1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class CountedLoopReserveKit;
  42 class VectorSet;
  43 class Invariance;
  44 struct small_cache;
  45 
  46 //
  47 //                  I D E A L I Z E D   L O O P S
  48 //
  49 // Idealized loops are the set of loops I perform more interesting
  50 // transformations on, beyond simple hoisting.
  51 
  52 //------------------------------LoopNode---------------------------------------
  53 // Simple loop header.  Fall in path on left, loop-back path on right.
  54 class LoopNode : public RegionNode {
  55   // Size is bigger to hold the flags.  However, the flags do not change
  56   // the semantics so it does not appear in the hash & cmp functions.
  57   virtual uint size_of() const { return sizeof(*this); }
  58 protected:
  59   short _loop_flags;
  60   // Names for flag bitfields
  61   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  62          MainHasNoPreLoop=4,
  63          HasExactTripCount=8,
  64          InnerLoop=16,
  65          PartialPeelLoop=32,
  66          PartialPeelFailed=64,
  67          HasReductions=128,
  68          WasSlpAnalyzed=256,
  69          PassedSlpAnalysis=512,
  70          DoUnrollOnly=1024 };
  71   char _unswitch_count;
  72   enum { _unswitch_max=3 };
  73 
  74 public:
  75   // Names for edge indices
  76   enum { Self=0, EntryControl, LoopBackControl };
  77 
  78   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  79   void set_inner_loop() { _loop_flags |= InnerLoop; }
  80 
  81   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  82   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  83   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  84   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  85   void mark_has_reductions() { _loop_flags |= HasReductions; }
  86   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
  87   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
  88   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
  89 
  90   int unswitch_max() { return _unswitch_max; }
  91   int unswitch_count() { return _unswitch_count; }
  92   void set_unswitch_count(int val) {
  93     assert (val <= unswitch_max(), "too many unswitches");
  94     _unswitch_count = val;
  95   }
  96 
  97   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  98     init_class_id(Class_Loop);
  99     init_req(EntryControl, entry);
 100     init_req(LoopBackControl, backedge);
 101   }
 102 
 103   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 104   virtual int Opcode() const;
 105   bool can_be_counted_loop(PhaseTransform* phase) const {
 106     return req() == 3 && in(0) != NULL &&
 107       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 108       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 109   }
 110   bool is_valid_counted_loop() const;
 111 #ifndef PRODUCT
 112   virtual void dump_spec(outputStream *st) const;
 113 #endif
 114 };
 115 
 116 //------------------------------Counted Loops----------------------------------
 117 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 118 // path (and maybe some other exit paths).  The trip-counter exit is always
 119 // last in the loop.  The trip-counter have to stride by a constant;
 120 // the exit value is also loop invariant.
 121 
 122 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 123 // CountedLoopNode has the incoming loop control and the loop-back-control
 124 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 125 // CountedLoopEndNode has an incoming control (possibly not the
 126 // CountedLoopNode if there is control flow in the loop), the post-increment
 127 // trip-counter value, and the limit.  The trip-counter value is always of
 128 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 129 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 130 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 131 // CountedLoopEndNode also takes in the loop-invariant limit value.
 132 
 133 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 134 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 135 // via the old-trip-counter from the Op node.
 136 
 137 //------------------------------CountedLoopNode--------------------------------
 138 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 139 // inputs the incoming loop-start control and the loop-back control, so they
 140 // act like RegionNodes.  They also take in the initial trip counter, the
 141 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 142 // produce a loop-body control and the trip counter value.  Since
 143 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 144 
 145 class CountedLoopNode : public LoopNode {
 146   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 147   // the semantics so it does not appear in the hash & cmp functions.
 148   virtual uint size_of() const { return sizeof(*this); }
 149 
 150   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 151   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 152   node_idx_t _main_idx;
 153 
 154   // Known trip count calculated by compute_exact_trip_count()
 155   uint  _trip_count;
 156 
 157   // Expected trip count from profile data
 158   float _profile_trip_cnt;
 159 
 160   // Log2 of original loop bodies in unrolled loop
 161   int _unrolled_count_log2;
 162 
 163   // Node count prior to last unrolling - used to decide if
 164   // unroll,optimize,unroll,optimize,... is making progress
 165   int _node_count_before_unroll;
 166 
 167   // If slp analysis is performed we record the maximum
 168   // vector mapped unroll factor here
 169   int _slp_maximum_unroll_factor;
 170 
 171 public:
 172   CountedLoopNode( Node *entry, Node *backedge )
 173     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 174       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 175       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 176     init_class_id(Class_CountedLoop);
 177     // Initialize _trip_count to the largest possible value.
 178     // Will be reset (lower) if the loop's trip count is known.
 179   }
 180 
 181   virtual int Opcode() const;
 182   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 183 
 184   Node *init_control() const { return in(EntryControl); }
 185   Node *back_control() const { return in(LoopBackControl); }
 186   CountedLoopEndNode *loopexit() const;
 187   Node *init_trip() const;
 188   Node *stride() const;
 189   int   stride_con() const;
 190   bool  stride_is_con() const;
 191   Node *limit() const;
 192   Node *incr() const;
 193   Node *phi() const;
 194 
 195   // Match increment with optional truncation
 196   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 197 
 198   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 199   // can run short a few iterations and may start a few iterations in.
 200   // It will be RCE'd and unrolled and aligned.
 201 
 202   // A following 'post' loop will run any remaining iterations.  Used
 203   // during Range Check Elimination, the 'post' loop will do any final
 204   // iterations with full checks.  Also used by Loop Unrolling, where
 205   // the 'post' loop will do any epilog iterations needed.  Basically,
 206   // a 'post' loop can not profitably be further unrolled or RCE'd.
 207 
 208   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 209   // it may do under-flow checks for RCE and may do alignment iterations
 210   // so the following main loop 'knows' that it is striding down cache
 211   // lines.
 212 
 213   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 214   // Aligned, may be missing it's pre-loop.
 215   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 216   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 217   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 218   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 219   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 220   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 221   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 222   int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 223   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 224   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 225 
 226   int main_idx() const { return _main_idx; }
 227 
 228 
 229   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 230   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 231   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 232   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 233 
 234   void set_trip_count(uint tc) { _trip_count = tc; }
 235   uint trip_count()            { return _trip_count; }
 236 
 237   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 238   void set_exact_trip_count(uint tc) {
 239     _trip_count = tc;
 240     _loop_flags |= HasExactTripCount;
 241   }
 242   void set_nonexact_trip_count() {
 243     _loop_flags &= ~HasExactTripCount;
 244   }
 245   void set_notpassed_slp() {
 246     _loop_flags &= ~PassedSlpAnalysis;
 247   }
 248 
 249   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 250   float profile_trip_cnt()             { return _profile_trip_cnt; }
 251 
 252   void double_unrolled_count() { _unrolled_count_log2++; }
 253   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 254 
 255   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 256   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 257   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 258   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 259 
 260 #ifndef PRODUCT
 261   virtual void dump_spec(outputStream *st) const;
 262 #endif
 263 };
 264 
 265 //------------------------------CountedLoopEndNode-----------------------------
 266 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 267 // IfNodes.
 268 class CountedLoopEndNode : public IfNode {
 269 public:
 270   enum { TestControl, TestValue };
 271 
 272   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 273     : IfNode( control, test, prob, cnt) {
 274     init_class_id(Class_CountedLoopEnd);
 275   }
 276   virtual int Opcode() const;
 277 
 278   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 279   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 280   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 281   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 282   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 283   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 284   int stride_con() const;
 285   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 286   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 287   CountedLoopNode *loopnode() const {
 288     // The CountedLoopNode that goes with this CountedLoopEndNode may
 289     // have been optimized out by the IGVN so be cautious with the
 290     // pattern matching on the graph
 291     if (phi() == NULL) {
 292       return NULL;
 293     }
 294     assert(phi()->is_Phi(), "should be PhiNode");
 295     Node *ln = phi()->in(0);
 296     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 297       return (CountedLoopNode*)ln;
 298     }
 299     return NULL;
 300   }
 301 
 302 #ifndef PRODUCT
 303   virtual void dump_spec(outputStream *st) const;
 304 #endif
 305 };
 306 
 307 
 308 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 309   Node *bc = back_control();
 310   if( bc == NULL ) return NULL;
 311   Node *le = bc->in(0);
 312   if( le->Opcode() != Op_CountedLoopEnd )
 313     return NULL;
 314   return (CountedLoopEndNode*)le;
 315 }
 316 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 317 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 318 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 319 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 320 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 321 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 322 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 323 
 324 //------------------------------LoopLimitNode-----------------------------
 325 // Counted Loop limit node which represents exact final iterator value:
 326 // trip_count = (limit - init_trip + stride - 1)/stride
 327 // final_value= trip_count * stride + init_trip.
 328 // Use HW instructions to calculate it when it can overflow in integer.
 329 // Note, final_value should fit into integer since counted loop has
 330 // limit check: limit <= max_int-stride.
 331 class LoopLimitNode : public Node {
 332   enum { Init=1, Limit=2, Stride=3 };
 333  public:
 334   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 335     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 336     init_flags(Flag_is_macro);
 337     C->add_macro_node(this);
 338   }
 339   virtual int Opcode() const;
 340   virtual const Type *bottom_type() const { return TypeInt::INT; }
 341   virtual uint ideal_reg() const { return Op_RegI; }
 342   virtual const Type* Value(PhaseGVN* phase) const;
 343   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 344   virtual Node* Identity(PhaseGVN* phase);
 345 };
 346 
 347 // -----------------------------IdealLoopTree----------------------------------
 348 class IdealLoopTree : public ResourceObj {
 349 public:
 350   IdealLoopTree *_parent;       // Parent in loop tree
 351   IdealLoopTree *_next;         // Next sibling in loop tree
 352   IdealLoopTree *_child;        // First child in loop tree
 353 
 354   // The head-tail backedge defines the loop.
 355   // If tail is NULL then this loop has multiple backedges as part of the
 356   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 357   // them at the loop bottom and flow 1 real backedge into the loop.
 358   Node *_head;                  // Head of loop
 359   Node *_tail;                  // Tail of loop
 360   inline Node *tail();          // Handle lazy update of _tail field
 361   PhaseIdealLoop* _phase;
 362   int _local_loop_unroll_limit;
 363   int _local_loop_unroll_factor;
 364 
 365   Node_List _body;              // Loop body for inner loops
 366 
 367   uint8_t _nest;                // Nesting depth
 368   uint8_t _irreducible:1,       // True if irreducible
 369           _has_call:1,          // True if has call safepoint
 370           _has_sfpt:1,          // True if has non-call safepoint
 371           _rce_candidate:1;     // True if candidate for range check elimination
 372 
 373   Node_List* _safepts;          // List of safepoints in this loop
 374   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 375   bool  _allow_optimizations;   // Allow loop optimizations
 376 
 377   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 378     : _parent(0), _next(0), _child(0),
 379       _head(head), _tail(tail),
 380       _phase(phase),
 381       _safepts(NULL),
 382       _required_safept(NULL),
 383       _allow_optimizations(true),
 384       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 385       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 386   { }
 387 
 388   // Is 'l' a member of 'this'?
 389   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 390 
 391   // Set loop nesting depth.  Accumulate has_call bits.
 392   int set_nest( uint depth );
 393 
 394   // Split out multiple fall-in edges from the loop header.  Move them to a
 395   // private RegionNode before the loop.  This becomes the loop landing pad.
 396   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 397 
 398   // Split out the outermost loop from this shared header.
 399   void split_outer_loop( PhaseIdealLoop *phase );
 400 
 401   // Merge all the backedges from the shared header into a private Region.
 402   // Feed that region as the one backedge to this loop.
 403   void merge_many_backedges( PhaseIdealLoop *phase );
 404 
 405   // Split shared headers and insert loop landing pads.
 406   // Insert a LoopNode to replace the RegionNode.
 407   // Returns TRUE if loop tree is structurally changed.
 408   bool beautify_loops( PhaseIdealLoop *phase );
 409 
 410   // Perform optimization to use the loop predicates for null checks and range checks.
 411   // Applies to any loop level (not just the innermost one)
 412   bool loop_predication( PhaseIdealLoop *phase);
 413 
 414   // Perform iteration-splitting on inner loops.  Split iterations to
 415   // avoid range checks or one-shot null checks.  Returns false if the
 416   // current round of loop opts should stop.
 417   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 418 
 419   // Driver for various flavors of iteration splitting.  Returns false
 420   // if the current round of loop opts should stop.
 421   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 422 
 423   // Given dominators, try to find loops with calls that must always be
 424   // executed (call dominates loop tail).  These loops do not need non-call
 425   // safepoints (ncsfpt).
 426   void check_safepts(VectorSet &visited, Node_List &stack);
 427 
 428   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 429   // encountered.
 430   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 431 
 432   // Remove safepoints from loop. Optionally keeping one.
 433   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 434 
 435   // Convert to counted loops where possible
 436   void counted_loop( PhaseIdealLoop *phase );
 437 
 438   // Check for Node being a loop-breaking test
 439   Node *is_loop_exit(Node *iff) const;
 440 
 441   // Returns true if ctrl is executed on every complete iteration
 442   bool dominates_backedge(Node* ctrl);
 443 
 444   // Remove simplistic dead code from loop body
 445   void DCE_loop_body();
 446 
 447   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 448   // Replace with a 1-in-10 exit guess.
 449   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 450 
 451   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 452   // Useful for unrolling loops with NO array accesses.
 453   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 454 
 455   // Return TRUE or FALSE if the loop should be unswitched -- clone
 456   // loop with an invariant test
 457   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 458 
 459   // Micro-benchmark spamming.  Remove empty loops.
 460   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 461 
 462   // Convert one iteration loop into normal code.
 463   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 464 
 465   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 466   // make some loop-invariant test (usually a null-check) happen before the
 467   // loop.
 468   bool policy_peeling( PhaseIdealLoop *phase ) const;
 469 
 470   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 471   // known trip count in the counted loop node.
 472   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 473 
 474   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 475   // the loop is a CountedLoop and the body is small enough.
 476   bool policy_unroll(PhaseIdealLoop *phase);
 477 
 478   // Loop analyses to map to a maximal superword unrolling for vectorization.
 479   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 480 
 481   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 482   // Gather a list of IF tests that are dominated by iteration splitting;
 483   // also gather the end of the first split and the start of the 2nd split.
 484   bool policy_range_check( PhaseIdealLoop *phase ) const;
 485 
 486   // Return TRUE or FALSE if the loop should be cache-line aligned.
 487   // Gather the expression that does the alignment.  Note that only
 488   // one array base can be aligned in a loop (unless the VM guarantees
 489   // mutual alignment).  Note that if we vectorize short memory ops
 490   // into longer memory ops, we may want to increase alignment.
 491   bool policy_align( PhaseIdealLoop *phase ) const;
 492 
 493   // Return TRUE if "iff" is a range check.
 494   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 495 
 496   // Compute loop exact trip count if possible
 497   void compute_exact_trip_count( PhaseIdealLoop *phase );
 498 
 499   // Compute loop trip count from profile data
 500   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 501 
 502   // Reassociate invariant expressions.
 503   void reassociate_invariants(PhaseIdealLoop *phase);
 504   // Reassociate invariant add and subtract expressions.
 505   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 506   // Return nonzero index of invariant operand if invariant and variant
 507   // are combined with an Add or Sub. Helper for reassociate_invariants.
 508   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 509 
 510   // Return true if n is invariant
 511   bool is_invariant(Node* n) const;
 512 
 513   // Put loop body on igvn work list
 514   void record_for_igvn();
 515 
 516   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 517   bool is_inner()   { return is_loop() && _child == NULL; }
 518   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 519 
 520   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 521 
 522 #ifndef PRODUCT
 523   void dump_head( ) const;      // Dump loop head only
 524   void dump() const;            // Dump this loop recursively
 525   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 526 #endif
 527 
 528 };
 529 
 530 // -----------------------------PhaseIdealLoop---------------------------------
 531 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 532 // loop tree.  Drives the loop-based transformations on the ideal graph.
 533 class PhaseIdealLoop : public PhaseTransform {
 534   friend class IdealLoopTree;
 535   friend class SuperWord;
 536   friend class CountedLoopReserveKit;
 537 
 538   // Pre-computed def-use info
 539   PhaseIterGVN &_igvn;
 540 
 541   // Head of loop tree
 542   IdealLoopTree *_ltree_root;
 543 
 544   // Array of pre-order numbers, plus post-visited bit.
 545   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 546   // ODD for post-visited.  Other bits are the pre-order number.
 547   uint *_preorders;
 548   uint _max_preorder;
 549 
 550   const PhaseIdealLoop* _verify_me;
 551   bool _verify_only;
 552 
 553   // Allocate _preorders[] array
 554   void allocate_preorders() {
 555     _max_preorder = C->unique()+8;
 556     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 557     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 558   }
 559 
 560   // Allocate _preorders[] array
 561   void reallocate_preorders() {
 562     if ( _max_preorder < C->unique() ) {
 563       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 564       _max_preorder = C->unique();
 565     }
 566     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 567   }
 568 
 569   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 570   // adds new nodes.
 571   void check_grow_preorders( ) {
 572     if ( _max_preorder < C->unique() ) {
 573       uint newsize = _max_preorder<<1;  // double size of array
 574       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 575       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 576       _max_preorder = newsize;
 577     }
 578   }
 579   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 580   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 581   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 582   void set_preorder_visited( Node *n, int pre_order ) {
 583     assert( !is_visited( n ), "already set" );
 584     _preorders[n->_idx] = (pre_order<<1);
 585   };
 586   // Return pre-order number.
 587   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 588 
 589   // Check for being post-visited.
 590   // Should be previsited already (checked with assert(is_visited(n))).
 591   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 592 
 593   // Mark as post visited
 594   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 595 
 596   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 597   // Returns true if "n" is a data node, false if it's a control node.
 598   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 599 
 600   // clear out dead code after build_loop_late
 601   Node_List _deadlist;
 602 
 603   // Support for faster execution of get_late_ctrl()/dom_lca()
 604   // when a node has many uses and dominator depth is deep.
 605   Node_Array _dom_lca_tags;
 606   void   init_dom_lca_tags();
 607   void   clear_dom_lca_tags();
 608 
 609   // Helper for debugging bad dominance relationships
 610   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 611 
 612   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 613 
 614   // Inline wrapper for frequent cases:
 615   // 1) only one use
 616   // 2) a use is the same as the current LCA passed as 'n1'
 617   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 618     assert( n->is_CFG(), "" );
 619     // Fast-path NULL lca
 620     if( lca != NULL && lca != n ) {
 621       assert( lca->is_CFG(), "" );
 622       // find LCA of all uses
 623       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 624     }
 625     return find_non_split_ctrl(n);
 626   }
 627   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 628 
 629   // Helper function for directing control inputs away from CFG split
 630   // points.
 631   Node *find_non_split_ctrl( Node *ctrl ) const {
 632     if (ctrl != NULL) {
 633       if (ctrl->is_MultiBranch()) {
 634         ctrl = ctrl->in(0);
 635       }
 636       assert(ctrl->is_CFG(), "CFG");
 637     }
 638     return ctrl;
 639   }
 640 
 641   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 642 
 643 public:
 644   bool has_node( Node* n ) const {
 645     guarantee(n != NULL, "No Node.");
 646     return _nodes[n->_idx] != NULL;
 647   }
 648   // check if transform created new nodes that need _ctrl recorded
 649   Node *get_late_ctrl( Node *n, Node *early );
 650   Node *get_early_ctrl( Node *n );
 651   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 652   void set_early_ctrl( Node *n );
 653   void set_subtree_ctrl( Node *root );
 654   void set_ctrl( Node *n, Node *ctrl ) {
 655     assert( !has_node(n) || has_ctrl(n), "" );
 656     assert( ctrl->in(0), "cannot set dead control node" );
 657     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 658     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 659   }
 660   // Set control and update loop membership
 661   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 662     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 663     IdealLoopTree* new_loop = get_loop(ctrl);
 664     if (old_loop != new_loop) {
 665       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 666       if (new_loop->_child == NULL) new_loop->_body.push(n);
 667     }
 668     set_ctrl(n, ctrl);
 669   }
 670   // Control nodes can be replaced or subsumed.  During this pass they
 671   // get their replacement Node in slot 1.  Instead of updating the block
 672   // location of all Nodes in the subsumed block, we lazily do it.  As we
 673   // pull such a subsumed block out of the array, we write back the final
 674   // correct block.
 675   Node *get_ctrl( Node *i ) {
 676     assert(has_node(i), "");
 677     Node *n = get_ctrl_no_update(i);
 678     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 679     assert(has_node(i) && has_ctrl(i), "");
 680     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 681     return n;
 682   }
 683   // true if CFG node d dominates CFG node n
 684   bool is_dominator(Node *d, Node *n);
 685   // return get_ctrl for a data node and self(n) for a CFG node
 686   Node* ctrl_or_self(Node* n) {
 687     if (has_ctrl(n))
 688       return get_ctrl(n);
 689     else {
 690       assert (n->is_CFG(), "must be a CFG node");
 691       return n;
 692     }
 693   }
 694 
 695 private:
 696   Node *get_ctrl_no_update_helper(Node *i) const {
 697     assert(has_ctrl(i), "should be control, not loop");
 698     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 699   }
 700 
 701   Node *get_ctrl_no_update(Node *i) const {
 702     assert( has_ctrl(i), "" );
 703     Node *n = get_ctrl_no_update_helper(i);
 704     if (!n->in(0)) {
 705       // Skip dead CFG nodes
 706       do {
 707         n = get_ctrl_no_update_helper(n);
 708       } while (!n->in(0));
 709       n = find_non_split_ctrl(n);
 710     }
 711     return n;
 712   }
 713 
 714   // Check for loop being set
 715   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 716   bool has_loop( Node *n ) const {
 717     assert(!has_node(n) || !has_ctrl(n), "");
 718     return has_node(n);
 719   }
 720   // Set loop
 721   void set_loop( Node *n, IdealLoopTree *loop ) {
 722     _nodes.map(n->_idx, (Node*)loop);
 723   }
 724   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 725   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 726   // from old_node to new_node to support the lazy update.  Reference
 727   // replaces loop reference, since that is not needed for dead node.
 728 public:
 729   void lazy_update(Node *old_node, Node *new_node) {
 730     assert(old_node != new_node, "no cycles please");
 731     // Re-use the side array slot for this node to provide the
 732     // forwarding pointer.
 733     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 734   }
 735   void lazy_replace(Node *old_node, Node *new_node) {
 736     _igvn.replace_node(old_node, new_node);
 737     lazy_update(old_node, new_node);
 738   }
 739 
 740 private:
 741 
 742   // Place 'n' in some loop nest, where 'n' is a CFG node
 743   void build_loop_tree();
 744   int build_loop_tree_impl( Node *n, int pre_order );
 745   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 746   // loop tree, not the root.
 747   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 748 
 749   // Place Data nodes in some loop nest
 750   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 751   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 752   void build_loop_late_post ( Node* n );
 753 
 754   // Array of immediate dominance info for each CFG node indexed by node idx
 755 private:
 756   uint _idom_size;
 757   Node **_idom;                 // Array of immediate dominators
 758   uint *_dom_depth;           // Used for fast LCA test
 759   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 760 
 761   Node* idom_no_update(Node* d) const {
 762     assert(d->_idx < _idom_size, "oob");
 763     Node* n = _idom[d->_idx];
 764     assert(n != NULL,"Bad immediate dominator info.");
 765     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 766       //n = n->in(1);
 767       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 768       assert(n != NULL,"Bad immediate dominator info.");
 769     }
 770     return n;
 771   }
 772   Node *idom(Node* d) const {
 773     uint didx = d->_idx;
 774     Node *n = idom_no_update(d);
 775     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 776     return n;
 777   }
 778   uint dom_depth(Node* d) const {
 779     guarantee(d != NULL, "Null dominator info.");
 780     guarantee(d->_idx < _idom_size, "");
 781     return _dom_depth[d->_idx];
 782   }
 783   void set_idom(Node* d, Node* n, uint dom_depth);
 784   // Locally compute IDOM using dom_lca call
 785   Node *compute_idom( Node *region ) const;
 786   // Recompute dom_depth
 787   void recompute_dom_depth();
 788 
 789   // Is safept not required by an outer loop?
 790   bool is_deleteable_safept(Node* sfpt);
 791 
 792   // Replace parallel induction variable (parallel to trip counter)
 793   void replace_parallel_iv(IdealLoopTree *loop);
 794 
 795   // Perform verification that the graph is valid.
 796   PhaseIdealLoop( PhaseIterGVN &igvn) :
 797     PhaseTransform(Ideal_Loop),
 798     _igvn(igvn),
 799     _dom_lca_tags(arena()), // Thread::resource_area
 800     _verify_me(NULL),
 801     _verify_only(true) {
 802     build_and_optimize(false, false);
 803   }
 804 
 805   // build the loop tree and perform any requested optimizations
 806   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 807 
 808 public:
 809   // Dominators for the sea of nodes
 810   void Dominators();
 811   Node *dom_lca( Node *n1, Node *n2 ) const {
 812     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 813   }
 814   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 815 
 816   // Compute the Ideal Node to Loop mapping
 817   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 818     PhaseTransform(Ideal_Loop),
 819     _igvn(igvn),
 820     _dom_lca_tags(arena()), // Thread::resource_area
 821     _verify_me(NULL),
 822     _verify_only(false) {
 823     build_and_optimize(do_split_ifs, skip_loop_opts);
 824   }
 825 
 826   // Verify that verify_me made the same decisions as a fresh run.
 827   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 828     PhaseTransform(Ideal_Loop),
 829     _igvn(igvn),
 830     _dom_lca_tags(arena()), // Thread::resource_area
 831     _verify_me(verify_me),
 832     _verify_only(false) {
 833     build_and_optimize(false, false);
 834   }
 835 
 836   // Build and verify the loop tree without modifying the graph.  This
 837   // is useful to verify that all inputs properly dominate their uses.
 838   static void verify(PhaseIterGVN& igvn) {
 839 #ifdef ASSERT
 840     PhaseIdealLoop v(igvn);
 841 #endif
 842   }
 843 
 844   // True if the method has at least 1 irreducible loop
 845   bool _has_irreducible_loops;
 846 
 847   // Per-Node transform
 848   virtual Node *transform( Node *a_node ) { return 0; }
 849 
 850   bool is_counted_loop( Node *x, IdealLoopTree *loop );
 851 
 852   Node* exact_limit( IdealLoopTree *loop );
 853 
 854   // Return a post-walked LoopNode
 855   IdealLoopTree *get_loop( Node *n ) const {
 856     // Dead nodes have no loop, so return the top level loop instead
 857     if (!has_node(n))  return _ltree_root;
 858     assert(!has_ctrl(n), "");
 859     return (IdealLoopTree*)_nodes[n->_idx];
 860   }
 861 
 862   // Is 'n' a (nested) member of 'loop'?
 863   int is_member( const IdealLoopTree *loop, Node *n ) const {
 864     return loop->is_member(get_loop(n)); }
 865 
 866   // This is the basic building block of the loop optimizations.  It clones an
 867   // entire loop body.  It makes an old_new loop body mapping; with this
 868   // mapping you can find the new-loop equivalent to an old-loop node.  All
 869   // new-loop nodes are exactly equal to their old-loop counterparts, all
 870   // edges are the same.  All exits from the old-loop now have a RegionNode
 871   // that merges the equivalent new-loop path.  This is true even for the
 872   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 873   // now come from (one or more) Phis that merge their new-loop equivalents.
 874   // Parameter side_by_side_idom:
 875   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 876   //      the clone loop to dominate the original.  Used in construction of
 877   //      pre-main-post loop sequence.
 878   //   When nonnull, the clone and original are side-by-side, both are
 879   //      dominated by the passed in side_by_side_idom node.  Used in
 880   //      construction of unswitched loops.
 881   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 882                    Node* side_by_side_idom = NULL);
 883 
 884   // If we got the effect of peeling, either by actually peeling or by
 885   // making a pre-loop which must execute at least once, we can remove
 886   // all loop-invariant dominated tests in the main body.
 887   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 888 
 889   // Generate code to do a loop peel for the given loop (and body).
 890   // old_new is a temp array.
 891   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 892 
 893   // Add pre and post loops around the given loop.  These loops are used
 894   // during RCE, unrolling and aligning loops.
 895   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 896   // If Node n lives in the back_ctrl block, we clone a private version of n
 897   // in preheader_ctrl block and return that, otherwise return n.
 898   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 899 
 900   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 901   // unroll to do double iterations.  The next round of major loop transforms
 902   // will repeat till the doubled loop body does all remaining iterations in 1
 903   // pass.
 904   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 905 
 906   // Unroll the loop body one step - make each trip do 2 iterations.
 907   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 908 
 909   // Mark vector reduction candidates before loop unrolling
 910   void mark_reductions( IdealLoopTree *loop );
 911 
 912   // Return true if exp is a constant times an induction var
 913   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 914 
 915   // Return true if exp is a scaled induction var plus (or minus) constant
 916   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 917 
 918   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 919   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 920                                         Deoptimization::DeoptReason reason,
 921                                         int opcode);
 922   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 923 
 924   // Clone loop predicates to cloned loops (peeled, unswitched)
 925   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
 926                                    Deoptimization::DeoptReason reason,
 927                                    PhaseIdealLoop* loop_phase,
 928                                    PhaseIterGVN* igvn);
 929 
 930   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
 931                                          bool clone_limit_check,
 932                                          PhaseIdealLoop* loop_phase,
 933                                          PhaseIterGVN* igvn);
 934   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 935 
 936   static Node* skip_loop_predicates(Node* entry);
 937 
 938   // Find a good location to insert a predicate
 939   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
 940   // Find a predicate
 941   static Node* find_predicate(Node* entry);
 942   // Construct a range check for a predicate if
 943   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
 944                          int scale, Node* offset,
 945                          Node* init, Node* limit, Node* stride,
 946                          Node* range, bool upper);
 947 
 948   // Implementation of the loop predication to promote checks outside the loop
 949   bool loop_predication_impl(IdealLoopTree *loop);
 950 
 951   // Helper function to collect predicate for eliminating the useless ones
 952   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 953   void eliminate_useless_predicates();
 954 
 955   // Change the control input of expensive nodes to allow commoning by
 956   // IGVN when it is guaranteed to not result in a more frequent
 957   // execution of the expensive node. Return true if progress.
 958   bool process_expensive_nodes();
 959 
 960   // Check whether node has become unreachable
 961   bool is_node_unreachable(Node *n) const {
 962     return !has_node(n) || n->is_unreachable(_igvn);
 963   }
 964 
 965   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 966   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 967 
 968   // Create a slow version of the loop by cloning the loop
 969   // and inserting an if to select fast-slow versions.
 970   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 971                                         Node_List &old_new,
 972                                         int opcode);
 973 
 974   // Clone a loop and return the clone head (clone_loop_head).
 975   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
 976   // This routine was created for usage in CountedLoopReserveKit.
 977   //
 978   //    int(1) -> If -> IfTrue -> original_loop_head
 979   //              |
 980   //              V
 981   //           IfFalse -> clone_loop_head (returned by function pointer)
 982   //
 983   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
 984   // Clone loop with an invariant test (that does not exit) and
 985   // insert a clone of the test that selects which version to
 986   // execute.
 987   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 988 
 989   // Find candidate "if" for unswitching
 990   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 991 
 992   // Range Check Elimination uses this function!
 993   // Constrain the main loop iterations so the affine function:
 994   //    low_limit <= scale_con * I + offset  <  upper_limit
 995   // always holds true.  That is, either increase the number of iterations in
 996   // the pre-loop or the post-loop until the condition holds true in the main
 997   // loop.  Scale_con, offset and limit are all loop invariant.
 998   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 999   // Helper function for add_constraint().
1000   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1001 
1002   // Partially peel loop up through last_peel node.
1003   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1004 
1005   // Create a scheduled list of nodes control dependent on ctrl set.
1006   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1007   // Has a use in the vector set
1008   bool has_use_in_set( Node* n, VectorSet& vset );
1009   // Has use internal to the vector set (ie. not in a phi at the loop head)
1010   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1011   // clone "n" for uses that are outside of loop
1012   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1013   // clone "n" for special uses that are in the not_peeled region
1014   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1015                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1016   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1017   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1018 #ifdef ASSERT
1019   // Validate the loop partition sets: peel and not_peel
1020   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1021   // Ensure that uses outside of loop are of the right form
1022   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1023                                  uint orig_exit_idx, uint clone_exit_idx);
1024   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1025 #endif
1026 
1027   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1028   int stride_of_possible_iv( Node* iff );
1029   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1030   // Return the (unique) control output node that's in the loop (if it exists.)
1031   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1032   // Insert a signed compare loop exit cloned from an unsigned compare.
1033   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1034   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1035   // Utility to register node "n" with PhaseIdealLoop
1036   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1037   // Utility to create an if-projection
1038   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1039   // Force the iff control output to be the live_proj
1040   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1041   // Insert a region before an if projection
1042   RegionNode* insert_region_before_proj(ProjNode* proj);
1043   // Insert a new if before an if projection
1044   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1045 
1046   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1047   // "Nearly" because all Nodes have been cloned from the original in the loop,
1048   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1049   // through the Phi recursively, and return a Bool.
1050   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1051   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1052 
1053 
1054   // Rework addressing expressions to get the most loop-invariant stuff
1055   // moved out.  We'd like to do all associative operators, but it's especially
1056   // important (common) to do address expressions.
1057   Node *remix_address_expressions( Node *n );
1058 
1059   // Attempt to use a conditional move instead of a phi/branch
1060   Node *conditional_move( Node *n );
1061 
1062   // Reorganize offset computations to lower register pressure.
1063   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1064   // (which are then alive with the post-incremented trip counter
1065   // forcing an extra register move)
1066   void reorg_offsets( IdealLoopTree *loop );
1067 
1068   // Check for aggressive application of 'split-if' optimization,
1069   // using basic block level info.
1070   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1071   Node *split_if_with_blocks_pre ( Node *n );
1072   void  split_if_with_blocks_post( Node *n );
1073   Node *has_local_phi_input( Node *n );
1074   // Mark an IfNode as being dominated by a prior test,
1075   // without actually altering the CFG (and hence IDOM info).
1076   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1077 
1078   // Split Node 'n' through merge point
1079   Node *split_thru_region( Node *n, Node *region );
1080   // Split Node 'n' through merge point if there is enough win.
1081   Node *split_thru_phi( Node *n, Node *region, int policy );
1082   // Found an If getting its condition-code input from a Phi in the
1083   // same block.  Split thru the Region.
1084   void do_split_if( Node *iff );
1085 
1086   // Conversion of fill/copy patterns into intrisic versions
1087   bool do_intrinsify_fill();
1088   bool intrinsify_fill(IdealLoopTree* lpt);
1089   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1090                        Node*& shift, Node*& offset);
1091 
1092 private:
1093   // Return a type based on condition control flow
1094   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1095   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1096  // Helpers for filtered type
1097   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1098 
1099   // Helper functions
1100   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1101   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1102   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1103   bool split_up( Node *n, Node *blk1, Node *blk2 );
1104   void sink_use( Node *use, Node *post_loop );
1105   Node *place_near_use( Node *useblock ) const;
1106   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1107   void try_move_store_after_loop(Node* n);
1108 
1109   bool _created_loop_node;
1110 public:
1111   void set_created_loop_node() { _created_loop_node = true; }
1112   bool created_loop_node()     { return _created_loop_node; }
1113   void register_new_node( Node *n, Node *blk );
1114 
1115 #ifdef ASSERT
1116   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1117 #endif
1118 
1119 #ifndef PRODUCT
1120   void dump( ) const;
1121   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1122   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1123   void verify() const;          // Major slow  :-)
1124   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1125   IdealLoopTree *get_loop_idx(Node* n) const {
1126     // Dead nodes have no loop, so return the top level loop instead
1127     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1128   }
1129   // Print some stats
1130   static void print_statistics();
1131   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1132   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1133 #endif
1134 };
1135 
1136 // This kit may be used for making of a reserved copy of a loop before this loop
1137 //  goes under non-reversible changes.
1138 //
1139 // Function create_reserve() creates a reserved copy (clone) of the loop.
1140 // The reserved copy is created by calling
1141 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1142 // the original and reserved loops are connected in the outer graph.
1143 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1144 //
1145 // By default the reserved copy (clone) of the loop is created as dead code - it is
1146 // dominated in the outer loop by this node chain:
1147 //   intcon(1)->If->IfFalse->reserved_copy.
1148 // The original loop is dominated by the the same node chain but IfTrue projection:
1149 //   intcon(0)->If->IfTrue->original_loop.
1150 //
1151 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1152 // and the dtor, checks _use_new value.
1153 // If _use_new == false, it "switches" control to reserved copy of the loop
1154 // by simple replacing of node intcon(1) with node intcon(0).
1155 //
1156 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1157 //
1158 // void CountedLoopReserveKit_example()
1159 // {
1160 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1161 //    if (DoReserveCopy && !lrk.has_reserved()) {
1162 //      return; //failed to create reserved loop copy
1163 //    }
1164 //    ...
1165 //    //something is wrong, switch to original loop
1166 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1167 //    ...
1168 //    //everything worked ok, return with the newly modified loop
1169 //    lrk.use_new();
1170 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1171 //  }
1172 //
1173 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1174 // the dtor will "switch to the original" loop.
1175 // NOTE. You you modify outside of the original loop this class is no help.
1176 //
1177 class CountedLoopReserveKit {
1178   private:
1179     PhaseIdealLoop* _phase;
1180     IdealLoopTree*  _lpt;
1181     LoopNode*       _lp;
1182     IfNode*         _iff;
1183     LoopNode*       _lp_reserved;
1184     bool            _has_reserved;
1185     bool            _use_new;
1186     const bool      _active; //may be set to false in ctor, then the object is dummy
1187 
1188   public:
1189     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1190     ~CountedLoopReserveKit();
1191     void use_new()                {_use_new = true;}
1192     void set_iff(IfNode* x)       {_iff = x;}
1193     bool has_reserved()     const { return _active && _has_reserved;}
1194   private:
1195     bool create_reserve();
1196 };// class CountedLoopReserveKit
1197 
1198 inline Node* IdealLoopTree::tail() {
1199 // Handle lazy update of _tail field
1200   Node *n = _tail;
1201   //while( !n->in(0) )  // Skip dead CFG nodes
1202     //n = n->in(1);
1203   if (n->in(0) == NULL)
1204     n = _phase->get_ctrl(n);
1205   _tail = n;
1206   return n;
1207 }
1208 
1209 
1210 // Iterate over the loop tree using a preorder, left-to-right traversal.
1211 //
1212 // Example that visits all counted loops from within PhaseIdealLoop
1213 //
1214 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1215 //   IdealLoopTree* lpt = iter.current();
1216 //   if (!lpt->is_counted()) continue;
1217 //   ...
1218 class LoopTreeIterator : public StackObj {
1219 private:
1220   IdealLoopTree* _root;
1221   IdealLoopTree* _curnt;
1222 
1223 public:
1224   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1225 
1226   bool done() { return _curnt == NULL; }       // Finished iterating?
1227 
1228   void next();                                 // Advance to next loop tree
1229 
1230   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1231 };
1232 
1233 #endif // SHARE_VM_OPTO_LOOPNODE_HPP