptn == phantom_obj || n_ptn == null_obj)
 379     return; // Skip predefined nodes.
 380 
 381   int opcode = n->Opcode();
 382   switch (opcode) {
 383     case Op_AddP: {
 384       Node* base = get_addp_base(n);
 385       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 386       // Field nodes are created for all field types. They are used in
 387       // adjust_scalar_replaceable_state() and split_unique_types().
 388       // Note, non-oop fields will have only base edges in Connection
 389       // Graph because such fields are not used for oop loads and stores.
 390       int offset = address_offset(n, igvn);
 391       add_field(n, PointsToNode::NoEscape, offset);
 392       if (ptn_base == NULL) {
 393         delayed_worklist->push(n); // Process it later.
 394       } else {
 395         n_ptn = ptnode_adr(n_idx);
 396         add_base(n_ptn->as_Field(), ptn_base);
 397       }
 398       break;
 399     }
 400     case Op_CastX2P: {
 401       map_ideal_node(n, phantom_obj);
 402       break;
 403     }
 404     case Op_CastPP:
 405     case Op_CheckCastPP:
 406     case Op_EncodeP:
 407     case Op_DecodeN:
 408     case Op_EncodePKlass:
 409     case Op_DecodeNKlass: {
 410       add_local_var_and_edge(n, PointsToNode::NoEscape,
 411                              n->in(1), delayed_worklist);
 412       break;
 413     }
 414     case Op_CMoveP: {
 415       add_local_var(n, PointsToNode::NoEscape);
 416       // Do not add edges during first iteration because some could be
 417       // not defined yet.
 418       delayed_worklist->push(n);
 419       break;
 420     }
 421     case Op_ConP:
 422     case Op_ConN:
 423     case Op_ConNKlass: {
 424       // assume all oop constants globally escape except for null
 425       PointsToNode::EscapeState es;
 426       const Type* t = igvn->type(n);
 427       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 428         es = PointsToNode::NoEscape;
 429       } else {
 430         es = PointsToNode::GlobalEscape;
 431       }
 432       add_java_object(n, es);
 433       break;
 434     }
 435     case Op_CreateEx: {
 436       // assume that all exception objects globally escape
 437       map_ideal_node(n, phantom_obj);
 438       break;
 439     }
 440     case Op_LoadKlass:
 441     case Op_LoadNKlass: {
 442       // Unknown class is loaded
 443       map_ideal_node(n, phantom_obj);
 444       break;
 445     }
 446     case Op_LoadP:
 447     case Op_LoadN:
 448     case Op_LoadPLocked: {
 449       add_objload_to_connection_graph(n, delayed_worklist);
 450       break;
 451     }
 452     case Op_Parm: {
 453       map_ideal_node(n, phantom_obj);
 454       break;
 455     }
 456     case Op_PartialSubtypeCheck: {
 457       // Produces Null or notNull and is used in only in CmpP so
 458       // phantom_obj could be used.
 459       map_ideal_node(n, phantom_obj); // Result is unknown
 460       break;
 461     }
 462     case Op_Phi: {
 463       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 464       // ThreadLocal has RawPtr type.
 465       const Type* t = n->as_Phi()->type();
 466       if (t->make_ptr() != NULL) {
 467         add_local_var(n, PointsToNode::NoEscape);
 468         // Do not add edges during first iteration because some could be
 469         // not defined yet.
 470         delayed_worklist->push(n);
 471       }
 472       break;
 473     }
 474     case Op_Proj: {
 475       // we are only interested in the oop result projection from a call
 476       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 477           n->in(0)->as_Call()->returns_pointer()) {
 478         add_local_var_and_edge(n, PointsToNode::NoEscape,
 479                                n->in(0), delayed_worklist);
 480       }
 481       break;
 482     }
 483     case Op_Rethrow: // Exception object escapes
 484     case Op_Return: {
 485       if (n->req() > TypeFunc::Parms &&
 486           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 487         // Treat Return value as LocalVar with GlobalEscape escape state.
 488         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 489                                n->in(TypeFunc::Parms), delayed_worklist);
 490       }
 491       break;
 492     }
 493     case Op_GetAndSetP:
 494     case Op_GetAndSetN: {
 495       add_objload_to_connection_graph(n, delayed_worklist);
 496       // fallthrough
 497     }
 498     case Op_StoreP:
 499     case Op_StoreN:
 500     case Op_StoreNKlass:
 501     case Op_StorePConditional:
 502     case Op_CompareAndSwapP:
 503     case Op_CompareAndSwapN: {
 504       Node* adr = n->in(MemNode::Address);
 505       const Type *adr_type = igvn->type(adr);
 506       adr_type = adr_type->make_ptr();
 507       if (adr_type == NULL) {
 508         break; // skip dead nodes
 509       }
 510       if (adr_type->isa_oopptr() ||
 511           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 512                         (adr_type == TypeRawPtr::NOTNULL &&
 513                          adr->in(AddPNode::Address)->is_Proj() &&
 514                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 515         delayed_worklist->push(n); // Process it later.
 516 #ifdef ASSERT
 517         assert(adr->is_AddP(), "expecting an AddP");
 518         if (adr_type == TypeRawPtr::NOTNULL) {
 519           // Verify a raw address for a store captured by Initialize node.
 520           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 521           assert(offs != Type::OffsetBot, "offset must be a constant");
 522         }
 523 #endif
 524       } else {
 525         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 526         if (adr->is_BoxLock())
 527           break;
 528         // Stored value escapes in unsafe access.
 529         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 530           // Pointer stores in G1 barriers looks like unsafe access.
 531           // Ignore such stores to be able scalar replace non-escaping
 532           // allocations.
 533           if (UseG1GC && adr->is_AddP()) {
 534             Node* base = get_addp_base(adr);
 535             if (base->Opcode() == Op_LoadP &&
 536                 base->in(MemNode::Address)->is_AddP()) {
 537               adr = base->in(MemNode::Address);
 538               Node* tls = get_addp_base(adr);
 539               if (tls->Opcode() == Op_ThreadLocal) {
 540                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 541                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 542                                      PtrQueue::byte_offset_of_buf())) {
 543                   break; // G1 pre barrier previous oop value store.
 544                 }
 545                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 546                                      PtrQueue::byte_offset_of_buf())) {
 547                   break; // G1 post barrier card address store.
 548                 }
 549               }
 550             }
 551           }
 552           delayed_worklist->push(n); // Process unsafe access later.
 553           break;
 554         }
 555 #ifdef ASSERT
 556         n->dump(1);
 557         assert(false, "not unsafe or G1 barrier raw StoreP");
 558 #endif
 559       }
 560       break;
 561     }
 562     case Op_AryEq:
 563     case Op_HasNegatives:
 564     case Op_StrComp:
 565     case Op_StrEquals:
 566     case Op_StrIndexOf:
 567     case Op_StrIndexOfChar:
 568     case Op_StrInflatedCopy:
 569     case Op_StrCompressedCopy:
 570     case Op_EncodeISOArray: {
 571       add_local_var(n, PointsToNode::ArgEscape);
 572       delayed_worklist->push(n); // Process it later.
 573       break;
 574     }
 575     case Op_ThreadLocal: {
 576       add_java_object(n, PointsToNode::ArgEscape);
 577       break;
 578     }
 579     default:
 580       ; // Do nothing for nodes not related to EA.
 581   }
 582   return;
 583 }
 584 
 585 #ifdef ASSERT
 586 #define ELSE_FAIL(name)                               \
 587       /* Should not be called for not pointer type. */  \
 588       n->dump(1);                                       \
 589       assert(false, name);                              \
 590       break;
 591 #else
 592 #define ELSE_FAIL(name) \
 593       break;
 594 #endif
 595 
 596 // Add final simple edges to graph.
 597 void ConnectionGraph::add_final_edges(Node *n) {
 598   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 599 #ifdef ASSERT
 600   if (_verify && n_ptn->is_JavaObject())
 601     return; // This method does not change graph for JavaObject.
 602 #endif
 603 
 604   if (n->is_Call()) {
 605     process_call_arguments(n->as_Call());
 606     return;
 607   }
 608   assert(n->is_Store() || n->is_LoadStore() ||
 609          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 610          "node should be registered already");
 611   int opcode = n->Opcode();
 612   switch (opcode) {
 613     case Op_AddP: {
 614       Node* base = get_addp_base(n);
 615       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 616       assert(ptn_base != NULL, "field's base should be registered");
 617       add_base(n_ptn->as_Field(), ptn_base);
 618       break;
 619     }
 620     case Op_CastPP:
 621     case Op_CheckCastPP:
 622     case Op_EncodeP:
 623     case Op_DecodeN:
 624     case Op_EncodePKlass:
 625     case Op_DecodeNKlass: {
 626       add_local_var_and_edge(n, PointsToNode::NoEscape,
 627                              n->in(1), NULL);
 628       break;
 629     }
 630     case Op_CMoveP: {
 631       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 632         Node* in = n->in(i);
 633         if (in == NULL)
 634           continue;  // ignore NULL
 635         Node* uncast_in = in->uncast();
 636         if (uncast_in->is_top() || uncast_in == n)
 637           continue;  // ignore top or inputs which go back this node
 638         PointsToNode* ptn = ptnode_adr(in->_idx);
 639         assert(ptn != NULL, "node should be registered");
 640         add_edge(n_ptn, ptn);
 641       }
 642       break;
 643     }
 644     case Op_LoadP:
 645     case Op_LoadN:
 646     case Op_LoadPLocked: {
 647       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 648       // ThreadLocal has RawPtr type.
 649       const Type* t = _igvn->type(n);
 650       if (t->make_ptr() != NULL) {
 651         Node* adr = n->in(MemNode::Address);
 652         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 653         break;
 654       }
 655       ELSE_FAIL("Op_LoadP");
 656     }
 657     case Op_Phi: {
 658       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 659       // ThreadLocal has RawPtr type.
 660       const Type* t = n->as_Phi()->type();
 661       if (t->make_ptr() != NULL) {
 662         for (uint i = 1; i < n->req(); i++) {
 663           Node* in = n->in(i);
 664           if (in == NULL)
 665             continue;  // ignore NULL
 666           Node* uncast_in = in->uncast();
 667           if (uncast_in->is_top() || uncast_in == n)
 668             continue;  // ignore top or inputs which go back this node
 669           PointsToNode* ptn = ptnode_adr(in->_idx);
 670           assert(ptn != NULL, "node should be registered");
 671           add_edge(n_ptn, ptn);
 672         }
 673         break;
 674       }
 675       ELSE_FAIL("Op_Phi");
 676     }
 677     case Op_Proj: {
 678       // we are only interested in the oop result projection from a call
 679       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 680           n->in(0)->as_Call()->returns_pointer()) {
 681         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 682         break;
 683       }
 684       ELSE_FAIL("Op_Proj");
 685     }
 686     case Op_Rethrow: // Exception object escapes
 687     case Op_Return: {
 688       if (n->req() > TypeFunc::Parms &&
 689           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 690         // Treat Return value as LocalVar with GlobalEscape escape state.
 691         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 692                                n->in(TypeFunc::Parms), NULL);
 693         break;
 694       }
 695       ELSE_FAIL("Op_Return");
 696     }
 697     case Op_StoreP:
 698     case Op_StoreN:
 699     case Op_StoreNKlass:
 700     case Op_StorePConditional:
 701     case Op_CompareAndSwapP:
 702     case Op_CompareAndSwapN:
 703     case Op_GetAndSetP:
 704     case Op_GetAndSetN: {
 705       Node* adr = n->in(MemNode::Address);
 706       const Type *adr_type = _igvn->type(adr);
 707       adr_type = adr_type->make_ptr();
 708 #ifdef ASSERT
 709       if (adr_type == NULL) {
 710         n->dump(1);
 711         assert(adr_type != NULL, "dead node should not be on list");
 712         break;
 713       }
 714 #endif
 715       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 716         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 717       }
 718       if (adr_type->isa_oopptr() ||
 719           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 720                         (adr_type == TypeRawPtr::NOTNULL &&
 721                          adr->in(AddPNode::Address)->is_Proj() &&
 722                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 723         // Point Address to Value
 724         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 725         assert(adr_ptn != NULL &&
 726                adr_ptn->as_Field()->is_oop(), "node should be registered");
 727         Node *val = n->in(MemNode::ValueIn);
 728         PointsToNode* ptn = ptnode_adr(val->_idx);
 729         assert(ptn != NULL, "node should be registered");
 730         add_edge(adr_ptn, ptn);
 731         break;
 732       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 733         // Stored value escapes in unsafe access.
 734         Node *val = n->in(MemNode::ValueIn);
 735         PointsToNode* ptn = ptnode_adr(val->_idx);
 736         assert(ptn != NULL, "node should be registered");
 737         set_escape_state(ptn, PointsToNode::GlobalEscape);
 738         // Add edge to object for unsafe access with offset.
 739         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 740         assert(adr_ptn != NULL, "node should be registered");
 741         if (adr_ptn->is_Field()) {
 742           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 743           add_edge(adr_ptn, ptn);
 744         }
 745         break;
 746       }
 747       ELSE_FAIL("Op_StoreP");
 748     }
 749     case Op_AryEq:
 750     case Op_HasNegatives:
 751     case Op_StrComp:
 752     case Op_StrEquals:
 753     case Op_StrIndexOf:
 754     case Op_StrIndexOfChar:
 755     case Op_StrInflatedCopy:
 756     case Op_StrCompressedCopy:
 757     case Op_EncodeISOArray: {
 758       // char[]/byte[] arrays passed to string intrinsic do not escape but
 759       // they are not scalar replaceable. Adjust escape state for them.
 760       // Start from in(2) edge since in(1) is memory edge.
 761       for (uint i = 2; i < n->req(); i++) {
 762         Node* adr = n->in(i);
 763         const Type* at = _igvn->type(adr);
 764         if (!adr->is_top() && at->isa_ptr()) {
 765           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 766                  at->isa_ptr() != NULL, "expecting a pointer");
 767           if (adr->is_AddP()) {
 768             adr = get_addp_base(adr);
 769           }
 770           PointsToNode* ptn = ptnode_adr(adr->_idx);
 771           assert(ptn != NULL, "node should be registered");
 772           add_edge(n_ptn, ptn);
 773         }
 774       }
 775       break;
 776     }
 777     default: {
 778       // This method should be called only for EA specific nodes which may
 779       // miss some edges when they were created.
 780 #ifdef ASSERT
 781       n->dump(1);
 782 #endif
 783       guarantee(false, "unknown node");
 784     }
 785   }
 786   return;
 787 }
 788 
 789 void ConnectionGraph::add_call_node(CallNode* call) {
 790   assert(call->returns_pointer(), "only for call which returns pointer");
 791   uint call_idx = call->_idx;
 792   if (call->is_Allocate()) {
 793     Node* k = call->in(AllocateNode::KlassNode);
 794     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 795     assert(kt != NULL, "TypeKlassPtr  required.");
 796     ciKlass* cik = kt->klass();
 797     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 798     bool scalar_replaceable = true;
 799     if (call->is_AllocateArray()) {
 800       if (!cik->is_array_klass()) { // StressReflectiveCode
 801         es = PointsToNode::GlobalEscape;
 802       } else {
 803         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 804         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 805           // Not scalar replaceable if the length is not constant or too big.
 806           scalar_replaceable = false;
 807         }
 808       }
 809     } else {  // Allocate instance
 810       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 811           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 812          !cik->is_instance_klass() || // StressReflectiveCode
 813           cik->as_instance_klass()->has_finalizer()) {
 814         es = PointsToNode::GlobalEscape;
 815       }
 816     }
 817     add_java_object(call, es);
 818     PointsToNode* ptn = ptnode_adr(call_idx);
 819     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 820       ptn->set_scalar_replaceable(false);
 821     }
 822   } else if (call->is_CallStaticJava()) {
 823     // Call nodes could be different types:
 824     //
 825     // 1. CallDynamicJavaNode (what happened during call is unknown):
 826     //
 827     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 828     //
 829     //    - all oop arguments are escaping globally;
 830     //
 831     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 832     //
 833     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 834     //
 835     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 836     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 837     //      during call is returned;
 838     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 839     //      which are returned and does not escape during call;
 840     //
 841     //    - oop arguments escaping status is defined by bytecode analysis;
 842     //
 843     // For a static call, we know exactly what method is being called.
 844     // Use bytecode estimator to record whether the call's return value escapes.
 845     ciMethod* meth = call->as_CallJava()->method();
 846     if (meth == NULL) {
 847       const char* name = call->as_CallStaticJava()->_name;
 848       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 849       // Returns a newly allocated unescaped object.
 850       add_java_object(call, PointsToNode::NoEscape);
 851       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 852     } else if (meth->is_boxing_method()) {
 853       // Returns boxing object
 854       PointsToNode::EscapeState es;
 855       vmIntrinsics::ID intr = meth->intrinsic_id();
 856       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 857         // It does not escape if object is always allocated.
 858         es = PointsToNode::NoEscape;
 859       } else {
 860         // It escapes globally if object could be loaded from cache.
 861         es = PointsToNode::GlobalEscape;
 862       }
 863       add_java_object(call, es);
 864     } else {
 865       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 866       call_analyzer->copy_dependencies(_compile->dependencies());
 867       if (call_analyzer->is_return_allocated()) {
 868         // Returns a newly allocated unescaped object, simply
 869         // update dependency information.
 870         // Mark it as NoEscape so that objects referenced by
 871         // it's fields will be marked as NoEscape at least.
 872         add_java_object(call, PointsToNode::NoEscape);
 873         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 874       } else {
 875         // Determine whether any arguments are returned.
 876         const TypeTuple* d = call->tf()->domain();
 877         bool ret_arg = false;
 878         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 879           if (d->field_at(i)->isa_ptr() != NULL &&
 880               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 881             ret_arg = true;
 882             break;
 883           }
 884         }
 885         if (ret_arg) {
 886           add_local_var(call, PointsToNode::ArgEscape);
 887         } else {
 888           // Returns unknown object.
 889           map_ideal_node(call, phantom_obj);
 890         }
 891       }
 892     }
 893   } else {
 894     // An other type of call, assume the worst case:
 895     // returned value is unknown and globally escapes.
 896     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 897     map_ideal_node(call, phantom_obj);
 898   }
 899 }
 900 
 901 void ConnectionGraph::process_call_arguments(CallNode *call) {
 902     bool is_arraycopy = false;
 903     switch (call->Opcode()) {
 904 #ifdef ASSERT
 905     case Op_Allocate:
 906     case Op_AllocateArray:
 907     case Op_Lock:
 908     case Op_Unlock:
 909       assert(false, "should be done already");
 910       break;
 911 #endif
 912     case Op_ArrayCopy:
 913     case Op_CallLeafNoFP:
 914       // Most array copies are ArrayCopy nodes at this point but there
 915       // are still a few direct calls to the copy subroutines (See
 916       // PhaseStringOpts::copy_string())
 917       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 918         call->as_CallLeaf()->is_call_to_arraycopystub();
 919       // fall through
 920     case Op_CallLeaf: {
 921       // Stub calls, objects do not escape but they are not scale replaceable.
 922       // Adjust escape state for outgoing arguments.
 923       const TypeTuple * d = call->tf()->domain();
 924       bool src_has_oops = false;
 925       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 926         const Type* at = d->field_at(i);
 927         Node *arg = call->in(i);
 928         if (arg == NULL) {
 929           continue;
 930         }
 931         const Type *aat = _igvn->type(arg);
 932         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 933           continue;
 934         if (arg->is_AddP()) {
 935           //
 936           // The inline_native_clone() case when the arraycopy stub is called
 937           // after the allocation before Initialize and CheckCastPP nodes.
 938           // Or normal arraycopy for object arrays case.
 939           //
 940           // Set AddP's base (Allocate) as not scalar replaceable since
 941           // pointer to the base (with offset) is passed as argument.
 942           //
 943           arg = get_addp_base(arg);
 944         }
 945         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 946         assert(arg_ptn != NULL, "should be registered");
 947         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 948         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 949           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 950                  aat->isa_ptr() != NULL, "expecting an Ptr");
 951           bool arg_has_oops = aat->isa_oopptr() &&
 952                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 953                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 954           if (i == TypeFunc::Parms) {
 955             src_has_oops = arg_has_oops;
 956           }
 957           //
 958           // src or dst could be j.l.Object when other is basic type array:
 959           //
 960           //   arraycopy(char[],0,Object*,0,size);
 961           //   arraycopy(Object*,0,char[],0,size);
 962           //
 963           // Don't add edges in such cases.
 964           //
 965           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 966                                        arg_has_oops && (i > TypeFunc::Parms);
 967 #ifdef ASSERT
 968           if (!(is_arraycopy ||
 969                 (call->as_CallLeaf()->_name != NULL &&
 970                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 971                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 972                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 973                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 974                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 975                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 976                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 977                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 978                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 979                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 980                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 981                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 982                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 983                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 984                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0)
 991                  ))) {
 992             call->dump();
 993             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
 994           }
 995 #endif
 996           // Always process arraycopy's destination object since
 997           // we need to add all possible edges to references in
 998           // source object.
 999           if (arg_esc >= PointsToNode::ArgEscape &&
1000               !arg_is_arraycopy_dest) {
1001             continue;
1002           }
1003           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1004           if (call->is_ArrayCopy()) {
1005             ArrayCopyNode* ac = call->as_ArrayCopy();
1006             if (ac->is_clonebasic() ||
1007                 ac->is_arraycopy_validated() ||
1008                 ac->is_copyof_validated() ||
1009                 ac->is_copyofrange_validated()) {
1010               es = PointsToNode::NoEscape;
1011             }
1012           }
1013           set_escape_state(arg_ptn, es);
1014           if (arg_is_arraycopy_dest) {
1015             Node* src = call->in(TypeFunc::Parms);
1016             if (src->is_AddP()) {
1017               src = get_addp_base(src);
1018             }
1019             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1020             assert(src_ptn != NULL, "should be registered");
1021             if (arg_ptn != src_ptn) {
1022               // Special arraycopy edge:
1023               // A destination object's field can't have the source object
1024               // as base since objects escape states are not related.
1025               // Only escape state of destination object's fields affects
1026               // escape state of fields in source object.
1027               add_arraycopy(call, es, src_ptn, arg_ptn);
1028             }
1029           }
1030         }
1031       }
1032       break;
1033     }
1034     case Op_CallStaticJava: {
1035       // For a static call, we know exactly what method is being called.
1036       // Use bytecode estimator to record the call's escape affects
1037 #ifdef ASSERT
1038       const char* name = call->as_CallStaticJava()->_name;
1039       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1040 #endif
1041       ciMethod* meth = call->as_CallJava()->method();
1042       if ((meth != NULL) && meth->is_boxing_method()) {
1043         break; // Boxing methods do not modify any oops.
1044       }
1045       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1046       // fall-through if not a Java method or no analyzer information
1047       if (call_analyzer != NULL) {
1048         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1049         const TypeTuple* d = call->tf()->domain();
1050         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1051           const Type* at = d->field_at(i);
1052           int k = i - TypeFunc::Parms;
1053           Node* arg = call->in(i);
1054           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1055           if (at->isa_ptr() != NULL &&
1056               call_analyzer->is_arg_returned(k)) {
1057             // The call returns arguments.
1058             if (call_ptn != NULL) { // Is call's result used?
1059               assert(call_ptn->is_LocalVar(), "node should be registered");
1060               assert(arg_ptn != NULL, "node should be registered");
1061               add_edge(call_ptn, arg_ptn);
1062             }
1063           }
1064           if (at->isa_oopptr() != NULL &&
1065               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1066             if (!call_analyzer->is_arg_stack(k)) {
1067               // The argument global escapes
1068               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1069             } else {
1070               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1071               if (!call_analyzer->is_arg_local(k)) {
1072                 // The argument itself doesn't escape, but any fields might
1073                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1074               }
1075             }
1076           }
1077         }
1078         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1079           // The call returns arguments.
1080           assert(call_ptn->edge_count() > 0, "sanity");
1081           if (!call_analyzer->is_return_local()) {
1082             // Returns also unknown object.
1083             add_edge(call_ptn, phantom_obj);
1084           }
1085         }
1086         break;
1087       }
1088     }
1089     default: {
1090       // Fall-through here if not a Java method or no analyzer information
1091       // or some other type of call, assume the worst case: all arguments
1092       // globally escape.
1093       const TypeTuple* d = call->tf()->domain();
1094       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1095         const Type* at = d->field_at(i);
1096         if (at->isa_oopptr() != NULL) {
1097           Node* arg = call->in(i);
1098           if (arg->is_AddP()) {
1099             arg = get_addp_base(arg);
1100           }
1101           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1102           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1103         }
1104       }
1105     }
1106   }
1107 }
1108 
1109 
1110 // Finish Graph construction.
1111 bool ConnectionGraph::complete_connection_graph(
1112                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1113                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1114                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1115                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1116   // Normally only 1-3 passes needed to build Connection Graph depending
1117   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1118   // Set limit to 20 to catch situation when something did go wrong and
1119   // bailout Escape Analysis.
1120   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1121 #define CG_BUILD_ITER_LIMIT 20
1122 
1123   // Propagate GlobalEscape and ArgEscape escape states and check that
1124   // we still have non-escaping objects. The method pushs on _worklist
1125   // Field nodes which reference phantom_object.
1126   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1127     return false; // Nothing to do.
1128   }
1129   // Now propagate references to all JavaObject nodes.
1130   int java_objects_length = java_objects_worklist.length();
1131   elapsedTimer time;
1132   bool timeout = false;
1133   int new_edges = 1;
1134   int iterations = 0;
1135   do {
1136     while ((new_edges > 0) &&
1137            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1138       double start_time = time.seconds();
1139       time.start();
1140       new_edges = 0;
1141       // Propagate references to phantom_object for nodes pushed on _worklist
1142       // by find_non_escaped_objects() and find_field_value().
1143       new_edges += add_java_object_edges(phantom_obj, false);
1144       for (int next = 0; next < java_objects_length; ++next) {
1145         JavaObjectNode* ptn = java_objects_worklist.at(next);
1146         new_edges += add_java_object_edges(ptn, true);
1147 
1148 #define SAMPLE_SIZE 4
1149         if ((next % SAMPLE_SIZE) == 0) {
1150           // Each 4 iterations calculate how much time it will take
1151           // to complete graph construction.
1152           time.stop();
1153           // Poll for requests from shutdown mechanism to quiesce compiler
1154           // because Connection graph construction may take long time.
1155           CompileBroker::maybe_block();
1156           double stop_time = time.seconds();
1157           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1158           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1159           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1160             timeout = true;
1161             break; // Timeout
1162           }
1163           start_time = stop_time;
1164           time.start();
1165         }
1166 #undef SAMPLE_SIZE
1167 
1168       }
1169       if (timeout) break;
1170       if (new_edges > 0) {
1171         // Update escape states on each iteration if graph was updated.
1172         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1173           return false; // Nothing to do.
1174         }
1175       }
1176       time.stop();
1177       if (time.seconds() >= EscapeAnalysisTimeout) {
1178         timeout = true;
1179         break;
1180       }
1181     }
1182     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1183       time.start();
1184       // Find fields which have unknown value.
1185       int fields_length = oop_fields_worklist.length();
1186       for (int next = 0; next < fields_length; next++) {
1187         FieldNode* field = oop_fields_worklist.at(next);
1188         if (field->edge_count() == 0) {
1189           new_edges += find_field_value(field);
1190           // This code may added new edges to phantom_object.
1191           // Need an other cycle to propagate references to phantom_object.
1192         }
1193       }
1194       time.stop();
1195       if (time.seconds() >= EscapeAnalysisTimeout) {
1196         timeout = true;
1197         break;
1198       }
1199     } else {
1200       new_edges = 0; // Bailout
1201     }
1202   } while (new_edges > 0);
1203 
1204   // Bailout if passed limits.
1205   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1206     Compile* C = _compile;
1207     if (C->log() != NULL) {
1208       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1209       C->log()->text("%s", timeout ? "time" : "iterations");
1210       C->log()->end_elem(" limit'");
1211     }
1212     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1213            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1214     // Possible infinite build_connection_graph loop,
1215     // bailout (no changes to ideal graph were made).
1216     return false;
1217   }
1218 #ifdef ASSERT
1219   if (Verbose && PrintEscapeAnalysis) {
1220     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1221                   iterations, nodes_size(), ptnodes_worklist.length());
1222   }
1223 #endif
1224 
1225 #undef CG_BUILD_ITER_LIMIT
1226 
1227   // Find fields initialized by NULL for non-escaping Allocations.
1228   int non_escaped_length = non_escaped_worklist.length();
1229   for (int next = 0; next < non_escaped_length; next++) {
1230     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1231     PointsToNode::EscapeState es = ptn->escape_state();
1232     assert(es <= PointsToNode::ArgEscape, "sanity");
1233     if (es == PointsToNode::NoEscape) {
1234       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1235         // Adding references to NULL object does not change escape states
1236         // since it does not escape. Also no fields are added to NULL object.
1237         add_java_object_edges(null_obj, false);
1238       }
1239     }
1240     Node* n = ptn->ideal_node();
1241     if (n->is_Allocate()) {
1242       // The object allocated by this Allocate node will never be
1243       // seen by an other thread. Mark it so that when it is
1244       // expanded no MemBarStoreStore is added.
1245       InitializeNode* ini = n->as_Allocate()->initialization();
1246       if (ini != NULL)
1247         ini->set_does_not_escape();
1248     }
1249   }
1250   return true; // Finished graph construction.
1251 }
1252 
1253 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1254 // and check that we still have non-escaping java objects.
1255 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1256                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1257   GrowableArray<PointsToNode*> escape_worklist;
1258   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1259   int ptnodes_length = ptnodes_worklist.length();
1260   for (int next = 0; next < ptnodes_length; ++next) {
1261     PointsToNode* ptn = ptnodes_worklist.at(next);
1262     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1263         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1264       escape_worklist.push(ptn);
1265     }
1266   }
1267   // Set escape states to referenced nodes (edges list).
1268   while (escape_worklist.length() > 0) {
1269     PointsToNode* ptn = escape_worklist.pop();
1270     PointsToNode::EscapeState es  = ptn->escape_state();
1271     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1272     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1273         es >= PointsToNode::ArgEscape) {
1274       // GlobalEscape or ArgEscape state of field means it has unknown value.
1275       if (add_edge(ptn, phantom_obj)) {
1276         // New edge was added
1277         add_field_uses_to_worklist(ptn->as_Field());
1278       }
1279     }
1280     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1281       PointsToNode* e = i.get();
1282       if (e->is_Arraycopy()) {
1283         assert(ptn->arraycopy_dst(), "sanity");
1284         // Propagate only fields escape state through arraycopy edge.
1285         if (e->fields_escape_state() < field_es) {
1286           set_fields_escape_state(e, field_es);
1287           escape_worklist.push(e);
1288         }
1289       } else if (es >= field_es) {
1290         // fields_escape_state is also set to 'es' if it is less than 'es'.
1291         if (e->escape_state() < es) {
1292           set_escape_state(e, es);
1293           escape_worklist.push(e);
1294         }
1295       } else {
1296         // Propagate field escape state.
1297         bool es_changed = false;
1298         if (e->fields_escape_state() < field_es) {
1299           set_fields_escape_state(e, field_es);
1300           es_changed = true;
1301         }
1302         if ((e->escape_state() < field_es) &&
1303             e->is_Field() && ptn->is_JavaObject() &&
1304             e->as_Field()->is_oop()) {
1305           // Change escape state of referenced fields.
1306           set_escape_state(e, field_es);
1307           es_changed = true;
1308         } else if (e->escape_state() < es) {
1309           set_escape_state(e, es);
1310           es_changed = true;
1311         }
1312         if (es_changed) {
1313           escape_worklist.push(e);
1314         }
1315       }
1316     }
1317   }
1318   // Remove escaped objects from non_escaped list.
1319   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1320     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1321     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1322       non_escaped_worklist.delete_at(next);
1323     }
1324     if (ptn->escape_state() == PointsToNode::NoEscape) {
1325       // Find fields in non-escaped allocations which have unknown value.
1326       find_init_values(ptn, phantom_obj, NULL);
1327     }
1328   }
1329   return (non_escaped_worklist.length() > 0);
1330 }
1331 
1332 // Add all references to JavaObject node by walking over all uses.
1333 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1334   int new_edges = 0;
1335   if (populate_worklist) {
1336     // Populate _worklist by uses of jobj's uses.
1337     for (UseIterator i(jobj); i.has_next(); i.next()) {
1338       PointsToNode* use = i.get();
1339       if (use->is_Arraycopy())
1340         continue;
1341       add_uses_to_worklist(use);
1342       if (use->is_Field() && use->as_Field()->is_oop()) {
1343         // Put on worklist all field's uses (loads) and
1344         // related field nodes (same base and offset).
1345         add_field_uses_to_worklist(use->as_Field());
1346       }
1347     }
1348   }
1349   for (int l = 0; l < _worklist.length(); l++) {
1350     PointsToNode* use = _worklist.at(l);
1351     if (PointsToNode::is_base_use(use)) {
1352       // Add reference from jobj to field and from field to jobj (field's base).
1353       use = PointsToNode::get_use_node(use)->as_Field();
1354       if (add_base(use->as_Field(), jobj)) {
1355         new_edges++;
1356       }
1357       continue;
1358     }
1359     assert(!use->is_JavaObject(), "sanity");
1360     if (use->is_Arraycopy()) {
1361       if (jobj == null_obj) // NULL object does not have field edges
1362         continue;
1363       // Added edge from Arraycopy node to arraycopy's source java object
1364       if (add_edge(use, jobj)) {
1365         jobj->set_arraycopy_src();
1366         new_edges++;
1367       }
1368       // and stop here.
1369       continue;
1370     }
1371     if (!add_edge(use, jobj))
1372       continue; // No new edge added, there was such edge already.
1373     new_edges++;
1374     if (use->is_LocalVar()) {
1375       add_uses_to_worklist(use);
1376       if (use->arraycopy_dst()) {
1377         for (EdgeIterator i(use); i.has_next(); i.next()) {
1378           PointsToNode* e = i.get();
1379           if (e->is_Arraycopy()) {
1380             if (jobj == null_obj) // NULL object does not have field edges
1381               continue;
1382             // Add edge from arraycopy's destination java object to Arraycopy node.
1383             if (add_edge(jobj, e)) {
1384               new_edges++;
1385               jobj->set_arraycopy_dst();
1386             }
1387           }
1388         }
1389       }
1390     } else {
1391       // Added new edge to stored in field values.
1392       // Put on worklist all field's uses (loads) and
1393       // related field nodes (same base and offset).
1394       add_field_uses_to_worklist(use->as_Field());
1395     }
1396   }
1397   _worklist.clear();
1398   _in_worklist.Reset();
1399   return new_edges;
1400 }
1401 
1402 // Put on worklist all related field nodes.
1403 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1404   assert(field->is_oop(), "sanity");
1405   int offset = field->offset();
1406   add_uses_to_worklist(field);
1407   // Loop over all bases of this field and push on worklist Field nodes
1408   // with the same offset and base (since they may reference the same field).
1409   for (BaseIterator i(field); i.has_next(); i.next()) {
1410     PointsToNode* base = i.get();
1411     add_fields_to_worklist(field, base);
1412     // Check if the base was source object of arraycopy and go over arraycopy's
1413     // destination objects since values stored to a field of source object are
1414     // accessable by uses (loads) of fields of destination objects.
1415     if (base->arraycopy_src()) {
1416       for (UseIterator j(base); j.has_next(); j.next()) {
1417         PointsToNode* arycp = j.get();
1418         if (arycp->is_Arraycopy()) {
1419           for (UseIterator k(arycp); k.has_next(); k.next()) {
1420             PointsToNode* abase = k.get();
1421             if (abase->arraycopy_dst() && abase != base) {
1422               // Look for the same arraycopy reference.
1423               add_fields_to_worklist(field, abase);
1424             }
1425           }
1426         }
1427       }
1428     }
1429   }
1430 }
1431 
1432 // Put on worklist all related field nodes.
1433 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1434   int offset = field->offset();
1435   if (base->is_LocalVar()) {
1436     for (UseIterator j(base); j.has_next(); j.next()) {
1437       PointsToNode* f = j.get();
1438       if (PointsToNode::is_base_use(f)) { // Field
1439         f = PointsToNode::get_use_node(f);
1440         if (f == field || !f->as_Field()->is_oop())
1441           continue;
1442         int offs = f->as_Field()->offset();
1443         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1444           add_to_worklist(f);
1445         }
1446       }
1447     }
1448   } else {
1449     assert(base->is_JavaObject(), "sanity");
1450     if (// Skip phantom_object since it is only used to indicate that
1451         // this field's content globally escapes.
1452         (base != phantom_obj) &&
1453         // NULL object node does not have fields.
1454         (base != null_obj)) {
1455       for (EdgeIterator i(base); i.has_next(); i.next()) {
1456         PointsToNode* f = i.get();
1457         // Skip arraycopy edge since store to destination object field
1458         // does not update value in source object field.
1459         if (f->is_Arraycopy()) {
1460           assert(base->arraycopy_dst(), "sanity");
1461           continue;
1462         }
1463         if (f == field || !f->as_Field()->is_oop())
1464           continue;
1465         int offs = f->as_Field()->offset();
1466         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1467           add_to_worklist(f);
1468         }
1469       }
1470     }
1471   }
1472 }
1473 
1474 // Find fields which have unknown value.
1475 int ConnectionGraph::find_field_value(FieldNode* field) {
1476   // Escaped fields should have init value already.
1477   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1478   int new_edges = 0;
1479   for (BaseIterator i(field); i.has_next(); i.next()) {
1480     PointsToNode* base = i.get();
1481     if (base->is_JavaObject()) {
1482       // Skip Allocate's fields which will be processed later.
1483       if (base->ideal_node()->is_Allocate())
1484         return 0;
1485       assert(base == null_obj, "only NULL ptr base expected here");
1486     }
1487   }
1488   if (add_edge(field, phantom_obj)) {
1489     // New edge was added
1490     new_edges++;
1491     add_field_uses_to_worklist(field);
1492   }
1493   return new_edges;
1494 }
1495 
1496 // Find fields initializing values for allocations.
1497 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1498   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1499   int new_edges = 0;
1500   Node* alloc = pta->ideal_node();
1501   if (init_val == phantom_obj) {
1502     // Do nothing for Allocate nodes since its fields values are
1503     // "known" unless they are initialized by arraycopy/clone.
1504     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1505       return 0;
1506     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1507 #ifdef ASSERT
1508     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1509       const char* name = alloc->as_CallStaticJava()->_name;
1510       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1511     }
1512 #endif
1513     // Non-escaped allocation returned from Java or runtime call have
1514     // unknown values in fields.
1515     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1516       PointsToNode* field = i.get();
1517       if (field->is_Field() && field->as_Field()->is_oop()) {
1518         if (add_edge(field, phantom_obj)) {
1519           // New edge was added
1520           new_edges++;
1521           add_field_uses_to_worklist(field->as_Field());
1522         }
1523       }
1524     }
1525     return new_edges;
1526   }
1527   assert(init_val == null_obj, "sanity");
1528   // Do nothing for Call nodes since its fields values are unknown.
1529   if (!alloc->is_Allocate())
1530     return 0;
1531 
1532   InitializeNode* ini = alloc->as_Allocate()->initialization();
1533   bool visited_bottom_offset = false;
1534   GrowableArray<int> offsets_worklist;
1535 
1536   // Check if an oop field's initializing value is recorded and add
1537   // a corresponding NULL if field's value if it is not recorded.
1538   // Connection Graph does not record a default initialization by NULL
1539   // captured by Initialize node.
1540   //
1541   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1542     PointsToNode* field = i.get(); // Field (AddP)
1543     if (!field->is_Field() || !field->as_Field()->is_oop())
1544       continue; // Not oop field
1545     int offset = field->as_Field()->offset();
1546     if (offset == Type::OffsetBot) {
1547       if (!visited_bottom_offset) {
1548         // OffsetBot is used to reference array's element,
1549         // always add reference to NULL to all Field nodes since we don't
1550         // known which element is referenced.
1551         if (add_edge(field, null_obj)) {
1552           // New edge was added
1553           new_edges++;
1554           add_field_uses_to_worklist(field->as_Field());
1555           visited_bottom_offset = true;
1556         }
1557       }
1558     } else {
1559       // Check only oop fields.
1560       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1561       if (adr_type->isa_rawptr()) {
1562 #ifdef ASSERT
1563         // Raw pointers are used for initializing stores so skip it
1564         // since it should be recorded already
1565         Node* base = get_addp_base(field->ideal_node());
1566         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1567                (base->in(0) == alloc),"unexpected pointer type");
1568 #endif
1569         continue;
1570       }
1571       if (!offsets_worklist.contains(offset)) {
1572         offsets_worklist.append(offset);
1573         Node* value = NULL;
1574         if (ini != NULL) {
1575           // StoreP::memory_type() == T_ADDRESS
1576           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1577           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1578           // Make sure initializing store has the same type as this AddP.
1579           // This AddP may reference non existing field because it is on a
1580           // dead branch of bimorphic call which is not eliminated yet.
1581           if (store != NULL && store->is_Store() &&
1582               store->as_Store()->memory_type() == ft) {
1583             value = store->in(MemNode::ValueIn);
1584 #ifdef ASSERT
1585             if (VerifyConnectionGraph) {
1586               // Verify that AddP already points to all objects the value points to.
1587               PointsToNode* val = ptnode_adr(value->_idx);
1588               assert((val != NULL), "should be processed already");
1589               PointsToNode* missed_obj = NULL;
1590               if (val->is_JavaObject()) {
1591                 if (!field->points_to(val->as_JavaObject())) {
1592                   missed_obj = val;
1593                 }
1594               } else {
1595                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1596                   tty->print_cr("----------init store has invalid value -----");
1597                   store->dump();
1598                   val->dump();
1599                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1600                 }
1601                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1602                   PointsToNode* obj = j.get();
1603                   if (obj->is_JavaObject()) {
1604                     if (!field->points_to(obj->as_JavaObject())) {
1605                       missed_obj = obj;
1606                       break;
1607                     }
1608                   }
1609                 }
1610               }
1611               if (missed_obj != NULL) {
1612                 tty->print_cr("----------field---------------------------------");
1613                 field->dump();
1614                 tty->print_cr("----------missed referernce to object-----------");
1615                 missed_obj->dump();
1616                 tty->print_cr("----------object referernced by init store -----");
1617                 store->dump();
1618                 val->dump();
1619                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1620               }
1621             }
1622 #endif
1623           } else {
1624             // There could be initializing stores which follow allocation.
1625             // For example, a volatile field store is not collected
1626             // by Initialize node.
1627             //
1628             // Need to check for dependent loads to separate such stores from
1629             // stores which follow loads. For now, add initial value NULL so
1630             // that compare pointers optimization works correctly.
1631           }
1632         }
1633         if (value == NULL) {
1634           // A field's initializing value was not recorded. Add NULL.
1635           if (add_edge(field, null_obj)) {
1636             // New edge was added
1637             new_edges++;
1638             add_field_uses_to_worklist(field->as_Field());
1639           }
1640         }
1641       }
1642     }
1643   }
1644   return new_edges;
1645 }
1646 
1647 // Adjust scalar_replaceable state after Connection Graph is built.
1648 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1649   // Search for non-escaping objects which are not scalar replaceable
1650   // and mark them to propagate the state to referenced objects.
1651 
1652   // 1. An object is not scalar replaceable if the field into which it is
1653   // stored has unknown offset (stored into unknown element of an array).
1654   //
1655   for (UseIterator i(jobj); i.has_next(); i.next()) {
1656     PointsToNode* use = i.get();
1657     if (use->is_Arraycopy()) {
1658       continue;
1659     }
1660     if (use->is_Field()) {
1661       FieldNode* field = use->as_Field();
1662       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1663       if (field->offset() == Type::OffsetBot) {
1664         jobj->set_scalar_replaceable(false);
1665         return;
1666       }
1667       // 2. An object is not scalar replaceable if the field into which it is
1668       // stored has multiple bases one of which is null.
1669       if (field->base_count() > 1) {
1670         for (BaseIterator i(field); i.has_next(); i.next()) {
1671           PointsToNode* base = i.get();
1672           if (base == null_obj) {
1673             jobj->set_scalar_replaceable(false);
1674             return;
1675           }
1676         }
1677       }
1678     }
1679     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1680     // 3. An object is not scalar replaceable if it is merged with other objects.
1681     for (EdgeIterator j(use); j.has_next(); j.next()) {
1682       PointsToNode* ptn = j.get();
1683       if (ptn->is_JavaObject() && ptn != jobj) {
1684         // Mark all objects.
1685         jobj->set_scalar_replaceable(false);
1686          ptn->set_scalar_replaceable(false);
1687       }
1688     }
1689     if (!jobj->scalar_replaceable()) {
1690       return;
1691     }
1692   }
1693 
1694   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1695     if (j.get()->is_Arraycopy()) {
1696       continue;
1697     }
1698 
1699     // Non-escaping object node should point only to field nodes.
1700     FieldNode* field = j.get()->as_Field();
1701     int offset = field->as_Field()->offset();
1702 
1703     // 4. An object is not scalar replaceable if it has a field with unknown
1704     // offset (array's element is accessed in loop).
1705     if (offset == Type::OffsetBot) {
1706       jobj->set_scalar_replaceable(false);
1707       return;
1708     }
1709     // 5. Currently an object is not scalar replaceable if a LoadStore node
1710     // access its field since the field value is unknown after it.
1711     //
1712     Node* n = field->ideal_node();
1713     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1714       if (n->fast_out(i)->is_LoadStore()) {
1715         jobj->set_scalar_replaceable(false);
1716         return;
1717       }
1718     }
1719 
1720     // 6. Or the address may point to more then one object. This may produce
1721     // the false positive result (set not scalar replaceable)
1722     // since the flow-insensitive escape analysis can't separate
1723     // the case when stores overwrite the field's value from the case
1724     // when stores happened on different control branches.
1725     //
1726     // Note: it will disable scalar replacement in some cases:
1727     //
1728     //    Point p[] = new Point[1];
1729     //    p[0] = new Point(); // Will be not scalar replaced
1730     //
1731     // but it will save us from incorrect optimizations in next cases:
1732     //
1733     //    Point p[] = new Point[1];
1734     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1735     //
1736     if (field->base_count() > 1) {
1737       for (BaseIterator i(field); i.has_next(); i.next()) {
1738         PointsToNode* base = i.get();
1739         // Don't take into account LocalVar nodes which
1740         // may point to only one object which should be also
1741         // this field's base by now.
1742         if (base->is_JavaObject() && base != jobj) {
1743           // Mark all bases.
1744           jobj->set_scalar_replaceable(false);
1745           base->set_scalar_replaceable(false);
1746         }
1747       }
1748     }
1749   }
1750 }
1751 
1752 #ifdef ASSERT
1753 void ConnectionGraph::verify_connection_graph(
1754                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1755                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1756                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1757                          GrowableArray<Node*>& addp_worklist) {
1758   // Verify that graph is complete - no new edges could be added.
1759   int java_objects_length = java_objects_worklist.length();
1760   int non_escaped_length  = non_escaped_worklist.length();
1761   int new_edges = 0;
1762   for (int next = 0; next < java_objects_length; ++next) {
1763     JavaObjectNode* ptn = java_objects_worklist.at(next);
1764     new_edges += add_java_object_edges(ptn, true);
1765   }
1766   assert(new_edges == 0, "graph was not complete");
1767   // Verify that escape state is final.
1768   int length = non_escaped_worklist.length();
1769   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1770   assert((non_escaped_length == non_escaped_worklist.length()) &&
1771          (non_escaped_length == length) &&
1772          (_worklist.length() == 0), "escape state was not final");
1773 
1774   // Verify fields information.
1775   int addp_length = addp_worklist.length();
1776   for (int next = 0; next < addp_length; ++next ) {
1777     Node* n = addp_worklist.at(next);
1778     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1779     if (field->is_oop()) {
1780       // Verify that field has all bases
1781       Node* base = get_addp_base(n);
1782       PointsToNode* ptn = ptnode_adr(base->_idx);
1783       if (ptn->is_JavaObject()) {
1784         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1785       } else {
1786         assert(ptn->is_LocalVar(), "sanity");
1787         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1788           PointsToNode* e = i.get();
1789           if (e->is_JavaObject()) {
1790             assert(field->has_base(e->as_JavaObject()), "sanity");
1791           }
1792         }
1793       }
1794       // Verify that all fields have initializing values.
1795       if (field->edge_count() == 0) {
1796         tty->print_cr("----------field does not have references----------");
1797         field->dump();
1798         for (BaseIterator i(field); i.has_next(); i.next()) {
1799           PointsToNode* base = i.get();
1800           tty->print_cr("----------field has next base---------------------");
1801           base->dump();
1802           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1803             tty->print_cr("----------base has fields-------------------------");
1804             for (EdgeIterator j(base); j.has_next(); j.next()) {
1805               j.get()->dump();
1806             }
1807             tty->print_cr("----------base has references---------------------");
1808             for (UseIterator j(base); j.has_next(); j.next()) {
1809               j.get()->dump();
1810             }
1811           }
1812         }
1813         for (UseIterator i(field); i.has_next(); i.next()) {
1814           i.get()->dump();
1815         }
1816         assert(field->edge_count() > 0, "sanity");
1817       }
1818     }
1819   }
1820 }
1821 #endif
1822 
1823 // Optimize ideal graph.
1824 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1825                                            GrowableArray<Node*>& storestore_worklist) {
1826   Compile* C = _compile;
1827   PhaseIterGVN* igvn = _igvn;
1828   if (EliminateLocks) {
1829     // Mark locks before changing ideal graph.
1830     int cnt = C->macro_count();
1831     for( int i=0; i < cnt; i++ ) {
1832       Node *n = C->macro_node(i);
1833       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1834         AbstractLockNode* alock = n->as_AbstractLock();
1835         if (!alock->is_non_esc_obj()) {
1836           if (not_global_escape(alock->obj_node())) {
1837             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1838             // The lock could be marked eliminated by lock coarsening
1839             // code during first IGVN before EA. Replace coarsened flag
1840             // to eliminate all associated locks/unlocks.
1841 #ifdef ASSERT
1842             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1843 #endif
1844             alock->set_non_esc_obj();
1845           }
1846         }
1847       }
1848     }
1849   }
1850 
1851   if (OptimizePtrCompare) {
1852     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1853     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1854     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1855     // Optimize objects compare.
1856     while (ptr_cmp_worklist.length() != 0) {
1857       Node *n = ptr_cmp_worklist.pop();
1858       Node *res = optimize_ptr_compare(n);
1859       if (res != NULL) {
1860 #ifndef PRODUCT
1861         if (PrintOptimizePtrCompare) {
1862           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1863           if (Verbose) {
1864             n->dump(1);
1865           }
1866         }
1867 #endif
1868         igvn->replace_node(n, res);
1869       }
1870     }
1871     // cleanup
1872     if (_pcmp_neq->outcnt() == 0)
1873       igvn->hash_delete(_pcmp_neq);
1874     if (_pcmp_eq->outcnt()  == 0)
1875       igvn->hash_delete(_pcmp_eq);
1876   }
1877 
1878   // For MemBarStoreStore nodes added in library_call.cpp, check
1879   // escape status of associated AllocateNode and optimize out
1880   // MemBarStoreStore node if the allocated object never escapes.
1881   while (storestore_worklist.length() != 0) {
1882     Node *n = storestore_worklist.pop();
1883     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1884     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1885     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1886     if (not_global_escape(alloc)) {
1887       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1888       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1889       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1890       igvn->register_new_node_with_optimizer(mb);
1891       igvn->replace_node(storestore, mb);
1892     }
1893   }
1894 }
1895 
1896 // Optimize objects compare.
1897 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1898   assert(OptimizePtrCompare, "sanity");
1899   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1900   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1901   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1902   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1903   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1904   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1905 
1906   // Check simple cases first.
1907   if (jobj1 != NULL) {
1908     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1909       if (jobj1 == jobj2) {
1910         // Comparing the same not escaping object.
1911         return _pcmp_eq;
1912       }
1913       Node* obj = jobj1->ideal_node();
1914       // Comparing not escaping allocation.
1915       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1916           !ptn2->points_to(jobj1)) {
1917         return _pcmp_neq; // This includes nullness check.
1918       }
1919     }
1920   }
1921   if (jobj2 != NULL) {
1922     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1923       Node* obj = jobj2->ideal_node();
1924       // Comparing not escaping allocation.
1925       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1926           !ptn1->points_to(jobj2)) {
1927         return _pcmp_neq; // This includes nullness check.
1928       }
1929     }
1930   }
1931   if (jobj1 != NULL && jobj1 != phantom_obj &&
1932       jobj2 != NULL && jobj2 != phantom_obj &&
1933       jobj1->ideal_node()->is_Con() &&
1934       jobj2->ideal_node()->is_Con()) {
1935     // Klass or String constants compare. Need to be careful with
1936     // compressed pointers - compare types of ConN and ConP instead of nodes.
1937     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1938     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1939     if (t1->make_ptr() == t2->make_ptr()) {
1940       return _pcmp_eq;
1941     } else {
1942       return _pcmp_neq;
1943     }
1944   }
1945   if (ptn1->meet(ptn2)) {
1946     return NULL; // Sets are not disjoint
1947   }
1948 
1949   // Sets are disjoint.
1950   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1951   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1952   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1953   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1954   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1955       set2_has_unknown_ptr && set1_has_null_ptr) {
1956     // Check nullness of unknown object.
1957     return NULL;
1958   }
1959 
1960   // Disjointness by itself is not sufficient since
1961   // alias analysis is not complete for escaped objects.
1962   // Disjoint sets are definitely unrelated only when
1963   // at least one set has only not escaping allocations.
1964   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1965     if (ptn1->non_escaping_allocation()) {
1966       return _pcmp_neq;
1967     }
1968   }
1969   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1970     if (ptn2->non_escaping_allocation()) {
1971       return _pcmp_neq;
1972     }
1973   }
1974   return NULL;
1975 }
1976 
1977 // Connection Graph constuction functions.
1978 
1979 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1980   PointsToNode* ptadr = _nodes.at(n->_idx);
1981   if (ptadr != NULL) {
1982     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1983     return;
1984   }
1985   Compile* C = _compile;
1986   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1987   _nodes.at_put(n->_idx, ptadr);
1988 }
1989 
1990 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1991   PointsToNode* ptadr = _nodes.at(n->_idx);
1992   if (ptadr != NULL) {
1993     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1994     return;
1995   }
1996   Compile* C = _compile;
1997   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1998   _nodes.at_put(n->_idx, ptadr);
1999 }
2000 
2001 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2002   PointsToNode* ptadr = _nodes.at(n->_idx);
2003   if (ptadr != NULL) {
2004     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2005     return;
2006   }
2007   bool unsafe = false;
2008   bool is_oop = is_oop_field(n, offset, &unsafe);
2009   if (unsafe) {
2010     es = PointsToNode::GlobalEscape;
2011   }
2012   Compile* C = _compile;
2013   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2014   _nodes.at_put(n->_idx, field);
2015 }
2016 
2017 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2018                                     PointsToNode* src, PointsToNode* dst) {
2019   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2020   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2021   PointsToNode* ptadr = _nodes.at(n->_idx);
2022   if (ptadr != NULL) {
2023     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2024     return;
2025   }
2026   Compile* C = _compile;
2027   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2028   _nodes.at_put(n->_idx, ptadr);
2029   // Add edge from arraycopy node to source object.
2030   (void)add_edge(ptadr, src);
2031   src->set_arraycopy_src();
2032   // Add edge from destination object to arraycopy node.
2033   (void)add_edge(dst, ptadr);
2034   dst->set_arraycopy_dst();
2035 }
2036 
2037 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2038   const Type* adr_type = n->as_AddP()->bottom_type();
2039   BasicType bt = T_INT;
2040   if (offset == Type::OffsetBot) {
2041     // Check only oop fields.
2042     if (!adr_type->isa_aryptr() ||
2043         (adr_type->isa_aryptr()->klass() == NULL) ||
2044          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2045       // OffsetBot is used to reference array's element. Ignore first AddP.
2046       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2047         bt = T_OBJECT;
2048       }
2049     }
2050   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2051     if (adr_type->isa_instptr()) {
2052       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2053       if (field != NULL) {
2054         bt = field->layout_type();
2055       } else {
2056         // Check for unsafe oop field access
2057         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2058           bt = T_OBJECT;
2059           (*unsafe) = true;
2060         }
2061       }
2062     } else if (adr_type->isa_aryptr()) {
2063       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2064         // Ignore array length load.
2065       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2066         // Ignore first AddP.
2067       } else {
2068         const Type* elemtype = adr_type->isa_aryptr()->elem();
2069         bt = elemtype->array_element_basic_type();
2070       }
2071     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2072       // Allocation initialization, ThreadLocal field access, unsafe access
2073       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2074         bt = T_OBJECT;
2075       }
2076     }
2077   }
2078   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2079 }
2080 
2081 // Returns unique pointed java object or NULL.
2082 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2083   assert(!_collecting, "should not call when contructed graph");
2084   // If the node was created after the escape computation we can't answer.
2085   uint idx = n->_idx;
2086   if (idx >= nodes_size()) {
2087     return NULL;
2088   }
2089   PointsToNode* ptn = ptnode_adr(idx);
2090   if (ptn->is_JavaObject()) {
2091     return ptn->as_JavaObject();
2092   }
2093   assert(ptn->is_LocalVar(), "sanity");
2094   // Check all java objects it points to.
2095   JavaObjectNode* jobj = NULL;
2096   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2097     PointsToNode* e = i.get();
2098     if (e->is_JavaObject()) {
2099       if (jobj == NULL) {
2100         jobj = e->as_JavaObject();
2101       } else if (jobj != e) {
2102         return NULL;
2103       }
2104     }
2105   }
2106   return jobj;
2107 }
2108 
2109 // Return true if this node points only to non-escaping allocations.
2110 bool PointsToNode::non_escaping_allocation() {
2111   if (is_JavaObject()) {
2112     Node* n = ideal_node();
2113     if (n->is_Allocate() || n->is_CallStaticJava()) {
2114       return (escape_state() == PointsToNode::NoEscape);
2115     } else {
2116       return false;
2117     }
2118   }
2119   assert(is_LocalVar(), "sanity");
2120   // Check all java objects it points to.
2121   for (EdgeIterator i(this); i.has_next(); i.next()) {
2122     PointsToNode* e = i.get();
2123     if (e->is_JavaObject()) {
2124       Node* n = e->ideal_node();
2125       if ((e->escape_state() != PointsToNode::NoEscape) ||
2126           !(n->is_Allocate() || n->is_CallStaticJava())) {
2127         return false;
2128       }
2129     }
2130   }
2131   return true;
2132 }
2133 
2134 // Return true if we know the node does not escape globally.
2135 bool ConnectionGraph::not_global_escape(Node *n) {
2136   assert(!_collecting, "should not call during graph construction");
2137   // If the node was created after the escape computation we can't answer.
2138   uint idx = n->_idx;
2139   if (idx >= nodes_size()) {
2140     return false;
2141   }
2142   PointsToNode* ptn = ptnode_adr(idx);
2143   PointsToNode::EscapeState es = ptn->escape_state();
2144   // If we have already computed a value, return it.
2145   if (es >= PointsToNode::GlobalEscape)
2146     return false;
2147   if (ptn->is_JavaObject()) {
2148     return true; // (es < PointsToNode::GlobalEscape);
2149   }
2150   assert(ptn->is_LocalVar(), "sanity");
2151   // Check all java objects it points to.
2152   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2153     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2154       return false;
2155   }
2156   return true;
2157 }
2158 
2159 
2160 // Helper functions
2161 
2162 // Return true if this node points to specified node or nodes it points to.
2163 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2164   if (is_JavaObject()) {
2165     return (this == ptn);
2166   }
2167   assert(is_LocalVar() || is_Field(), "sanity");
2168   for (EdgeIterator i(this); i.has_next(); i.next()) {
2169     if (i.get() == ptn)
2170       return true;
2171   }
2172   return false;
2173 }
2174 
2175 // Return true if one node points to an other.
2176 bool PointsToNode::meet(PointsToNode* ptn) {
2177   if (this == ptn) {
2178     return true;
2179   } else if (ptn->is_JavaObject()) {
2180     return this->points_to(ptn->as_JavaObject());
2181   } else if (this->is_JavaObject()) {
2182     return ptn->points_to(this->as_JavaObject());
2183   }
2184   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2185   int ptn_count =  ptn->edge_count();
2186   for (EdgeIterator i(this); i.has_next(); i.next()) {
2187     PointsToNode* this_e = i.get();
2188     for (int j = 0; j < ptn_count; j++) {
2189       if (this_e == ptn->edge(j))
2190         return true;
2191     }
2192   }
2193   return false;
2194 }
2195 
2196 #ifdef ASSERT
2197 // Return true if bases point to this java object.
2198 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2199   for (BaseIterator i(this); i.has_next(); i.next()) {
2200     if (i.get() == jobj)
2201       return true;
2202   }
2203   return false;
2204 }
2205 #endif
2206 
2207 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2208   const Type *adr_type = phase->type(adr);
2209   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2210       adr->in(AddPNode::Address)->is_Proj() &&
2211       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2212     // We are computing a raw address for a store captured by an Initialize
2213     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2214     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2215     assert(offs != Type::OffsetBot ||
2216            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2217            "offset must be a constant or it is initialization of array");
2218     return offs;
2219   }
2220   const TypePtr *t_ptr = adr_type->isa_ptr();
2221   assert(t_ptr != NULL, "must be a pointer type");
2222   return t_ptr->offset();
2223 }
2224 
2225 Node* ConnectionGraph::get_addp_base(Node *addp) {
2226   assert(addp->is_AddP(), "must be AddP");
2227   //
2228   // AddP cases for Base and Address inputs:
2229   // case #1. Direct object's field reference:
2230   //     Allocate
2231   //       |
2232   //     Proj #5 ( oop result )
2233   //       |
2234   //     CheckCastPP (cast to instance type)
2235   //      | |
2236   //     AddP  ( base == address )
2237   //
2238   // case #2. Indirect object's field reference:
2239   //      Phi
2240   //       |
2241   //     CastPP (cast to instance type)
2242   //      | |
2243   //     AddP  ( base == address )
2244   //
2245   // case #3. Raw object's field reference for Initialize node:
2246   //      Allocate
2247   //        |
2248   //      Proj #5 ( oop result )
2249   //  top   |
2250   //     \  |
2251   //     AddP  ( base == top )
2252   //
2253   // case #4. Array's element reference:
2254   //   {CheckCastPP | CastPP}
2255   //     |  | |
2256   //     |  AddP ( array's element offset )
2257   //     |  |
2258   //     AddP ( array's offset )
2259   //
2260   // case #5. Raw object's field reference for arraycopy stub call:
2261   //          The inline_native_clone() case when the arraycopy stub is called
2262   //          after the allocation before Initialize and CheckCastPP nodes.
2263   //      Allocate
2264   //        |
2265   //      Proj #5 ( oop result )
2266   //       | |
2267   //       AddP  ( base == address )
2268   //
2269   // case #6. Constant Pool, ThreadLocal, CastX2P or
2270   //          Raw object's field reference:
2271   //      {ConP, ThreadLocal, CastX2P, raw Load}
2272   //  top   |
2273   //     \  |
2274   //     AddP  ( base == top )
2275   //
2276   // case #7. Klass's field reference.
2277   //      LoadKlass
2278   //       | |
2279   //       AddP  ( base == address )
2280   //
2281   // case #8. narrow Klass's field reference.
2282   //      LoadNKlass
2283   //       |
2284   //      DecodeN
2285   //       | |
2286   //       AddP  ( base == address )
2287   //
2288   Node *base = addp->in(AddPNode::Base);
2289   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2290     base = addp->in(AddPNode::Address);
2291     while (base->is_AddP()) {
2292       // Case #6 (unsafe access) may have several chained AddP nodes.
2293       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2294       base = base->in(AddPNode::Address);
2295     }
2296     Node* uncast_base = base->uncast();
2297     int opcode = uncast_base->Opcode();
2298     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2299            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2300            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2301            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2302   }
2303   return base;
2304 }
2305 
2306 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2307   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2308   Node* addp2 = addp->raw_out(0);
2309   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2310       addp2->in(AddPNode::Base) == n &&
2311       addp2->in(AddPNode::Address) == addp) {
2312     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2313     //
2314     // Find array's offset to push it on worklist first and
2315     // as result process an array's element offset first (pushed second)
2316     // to avoid CastPP for the array's offset.
2317     // Otherwise the inserted CastPP (LocalVar) will point to what
2318     // the AddP (Field) points to. Which would be wrong since
2319     // the algorithm expects the CastPP has the same point as
2320     // as AddP's base CheckCastPP (LocalVar).
2321     //
2322     //    ArrayAllocation
2323     //     |
2324     //    CheckCastPP
2325     //     |
2326     //    memProj (from ArrayAllocation CheckCastPP)
2327     //     |  ||
2328     //     |  ||   Int (element index)
2329     //     |  ||    |   ConI (log(element size))
2330     //     |  ||    |   /
2331     //     |  ||   LShift
2332     //     |  ||  /
2333     //     |  AddP (array's element offset)
2334     //     |  |
2335     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2336     //     | / /
2337     //     AddP (array's offset)
2338     //      |
2339     //     Load/Store (memory operation on array's element)
2340     //
2341     return addp2;
2342   }
2343   return NULL;
2344 }
2345 
2346 //
2347 // Adjust the type and inputs of an AddP which computes the
2348 // address of a field of an instance
2349 //
2350 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2351   PhaseGVN* igvn = _igvn;
2352   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2353   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2354   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2355   if (t == NULL) {
2356     // We are computing a raw address for a store captured by an Initialize
2357     // compute an appropriate address type (cases #3 and #5).
2358     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2359     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2360     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2361     assert(offs != Type::OffsetBot, "offset must be a constant");
2362     t = base_t->add_offset(offs)->is_oopptr();
2363   }
2364   int inst_id =  base_t->instance_id();
2365   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2366                              "old type must be non-instance or match new type");
2367 
2368   // The type 't' could be subclass of 'base_t'.
2369   // As result t->offset() could be large then base_t's size and it will
2370   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2371   // constructor verifies correctness of the offset.
2372   //
2373   // It could happened on subclass's branch (from the type profiling
2374   // inlining) which was not eliminated during parsing since the exactness
2375   // of the allocation type was not propagated to the subclass type check.
2376   //
2377   // Or the type 't' could be not related to 'base_t' at all.
2378   // It could happened when CHA type is different from MDO type on a dead path
2379   // (for example, from instanceof check) which is not collapsed during parsing.
2380   //
2381   // Do nothing for such AddP node and don't process its users since
2382   // this code branch will go away.
2383   //
2384   if (!t->is_known_instance() &&
2385       !base_t->klass()->is_subtype_of(t->klass())) {
2386      return false; // bail out
2387   }
2388   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2389   // Do NOT remove the next line: ensure a new alias index is allocated
2390   // for the instance type. Note: C++ will not remove it since the call
2391   // has side effect.
2392   int alias_idx = _compile->get_alias_index(tinst);
2393   igvn->set_type(addp, tinst);
2394   // record the allocation in the node map
2395   set_map(addp, get_map(base->_idx));
2396   // Set addp's Base and Address to 'base'.
2397   Node *abase = addp->in(AddPNode::Base);
2398   Node *adr   = addp->in(AddPNode::Address);
2399   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2400       adr->in(0)->_idx == (uint)inst_id) {
2401     // Skip AddP cases #3 and #5.
2402   } else {
2403     assert(!abase->is_top(), "sanity"); // AddP case #3
2404     if (abase != base) {
2405       igvn->hash_delete(addp);
2406       addp->set_req(AddPNode::Base, base);
2407       if (abase == adr) {
2408         addp->set_req(AddPNode::Address, base);
2409       } else {
2410         // AddP case #4 (adr is array's element offset AddP node)
2411 #ifdef ASSERT
2412         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2413         assert(adr->is_AddP() && atype != NULL &&
2414                atype->instance_id() == inst_id, "array's element offset should be processed first");
2415 #endif
2416       }
2417       igvn->hash_insert(addp);
2418     }
2419   }
2420   // Put on IGVN worklist since at least addp's type was changed above.
2421   record_for_optimizer(addp);
2422   return true;
2423 }
2424 
2425 //
2426 // Create a new version of orig_phi if necessary. Returns either the newly
2427 // created phi or an existing phi.  Sets create_new to indicate whether a new
2428 // phi was created.  Cache the last newly created phi in the node map.
2429 //
2430 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2431   Compile *C = _compile;
2432   PhaseGVN* igvn = _igvn;
2433   new_created = false;
2434   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2435   // nothing to do if orig_phi is bottom memory or matches alias_idx
2436   if (phi_alias_idx == alias_idx) {
2437     return orig_phi;
2438   }
2439   // Have we recently created a Phi for this alias index?
2440   PhiNode *result = get_map_phi(orig_phi->_idx);
2441   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2442     return result;
2443   }
2444   // Previous check may fail when the same wide memory Phi was split into Phis
2445   // for different memory slices. Search all Phis for this region.
2446   if (result != NULL) {
2447     Node* region = orig_phi->in(0);
2448     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2449       Node* phi = region->fast_out(i);
2450       if (phi->is_Phi() &&
2451           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2452         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2453         return phi->as_Phi();
2454       }
2455     }
2456   }
2457   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2458     if (C->do_escape_analysis() == true && !C->failing()) {
2459       // Retry compilation without escape analysis.
2460       // If this is the first failure, the sentinel string will "stick"
2461       // to the Compile object, and the C2Compiler will see it and retry.
2462       C->record_failure(C2Compiler::retry_no_escape_analysis());
2463     }
2464     return NULL;
2465   }
2466   orig_phi_worklist.append_if_missing(orig_phi);
2467   const TypePtr *atype = C->get_adr_type(alias_idx);
2468   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2469   C->copy_node_notes_to(result, orig_phi);
2470   igvn->set_type(result, result->bottom_type());
2471   record_for_optimizer(result);
2472   set_map(orig_phi, result);
2473   new_created = true;
2474   return result;
2475 }
2476 
2477 //
2478 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2479 // specified alias index.
2480 //
2481 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2482   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2483   Compile *C = _compile;
2484   PhaseGVN* igvn = _igvn;
2485   bool new_phi_created;
2486   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2487   if (!new_phi_created) {
2488     return result;
2489   }
2490   GrowableArray<PhiNode *>  phi_list;
2491   GrowableArray<uint>  cur_input;
2492   PhiNode *phi = orig_phi;
2493   uint idx = 1;
2494   bool finished = false;
2495   while(!finished) {
2496     while (idx < phi->req()) {
2497       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2498       if (mem != NULL && mem->is_Phi()) {
2499         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2500         if (new_phi_created) {
2501           // found an phi for which we created a new split, push current one on worklist and begin
2502           // processing new one
2503           phi_list.push(phi);
2504           cur_input.push(idx);
2505           phi = mem->as_Phi();
2506           result = newphi;
2507           idx = 1;
2508           continue;
2509         } else {
2510           mem = newphi;
2511         }
2512       }
2513       if (C->failing()) {
2514         return NULL;
2515       }
2516       result->set_req(idx++, mem);
2517     }
2518 #ifdef ASSERT
2519     // verify that the new Phi has an input for each input of the original
2520     assert( phi->req() == result->req(), "must have same number of inputs.");
2521     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2522 #endif
2523     // Check if all new phi's inputs have specified alias index.
2524     // Otherwise use old phi.
2525     for (uint i = 1; i < phi->req(); i++) {
2526       Node* in = result->in(i);
2527       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2528     }
2529     // we have finished processing a Phi, see if there are any more to do
2530     finished = (phi_list.length() == 0 );
2531     if (!finished) {
2532       phi = phi_list.pop();
2533       idx = cur_input.pop();
2534       PhiNode *prev_result = get_map_phi(phi->_idx);
2535       prev_result->set_req(idx++, result);
2536       result = prev_result;
2537     }
2538   }
2539   return result;
2540 }
2541 
2542 //
2543 // The next methods are derived from methods in MemNode.
2544 //
2545 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2546   Node *mem = mmem;
2547   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2548   // means an array I have not precisely typed yet.  Do not do any
2549   // alias stuff with it any time soon.
2550   if (toop->base() != Type::AnyPtr &&
2551       !(toop->klass() != NULL &&
2552         toop->klass()->is_java_lang_Object() &&
2553         toop->offset() == Type::OffsetBot)) {
2554     mem = mmem->memory_at(alias_idx);
2555     // Update input if it is progress over what we have now
2556   }
2557   return mem;
2558 }
2559 
2560 //
2561 // Move memory users to their memory slices.
2562 //
2563 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2564   Compile* C = _compile;
2565   PhaseGVN* igvn = _igvn;
2566   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2567   assert(tp != NULL, "ptr type");
2568   int alias_idx = C->get_alias_index(tp);
2569   int general_idx = C->get_general_index(alias_idx);
2570 
2571   // Move users first
2572   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2573     Node* use = n->fast_out(i);
2574     if (use->is_MergeMem()) {
2575       MergeMemNode* mmem = use->as_MergeMem();
2576       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2577       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2578         continue; // Nothing to do
2579       }
2580       // Replace previous general reference to mem node.
2581       uint orig_uniq = C->unique();
2582       Node* m = find_inst_mem(n, general_idx, orig_phis);
2583       assert(orig_uniq == C->unique(), "no new nodes");
2584       mmem->set_memory_at(general_idx, m);
2585       --imax;
2586       --i;
2587     } else if (use->is_MemBar()) {
2588       assert(!use->is_Initialize(), "initializing stores should not be moved");
2589       if (use->req() > MemBarNode::Precedent &&
2590           use->in(MemBarNode::Precedent) == n) {
2591         // Don't move related membars.
2592         record_for_optimizer(use);
2593         continue;
2594       }
2595       tp = use->as_MemBar()->adr_type()->isa_ptr();
2596       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2597           alias_idx == general_idx) {
2598         continue; // Nothing to do
2599       }
2600       // Move to general memory slice.
2601       uint orig_uniq = C->unique();
2602       Node* m = find_inst_mem(n, general_idx, orig_phis);
2603       assert(orig_uniq == C->unique(), "no new nodes");
2604       igvn->hash_delete(use);
2605       imax -= use->replace_edge(n, m);
2606       igvn->hash_insert(use);
2607       record_for_optimizer(use);
2608       --i;
2609 #ifdef ASSERT
2610     } else if (use->is_Mem()) {
2611       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2612         // Don't move related cardmark.
2613         continue;
2614       }
2615       // Memory nodes should have new memory input.
2616       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2617       assert(tp != NULL, "ptr type");
2618       int idx = C->get_alias_index(tp);
2619       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2620              "Following memory nodes should have new memory input or be on the same memory slice");
2621     } else if (use->is_Phi()) {
2622       // Phi nodes should be split and moved already.
2623       tp = use->as_Phi()->adr_type()->isa_ptr();
2624       assert(tp != NULL, "ptr type");
2625       int idx = C->get_alias_index(tp);
2626       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2627     } else {
2628       use->dump();
2629       assert(false, "should not be here");
2630 #endif
2631     }
2632   }
2633 }
2634 
2635 //
2636 // Search memory chain of "mem" to find a MemNode whose address
2637 // is the specified alias index.
2638 //
2639 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2640   if (orig_mem == NULL)
2641     return orig_mem;
2642   Compile* C = _compile;
2643   PhaseGVN* igvn = _igvn;
2644   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2645   bool is_instance = (toop != NULL) && toop->is_known_instance();
2646   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2647   Node *prev = NULL;
2648   Node *result = orig_mem;
2649   while (prev != result) {
2650     prev = result;
2651     if (result == start_mem)
2652       break;  // hit one of our sentinels
2653     if (result->is_Mem()) {
2654       const Type *at = igvn->type(result->in(MemNode::Address));
2655       if (at == Type::TOP)
2656         break; // Dead
2657       assert (at->isa_ptr() != NULL, "pointer type required.");
2658       int idx = C->get_alias_index(at->is_ptr());
2659       if (idx == alias_idx)
2660         break; // Found
2661       if (!is_instance && (at->isa_oopptr() == NULL ||
2662                            !at->is_oopptr()->is_known_instance())) {
2663         break; // Do not skip store to general memory slice.
2664       }
2665       result = result->in(MemNode::Memory);
2666     }
2667     if (!is_instance)
2668       continue;  // don't search further for non-instance types
2669     // skip over a call which does not affect this memory slice
2670     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2671       Node *proj_in = result->in(0);
2672       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2673         break;  // hit one of our sentinels
2674       } else if (proj_in->is_Call()) {
2675         // ArrayCopy node processed here as well
2676         CallNode *call = proj_in->as_Call();
2677         if (!call->may_modify(toop, igvn)) {
2678           result = call->in(TypeFunc::Memory);
2679         }
2680       } else if (proj_in->is_Initialize()) {
2681         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2682         // Stop if this is the initialization for the object instance which
2683         // which contains this memory slice, otherwise skip over it.
2684         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2685           result = proj_in->in(TypeFunc::Memory);
2686         }
2687       } else if (proj_in->is_MemBar()) {
2688         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2689             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2690             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2691           // clone
2692           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2693           if (ac->may_modify(toop, igvn)) {
2694             break;
2695           }
2696         }
2697         result = proj_in->in(TypeFunc::Memory);
2698       }
2699     } else if (result->is_MergeMem()) {
2700       MergeMemNode *mmem = result->as_MergeMem();
2701       result = step_through_mergemem(mmem, alias_idx, toop);
2702       if (result == mmem->base_memory()) {
2703         // Didn't find instance memory, search through general slice recursively.
2704         result = mmem->memory_at(C->get_general_index(alias_idx));
2705         result = find_inst_mem(result, alias_idx, orig_phis);
2706         if (C->failing()) {
2707           return NULL;
2708         }
2709         mmem->set_memory_at(alias_idx, result);
2710       }
2711     } else if (result->is_Phi() &&
2712                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2713       Node *un = result->as_Phi()->unique_input(igvn);
2714       if (un != NULL) {
2715         orig_phis.append_if_missing(result->as_Phi());
2716         result = un;
2717       } else {
2718         break;
2719       }
2720     } else if (result->is_ClearArray()) {
2721       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2722         // Can not bypass initialization of the instance
2723         // we are looking for.
2724         break;
2725       }
2726       // Otherwise skip it (the call updated 'result' value).
2727     } else if (result->Opcode() == Op_SCMemProj) {
2728       Node* mem = result->in(0);
2729       Node* adr = NULL;
2730       if (mem->is_LoadStore()) {
2731         adr = mem->in(MemNode::Address);
2732       } else {
2733         assert(mem->Opcode() == Op_EncodeISOArray ||
2734                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2735         adr = mem->in(3); // Memory edge corresponds to destination array
2736       }
2737       const Type *at = igvn->type(adr);
2738       if (at != Type::TOP) {
2739         assert(at->isa_ptr() != NULL, "pointer type required.");
2740         int idx = C->get_alias_index(at->is_ptr());
2741         if (idx == alias_idx) {
2742           // Assert in debug mode
2743           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2744           break; // In product mode return SCMemProj node
2745         }
2746       }
2747       result = mem->in(MemNode::Memory);
2748     } else if (result->Opcode() == Op_StrInflatedCopy) {
2749       Node* adr = result->in(3); // Memory edge corresponds to destination array
2750       const Type *at = igvn->type(adr);
2751       if (at != Type::TOP) {
2752         assert(at->isa_ptr() != NULL, "pointer type required.");
2753         int idx = C->get_alias_index(at->is_ptr());
2754         if (idx == alias_idx) {
2755           // Assert in debug mode
2756           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2757           break; // In product mode return SCMemProj node
2758         }
2759       }
2760       result = result->in(MemNode::Memory);
2761     }
2762   }
2763   if (result->is_Phi()) {
2764     PhiNode *mphi = result->as_Phi();
2765     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2766     const TypePtr *t = mphi->adr_type();
2767     if (!is_instance) {
2768       // Push all non-instance Phis on the orig_phis worklist to update inputs
2769       // during Phase 4 if needed.
2770       orig_phis.append_if_missing(mphi);
2771     } else if (C->get_alias_index(t) != alias_idx) {
2772       // Create a new Phi with the specified alias index type.
2773       result = split_memory_phi(mphi, alias_idx, orig_phis);
2774     }
2775   }
2776   // the result is either MemNode, PhiNode, InitializeNode.
2777   return result;
2778 }
2779 
2780 //
2781 //  Convert the types of unescaped object to instance types where possible,
2782 //  propagate the new type information through the graph, and update memory
2783 //  edges and MergeMem inputs to reflect the new type.
2784 //
2785 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2786 //  The processing is done in 4 phases:
2787 //
2788 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2789 //            types for the CheckCastPP for allocations where possible.
2790 //            Propagate the new types through users as follows:
2791 //               casts and Phi:  push users on alloc_worklist
2792 //               AddP:  cast Base and Address inputs to the instance type
2793 //                      push any AddP users on alloc_worklist and push any memnode
2794 //                      users onto memnode_worklist.
2795 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2796 //            search the Memory chain for a store with the appropriate type
2797 //            address type.  If a Phi is found, create a new version with
2798 //            the appropriate memory slices from each of the Phi inputs.
2799 //            For stores, process the users as follows:
2800 //               MemNode:  push on memnode_worklist
2801 //               MergeMem: push on mergemem_worklist
2802 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2803 //            moving the first node encountered of each  instance type to the
2804 //            the input corresponding to its alias index.
2805 //            appropriate memory slice.
2806 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2807 //
2808 // In the following example, the CheckCastPP nodes are the cast of allocation
2809 // results and the allocation of node 29 is unescaped and eligible to be an
2810 // instance type.
2811 //
2812 // We start with:
2813 //
2814 //     7 Parm #memory
2815 //    10  ConI  "12"
2816 //    19  CheckCastPP   "Foo"
2817 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2818 //    29  CheckCastPP   "Foo"
2819 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2820 //
2821 //    40  StoreP  25   7  20   ... alias_index=4
2822 //    50  StoreP  35  40  30   ... alias_index=4
2823 //    60  StoreP  45  50  20   ... alias_index=4
2824 //    70  LoadP    _  60  30   ... alias_index=4
2825 //    80  Phi     75  50  60   Memory alias_index=4
2826 //    90  LoadP    _  80  30   ... alias_index=4
2827 //   100  LoadP    _  80  20   ... alias_index=4
2828 //
2829 //
2830 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2831 // and creating a new alias index for node 30.  This gives:
2832 //
2833 //     7 Parm #memory
2834 //    10  ConI  "12"
2835 //    19  CheckCastPP   "Foo"
2836 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2837 //    29  CheckCastPP   "Foo"  iid=24
2838 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2839 //
2840 //    40  StoreP  25   7  20   ... alias_index=4
2841 //    50  StoreP  35  40  30   ... alias_index=6
2842 //    60  StoreP  45  50  20   ... alias_index=4
2843 //    70  LoadP    _  60  30   ... alias_index=6
2844 //    80  Phi     75  50  60   Memory alias_index=4
2845 //    90  LoadP    _  80  30   ... alias_index=6
2846 //   100  LoadP    _  80  20   ... alias_index=4
2847 //
2848 // In phase 2, new memory inputs are computed for the loads and stores,
2849 // And a new version of the phi is created.  In phase 4, the inputs to
2850 // node 80 are updated and then the memory nodes are updated with the
2851 // values computed in phase 2.  This results in:
2852 //
2853 //     7 Parm #memory
2854 //    10  ConI  "12"
2855 //    19  CheckCastPP   "Foo"
2856 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2857 //    29  CheckCastPP   "Foo"  iid=24
2858 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2859 //
2860 //    40  StoreP  25  7   20   ... alias_index=4
2861 //    50  StoreP  35  7   30   ... alias_index=6
2862 //    60  StoreP  45  40  20   ... alias_index=4
2863 //    70  LoadP    _  50  30   ... alias_index=6
2864 //    80  Phi     75  40  60   Memory alias_index=4
2865 //   120  Phi     75  50  50   Memory alias_index=6
2866 //    90  LoadP    _ 120  30   ... alias_index=6
2867 //   100  LoadP    _  80  20   ... alias_index=4
2868 //
2869 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2870   GrowableArray<Node *>  memnode_worklist;
2871   GrowableArray<PhiNode *>  orig_phis;
2872   PhaseIterGVN  *igvn = _igvn;
2873   uint new_index_start = (uint) _compile->num_alias_types();
2874   Arena* arena = Thread::current()->resource_area();
2875   VectorSet visited(arena);
2876   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2877   uint unique_old = _compile->unique();
2878 
2879   //  Phase 1:  Process possible allocations from alloc_worklist.
2880   //  Create instance types for the CheckCastPP for allocations where possible.
2881   //
2882   // (Note: don't forget to change the order of the second AddP node on
2883   //  the alloc_worklist if the order of the worklist processing is changed,
2884   //  see the comment in find_second_addp().)
2885   //
2886   while (alloc_worklist.length() != 0) {
2887     Node *n = alloc_worklist.pop();
2888     uint ni = n->_idx;
2889     if (n->is_Call()) {
2890       CallNode *alloc = n->as_Call();
2891       // copy escape information to call node
2892       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2893       PointsToNode::EscapeState es = ptn->escape_state();
2894       // We have an allocation or call which returns a Java object,
2895       // see if it is unescaped.
2896       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2897         continue;
2898       // Find CheckCastPP for the allocate or for the return value of a call
2899       n = alloc->result_cast();
2900       if (n == NULL) {            // No uses except Initialize node
2901         if (alloc->is_Allocate()) {
2902           // Set the scalar_replaceable flag for allocation
2903           // so it could be eliminated if it has no uses.
2904           alloc->as_Allocate()->_is_scalar_replaceable = true;
2905         }
2906         if (alloc->is_CallStaticJava()) {
2907           // Set the scalar_replaceable flag for boxing method
2908           // so it could be eliminated if it has no uses.
2909           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2910         }
2911         continue;
2912       }
2913       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2914         assert(!alloc->is_Allocate(), "allocation should have unique type");
2915         continue;
2916       }
2917 
2918       // The inline code for Object.clone() casts the allocation result to
2919       // java.lang.Object and then to the actual type of the allocated
2920       // object. Detect this case and use the second cast.
2921       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2922       // the allocation result is cast to java.lang.Object and then
2923       // to the actual Array type.
2924       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2925           && (alloc->is_AllocateArray() ||
2926               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2927         Node *cast2 = NULL;
2928         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2929           Node *use = n->fast_out(i);
2930           if (use->is_CheckCastPP()) {
2931             cast2 = use;
2932             break;
2933           }
2934         }
2935         if (cast2 != NULL) {
2936           n = cast2;
2937         } else {
2938           // Non-scalar replaceable if the allocation type is unknown statically
2939           // (reflection allocation), the object can't be restored during
2940           // deoptimization without precise type.
2941           continue;
2942         }
2943       }
2944 
2945       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2946       if (t == NULL)
2947         continue;  // not a TypeOopPtr
2948       if (!t->klass_is_exact())
2949         continue; // not an unique type
2950 
2951       if (alloc->is_Allocate()) {
2952         // Set the scalar_replaceable flag for allocation
2953         // so it could be eliminated.
2954         alloc->as_Allocate()->_is_scalar_replaceable = true;
2955       }
2956       if (alloc->is_CallStaticJava()) {
2957         // Set the scalar_replaceable flag for boxing method
2958         // so it could be eliminated.
2959         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2960       }
2961       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2962       // in order for an object to be scalar-replaceable, it must be:
2963       //   - a direct allocation (not a call returning an object)
2964       //   - non-escaping
2965       //   - eligible to be a unique type
2966       //   - not determined to be ineligible by escape analysis
2967       set_map(alloc, n);
2968       set_map(n, alloc);
2969       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2970       igvn->hash_delete(n);
2971       igvn->set_type(n,  tinst);
2972       n->raise_bottom_type(tinst);
2973       igvn->hash_insert(n);
2974       record_for_optimizer(n);
2975       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2976 
2977         // First, put on the worklist all Field edges from Connection Graph
2978         // which is more accurate than putting immediate users from Ideal Graph.
2979         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2980           PointsToNode* tgt = e.get();
2981           if (tgt->is_Arraycopy()) {
2982             continue;
2983           }
2984           Node* use = tgt->ideal_node();
2985           assert(tgt->is_Field() && use->is_AddP(),
2986                  "only AddP nodes are Field edges in CG");
2987           if (use->outcnt() > 0) { // Don't process dead nodes
2988             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2989             if (addp2 != NULL) {
2990               assert(alloc->is_AllocateArray(),"array allocation was expected");
2991               alloc_worklist.append_if_missing(addp2);
2992             }
2993             alloc_worklist.append_if_missing(use);
2994           }
2995         }
2996 
2997         // An allocation may have an Initialize which has raw stores. Scan
2998         // the users of the raw allocation result and push AddP users
2999         // on alloc_worklist.
3000         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
3001         assert (raw_result != NULL, "must have an allocation result");
3002         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3003           Node *use = raw_result->fast_out(i);
3004           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3005             Node* addp2 = find_second_addp(use, raw_result);
3006             if (addp2 != NULL) {
3007               assert(alloc->is_AllocateArray(),"array allocation was expected");
3008               alloc_worklist.append_if_missing(addp2);
3009             }
3010             alloc_worklist.append_if_missing(use);
3011           } else if (use->is_MemBar()) {
3012             memnode_worklist.append_if_missing(use);
3013           }
3014         }
3015       }
3016     } else if (n->is_AddP()) {
3017       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3018       if (jobj == NULL || jobj == phantom_obj) {
3019 #ifdef ASSERT
3020         ptnode_adr(get_addp_base(n)->_idx)->dump();
3021         ptnode_adr(n->_idx)->dump();
3022         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3023 #endif
3024         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3025         return;
3026       }
3027       Node *base = get_map(jobj->idx());  // CheckCastPP node
3028       if (!split_AddP(n, base)) continue; // wrong type from dead path
3029     } else if (n->is_Phi() ||
3030                n->is_CheckCastPP() ||
3031                n->is_EncodeP() ||
3032                n->is_DecodeN() ||
3033                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3034       if (visited.test_set(n->_idx)) {
3035         assert(n->is_Phi(), "loops only through Phi's");
3036         continue;  // already processed
3037       }
3038       JavaObjectNode* jobj = unique_java_object(n);
3039       if (jobj == NULL || jobj == phantom_obj) {
3040 #ifdef ASSERT
3041         ptnode_adr(n->_idx)->dump();
3042         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3043 #endif
3044         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3045         return;
3046       } else {
3047         Node *val = get_map(jobj->idx());   // CheckCastPP node
3048         TypeNode *tn = n->as_Type();
3049         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3050         assert(tinst != NULL && tinst->is_known_instance() &&
3051                tinst->instance_id() == jobj->idx() , "instance type expected.");
3052 
3053         const Type *tn_type = igvn->type(tn);
3054         const TypeOopPtr *tn_t;
3055         if (tn_type->isa_narrowoop()) {
3056           tn_t = tn_type->make_ptr()->isa_oopptr();
3057         } else {
3058           tn_t = tn_type->isa_oopptr();
3059         }
3060         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3061           if (tn_type->isa_narrowoop()) {
3062             tn_type = tinst->make_narrowoop();
3063           } else {
3064             tn_type = tinst;
3065           }
3066           igvn->hash_delete(tn);
3067           igvn->set_type(tn, tn_type);
3068           tn->set_type(tn_type);
3069           igvn->hash_insert(tn);
3070           record_for_optimizer(n);
3071         } else {
3072           assert(tn_type == TypePtr::NULL_PTR ||
3073                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3074                  "unexpected type");
3075           continue; // Skip dead path with different type
3076         }
3077       }
3078     } else {
3079       debug_only(n->dump();)
3080       assert(false, "EA: unexpected node");
3081       continue;
3082     }
3083     // push allocation's users on appropriate worklist
3084     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3085       Node *use = n->fast_out(i);
3086       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3087         // Load/store to instance's field
3088         memnode_worklist.append_if_missing(use);
3089       } else if (use->is_MemBar()) {
3090         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3091           memnode_worklist.append_if_missing(use);
3092         }
3093       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3094         Node* addp2 = find_second_addp(use, n);
3095         if (addp2 != NULL) {
3096           alloc_worklist.append_if_missing(addp2);
3097         }
3098         alloc_worklist.append_if_missing(use);
3099       } else if (use->is_Phi() ||
3100                  use->is_CheckCastPP() ||
3101                  use->is_EncodeNarrowPtr() ||
3102                  use->is_DecodeNarrowPtr() ||
3103                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3104         alloc_worklist.append_if_missing(use);
3105 #ifdef ASSERT
3106       } else if (use->is_Mem()) {
3107         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3108       } else if (use->is_MergeMem()) {
3109         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3110       } else if (use->is_SafePoint()) {
3111         // Look for MergeMem nodes for calls which reference unique allocation
3112         // (through CheckCastPP nodes) even for debug info.
3113         Node* m = use->in(TypeFunc::Memory);
3114         if (m->is_MergeMem()) {
3115           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3116         }
3117       } else if (use->Opcode() == Op_EncodeISOArray) {
3118         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3119           // EncodeISOArray overwrites destination array
3120           memnode_worklist.append_if_missing(use);
3121         }
3122       } else {
3123         uint op = use->Opcode();
3124         if ((use->in(MemNode::Memory) == n) &&
3125             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3126           // They overwrite memory edge corresponding to destination array,
3127           memnode_worklist.append_if_missing(use);
3128         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3129               op == Op_CastP2X || op == Op_StoreCM ||
3130               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3131               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3132               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3133           n->dump();
3134           use->dump();
3135           assert(false, "EA: missing allocation reference path");
3136         }
3137 #endif
3138       }
3139     }
3140 
3141   }
3142 
3143   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3144   // type, record it in the ArrayCopy node so we know what memory this
3145   // node uses/modified.
3146   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3147     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3148     Node* dest = ac->in(ArrayCopyNode::Dest);
3149     if (dest->is_AddP()) {
3150       dest = get_addp_base(dest);
3151     }
3152     JavaObjectNode* jobj = unique_java_object(dest);
3153     if (jobj != NULL) {
3154       Node *base = get_map(jobj->idx());
3155       if (base != NULL) {
3156         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3157         ac->_dest_type = base_t;
3158       }
3159     }
3160     Node* src = ac->in(ArrayCopyNode::Src);
3161     if (src->is_AddP()) {
3162       src = get_addp_base(src);
3163     }
3164     jobj = unique_java_object(src);
3165     if (jobj != NULL) {
3166       Node* base = get_map(jobj->idx());
3167       if (base != NULL) {
3168         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3169         ac->_src_type = base_t;
3170       }
3171     }
3172   }
3173 
3174   // New alias types were created in split_AddP().
3175   uint new_index_end = (uint) _compile->num_alias_types();
3176   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3177 
3178   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3179   //            compute new values for Memory inputs  (the Memory inputs are not
3180   //            actually updated until phase 4.)
3181   if (memnode_worklist.length() == 0)
3182     return;  // nothing to do
3183   while (memnode_worklist.length() != 0) {
3184     Node *n = memnode_worklist.pop();
3185     if (visited.test_set(n->_idx))
3186       continue;
3187     if (n->is_Phi() || n->is_ClearArray()) {
3188       // we don't need to do anything, but the users must be pushed
3189     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3190       // we don't need to do anything, but the users must be pushed
3191       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3192       if (n == NULL)
3193         continue;
3194     } else if (n->Opcode() == Op_StrCompressedCopy ||
3195                n->Opcode() == Op_EncodeISOArray) {
3196       // get the memory projection
3197       n = n->find_out_with(Op_SCMemProj);
3198       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3199     } else {
3200       assert(n->is_Mem(), "memory node required.");
3201       Node *addr = n->in(MemNode::Address);
3202       const Type *addr_t = igvn->type(addr);
3203       if (addr_t == Type::TOP)
3204         continue;
3205       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3206       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3207       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3208       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3209       if (_compile->failing()) {
3210         return;
3211       }
3212       if (mem != n->in(MemNode::Memory)) {
3213         // We delay the memory edge update since we need old one in
3214         // MergeMem code below when instances memory slices are separated.
3215         set_map(n, mem);
3216       }
3217       if (n->is_Load()) {
3218         continue;  // don't push users
3219       } else if (n->is_LoadStore()) {
3220         // get the memory projection
3221         n = n->find_out_with(Op_SCMemProj);
3222         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3223       }
3224     }
3225     // push user on appropriate worklist
3226     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3227       Node *use = n->fast_out(i);
3228       if (use->is_Phi() || use->is_ClearArray()) {
3229         memnode_worklist.append_if_missing(use);
3230       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3231         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3232           continue;
3233         memnode_worklist.append_if_missing(use);
3234       } else if (use->is_MemBar()) {
3235         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3236           memnode_worklist.append_if_missing(use);
3237         }
3238 #ifdef ASSERT
3239       } else if(use->is_Mem()) {
3240         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3241       } else if (use->is_MergeMem()) {
3242         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3243       } else if (use->Opcode() == Op_EncodeISOArray) {
3244         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3245           // EncodeISOArray overwrites destination array
3246           memnode_worklist.append_if_missing(use);
3247         }
3248       } else {
3249         uint op = use->Opcode();
3250         if ((use->in(MemNode::Memory) == n) &&
3251             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3252           // They overwrite memory edge corresponding to destination array,
3253           memnode_worklist.append_if_missing(use);
3254         } else if (!(op == Op_StoreCM ||
3255               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3256                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3257               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3258               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3259               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3260           n->dump();
3261           use->dump();
3262           assert(false, "EA: missing memory path");
3263         }
3264 #endif
3265       }
3266     }
3267   }
3268 
3269   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3270   //            Walk each memory slice moving the first node encountered of each
3271   //            instance type to the the input corresponding to its alias index.
3272   uint length = _mergemem_worklist.length();
3273   for( uint next = 0; next < length; ++next ) {
3274     MergeMemNode* nmm = _mergemem_worklist.at(next);
3275     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3276     // Note: we don't want to use MergeMemStream here because we only want to
3277     // scan inputs which exist at the start, not ones we add during processing.
3278     // Note 2: MergeMem may already contains instance memory slices added
3279     // during find_inst_mem() call when memory nodes were processed above.
3280     igvn->hash_delete(nmm);
3281     uint nslices = MIN2(nmm->req(), new_index_start);
3282     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3283       Node* mem = nmm->in(i);
3284       Node* cur = NULL;
3285       if (mem == NULL || mem->is_top())
3286         continue;
3287       // First, update mergemem by moving memory nodes to corresponding slices
3288       // if their type became more precise since this mergemem was created.
3289       while (mem->is_Mem()) {
3290         const Type *at = igvn->type(mem->in(MemNode::Address));
3291         if (at != Type::TOP) {
3292           assert (at->isa_ptr() != NULL, "pointer type required.");
3293           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3294           if (idx == i) {
3295             if (cur == NULL)
3296               cur = mem;
3297           } else {
3298             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3299               nmm->set_memory_at(idx, mem);
3300             }
3301           }
3302         }
3303         mem = mem->in(MemNode::Memory);
3304       }
3305       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3306       // Find any instance of the current type if we haven't encountered
3307       // already a memory slice of the instance along the memory chain.
3308       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3309         if((uint)_compile->get_general_index(ni) == i) {
3310           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3311           if (nmm->is_empty_memory(m)) {
3312             Node* result = find_inst_mem(mem, ni, orig_phis);
3313             if (_compile->failing()) {
3314               return;
3315             }
3316             nmm->set_memory_at(ni, result);
3317           }
3318         }
3319       }
3320     }
3321     // Find the rest of instances values
3322     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3323       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3324       Node* result = step_through_mergemem(nmm, ni, tinst);
3325       if (result == nmm->base_memory()) {
3326         // Didn't find instance memory, search through general slice recursively.
3327         result = nmm->memory_at(_compile->get_general_index(ni));
3328         result = find_inst_mem(result, ni, orig_phis);
3329         if (_compile->failing()) {
3330           return;
3331         }
3332         nmm->set_memory_at(ni, result);
3333       }
3334     }
3335     igvn->hash_insert(nmm);
3336     record_for_optimizer(nmm);
3337   }
3338 
3339   //  Phase 4:  Update the inputs of non-instance memory Phis and
3340   //            the Memory input of memnodes
3341   // First update the inputs of any non-instance Phi's from
3342   // which we split out an instance Phi.  Note we don't have
3343   // to recursively process Phi's encounted on the input memory
3344   // chains as is done in split_memory_phi() since they  will
3345   // also be processed here.
3346   for (int j = 0; j < orig_phis.length(); j++) {
3347     PhiNode *phi = orig_phis.at(j);
3348     int alias_idx = _compile->get_alias_index(phi->adr_type());
3349     igvn->hash_delete(phi);
3350     for (uint i = 1; i < phi->req(); i++) {
3351       Node *mem = phi->in(i);
3352       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3353       if (_compile->failing()) {
3354         return;
3355       }
3356       if (mem != new_mem) {
3357         phi->set_req(i, new_mem);
3358       }
3359     }
3360     igvn->hash_insert(phi);
3361     record_for_optimizer(phi);
3362   }
3363 
3364   // Update the memory inputs of MemNodes with the value we computed
3365   // in Phase 2 and move stores memory users to corresponding memory slices.
3366   // Disable memory split verification code until the fix for 6984348.
3367   // Currently it produces false negative results since it does not cover all cases.
3368 #if 0 // ifdef ASSERT
3369   visited.Reset();
3370   Node_Stack old_mems(arena, _compile->unique() >> 2);
3371 #endif
3372   for (uint i = 0; i < ideal_nodes.size(); i++) {
3373     Node*    n = ideal_nodes.at(i);
3374     Node* nmem = get_map(n->_idx);
3375     assert(nmem != NULL, "sanity");
3376     if (n->is_Mem()) {
3377 #if 0 // ifdef ASSERT
3378       Node* old_mem = n->in(MemNode::Memory);
3379       if (!visited.test_set(old_mem->_idx)) {
3380         old_mems.push(old_mem, old_mem->outcnt());
3381       }
3382 #endif
3383       assert(n->in(MemNode::Memory) != nmem, "sanity");
3384       if (!n->is_Load()) {
3385         // Move memory users of a store first.
3386         move_inst_mem(n, orig_phis);
3387       }
3388       // Now update memory input
3389       igvn->hash_delete(n);
3390       n->set_req(MemNode::Memory, nmem);
3391       igvn->hash_insert(n);
3392       record_for_optimizer(n);
3393     } else {
3394       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3395              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3396     }
3397   }
3398 #if 0 // ifdef ASSERT
3399   // Verify that memory was split correctly
3400   while (old_mems.is_nonempty()) {
3401     Node* old_mem = old_mems.node();
3402     uint  old_cnt = old_mems.index();
3403     old_mems.pop();
3404     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3405   }
3406 #endif
3407 }
3408 
3409 #ifndef PRODUCT
3410 static const char *node_type_names[] = {
3411   "UnknownType",
3412   "JavaObject",
3413   "LocalVar",
3414   "Field",
3415   "Arraycopy"
3416 };
3417 
3418 static const char *esc_names[] = {
3419   "UnknownEscape",
3420   "NoEscape",
3421   "ArgEscape",
3422   "GlobalEscape"
3423 };
3424 
3425 void PointsToNode::dump(bool print_state) const {
3426   NodeType nt = node_type();
3427   tty->print("%s ", node_type_names[(int) nt]);
3428   if (print_state) {
3429     EscapeState es = escape_state();
3430     EscapeState fields_es = fields_escape_state();
3431     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3432     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3433       tty->print("NSR ");
3434   }
3435   if (is_Field()) {
3436     FieldNode* f = (FieldNode*)this;
3437     if (f->is_oop())
3438       tty->print("oop ");
3439     if (f->offset() > 0)
3440       tty->print("+%d ", f->offset());
3441     tty->print("(");
3442     for (BaseIterator i(f); i.has_next(); i.next()) {
3443       PointsToNode* b = i.get();
3444       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3445     }
3446     tty->print(" )");
3447   }
3448   tty->print("[");
3449   for (EdgeIterator i(this); i.has_next(); i.next()) {
3450     PointsToNode* e = i.get();
3451     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3452   }
3453   tty->print(" [");
3454   for (UseIterator i(this); i.has_next(); i.next()) {
3455     PointsToNode* u = i.get();
3456     bool is_base = false;
3457     if (PointsToNode::is_base_use(u)) {
3458       is_base = true;
3459       u = PointsToNode::get_use_node(u)->as_Field();
3460     }
3461     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3462   }
3463   tty->print(" ]]  ");
3464   if (_node == NULL)
3465     tty->print_cr("<null>");
3466   else
3467     _node->dump();
3468 }
3469 
3470 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3471   bool first = true;
3472   int ptnodes_length = ptnodes_worklist.length();
3473   for (int i = 0; i < ptnodes_length; i++) {
3474     PointsToNode *ptn = ptnodes_worklist.at(i);
3475     if (ptn == NULL || !ptn->is_JavaObject())
3476       continue;
3477     PointsToNode::EscapeState es = ptn->escape_state();
3478     if ((es != PointsToNode::NoEscape) && !Verbose) {
3479       continue;
3480     }
3481     Node* n = ptn->ideal_node();
3482     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3483                              n->as_CallStaticJava()->is_boxing_method())) {
3484       if (first) {
3485         tty->cr();
3486         tty->print("======== Connection graph for ");
3487         _compile->method()->print_short_name();
3488         tty->cr();
3489         first = false;
3490       }
3491       ptn->dump();
3492       // Print all locals and fields which reference this allocation
3493       for (UseIterator j(ptn); j.has_next(); j.next()) {
3494         PointsToNode* use = j.get();
3495         if (use->is_LocalVar()) {
3496           use->dump(Verbose);
3497         } else if (Verbose) {
3498           use->dump();
3499         }
3500       }
3501       tty->cr();
3502     }
3503   }
3504 }
3505 #endif