1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/ad.hpp"
  49 #include "opto/addnode.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/cfgnode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/fprofiler.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/interfaceSupport.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/signature.hpp"
  66 #include "runtime/threadCritical.hpp"
  67 #include "runtime/vframe.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "runtime/vframe_hp.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/preserveException.hpp"
  72 
  73 
  74 // For debugging purposes:
  75 //  To force FullGCALot inside a runtime function, add the following two lines
  76 //
  77 //  Universe::release_fullgc_alot_dummy();
  78 //  MarkSweep::invoke(0, "Debugging");
  79 //
  80 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  81 
  82 
  83 
  84 
  85 // Compiled code entry points
  86 address OptoRuntime::_new_instance_Java                           = NULL;
  87 address OptoRuntime::_new_array_Java                              = NULL;
  88 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  89 address OptoRuntime::_multianewarray2_Java                        = NULL;
  90 address OptoRuntime::_multianewarray3_Java                        = NULL;
  91 address OptoRuntime::_multianewarray4_Java                        = NULL;
  92 address OptoRuntime::_multianewarray5_Java                        = NULL;
  93 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  94 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  95 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  96 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  97 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
  98 address OptoRuntime::_monitor_notify_Java                         = NULL;
  99 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 100 address OptoRuntime::_rethrow_Java                                = NULL;
 101 
 102 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 103 address OptoRuntime::_register_finalizer_Java                     = NULL;
 104 
 105 ExceptionBlob* OptoRuntime::_exception_blob;
 106 
 107 // This should be called in an assertion at the start of OptoRuntime routines
 108 // which are entered from compiled code (all of them)
 109 #ifdef ASSERT
 110 static bool check_compiled_frame(JavaThread* thread) {
 111   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 112   RegisterMap map(thread, false);
 113   frame caller = thread->last_frame().sender(&map);
 114   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 115   return true;
 116 }
 117 #endif // ASSERT
 118 
 119 
 120 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 121   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 122   if (var == NULL) { return false; }
 123 
 124 bool OptoRuntime::generate(ciEnv* env) {
 125 
 126   generate_exception_blob();
 127 
 128   // Note: tls: Means fetching the return oop out of the thread-local storage
 129   //
 130   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 131   // -------------------------------------------------------------------------------------------------------------------------------
 132   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 133   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 134   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 135   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 136   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 137   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 139   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 140   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 141   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 142   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 143   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 144   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 145   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 146 
 147   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 148   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 149 
 150   return true;
 151 }
 152 
 153 #undef gen
 154 
 155 
 156 // Helper method to do generation of RunTimeStub's
 157 address OptoRuntime::generate_stub( ciEnv* env,
 158                                     TypeFunc_generator gen, address C_function,
 159                                     const char *name, int is_fancy_jump,
 160                                     bool pass_tls,
 161                                     bool save_argument_registers,
 162                                     bool return_pc) {
 163 
 164   // Matching the default directive, we currently have no method to match.
 165   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 166   ResourceMark rm;
 167   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 168   DirectivesStack::release(directive);
 169   return  C.stub_entry_point();
 170 }
 171 
 172 const char* OptoRuntime::stub_name(address entry) {
 173 #ifndef PRODUCT
 174   CodeBlob* cb = CodeCache::find_blob(entry);
 175   RuntimeStub* rs =(RuntimeStub *)cb;
 176   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 177   return rs->name();
 178 #else
 179   // Fast implementation for product mode (maybe it should be inlined too)
 180   return "runtime stub";
 181 #endif
 182 }
 183 
 184 
 185 //=============================================================================
 186 // Opto compiler runtime routines
 187 //=============================================================================
 188 
 189 
 190 //=============================allocation======================================
 191 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 192 // and try allocation again.
 193 
 194 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 195   // After any safepoint, just before going back to compiled code,
 196   // we inform the GC that we will be doing initializing writes to
 197   // this object in the future without emitting card-marks, so
 198   // GC may take any compensating steps.
 199   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 200 
 201   oop new_obj = thread->vm_result();
 202   if (new_obj == NULL)  return;
 203 
 204   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 205          "compiler must check this first");
 206   // GC may decide to give back a safer copy of new_obj.
 207   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 208   thread->set_vm_result(new_obj);
 209 }
 210 
 211 // object allocation
 212 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 213   JRT_BLOCK;
 214 #ifndef PRODUCT
 215   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 216 #endif
 217   assert(check_compiled_frame(thread), "incorrect caller");
 218 
 219   // These checks are cheap to make and support reflective allocation.
 220   int lh = klass->layout_helper();
 221   if (Klass::layout_helper_needs_slow_path(lh)
 222       || !InstanceKlass::cast(klass)->is_initialized()) {
 223     KlassHandle kh(THREAD, klass);
 224     kh->check_valid_for_instantiation(false, THREAD);
 225     if (!HAS_PENDING_EXCEPTION) {
 226       InstanceKlass::cast(kh())->initialize(THREAD);
 227     }
 228     if (!HAS_PENDING_EXCEPTION) {
 229       klass = kh();
 230     } else {
 231       klass = NULL;
 232     }
 233   }
 234 
 235   if (klass != NULL) {
 236     // Scavenge and allocate an instance.
 237     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 238     thread->set_vm_result(result);
 239 
 240     // Pass oops back through thread local storage.  Our apparent type to Java
 241     // is that we return an oop, but we can block on exit from this routine and
 242     // a GC can trash the oop in C's return register.  The generated stub will
 243     // fetch the oop from TLS after any possible GC.
 244   }
 245 
 246   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 247   JRT_BLOCK_END;
 248 
 249   if (GraphKit::use_ReduceInitialCardMarks()) {
 250     // inform GC that we won't do card marks for initializing writes.
 251     new_store_pre_barrier(thread);
 252   }
 253 JRT_END
 254 
 255 
 256 // array allocation
 257 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 258   JRT_BLOCK;
 259 #ifndef PRODUCT
 260   SharedRuntime::_new_array_ctr++;            // new array requires GC
 261 #endif
 262   assert(check_compiled_frame(thread), "incorrect caller");
 263 
 264   // Scavenge and allocate an instance.
 265   oop result;
 266 
 267   if (array_type->is_typeArray_klass()) {
 268     // The oopFactory likes to work with the element type.
 269     // (We could bypass the oopFactory, since it doesn't add much value.)
 270     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 271     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 272   } else {
 273     // Although the oopFactory likes to work with the elem_type,
 274     // the compiler prefers the array_type, since it must already have
 275     // that latter value in hand for the fast path.
 276     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 277     result = oopFactory::new_objArray(elem_type, len, THREAD);
 278   }
 279 
 280   // Pass oops back through thread local storage.  Our apparent type to Java
 281   // is that we return an oop, but we can block on exit from this routine and
 282   // a GC can trash the oop in C's return register.  The generated stub will
 283   // fetch the oop from TLS after any possible GC.
 284   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 285   thread->set_vm_result(result);
 286   JRT_BLOCK_END;
 287 
 288   if (GraphKit::use_ReduceInitialCardMarks()) {
 289     // inform GC that we won't do card marks for initializing writes.
 290     new_store_pre_barrier(thread);
 291   }
 292 JRT_END
 293 
 294 // array allocation without zeroing
 295 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 296   JRT_BLOCK;
 297 #ifndef PRODUCT
 298   SharedRuntime::_new_array_ctr++;            // new array requires GC
 299 #endif
 300   assert(check_compiled_frame(thread), "incorrect caller");
 301 
 302   // Scavenge and allocate an instance.
 303   oop result;
 304 
 305   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 306   // The oopFactory likes to work with the element type.
 307   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 308   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 309 
 310   // Pass oops back through thread local storage.  Our apparent type to Java
 311   // is that we return an oop, but we can block on exit from this routine and
 312   // a GC can trash the oop in C's return register.  The generated stub will
 313   // fetch the oop from TLS after any possible GC.
 314   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 315   thread->set_vm_result(result);
 316   JRT_BLOCK_END;
 317 
 318   if (GraphKit::use_ReduceInitialCardMarks()) {
 319     // inform GC that we won't do card marks for initializing writes.
 320     new_store_pre_barrier(thread);
 321   }
 322 
 323   oop result = thread->vm_result();
 324   if ((len > 0) && (result != NULL) &&
 325       is_deoptimized_caller_frame(thread)) {
 326     // Zero array here if the caller is deoptimized.
 327     int size = ((typeArrayOop)result)->object_size();
 328     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 329     const size_t hs = arrayOopDesc::header_size(elem_type);
 330     // Align to next 8 bytes to avoid trashing arrays's length.
 331     const size_t aligned_hs = align_object_offset(hs);
 332     HeapWord* obj = (HeapWord*)result;
 333     if (aligned_hs > hs) {
 334       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 335     }
 336     // Optimized zeroing.
 337     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 338   }
 339 
 340 JRT_END
 341 
 342 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 343 
 344 // multianewarray for 2 dimensions
 345 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 346 #ifndef PRODUCT
 347   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 348 #endif
 349   assert(check_compiled_frame(thread), "incorrect caller");
 350   assert(elem_type->is_klass(), "not a class");
 351   jint dims[2];
 352   dims[0] = len1;
 353   dims[1] = len2;
 354   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 355   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 356   thread->set_vm_result(obj);
 357 JRT_END
 358 
 359 // multianewarray for 3 dimensions
 360 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 361 #ifndef PRODUCT
 362   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 363 #endif
 364   assert(check_compiled_frame(thread), "incorrect caller");
 365   assert(elem_type->is_klass(), "not a class");
 366   jint dims[3];
 367   dims[0] = len1;
 368   dims[1] = len2;
 369   dims[2] = len3;
 370   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 371   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 372   thread->set_vm_result(obj);
 373 JRT_END
 374 
 375 // multianewarray for 4 dimensions
 376 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 377 #ifndef PRODUCT
 378   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 379 #endif
 380   assert(check_compiled_frame(thread), "incorrect caller");
 381   assert(elem_type->is_klass(), "not a class");
 382   jint dims[4];
 383   dims[0] = len1;
 384   dims[1] = len2;
 385   dims[2] = len3;
 386   dims[3] = len4;
 387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 388   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 389   thread->set_vm_result(obj);
 390 JRT_END
 391 
 392 // multianewarray for 5 dimensions
 393 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 394 #ifndef PRODUCT
 395   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 396 #endif
 397   assert(check_compiled_frame(thread), "incorrect caller");
 398   assert(elem_type->is_klass(), "not a class");
 399   jint dims[5];
 400   dims[0] = len1;
 401   dims[1] = len2;
 402   dims[2] = len3;
 403   dims[3] = len4;
 404   dims[4] = len5;
 405   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 406   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 407   thread->set_vm_result(obj);
 408 JRT_END
 409 
 410 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 411   assert(check_compiled_frame(thread), "incorrect caller");
 412   assert(elem_type->is_klass(), "not a class");
 413   assert(oop(dims)->is_typeArray(), "not an array");
 414 
 415   ResourceMark rm;
 416   jint len = dims->length();
 417   assert(len > 0, "Dimensions array should contain data");
 418   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 419   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 420   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 421 
 422   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 423   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 424   thread->set_vm_result(obj);
 425 JRT_END
 426 
 427 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 428 
 429   // Very few notify/notifyAll operations find any threads on the waitset, so
 430   // the dominant fast-path is to simply return.
 431   // Relatedly, it's critical that notify/notifyAll be fast in order to
 432   // reduce lock hold times.
 433   if (!SafepointSynchronize::is_synchronizing()) {
 434     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 435       return;
 436     }
 437   }
 438 
 439   // This is the case the fast-path above isn't provisioned to handle.
 440   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 441   // (The fast-path is just a degenerate variant of the slow-path).
 442   // Perform the dreaded state transition and pass control into the slow-path.
 443   JRT_BLOCK;
 444   Handle h_obj(THREAD, obj);
 445   ObjectSynchronizer::notify(h_obj, CHECK);
 446   JRT_BLOCK_END;
 447 JRT_END
 448 
 449 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 450 
 451   if (!SafepointSynchronize::is_synchronizing() ) {
 452     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 453       return;
 454     }
 455   }
 456 
 457   // This is the case the fast-path above isn't provisioned to handle.
 458   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 459   // (The fast-path is just a degenerate variant of the slow-path).
 460   // Perform the dreaded state transition and pass control into the slow-path.
 461   JRT_BLOCK;
 462   Handle h_obj(THREAD, obj);
 463   ObjectSynchronizer::notifyall(h_obj, CHECK);
 464   JRT_BLOCK_END;
 465 JRT_END
 466 
 467 const TypeFunc *OptoRuntime::new_instance_Type() {
 468   // create input type (domain)
 469   const Type **fields = TypeTuple::fields(1);
 470   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 471   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 472 
 473   // create result type (range)
 474   fields = TypeTuple::fields(1);
 475   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 476 
 477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 478 
 479   return TypeFunc::make(domain, range);
 480 }
 481 
 482 
 483 const TypeFunc *OptoRuntime::athrow_Type() {
 484   // create input type (domain)
 485   const Type **fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 487   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 488 
 489   // create result type (range)
 490   fields = TypeTuple::fields(0);
 491 
 492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 493 
 494   return TypeFunc::make(domain, range);
 495 }
 496 
 497 
 498 const TypeFunc *OptoRuntime::new_array_Type() {
 499   // create input type (domain)
 500   const Type **fields = TypeTuple::fields(2);
 501   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 502   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 504 
 505   // create result type (range)
 506   fields = TypeTuple::fields(1);
 507   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 508 
 509   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 510 
 511   return TypeFunc::make(domain, range);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 515   // create input type (domain)
 516   const int nargs = ndim + 1;
 517   const Type **fields = TypeTuple::fields(nargs);
 518   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 519   for( int i = 1; i < nargs; i++ )
 520     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 521   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 522 
 523   // create result type (range)
 524   fields = TypeTuple::fields(1);
 525   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 526   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 527 
 528   return TypeFunc::make(domain, range);
 529 }
 530 
 531 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 532   return multianewarray_Type(2);
 533 }
 534 
 535 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 536   return multianewarray_Type(3);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 540   return multianewarray_Type(4);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 544   return multianewarray_Type(5);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 548   // create input type (domain)
 549   const Type **fields = TypeTuple::fields(2);
 550   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 551   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 552   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 553 
 554   // create result type (range)
 555   fields = TypeTuple::fields(1);
 556   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 557   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 558 
 559   return TypeFunc::make(domain, range);
 560 }
 561 
 562 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 563   const Type **fields = TypeTuple::fields(2);
 564   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 565   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 566   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 567 
 568   // create result type (range)
 569   fields = TypeTuple::fields(0);
 570   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 571 
 572   return TypeFunc::make(domain, range);
 573 }
 574 
 575 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 576 
 577   const Type **fields = TypeTuple::fields(2);
 578   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 579   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 580   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 581 
 582   // create result type (range)
 583   fields = TypeTuple::fields(0);
 584   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 585 
 586   return TypeFunc::make(domain, range);
 587 }
 588 
 589 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 590   // create input type (domain)
 591   const Type **fields = TypeTuple::fields(1);
 592   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 593   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 594 
 595   // create result type (range)
 596   fields = TypeTuple::fields(0);
 597   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 598 
 599   return TypeFunc::make(domain, range);
 600 }
 601 
 602 //-----------------------------------------------------------------------------
 603 // Monitor Handling
 604 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 605   // create input type (domain)
 606   const Type **fields = TypeTuple::fields(2);
 607   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 608   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 610 
 611   // create result type (range)
 612   fields = TypeTuple::fields(0);
 613 
 614   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 615 
 616   return TypeFunc::make(domain,range);
 617 }
 618 
 619 
 620 //-----------------------------------------------------------------------------
 621 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 622   // create input type (domain)
 623   const Type **fields = TypeTuple::fields(3);
 624   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 625   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 626   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 627   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 628 
 629   // create result type (range)
 630   fields = TypeTuple::fields(0);
 631 
 632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 633 
 634   return TypeFunc::make(domain, range);
 635 }
 636 
 637 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 638   // create input type (domain)
 639   const Type **fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 641   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 642 
 643   // create result type (range)
 644   fields = TypeTuple::fields(0);
 645   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 646   return TypeFunc::make(domain, range);
 647 }
 648 
 649 const TypeFunc* OptoRuntime::flush_windows_Type() {
 650   // create input type (domain)
 651   const Type** fields = TypeTuple::fields(1);
 652   fields[TypeFunc::Parms+0] = NULL; // void
 653   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 654 
 655   // create result type
 656   fields = TypeTuple::fields(1);
 657   fields[TypeFunc::Parms+0] = NULL; // void
 658   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 659 
 660   return TypeFunc::make(domain, range);
 661 }
 662 
 663 const TypeFunc* OptoRuntime::l2f_Type() {
 664   // create input type (domain)
 665   const Type **fields = TypeTuple::fields(2);
 666   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 667   fields[TypeFunc::Parms+1] = Type::HALF;
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(1);
 672   fields[TypeFunc::Parms+0] = Type::FLOAT;
 673   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 674 
 675   return TypeFunc::make(domain, range);
 676 }
 677 
 678 const TypeFunc* OptoRuntime::modf_Type() {
 679   const Type **fields = TypeTuple::fields(2);
 680   fields[TypeFunc::Parms+0] = Type::FLOAT;
 681   fields[TypeFunc::Parms+1] = Type::FLOAT;
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(1);
 686   fields[TypeFunc::Parms+0] = Type::FLOAT;
 687 
 688   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 689 
 690   return TypeFunc::make(domain, range);
 691 }
 692 
 693 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 694   // create input type (domain)
 695   const Type **fields = TypeTuple::fields(2);
 696   // Symbol* name of class to be loaded
 697   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 698   fields[TypeFunc::Parms+1] = Type::HALF;
 699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 700 
 701   // create result type (range)
 702   fields = TypeTuple::fields(2);
 703   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 704   fields[TypeFunc::Parms+1] = Type::HALF;
 705   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 706 
 707   return TypeFunc::make(domain, range);
 708 }
 709 
 710 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 711   const Type **fields = TypeTuple::fields(4);
 712   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 713   fields[TypeFunc::Parms+1] = Type::HALF;
 714   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 715   fields[TypeFunc::Parms+3] = Type::HALF;
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 717 
 718   // create result type (range)
 719   fields = TypeTuple::fields(2);
 720   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 //-------------- currentTimeMillis, currentTimeNanos, etc
 728 
 729 const TypeFunc* OptoRuntime::void_long_Type() {
 730   // create input type (domain)
 731   const Type **fields = TypeTuple::fields(0);
 732   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 733 
 734   // create result type (range)
 735   fields = TypeTuple::fields(2);
 736   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 737   fields[TypeFunc::Parms+1] = Type::HALF;
 738   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 739 
 740   return TypeFunc::make(domain, range);
 741 }
 742 
 743 // arraycopy stub variations:
 744 enum ArrayCopyType {
 745   ac_fast,                      // void(ptr, ptr, size_t)
 746   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 747   ac_slow,                      // void(ptr, int, ptr, int, int)
 748   ac_generic                    //  int(ptr, int, ptr, int, int)
 749 };
 750 
 751 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 752   // create input type (domain)
 753   int num_args      = (act == ac_fast ? 3 : 5);
 754   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 755   int argcnt = num_args;
 756   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 757   const Type** fields = TypeTuple::fields(argcnt);
 758   int argp = TypeFunc::Parms;
 759   fields[argp++] = TypePtr::NOTNULL;    // src
 760   if (num_size_args == 0) {
 761     fields[argp++] = TypeInt::INT;      // src_pos
 762   }
 763   fields[argp++] = TypePtr::NOTNULL;    // dest
 764   if (num_size_args == 0) {
 765     fields[argp++] = TypeInt::INT;      // dest_pos
 766     fields[argp++] = TypeInt::INT;      // length
 767   }
 768   while (num_size_args-- > 0) {
 769     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 770     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 771   }
 772   if (act == ac_checkcast) {
 773     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 774   }
 775   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 776   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 777 
 778   // create result type if needed
 779   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 780   fields = TypeTuple::fields(1);
 781   if (retcnt == 0)
 782     fields[TypeFunc::Parms+0] = NULL; // void
 783   else
 784     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 785   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 786   return TypeFunc::make(domain, range);
 787 }
 788 
 789 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 790   // This signature is simple:  Two base pointers and a size_t.
 791   return make_arraycopy_Type(ac_fast);
 792 }
 793 
 794 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 795   // An extension of fast_arraycopy_Type which adds type checking.
 796   return make_arraycopy_Type(ac_checkcast);
 797 }
 798 
 799 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 800   // This signature is exactly the same as System.arraycopy.
 801   // There are no intptr_t (int/long) arguments.
 802   return make_arraycopy_Type(ac_slow);
 803 }
 804 
 805 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 806   // This signature is like System.arraycopy, except that it returns status.
 807   return make_arraycopy_Type(ac_generic);
 808 }
 809 
 810 
 811 const TypeFunc* OptoRuntime::array_fill_Type() {
 812   const Type** fields;
 813   int argp = TypeFunc::Parms;
 814   // create input type (domain): pointer, int, size_t
 815   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 816   fields[argp++] = TypePtr::NOTNULL;
 817   fields[argp++] = TypeInt::INT;
 818   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 819   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 820   const TypeTuple *domain = TypeTuple::make(argp, fields);
 821 
 822   // create result type
 823   fields = TypeTuple::fields(1);
 824   fields[TypeFunc::Parms+0] = NULL; // void
 825   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 826 
 827   return TypeFunc::make(domain, range);
 828 }
 829 
 830 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 831 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 832   // create input type (domain)
 833   int num_args      = 3;
 834   if (Matcher::pass_original_key_for_aes()) {
 835     num_args = 4;
 836   }
 837   int argcnt = num_args;
 838   const Type** fields = TypeTuple::fields(argcnt);
 839   int argp = TypeFunc::Parms;
 840   fields[argp++] = TypePtr::NOTNULL;    // src
 841   fields[argp++] = TypePtr::NOTNULL;    // dest
 842   fields[argp++] = TypePtr::NOTNULL;    // k array
 843   if (Matcher::pass_original_key_for_aes()) {
 844     fields[argp++] = TypePtr::NOTNULL;    // original k array
 845   }
 846   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 847   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 848 
 849   // no result type needed
 850   fields = TypeTuple::fields(1);
 851   fields[TypeFunc::Parms+0] = NULL; // void
 852   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 853   return TypeFunc::make(domain, range);
 854 }
 855 
 856 /**
 857  * int updateBytesCRC32(int crc, byte* b, int len)
 858  */
 859 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 860   // create input type (domain)
 861   int num_args      = 3;
 862   int argcnt = num_args;
 863   const Type** fields = TypeTuple::fields(argcnt);
 864   int argp = TypeFunc::Parms;
 865   fields[argp++] = TypeInt::INT;        // crc
 866   fields[argp++] = TypePtr::NOTNULL;    // src
 867   fields[argp++] = TypeInt::INT;        // len
 868   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 869   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 870 
 871   // result type needed
 872   fields = TypeTuple::fields(1);
 873   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 874   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 875   return TypeFunc::make(domain, range);
 876 }
 877 
 878 /**
 879  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 880  */
 881 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 882   // create input type (domain)
 883   int num_args      = 4;
 884   int argcnt = num_args;
 885   const Type** fields = TypeTuple::fields(argcnt);
 886   int argp = TypeFunc::Parms;
 887   fields[argp++] = TypeInt::INT;        // crc
 888   fields[argp++] = TypePtr::NOTNULL;    // buf
 889   fields[argp++] = TypeInt::INT;        // len
 890   fields[argp++] = TypePtr::NOTNULL;    // table
 891   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 892   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 893 
 894   // result type needed
 895   fields = TypeTuple::fields(1);
 896   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 897   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 898   return TypeFunc::make(domain, range);
 899 }
 900 
 901 /**
 902 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 903 */
 904 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 905   // create input type (domain)
 906   int num_args      = 3;
 907   int argcnt = num_args;
 908   const Type** fields = TypeTuple::fields(argcnt);
 909   int argp = TypeFunc::Parms;
 910   fields[argp++] = TypeInt::INT;        // crc
 911   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 912   fields[argp++] = TypeInt::INT;        // len
 913   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 914   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 915 
 916   // result type needed
 917   fields = TypeTuple::fields(1);
 918   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 919   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 920   return TypeFunc::make(domain, range);
 921 }
 922 
 923 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 924 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 925   // create input type (domain)
 926   int num_args      = 5;
 927   if (Matcher::pass_original_key_for_aes()) {
 928     num_args = 6;
 929   }
 930   int argcnt = num_args;
 931   const Type** fields = TypeTuple::fields(argcnt);
 932   int argp = TypeFunc::Parms;
 933   fields[argp++] = TypePtr::NOTNULL;    // src
 934   fields[argp++] = TypePtr::NOTNULL;    // dest
 935   fields[argp++] = TypePtr::NOTNULL;    // k array
 936   fields[argp++] = TypePtr::NOTNULL;    // r array
 937   fields[argp++] = TypeInt::INT;        // src len
 938   if (Matcher::pass_original_key_for_aes()) {
 939     fields[argp++] = TypePtr::NOTNULL;    // original k array
 940   }
 941   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 942   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 943 
 944   // returning cipher len (int)
 945   fields = TypeTuple::fields(1);
 946   fields[TypeFunc::Parms+0] = TypeInt::INT;
 947   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 948   return TypeFunc::make(domain, range);
 949 }
 950 
 951 /*
 952  * void implCompress(byte[] buf, int ofs)
 953  */
 954 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 955   // create input type (domain)
 956   int num_args = 2;
 957   int argcnt = num_args;
 958   const Type** fields = TypeTuple::fields(argcnt);
 959   int argp = TypeFunc::Parms;
 960   fields[argp++] = TypePtr::NOTNULL; // buf
 961   fields[argp++] = TypePtr::NOTNULL; // state
 962   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 963   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 964 
 965   // no result type needed
 966   fields = TypeTuple::fields(1);
 967   fields[TypeFunc::Parms+0] = NULL; // void
 968   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 969   return TypeFunc::make(domain, range);
 970 }
 971 
 972 /*
 973  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 974  */
 975 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 976   // create input type (domain)
 977   int num_args = 4;
 978   int argcnt = num_args;
 979   const Type** fields = TypeTuple::fields(argcnt);
 980   int argp = TypeFunc::Parms;
 981   fields[argp++] = TypePtr::NOTNULL; // buf
 982   fields[argp++] = TypePtr::NOTNULL; // state
 983   fields[argp++] = TypeInt::INT;     // ofs
 984   fields[argp++] = TypeInt::INT;     // limit
 985   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 986   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 987 
 988   // returning ofs (int)
 989   fields = TypeTuple::fields(1);
 990   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 991   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 992   return TypeFunc::make(domain, range);
 993 }
 994 
 995 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 996   // create input type (domain)
 997   int num_args      = 6;
 998   int argcnt = num_args;
 999   const Type** fields = TypeTuple::fields(argcnt);
1000   int argp = TypeFunc::Parms;
1001   fields[argp++] = TypePtr::NOTNULL;    // x
1002   fields[argp++] = TypeInt::INT;        // xlen
1003   fields[argp++] = TypePtr::NOTNULL;    // y
1004   fields[argp++] = TypeInt::INT;        // ylen
1005   fields[argp++] = TypePtr::NOTNULL;    // z
1006   fields[argp++] = TypeInt::INT;        // zlen
1007   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1008   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1009 
1010   // no result type needed
1011   fields = TypeTuple::fields(1);
1012   fields[TypeFunc::Parms+0] = NULL;
1013   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1014   return TypeFunc::make(domain, range);
1015 }
1016 
1017 const TypeFunc* OptoRuntime::squareToLen_Type() {
1018   // create input type (domain)
1019   int num_args      = 4;
1020   int argcnt = num_args;
1021   const Type** fields = TypeTuple::fields(argcnt);
1022   int argp = TypeFunc::Parms;
1023   fields[argp++] = TypePtr::NOTNULL;    // x
1024   fields[argp++] = TypeInt::INT;        // len
1025   fields[argp++] = TypePtr::NOTNULL;    // z
1026   fields[argp++] = TypeInt::INT;        // zlen
1027   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1028   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1029 
1030   // no result type needed
1031   fields = TypeTuple::fields(1);
1032   fields[TypeFunc::Parms+0] = NULL;
1033   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1034   return TypeFunc::make(domain, range);
1035 }
1036 
1037 // for mulAdd calls, 2 pointers and 3 ints, returning int
1038 const TypeFunc* OptoRuntime::mulAdd_Type() {
1039   // create input type (domain)
1040   int num_args      = 5;
1041   int argcnt = num_args;
1042   const Type** fields = TypeTuple::fields(argcnt);
1043   int argp = TypeFunc::Parms;
1044   fields[argp++] = TypePtr::NOTNULL;    // out
1045   fields[argp++] = TypePtr::NOTNULL;    // in
1046   fields[argp++] = TypeInt::INT;        // offset
1047   fields[argp++] = TypeInt::INT;        // len
1048   fields[argp++] = TypeInt::INT;        // k
1049   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1050   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1051 
1052   // returning carry (int)
1053   fields = TypeTuple::fields(1);
1054   fields[TypeFunc::Parms+0] = TypeInt::INT;
1055   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1056   return TypeFunc::make(domain, range);
1057 }
1058 
1059 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1060   // create input type (domain)
1061   int num_args      = 7;
1062   int argcnt = num_args;
1063   const Type** fields = TypeTuple::fields(argcnt);
1064   int argp = TypeFunc::Parms;
1065   fields[argp++] = TypePtr::NOTNULL;    // a
1066   fields[argp++] = TypePtr::NOTNULL;    // b
1067   fields[argp++] = TypePtr::NOTNULL;    // n
1068   fields[argp++] = TypeInt::INT;        // len
1069   fields[argp++] = TypeLong::LONG;      // inv
1070   fields[argp++] = Type::HALF;
1071   fields[argp++] = TypePtr::NOTNULL;    // result
1072   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1073   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1074 
1075   // result type needed
1076   fields = TypeTuple::fields(1);
1077   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1078 
1079   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1080   return TypeFunc::make(domain, range);
1081 }
1082 
1083 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1084   // create input type (domain)
1085   int num_args      = 6;
1086   int argcnt = num_args;
1087   const Type** fields = TypeTuple::fields(argcnt);
1088   int argp = TypeFunc::Parms;
1089   fields[argp++] = TypePtr::NOTNULL;    // a
1090   fields[argp++] = TypePtr::NOTNULL;    // n
1091   fields[argp++] = TypeInt::INT;        // len
1092   fields[argp++] = TypeLong::LONG;      // inv
1093   fields[argp++] = Type::HALF;
1094   fields[argp++] = TypePtr::NOTNULL;    // result
1095   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1096   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1097 
1098   // result type needed
1099   fields = TypeTuple::fields(1);
1100   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1101 
1102   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1103   return TypeFunc::make(domain, range);
1104 }
1105 
1106 // GHASH block processing
1107 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1108     int argcnt = 4;
1109 
1110     const Type** fields = TypeTuple::fields(argcnt);
1111     int argp = TypeFunc::Parms;
1112     fields[argp++] = TypePtr::NOTNULL;    // state
1113     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1114     fields[argp++] = TypePtr::NOTNULL;    // data
1115     fields[argp++] = TypeInt::INT;        // blocks
1116     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1117     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1118 
1119     // result type needed
1120     fields = TypeTuple::fields(1);
1121     fields[TypeFunc::Parms+0] = NULL; // void
1122     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1123     return TypeFunc::make(domain, range);
1124 }
1125 
1126 //------------- Interpreter state access for on stack replacement
1127 const TypeFunc* OptoRuntime::osr_end_Type() {
1128   // create input type (domain)
1129   const Type **fields = TypeTuple::fields(1);
1130   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1131   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1132 
1133   // create result type
1134   fields = TypeTuple::fields(1);
1135   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1136   fields[TypeFunc::Parms+0] = NULL; // void
1137   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1138   return TypeFunc::make(domain, range);
1139 }
1140 
1141 //-------------- methodData update helpers
1142 
1143 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1144   // create input type (domain)
1145   const Type **fields = TypeTuple::fields(2);
1146   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1147   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1148   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1149 
1150   // create result type
1151   fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms+0] = NULL; // void
1153   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1154   return TypeFunc::make(domain,range);
1155 }
1156 
1157 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1158   if (receiver == NULL) return;
1159   Klass* receiver_klass = receiver->klass();
1160 
1161   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1162   int empty_row = -1;           // free row, if any is encountered
1163 
1164   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1165   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1166     // if (vc->receiver(row) == receiver_klass)
1167     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1168     intptr_t row_recv = *(mdp + receiver_off);
1169     if (row_recv == (intptr_t) receiver_klass) {
1170       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1171       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1172       *(mdp + count_off) += DataLayout::counter_increment;
1173       return;
1174     } else if (row_recv == 0) {
1175       // else if (vc->receiver(row) == NULL)
1176       empty_row = (int) row;
1177     }
1178   }
1179 
1180   if (empty_row != -1) {
1181     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1182     // vc->set_receiver(empty_row, receiver_klass);
1183     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1184     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1185     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1186     *(mdp + count_off) = DataLayout::counter_increment;
1187   } else {
1188     // Receiver did not match any saved receiver and there is no empty row for it.
1189     // Increment total counter to indicate polymorphic case.
1190     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1191     *count_p += DataLayout::counter_increment;
1192   }
1193 JRT_END
1194 
1195 //-------------------------------------------------------------------------------------
1196 // register policy
1197 
1198 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1199   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1200   switch (register_save_policy[reg]) {
1201     case 'C': return false; //SOC
1202     case 'E': return true ; //SOE
1203     case 'N': return false; //NS
1204     case 'A': return false; //AS
1205   }
1206   ShouldNotReachHere();
1207   return false;
1208 }
1209 
1210 //-----------------------------------------------------------------------
1211 // Exceptions
1212 //
1213 
1214 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
1215 
1216 // The method is an entry that is always called by a C++ method not
1217 // directly from compiled code. Compiled code will call the C++ method following.
1218 // We can't allow async exception to be installed during  exception processing.
1219 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1220 
1221   // Do not confuse exception_oop with pending_exception. The exception_oop
1222   // is only used to pass arguments into the method. Not for general
1223   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1224   // the runtime stubs checks this on exit.
1225   assert(thread->exception_oop() != NULL, "exception oop is found");
1226   address handler_address = NULL;
1227 
1228   Handle exception(thread, thread->exception_oop());
1229   address pc = thread->exception_pc();
1230 
1231   // Clear out the exception oop and pc since looking up an
1232   // exception handler can cause class loading, which might throw an
1233   // exception and those fields are expected to be clear during
1234   // normal bytecode execution.
1235   thread->clear_exception_oop_and_pc();
1236 
1237   if (TraceExceptions) {
1238     trace_exception(exception(), pc, "");
1239   }
1240 
1241   // for AbortVMOnException flag
1242   Exceptions::debug_check_abort(exception);
1243 
1244 #ifdef ASSERT
1245   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1246     // should throw an exception here
1247     ShouldNotReachHere();
1248   }
1249 #endif
1250 
1251   // new exception handling: this method is entered only from adapters
1252   // exceptions from compiled java methods are handled in compiled code
1253   // using rethrow node
1254 
1255   nm = CodeCache::find_nmethod(pc);
1256   assert(nm != NULL, "No NMethod found");
1257   if (nm->is_native_method()) {
1258     fatal("Native method should not have path to exception handling");
1259   } else {
1260     // we are switching to old paradigm: search for exception handler in caller_frame
1261     // instead in exception handler of caller_frame.sender()
1262 
1263     if (JvmtiExport::can_post_on_exceptions()) {
1264       // "Full-speed catching" is not necessary here,
1265       // since we're notifying the VM on every catch.
1266       // Force deoptimization and the rest of the lookup
1267       // will be fine.
1268       deoptimize_caller_frame(thread);
1269     }
1270 
1271     // Check the stack guard pages.  If enabled, look for handler in this frame;
1272     // otherwise, forcibly unwind the frame.
1273     //
1274     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1275     bool force_unwind = !thread->reguard_stack();
1276     bool deopting = false;
1277     if (nm->is_deopt_pc(pc)) {
1278       deopting = true;
1279       RegisterMap map(thread, false);
1280       frame deoptee = thread->last_frame().sender(&map);
1281       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1282       // Adjust the pc back to the original throwing pc
1283       pc = deoptee.pc();
1284     }
1285 
1286     // If we are forcing an unwind because of stack overflow then deopt is
1287     // irrelevant since we are throwing the frame away anyway.
1288 
1289     if (deopting && !force_unwind) {
1290       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1291     } else {
1292 
1293       handler_address =
1294         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1295 
1296       if (handler_address == NULL) {
1297         Handle original_exception(thread, exception());
1298         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1299         assert (handler_address != NULL, "must have compiled handler");
1300         // Update the exception cache only when the unwind was not forced
1301         // and there didn't happen another exception during the computation of the
1302         // compiled exception handler.
1303         if (!force_unwind && original_exception() == exception()) {
1304           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1305         }
1306       } else {
1307         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1308       }
1309     }
1310 
1311     thread->set_exception_pc(pc);
1312     thread->set_exception_handler_pc(handler_address);
1313 
1314     // Check if the exception PC is a MethodHandle call site.
1315     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1316   }
1317 
1318   // Restore correct return pc.  Was saved above.
1319   thread->set_exception_oop(exception());
1320   return handler_address;
1321 
1322 JRT_END
1323 
1324 // We are entering here from exception_blob
1325 // If there is a compiled exception handler in this method, we will continue there;
1326 // otherwise we will unwind the stack and continue at the caller of top frame method
1327 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1328 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1329 // we looked up the handler for has been deoptimized in the meantime. If it has been
1330 // we must not use the handler and instead return the deopt blob.
1331 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1332 //
1333 // We are in Java not VM and in debug mode we have a NoHandleMark
1334 //
1335 #ifndef PRODUCT
1336   SharedRuntime::_find_handler_ctr++;          // find exception handler
1337 #endif
1338   debug_only(NoHandleMark __hm;)
1339   nmethod* nm = NULL;
1340   address handler_address = NULL;
1341   {
1342     // Enter the VM
1343 
1344     ResetNoHandleMark rnhm;
1345     handler_address = handle_exception_C_helper(thread, nm);
1346   }
1347 
1348   // Back in java: Use no oops, DON'T safepoint
1349 
1350   // Now check to see if the handler we are returning is in a now
1351   // deoptimized frame
1352 
1353   if (nm != NULL) {
1354     RegisterMap map(thread, false);
1355     frame caller = thread->last_frame().sender(&map);
1356 #ifdef ASSERT
1357     assert(caller.is_compiled_frame(), "must be");
1358 #endif // ASSERT
1359     if (caller.is_deoptimized_frame()) {
1360       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1361     }
1362   }
1363   return handler_address;
1364 }
1365 
1366 //------------------------------rethrow----------------------------------------
1367 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1368 // is either throwing or rethrowing an exception.  The callee-save registers
1369 // have been restored, synchronized objects have been unlocked and the callee
1370 // stack frame has been removed.  The return address was passed in.
1371 // Exception oop is passed as the 1st argument.  This routine is then called
1372 // from the stub.  On exit, we know where to jump in the caller's code.
1373 // After this C code exits, the stub will pop his frame and end in a jump
1374 // (instead of a return).  We enter the caller's default handler.
1375 //
1376 // This must be JRT_LEAF:
1377 //     - caller will not change its state as we cannot block on exit,
1378 //       therefore raw_exception_handler_for_return_address is all it takes
1379 //       to handle deoptimized blobs
1380 //
1381 // However, there needs to be a safepoint check in the middle!  So compiled
1382 // safepoints are completely watertight.
1383 //
1384 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1385 //
1386 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1387 //
1388 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1389 #ifndef PRODUCT
1390   SharedRuntime::_rethrow_ctr++;               // count rethrows
1391 #endif
1392   assert (exception != NULL, "should have thrown a NULLPointerException");
1393 #ifdef ASSERT
1394   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1395     // should throw an exception here
1396     ShouldNotReachHere();
1397   }
1398 #endif
1399 
1400   thread->set_vm_result(exception);
1401   // Frame not compiled (handles deoptimization blob)
1402   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1403 }
1404 
1405 
1406 const TypeFunc *OptoRuntime::rethrow_Type() {
1407   // create input type (domain)
1408   const Type **fields = TypeTuple::fields(1);
1409   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1410   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1411 
1412   // create result type (range)
1413   fields = TypeTuple::fields(1);
1414   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1415   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1416 
1417   return TypeFunc::make(domain, range);
1418 }
1419 
1420 
1421 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1422   // Deoptimize the caller before continuing, as the compiled
1423   // exception handler table may not be valid.
1424   if (!StressCompiledExceptionHandlers && doit) {
1425     deoptimize_caller_frame(thread);
1426   }
1427 }
1428 
1429 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1430   // Called from within the owner thread, so no need for safepoint
1431   RegisterMap reg_map(thread);
1432   frame stub_frame = thread->last_frame();
1433   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1434   frame caller_frame = stub_frame.sender(&reg_map);
1435 
1436   // Deoptimize the caller frame.
1437   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1438 }
1439 
1440 
1441 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1442   // Called from within the owner thread, so no need for safepoint
1443   RegisterMap reg_map(thread);
1444   frame stub_frame = thread->last_frame();
1445   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1446   frame caller_frame = stub_frame.sender(&reg_map);
1447   return caller_frame.is_deoptimized_frame();
1448 }
1449 
1450 
1451 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1452   // create input type (domain)
1453   const Type **fields = TypeTuple::fields(1);
1454   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1455   // // The JavaThread* is passed to each routine as the last argument
1456   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1457   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1458 
1459   // create result type (range)
1460   fields = TypeTuple::fields(0);
1461 
1462   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1463 
1464   return TypeFunc::make(domain,range);
1465 }
1466 
1467 
1468 //-----------------------------------------------------------------------------
1469 // Dtrace support.  entry and exit probes have the same signature
1470 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1471   // create input type (domain)
1472   const Type **fields = TypeTuple::fields(2);
1473   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1474   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1475   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1476 
1477   // create result type (range)
1478   fields = TypeTuple::fields(0);
1479 
1480   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1481 
1482   return TypeFunc::make(domain,range);
1483 }
1484 
1485 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1486   // create input type (domain)
1487   const Type **fields = TypeTuple::fields(2);
1488   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1489   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1490 
1491   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1492 
1493   // create result type (range)
1494   fields = TypeTuple::fields(0);
1495 
1496   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1497 
1498   return TypeFunc::make(domain,range);
1499 }
1500 
1501 
1502 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1503   assert(obj->is_oop(), "must be a valid oop");
1504   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1505   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1506 JRT_END
1507 
1508 //-----------------------------------------------------------------------------
1509 
1510 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1511 
1512 //
1513 // dump the collected NamedCounters.
1514 //
1515 void OptoRuntime::print_named_counters() {
1516   int total_lock_count = 0;
1517   int eliminated_lock_count = 0;
1518 
1519   NamedCounter* c = _named_counters;
1520   while (c) {
1521     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1522       int count = c->count();
1523       if (count > 0) {
1524         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1525         if (Verbose) {
1526           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1527         }
1528         total_lock_count += count;
1529         if (eliminated) {
1530           eliminated_lock_count += count;
1531         }
1532       }
1533     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1534       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1535       if (blc->nonzero()) {
1536         tty->print_cr("%s", c->name());
1537         blc->print_on(tty);
1538       }
1539 #if INCLUDE_RTM_OPT
1540     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1541       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1542       if (rlc->nonzero()) {
1543         tty->print_cr("%s", c->name());
1544         rlc->print_on(tty);
1545       }
1546 #endif
1547     }
1548     c = c->next();
1549   }
1550   if (total_lock_count > 0) {
1551     tty->print_cr("dynamic locks: %d", total_lock_count);
1552     if (eliminated_lock_count) {
1553       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1554                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1555     }
1556   }
1557 }
1558 
1559 //
1560 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1561 //  name which consists of method@line for the inlining tree.
1562 //
1563 
1564 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1565   int max_depth = youngest_jvms->depth();
1566 
1567   // Visit scopes from youngest to oldest.
1568   bool first = true;
1569   stringStream st;
1570   for (int depth = max_depth; depth >= 1; depth--) {
1571     JVMState* jvms = youngest_jvms->of_depth(depth);
1572     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1573     if (!first) {
1574       st.print(" ");
1575     } else {
1576       first = false;
1577     }
1578     int bci = jvms->bci();
1579     if (bci < 0) bci = 0;
1580     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1581     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1582   }
1583   NamedCounter* c;
1584   if (tag == NamedCounter::BiasedLockingCounter) {
1585     c = new BiasedLockingNamedCounter(st.as_string());
1586   } else if (tag == NamedCounter::RTMLockingCounter) {
1587     c = new RTMLockingNamedCounter(st.as_string());
1588   } else {
1589     c = new NamedCounter(st.as_string(), tag);
1590   }
1591 
1592   // atomically add the new counter to the head of the list.  We only
1593   // add counters so this is safe.
1594   NamedCounter* head;
1595   do {
1596     c->set_next(NULL);
1597     head = _named_counters;
1598     c->set_next(head);
1599   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1600   return c;
1601 }
1602 
1603 //-----------------------------------------------------------------------------
1604 // Non-product code
1605 #ifndef PRODUCT
1606 
1607 int trace_exception_counter = 0;
1608 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1609   ttyLocker ttyl;
1610   trace_exception_counter++;
1611   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1612   exception_oop->print_value();
1613   tty->print(" in ");
1614   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1615   if (blob->is_nmethod()) {
1616     nmethod* nm = blob->as_nmethod_or_null();
1617     nm->method()->print_value();
1618   } else if (blob->is_runtime_stub()) {
1619     tty->print("<runtime-stub>");
1620   } else {
1621     tty->print("<unknown>");
1622   }
1623   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1624   tty->print_cr("]");
1625 }
1626 
1627 #endif  // PRODUCT
1628