1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 398     int evex_encoding = _attributes->get_evex_encoding();
 399     int tuple_type = _attributes->get_tuple_type();
 400     switch (tuple_type) {
 401     case EVEX_FV:
 402       if ((evex_encoding & VEX_W) == VEX_W) {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 404       } else {
 405         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 406       }
 407       break;
 408 
 409     case EVEX_HV:
 410       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 411       break;
 412 
 413     case EVEX_FVM:
 414       break;
 415 
 416     case EVEX_T1S:
 417       switch (_attributes->get_input_size()) {
 418       case EVEX_8bit:
 419         break;
 420 
 421       case EVEX_16bit:
 422         mod_idx = 1;
 423         break;
 424 
 425       case EVEX_32bit:
 426         mod_idx = 2;
 427         break;
 428 
 429       case EVEX_64bit:
 430         mod_idx = 3;
 431         break;
 432       }
 433       break;
 434 
 435     case EVEX_T1F:
 436     case EVEX_T2:
 437     case EVEX_T4:
 438       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 439       break;
 440 
 441     case EVEX_T8:
 442       break;
 443 
 444     case EVEX_HVM:
 445       break;
 446 
 447     case EVEX_QVM:
 448       break;
 449 
 450     case EVEX_OVM:
 451       break;
 452 
 453     case EVEX_M128:
 454       break;
 455 
 456     case EVEX_DUP:
 457       break;
 458 
 459     default:
 460       assert(0, "no valid evex tuple_table entry");
 461       break;
 462     }
 463 
 464     int vector_len = _attributes->get_vector_len();
 465     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 466       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 467       if ((disp % disp_factor) == 0) {
 468         int new_disp = disp / disp_factor;
 469         if (is8bit(new_disp)) {
 470           disp = new_disp;
 471         }
 472       } else {
 473         return false;
 474       }
 475     }
 476   }
 477   return is8bit(disp);
 478 }
 479 
 480 
 481 void Assembler::emit_operand(Register reg, Register base, Register index,
 482                              Address::ScaleFactor scale, int disp,
 483                              RelocationHolder const& rspec,
 484                              int rip_relative_correction) {
 485   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 486 
 487   // Encode the registers as needed in the fields they are used in
 488 
 489   int regenc = encode(reg) << 3;
 490   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 491   int baseenc = base->is_valid() ? encode(base) : 0;
 492 
 493   if (base->is_valid()) {
 494     if (index->is_valid()) {
 495       assert(scale != Address::no_scale, "inconsistent address");
 496       // [base + index*scale + disp]
 497       if (disp == 0 && rtype == relocInfo::none  &&
 498           base != rbp LP64_ONLY(&& base != r13)) {
 499         // [base + index*scale]
 500         // [00 reg 100][ss index base]
 501         assert(index != rsp, "illegal addressing mode");
 502         emit_int8(0x04 | regenc);
 503         emit_int8(scale << 6 | indexenc | baseenc);
 504       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 505         // [base + index*scale + imm8]
 506         // [01 reg 100][ss index base] imm8
 507         assert(index != rsp, "illegal addressing mode");
 508         emit_int8(0x44 | regenc);
 509         emit_int8(scale << 6 | indexenc | baseenc);
 510         emit_int8(disp & 0xFF);
 511       } else {
 512         // [base + index*scale + disp32]
 513         // [10 reg 100][ss index base] disp32
 514         assert(index != rsp, "illegal addressing mode");
 515         emit_int8(0x84 | regenc);
 516         emit_int8(scale << 6 | indexenc | baseenc);
 517         emit_data(disp, rspec, disp32_operand);
 518       }
 519     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 520       // [rsp + disp]
 521       if (disp == 0 && rtype == relocInfo::none) {
 522         // [rsp]
 523         // [00 reg 100][00 100 100]
 524         emit_int8(0x04 | regenc);
 525         emit_int8(0x24);
 526       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 527         // [rsp + imm8]
 528         // [01 reg 100][00 100 100] disp8
 529         emit_int8(0x44 | regenc);
 530         emit_int8(0x24);
 531         emit_int8(disp & 0xFF);
 532       } else {
 533         // [rsp + imm32]
 534         // [10 reg 100][00 100 100] disp32
 535         emit_int8(0x84 | regenc);
 536         emit_int8(0x24);
 537         emit_data(disp, rspec, disp32_operand);
 538       }
 539     } else {
 540       // [base + disp]
 541       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 542       if (disp == 0 && rtype == relocInfo::none &&
 543           base != rbp LP64_ONLY(&& base != r13)) {
 544         // [base]
 545         // [00 reg base]
 546         emit_int8(0x00 | regenc | baseenc);
 547       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 548         // [base + disp8]
 549         // [01 reg base] disp8
 550         emit_int8(0x40 | regenc | baseenc);
 551         emit_int8(disp & 0xFF);
 552       } else {
 553         // [base + disp32]
 554         // [10 reg base] disp32
 555         emit_int8(0x80 | regenc | baseenc);
 556         emit_data(disp, rspec, disp32_operand);
 557       }
 558     }
 559   } else {
 560     if (index->is_valid()) {
 561       assert(scale != Address::no_scale, "inconsistent address");
 562       // [index*scale + disp]
 563       // [00 reg 100][ss index 101] disp32
 564       assert(index != rsp, "illegal addressing mode");
 565       emit_int8(0x04 | regenc);
 566       emit_int8(scale << 6 | indexenc | 0x05);
 567       emit_data(disp, rspec, disp32_operand);
 568     } else if (rtype != relocInfo::none ) {
 569       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 570       // [00 000 101] disp32
 571 
 572       emit_int8(0x05 | regenc);
 573       // Note that the RIP-rel. correction applies to the generated
 574       // disp field, but _not_ to the target address in the rspec.
 575 
 576       // disp was created by converting the target address minus the pc
 577       // at the start of the instruction. That needs more correction here.
 578       // intptr_t disp = target - next_ip;
 579       assert(inst_mark() != NULL, "must be inside InstructionMark");
 580       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 581       int64_t adjusted = disp;
 582       // Do rip-rel adjustment for 64bit
 583       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 584       assert(is_simm32(adjusted),
 585              "must be 32bit offset (RIP relative address)");
 586       emit_data((int32_t) adjusted, rspec, disp32_operand);
 587 
 588     } else {
 589       // 32bit never did this, did everything as the rip-rel/disp code above
 590       // [disp] ABSOLUTE
 591       // [00 reg 100][00 100 101] disp32
 592       emit_int8(0x04 | regenc);
 593       emit_int8(0x25);
 594       emit_data(disp, rspec, disp32_operand);
 595     }
 596   }
 597 }
 598 
 599 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 600                              Address::ScaleFactor scale, int disp,
 601                              RelocationHolder const& rspec) {
 602   if (UseAVX > 2) {
 603     int xreg_enc = reg->encoding();
 604     if (xreg_enc > 15) {
 605       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 606       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 607       return;
 608     }
 609   }
 610   emit_operand((Register)reg, base, index, scale, disp, rspec);
 611 }
 612 
 613 // Secret local extension to Assembler::WhichOperand:
 614 #define end_pc_operand (_WhichOperand_limit)
 615 
 616 address Assembler::locate_operand(address inst, WhichOperand which) {
 617   // Decode the given instruction, and return the address of
 618   // an embedded 32-bit operand word.
 619 
 620   // If "which" is disp32_operand, selects the displacement portion
 621   // of an effective address specifier.
 622   // If "which" is imm64_operand, selects the trailing immediate constant.
 623   // If "which" is call32_operand, selects the displacement of a call or jump.
 624   // Caller is responsible for ensuring that there is such an operand,
 625   // and that it is 32/64 bits wide.
 626 
 627   // If "which" is end_pc_operand, find the end of the instruction.
 628 
 629   address ip = inst;
 630   bool is_64bit = false;
 631 
 632   debug_only(bool has_disp32 = false);
 633   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 634 
 635   again_after_prefix:
 636   switch (0xFF & *ip++) {
 637 
 638   // These convenience macros generate groups of "case" labels for the switch.
 639 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 640 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 641              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 642 #define REP16(x) REP8((x)+0): \
 643               case REP8((x)+8)
 644 
 645   case CS_segment:
 646   case SS_segment:
 647   case DS_segment:
 648   case ES_segment:
 649   case FS_segment:
 650   case GS_segment:
 651     // Seems dubious
 652     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 653     assert(ip == inst+1, "only one prefix allowed");
 654     goto again_after_prefix;
 655 
 656   case 0x67:
 657   case REX:
 658   case REX_B:
 659   case REX_X:
 660   case REX_XB:
 661   case REX_R:
 662   case REX_RB:
 663   case REX_RX:
 664   case REX_RXB:
 665     NOT_LP64(assert(false, "64bit prefixes"));
 666     goto again_after_prefix;
 667 
 668   case REX_W:
 669   case REX_WB:
 670   case REX_WX:
 671   case REX_WXB:
 672   case REX_WR:
 673   case REX_WRB:
 674   case REX_WRX:
 675   case REX_WRXB:
 676     NOT_LP64(assert(false, "64bit prefixes"));
 677     is_64bit = true;
 678     goto again_after_prefix;
 679 
 680   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 681   case 0x88: // movb a, r
 682   case 0x89: // movl a, r
 683   case 0x8A: // movb r, a
 684   case 0x8B: // movl r, a
 685   case 0x8F: // popl a
 686     debug_only(has_disp32 = true);
 687     break;
 688 
 689   case 0x68: // pushq #32
 690     if (which == end_pc_operand) {
 691       return ip + 4;
 692     }
 693     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 694     return ip;                  // not produced by emit_operand
 695 
 696   case 0x66: // movw ... (size prefix)
 697     again_after_size_prefix2:
 698     switch (0xFF & *ip++) {
 699     case REX:
 700     case REX_B:
 701     case REX_X:
 702     case REX_XB:
 703     case REX_R:
 704     case REX_RB:
 705     case REX_RX:
 706     case REX_RXB:
 707     case REX_W:
 708     case REX_WB:
 709     case REX_WX:
 710     case REX_WXB:
 711     case REX_WR:
 712     case REX_WRB:
 713     case REX_WRX:
 714     case REX_WRXB:
 715       NOT_LP64(assert(false, "64bit prefix found"));
 716       goto again_after_size_prefix2;
 717     case 0x8B: // movw r, a
 718     case 0x89: // movw a, r
 719       debug_only(has_disp32 = true);
 720       break;
 721     case 0xC7: // movw a, #16
 722       debug_only(has_disp32 = true);
 723       tail_size = 2;  // the imm16
 724       break;
 725     case 0x0F: // several SSE/SSE2 variants
 726       ip--;    // reparse the 0x0F
 727       goto again_after_prefix;
 728     default:
 729       ShouldNotReachHere();
 730     }
 731     break;
 732 
 733   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 734     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 735     // these asserts are somewhat nonsensical
 736 #ifndef _LP64
 737     assert(which == imm_operand || which == disp32_operand,
 738            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 739 #else
 740     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 741            which == narrow_oop_operand && !is_64bit,
 742            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 743 #endif // _LP64
 744     return ip;
 745 
 746   case 0x69: // imul r, a, #32
 747   case 0xC7: // movl a, #32(oop?)
 748     tail_size = 4;
 749     debug_only(has_disp32 = true); // has both kinds of operands!
 750     break;
 751 
 752   case 0x0F: // movx..., etc.
 753     switch (0xFF & *ip++) {
 754     case 0x3A: // pcmpestri
 755       tail_size = 1;
 756     case 0x38: // ptest, pmovzxbw
 757       ip++; // skip opcode
 758       debug_only(has_disp32 = true); // has both kinds of operands!
 759       break;
 760 
 761     case 0x70: // pshufd r, r/a, #8
 762       debug_only(has_disp32 = true); // has both kinds of operands!
 763     case 0x73: // psrldq r, #8
 764       tail_size = 1;
 765       break;
 766 
 767     case 0x12: // movlps
 768     case 0x28: // movaps
 769     case 0x2E: // ucomiss
 770     case 0x2F: // comiss
 771     case 0x54: // andps
 772     case 0x55: // andnps
 773     case 0x56: // orps
 774     case 0x57: // xorps
 775     case 0x58: // addpd
 776     case 0x59: // mulpd
 777     case 0x6E: // movd
 778     case 0x7E: // movd
 779     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 780     case 0xFE: // paddd
 781       debug_only(has_disp32 = true);
 782       break;
 783 
 784     case 0xAD: // shrd r, a, %cl
 785     case 0xAF: // imul r, a
 786     case 0xBE: // movsbl r, a (movsxb)
 787     case 0xBF: // movswl r, a (movsxw)
 788     case 0xB6: // movzbl r, a (movzxb)
 789     case 0xB7: // movzwl r, a (movzxw)
 790     case REP16(0x40): // cmovl cc, r, a
 791     case 0xB0: // cmpxchgb
 792     case 0xB1: // cmpxchg
 793     case 0xC1: // xaddl
 794     case 0xC7: // cmpxchg8
 795     case REP16(0x90): // setcc a
 796       debug_only(has_disp32 = true);
 797       // fall out of the switch to decode the address
 798       break;
 799 
 800     case 0xC4: // pinsrw r, a, #8
 801       debug_only(has_disp32 = true);
 802     case 0xC5: // pextrw r, r, #8
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case 0xAC: // shrd r, a, #8
 807       debug_only(has_disp32 = true);
 808       tail_size = 1;  // the imm8
 809       break;
 810 
 811     case REP16(0x80): // jcc rdisp32
 812       if (which == end_pc_operand)  return ip + 4;
 813       assert(which == call32_operand, "jcc has no disp32 or imm");
 814       return ip;
 815     default:
 816       ShouldNotReachHere();
 817     }
 818     break;
 819 
 820   case 0x81: // addl a, #32; addl r, #32
 821     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 822     // on 32bit in the case of cmpl, the imm might be an oop
 823     tail_size = 4;
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     break;
 826 
 827   case 0x83: // addl a, #8; addl r, #8
 828     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 829     debug_only(has_disp32 = true); // has both kinds of operands!
 830     tail_size = 1;
 831     break;
 832 
 833   case 0x9B:
 834     switch (0xFF & *ip++) {
 835     case 0xD9: // fnstcw a
 836       debug_only(has_disp32 = true);
 837       break;
 838     default:
 839       ShouldNotReachHere();
 840     }
 841     break;
 842 
 843   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 844   case REP4(0x10): // adc...
 845   case REP4(0x20): // and...
 846   case REP4(0x30): // xor...
 847   case REP4(0x08): // or...
 848   case REP4(0x18): // sbb...
 849   case REP4(0x28): // sub...
 850   case 0xF7: // mull a
 851   case 0x8D: // lea r, a
 852   case 0x87: // xchg r, a
 853   case REP4(0x38): // cmp...
 854   case 0x85: // test r, a
 855     debug_only(has_disp32 = true); // has both kinds of operands!
 856     break;
 857 
 858   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 859   case 0xC6: // movb a, #8
 860   case 0x80: // cmpb a, #8
 861   case 0x6B: // imul r, a, #8
 862     debug_only(has_disp32 = true); // has both kinds of operands!
 863     tail_size = 1; // the imm8
 864     break;
 865 
 866   case 0xC4: // VEX_3bytes
 867   case 0xC5: // VEX_2bytes
 868     assert((UseAVX > 0), "shouldn't have VEX prefix");
 869     assert(ip == inst+1, "no prefixes allowed");
 870     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 871     // but they have prefix 0x0F and processed when 0x0F processed above.
 872     //
 873     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 874     // instructions (these instructions are not supported in 64-bit mode).
 875     // To distinguish them bits [7:6] are set in the VEX second byte since
 876     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 877     // those VEX bits REX and vvvv bits are inverted.
 878     //
 879     // Fortunately C2 doesn't generate these instructions so we don't need
 880     // to check for them in product version.
 881 
 882     // Check second byte
 883     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 884 
 885     int vex_opcode;
 886     // First byte
 887     if ((0xFF & *inst) == VEX_3bytes) {
 888       vex_opcode = VEX_OPCODE_MASK & *ip;
 889       ip++; // third byte
 890       is_64bit = ((VEX_W & *ip) == VEX_W);
 891     } else {
 892       vex_opcode = VEX_OPCODE_0F;
 893     }
 894     ip++; // opcode
 895     // To find the end of instruction (which == end_pc_operand).
 896     switch (vex_opcode) {
 897       case VEX_OPCODE_0F:
 898         switch (0xFF & *ip) {
 899         case 0x70: // pshufd r, r/a, #8
 900         case 0x71: // ps[rl|ra|ll]w r, #8
 901         case 0x72: // ps[rl|ra|ll]d r, #8
 902         case 0x73: // ps[rl|ra|ll]q r, #8
 903         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 904         case 0xC4: // pinsrw r, r, r/a, #8
 905         case 0xC5: // pextrw r/a, r, #8
 906         case 0xC6: // shufp[s|d] r, r, r/a, #8
 907           tail_size = 1;  // the imm8
 908           break;
 909         }
 910         break;
 911       case VEX_OPCODE_0F_3A:
 912         tail_size = 1;
 913         break;
 914     }
 915     ip++; // skip opcode
 916     debug_only(has_disp32 = true); // has both kinds of operands!
 917     break;
 918 
 919   case 0x62: // EVEX_4bytes
 920     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 921     assert(ip == inst+1, "no prefixes allowed");
 922     // no EVEX collisions, all instructions that have 0x62 opcodes
 923     // have EVEX versions and are subopcodes of 0x66
 924     ip++; // skip P0 and exmaine W in P1
 925     is_64bit = ((VEX_W & *ip) == VEX_W);
 926     ip++; // move to P2
 927     ip++; // skip P2, move to opcode
 928     // To find the end of instruction (which == end_pc_operand).
 929     switch (0xFF & *ip) {
 930     case 0x22: // pinsrd r, r/a, #8
 931     case 0x61: // pcmpestri r, r/a, #8
 932     case 0x70: // pshufd r, r/a, #8
 933     case 0x73: // psrldq r, #8
 934       tail_size = 1;  // the imm8
 935       break;
 936     default:
 937       break;
 938     }
 939     ip++; // skip opcode
 940     debug_only(has_disp32 = true); // has both kinds of operands!
 941     break;
 942 
 943   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 944   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 945   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 946   case 0xDD: // fld_d a; fst_d a; fstp_d a
 947   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 948   case 0xDF: // fild_d a; fistp_d a
 949   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 950   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 951   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 952     debug_only(has_disp32 = true);
 953     break;
 954 
 955   case 0xE8: // call rdisp32
 956   case 0xE9: // jmp  rdisp32
 957     if (which == end_pc_operand)  return ip + 4;
 958     assert(which == call32_operand, "call has no disp32 or imm");
 959     return ip;
 960 
 961   case 0xF0:                    // Lock
 962     assert(os::is_MP(), "only on MP");
 963     goto again_after_prefix;
 964 
 965   case 0xF3:                    // For SSE
 966   case 0xF2:                    // For SSE2
 967     switch (0xFF & *ip++) {
 968     case REX:
 969     case REX_B:
 970     case REX_X:
 971     case REX_XB:
 972     case REX_R:
 973     case REX_RB:
 974     case REX_RX:
 975     case REX_RXB:
 976     case REX_W:
 977     case REX_WB:
 978     case REX_WX:
 979     case REX_WXB:
 980     case REX_WR:
 981     case REX_WRB:
 982     case REX_WRX:
 983     case REX_WRXB:
 984       NOT_LP64(assert(false, "found 64bit prefix"));
 985       ip++;
 986     default:
 987       ip++;
 988     }
 989     debug_only(has_disp32 = true); // has both kinds of operands!
 990     break;
 991 
 992   default:
 993     ShouldNotReachHere();
 994 
 995 #undef REP8
 996 #undef REP16
 997   }
 998 
 999   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1000 #ifdef _LP64
1001   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1002 #else
1003   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1004   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1005 #endif // LP64
1006   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1007 
1008   // parse the output of emit_operand
1009   int op2 = 0xFF & *ip++;
1010   int base = op2 & 0x07;
1011   int op3 = -1;
1012   const int b100 = 4;
1013   const int b101 = 5;
1014   if (base == b100 && (op2 >> 6) != 3) {
1015     op3 = 0xFF & *ip++;
1016     base = op3 & 0x07;   // refetch the base
1017   }
1018   // now ip points at the disp (if any)
1019 
1020   switch (op2 >> 6) {
1021   case 0:
1022     // [00 reg  100][ss index base]
1023     // [00 reg  100][00   100  esp]
1024     // [00 reg base]
1025     // [00 reg  100][ss index  101][disp32]
1026     // [00 reg  101]               [disp32]
1027 
1028     if (base == b101) {
1029       if (which == disp32_operand)
1030         return ip;              // caller wants the disp32
1031       ip += 4;                  // skip the disp32
1032     }
1033     break;
1034 
1035   case 1:
1036     // [01 reg  100][ss index base][disp8]
1037     // [01 reg  100][00   100  esp][disp8]
1038     // [01 reg base]               [disp8]
1039     ip += 1;                    // skip the disp8
1040     break;
1041 
1042   case 2:
1043     // [10 reg  100][ss index base][disp32]
1044     // [10 reg  100][00   100  esp][disp32]
1045     // [10 reg base]               [disp32]
1046     if (which == disp32_operand)
1047       return ip;                // caller wants the disp32
1048     ip += 4;                    // skip the disp32
1049     break;
1050 
1051   case 3:
1052     // [11 reg base]  (not a memory addressing mode)
1053     break;
1054   }
1055 
1056   if (which == end_pc_operand) {
1057     return ip + tail_size;
1058   }
1059 
1060 #ifdef _LP64
1061   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1062 #else
1063   assert(which == imm_operand, "instruction has only an imm field");
1064 #endif // LP64
1065   return ip;
1066 }
1067 
1068 address Assembler::locate_next_instruction(address inst) {
1069   // Secretly share code with locate_operand:
1070   return locate_operand(inst, end_pc_operand);
1071 }
1072 
1073 
1074 #ifdef ASSERT
1075 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1076   address inst = inst_mark();
1077   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1078   address opnd;
1079 
1080   Relocation* r = rspec.reloc();
1081   if (r->type() == relocInfo::none) {
1082     return;
1083   } else if (r->is_call() || format == call32_operand) {
1084     // assert(format == imm32_operand, "cannot specify a nonzero format");
1085     opnd = locate_operand(inst, call32_operand);
1086   } else if (r->is_data()) {
1087     assert(format == imm_operand || format == disp32_operand
1088            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1089     opnd = locate_operand(inst, (WhichOperand)format);
1090   } else {
1091     assert(format == imm_operand, "cannot specify a format");
1092     return;
1093   }
1094   assert(opnd == pc(), "must put operand where relocs can find it");
1095 }
1096 #endif // ASSERT
1097 
1098 void Assembler::emit_operand32(Register reg, Address adr) {
1099   assert(reg->encoding() < 8, "no extended registers");
1100   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1101   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1102                adr._rspec);
1103 }
1104 
1105 void Assembler::emit_operand(Register reg, Address adr,
1106                              int rip_relative_correction) {
1107   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1108                adr._rspec,
1109                rip_relative_correction);
1110 }
1111 
1112 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 // MMX operations
1118 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1119   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1120   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1121 }
1122 
1123 // work around gcc (3.2.1-7a) bug
1124 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1125   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1126   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1127 }
1128 
1129 
1130 void Assembler::emit_farith(int b1, int b2, int i) {
1131   assert(isByte(b1) && isByte(b2), "wrong opcode");
1132   assert(0 <= i &&  i < 8, "illegal stack offset");
1133   emit_int8(b1);
1134   emit_int8(b2 + i);
1135 }
1136 
1137 
1138 // Now the Assembler instructions (identical for 32/64 bits)
1139 
1140 void Assembler::adcl(Address dst, int32_t imm32) {
1141   InstructionMark im(this);
1142   prefix(dst);
1143   emit_arith_operand(0x81, rdx, dst, imm32);
1144 }
1145 
1146 void Assembler::adcl(Address dst, Register src) {
1147   InstructionMark im(this);
1148   prefix(dst, src);
1149   emit_int8(0x11);
1150   emit_operand(src, dst);
1151 }
1152 
1153 void Assembler::adcl(Register dst, int32_t imm32) {
1154   prefix(dst);
1155   emit_arith(0x81, 0xD0, dst, imm32);
1156 }
1157 
1158 void Assembler::adcl(Register dst, Address src) {
1159   InstructionMark im(this);
1160   prefix(src, dst);
1161   emit_int8(0x13);
1162   emit_operand(dst, src);
1163 }
1164 
1165 void Assembler::adcl(Register dst, Register src) {
1166   (void) prefix_and_encode(dst->encoding(), src->encoding());
1167   emit_arith(0x13, 0xC0, dst, src);
1168 }
1169 
1170 void Assembler::addl(Address dst, int32_t imm32) {
1171   InstructionMark im(this);
1172   prefix(dst);
1173   emit_arith_operand(0x81, rax, dst, imm32);
1174 }
1175 
1176 void Assembler::addl(Address dst, Register src) {
1177   InstructionMark im(this);
1178   prefix(dst, src);
1179   emit_int8(0x01);
1180   emit_operand(src, dst);
1181 }
1182 
1183 void Assembler::addl(Register dst, int32_t imm32) {
1184   prefix(dst);
1185   emit_arith(0x81, 0xC0, dst, imm32);
1186 }
1187 
1188 void Assembler::addl(Register dst, Address src) {
1189   InstructionMark im(this);
1190   prefix(src, dst);
1191   emit_int8(0x03);
1192   emit_operand(dst, src);
1193 }
1194 
1195 void Assembler::addl(Register dst, Register src) {
1196   (void) prefix_and_encode(dst->encoding(), src->encoding());
1197   emit_arith(0x03, 0xC0, dst, src);
1198 }
1199 
1200 void Assembler::addr_nop_4() {
1201   assert(UseAddressNop, "no CPU support");
1202   // 4 bytes: NOP DWORD PTR [EAX+0]
1203   emit_int8(0x0F);
1204   emit_int8(0x1F);
1205   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1206   emit_int8(0);    // 8-bits offset (1 byte)
1207 }
1208 
1209 void Assembler::addr_nop_5() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1215   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1216   emit_int8(0);    // 8-bits offset (1 byte)
1217 }
1218 
1219 void Assembler::addr_nop_7() {
1220   assert(UseAddressNop, "no CPU support");
1221   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1222   emit_int8(0x0F);
1223   emit_int8(0x1F);
1224   emit_int8((unsigned char)0x80);
1225                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1226   emit_int32(0);   // 32-bits offset (4 bytes)
1227 }
1228 
1229 void Assembler::addr_nop_8() {
1230   assert(UseAddressNop, "no CPU support");
1231   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1232   emit_int8(0x0F);
1233   emit_int8(0x1F);
1234   emit_int8((unsigned char)0x84);
1235                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1236   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1237   emit_int32(0);   // 32-bits offset (4 bytes)
1238 }
1239 
1240 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1242   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1243   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1244   emit_int8(0x58);
1245   emit_int8((unsigned char)(0xC0 | encode));
1246 }
1247 
1248 void Assembler::addsd(XMMRegister dst, Address src) {
1249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1250   InstructionMark im(this);
1251   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1252   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1253   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1254   emit_int8(0x58);
1255   emit_operand(dst, src);
1256 }
1257 
1258 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1259   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1260   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1261   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1262   emit_int8(0x58);
1263   emit_int8((unsigned char)(0xC0 | encode));
1264 }
1265 
1266 void Assembler::addss(XMMRegister dst, Address src) {
1267   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1268   InstructionMark im(this);
1269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1270   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1271   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1272   emit_int8(0x58);
1273   emit_operand(dst, src);
1274 }
1275 
1276 void Assembler::aesdec(XMMRegister dst, Address src) {
1277   assert(VM_Version::supports_aes(), "");
1278   InstructionMark im(this);
1279   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1280   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1281   emit_int8((unsigned char)0xDE);
1282   emit_operand(dst, src);
1283 }
1284 
1285 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1286   assert(VM_Version::supports_aes(), "");
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1288   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1289   emit_int8((unsigned char)0xDE);
1290   emit_int8(0xC0 | encode);
1291 }
1292 
1293 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1294   assert(VM_Version::supports_aes(), "");
1295   InstructionMark im(this);
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1297   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1298   emit_int8((unsigned char)0xDF);
1299   emit_operand(dst, src);
1300 }
1301 
1302 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1303   assert(VM_Version::supports_aes(), "");
1304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1305   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1306   emit_int8((unsigned char)0xDF);
1307   emit_int8((unsigned char)(0xC0 | encode));
1308 }
1309 
1310 void Assembler::aesenc(XMMRegister dst, Address src) {
1311   assert(VM_Version::supports_aes(), "");
1312   InstructionMark im(this);
1313   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1314   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1315   emit_int8((unsigned char)0xDC);
1316   emit_operand(dst, src);
1317 }
1318 
1319 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1320   assert(VM_Version::supports_aes(), "");
1321   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1322   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1323   emit_int8((unsigned char)0xDC);
1324   emit_int8(0xC0 | encode);
1325 }
1326 
1327 void Assembler::aesenclast(XMMRegister dst, Address src) {
1328   assert(VM_Version::supports_aes(), "");
1329   InstructionMark im(this);
1330   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1331   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1332   emit_int8((unsigned char)0xDD);
1333   emit_operand(dst, src);
1334 }
1335 
1336 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1337   assert(VM_Version::supports_aes(), "");
1338   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1339   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1340   emit_int8((unsigned char)0xDD);
1341   emit_int8((unsigned char)(0xC0 | encode));
1342 }
1343 
1344 void Assembler::andl(Address dst, int32_t imm32) {
1345   InstructionMark im(this);
1346   prefix(dst);
1347   emit_int8((unsigned char)0x81);
1348   emit_operand(rsp, dst, 4);
1349   emit_int32(imm32);
1350 }
1351 
1352 void Assembler::andl(Register dst, int32_t imm32) {
1353   prefix(dst);
1354   emit_arith(0x81, 0xE0, dst, imm32);
1355 }
1356 
1357 void Assembler::andl(Register dst, Address src) {
1358   InstructionMark im(this);
1359   prefix(src, dst);
1360   emit_int8(0x23);
1361   emit_operand(dst, src);
1362 }
1363 
1364 void Assembler::andl(Register dst, Register src) {
1365   (void) prefix_and_encode(dst->encoding(), src->encoding());
1366   emit_arith(0x23, 0xC0, dst, src);
1367 }
1368 
1369 void Assembler::andnl(Register dst, Register src1, Register src2) {
1370   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1371   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1372   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1373   emit_int8((unsigned char)0xF2);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::andnl(Register dst, Register src1, Address src2) {
1378   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1379   InstructionMark im(this);
1380   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1381   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1382   emit_int8((unsigned char)0xF2);
1383   emit_operand(dst, src2);
1384 }
1385 
1386 void Assembler::bsfl(Register dst, Register src) {
1387   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1388   emit_int8(0x0F);
1389   emit_int8((unsigned char)0xBC);
1390   emit_int8((unsigned char)(0xC0 | encode));
1391 }
1392 
1393 void Assembler::bsrl(Register dst, Register src) {
1394   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1395   emit_int8(0x0F);
1396   emit_int8((unsigned char)0xBD);
1397   emit_int8((unsigned char)(0xC0 | encode));
1398 }
1399 
1400 void Assembler::bswapl(Register reg) { // bswap
1401   int encode = prefix_and_encode(reg->encoding());
1402   emit_int8(0x0F);
1403   emit_int8((unsigned char)(0xC8 | encode));
1404 }
1405 
1406 void Assembler::blsil(Register dst, Register src) {
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1409   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1410   emit_int8((unsigned char)0xF3);
1411   emit_int8((unsigned char)(0xC0 | encode));
1412 }
1413 
1414 void Assembler::blsil(Register dst, Address src) {
1415   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1416   InstructionMark im(this);
1417   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1418   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1419   emit_int8((unsigned char)0xF3);
1420   emit_operand(rbx, src);
1421 }
1422 
1423 void Assembler::blsmskl(Register dst, Register src) {
1424   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1425   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1426   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1427   emit_int8((unsigned char)0xF3);
1428   emit_int8((unsigned char)(0xC0 | encode));
1429 }
1430 
1431 void Assembler::blsmskl(Register dst, Address src) {
1432   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1433   InstructionMark im(this);
1434   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1435   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1436   emit_int8((unsigned char)0xF3);
1437   emit_operand(rdx, src);
1438 }
1439 
1440 void Assembler::blsrl(Register dst, Register src) {
1441   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1442   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1443   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1444   emit_int8((unsigned char)0xF3);
1445   emit_int8((unsigned char)(0xC0 | encode));
1446 }
1447 
1448 void Assembler::blsrl(Register dst, Address src) {
1449   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1450   InstructionMark im(this);
1451   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
1452   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1453   emit_int8((unsigned char)0xF3);
1454   emit_operand(rcx, src);
1455 }
1456 
1457 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1458   // suspect disp32 is always good
1459   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1460 
1461   if (L.is_bound()) {
1462     const int long_size = 5;
1463     int offs = (int)( target(L) - pc() );
1464     assert(offs <= 0, "assembler error");
1465     InstructionMark im(this);
1466     // 1110 1000 #32-bit disp
1467     emit_int8((unsigned char)0xE8);
1468     emit_data(offs - long_size, rtype, operand);
1469   } else {
1470     InstructionMark im(this);
1471     // 1110 1000 #32-bit disp
1472     L.add_patch_at(code(), locator());
1473 
1474     emit_int8((unsigned char)0xE8);
1475     emit_data(int(0), rtype, operand);
1476   }
1477 }
1478 
1479 void Assembler::call(Register dst) {
1480   int encode = prefix_and_encode(dst->encoding());
1481   emit_int8((unsigned char)0xFF);
1482   emit_int8((unsigned char)(0xD0 | encode));
1483 }
1484 
1485 
1486 void Assembler::call(Address adr) {
1487   InstructionMark im(this);
1488   prefix(adr);
1489   emit_int8((unsigned char)0xFF);
1490   emit_operand(rdx, adr);
1491 }
1492 
1493 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1494   assert(entry != NULL, "call most probably wrong");
1495   InstructionMark im(this);
1496   emit_int8((unsigned char)0xE8);
1497   intptr_t disp = entry - (pc() + sizeof(int32_t));
1498   assert(is_simm32(disp), "must be 32bit offset (call2)");
1499   // Technically, should use call32_operand, but this format is
1500   // implied by the fact that we're emitting a call instruction.
1501 
1502   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1503   emit_data((int) disp, rspec, operand);
1504 }
1505 
1506 void Assembler::cdql() {
1507   emit_int8((unsigned char)0x99);
1508 }
1509 
1510 void Assembler::cld() {
1511   emit_int8((unsigned char)0xFC);
1512 }
1513 
1514 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1515   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1516   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1517   emit_int8(0x0F);
1518   emit_int8(0x40 | cc);
1519   emit_int8((unsigned char)(0xC0 | encode));
1520 }
1521 
1522 
1523 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1524   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1525   prefix(src, dst);
1526   emit_int8(0x0F);
1527   emit_int8(0x40 | cc);
1528   emit_operand(dst, src);
1529 }
1530 
1531 void Assembler::cmpb(Address dst, int imm8) {
1532   InstructionMark im(this);
1533   prefix(dst);
1534   emit_int8((unsigned char)0x80);
1535   emit_operand(rdi, dst, 1);
1536   emit_int8(imm8);
1537 }
1538 
1539 void Assembler::cmpl(Address dst, int32_t imm32) {
1540   InstructionMark im(this);
1541   prefix(dst);
1542   emit_int8((unsigned char)0x81);
1543   emit_operand(rdi, dst, 4);
1544   emit_int32(imm32);
1545 }
1546 
1547 void Assembler::cmpl(Register dst, int32_t imm32) {
1548   prefix(dst);
1549   emit_arith(0x81, 0xF8, dst, imm32);
1550 }
1551 
1552 void Assembler::cmpl(Register dst, Register src) {
1553   (void) prefix_and_encode(dst->encoding(), src->encoding());
1554   emit_arith(0x3B, 0xC0, dst, src);
1555 }
1556 
1557 void Assembler::cmpl(Register dst, Address  src) {
1558   InstructionMark im(this);
1559   prefix(src, dst);
1560   emit_int8((unsigned char)0x3B);
1561   emit_operand(dst, src);
1562 }
1563 
1564 void Assembler::cmpw(Address dst, int imm16) {
1565   InstructionMark im(this);
1566   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1567   emit_int8(0x66);
1568   emit_int8((unsigned char)0x81);
1569   emit_operand(rdi, dst, 2);
1570   emit_int16(imm16);
1571 }
1572 
1573 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1574 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1575 // The ZF is set if the compared values were equal, and cleared otherwise.
1576 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1577   InstructionMark im(this);
1578   prefix(adr, reg);
1579   emit_int8(0x0F);
1580   emit_int8((unsigned char)0xB1);
1581   emit_operand(reg, adr);
1582 }
1583 
1584 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1585 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1586 // The ZF is set if the compared values were equal, and cleared otherwise.
1587 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1588   InstructionMark im(this);
1589   prefix(adr, reg, true);
1590   emit_int8(0x0F);
1591   emit_int8((unsigned char)0xB0);
1592   emit_operand(reg, adr);
1593 }
1594 
1595 void Assembler::comisd(XMMRegister dst, Address src) {
1596   // NOTE: dbx seems to decode this as comiss even though the
1597   // 0x66 is there. Strangly ucomisd comes out correct
1598   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1599   InstructionMark im(this);
1600   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1601   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1602   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1603   emit_int8(0x2F);
1604   emit_operand(dst, src);
1605 }
1606 
1607 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1608   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1609   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1610   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1611   emit_int8(0x2F);
1612   emit_int8((unsigned char)(0xC0 | encode));
1613 }
1614 
1615 void Assembler::comiss(XMMRegister dst, Address src) {
1616   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1617   InstructionMark im(this);
1618   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1619   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1620   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1621   emit_int8(0x2F);
1622   emit_operand(dst, src);
1623 }
1624 
1625 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1626   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1627   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1628   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1629   emit_int8(0x2F);
1630   emit_int8((unsigned char)(0xC0 | encode));
1631 }
1632 
1633 void Assembler::cpuid() {
1634   emit_int8(0x0F);
1635   emit_int8((unsigned char)0xA2);
1636 }
1637 
1638 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1639 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1640 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1641 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1642 //
1643 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1644 //
1645 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1646 //
1647 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1648 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1649   assert(VM_Version::supports_sse4_2(), "");
1650   int8_t w = 0x01;
1651   Prefix p = Prefix_EMPTY;
1652 
1653   emit_int8((int8_t)0xF2);
1654   switch (sizeInBytes) {
1655   case 1:
1656     w = 0;
1657     break;
1658   case 2:
1659   case 4:
1660     break;
1661   LP64_ONLY(case 8:)
1662     // This instruction is not valid in 32 bits
1663     // Note:
1664     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1665     //
1666     // Page B - 72   Vol. 2C says
1667     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1668     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1669     //                                                                            F0!!!
1670     // while 3 - 208 Vol. 2A
1671     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1672     //
1673     // the 0 on a last bit is reserved for a different flavor of this instruction :
1674     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1675     p = REX_W;
1676     break;
1677   default:
1678     assert(0, "Unsupported value for a sizeInBytes argument");
1679     break;
1680   }
1681   LP64_ONLY(prefix(crc, v, p);)
1682   emit_int8((int8_t)0x0F);
1683   emit_int8(0x38);
1684   emit_int8((int8_t)(0xF0 | w));
1685   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1686 }
1687 
1688 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1689   assert(VM_Version::supports_sse4_2(), "");
1690   InstructionMark im(this);
1691   int8_t w = 0x01;
1692   Prefix p = Prefix_EMPTY;
1693 
1694   emit_int8((int8_t)0xF2);
1695   switch (sizeInBytes) {
1696   case 1:
1697     w = 0;
1698     break;
1699   case 2:
1700   case 4:
1701     break;
1702   LP64_ONLY(case 8:)
1703     // This instruction is not valid in 32 bits
1704     p = REX_W;
1705     break;
1706   default:
1707     assert(0, "Unsupported value for a sizeInBytes argument");
1708     break;
1709   }
1710   LP64_ONLY(prefix(crc, adr, p);)
1711   emit_int8((int8_t)0x0F);
1712   emit_int8(0x38);
1713   emit_int8((int8_t)(0xF0 | w));
1714   emit_operand(crc, adr);
1715 }
1716 
1717 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1718   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1719   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1720   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1721   emit_int8((unsigned char)0xE6);
1722   emit_int8((unsigned char)(0xC0 | encode));
1723 }
1724 
1725 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
1728   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1729   emit_int8(0x5B);
1730   emit_int8((unsigned char)(0xC0 | encode));
1731 }
1732 
1733 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1735   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1736   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1737   emit_int8(0x5A);
1738   emit_int8((unsigned char)(0xC0 | encode));
1739 }
1740 
1741 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1743   InstructionMark im(this);
1744   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1745   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1746   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1747   emit_int8(0x5A);
1748   emit_operand(dst, src);
1749 }
1750 
1751 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1753   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1754   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1755   emit_int8(0x2A);
1756   emit_int8((unsigned char)(0xC0 | encode));
1757 }
1758 
1759 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1761   InstructionMark im(this);
1762   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1763   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1764   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1765   emit_int8(0x2A);
1766   emit_operand(dst, src);
1767 }
1768 
1769 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1770   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1772   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1773   emit_int8(0x2A);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1778   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1779   InstructionMark im(this);
1780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1781   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1782   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1783   emit_int8(0x2A);
1784   emit_operand(dst, src);
1785 }
1786 
1787 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1788   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1789   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1790   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1791   emit_int8(0x2A);
1792   emit_int8((unsigned char)(0xC0 | encode));
1793 }
1794 
1795 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1796   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1797   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1798   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1799   emit_int8(0x5A);
1800   emit_int8((unsigned char)(0xC0 | encode));
1801 }
1802 
1803 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1805   InstructionMark im(this);
1806   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1807   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1808   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1809   emit_int8(0x5A);
1810   emit_operand(dst, src);
1811 }
1812 
1813 
1814 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1815   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1816   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1817   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1818   emit_int8(0x2C);
1819   emit_int8((unsigned char)(0xC0 | encode));
1820 }
1821 
1822 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1825   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1826   emit_int8(0x2C);
1827   emit_int8((unsigned char)(0xC0 | encode));
1828 }
1829 
1830 void Assembler::decl(Address dst) {
1831   // Don't use it directly. Use MacroAssembler::decrement() instead.
1832   InstructionMark im(this);
1833   prefix(dst);
1834   emit_int8((unsigned char)0xFF);
1835   emit_operand(rcx, dst);
1836 }
1837 
1838 void Assembler::divsd(XMMRegister dst, Address src) {
1839   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1840   InstructionMark im(this);
1841   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1842   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1843   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1844   emit_int8(0x5E);
1845   emit_operand(dst, src);
1846 }
1847 
1848 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1849   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1850   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1851   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1852   emit_int8(0x5E);
1853   emit_int8((unsigned char)(0xC0 | encode));
1854 }
1855 
1856 void Assembler::divss(XMMRegister dst, Address src) {
1857   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1858   InstructionMark im(this);
1859   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1860   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1861   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1862   emit_int8(0x5E);
1863   emit_operand(dst, src);
1864 }
1865 
1866 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1867   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1868   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
1869   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1870   emit_int8(0x5E);
1871   emit_int8((unsigned char)(0xC0 | encode));
1872 }
1873 
1874 void Assembler::emms() {
1875   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1876   emit_int8(0x0F);
1877   emit_int8(0x77);
1878 }
1879 
1880 void Assembler::hlt() {
1881   emit_int8((unsigned char)0xF4);
1882 }
1883 
1884 void Assembler::idivl(Register src) {
1885   int encode = prefix_and_encode(src->encoding());
1886   emit_int8((unsigned char)0xF7);
1887   emit_int8((unsigned char)(0xF8 | encode));
1888 }
1889 
1890 void Assembler::divl(Register src) { // Unsigned
1891   int encode = prefix_and_encode(src->encoding());
1892   emit_int8((unsigned char)0xF7);
1893   emit_int8((unsigned char)(0xF0 | encode));
1894 }
1895 
1896 void Assembler::imull(Register src) {
1897   int encode = prefix_and_encode(src->encoding());
1898   emit_int8((unsigned char)0xF7);
1899   emit_int8((unsigned char)(0xE8 | encode));
1900 }
1901 
1902 void Assembler::imull(Register dst, Register src) {
1903   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1904   emit_int8(0x0F);
1905   emit_int8((unsigned char)0xAF);
1906   emit_int8((unsigned char)(0xC0 | encode));
1907 }
1908 
1909 
1910 void Assembler::imull(Register dst, Register src, int value) {
1911   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1912   if (is8bit(value)) {
1913     emit_int8(0x6B);
1914     emit_int8((unsigned char)(0xC0 | encode));
1915     emit_int8(value & 0xFF);
1916   } else {
1917     emit_int8(0x69);
1918     emit_int8((unsigned char)(0xC0 | encode));
1919     emit_int32(value);
1920   }
1921 }
1922 
1923 void Assembler::imull(Register dst, Address src) {
1924   InstructionMark im(this);
1925   prefix(src, dst);
1926   emit_int8(0x0F);
1927   emit_int8((unsigned char) 0xAF);
1928   emit_operand(dst, src);
1929 }
1930 
1931 
1932 void Assembler::incl(Address dst) {
1933   // Don't use it directly. Use MacroAssembler::increment() instead.
1934   InstructionMark im(this);
1935   prefix(dst);
1936   emit_int8((unsigned char)0xFF);
1937   emit_operand(rax, dst);
1938 }
1939 
1940 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1941   InstructionMark im(this);
1942   assert((0 <= cc) && (cc < 16), "illegal cc");
1943   if (L.is_bound()) {
1944     address dst = target(L);
1945     assert(dst != NULL, "jcc most probably wrong");
1946 
1947     const int short_size = 2;
1948     const int long_size = 6;
1949     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1950     if (maybe_short && is8bit(offs - short_size)) {
1951       // 0111 tttn #8-bit disp
1952       emit_int8(0x70 | cc);
1953       emit_int8((offs - short_size) & 0xFF);
1954     } else {
1955       // 0000 1111 1000 tttn #32-bit disp
1956       assert(is_simm32(offs - long_size),
1957              "must be 32bit offset (call4)");
1958       emit_int8(0x0F);
1959       emit_int8((unsigned char)(0x80 | cc));
1960       emit_int32(offs - long_size);
1961     }
1962   } else {
1963     // Note: could eliminate cond. jumps to this jump if condition
1964     //       is the same however, seems to be rather unlikely case.
1965     // Note: use jccb() if label to be bound is very close to get
1966     //       an 8-bit displacement
1967     L.add_patch_at(code(), locator());
1968     emit_int8(0x0F);
1969     emit_int8((unsigned char)(0x80 | cc));
1970     emit_int32(0);
1971   }
1972 }
1973 
1974 void Assembler::jccb(Condition cc, Label& L) {
1975   if (L.is_bound()) {
1976     const int short_size = 2;
1977     address entry = target(L);
1978 #ifdef ASSERT
1979     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1980     intptr_t delta = short_branch_delta();
1981     if (delta != 0) {
1982       dist += (dist < 0 ? (-delta) :delta);
1983     }
1984     assert(is8bit(dist), "Dispacement too large for a short jmp");
1985 #endif
1986     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1987     // 0111 tttn #8-bit disp
1988     emit_int8(0x70 | cc);
1989     emit_int8((offs - short_size) & 0xFF);
1990   } else {
1991     InstructionMark im(this);
1992     L.add_patch_at(code(), locator());
1993     emit_int8(0x70 | cc);
1994     emit_int8(0);
1995   }
1996 }
1997 
1998 void Assembler::jmp(Address adr) {
1999   InstructionMark im(this);
2000   prefix(adr);
2001   emit_int8((unsigned char)0xFF);
2002   emit_operand(rsp, adr);
2003 }
2004 
2005 void Assembler::jmp(Label& L, bool maybe_short) {
2006   if (L.is_bound()) {
2007     address entry = target(L);
2008     assert(entry != NULL, "jmp most probably wrong");
2009     InstructionMark im(this);
2010     const int short_size = 2;
2011     const int long_size = 5;
2012     intptr_t offs = entry - pc();
2013     if (maybe_short && is8bit(offs - short_size)) {
2014       emit_int8((unsigned char)0xEB);
2015       emit_int8((offs - short_size) & 0xFF);
2016     } else {
2017       emit_int8((unsigned char)0xE9);
2018       emit_int32(offs - long_size);
2019     }
2020   } else {
2021     // By default, forward jumps are always 32-bit displacements, since
2022     // we can't yet know where the label will be bound.  If you're sure that
2023     // the forward jump will not run beyond 256 bytes, use jmpb to
2024     // force an 8-bit displacement.
2025     InstructionMark im(this);
2026     L.add_patch_at(code(), locator());
2027     emit_int8((unsigned char)0xE9);
2028     emit_int32(0);
2029   }
2030 }
2031 
2032 void Assembler::jmp(Register entry) {
2033   int encode = prefix_and_encode(entry->encoding());
2034   emit_int8((unsigned char)0xFF);
2035   emit_int8((unsigned char)(0xE0 | encode));
2036 }
2037 
2038 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2039   InstructionMark im(this);
2040   emit_int8((unsigned char)0xE9);
2041   assert(dest != NULL, "must have a target");
2042   intptr_t disp = dest - (pc() + sizeof(int32_t));
2043   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2044   emit_data(disp, rspec.reloc(), call32_operand);
2045 }
2046 
2047 void Assembler::jmpb(Label& L) {
2048   if (L.is_bound()) {
2049     const int short_size = 2;
2050     address entry = target(L);
2051     assert(entry != NULL, "jmp most probably wrong");
2052 #ifdef ASSERT
2053     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2054     intptr_t delta = short_branch_delta();
2055     if (delta != 0) {
2056       dist += (dist < 0 ? (-delta) :delta);
2057     }
2058     assert(is8bit(dist), "Dispacement too large for a short jmp");
2059 #endif
2060     intptr_t offs = entry - pc();
2061     emit_int8((unsigned char)0xEB);
2062     emit_int8((offs - short_size) & 0xFF);
2063   } else {
2064     InstructionMark im(this);
2065     L.add_patch_at(code(), locator());
2066     emit_int8((unsigned char)0xEB);
2067     emit_int8(0);
2068   }
2069 }
2070 
2071 void Assembler::ldmxcsr( Address src) {
2072   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2073   InstructionMark im(this);
2074   prefix(src);
2075   emit_int8(0x0F);
2076   emit_int8((unsigned char)0xAE);
2077   emit_operand(as_Register(2), src);
2078 }
2079 
2080 void Assembler::leal(Register dst, Address src) {
2081   InstructionMark im(this);
2082 #ifdef _LP64
2083   emit_int8(0x67); // addr32
2084   prefix(src, dst);
2085 #endif // LP64
2086   emit_int8((unsigned char)0x8D);
2087   emit_operand(dst, src);
2088 }
2089 
2090 void Assembler::lfence() {
2091   emit_int8(0x0F);
2092   emit_int8((unsigned char)0xAE);
2093   emit_int8((unsigned char)0xE8);
2094 }
2095 
2096 void Assembler::lock() {
2097   emit_int8((unsigned char)0xF0);
2098 }
2099 
2100 void Assembler::lzcntl(Register dst, Register src) {
2101   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2102   emit_int8((unsigned char)0xF3);
2103   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2104   emit_int8(0x0F);
2105   emit_int8((unsigned char)0xBD);
2106   emit_int8((unsigned char)(0xC0 | encode));
2107 }
2108 
2109 // Emit mfence instruction
2110 void Assembler::mfence() {
2111   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2112   emit_int8(0x0F);
2113   emit_int8((unsigned char)0xAE);
2114   emit_int8((unsigned char)0xF0);
2115 }
2116 
2117 void Assembler::mov(Register dst, Register src) {
2118   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2119 }
2120 
2121 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2124   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2126   emit_int8(0x28);
2127   emit_int8((unsigned char)(0xC0 | encode));
2128 }
2129 
2130 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2131   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2132   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2133   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2134   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2135   emit_int8(0x28);
2136   emit_int8((unsigned char)(0xC0 | encode));
2137 }
2138 
2139 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2140   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2142   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2143   emit_int8(0x16);
2144   emit_int8((unsigned char)(0xC0 | encode));
2145 }
2146 
2147 void Assembler::movb(Register dst, Address src) {
2148   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2149   InstructionMark im(this);
2150   prefix(src, dst, true);
2151   emit_int8((unsigned char)0x8A);
2152   emit_operand(dst, src);
2153 }
2154 
2155 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2156   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2157   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2158   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2159   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2160   emit_int8(0x12);
2161   emit_int8(0xC0 | encode);
2162 }
2163 
2164 void Assembler::kmovbl(KRegister dst, Register src) {
2165   assert(VM_Version::supports_avx512dq(), "");
2166   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2167   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2168   emit_int8((unsigned char)0x92);
2169   emit_int8((unsigned char)(0xC0 | encode));
2170 }
2171 
2172 void Assembler::kmovbl(Register dst, KRegister src) {
2173   assert(VM_Version::supports_avx512dq(), "");
2174   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2175   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2176   emit_int8((unsigned char)0x93);
2177   emit_int8((unsigned char)(0xC0 | encode));
2178 }
2179 
2180 void Assembler::kmovwl(KRegister dst, Register src) {
2181   assert(VM_Version::supports_evex(), "");
2182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2183   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2184   emit_int8((unsigned char)0x92);
2185   emit_int8((unsigned char)(0xC0 | encode));
2186 }
2187 
2188 void Assembler::kmovwl(Register dst, KRegister src) {
2189   assert(VM_Version::supports_evex(), "");
2190   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2191   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2192   emit_int8((unsigned char)0x93);
2193   emit_int8((unsigned char)(0xC0 | encode));
2194 }
2195 
2196 void Assembler::kmovdl(KRegister dst, Register src) {
2197   assert(VM_Version::supports_avx512bw(), "");
2198   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2199   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2200   emit_int8((unsigned char)0x92);
2201   emit_int8((unsigned char)(0xC0 | encode));
2202 }
2203 
2204 void Assembler::kmovdl(Register dst, KRegister src) {
2205   assert(VM_Version::supports_avx512bw(), "");
2206   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2207   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2208   emit_int8((unsigned char)0x93);
2209   emit_int8((unsigned char)(0xC0 | encode));
2210 }
2211 
2212 void Assembler::kmovql(KRegister dst, KRegister src) {
2213   assert(VM_Version::supports_avx512bw(), "");
2214   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2215   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2216   emit_int8((unsigned char)0x90);
2217   emit_int8((unsigned char)(0xC0 | encode));
2218 }
2219 
2220 void Assembler::kmovql(KRegister dst, Address src) {
2221   assert(VM_Version::supports_avx512bw(), "");
2222   InstructionMark im(this);
2223   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2224   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2225   emit_int8((unsigned char)0x90);
2226   emit_operand((Register)dst, src);
2227 }
2228 
2229 void Assembler::kmovql(Address dst, KRegister src) {
2230   assert(VM_Version::supports_avx512bw(), "");
2231   InstructionMark im(this);
2232   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2233   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2234   emit_int8((unsigned char)0x90);
2235   emit_operand((Register)src, dst);
2236 }
2237 
2238 void Assembler::kmovql(KRegister dst, Register src) {
2239   assert(VM_Version::supports_avx512bw(), "");
2240   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2241   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2242   emit_int8((unsigned char)0x92);
2243   emit_int8((unsigned char)(0xC0 | encode));
2244 }
2245 
2246 void Assembler::kmovql(Register dst, KRegister src) {
2247   assert(VM_Version::supports_avx512bw(), "");
2248   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2249   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2250   emit_int8((unsigned char)0x93);
2251   emit_int8((unsigned char)(0xC0 | encode));
2252 }
2253 
2254 // This instruction produces ZF or CF flags
2255 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2256   assert(VM_Version::supports_avx512dq(), "");
2257   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2258   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2259   emit_int8((unsigned char)0x98);
2260   emit_int8((unsigned char)(0xC0 | encode));
2261 }
2262 
2263 // This instruction produces ZF or CF flags
2264 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2265   assert(VM_Version::supports_evex(), "");
2266   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2267   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2268   emit_int8((unsigned char)0x98);
2269   emit_int8((unsigned char)(0xC0 | encode));
2270 }
2271 
2272 // This instruction produces ZF or CF flags
2273 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2274   assert(VM_Version::supports_avx512bw(), "");
2275   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2277   emit_int8((unsigned char)0x98);
2278   emit_int8((unsigned char)(0xC0 | encode));
2279 }
2280 
2281 // This instruction produces ZF or CF flags
2282 void Assembler::kortestql(KRegister src1, KRegister src2) {
2283   assert(VM_Version::supports_avx512bw(), "");
2284   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2285   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2286   emit_int8((unsigned char)0x98);
2287   emit_int8((unsigned char)(0xC0 | encode));
2288 }
2289 
2290 void Assembler::movb(Address dst, int imm8) {
2291   InstructionMark im(this);
2292    prefix(dst);
2293   emit_int8((unsigned char)0xC6);
2294   emit_operand(rax, dst, 1);
2295   emit_int8(imm8);
2296 }
2297 
2298 
2299 void Assembler::movb(Address dst, Register src) {
2300   assert(src->has_byte_register(), "must have byte register");
2301   InstructionMark im(this);
2302   prefix(dst, src, true);
2303   emit_int8((unsigned char)0x88);
2304   emit_operand(src, dst);
2305 }
2306 
2307 void Assembler::movdl(XMMRegister dst, Register src) {
2308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2309   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2310   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2311   emit_int8(0x6E);
2312   emit_int8((unsigned char)(0xC0 | encode));
2313 }
2314 
2315 void Assembler::movdl(Register dst, XMMRegister src) {
2316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2317   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2318   // swap src/dst to get correct prefix
2319   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2320   emit_int8(0x7E);
2321   emit_int8((unsigned char)(0xC0 | encode));
2322 }
2323 
2324 void Assembler::movdl(XMMRegister dst, Address src) {
2325   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2328   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2329   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2330   emit_int8(0x6E);
2331   emit_operand(dst, src);
2332 }
2333 
2334 void Assembler::movdl(Address dst, XMMRegister src) {
2335   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2336   InstructionMark im(this);
2337   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2338   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2339   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2340   emit_int8(0x7E);
2341   emit_operand(src, dst);
2342 }
2343 
2344 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2345   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2346   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2347   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2348   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2349   emit_int8(0x6F);
2350   emit_int8((unsigned char)(0xC0 | encode));
2351 }
2352 
2353 void Assembler::movdqa(XMMRegister dst, Address src) {
2354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2355   InstructionMark im(this);
2356   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2357   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2358   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2359   emit_int8(0x6F);
2360   emit_operand(dst, src);
2361 }
2362 
2363 void Assembler::movdqu(XMMRegister dst, Address src) {
2364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2365   InstructionMark im(this);
2366   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2367   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2368   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2369   emit_int8(0x6F);
2370   emit_operand(dst, src);
2371 }
2372 
2373 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2374   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2376   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2377   emit_int8(0x6F);
2378   emit_int8((unsigned char)(0xC0 | encode));
2379 }
2380 
2381 void Assembler::movdqu(Address dst, XMMRegister src) {
2382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2383   InstructionMark im(this);
2384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2385   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2386   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2387   emit_int8(0x7F);
2388   emit_operand(src, dst);
2389 }
2390 
2391 // Move Unaligned 256bit Vector
2392 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2393   assert(UseAVX > 0, "");
2394   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2395   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2396   emit_int8(0x6F);
2397   emit_int8((unsigned char)(0xC0 | encode));
2398 }
2399 
2400 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2401   assert(UseAVX > 0, "");
2402   InstructionMark im(this);
2403   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2404   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2405   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2406   emit_int8(0x6F);
2407   emit_operand(dst, src);
2408 }
2409 
2410 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2411   assert(UseAVX > 0, "");
2412   InstructionMark im(this);
2413   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2414   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2415   // swap src<->dst for encoding
2416   assert(src != xnoreg, "sanity");
2417   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2418   emit_int8(0x7F);
2419   emit_operand(src, dst);
2420 }
2421 
2422 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2423 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2424   assert(VM_Version::supports_evex(), "");
2425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2426   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2427   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2428   emit_int8(0x6F);
2429   emit_int8((unsigned char)(0xC0 | encode));
2430 }
2431 
2432 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2433   assert(VM_Version::supports_evex(), "");
2434   InstructionMark im(this);
2435   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2436   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2437   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2438   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2439   emit_int8(0x6F);
2440   emit_operand(dst, src);
2441 }
2442 
2443 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2444   assert(VM_Version::supports_evex(), "");
2445   assert(src != xnoreg, "sanity");
2446   InstructionMark im(this);
2447   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2448   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2449   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2450   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2451   emit_int8(0x7F);
2452   emit_operand(src, dst);
2453 }
2454 
2455 void Assembler::evmovdquw(XMMRegister dst, XMMRegister src, int vector_len) {
2456   assert(VM_Version::supports_evex(), "");
2457   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2458   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2459   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2460   emit_int8(0x6F);
2461   emit_int8((unsigned char)(0xC0 | encode));
2462 }
2463 
2464 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2465   assert(VM_Version::supports_evex(), "");
2466   InstructionMark im(this);
2467   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2468   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2469   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2470   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2471   emit_int8(0x6F);
2472   emit_operand(dst, src);
2473 }
2474 
2475 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2476   assert(VM_Version::supports_evex(), "");
2477   assert(src != xnoreg, "sanity");
2478   InstructionMark im(this);
2479   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2480   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2481   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2482   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2483   emit_int8(0x7F);
2484   emit_operand(src, dst);
2485 }
2486 
2487 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2488   assert(VM_Version::supports_evex(), "");
2489   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2490   attributes.set_is_evex_instruction();
2491   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2492   emit_int8(0x6F);
2493   emit_int8((unsigned char)(0xC0 | encode));
2494 }
2495 
2496 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2497   assert(VM_Version::supports_evex(), "");
2498   InstructionMark im(this);
2499   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ true);
2500   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2501   attributes.set_is_evex_instruction();
2502   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2503   emit_int8(0x6F);
2504   emit_operand(dst, src);
2505 }
2506 
2507 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2508   assert(VM_Version::supports_evex(), "");
2509   assert(src != xnoreg, "sanity");
2510   InstructionMark im(this);
2511   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2512   attributes.set_is_evex_instruction();
2513   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2514   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2515   emit_int8(0x7F);
2516   emit_operand(src, dst);
2517 }
2518 
2519 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2520   assert(VM_Version::supports_evex(), "");
2521   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2522   attributes.set_is_evex_instruction();
2523   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2524   emit_int8(0x6F);
2525   emit_int8((unsigned char)(0xC0 | encode));
2526 }
2527 
2528 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2529   assert(VM_Version::supports_evex(), "");
2530   InstructionMark im(this);
2531   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2532   attributes.set_is_evex_instruction();
2533   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2534   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2535   emit_int8(0x6F);
2536   emit_operand(dst, src);
2537 }
2538 
2539 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2540   assert(VM_Version::supports_evex(), "");
2541   assert(src != xnoreg, "sanity");
2542   InstructionMark im(this);
2543   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2544   attributes.set_is_evex_instruction();
2545   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2546   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2547   emit_int8(0x7F);
2548   emit_operand(src, dst);
2549 }
2550 
2551 // Uses zero extension on 64bit
2552 
2553 void Assembler::movl(Register dst, int32_t imm32) {
2554   int encode = prefix_and_encode(dst->encoding());
2555   emit_int8((unsigned char)(0xB8 | encode));
2556   emit_int32(imm32);
2557 }
2558 
2559 void Assembler::movl(Register dst, Register src) {
2560   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2561   emit_int8((unsigned char)0x8B);
2562   emit_int8((unsigned char)(0xC0 | encode));
2563 }
2564 
2565 void Assembler::movl(Register dst, Address src) {
2566   InstructionMark im(this);
2567   prefix(src, dst);
2568   emit_int8((unsigned char)0x8B);
2569   emit_operand(dst, src);
2570 }
2571 
2572 void Assembler::movl(Address dst, int32_t imm32) {
2573   InstructionMark im(this);
2574   prefix(dst);
2575   emit_int8((unsigned char)0xC7);
2576   emit_operand(rax, dst, 4);
2577   emit_int32(imm32);
2578 }
2579 
2580 void Assembler::movl(Address dst, Register src) {
2581   InstructionMark im(this);
2582   prefix(dst, src);
2583   emit_int8((unsigned char)0x89);
2584   emit_operand(src, dst);
2585 }
2586 
2587 // New cpus require to use movsd and movss to avoid partial register stall
2588 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2589 // The selection is done in MacroAssembler::movdbl() and movflt().
2590 void Assembler::movlpd(XMMRegister dst, Address src) {
2591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2592   InstructionMark im(this);
2593   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2594   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2595   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2596   emit_int8(0x12);
2597   emit_operand(dst, src);
2598 }
2599 
2600 void Assembler::movq( MMXRegister dst, Address src ) {
2601   assert( VM_Version::supports_mmx(), "" );
2602   emit_int8(0x0F);
2603   emit_int8(0x6F);
2604   emit_operand(dst, src);
2605 }
2606 
2607 void Assembler::movq( Address dst, MMXRegister src ) {
2608   assert( VM_Version::supports_mmx(), "" );
2609   emit_int8(0x0F);
2610   emit_int8(0x7F);
2611   // workaround gcc (3.2.1-7a) bug
2612   // In that version of gcc with only an emit_operand(MMX, Address)
2613   // gcc will tail jump and try and reverse the parameters completely
2614   // obliterating dst in the process. By having a version available
2615   // that doesn't need to swap the args at the tail jump the bug is
2616   // avoided.
2617   emit_operand(dst, src);
2618 }
2619 
2620 void Assembler::movq(XMMRegister dst, Address src) {
2621   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2622   InstructionMark im(this);
2623   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2624   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2625   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2626   emit_int8(0x7E);
2627   emit_operand(dst, src);
2628 }
2629 
2630 void Assembler::movq(Address dst, XMMRegister src) {
2631   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2632   InstructionMark im(this);
2633   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2635   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2636   emit_int8((unsigned char)0xD6);
2637   emit_operand(src, dst);
2638 }
2639 
2640 void Assembler::movsbl(Register dst, Address src) { // movsxb
2641   InstructionMark im(this);
2642   prefix(src, dst);
2643   emit_int8(0x0F);
2644   emit_int8((unsigned char)0xBE);
2645   emit_operand(dst, src);
2646 }
2647 
2648 void Assembler::movsbl(Register dst, Register src) { // movsxb
2649   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2650   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2651   emit_int8(0x0F);
2652   emit_int8((unsigned char)0xBE);
2653   emit_int8((unsigned char)(0xC0 | encode));
2654 }
2655 
2656 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2658   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2659   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2660   emit_int8(0x10);
2661   emit_int8((unsigned char)(0xC0 | encode));
2662 }
2663 
2664 void Assembler::movsd(XMMRegister dst, Address src) {
2665   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2666   InstructionMark im(this);
2667   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2669   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2670   emit_int8(0x10);
2671   emit_operand(dst, src);
2672 }
2673 
2674 void Assembler::movsd(Address dst, XMMRegister src) {
2675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2676   InstructionMark im(this);
2677   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2678   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2679   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2680   emit_int8(0x11);
2681   emit_operand(src, dst);
2682 }
2683 
2684 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2685   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2686   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2687   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2688   emit_int8(0x10);
2689   emit_int8((unsigned char)(0xC0 | encode));
2690 }
2691 
2692 void Assembler::movss(XMMRegister dst, Address src) {
2693   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2694   InstructionMark im(this);
2695   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2696   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2697   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2698   emit_int8(0x10);
2699   emit_operand(dst, src);
2700 }
2701 
2702 void Assembler::movss(Address dst, XMMRegister src) {
2703   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2704   InstructionMark im(this);
2705   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2706   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2707   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2708   emit_int8(0x11);
2709   emit_operand(src, dst);
2710 }
2711 
2712 void Assembler::movswl(Register dst, Address src) { // movsxw
2713   InstructionMark im(this);
2714   prefix(src, dst);
2715   emit_int8(0x0F);
2716   emit_int8((unsigned char)0xBF);
2717   emit_operand(dst, src);
2718 }
2719 
2720 void Assembler::movswl(Register dst, Register src) { // movsxw
2721   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2722   emit_int8(0x0F);
2723   emit_int8((unsigned char)0xBF);
2724   emit_int8((unsigned char)(0xC0 | encode));
2725 }
2726 
2727 void Assembler::movw(Address dst, int imm16) {
2728   InstructionMark im(this);
2729 
2730   emit_int8(0x66); // switch to 16-bit mode
2731   prefix(dst);
2732   emit_int8((unsigned char)0xC7);
2733   emit_operand(rax, dst, 2);
2734   emit_int16(imm16);
2735 }
2736 
2737 void Assembler::movw(Register dst, Address src) {
2738   InstructionMark im(this);
2739   emit_int8(0x66);
2740   prefix(src, dst);
2741   emit_int8((unsigned char)0x8B);
2742   emit_operand(dst, src);
2743 }
2744 
2745 void Assembler::movw(Address dst, Register src) {
2746   InstructionMark im(this);
2747   emit_int8(0x66);
2748   prefix(dst, src);
2749   emit_int8((unsigned char)0x89);
2750   emit_operand(src, dst);
2751 }
2752 
2753 void Assembler::movzbl(Register dst, Address src) { // movzxb
2754   InstructionMark im(this);
2755   prefix(src, dst);
2756   emit_int8(0x0F);
2757   emit_int8((unsigned char)0xB6);
2758   emit_operand(dst, src);
2759 }
2760 
2761 void Assembler::movzbl(Register dst, Register src) { // movzxb
2762   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2763   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2764   emit_int8(0x0F);
2765   emit_int8((unsigned char)0xB6);
2766   emit_int8(0xC0 | encode);
2767 }
2768 
2769 void Assembler::movzwl(Register dst, Address src) { // movzxw
2770   InstructionMark im(this);
2771   prefix(src, dst);
2772   emit_int8(0x0F);
2773   emit_int8((unsigned char)0xB7);
2774   emit_operand(dst, src);
2775 }
2776 
2777 void Assembler::movzwl(Register dst, Register src) { // movzxw
2778   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2779   emit_int8(0x0F);
2780   emit_int8((unsigned char)0xB7);
2781   emit_int8(0xC0 | encode);
2782 }
2783 
2784 void Assembler::mull(Address src) {
2785   InstructionMark im(this);
2786   prefix(src);
2787   emit_int8((unsigned char)0xF7);
2788   emit_operand(rsp, src);
2789 }
2790 
2791 void Assembler::mull(Register src) {
2792   int encode = prefix_and_encode(src->encoding());
2793   emit_int8((unsigned char)0xF7);
2794   emit_int8((unsigned char)(0xE0 | encode));
2795 }
2796 
2797 void Assembler::mulsd(XMMRegister dst, Address src) {
2798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2799   InstructionMark im(this);
2800   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2801   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2802   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2803   emit_int8(0x59);
2804   emit_operand(dst, src);
2805 }
2806 
2807 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2809   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2810   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2811   emit_int8(0x59);
2812   emit_int8((unsigned char)(0xC0 | encode));
2813 }
2814 
2815 void Assembler::mulss(XMMRegister dst, Address src) {
2816   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2817   InstructionMark im(this);
2818   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2819   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2820   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2821   emit_int8(0x59);
2822   emit_operand(dst, src);
2823 }
2824 
2825 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2826   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2827   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
2828   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2829   emit_int8(0x59);
2830   emit_int8((unsigned char)(0xC0 | encode));
2831 }
2832 
2833 void Assembler::negl(Register dst) {
2834   int encode = prefix_and_encode(dst->encoding());
2835   emit_int8((unsigned char)0xF7);
2836   emit_int8((unsigned char)(0xD8 | encode));
2837 }
2838 
2839 void Assembler::nop(int i) {
2840 #ifdef ASSERT
2841   assert(i > 0, " ");
2842   // The fancy nops aren't currently recognized by debuggers making it a
2843   // pain to disassemble code while debugging. If asserts are on clearly
2844   // speed is not an issue so simply use the single byte traditional nop
2845   // to do alignment.
2846 
2847   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2848   return;
2849 
2850 #endif // ASSERT
2851 
2852   if (UseAddressNop && VM_Version::is_intel()) {
2853     //
2854     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2855     //  1: 0x90
2856     //  2: 0x66 0x90
2857     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2858     //  4: 0x0F 0x1F 0x40 0x00
2859     //  5: 0x0F 0x1F 0x44 0x00 0x00
2860     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2861     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2862     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2863     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2864     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2865     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2866 
2867     // The rest coding is Intel specific - don't use consecutive address nops
2868 
2869     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2870     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2871     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2872     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2873 
2874     while(i >= 15) {
2875       // For Intel don't generate consecutive addess nops (mix with regular nops)
2876       i -= 15;
2877       emit_int8(0x66);   // size prefix
2878       emit_int8(0x66);   // size prefix
2879       emit_int8(0x66);   // size prefix
2880       addr_nop_8();
2881       emit_int8(0x66);   // size prefix
2882       emit_int8(0x66);   // size prefix
2883       emit_int8(0x66);   // size prefix
2884       emit_int8((unsigned char)0x90);
2885                          // nop
2886     }
2887     switch (i) {
2888       case 14:
2889         emit_int8(0x66); // size prefix
2890       case 13:
2891         emit_int8(0x66); // size prefix
2892       case 12:
2893         addr_nop_8();
2894         emit_int8(0x66); // size prefix
2895         emit_int8(0x66); // size prefix
2896         emit_int8(0x66); // size prefix
2897         emit_int8((unsigned char)0x90);
2898                          // nop
2899         break;
2900       case 11:
2901         emit_int8(0x66); // size prefix
2902       case 10:
2903         emit_int8(0x66); // size prefix
2904       case 9:
2905         emit_int8(0x66); // size prefix
2906       case 8:
2907         addr_nop_8();
2908         break;
2909       case 7:
2910         addr_nop_7();
2911         break;
2912       case 6:
2913         emit_int8(0x66); // size prefix
2914       case 5:
2915         addr_nop_5();
2916         break;
2917       case 4:
2918         addr_nop_4();
2919         break;
2920       case 3:
2921         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2922         emit_int8(0x66); // size prefix
2923       case 2:
2924         emit_int8(0x66); // size prefix
2925       case 1:
2926         emit_int8((unsigned char)0x90);
2927                          // nop
2928         break;
2929       default:
2930         assert(i == 0, " ");
2931     }
2932     return;
2933   }
2934   if (UseAddressNop && VM_Version::is_amd()) {
2935     //
2936     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2937     //  1: 0x90
2938     //  2: 0x66 0x90
2939     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2940     //  4: 0x0F 0x1F 0x40 0x00
2941     //  5: 0x0F 0x1F 0x44 0x00 0x00
2942     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2943     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2944     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2945     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2946     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2947     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2948 
2949     // The rest coding is AMD specific - use consecutive address nops
2950 
2951     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2952     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2953     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2954     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2955     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2956     //     Size prefixes (0x66) are added for larger sizes
2957 
2958     while(i >= 22) {
2959       i -= 11;
2960       emit_int8(0x66); // size prefix
2961       emit_int8(0x66); // size prefix
2962       emit_int8(0x66); // size prefix
2963       addr_nop_8();
2964     }
2965     // Generate first nop for size between 21-12
2966     switch (i) {
2967       case 21:
2968         i -= 1;
2969         emit_int8(0x66); // size prefix
2970       case 20:
2971       case 19:
2972         i -= 1;
2973         emit_int8(0x66); // size prefix
2974       case 18:
2975       case 17:
2976         i -= 1;
2977         emit_int8(0x66); // size prefix
2978       case 16:
2979       case 15:
2980         i -= 8;
2981         addr_nop_8();
2982         break;
2983       case 14:
2984       case 13:
2985         i -= 7;
2986         addr_nop_7();
2987         break;
2988       case 12:
2989         i -= 6;
2990         emit_int8(0x66); // size prefix
2991         addr_nop_5();
2992         break;
2993       default:
2994         assert(i < 12, " ");
2995     }
2996 
2997     // Generate second nop for size between 11-1
2998     switch (i) {
2999       case 11:
3000         emit_int8(0x66); // size prefix
3001       case 10:
3002         emit_int8(0x66); // size prefix
3003       case 9:
3004         emit_int8(0x66); // size prefix
3005       case 8:
3006         addr_nop_8();
3007         break;
3008       case 7:
3009         addr_nop_7();
3010         break;
3011       case 6:
3012         emit_int8(0x66); // size prefix
3013       case 5:
3014         addr_nop_5();
3015         break;
3016       case 4:
3017         addr_nop_4();
3018         break;
3019       case 3:
3020         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3021         emit_int8(0x66); // size prefix
3022       case 2:
3023         emit_int8(0x66); // size prefix
3024       case 1:
3025         emit_int8((unsigned char)0x90);
3026                          // nop
3027         break;
3028       default:
3029         assert(i == 0, " ");
3030     }
3031     return;
3032   }
3033 
3034   // Using nops with size prefixes "0x66 0x90".
3035   // From AMD Optimization Guide:
3036   //  1: 0x90
3037   //  2: 0x66 0x90
3038   //  3: 0x66 0x66 0x90
3039   //  4: 0x66 0x66 0x66 0x90
3040   //  5: 0x66 0x66 0x90 0x66 0x90
3041   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3042   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3043   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3044   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3045   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3046   //
3047   while(i > 12) {
3048     i -= 4;
3049     emit_int8(0x66); // size prefix
3050     emit_int8(0x66);
3051     emit_int8(0x66);
3052     emit_int8((unsigned char)0x90);
3053                      // nop
3054   }
3055   // 1 - 12 nops
3056   if(i > 8) {
3057     if(i > 9) {
3058       i -= 1;
3059       emit_int8(0x66);
3060     }
3061     i -= 3;
3062     emit_int8(0x66);
3063     emit_int8(0x66);
3064     emit_int8((unsigned char)0x90);
3065   }
3066   // 1 - 8 nops
3067   if(i > 4) {
3068     if(i > 6) {
3069       i -= 1;
3070       emit_int8(0x66);
3071     }
3072     i -= 3;
3073     emit_int8(0x66);
3074     emit_int8(0x66);
3075     emit_int8((unsigned char)0x90);
3076   }
3077   switch (i) {
3078     case 4:
3079       emit_int8(0x66);
3080     case 3:
3081       emit_int8(0x66);
3082     case 2:
3083       emit_int8(0x66);
3084     case 1:
3085       emit_int8((unsigned char)0x90);
3086       break;
3087     default:
3088       assert(i == 0, " ");
3089   }
3090 }
3091 
3092 void Assembler::notl(Register dst) {
3093   int encode = prefix_and_encode(dst->encoding());
3094   emit_int8((unsigned char)0xF7);
3095   emit_int8((unsigned char)(0xD0 | encode));
3096 }
3097 
3098 void Assembler::orl(Address dst, int32_t imm32) {
3099   InstructionMark im(this);
3100   prefix(dst);
3101   emit_arith_operand(0x81, rcx, dst, imm32);
3102 }
3103 
3104 void Assembler::orl(Register dst, int32_t imm32) {
3105   prefix(dst);
3106   emit_arith(0x81, 0xC8, dst, imm32);
3107 }
3108 
3109 void Assembler::orl(Register dst, Address src) {
3110   InstructionMark im(this);
3111   prefix(src, dst);
3112   emit_int8(0x0B);
3113   emit_operand(dst, src);
3114 }
3115 
3116 void Assembler::orl(Register dst, Register src) {
3117   (void) prefix_and_encode(dst->encoding(), src->encoding());
3118   emit_arith(0x0B, 0xC0, dst, src);
3119 }
3120 
3121 void Assembler::orl(Address dst, Register src) {
3122   InstructionMark im(this);
3123   prefix(dst, src);
3124   emit_int8(0x09);
3125   emit_operand(src, dst);
3126 }
3127 
3128 void Assembler::packuswb(XMMRegister dst, Address src) {
3129   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3130   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3131   InstructionMark im(this);
3132   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3133   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3134   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3135   emit_int8(0x67);
3136   emit_operand(dst, src);
3137 }
3138 
3139 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3142   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3143   emit_int8(0x67);
3144   emit_int8((unsigned char)(0xC0 | encode));
3145 }
3146 
3147 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3148   assert(UseAVX > 0, "some form of AVX must be enabled");
3149   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3150   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3151   emit_int8(0x67);
3152   emit_int8((unsigned char)(0xC0 | encode));
3153 }
3154 
3155 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3156   assert(VM_Version::supports_avx2(), "");
3157   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3158   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3159   emit_int8(0x00);
3160   emit_int8(0xC0 | encode);
3161   emit_int8(imm8);
3162 }
3163 
3164 void Assembler::pause() {
3165   emit_int8((unsigned char)0xF3);
3166   emit_int8((unsigned char)0x90);
3167 }
3168 
3169 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3170   assert(VM_Version::supports_sse4_2(), "");
3171   InstructionMark im(this);
3172   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3173   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3174   emit_int8(0x61);
3175   emit_operand(dst, src);
3176   emit_int8(imm8);
3177 }
3178 
3179 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3180   assert(VM_Version::supports_sse4_2(), "");
3181   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3182   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3183   emit_int8(0x61);
3184   emit_int8((unsigned char)(0xC0 | encode));
3185   emit_int8(imm8);
3186 }
3187 
3188 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3189 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3190   assert(VM_Version::supports_sse2(), "");
3191   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3192   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3193   emit_int8(0x74);
3194   emit_int8((unsigned char)(0xC0 | encode));
3195 }
3196 
3197 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3198 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3199   assert(VM_Version::supports_avx(), "");
3200   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3201   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3202   emit_int8(0x74);
3203   emit_int8((unsigned char)(0xC0 | encode));
3204 }
3205 
3206 // In this context, kdst is written the mask used to process the equal components
3207 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3208   assert(VM_Version::supports_avx512bw(), "");
3209   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3210   attributes.set_is_evex_instruction();
3211   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3212   emit_int8(0x74);
3213   emit_int8((unsigned char)(0xC0 | encode));
3214 }
3215 
3216 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3217   assert(VM_Version::supports_avx512bw(), "");
3218   InstructionMark im(this);
3219   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3220   attributes.set_is_evex_instruction();
3221   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3222   int dst_enc = kdst->encoding();
3223   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3224   emit_int8(0x74);
3225   emit_operand(as_Register(dst_enc), src);
3226 }
3227 
3228 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3229 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3230   assert(VM_Version::supports_sse2(), "");
3231   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3232   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3233   emit_int8(0x75);
3234   emit_int8((unsigned char)(0xC0 | encode));
3235 }
3236 
3237 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3238 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3239   assert(VM_Version::supports_avx(), "");
3240   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3241   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3242   emit_int8(0x75);
3243   emit_int8((unsigned char)(0xC0 | encode));
3244 }
3245 
3246 // In this context, kdst is written the mask used to process the equal components
3247 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3248   assert(VM_Version::supports_avx512bw(), "");
3249   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3250   attributes.set_is_evex_instruction();
3251   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3252   emit_int8(0x75);
3253   emit_int8((unsigned char)(0xC0 | encode));
3254 }
3255 
3256 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3257   assert(VM_Version::supports_avx512bw(), "");
3258   InstructionMark im(this);
3259   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3260   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3261   attributes.set_is_evex_instruction();
3262   int dst_enc = kdst->encoding();
3263   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3264   emit_int8(0x75);
3265   emit_operand(as_Register(dst_enc), src);
3266 }
3267 
3268 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3269 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3270   assert(VM_Version::supports_sse2(), "");
3271   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3272   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3273   emit_int8(0x76);
3274   emit_int8((unsigned char)(0xC0 | encode));
3275 }
3276 
3277 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3278 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3279   assert(VM_Version::supports_avx(), "");
3280   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3281   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3282   emit_int8(0x76);
3283   emit_int8((unsigned char)(0xC0 | encode));
3284 }
3285 
3286 // In this context, kdst is written the mask used to process the equal components
3287 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3288   assert(VM_Version::supports_evex(), "");
3289   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3290   attributes.set_is_evex_instruction();
3291   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3292   emit_int8(0x76);
3293   emit_int8((unsigned char)(0xC0 | encode));
3294 }
3295 
3296 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3297   assert(VM_Version::supports_evex(), "");
3298   InstructionMark im(this);
3299   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3300   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3301   attributes.set_is_evex_instruction();
3302   int dst_enc = kdst->encoding();
3303   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3304   emit_int8(0x76);
3305   emit_operand(as_Register(dst_enc), src);
3306 }
3307 
3308 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3309 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3310   assert(VM_Version::supports_sse4_1(), "");
3311   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3312   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3313   emit_int8(0x29);
3314   emit_int8((unsigned char)(0xC0 | encode));
3315 }
3316 
3317 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3318 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3319   assert(VM_Version::supports_avx(), "");
3320   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3321   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3322   emit_int8(0x29);
3323   emit_int8((unsigned char)(0xC0 | encode));
3324 }
3325 
3326 // In this context, kdst is written the mask used to process the equal components
3327 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3328   assert(VM_Version::supports_evex(), "");
3329   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3330   attributes.set_is_evex_instruction();
3331   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3332   emit_int8(0x29);
3333   emit_int8((unsigned char)(0xC0 | encode));
3334 }
3335 
3336 // In this context, kdst is written the mask used to process the equal components
3337 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3338   assert(VM_Version::supports_evex(), "");
3339   InstructionMark im(this);
3340   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3341   attributes.set_is_evex_instruction();
3342   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3343   int dst_enc = kdst->encoding();
3344   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3345   emit_int8(0x29);
3346   emit_operand(as_Register(dst_enc), src);
3347 }
3348 
3349 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3350   assert(VM_Version::supports_sse2(), "");
3351   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3352   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3353   emit_int8((unsigned char)0xD7);
3354   emit_int8((unsigned char)(0xC0 | encode));
3355 }
3356 
3357 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3358   assert(VM_Version::supports_avx2(), "");
3359   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3360   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3361   emit_int8((unsigned char)0xD7);
3362   emit_int8((unsigned char)(0xC0 | encode));
3363 }
3364 
3365 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3366   assert(VM_Version::supports_sse4_1(), "");
3367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3368   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3369   emit_int8(0x16);
3370   emit_int8((unsigned char)(0xC0 | encode));
3371   emit_int8(imm8);
3372 }
3373 
3374 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3375   assert(VM_Version::supports_sse4_1(), "");
3376   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3377   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3378   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3379   emit_int8(0x16);
3380   emit_operand(src, dst);
3381   emit_int8(imm8);
3382 }
3383 
3384 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3385   assert(VM_Version::supports_sse4_1(), "");
3386   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3387   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3388   emit_int8(0x16);
3389   emit_int8((unsigned char)(0xC0 | encode));
3390   emit_int8(imm8);
3391 }
3392 
3393 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3394   assert(VM_Version::supports_sse4_1(), "");
3395   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3396   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3397   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3398   emit_int8(0x16);
3399   emit_operand(src, dst);
3400   emit_int8(imm8);
3401 }
3402 
3403 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3404   assert(VM_Version::supports_sse2(), "");
3405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3406   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3407   emit_int8((unsigned char)0xC5);
3408   emit_int8((unsigned char)(0xC0 | encode));
3409   emit_int8(imm8);
3410 }
3411 
3412 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3413   assert(VM_Version::supports_sse4_1(), "");
3414   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3415   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3416   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3417   emit_int8((unsigned char)0x15);
3418   emit_operand(src, dst);
3419   emit_int8(imm8);
3420 }
3421 
3422 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3423   assert(VM_Version::supports_sse4_1(), "");
3424   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3425   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3426   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3427   emit_int8(0x14);
3428   emit_operand(src, dst);
3429   emit_int8(imm8);
3430 }
3431 
3432 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3433   assert(VM_Version::supports_sse4_1(), "");
3434   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3435   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3436   emit_int8(0x22);
3437   emit_int8((unsigned char)(0xC0 | encode));
3438   emit_int8(imm8);
3439 }
3440 
3441 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3442   assert(VM_Version::supports_sse4_1(), "");
3443   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3444   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3445   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3446   emit_int8(0x22);
3447   emit_operand(dst,src);
3448   emit_int8(imm8);
3449 }
3450 
3451 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3452   assert(VM_Version::supports_sse4_1(), "");
3453   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3454   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3455   emit_int8(0x22);
3456   emit_int8((unsigned char)(0xC0 | encode));
3457   emit_int8(imm8);
3458 }
3459 
3460 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3461   assert(VM_Version::supports_sse4_1(), "");
3462   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ false);
3463   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3464   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3465   emit_int8(0x22);
3466   emit_operand(dst, src);
3467   emit_int8(imm8);
3468 }
3469 
3470 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3471   assert(VM_Version::supports_sse2(), "");
3472   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3473   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3474   emit_int8((unsigned char)0xC4);
3475   emit_int8((unsigned char)(0xC0 | encode));
3476   emit_int8(imm8);
3477 }
3478 
3479 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3480   assert(VM_Version::supports_sse2(), "");
3481   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3482   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3483   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3484   emit_int8((unsigned char)0xC4);
3485   emit_operand(dst, src);
3486   emit_int8(imm8);
3487 }
3488 
3489 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3490   assert(VM_Version::supports_sse4_1(), "");
3491   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3492   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3493   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3494   emit_int8(0x20);
3495   emit_operand(dst, src);
3496   emit_int8(imm8);
3497 }
3498 
3499 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3500   assert(VM_Version::supports_sse4_1(), "");
3501   InstructionMark im(this);
3502   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3503   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3504   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3505   emit_int8(0x30);
3506   emit_operand(dst, src);
3507 }
3508 
3509 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3510   assert(VM_Version::supports_sse4_1(), "");
3511   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3512   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3513   emit_int8(0x30);
3514   emit_int8((unsigned char)(0xC0 | encode));
3515 }
3516 
3517 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3518   assert(VM_Version::supports_avx(), "");
3519   InstructionMark im(this);
3520   assert(dst != xnoreg, "sanity");
3521   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3522   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3523   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3524   emit_int8(0x30);
3525   emit_operand(dst, src);
3526 }
3527 
3528 // generic
3529 void Assembler::pop(Register dst) {
3530   int encode = prefix_and_encode(dst->encoding());
3531   emit_int8(0x58 | encode);
3532 }
3533 
3534 void Assembler::popcntl(Register dst, Address src) {
3535   assert(VM_Version::supports_popcnt(), "must support");
3536   InstructionMark im(this);
3537   emit_int8((unsigned char)0xF3);
3538   prefix(src, dst);
3539   emit_int8(0x0F);
3540   emit_int8((unsigned char)0xB8);
3541   emit_operand(dst, src);
3542 }
3543 
3544 void Assembler::popcntl(Register dst, Register src) {
3545   assert(VM_Version::supports_popcnt(), "must support");
3546   emit_int8((unsigned char)0xF3);
3547   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3548   emit_int8(0x0F);
3549   emit_int8((unsigned char)0xB8);
3550   emit_int8((unsigned char)(0xC0 | encode));
3551 }
3552 
3553 void Assembler::popf() {
3554   emit_int8((unsigned char)0x9D);
3555 }
3556 
3557 #ifndef _LP64 // no 32bit push/pop on amd64
3558 void Assembler::popl(Address dst) {
3559   // NOTE: this will adjust stack by 8byte on 64bits
3560   InstructionMark im(this);
3561   prefix(dst);
3562   emit_int8((unsigned char)0x8F);
3563   emit_operand(rax, dst);
3564 }
3565 #endif
3566 
3567 void Assembler::prefetch_prefix(Address src) {
3568   prefix(src);
3569   emit_int8(0x0F);
3570 }
3571 
3572 void Assembler::prefetchnta(Address src) {
3573   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3574   InstructionMark im(this);
3575   prefetch_prefix(src);
3576   emit_int8(0x18);
3577   emit_operand(rax, src); // 0, src
3578 }
3579 
3580 void Assembler::prefetchr(Address src) {
3581   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3582   InstructionMark im(this);
3583   prefetch_prefix(src);
3584   emit_int8(0x0D);
3585   emit_operand(rax, src); // 0, src
3586 }
3587 
3588 void Assembler::prefetcht0(Address src) {
3589   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3590   InstructionMark im(this);
3591   prefetch_prefix(src);
3592   emit_int8(0x18);
3593   emit_operand(rcx, src); // 1, src
3594 }
3595 
3596 void Assembler::prefetcht1(Address src) {
3597   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3598   InstructionMark im(this);
3599   prefetch_prefix(src);
3600   emit_int8(0x18);
3601   emit_operand(rdx, src); // 2, src
3602 }
3603 
3604 void Assembler::prefetcht2(Address src) {
3605   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3606   InstructionMark im(this);
3607   prefetch_prefix(src);
3608   emit_int8(0x18);
3609   emit_operand(rbx, src); // 3, src
3610 }
3611 
3612 void Assembler::prefetchw(Address src) {
3613   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3614   InstructionMark im(this);
3615   prefetch_prefix(src);
3616   emit_int8(0x0D);
3617   emit_operand(rcx, src); // 1, src
3618 }
3619 
3620 void Assembler::prefix(Prefix p) {
3621   emit_int8(p);
3622 }
3623 
3624 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3625   assert(VM_Version::supports_ssse3(), "");
3626   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3627   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3628   emit_int8(0x00);
3629   emit_int8((unsigned char)(0xC0 | encode));
3630 }
3631 
3632 void Assembler::pshufb(XMMRegister dst, Address src) {
3633   assert(VM_Version::supports_ssse3(), "");
3634   InstructionMark im(this);
3635   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3636   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3637   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3638   emit_int8(0x00);
3639   emit_operand(dst, src);
3640 }
3641 
3642 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3643   assert(isByte(mode), "invalid value");
3644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3645   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
3646   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3647   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3648   emit_int8(0x70);
3649   emit_int8((unsigned char)(0xC0 | encode));
3650   emit_int8(mode & 0xFF);
3651 }
3652 
3653 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3654   assert(isByte(mode), "invalid value");
3655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3656   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3657   InstructionMark im(this);
3658   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3659   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3660   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3661   emit_int8(0x70);
3662   emit_operand(dst, src);
3663   emit_int8(mode & 0xFF);
3664 }
3665 
3666 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3667   assert(isByte(mode), "invalid value");
3668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3669   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3670   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3671   emit_int8(0x70);
3672   emit_int8((unsigned char)(0xC0 | encode));
3673   emit_int8(mode & 0xFF);
3674 }
3675 
3676 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3677   assert(isByte(mode), "invalid value");
3678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3679   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3680   InstructionMark im(this);
3681   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3682   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3683   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
3684   emit_int8(0x70);
3685   emit_operand(dst, src);
3686   emit_int8(mode & 0xFF);
3687 }
3688 
3689 void Assembler::psrldq(XMMRegister dst, int shift) {
3690   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3692   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3693   // XMM3 is for /3 encoding: 66 0F 73 /3 ib
3694   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3695   emit_int8(0x73);
3696   emit_int8((unsigned char)(0xC0 | encode));
3697   emit_int8(shift);
3698 }
3699 
3700 void Assembler::pslldq(XMMRegister dst, int shift) {
3701   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
3702   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3703   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ false);
3704   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
3705   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3706   emit_int8(0x73);
3707   emit_int8((unsigned char)(0xC0 | encode));
3708   emit_int8(shift);
3709 }
3710 
3711 void Assembler::ptest(XMMRegister dst, Address src) {
3712   assert(VM_Version::supports_sse4_1(), "");
3713   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3714   InstructionMark im(this);
3715   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3716   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3717   emit_int8(0x17);
3718   emit_operand(dst, src);
3719 }
3720 
3721 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3722   assert(VM_Version::supports_sse4_1(), "");
3723   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3724   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3725   emit_int8(0x17);
3726   emit_int8((unsigned char)(0xC0 | encode));
3727 }
3728 
3729 void Assembler::vptest(XMMRegister dst, Address src) {
3730   assert(VM_Version::supports_avx(), "");
3731   InstructionMark im(this);
3732   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3733   assert(dst != xnoreg, "sanity");
3734   // swap src<->dst for encoding
3735   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3736   emit_int8(0x17);
3737   emit_operand(dst, src);
3738 }
3739 
3740 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3741   assert(VM_Version::supports_avx(), "");
3742   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3743   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3744   emit_int8(0x17);
3745   emit_int8((unsigned char)(0xC0 | encode));
3746 }
3747 
3748 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3750   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3751   InstructionMark im(this);
3752   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3753   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3754   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3755   emit_int8(0x60);
3756   emit_operand(dst, src);
3757 }
3758 
3759 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3760   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3761   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ false, /* uses_vl */ true);
3762   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3763   emit_int8(0x60);
3764   emit_int8((unsigned char)(0xC0 | encode));
3765 }
3766 
3767 void Assembler::punpckldq(XMMRegister dst, Address src) {
3768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3769   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3770   InstructionMark im(this);
3771   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3772   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3773   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3774   emit_int8(0x62);
3775   emit_operand(dst, src);
3776 }
3777 
3778 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3780   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3781   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3782   emit_int8(0x62);
3783   emit_int8((unsigned char)(0xC0 | encode));
3784 }
3785 
3786 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3788   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3789   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3790   emit_int8(0x6C);
3791   emit_int8((unsigned char)(0xC0 | encode));
3792 }
3793 
3794 void Assembler::push(int32_t imm32) {
3795   // in 64bits we push 64bits onto the stack but only
3796   // take a 32bit immediate
3797   emit_int8(0x68);
3798   emit_int32(imm32);
3799 }
3800 
3801 void Assembler::push(Register src) {
3802   int encode = prefix_and_encode(src->encoding());
3803 
3804   emit_int8(0x50 | encode);
3805 }
3806 
3807 void Assembler::pushf() {
3808   emit_int8((unsigned char)0x9C);
3809 }
3810 
3811 #ifndef _LP64 // no 32bit push/pop on amd64
3812 void Assembler::pushl(Address src) {
3813   // Note this will push 64bit on 64bit
3814   InstructionMark im(this);
3815   prefix(src);
3816   emit_int8((unsigned char)0xFF);
3817   emit_operand(rsi, src);
3818 }
3819 #endif
3820 
3821 void Assembler::rcll(Register dst, int imm8) {
3822   assert(isShiftCount(imm8), "illegal shift count");
3823   int encode = prefix_and_encode(dst->encoding());
3824   if (imm8 == 1) {
3825     emit_int8((unsigned char)0xD1);
3826     emit_int8((unsigned char)(0xD0 | encode));
3827   } else {
3828     emit_int8((unsigned char)0xC1);
3829     emit_int8((unsigned char)0xD0 | encode);
3830     emit_int8(imm8);
3831   }
3832 }
3833 
3834 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
3835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3836   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3837   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
3838   emit_int8(0x53);
3839   emit_int8((unsigned char)(0xC0 | encode));
3840 }
3841 
3842 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
3843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3844   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3845   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
3846   emit_int8(0x53);
3847   emit_int8((unsigned char)(0xC0 | encode));
3848 }
3849 
3850 void Assembler::rdtsc() {
3851   emit_int8((unsigned char)0x0F);
3852   emit_int8((unsigned char)0x31);
3853 }
3854 
3855 // copies data from [esi] to [edi] using rcx pointer sized words
3856 // generic
3857 void Assembler::rep_mov() {
3858   emit_int8((unsigned char)0xF3);
3859   // MOVSQ
3860   LP64_ONLY(prefix(REX_W));
3861   emit_int8((unsigned char)0xA5);
3862 }
3863 
3864 // sets rcx bytes with rax, value at [edi]
3865 void Assembler::rep_stosb() {
3866   emit_int8((unsigned char)0xF3); // REP
3867   LP64_ONLY(prefix(REX_W));
3868   emit_int8((unsigned char)0xAA); // STOSB
3869 }
3870 
3871 // sets rcx pointer sized words with rax, value at [edi]
3872 // generic
3873 void Assembler::rep_stos() {
3874   emit_int8((unsigned char)0xF3); // REP
3875   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3876   emit_int8((unsigned char)0xAB);
3877 }
3878 
3879 // scans rcx pointer sized words at [edi] for occurance of rax,
3880 // generic
3881 void Assembler::repne_scan() { // repne_scan
3882   emit_int8((unsigned char)0xF2);
3883   // SCASQ
3884   LP64_ONLY(prefix(REX_W));
3885   emit_int8((unsigned char)0xAF);
3886 }
3887 
3888 #ifdef _LP64
3889 // scans rcx 4 byte words at [edi] for occurance of rax,
3890 // generic
3891 void Assembler::repne_scanl() { // repne_scan
3892   emit_int8((unsigned char)0xF2);
3893   // SCASL
3894   emit_int8((unsigned char)0xAF);
3895 }
3896 #endif
3897 
3898 void Assembler::ret(int imm16) {
3899   if (imm16 == 0) {
3900     emit_int8((unsigned char)0xC3);
3901   } else {
3902     emit_int8((unsigned char)0xC2);
3903     emit_int16(imm16);
3904   }
3905 }
3906 
3907 void Assembler::sahf() {
3908 #ifdef _LP64
3909   // Not supported in 64bit mode
3910   ShouldNotReachHere();
3911 #endif
3912   emit_int8((unsigned char)0x9E);
3913 }
3914 
3915 void Assembler::sarl(Register dst, int imm8) {
3916   int encode = prefix_and_encode(dst->encoding());
3917   assert(isShiftCount(imm8), "illegal shift count");
3918   if (imm8 == 1) {
3919     emit_int8((unsigned char)0xD1);
3920     emit_int8((unsigned char)(0xF8 | encode));
3921   } else {
3922     emit_int8((unsigned char)0xC1);
3923     emit_int8((unsigned char)(0xF8 | encode));
3924     emit_int8(imm8);
3925   }
3926 }
3927 
3928 void Assembler::sarl(Register dst) {
3929   int encode = prefix_and_encode(dst->encoding());
3930   emit_int8((unsigned char)0xD3);
3931   emit_int8((unsigned char)(0xF8 | encode));
3932 }
3933 
3934 void Assembler::sbbl(Address dst, int32_t imm32) {
3935   InstructionMark im(this);
3936   prefix(dst);
3937   emit_arith_operand(0x81, rbx, dst, imm32);
3938 }
3939 
3940 void Assembler::sbbl(Register dst, int32_t imm32) {
3941   prefix(dst);
3942   emit_arith(0x81, 0xD8, dst, imm32);
3943 }
3944 
3945 
3946 void Assembler::sbbl(Register dst, Address src) {
3947   InstructionMark im(this);
3948   prefix(src, dst);
3949   emit_int8(0x1B);
3950   emit_operand(dst, src);
3951 }
3952 
3953 void Assembler::sbbl(Register dst, Register src) {
3954   (void) prefix_and_encode(dst->encoding(), src->encoding());
3955   emit_arith(0x1B, 0xC0, dst, src);
3956 }
3957 
3958 void Assembler::setb(Condition cc, Register dst) {
3959   assert(0 <= cc && cc < 16, "illegal cc");
3960   int encode = prefix_and_encode(dst->encoding(), true);
3961   emit_int8(0x0F);
3962   emit_int8((unsigned char)0x90 | cc);
3963   emit_int8((unsigned char)(0xC0 | encode));
3964 }
3965 
3966 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
3967   assert(VM_Version::supports_ssse3(), "");
3968   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ false, /* uses_vl */ false);
3969   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3970   emit_int8((unsigned char)0x0F);
3971   emit_int8((unsigned char)(0xC0 | encode));
3972   emit_int8(imm8);
3973 }
3974 
3975 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
3976   assert(VM_Version::supports_sse4_1(), "");
3977   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3978   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3979   emit_int8((unsigned char)0x0E);
3980   emit_int8((unsigned char)(0xC0 | encode));
3981   emit_int8(imm8);
3982 }
3983 
3984 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
3985   assert(VM_Version::supports_sha(), "");
3986   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3987   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_3A, &attributes);
3988   emit_int8((unsigned char)0xCC);
3989   emit_int8((unsigned char)(0xC0 | encode));
3990   emit_int8((unsigned char)imm8);
3991 }
3992 
3993 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
3994   assert(VM_Version::supports_sha(), "");
3995   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
3996   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
3997   emit_int8((unsigned char)0xC8);
3998   emit_int8((unsigned char)(0xC0 | encode));
3999 }
4000 
4001 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4002   assert(VM_Version::supports_sha(), "");
4003   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4004   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4005   emit_int8((unsigned char)0xC9);
4006   emit_int8((unsigned char)(0xC0 | encode));
4007 }
4008 
4009 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4010   assert(VM_Version::supports_sha(), "");
4011   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4012   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4013   emit_int8((unsigned char)0xCA);
4014   emit_int8((unsigned char)(0xC0 | encode));
4015 }
4016 
4017 // xmm0 is implicit additional source to this instruction.
4018 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4019   assert(VM_Version::supports_sha(), "");
4020   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4021   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4022   emit_int8((unsigned char)0xCB);
4023   emit_int8((unsigned char)(0xC0 | encode));
4024 }
4025 
4026 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4027   assert(VM_Version::supports_sha(), "");
4028   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4029   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4030   emit_int8((unsigned char)0xCC);
4031   emit_int8((unsigned char)(0xC0 | encode));
4032 }
4033 
4034 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4035   assert(VM_Version::supports_sha(), "");
4036   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4037   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
4038   emit_int8((unsigned char)0xCD);
4039   emit_int8((unsigned char)(0xC0 | encode));
4040 }
4041 
4042 
4043 void Assembler::shll(Register dst, int imm8) {
4044   assert(isShiftCount(imm8), "illegal shift count");
4045   int encode = prefix_and_encode(dst->encoding());
4046   if (imm8 == 1 ) {
4047     emit_int8((unsigned char)0xD1);
4048     emit_int8((unsigned char)(0xE0 | encode));
4049   } else {
4050     emit_int8((unsigned char)0xC1);
4051     emit_int8((unsigned char)(0xE0 | encode));
4052     emit_int8(imm8);
4053   }
4054 }
4055 
4056 void Assembler::shll(Register dst) {
4057   int encode = prefix_and_encode(dst->encoding());
4058   emit_int8((unsigned char)0xD3);
4059   emit_int8((unsigned char)(0xE0 | encode));
4060 }
4061 
4062 void Assembler::shrl(Register dst, int imm8) {
4063   assert(isShiftCount(imm8), "illegal shift count");
4064   int encode = prefix_and_encode(dst->encoding());
4065   emit_int8((unsigned char)0xC1);
4066   emit_int8((unsigned char)(0xE8 | encode));
4067   emit_int8(imm8);
4068 }
4069 
4070 void Assembler::shrl(Register dst) {
4071   int encode = prefix_and_encode(dst->encoding());
4072   emit_int8((unsigned char)0xD3);
4073   emit_int8((unsigned char)(0xE8 | encode));
4074 }
4075 
4076 // copies a single word from [esi] to [edi]
4077 void Assembler::smovl() {
4078   emit_int8((unsigned char)0xA5);
4079 }
4080 
4081 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4083   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4084   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4085   emit_int8(0x51);
4086   emit_int8((unsigned char)(0xC0 | encode));
4087 }
4088 
4089 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4091   InstructionMark im(this);
4092   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4093   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4094   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4095   emit_int8(0x51);
4096   emit_operand(dst, src);
4097 }
4098 
4099 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4100   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4101   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4102   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4103   emit_int8(0x51);
4104   emit_int8((unsigned char)(0xC0 | encode));
4105 }
4106 
4107 void Assembler::std() {
4108   emit_int8((unsigned char)0xFD);
4109 }
4110 
4111 void Assembler::sqrtss(XMMRegister dst, Address src) {
4112   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4113   InstructionMark im(this);
4114   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4115   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4116   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4117   emit_int8(0x51);
4118   emit_operand(dst, src);
4119 }
4120 
4121 void Assembler::stmxcsr( Address dst) {
4122   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4123   InstructionMark im(this);
4124   prefix(dst);
4125   emit_int8(0x0F);
4126   emit_int8((unsigned char)0xAE);
4127   emit_operand(as_Register(3), dst);
4128 }
4129 
4130 void Assembler::subl(Address dst, int32_t imm32) {
4131   InstructionMark im(this);
4132   prefix(dst);
4133   emit_arith_operand(0x81, rbp, dst, imm32);
4134 }
4135 
4136 void Assembler::subl(Address dst, Register src) {
4137   InstructionMark im(this);
4138   prefix(dst, src);
4139   emit_int8(0x29);
4140   emit_operand(src, dst);
4141 }
4142 
4143 void Assembler::subl(Register dst, int32_t imm32) {
4144   prefix(dst);
4145   emit_arith(0x81, 0xE8, dst, imm32);
4146 }
4147 
4148 // Force generation of a 4 byte immediate value even if it fits into 8bit
4149 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4150   prefix(dst);
4151   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4152 }
4153 
4154 void Assembler::subl(Register dst, Address src) {
4155   InstructionMark im(this);
4156   prefix(src, dst);
4157   emit_int8(0x2B);
4158   emit_operand(dst, src);
4159 }
4160 
4161 void Assembler::subl(Register dst, Register src) {
4162   (void) prefix_and_encode(dst->encoding(), src->encoding());
4163   emit_arith(0x2B, 0xC0, dst, src);
4164 }
4165 
4166 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4168   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4169   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4170   emit_int8(0x5C);
4171   emit_int8((unsigned char)(0xC0 | encode));
4172 }
4173 
4174 void Assembler::subsd(XMMRegister dst, Address src) {
4175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4176   InstructionMark im(this);
4177   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4178   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4179   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4180   emit_int8(0x5C);
4181   emit_operand(dst, src);
4182 }
4183 
4184 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4185   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4186   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false , /* uses_vl */ false);
4187   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4188   emit_int8(0x5C);
4189   emit_int8((unsigned char)(0xC0 | encode));
4190 }
4191 
4192 void Assembler::subss(XMMRegister dst, Address src) {
4193   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4194   InstructionMark im(this);
4195   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4196   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4197   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4198   emit_int8(0x5C);
4199   emit_operand(dst, src);
4200 }
4201 
4202 void Assembler::testb(Register dst, int imm8) {
4203   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4204   (void) prefix_and_encode(dst->encoding(), true);
4205   emit_arith_b(0xF6, 0xC0, dst, imm8);
4206 }
4207 
4208 void Assembler::testb(Address dst, int imm8) {
4209   InstructionMark im(this);
4210   prefix(dst);
4211   emit_int8((unsigned char)0xF6);
4212   emit_operand(rax, dst, 1);
4213   emit_int8(imm8);
4214 }
4215 
4216 void Assembler::testl(Register dst, int32_t imm32) {
4217   // not using emit_arith because test
4218   // doesn't support sign-extension of
4219   // 8bit operands
4220   int encode = dst->encoding();
4221   if (encode == 0) {
4222     emit_int8((unsigned char)0xA9);
4223   } else {
4224     encode = prefix_and_encode(encode);
4225     emit_int8((unsigned char)0xF7);
4226     emit_int8((unsigned char)(0xC0 | encode));
4227   }
4228   emit_int32(imm32);
4229 }
4230 
4231 void Assembler::testl(Register dst, Register src) {
4232   (void) prefix_and_encode(dst->encoding(), src->encoding());
4233   emit_arith(0x85, 0xC0, dst, src);
4234 }
4235 
4236 void Assembler::testl(Register dst, Address src) {
4237   InstructionMark im(this);
4238   prefix(src, dst);
4239   emit_int8((unsigned char)0x85);
4240   emit_operand(dst, src);
4241 }
4242 
4243 void Assembler::tzcntl(Register dst, Register src) {
4244   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4245   emit_int8((unsigned char)0xF3);
4246   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4247   emit_int8(0x0F);
4248   emit_int8((unsigned char)0xBC);
4249   emit_int8((unsigned char)0xC0 | encode);
4250 }
4251 
4252 void Assembler::tzcntq(Register dst, Register src) {
4253   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4254   emit_int8((unsigned char)0xF3);
4255   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4256   emit_int8(0x0F);
4257   emit_int8((unsigned char)0xBC);
4258   emit_int8((unsigned char)(0xC0 | encode));
4259 }
4260 
4261 void Assembler::ucomisd(XMMRegister dst, Address src) {
4262   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4263   InstructionMark im(this);
4264   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4265   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4266   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4267   emit_int8(0x2E);
4268   emit_operand(dst, src);
4269 }
4270 
4271 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4272   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4273   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4274   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4275   emit_int8(0x2E);
4276   emit_int8((unsigned char)(0xC0 | encode));
4277 }
4278 
4279 void Assembler::ucomiss(XMMRegister dst, Address src) {
4280   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4281   InstructionMark im(this);
4282   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4283   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4284   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4285   emit_int8(0x2E);
4286   emit_operand(dst, src);
4287 }
4288 
4289 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4290   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4291   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4292   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4293   emit_int8(0x2E);
4294   emit_int8((unsigned char)(0xC0 | encode));
4295 }
4296 
4297 void Assembler::xabort(int8_t imm8) {
4298   emit_int8((unsigned char)0xC6);
4299   emit_int8((unsigned char)0xF8);
4300   emit_int8((unsigned char)(imm8 & 0xFF));
4301 }
4302 
4303 void Assembler::xaddl(Address dst, Register src) {
4304   InstructionMark im(this);
4305   prefix(dst, src);
4306   emit_int8(0x0F);
4307   emit_int8((unsigned char)0xC1);
4308   emit_operand(src, dst);
4309 }
4310 
4311 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4312   InstructionMark im(this);
4313   relocate(rtype);
4314   if (abort.is_bound()) {
4315     address entry = target(abort);
4316     assert(entry != NULL, "abort entry NULL");
4317     intptr_t offset = entry - pc();
4318     emit_int8((unsigned char)0xC7);
4319     emit_int8((unsigned char)0xF8);
4320     emit_int32(offset - 6); // 2 opcode + 4 address
4321   } else {
4322     abort.add_patch_at(code(), locator());
4323     emit_int8((unsigned char)0xC7);
4324     emit_int8((unsigned char)0xF8);
4325     emit_int32(0);
4326   }
4327 }
4328 
4329 void Assembler::xchgl(Register dst, Address src) { // xchg
4330   InstructionMark im(this);
4331   prefix(src, dst);
4332   emit_int8((unsigned char)0x87);
4333   emit_operand(dst, src);
4334 }
4335 
4336 void Assembler::xchgl(Register dst, Register src) {
4337   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4338   emit_int8((unsigned char)0x87);
4339   emit_int8((unsigned char)(0xC0 | encode));
4340 }
4341 
4342 void Assembler::xend() {
4343   emit_int8((unsigned char)0x0F);
4344   emit_int8((unsigned char)0x01);
4345   emit_int8((unsigned char)0xD5);
4346 }
4347 
4348 void Assembler::xgetbv() {
4349   emit_int8(0x0F);
4350   emit_int8(0x01);
4351   emit_int8((unsigned char)0xD0);
4352 }
4353 
4354 void Assembler::xorl(Register dst, int32_t imm32) {
4355   prefix(dst);
4356   emit_arith(0x81, 0xF0, dst, imm32);
4357 }
4358 
4359 void Assembler::xorl(Register dst, Address src) {
4360   InstructionMark im(this);
4361   prefix(src, dst);
4362   emit_int8(0x33);
4363   emit_operand(dst, src);
4364 }
4365 
4366 void Assembler::xorl(Register dst, Register src) {
4367   (void) prefix_and_encode(dst->encoding(), src->encoding());
4368   emit_arith(0x33, 0xC0, dst, src);
4369 }
4370 
4371 void Assembler::xorb(Register dst, Address src) {
4372   InstructionMark im(this);
4373   prefix(src, dst);
4374   emit_int8(0x32);
4375   emit_operand(dst, src);
4376 }
4377 
4378 // AVX 3-operands scalar float-point arithmetic instructions
4379 
4380 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4381   assert(VM_Version::supports_avx(), "");
4382   InstructionMark im(this);
4383   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4384   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4385   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4386   emit_int8(0x58);
4387   emit_operand(dst, src);
4388 }
4389 
4390 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4391   assert(VM_Version::supports_avx(), "");
4392   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4393   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4394   emit_int8(0x58);
4395   emit_int8((unsigned char)(0xC0 | encode));
4396 }
4397 
4398 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4399   assert(VM_Version::supports_avx(), "");
4400   InstructionMark im(this);
4401   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4402   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4403   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4404   emit_int8(0x58);
4405   emit_operand(dst, src);
4406 }
4407 
4408 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4409   assert(VM_Version::supports_avx(), "");
4410   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4411   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4412   emit_int8(0x58);
4413   emit_int8((unsigned char)(0xC0 | encode));
4414 }
4415 
4416 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4417   assert(VM_Version::supports_avx(), "");
4418   InstructionMark im(this);
4419   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4420   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4421   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4422   emit_int8(0x5E);
4423   emit_operand(dst, src);
4424 }
4425 
4426 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4427   assert(VM_Version::supports_avx(), "");
4428   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4429   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4430   emit_int8(0x5E);
4431   emit_int8((unsigned char)(0xC0 | encode));
4432 }
4433 
4434 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4435   assert(VM_Version::supports_avx(), "");
4436   InstructionMark im(this);
4437   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4438   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4439   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4440   emit_int8(0x5E);
4441   emit_operand(dst, src);
4442 }
4443 
4444 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4445   assert(VM_Version::supports_avx(), "");
4446   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4447   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4448   emit_int8(0x5E);
4449   emit_int8((unsigned char)(0xC0 | encode));
4450 }
4451 
4452 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4453   assert(VM_Version::supports_avx(), "");
4454   InstructionMark im(this);
4455   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4456   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4457   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4458   emit_int8(0x59);
4459   emit_operand(dst, src);
4460 }
4461 
4462 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4463   assert(VM_Version::supports_avx(), "");
4464   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4465   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4466   emit_int8(0x59);
4467   emit_int8((unsigned char)(0xC0 | encode));
4468 }
4469 
4470 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4471   assert(VM_Version::supports_avx(), "");
4472   InstructionMark im(this);
4473   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4474   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4475   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4476   emit_int8(0x59);
4477   emit_operand(dst, src);
4478 }
4479 
4480 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4481   assert(VM_Version::supports_avx(), "");
4482   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4483   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4484   emit_int8(0x59);
4485   emit_int8((unsigned char)(0xC0 | encode));
4486 }
4487 
4488 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4489   assert(VM_Version::supports_avx(), "");
4490   InstructionMark im(this);
4491   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4492   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4493   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4494   emit_int8(0x5C);
4495   emit_operand(dst, src);
4496 }
4497 
4498 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4499   assert(VM_Version::supports_avx(), "");
4500   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4501   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4502   emit_int8(0x5C);
4503   emit_int8((unsigned char)(0xC0 | encode));
4504 }
4505 
4506 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4507   assert(VM_Version::supports_avx(), "");
4508   InstructionMark im(this);
4509   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4510   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4511   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4512   emit_int8(0x5C);
4513   emit_operand(dst, src);
4514 }
4515 
4516 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4517   assert(VM_Version::supports_avx(), "");
4518   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
4519   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4520   emit_int8(0x5C);
4521   emit_int8((unsigned char)(0xC0 | encode));
4522 }
4523 
4524 //====================VECTOR ARITHMETIC=====================================
4525 
4526 // Float-point vector arithmetic
4527 
4528 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4529   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4530   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4531   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4532   emit_int8(0x58);
4533   emit_int8((unsigned char)(0xC0 | encode));
4534 }
4535 
4536 void Assembler::addpd(XMMRegister dst, Address src) {
4537   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4538   InstructionMark im(this);
4539   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4540   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4541   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4542   emit_int8(0x58);
4543   emit_operand(dst, src);
4544 }
4545 
4546 
4547 void Assembler::addps(XMMRegister dst, XMMRegister src) {
4548   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4549   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4550   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4551   emit_int8(0x58);
4552   emit_int8((unsigned char)(0xC0 | encode));
4553 }
4554 
4555 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4556   assert(VM_Version::supports_avx(), "");
4557   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4558   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4559   emit_int8(0x58);
4560   emit_int8((unsigned char)(0xC0 | encode));
4561 }
4562 
4563 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4564   assert(VM_Version::supports_avx(), "");
4565   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4566   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4567   emit_int8(0x58);
4568   emit_int8((unsigned char)(0xC0 | encode));
4569 }
4570 
4571 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4572   assert(VM_Version::supports_avx(), "");
4573   InstructionMark im(this);
4574   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4575   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4576   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4577   emit_int8(0x58);
4578   emit_operand(dst, src);
4579 }
4580 
4581 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4582   assert(VM_Version::supports_avx(), "");
4583   InstructionMark im(this);
4584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4585   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4586   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4587   emit_int8(0x58);
4588   emit_operand(dst, src);
4589 }
4590 
4591 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
4592   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4593   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4594   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4595   emit_int8(0x5C);
4596   emit_int8((unsigned char)(0xC0 | encode));
4597 }
4598 
4599 void Assembler::subps(XMMRegister dst, XMMRegister src) {
4600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4601   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4602   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4603   emit_int8(0x5C);
4604   emit_int8((unsigned char)(0xC0 | encode));
4605 }
4606 
4607 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4608   assert(VM_Version::supports_avx(), "");
4609   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4610   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4611   emit_int8(0x5C);
4612   emit_int8((unsigned char)(0xC0 | encode));
4613 }
4614 
4615 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4616   assert(VM_Version::supports_avx(), "");
4617   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4618   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4619   emit_int8(0x5C);
4620   emit_int8((unsigned char)(0xC0 | encode));
4621 }
4622 
4623 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4624   assert(VM_Version::supports_avx(), "");
4625   InstructionMark im(this);
4626   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4627   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4628   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4629   emit_int8(0x5C);
4630   emit_operand(dst, src);
4631 }
4632 
4633 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4634   assert(VM_Version::supports_avx(), "");
4635   InstructionMark im(this);
4636   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4637   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4638   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4639   emit_int8(0x5C);
4640   emit_operand(dst, src);
4641 }
4642 
4643 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
4644   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4645   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4646   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4647   emit_int8(0x59);
4648   emit_int8((unsigned char)(0xC0 | encode));
4649 }
4650 
4651 void Assembler::mulpd(XMMRegister dst, Address src) {
4652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4653   InstructionMark im(this);
4654   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4655   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4656   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4657   emit_int8(0x59);
4658   emit_operand(dst, src);
4659 }
4660 
4661 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
4662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4663   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4664   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4665   emit_int8(0x59);
4666   emit_int8((unsigned char)(0xC0 | encode));
4667 }
4668 
4669 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4670   assert(VM_Version::supports_avx(), "");
4671   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4672   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4673   emit_int8(0x59);
4674   emit_int8((unsigned char)(0xC0 | encode));
4675 }
4676 
4677 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4678   assert(VM_Version::supports_avx(), "");
4679   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4680   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4681   emit_int8(0x59);
4682   emit_int8((unsigned char)(0xC0 | encode));
4683 }
4684 
4685 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4686   assert(VM_Version::supports_avx(), "");
4687   InstructionMark im(this);
4688   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4689   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4690   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4691   emit_int8(0x59);
4692   emit_operand(dst, src);
4693 }
4694 
4695 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4696   assert(VM_Version::supports_avx(), "");
4697   InstructionMark im(this);
4698   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4699   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4700   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4701   emit_int8(0x59);
4702   emit_operand(dst, src);
4703 }
4704 
4705 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
4706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4707   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4708   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4709   emit_int8(0x5E);
4710   emit_int8((unsigned char)(0xC0 | encode));
4711 }
4712 
4713 void Assembler::divps(XMMRegister dst, XMMRegister src) {
4714   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4715   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4716   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4717   emit_int8(0x5E);
4718   emit_int8((unsigned char)(0xC0 | encode));
4719 }
4720 
4721 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4722   assert(VM_Version::supports_avx(), "");
4723   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4724   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4725   emit_int8(0x5E);
4726   emit_int8((unsigned char)(0xC0 | encode));
4727 }
4728 
4729 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4730   assert(VM_Version::supports_avx(), "");
4731   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4732   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4733   emit_int8(0x5E);
4734   emit_int8((unsigned char)(0xC0 | encode));
4735 }
4736 
4737 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4738   assert(VM_Version::supports_avx(), "");
4739   InstructionMark im(this);
4740   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4741   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4742   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4743   emit_int8(0x5E);
4744   emit_operand(dst, src);
4745 }
4746 
4747 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4748   assert(VM_Version::supports_avx(), "");
4749   InstructionMark im(this);
4750   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4751   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4752   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4753   emit_int8(0x5E);
4754   emit_operand(dst, src);
4755 }
4756 
4757 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
4758   assert(VM_Version::supports_avx(), "");
4759   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4760   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4761   emit_int8(0x51);
4762   emit_int8((unsigned char)(0xC0 | encode));
4763 }
4764 
4765 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
4766   assert(VM_Version::supports_avx(), "");
4767   InstructionMark im(this);
4768   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4769   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4770   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4771   emit_int8(0x51);
4772   emit_operand(dst, src);
4773 }
4774 
4775 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
4776   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4777   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4778   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4779   emit_int8(0x54);
4780   emit_int8((unsigned char)(0xC0 | encode));
4781 }
4782 
4783 void Assembler::andps(XMMRegister dst, XMMRegister src) {
4784   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4785   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4786   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4787   emit_int8(0x54);
4788   emit_int8((unsigned char)(0xC0 | encode));
4789 }
4790 
4791 void Assembler::andps(XMMRegister dst, Address src) {
4792   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4793   InstructionMark im(this);
4794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4795   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4796   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4797   emit_int8(0x54);
4798   emit_operand(dst, src);
4799 }
4800 
4801 void Assembler::andpd(XMMRegister dst, Address src) {
4802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4803   InstructionMark im(this);
4804   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4805   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4806   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4807   emit_int8(0x54);
4808   emit_operand(dst, src);
4809 }
4810 
4811 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4812   assert(VM_Version::supports_avx(), "");
4813   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4814   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4815   emit_int8(0x54);
4816   emit_int8((unsigned char)(0xC0 | encode));
4817 }
4818 
4819 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4820   assert(VM_Version::supports_avx(), "");
4821   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4822   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4823   emit_int8(0x54);
4824   emit_int8((unsigned char)(0xC0 | encode));
4825 }
4826 
4827 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4828   assert(VM_Version::supports_avx(), "");
4829   InstructionMark im(this);
4830   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4831   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4832   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4833   emit_int8(0x54);
4834   emit_operand(dst, src);
4835 }
4836 
4837 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4838   assert(VM_Version::supports_avx(), "");
4839   InstructionMark im(this);
4840   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4841   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4842   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4843   emit_int8(0x54);
4844   emit_operand(dst, src);
4845 }
4846 
4847 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
4848   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4849   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4850   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4851   emit_int8(0x15);
4852   emit_int8((unsigned char)(0xC0 | encode));
4853 }
4854 
4855 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
4856   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4857   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4858   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4859   emit_int8(0x14);
4860   emit_int8((unsigned char)(0xC0 | encode));
4861 }
4862 
4863 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4864   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4865   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4866   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4867   emit_int8(0x57);
4868   emit_int8((unsigned char)(0xC0 | encode));
4869 }
4870 
4871 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4872   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4873   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4874   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4875   emit_int8(0x57);
4876   emit_int8((unsigned char)(0xC0 | encode));
4877 }
4878 
4879 void Assembler::xorpd(XMMRegister dst, Address src) {
4880   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4881   InstructionMark im(this);
4882   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4883   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4884   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4885   emit_int8(0x57);
4886   emit_operand(dst, src);
4887 }
4888 
4889 void Assembler::xorps(XMMRegister dst, Address src) {
4890   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4891   InstructionMark im(this);
4892   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4893   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4894   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4895   emit_int8(0x57);
4896   emit_operand(dst, src);
4897 }
4898 
4899 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4900   assert(VM_Version::supports_avx(), "");
4901   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4902   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4903   emit_int8(0x57);
4904   emit_int8((unsigned char)(0xC0 | encode));
4905 }
4906 
4907 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4908   assert(VM_Version::supports_avx(), "");
4909   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4910   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4911   emit_int8(0x57);
4912   emit_int8((unsigned char)(0xC0 | encode));
4913 }
4914 
4915 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4916   assert(VM_Version::supports_avx(), "");
4917   InstructionMark im(this);
4918   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4919   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
4920   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4921   emit_int8(0x57);
4922   emit_operand(dst, src);
4923 }
4924 
4925 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4926   assert(VM_Version::supports_avx(), "");
4927   InstructionMark im(this);
4928   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
4929   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4930   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4931   emit_int8(0x57);
4932   emit_operand(dst, src);
4933 }
4934 
4935 // Integer vector arithmetic
4936 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4937   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4938          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4939   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4940   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4941   emit_int8(0x01);
4942   emit_int8((unsigned char)(0xC0 | encode));
4943 }
4944 
4945 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4946   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4947          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4948   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4949   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4950   emit_int8(0x02);
4951   emit_int8((unsigned char)(0xC0 | encode));
4952 }
4953 
4954 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4956   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4957   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4958   emit_int8((unsigned char)0xFC);
4959   emit_int8((unsigned char)(0xC0 | encode));
4960 }
4961 
4962 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4963   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4964   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4965   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4966   emit_int8((unsigned char)0xFD);
4967   emit_int8((unsigned char)(0xC0 | encode));
4968 }
4969 
4970 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4971   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4972   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4973   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4974   emit_int8((unsigned char)0xFE);
4975   emit_int8((unsigned char)(0xC0 | encode));
4976 }
4977 
4978 void Assembler::paddd(XMMRegister dst, Address src) {
4979   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4980   InstructionMark im(this);
4981   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4982   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4983   emit_int8((unsigned char)0xFE);
4984   emit_operand(dst, src);
4985 }
4986 
4987 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4988   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4989   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
4990   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4991   emit_int8((unsigned char)0xD4);
4992   emit_int8((unsigned char)(0xC0 | encode));
4993 }
4994 
4995 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4996   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4997   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
4998   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4999   emit_int8(0x01);
5000   emit_int8((unsigned char)(0xC0 | encode));
5001 }
5002 
5003 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5004   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
5005   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
5006   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5007   emit_int8(0x02);
5008   emit_int8((unsigned char)(0xC0 | encode));
5009 }
5010 
5011 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5012   assert(UseAVX > 0, "requires some form of AVX");
5013   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5014   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5015   emit_int8((unsigned char)0xFC);
5016   emit_int8((unsigned char)(0xC0 | encode));
5017 }
5018 
5019 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5020   assert(UseAVX > 0, "requires some form of AVX");
5021   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5022   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5023   emit_int8((unsigned char)0xFD);
5024   emit_int8((unsigned char)(0xC0 | encode));
5025 }
5026 
5027 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5028   assert(UseAVX > 0, "requires some form of AVX");
5029   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5030   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5031   emit_int8((unsigned char)0xFE);
5032   emit_int8((unsigned char)(0xC0 | encode));
5033 }
5034 
5035 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5036   assert(UseAVX > 0, "requires some form of AVX");
5037   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5038   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5039   emit_int8((unsigned char)0xD4);
5040   emit_int8((unsigned char)(0xC0 | encode));
5041 }
5042 
5043 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5044   assert(UseAVX > 0, "requires some form of AVX");
5045   InstructionMark im(this);
5046   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5047   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5048   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5049   emit_int8((unsigned char)0xFC);
5050   emit_operand(dst, src);
5051 }
5052 
5053 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5054   assert(UseAVX > 0, "requires some form of AVX");
5055   InstructionMark im(this);
5056   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5057   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5058   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5059   emit_int8((unsigned char)0xFD);
5060   emit_operand(dst, src);
5061 }
5062 
5063 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5064   assert(UseAVX > 0, "requires some form of AVX");
5065   InstructionMark im(this);
5066   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5067   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5068   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5069   emit_int8((unsigned char)0xFE);
5070   emit_operand(dst, src);
5071 }
5072 
5073 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5074   assert(UseAVX > 0, "requires some form of AVX");
5075   InstructionMark im(this);
5076   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5077   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5078   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5079   emit_int8((unsigned char)0xD4);
5080   emit_operand(dst, src);
5081 }
5082 
5083 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5084   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5085   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5086   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5087   emit_int8((unsigned char)0xF8);
5088   emit_int8((unsigned char)(0xC0 | encode));
5089 }
5090 
5091 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5092   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5093   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5094   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5095   emit_int8((unsigned char)0xF9);
5096   emit_int8((unsigned char)(0xC0 | encode));
5097 }
5098 
5099 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5100   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5101   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5102   emit_int8((unsigned char)0xFA);
5103   emit_int8((unsigned char)(0xC0 | encode));
5104 }
5105 
5106 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5107   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5108   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5109   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5110   emit_int8((unsigned char)0xFB);
5111   emit_int8((unsigned char)(0xC0 | encode));
5112 }
5113 
5114 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5115   assert(UseAVX > 0, "requires some form of AVX");
5116   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5117   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5118   emit_int8((unsigned char)0xF8);
5119   emit_int8((unsigned char)(0xC0 | encode));
5120 }
5121 
5122 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5123   assert(UseAVX > 0, "requires some form of AVX");
5124   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5125   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5126   emit_int8((unsigned char)0xF9);
5127   emit_int8((unsigned char)(0xC0 | encode));
5128 }
5129 
5130 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5131   assert(UseAVX > 0, "requires some form of AVX");
5132   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5133   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5134   emit_int8((unsigned char)0xFA);
5135   emit_int8((unsigned char)(0xC0 | encode));
5136 }
5137 
5138 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5139   assert(UseAVX > 0, "requires some form of AVX");
5140   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5141   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5142   emit_int8((unsigned char)0xFB);
5143   emit_int8((unsigned char)(0xC0 | encode));
5144 }
5145 
5146 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5147   assert(UseAVX > 0, "requires some form of AVX");
5148   InstructionMark im(this);
5149   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5150   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5151   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5152   emit_int8((unsigned char)0xF8);
5153   emit_operand(dst, src);
5154 }
5155 
5156 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5157   assert(UseAVX > 0, "requires some form of AVX");
5158   InstructionMark im(this);
5159   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5160   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5161   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5162   emit_int8((unsigned char)0xF9);
5163   emit_operand(dst, src);
5164 }
5165 
5166 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5167   assert(UseAVX > 0, "requires some form of AVX");
5168   InstructionMark im(this);
5169   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5170   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5171   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5172   emit_int8((unsigned char)0xFA);
5173   emit_operand(dst, src);
5174 }
5175 
5176 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5177   assert(UseAVX > 0, "requires some form of AVX");
5178   InstructionMark im(this);
5179   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5180   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5181   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5182   emit_int8((unsigned char)0xFB);
5183   emit_operand(dst, src);
5184 }
5185 
5186 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5187   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5188   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5189   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5190   emit_int8((unsigned char)0xD5);
5191   emit_int8((unsigned char)(0xC0 | encode));
5192 }
5193 
5194 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5195   assert(VM_Version::supports_sse4_1(), "");
5196   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5197   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5198   emit_int8(0x40);
5199   emit_int8((unsigned char)(0xC0 | encode));
5200 }
5201 
5202 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5203   assert(UseAVX > 0, "requires some form of AVX");
5204   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5205   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5206   emit_int8((unsigned char)0xD5);
5207   emit_int8((unsigned char)(0xC0 | encode));
5208 }
5209 
5210 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5211   assert(UseAVX > 0, "requires some form of AVX");
5212   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5213   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5214   emit_int8(0x40);
5215   emit_int8((unsigned char)(0xC0 | encode));
5216 }
5217 
5218 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5219   assert(UseAVX > 2, "requires some form of AVX");
5220   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5221   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5222   emit_int8(0x40);
5223   emit_int8((unsigned char)(0xC0 | encode));
5224 }
5225 
5226 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5227   assert(UseAVX > 0, "requires some form of AVX");
5228   InstructionMark im(this);
5229   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5230   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5231   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5232   emit_int8((unsigned char)0xD5);
5233   emit_operand(dst, src);
5234 }
5235 
5236 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5237   assert(UseAVX > 0, "requires some form of AVX");
5238   InstructionMark im(this);
5239   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5240   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5241   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5242   emit_int8(0x40);
5243   emit_operand(dst, src);
5244 }
5245 
5246 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5247   assert(UseAVX > 0, "requires some form of AVX");
5248   InstructionMark im(this);
5249   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ false, /* uses_vl */ true);
5250   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5251   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5252   emit_int8(0x40);
5253   emit_operand(dst, src);
5254 }
5255 
5256 // Shift packed integers left by specified number of bits.
5257 void Assembler::psllw(XMMRegister dst, int shift) {
5258   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5259   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5260   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5261   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5262   emit_int8(0x71);
5263   emit_int8((unsigned char)(0xC0 | encode));
5264   emit_int8(shift & 0xFF);
5265 }
5266 
5267 void Assembler::pslld(XMMRegister dst, int shift) {
5268   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5270   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5271   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5272   emit_int8(0x72);
5273   emit_int8((unsigned char)(0xC0 | encode));
5274   emit_int8(shift & 0xFF);
5275 }
5276 
5277 void Assembler::psllq(XMMRegister dst, int shift) {
5278   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5279   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5280   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5281   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5282   emit_int8(0x73);
5283   emit_int8((unsigned char)(0xC0 | encode));
5284   emit_int8(shift & 0xFF);
5285 }
5286 
5287 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5288   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5290   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5291   emit_int8((unsigned char)0xF1);
5292   emit_int8((unsigned char)(0xC0 | encode));
5293 }
5294 
5295 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5297   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5298   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5299   emit_int8((unsigned char)0xF2);
5300   emit_int8((unsigned char)(0xC0 | encode));
5301 }
5302 
5303 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5304   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5305   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5306   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5307   emit_int8((unsigned char)0xF3);
5308   emit_int8((unsigned char)(0xC0 | encode));
5309 }
5310 
5311 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5312   assert(UseAVX > 0, "requires some form of AVX");
5313   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5314   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5315   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5316   emit_int8(0x71);
5317   emit_int8((unsigned char)(0xC0 | encode));
5318   emit_int8(shift & 0xFF);
5319 }
5320 
5321 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5322   assert(UseAVX > 0, "requires some form of AVX");
5323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5324   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5325   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5326   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5327   emit_int8(0x72);
5328   emit_int8((unsigned char)(0xC0 | encode));
5329   emit_int8(shift & 0xFF);
5330 }
5331 
5332 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5333   assert(UseAVX > 0, "requires some form of AVX");
5334   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5335   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5336   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5337   emit_int8(0x73);
5338   emit_int8((unsigned char)(0xC0 | encode));
5339   emit_int8(shift & 0xFF);
5340 }
5341 
5342 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5343   assert(UseAVX > 0, "requires some form of AVX");
5344   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5345   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5346   emit_int8((unsigned char)0xF1);
5347   emit_int8((unsigned char)(0xC0 | encode));
5348 }
5349 
5350 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5351   assert(UseAVX > 0, "requires some form of AVX");
5352   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5353   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5354   emit_int8((unsigned char)0xF2);
5355   emit_int8((unsigned char)(0xC0 | encode));
5356 }
5357 
5358 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5359   assert(UseAVX > 0, "requires some form of AVX");
5360   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5361   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5362   emit_int8((unsigned char)0xF3);
5363   emit_int8((unsigned char)(0xC0 | encode));
5364 }
5365 
5366 // Shift packed integers logically right by specified number of bits.
5367 void Assembler::psrlw(XMMRegister dst, int shift) {
5368   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5369   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5370   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5371   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5372   emit_int8(0x71);
5373   emit_int8((unsigned char)(0xC0 | encode));
5374   emit_int8(shift & 0xFF);
5375 }
5376 
5377 void Assembler::psrld(XMMRegister dst, int shift) {
5378   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5379   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5380   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5381   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5382   emit_int8(0x72);
5383   emit_int8((unsigned char)(0xC0 | encode));
5384   emit_int8(shift & 0xFF);
5385 }
5386 
5387 void Assembler::psrlq(XMMRegister dst, int shift) {
5388   // Do not confuse it with psrldq SSE2 instruction which
5389   // shifts 128 bit value in xmm register by number of bytes.
5390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5391   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5392   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5393   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5394   emit_int8(0x73);
5395   emit_int8((unsigned char)(0xC0 | encode));
5396   emit_int8(shift & 0xFF);
5397 }
5398 
5399 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5400   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5401   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5402   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5403   emit_int8((unsigned char)0xD1);
5404   emit_int8((unsigned char)(0xC0 | encode));
5405 }
5406 
5407 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5409   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5410   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5411   emit_int8((unsigned char)0xD2);
5412   emit_int8((unsigned char)(0xC0 | encode));
5413 }
5414 
5415 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5417   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5418   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5419   emit_int8((unsigned char)0xD3);
5420   emit_int8((unsigned char)(0xC0 | encode));
5421 }
5422 
5423 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5424   assert(UseAVX > 0, "requires some form of AVX");
5425   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5426   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5427   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5428   emit_int8(0x71);
5429   emit_int8((unsigned char)(0xC0 | encode));
5430   emit_int8(shift & 0xFF);
5431 }
5432 
5433 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5434   assert(UseAVX > 0, "requires some form of AVX");
5435   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5436   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5437   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5438   emit_int8(0x72);
5439   emit_int8((unsigned char)(0xC0 | encode));
5440   emit_int8(shift & 0xFF);
5441 }
5442 
5443 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5444   assert(UseAVX > 0, "requires some form of AVX");
5445   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5446   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5447   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5448   emit_int8(0x73);
5449   emit_int8((unsigned char)(0xC0 | encode));
5450   emit_int8(shift & 0xFF);
5451 }
5452 
5453 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5454   assert(UseAVX > 0, "requires some form of AVX");
5455   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5456   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5457   emit_int8((unsigned char)0xD1);
5458   emit_int8((unsigned char)(0xC0 | encode));
5459 }
5460 
5461 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5462   assert(UseAVX > 0, "requires some form of AVX");
5463   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5464   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5465   emit_int8((unsigned char)0xD2);
5466   emit_int8((unsigned char)(0xC0 | encode));
5467 }
5468 
5469 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5470   assert(UseAVX > 0, "requires some form of AVX");
5471   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5472   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5473   emit_int8((unsigned char)0xD3);
5474   emit_int8((unsigned char)(0xC0 | encode));
5475 }
5476 
5477 // Shift packed integers arithmetically right by specified number of bits.
5478 void Assembler::psraw(XMMRegister dst, int shift) {
5479   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5480   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5481   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5482   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5483   emit_int8(0x71);
5484   emit_int8((unsigned char)(0xC0 | encode));
5485   emit_int8(shift & 0xFF);
5486 }
5487 
5488 void Assembler::psrad(XMMRegister dst, int shift) {
5489   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5490   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5491   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
5492   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5493   emit_int8(0x72);
5494   emit_int8((unsigned char)(0xC0 | encode));
5495   emit_int8(shift & 0xFF);
5496 }
5497 
5498 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
5499   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5500   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5501   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5502   emit_int8((unsigned char)0xE1);
5503   emit_int8((unsigned char)(0xC0 | encode));
5504 }
5505 
5506 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
5507   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5508   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5509   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5510   emit_int8((unsigned char)0xE2);
5511   emit_int8((unsigned char)(0xC0 | encode));
5512 }
5513 
5514 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5515   assert(UseAVX > 0, "requires some form of AVX");
5516   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5517   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5518   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5519   emit_int8(0x71);
5520   emit_int8((unsigned char)(0xC0 | encode));
5521   emit_int8(shift & 0xFF);
5522 }
5523 
5524 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5525   assert(UseAVX > 0, "requires some form of AVX");
5526   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5527   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
5528   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5529   emit_int8(0x72);
5530   emit_int8((unsigned char)(0xC0 | encode));
5531   emit_int8(shift & 0xFF);
5532 }
5533 
5534 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5535   assert(UseAVX > 0, "requires some form of AVX");
5536   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5537   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5538   emit_int8((unsigned char)0xE1);
5539   emit_int8((unsigned char)(0xC0 | encode));
5540 }
5541 
5542 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5543   assert(UseAVX > 0, "requires some form of AVX");
5544   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5545   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5546   emit_int8((unsigned char)0xE2);
5547   emit_int8((unsigned char)(0xC0 | encode));
5548 }
5549 
5550 
5551 // logical operations packed integers
5552 void Assembler::pand(XMMRegister dst, XMMRegister src) {
5553   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5554   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5555   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5556   emit_int8((unsigned char)0xDB);
5557   emit_int8((unsigned char)(0xC0 | encode));
5558 }
5559 
5560 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5561   assert(UseAVX > 0, "requires some form of AVX");
5562   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5563   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5564   emit_int8((unsigned char)0xDB);
5565   emit_int8((unsigned char)(0xC0 | encode));
5566 }
5567 
5568 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5569   assert(UseAVX > 0, "requires some form of AVX");
5570   InstructionMark im(this);
5571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5572   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5573   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5574   emit_int8((unsigned char)0xDB);
5575   emit_operand(dst, src);
5576 }
5577 
5578 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
5579   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5580   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5581   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5582   emit_int8((unsigned char)0xDF);
5583   emit_int8((unsigned char)(0xC0 | encode));
5584 }
5585 
5586 void Assembler::por(XMMRegister dst, XMMRegister src) {
5587   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5588   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5589   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5590   emit_int8((unsigned char)0xEB);
5591   emit_int8((unsigned char)(0xC0 | encode));
5592 }
5593 
5594 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5595   assert(UseAVX > 0, "requires some form of AVX");
5596   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5597   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5598   emit_int8((unsigned char)0xEB);
5599   emit_int8((unsigned char)(0xC0 | encode));
5600 }
5601 
5602 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5603   assert(UseAVX > 0, "requires some form of AVX");
5604   InstructionMark im(this);
5605   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5606   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5607   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5608   emit_int8((unsigned char)0xEB);
5609   emit_operand(dst, src);
5610 }
5611 
5612 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
5613   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5614   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5615   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5616   emit_int8((unsigned char)0xEF);
5617   emit_int8((unsigned char)(0xC0 | encode));
5618 }
5619 
5620 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5621   assert(UseAVX > 0, "requires some form of AVX");
5622   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5623   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5624   emit_int8((unsigned char)0xEF);
5625   emit_int8((unsigned char)(0xC0 | encode));
5626 }
5627 
5628 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5629   assert(UseAVX > 0, "requires some form of AVX");
5630   InstructionMark im(this);
5631   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
5632   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5633   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5634   emit_int8((unsigned char)0xEF);
5635   emit_operand(dst, src);
5636 }
5637 
5638 
5639 // vinserti forms
5640 
5641 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5642   assert(VM_Version::supports_avx2(), "");
5643   assert(imm8 <= 0x01, "imm8: %u", imm8);
5644   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5646   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5647   emit_int8(0x38);
5648   emit_int8((unsigned char)(0xC0 | encode));
5649   // 0x00 - insert into lower 128 bits
5650   // 0x01 - insert into upper 128 bits
5651   emit_int8(imm8 & 0x01);
5652 }
5653 
5654 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5655   assert(VM_Version::supports_avx2(), "");
5656   assert(dst != xnoreg, "sanity");
5657   assert(imm8 <= 0x01, "imm8: %u", imm8);
5658   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5659   InstructionMark im(this);
5660   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5661   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5662   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5663   emit_int8(0x38);
5664   emit_operand(dst, src);
5665   // 0x00 - insert into lower 128 bits
5666   // 0x01 - insert into upper 128 bits
5667   emit_int8(imm8 & 0x01);
5668 }
5669 
5670 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5671   assert(VM_Version::supports_evex(), "");
5672   assert(imm8 <= 0x03, "imm8: %u", imm8);
5673   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5674   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5675   emit_int8(0x38);
5676   emit_int8((unsigned char)(0xC0 | encode));
5677   // 0x00 - insert into q0 128 bits (0..127)
5678   // 0x01 - insert into q1 128 bits (128..255)
5679   // 0x02 - insert into q2 128 bits (256..383)
5680   // 0x03 - insert into q3 128 bits (384..511)
5681   emit_int8(imm8 & 0x03);
5682 }
5683 
5684 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5685   assert(VM_Version::supports_avx(), "");
5686   assert(dst != xnoreg, "sanity");
5687   assert(imm8 <= 0x03, "imm8: %u", imm8);
5688   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5689   InstructionMark im(this);
5690   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5691   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5692   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5693   emit_int8(0x18);
5694   emit_operand(dst, src);
5695   // 0x00 - insert into q0 128 bits (0..127)
5696   // 0x01 - insert into q1 128 bits (128..255)
5697   // 0x02 - insert into q2 128 bits (256..383)
5698   // 0x03 - insert into q3 128 bits (384..511)
5699   emit_int8(imm8 & 0x03);
5700 }
5701 
5702 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5703   assert(VM_Version::supports_evex(), "");
5704   assert(imm8 <= 0x01, "imm8: %u", imm8);
5705   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5706   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5707   emit_int8(0x38);
5708   emit_int8((unsigned char)(0xC0 | encode));
5709   // 0x00 - insert into lower 256 bits
5710   // 0x01 - insert into upper 256 bits
5711   emit_int8(imm8 & 0x01);
5712 }
5713 
5714 
5715 // vinsertf forms
5716 
5717 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5718   assert(VM_Version::supports_avx(), "");
5719   assert(imm8 <= 0x01, "imm8: %u", imm8);
5720   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5721   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5722   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5723   emit_int8(0x18);
5724   emit_int8((unsigned char)(0xC0 | encode));
5725   // 0x00 - insert into lower 128 bits
5726   // 0x01 - insert into upper 128 bits
5727   emit_int8(imm8 & 0x01);
5728 }
5729 
5730 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5731   assert(VM_Version::supports_avx(), "");
5732   assert(dst != xnoreg, "sanity");
5733   assert(imm8 <= 0x01, "imm8: %u", imm8);
5734   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5735   InstructionMark im(this);
5736   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5737   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5738   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5739   emit_int8(0x18);
5740   emit_operand(dst, src);
5741   // 0x00 - insert into lower 128 bits
5742   // 0x01 - insert into upper 128 bits
5743   emit_int8(imm8 & 0x01);
5744 }
5745 
5746 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5747   assert(VM_Version::supports_evex(), "");
5748   assert(imm8 <= 0x03, "imm8: %u", imm8);
5749   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5750   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5751   emit_int8(0x18);
5752   emit_int8((unsigned char)(0xC0 | encode));
5753   // 0x00 - insert into q0 128 bits (0..127)
5754   // 0x01 - insert into q1 128 bits (128..255)
5755   // 0x02 - insert into q2 128 bits (256..383)
5756   // 0x03 - insert into q3 128 bits (384..511)
5757   emit_int8(imm8 & 0x03);
5758 }
5759 
5760 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5761   assert(VM_Version::supports_avx(), "");
5762   assert(dst != xnoreg, "sanity");
5763   assert(imm8 <= 0x03, "imm8: %u", imm8);
5764   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5765   InstructionMark im(this);
5766   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5767   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5768   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5769   emit_int8(0x18);
5770   emit_operand(dst, src);
5771   // 0x00 - insert into q0 128 bits (0..127)
5772   // 0x01 - insert into q1 128 bits (128..255)
5773   // 0x02 - insert into q2 128 bits (256..383)
5774   // 0x03 - insert into q3 128 bits (384..511)
5775   emit_int8(imm8 & 0x03);
5776 }
5777 
5778 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
5779   assert(VM_Version::supports_evex(), "");
5780   assert(imm8 <= 0x01, "imm8: %u", imm8);
5781   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5782   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5783   emit_int8(0x1A);
5784   emit_int8((unsigned char)(0xC0 | encode));
5785   // 0x00 - insert into lower 256 bits
5786   // 0x01 - insert into upper 256 bits
5787   emit_int8(imm8 & 0x01);
5788 }
5789 
5790 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
5791   assert(VM_Version::supports_evex(), "");
5792   assert(dst != xnoreg, "sanity");
5793   assert(imm8 <= 0x01, "imm8: %u", imm8);
5794   InstructionMark im(this);
5795   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5796   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
5797   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5798   emit_int8(0x1A);
5799   emit_operand(dst, src);
5800   // 0x00 - insert into lower 256 bits
5801   // 0x01 - insert into upper 256 bits
5802   emit_int8(imm8 & 0x01);
5803 }
5804 
5805 
5806 // vextracti forms
5807 
5808 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5809   assert(VM_Version::supports_avx(), "");
5810   assert(imm8 <= 0x01, "imm8: %u", imm8);
5811   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5812   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5813   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5814   emit_int8(0x39);
5815   emit_int8((unsigned char)(0xC0 | encode));
5816   // 0x00 - extract from lower 128 bits
5817   // 0x01 - extract from upper 128 bits
5818   emit_int8(imm8 & 0x01);
5819 }
5820 
5821 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
5822   assert(VM_Version::supports_avx2(), "");
5823   assert(src != xnoreg, "sanity");
5824   assert(imm8 <= 0x01, "imm8: %u", imm8);
5825   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5826   InstructionMark im(this);
5827   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5828   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5829   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5830   emit_int8(0x39);
5831   emit_operand(src, dst);
5832   // 0x00 - extract from lower 128 bits
5833   // 0x01 - extract from upper 128 bits
5834   emit_int8(imm8 & 0x01);
5835 }
5836 
5837 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5838   assert(VM_Version::supports_avx(), "");
5839   assert(imm8 <= 0x03, "imm8: %u", imm8);
5840   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5841   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5842   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5843   emit_int8(0x39);
5844   emit_int8((unsigned char)(0xC0 | encode));
5845   // 0x00 - extract from bits 127:0
5846   // 0x01 - extract from bits 255:128
5847   // 0x02 - extract from bits 383:256
5848   // 0x03 - extract from bits 511:384
5849   emit_int8(imm8 & 0x03);
5850 }
5851 
5852 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
5853   assert(VM_Version::supports_evex(), "");
5854   assert(src != xnoreg, "sanity");
5855   assert(imm8 <= 0x03, "imm8: %u", imm8);
5856   InstructionMark im(this);
5857   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5858   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5859   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5860   emit_int8(0x39);
5861   emit_operand(src, dst);
5862   // 0x00 - extract from bits 127:0
5863   // 0x01 - extract from bits 255:128
5864   // 0x02 - extract from bits 383:256
5865   // 0x03 - extract from bits 511:384
5866   emit_int8(imm8 & 0x03);
5867 }
5868 
5869 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5870   assert(VM_Version::supports_evex(), "");
5871   assert(imm8 <= 0x03, "imm8: %u", imm8);
5872   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5873   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5874   emit_int8(0x39);
5875   emit_int8((unsigned char)(0xC0 | encode));
5876   // 0x00 - extract from bits 127:0
5877   // 0x01 - extract from bits 255:128
5878   // 0x02 - extract from bits 383:256
5879   // 0x03 - extract from bits 511:384
5880   emit_int8(imm8 & 0x03);
5881 }
5882 
5883 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5884   assert(VM_Version::supports_evex(), "");
5885   assert(imm8 <= 0x01, "imm8: %u", imm8);
5886   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5887   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5888   emit_int8(0x3B);
5889   emit_int8((unsigned char)(0xC0 | encode));
5890   // 0x00 - extract from lower 256 bits
5891   // 0x01 - extract from upper 256 bits
5892   emit_int8(imm8 & 0x01);
5893 }
5894 
5895 
5896 // vextractf forms
5897 
5898 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5899   assert(VM_Version::supports_avx(), "");
5900   assert(imm8 <= 0x01, "imm8: %u", imm8);
5901   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5902   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5903   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5904   emit_int8(0x19);
5905   emit_int8((unsigned char)(0xC0 | encode));
5906   // 0x00 - extract from lower 128 bits
5907   // 0x01 - extract from upper 128 bits
5908   emit_int8(imm8 & 0x01);
5909 }
5910 
5911 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
5912   assert(VM_Version::supports_avx(), "");
5913   assert(src != xnoreg, "sanity");
5914   assert(imm8 <= 0x01, "imm8: %u", imm8);
5915   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_256bit;
5916   InstructionMark im(this);
5917   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5918   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5919   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5920   emit_int8(0x19);
5921   emit_operand(src, dst);
5922   // 0x00 - extract from lower 128 bits
5923   // 0x01 - extract from upper 128 bits
5924   emit_int8(imm8 & 0x01);
5925 }
5926 
5927 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5928   assert(VM_Version::supports_avx(), "");
5929   assert(imm8 <= 0x03, "imm8: %u", imm8);
5930   int vector_len = VM_Version::supports_evex() ? AVX_512bit : AVX_256bit;
5931   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5932   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5933   emit_int8(0x19);
5934   emit_int8((unsigned char)(0xC0 | encode));
5935   // 0x00 - extract from bits 127:0
5936   // 0x01 - extract from bits 255:128
5937   // 0x02 - extract from bits 383:256
5938   // 0x03 - extract from bits 511:384
5939   emit_int8(imm8 & 0x03);
5940 }
5941 
5942 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
5943   assert(VM_Version::supports_evex(), "");
5944   assert(src != xnoreg, "sanity");
5945   assert(imm8 <= 0x03, "imm8: %u", imm8);
5946   InstructionMark im(this);
5947   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5948   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
5949   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5950   emit_int8(0x19);
5951   emit_operand(src, dst);
5952   // 0x00 - extract from bits 127:0
5953   // 0x01 - extract from bits 255:128
5954   // 0x02 - extract from bits 383:256
5955   // 0x03 - extract from bits 511:384
5956   emit_int8(imm8 & 0x03);
5957 }
5958 
5959 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5960   assert(VM_Version::supports_evex(), "");
5961   assert(imm8 <= 0x03, "imm8: %u", imm8);
5962   InstructionAttr attributes(AVX_512bit, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5963   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5964   emit_int8(0x19);
5965   emit_int8((unsigned char)(0xC0 | encode));
5966   // 0x00 - extract from bits 127:0
5967   // 0x01 - extract from bits 255:128
5968   // 0x02 - extract from bits 383:256
5969   // 0x03 - extract from bits 511:384
5970   emit_int8(imm8 & 0x03);
5971 }
5972 
5973 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
5974   assert(VM_Version::supports_evex(), "");
5975   assert(imm8 <= 0x01, "imm8: %u", imm8);
5976   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5977   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5978   emit_int8(0x1B);
5979   emit_int8((unsigned char)(0xC0 | encode));
5980   // 0x00 - extract from lower 256 bits
5981   // 0x01 - extract from upper 256 bits
5982   emit_int8(imm8 & 0x01);
5983 }
5984 
5985 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
5986   assert(VM_Version::supports_evex(), "");
5987   assert(src != xnoreg, "sanity");
5988   assert(imm8 <= 0x01, "imm8: %u", imm8);
5989   InstructionMark im(this);
5990   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ false);
5991   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
5992   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5993   emit_int8(0x1B);
5994   emit_operand(src, dst);
5995   // 0x00 - extract from lower 256 bits
5996   // 0x01 - extract from upper 256 bits
5997   emit_int8(imm8 & 0x01);
5998 }
5999 
6000 
6001 // legacy word/dword replicate
6002 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
6003   assert(VM_Version::supports_avx2(), "");
6004   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6005   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6006   emit_int8(0x79);
6007   emit_int8((unsigned char)(0xC0 | encode));
6008 }
6009 
6010 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
6011   assert(VM_Version::supports_avx2(), "");
6012   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6013   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6014   emit_int8(0x58);
6015   emit_int8((unsigned char)(0xC0 | encode));
6016 }
6017 
6018 
6019 // xmm/mem sourced byte/word/dword/qword replicate
6020 
6021 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6022 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6023   assert(VM_Version::supports_evex(), "");
6024   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6025   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6026   emit_int8(0x78);
6027   emit_int8((unsigned char)(0xC0 | encode));
6028 }
6029 
6030 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6031   assert(VM_Version::supports_evex(), "");
6032   assert(dst != xnoreg, "sanity");
6033   InstructionMark im(this);
6034   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6035   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6036   // swap src<->dst for encoding
6037   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6038   emit_int8(0x78);
6039   emit_operand(dst, src);
6040 }
6041 
6042 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6043 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6044   assert(VM_Version::supports_evex(), "");
6045   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6046   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6047   emit_int8(0x79);
6048   emit_int8((unsigned char)(0xC0 | encode));
6049 }
6050 
6051 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6052   assert(VM_Version::supports_evex(), "");
6053   assert(dst != xnoreg, "sanity");
6054   InstructionMark im(this);
6055   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6056   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6057   // swap src<->dst for encoding
6058   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6059   emit_int8(0x79);
6060   emit_operand(dst, src);
6061 }
6062 
6063 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6064 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6065   assert(VM_Version::supports_evex(), "");
6066   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6067   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6068   emit_int8(0x58);
6069   emit_int8((unsigned char)(0xC0 | encode));
6070 }
6071 
6072 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6073   assert(VM_Version::supports_evex(), "");
6074   assert(dst != xnoreg, "sanity");
6075   InstructionMark im(this);
6076   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6077   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6078   // swap src<->dst for encoding
6079   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6080   emit_int8(0x58);
6081   emit_operand(dst, src);
6082 }
6083 
6084 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6085 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6086   assert(VM_Version::supports_evex(), "");
6087   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6088   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6089   emit_int8(0x59);
6090   emit_int8((unsigned char)(0xC0 | encode));
6091 }
6092 
6093 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6094   assert(VM_Version::supports_evex(), "");
6095   assert(dst != xnoreg, "sanity");
6096   InstructionMark im(this);
6097   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6098   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6099   // swap src<->dst for encoding
6100   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6101   emit_int8(0x59);
6102   emit_operand(dst, src);
6103 }
6104 
6105 
6106 // scalar single/double precision replicate
6107 
6108 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6109 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6110   assert(VM_Version::supports_evex(), "");
6111   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6112   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6113   emit_int8(0x18);
6114   emit_int8((unsigned char)(0xC0 | encode));
6115 }
6116 
6117 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6118   assert(VM_Version::supports_evex(), "");
6119   assert(dst != xnoreg, "sanity");
6120   InstructionMark im(this);
6121   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6122   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6123   // swap src<->dst for encoding
6124   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6125   emit_int8(0x18);
6126   emit_operand(dst, src);
6127 }
6128 
6129 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6130 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6131   assert(VM_Version::supports_evex(), "");
6132   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6133   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6134   emit_int8(0x19);
6135   emit_int8((unsigned char)(0xC0 | encode));
6136 }
6137 
6138 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6139   assert(VM_Version::supports_evex(), "");
6140   assert(dst != xnoreg, "sanity");
6141   InstructionMark im(this);
6142   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6143   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6144   // swap src<->dst for encoding
6145   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6146   emit_int8(0x19);
6147   emit_operand(dst, src);
6148 }
6149 
6150 
6151 // gpr source broadcast forms
6152 
6153 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6154 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6155   assert(VM_Version::supports_evex(), "");
6156   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6157   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6158   if (attributes.is_evex_instruction()) {
6159     emit_int8(0x7A);
6160   } else {
6161     emit_int8(0x78);
6162   }
6163   emit_int8((unsigned char)(0xC0 | encode));
6164 }
6165 
6166 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6167 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6168   assert(VM_Version::supports_evex(), "");
6169   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6170   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6171   if (attributes.is_evex_instruction()) {
6172     emit_int8(0x7B);
6173   } else {
6174     emit_int8(0x79);
6175   }
6176   emit_int8((unsigned char)(0xC0 | encode));
6177 }
6178 
6179 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6180 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6181   assert(VM_Version::supports_evex(), "");
6182   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6183   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6184   if (attributes.is_evex_instruction()) {
6185     emit_int8(0x7C);
6186   } else {
6187     emit_int8(0x58);
6188   }
6189   emit_int8((unsigned char)(0xC0 | encode));
6190 }
6191 
6192 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6193 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6194   assert(VM_Version::supports_evex(), "");
6195   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6196   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6197   if (attributes.is_evex_instruction()) {
6198     emit_int8(0x7C);
6199   } else {
6200     emit_int8(0x59);
6201   }
6202   emit_int8((unsigned char)(0xC0 | encode));
6203 }
6204 
6205 
6206 // Carry-Less Multiplication Quadword
6207 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6208   assert(VM_Version::supports_clmul(), "");
6209   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6210   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6211   emit_int8(0x44);
6212   emit_int8((unsigned char)(0xC0 | encode));
6213   emit_int8((unsigned char)mask);
6214 }
6215 
6216 // Carry-Less Multiplication Quadword
6217 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6218   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6219   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6220   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6221   emit_int8(0x44);
6222   emit_int8((unsigned char)(0xC0 | encode));
6223   emit_int8((unsigned char)mask);
6224 }
6225 
6226 void Assembler::vzeroupper() {
6227   assert(VM_Version::supports_avx(), "");
6228   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6229   (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6230   emit_int8(0x77);
6231 }
6232 
6233 
6234 #ifndef _LP64
6235 // 32bit only pieces of the assembler
6236 
6237 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6238   // NO PREFIX AS NEVER 64BIT
6239   InstructionMark im(this);
6240   emit_int8((unsigned char)0x81);
6241   emit_int8((unsigned char)(0xF8 | src1->encoding()));
6242   emit_data(imm32, rspec, 0);
6243 }
6244 
6245 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6246   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6247   InstructionMark im(this);
6248   emit_int8((unsigned char)0x81);
6249   emit_operand(rdi, src1);
6250   emit_data(imm32, rspec, 0);
6251 }
6252 
6253 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6254 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6255 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6256 void Assembler::cmpxchg8(Address adr) {
6257   InstructionMark im(this);
6258   emit_int8(0x0F);
6259   emit_int8((unsigned char)0xC7);
6260   emit_operand(rcx, adr);
6261 }
6262 
6263 void Assembler::decl(Register dst) {
6264   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6265  emit_int8(0x48 | dst->encoding());
6266 }
6267 
6268 #endif // _LP64
6269 
6270 // 64bit typically doesn't use the x87 but needs to for the trig funcs
6271 
6272 void Assembler::fabs() {
6273   emit_int8((unsigned char)0xD9);
6274   emit_int8((unsigned char)0xE1);
6275 }
6276 
6277 void Assembler::fadd(int i) {
6278   emit_farith(0xD8, 0xC0, i);
6279 }
6280 
6281 void Assembler::fadd_d(Address src) {
6282   InstructionMark im(this);
6283   emit_int8((unsigned char)0xDC);
6284   emit_operand32(rax, src);
6285 }
6286 
6287 void Assembler::fadd_s(Address src) {
6288   InstructionMark im(this);
6289   emit_int8((unsigned char)0xD8);
6290   emit_operand32(rax, src);
6291 }
6292 
6293 void Assembler::fadda(int i) {
6294   emit_farith(0xDC, 0xC0, i);
6295 }
6296 
6297 void Assembler::faddp(int i) {
6298   emit_farith(0xDE, 0xC0, i);
6299 }
6300 
6301 void Assembler::fchs() {
6302   emit_int8((unsigned char)0xD9);
6303   emit_int8((unsigned char)0xE0);
6304 }
6305 
6306 void Assembler::fcom(int i) {
6307   emit_farith(0xD8, 0xD0, i);
6308 }
6309 
6310 void Assembler::fcomp(int i) {
6311   emit_farith(0xD8, 0xD8, i);
6312 }
6313 
6314 void Assembler::fcomp_d(Address src) {
6315   InstructionMark im(this);
6316   emit_int8((unsigned char)0xDC);
6317   emit_operand32(rbx, src);
6318 }
6319 
6320 void Assembler::fcomp_s(Address src) {
6321   InstructionMark im(this);
6322   emit_int8((unsigned char)0xD8);
6323   emit_operand32(rbx, src);
6324 }
6325 
6326 void Assembler::fcompp() {
6327   emit_int8((unsigned char)0xDE);
6328   emit_int8((unsigned char)0xD9);
6329 }
6330 
6331 void Assembler::fcos() {
6332   emit_int8((unsigned char)0xD9);
6333   emit_int8((unsigned char)0xFF);
6334 }
6335 
6336 void Assembler::fdecstp() {
6337   emit_int8((unsigned char)0xD9);
6338   emit_int8((unsigned char)0xF6);
6339 }
6340 
6341 void Assembler::fdiv(int i) {
6342   emit_farith(0xD8, 0xF0, i);
6343 }
6344 
6345 void Assembler::fdiv_d(Address src) {
6346   InstructionMark im(this);
6347   emit_int8((unsigned char)0xDC);
6348   emit_operand32(rsi, src);
6349 }
6350 
6351 void Assembler::fdiv_s(Address src) {
6352   InstructionMark im(this);
6353   emit_int8((unsigned char)0xD8);
6354   emit_operand32(rsi, src);
6355 }
6356 
6357 void Assembler::fdiva(int i) {
6358   emit_farith(0xDC, 0xF8, i);
6359 }
6360 
6361 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
6362 //       is erroneous for some of the floating-point instructions below.
6363 
6364 void Assembler::fdivp(int i) {
6365   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
6366 }
6367 
6368 void Assembler::fdivr(int i) {
6369   emit_farith(0xD8, 0xF8, i);
6370 }
6371 
6372 void Assembler::fdivr_d(Address src) {
6373   InstructionMark im(this);
6374   emit_int8((unsigned char)0xDC);
6375   emit_operand32(rdi, src);
6376 }
6377 
6378 void Assembler::fdivr_s(Address src) {
6379   InstructionMark im(this);
6380   emit_int8((unsigned char)0xD8);
6381   emit_operand32(rdi, src);
6382 }
6383 
6384 void Assembler::fdivra(int i) {
6385   emit_farith(0xDC, 0xF0, i);
6386 }
6387 
6388 void Assembler::fdivrp(int i) {
6389   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
6390 }
6391 
6392 void Assembler::ffree(int i) {
6393   emit_farith(0xDD, 0xC0, i);
6394 }
6395 
6396 void Assembler::fild_d(Address adr) {
6397   InstructionMark im(this);
6398   emit_int8((unsigned char)0xDF);
6399   emit_operand32(rbp, adr);
6400 }
6401 
6402 void Assembler::fild_s(Address adr) {
6403   InstructionMark im(this);
6404   emit_int8((unsigned char)0xDB);
6405   emit_operand32(rax, adr);
6406 }
6407 
6408 void Assembler::fincstp() {
6409   emit_int8((unsigned char)0xD9);
6410   emit_int8((unsigned char)0xF7);
6411 }
6412 
6413 void Assembler::finit() {
6414   emit_int8((unsigned char)0x9B);
6415   emit_int8((unsigned char)0xDB);
6416   emit_int8((unsigned char)0xE3);
6417 }
6418 
6419 void Assembler::fist_s(Address adr) {
6420   InstructionMark im(this);
6421   emit_int8((unsigned char)0xDB);
6422   emit_operand32(rdx, adr);
6423 }
6424 
6425 void Assembler::fistp_d(Address adr) {
6426   InstructionMark im(this);
6427   emit_int8((unsigned char)0xDF);
6428   emit_operand32(rdi, adr);
6429 }
6430 
6431 void Assembler::fistp_s(Address adr) {
6432   InstructionMark im(this);
6433   emit_int8((unsigned char)0xDB);
6434   emit_operand32(rbx, adr);
6435 }
6436 
6437 void Assembler::fld1() {
6438   emit_int8((unsigned char)0xD9);
6439   emit_int8((unsigned char)0xE8);
6440 }
6441 
6442 void Assembler::fld_d(Address adr) {
6443   InstructionMark im(this);
6444   emit_int8((unsigned char)0xDD);
6445   emit_operand32(rax, adr);
6446 }
6447 
6448 void Assembler::fld_s(Address adr) {
6449   InstructionMark im(this);
6450   emit_int8((unsigned char)0xD9);
6451   emit_operand32(rax, adr);
6452 }
6453 
6454 
6455 void Assembler::fld_s(int index) {
6456   emit_farith(0xD9, 0xC0, index);
6457 }
6458 
6459 void Assembler::fld_x(Address adr) {
6460   InstructionMark im(this);
6461   emit_int8((unsigned char)0xDB);
6462   emit_operand32(rbp, adr);
6463 }
6464 
6465 void Assembler::fldcw(Address src) {
6466   InstructionMark im(this);
6467   emit_int8((unsigned char)0xD9);
6468   emit_operand32(rbp, src);
6469 }
6470 
6471 void Assembler::fldenv(Address src) {
6472   InstructionMark im(this);
6473   emit_int8((unsigned char)0xD9);
6474   emit_operand32(rsp, src);
6475 }
6476 
6477 void Assembler::fldlg2() {
6478   emit_int8((unsigned char)0xD9);
6479   emit_int8((unsigned char)0xEC);
6480 }
6481 
6482 void Assembler::fldln2() {
6483   emit_int8((unsigned char)0xD9);
6484   emit_int8((unsigned char)0xED);
6485 }
6486 
6487 void Assembler::fldz() {
6488   emit_int8((unsigned char)0xD9);
6489   emit_int8((unsigned char)0xEE);
6490 }
6491 
6492 void Assembler::flog() {
6493   fldln2();
6494   fxch();
6495   fyl2x();
6496 }
6497 
6498 void Assembler::flog10() {
6499   fldlg2();
6500   fxch();
6501   fyl2x();
6502 }
6503 
6504 void Assembler::fmul(int i) {
6505   emit_farith(0xD8, 0xC8, i);
6506 }
6507 
6508 void Assembler::fmul_d(Address src) {
6509   InstructionMark im(this);
6510   emit_int8((unsigned char)0xDC);
6511   emit_operand32(rcx, src);
6512 }
6513 
6514 void Assembler::fmul_s(Address src) {
6515   InstructionMark im(this);
6516   emit_int8((unsigned char)0xD8);
6517   emit_operand32(rcx, src);
6518 }
6519 
6520 void Assembler::fmula(int i) {
6521   emit_farith(0xDC, 0xC8, i);
6522 }
6523 
6524 void Assembler::fmulp(int i) {
6525   emit_farith(0xDE, 0xC8, i);
6526 }
6527 
6528 void Assembler::fnsave(Address dst) {
6529   InstructionMark im(this);
6530   emit_int8((unsigned char)0xDD);
6531   emit_operand32(rsi, dst);
6532 }
6533 
6534 void Assembler::fnstcw(Address src) {
6535   InstructionMark im(this);
6536   emit_int8((unsigned char)0x9B);
6537   emit_int8((unsigned char)0xD9);
6538   emit_operand32(rdi, src);
6539 }
6540 
6541 void Assembler::fnstsw_ax() {
6542   emit_int8((unsigned char)0xDF);
6543   emit_int8((unsigned char)0xE0);
6544 }
6545 
6546 void Assembler::fprem() {
6547   emit_int8((unsigned char)0xD9);
6548   emit_int8((unsigned char)0xF8);
6549 }
6550 
6551 void Assembler::fprem1() {
6552   emit_int8((unsigned char)0xD9);
6553   emit_int8((unsigned char)0xF5);
6554 }
6555 
6556 void Assembler::frstor(Address src) {
6557   InstructionMark im(this);
6558   emit_int8((unsigned char)0xDD);
6559   emit_operand32(rsp, src);
6560 }
6561 
6562 void Assembler::fsin() {
6563   emit_int8((unsigned char)0xD9);
6564   emit_int8((unsigned char)0xFE);
6565 }
6566 
6567 void Assembler::fsqrt() {
6568   emit_int8((unsigned char)0xD9);
6569   emit_int8((unsigned char)0xFA);
6570 }
6571 
6572 void Assembler::fst_d(Address adr) {
6573   InstructionMark im(this);
6574   emit_int8((unsigned char)0xDD);
6575   emit_operand32(rdx, adr);
6576 }
6577 
6578 void Assembler::fst_s(Address adr) {
6579   InstructionMark im(this);
6580   emit_int8((unsigned char)0xD9);
6581   emit_operand32(rdx, adr);
6582 }
6583 
6584 void Assembler::fstp_d(Address adr) {
6585   InstructionMark im(this);
6586   emit_int8((unsigned char)0xDD);
6587   emit_operand32(rbx, adr);
6588 }
6589 
6590 void Assembler::fstp_d(int index) {
6591   emit_farith(0xDD, 0xD8, index);
6592 }
6593 
6594 void Assembler::fstp_s(Address adr) {
6595   InstructionMark im(this);
6596   emit_int8((unsigned char)0xD9);
6597   emit_operand32(rbx, adr);
6598 }
6599 
6600 void Assembler::fstp_x(Address adr) {
6601   InstructionMark im(this);
6602   emit_int8((unsigned char)0xDB);
6603   emit_operand32(rdi, adr);
6604 }
6605 
6606 void Assembler::fsub(int i) {
6607   emit_farith(0xD8, 0xE0, i);
6608 }
6609 
6610 void Assembler::fsub_d(Address src) {
6611   InstructionMark im(this);
6612   emit_int8((unsigned char)0xDC);
6613   emit_operand32(rsp, src);
6614 }
6615 
6616 void Assembler::fsub_s(Address src) {
6617   InstructionMark im(this);
6618   emit_int8((unsigned char)0xD8);
6619   emit_operand32(rsp, src);
6620 }
6621 
6622 void Assembler::fsuba(int i) {
6623   emit_farith(0xDC, 0xE8, i);
6624 }
6625 
6626 void Assembler::fsubp(int i) {
6627   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
6628 }
6629 
6630 void Assembler::fsubr(int i) {
6631   emit_farith(0xD8, 0xE8, i);
6632 }
6633 
6634 void Assembler::fsubr_d(Address src) {
6635   InstructionMark im(this);
6636   emit_int8((unsigned char)0xDC);
6637   emit_operand32(rbp, src);
6638 }
6639 
6640 void Assembler::fsubr_s(Address src) {
6641   InstructionMark im(this);
6642   emit_int8((unsigned char)0xD8);
6643   emit_operand32(rbp, src);
6644 }
6645 
6646 void Assembler::fsubra(int i) {
6647   emit_farith(0xDC, 0xE0, i);
6648 }
6649 
6650 void Assembler::fsubrp(int i) {
6651   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
6652 }
6653 
6654 void Assembler::ftan() {
6655   emit_int8((unsigned char)0xD9);
6656   emit_int8((unsigned char)0xF2);
6657   emit_int8((unsigned char)0xDD);
6658   emit_int8((unsigned char)0xD8);
6659 }
6660 
6661 void Assembler::ftst() {
6662   emit_int8((unsigned char)0xD9);
6663   emit_int8((unsigned char)0xE4);
6664 }
6665 
6666 void Assembler::fucomi(int i) {
6667   // make sure the instruction is supported (introduced for P6, together with cmov)
6668   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6669   emit_farith(0xDB, 0xE8, i);
6670 }
6671 
6672 void Assembler::fucomip(int i) {
6673   // make sure the instruction is supported (introduced for P6, together with cmov)
6674   guarantee(VM_Version::supports_cmov(), "illegal instruction");
6675   emit_farith(0xDF, 0xE8, i);
6676 }
6677 
6678 void Assembler::fwait() {
6679   emit_int8((unsigned char)0x9B);
6680 }
6681 
6682 void Assembler::fxch(int i) {
6683   emit_farith(0xD9, 0xC8, i);
6684 }
6685 
6686 void Assembler::fyl2x() {
6687   emit_int8((unsigned char)0xD9);
6688   emit_int8((unsigned char)0xF1);
6689 }
6690 
6691 void Assembler::frndint() {
6692   emit_int8((unsigned char)0xD9);
6693   emit_int8((unsigned char)0xFC);
6694 }
6695 
6696 void Assembler::f2xm1() {
6697   emit_int8((unsigned char)0xD9);
6698   emit_int8((unsigned char)0xF0);
6699 }
6700 
6701 void Assembler::fldl2e() {
6702   emit_int8((unsigned char)0xD9);
6703   emit_int8((unsigned char)0xEA);
6704 }
6705 
6706 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
6707 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
6708 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
6709 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
6710 
6711 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
6712 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6713   if (pre > 0) {
6714     emit_int8(simd_pre[pre]);
6715   }
6716   if (rex_w) {
6717     prefixq(adr, xreg);
6718   } else {
6719     prefix(adr, xreg);
6720   }
6721   if (opc > 0) {
6722     emit_int8(0x0F);
6723     int opc2 = simd_opc[opc];
6724     if (opc2 > 0) {
6725       emit_int8(opc2);
6726     }
6727   }
6728 }
6729 
6730 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
6731   if (pre > 0) {
6732     emit_int8(simd_pre[pre]);
6733   }
6734   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
6735   if (opc > 0) {
6736     emit_int8(0x0F);
6737     int opc2 = simd_opc[opc];
6738     if (opc2 > 0) {
6739       emit_int8(opc2);
6740     }
6741   }
6742   return encode;
6743 }
6744 
6745 
6746 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
6747   int vector_len = _attributes->get_vector_len();
6748   bool vex_w = _attributes->is_rex_vex_w();
6749   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
6750     prefix(VEX_3bytes);
6751 
6752     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
6753     byte1 = (~byte1) & 0xE0;
6754     byte1 |= opc;
6755     emit_int8(byte1);
6756 
6757     int byte2 = ((~nds_enc) & 0xf) << 3;
6758     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
6759     emit_int8(byte2);
6760   } else {
6761     prefix(VEX_2bytes);
6762 
6763     int byte1 = vex_r ? VEX_R : 0;
6764     byte1 = (~byte1) & 0x80;
6765     byte1 |= ((~nds_enc) & 0xf) << 3;
6766     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
6767     emit_int8(byte1);
6768   }
6769 }
6770 
6771 // This is a 4 byte encoding
6772 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
6773   // EVEX 0x62 prefix
6774   prefix(EVEX_4bytes);
6775   bool vex_w = _attributes->is_rex_vex_w();
6776   int evex_encoding = (vex_w ? VEX_W : 0);
6777   // EVEX.b is not currently used for broadcast of single element or data rounding modes
6778   _attributes->set_evex_encoding(evex_encoding);
6779 
6780   // P0: byte 2, initialized to RXBR`00mm
6781   // instead of not'd
6782   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
6783   byte2 = (~byte2) & 0xF0;
6784   // confine opc opcode extensions in mm bits to lower two bits
6785   // of form {0F, 0F_38, 0F_3A}
6786   byte2 |= opc;
6787   emit_int8(byte2);
6788 
6789   // P1: byte 3 as Wvvvv1pp
6790   int byte3 = ((~nds_enc) & 0xf) << 3;
6791   // p[10] is always 1
6792   byte3 |= EVEX_F;
6793   byte3 |= (vex_w & 1) << 7;
6794   // confine pre opcode extensions in pp bits to lower two bits
6795   // of form {66, F3, F2}
6796   byte3 |= pre;
6797   emit_int8(byte3);
6798 
6799   // P2: byte 4 as zL'Lbv'aaa
6800   int byte4 = (_attributes->is_no_reg_mask()) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
6801   // EVEX.v` for extending EVEX.vvvv or VIDX
6802   byte4 |= (evex_v ? 0: EVEX_V);
6803   // third EXEC.b for broadcast actions
6804   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
6805   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
6806   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
6807   // last is EVEX.z for zero/merge actions
6808   byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
6809   emit_int8(byte4);
6810 }
6811 
6812 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6813   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
6814   bool vex_b = adr.base_needs_rex();
6815   bool vex_x = adr.index_needs_rex();
6816   set_attributes(attributes);
6817   attributes->set_current_assembler(this);
6818 
6819   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6820   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6821     switch (attributes->get_vector_len()) {
6822     case AVX_128bit:
6823     case AVX_256bit:
6824       attributes->set_is_legacy_mode();
6825       break;
6826     }
6827   }
6828 
6829   // For pure EVEX check and see if this instruction
6830   // is allowed in legacy mode and has resources which will
6831   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6832   // else that field is set when we encode to EVEX
6833   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6834       !_is_managed && !attributes->is_evex_instruction()) {
6835     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6836       bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6837       if (check_register_bank) {
6838         // check nds_enc and xreg_enc for upper bank usage
6839         if (nds_enc < 16 && xreg_enc < 16) {
6840           attributes->set_is_legacy_mode();
6841         }
6842       } else {
6843         attributes->set_is_legacy_mode();
6844       }
6845     }
6846   }
6847 
6848   _is_managed = false;
6849   if (UseAVX > 2 && !attributes->is_legacy_mode())
6850   {
6851     bool evex_r = (xreg_enc >= 16);
6852     bool evex_v = (nds_enc >= 16);
6853     attributes->set_is_evex_instruction();
6854     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6855   } else {
6856     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6857   }
6858 }
6859 
6860 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
6861   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
6862   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
6863   bool vex_x = false;
6864   set_attributes(attributes);
6865   attributes->set_current_assembler(this);
6866   bool check_register_bank = NOT_IA32(true) IA32_ONLY(false);
6867 
6868   // if vector length is turned off, revert to AVX for vectors smaller than 512-bit
6869   if (UseAVX > 2 && _legacy_mode_vl && attributes->uses_vl()) {
6870     switch (attributes->get_vector_len()) {
6871     case AVX_128bit:
6872     case AVX_256bit:
6873       if (check_register_bank) {
6874         if (dst_enc >= 16 || nds_enc >= 16 || src_enc >= 16) {
6875           // up propagate arithmetic instructions to meet RA requirements
6876           attributes->set_vector_len(AVX_512bit);
6877         } else {
6878           attributes->set_is_legacy_mode();
6879         }
6880       } else {
6881         attributes->set_is_legacy_mode();
6882       }
6883       break;
6884     }
6885   }
6886 
6887   // For pure EVEX check and see if this instruction
6888   // is allowed in legacy mode and has resources which will
6889   // fit in it.  Pure EVEX instructions will use set_is_evex_instruction in their definition,
6890   // else that field is set when we encode to EVEX
6891   if (UseAVX > 2 && !attributes->is_legacy_mode() &&
6892       !_is_managed && !attributes->is_evex_instruction()) {
6893     if (!_legacy_mode_vl && attributes->get_vector_len() != AVX_512bit) {
6894       if (check_register_bank) {
6895         // check dst_enc, nds_enc and src_enc for upper bank usage
6896         if (dst_enc < 16 && nds_enc < 16 && src_enc < 16) {
6897           attributes->set_is_legacy_mode();
6898         }
6899       } else {
6900         attributes->set_is_legacy_mode();
6901       }
6902     }
6903   }
6904 
6905   _is_managed = false;
6906   if (UseAVX > 2 && !attributes->is_legacy_mode())
6907   {
6908     bool evex_r = (dst_enc >= 16);
6909     bool evex_v = (nds_enc >= 16);
6910     // can use vex_x as bank extender on rm encoding
6911     vex_x = (src_enc >= 16);
6912     attributes->set_is_evex_instruction();
6913     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
6914   } else {
6915     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
6916   }
6917 
6918   // return modrm byte components for operands
6919   return (((dst_enc & 7) << 3) | (src_enc & 7));
6920 }
6921 
6922 
6923 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
6924                             VexOpcode opc, InstructionAttr *attributes) {
6925   if (UseAVX > 0) {
6926     int xreg_enc = xreg->encoding();
6927     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6928     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
6929   } else {
6930     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
6931     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
6932   }
6933 }
6934 
6935 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
6936                                       VexOpcode opc, InstructionAttr *attributes) {
6937   int dst_enc = dst->encoding();
6938   int src_enc = src->encoding();
6939   if (UseAVX > 0) {
6940     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
6941     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
6942   } else {
6943     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
6944     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
6945   }
6946 }
6947 
6948 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
6949   assert(VM_Version::supports_avx(), "");
6950   assert(!VM_Version::supports_evex(), "");
6951   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6952   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6953   emit_int8((unsigned char)0xC2);
6954   emit_int8((unsigned char)(0xC0 | encode));
6955   emit_int8((unsigned char)(0xF & cop));
6956 }
6957 
6958 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
6959   assert(VM_Version::supports_avx(), "");
6960   assert(!VM_Version::supports_evex(), "");
6961   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
6962   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6963   emit_int8((unsigned char)0x4B);
6964   emit_int8((unsigned char)(0xC0 | encode));
6965   int src2_enc = src2->encoding();
6966   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
6967 }
6968 
6969 
6970 #ifndef _LP64
6971 
6972 void Assembler::incl(Register dst) {
6973   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6974   emit_int8(0x40 | dst->encoding());
6975 }
6976 
6977 void Assembler::lea(Register dst, Address src) {
6978   leal(dst, src);
6979 }
6980 
6981 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
6982   InstructionMark im(this);
6983   emit_int8((unsigned char)0xC7);
6984   emit_operand(rax, dst);
6985   emit_data((int)imm32, rspec, 0);
6986 }
6987 
6988 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6989   InstructionMark im(this);
6990   int encode = prefix_and_encode(dst->encoding());
6991   emit_int8((unsigned char)(0xB8 | encode));
6992   emit_data((int)imm32, rspec, 0);
6993 }
6994 
6995 void Assembler::popa() { // 32bit
6996   emit_int8(0x61);
6997 }
6998 
6999 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7000   InstructionMark im(this);
7001   emit_int8(0x68);
7002   emit_data(imm32, rspec, 0);
7003 }
7004 
7005 void Assembler::pusha() { // 32bit
7006   emit_int8(0x60);
7007 }
7008 
7009 void Assembler::set_byte_if_not_zero(Register dst) {
7010   emit_int8(0x0F);
7011   emit_int8((unsigned char)0x95);
7012   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7013 }
7014 
7015 void Assembler::shldl(Register dst, Register src) {
7016   emit_int8(0x0F);
7017   emit_int8((unsigned char)0xA5);
7018   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7019 }
7020 
7021 // 0F A4 / r ib
7022 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7023   emit_int8(0x0F);
7024   emit_int8((unsigned char)0xA4);
7025   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7026   emit_int8(imm8);
7027 }
7028 
7029 void Assembler::shrdl(Register dst, Register src) {
7030   emit_int8(0x0F);
7031   emit_int8((unsigned char)0xAD);
7032   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7033 }
7034 
7035 #else // LP64
7036 
7037 void Assembler::set_byte_if_not_zero(Register dst) {
7038   int enc = prefix_and_encode(dst->encoding(), true);
7039   emit_int8(0x0F);
7040   emit_int8((unsigned char)0x95);
7041   emit_int8((unsigned char)(0xE0 | enc));
7042 }
7043 
7044 // 64bit only pieces of the assembler
7045 // This should only be used by 64bit instructions that can use rip-relative
7046 // it cannot be used by instructions that want an immediate value.
7047 
7048 bool Assembler::reachable(AddressLiteral adr) {
7049   int64_t disp;
7050   // None will force a 64bit literal to the code stream. Likely a placeholder
7051   // for something that will be patched later and we need to certain it will
7052   // always be reachable.
7053   if (adr.reloc() == relocInfo::none) {
7054     return false;
7055   }
7056   if (adr.reloc() == relocInfo::internal_word_type) {
7057     // This should be rip relative and easily reachable.
7058     return true;
7059   }
7060   if (adr.reloc() == relocInfo::virtual_call_type ||
7061       adr.reloc() == relocInfo::opt_virtual_call_type ||
7062       adr.reloc() == relocInfo::static_call_type ||
7063       adr.reloc() == relocInfo::static_stub_type ) {
7064     // This should be rip relative within the code cache and easily
7065     // reachable until we get huge code caches. (At which point
7066     // ic code is going to have issues).
7067     return true;
7068   }
7069   if (adr.reloc() != relocInfo::external_word_type &&
7070       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7071       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7072       adr.reloc() != relocInfo::runtime_call_type ) {
7073     return false;
7074   }
7075 
7076   // Stress the correction code
7077   if (ForceUnreachable) {
7078     // Must be runtimecall reloc, see if it is in the codecache
7079     // Flipping stuff in the codecache to be unreachable causes issues
7080     // with things like inline caches where the additional instructions
7081     // are not handled.
7082     if (CodeCache::find_blob(adr._target) == NULL) {
7083       return false;
7084     }
7085   }
7086   // For external_word_type/runtime_call_type if it is reachable from where we
7087   // are now (possibly a temp buffer) and where we might end up
7088   // anywhere in the codeCache then we are always reachable.
7089   // This would have to change if we ever save/restore shared code
7090   // to be more pessimistic.
7091   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7092   if (!is_simm32(disp)) return false;
7093   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7094   if (!is_simm32(disp)) return false;
7095 
7096   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7097 
7098   // Because rip relative is a disp + address_of_next_instruction and we
7099   // don't know the value of address_of_next_instruction we apply a fudge factor
7100   // to make sure we will be ok no matter the size of the instruction we get placed into.
7101   // We don't have to fudge the checks above here because they are already worst case.
7102 
7103   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7104   // + 4 because better safe than sorry.
7105   const int fudge = 12 + 4;
7106   if (disp < 0) {
7107     disp -= fudge;
7108   } else {
7109     disp += fudge;
7110   }
7111   return is_simm32(disp);
7112 }
7113 
7114 // Check if the polling page is not reachable from the code cache using rip-relative
7115 // addressing.
7116 bool Assembler::is_polling_page_far() {
7117   intptr_t addr = (intptr_t)os::get_polling_page();
7118   return ForceUnreachable ||
7119          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7120          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7121 }
7122 
7123 void Assembler::emit_data64(jlong data,
7124                             relocInfo::relocType rtype,
7125                             int format) {
7126   if (rtype == relocInfo::none) {
7127     emit_int64(data);
7128   } else {
7129     emit_data64(data, Relocation::spec_simple(rtype), format);
7130   }
7131 }
7132 
7133 void Assembler::emit_data64(jlong data,
7134                             RelocationHolder const& rspec,
7135                             int format) {
7136   assert(imm_operand == 0, "default format must be immediate in this file");
7137   assert(imm_operand == format, "must be immediate");
7138   assert(inst_mark() != NULL, "must be inside InstructionMark");
7139   // Do not use AbstractAssembler::relocate, which is not intended for
7140   // embedded words.  Instead, relocate to the enclosing instruction.
7141   code_section()->relocate(inst_mark(), rspec, format);
7142 #ifdef ASSERT
7143   check_relocation(rspec, format);
7144 #endif
7145   emit_int64(data);
7146 }
7147 
7148 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7149   if (reg_enc >= 8) {
7150     prefix(REX_B);
7151     reg_enc -= 8;
7152   } else if (byteinst && reg_enc >= 4) {
7153     prefix(REX);
7154   }
7155   return reg_enc;
7156 }
7157 
7158 int Assembler::prefixq_and_encode(int reg_enc) {
7159   if (reg_enc < 8) {
7160     prefix(REX_W);
7161   } else {
7162     prefix(REX_WB);
7163     reg_enc -= 8;
7164   }
7165   return reg_enc;
7166 }
7167 
7168 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7169   if (dst_enc < 8) {
7170     if (src_enc >= 8) {
7171       prefix(REX_B);
7172       src_enc -= 8;
7173     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7174       prefix(REX);
7175     }
7176   } else {
7177     if (src_enc < 8) {
7178       prefix(REX_R);
7179     } else {
7180       prefix(REX_RB);
7181       src_enc -= 8;
7182     }
7183     dst_enc -= 8;
7184   }
7185   return dst_enc << 3 | src_enc;
7186 }
7187 
7188 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
7189   if (dst_enc < 8) {
7190     if (src_enc < 8) {
7191       prefix(REX_W);
7192     } else {
7193       prefix(REX_WB);
7194       src_enc -= 8;
7195     }
7196   } else {
7197     if (src_enc < 8) {
7198       prefix(REX_WR);
7199     } else {
7200       prefix(REX_WRB);
7201       src_enc -= 8;
7202     }
7203     dst_enc -= 8;
7204   }
7205   return dst_enc << 3 | src_enc;
7206 }
7207 
7208 void Assembler::prefix(Register reg) {
7209   if (reg->encoding() >= 8) {
7210     prefix(REX_B);
7211   }
7212 }
7213 
7214 void Assembler::prefix(Register dst, Register src, Prefix p) {
7215   if (src->encoding() >= 8) {
7216     p = (Prefix)(p | REX_B);
7217   }
7218   if (dst->encoding() >= 8) {
7219     p = (Prefix)( p | REX_R);
7220   }
7221   if (p != Prefix_EMPTY) {
7222     // do not generate an empty prefix
7223     prefix(p);
7224   }
7225 }
7226 
7227 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7228   if (adr.base_needs_rex()) {
7229     if (adr.index_needs_rex()) {
7230       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7231     } else {
7232       prefix(REX_B);
7233     }
7234   } else {
7235     if (adr.index_needs_rex()) {
7236       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7237     }
7238   }
7239   if (dst->encoding() >= 8) {
7240     p = (Prefix)(p | REX_R);
7241   }
7242   if (p != Prefix_EMPTY) {
7243     // do not generate an empty prefix
7244     prefix(p);
7245   }
7246 }
7247 
7248 void Assembler::prefix(Address adr) {
7249   if (adr.base_needs_rex()) {
7250     if (adr.index_needs_rex()) {
7251       prefix(REX_XB);
7252     } else {
7253       prefix(REX_B);
7254     }
7255   } else {
7256     if (adr.index_needs_rex()) {
7257       prefix(REX_X);
7258     }
7259   }
7260 }
7261 
7262 void Assembler::prefixq(Address adr) {
7263   if (adr.base_needs_rex()) {
7264     if (adr.index_needs_rex()) {
7265       prefix(REX_WXB);
7266     } else {
7267       prefix(REX_WB);
7268     }
7269   } else {
7270     if (adr.index_needs_rex()) {
7271       prefix(REX_WX);
7272     } else {
7273       prefix(REX_W);
7274     }
7275   }
7276 }
7277 
7278 
7279 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7280   if (reg->encoding() < 8) {
7281     if (adr.base_needs_rex()) {
7282       if (adr.index_needs_rex()) {
7283         prefix(REX_XB);
7284       } else {
7285         prefix(REX_B);
7286       }
7287     } else {
7288       if (adr.index_needs_rex()) {
7289         prefix(REX_X);
7290       } else if (byteinst && reg->encoding() >= 4 ) {
7291         prefix(REX);
7292       }
7293     }
7294   } else {
7295     if (adr.base_needs_rex()) {
7296       if (adr.index_needs_rex()) {
7297         prefix(REX_RXB);
7298       } else {
7299         prefix(REX_RB);
7300       }
7301     } else {
7302       if (adr.index_needs_rex()) {
7303         prefix(REX_RX);
7304       } else {
7305         prefix(REX_R);
7306       }
7307     }
7308   }
7309 }
7310 
7311 void Assembler::prefixq(Address adr, Register src) {
7312   if (src->encoding() < 8) {
7313     if (adr.base_needs_rex()) {
7314       if (adr.index_needs_rex()) {
7315         prefix(REX_WXB);
7316       } else {
7317         prefix(REX_WB);
7318       }
7319     } else {
7320       if (adr.index_needs_rex()) {
7321         prefix(REX_WX);
7322       } else {
7323         prefix(REX_W);
7324       }
7325     }
7326   } else {
7327     if (adr.base_needs_rex()) {
7328       if (adr.index_needs_rex()) {
7329         prefix(REX_WRXB);
7330       } else {
7331         prefix(REX_WRB);
7332       }
7333     } else {
7334       if (adr.index_needs_rex()) {
7335         prefix(REX_WRX);
7336       } else {
7337         prefix(REX_WR);
7338       }
7339     }
7340   }
7341 }
7342 
7343 void Assembler::prefix(Address adr, XMMRegister reg) {
7344   if (reg->encoding() < 8) {
7345     if (adr.base_needs_rex()) {
7346       if (adr.index_needs_rex()) {
7347         prefix(REX_XB);
7348       } else {
7349         prefix(REX_B);
7350       }
7351     } else {
7352       if (adr.index_needs_rex()) {
7353         prefix(REX_X);
7354       }
7355     }
7356   } else {
7357     if (adr.base_needs_rex()) {
7358       if (adr.index_needs_rex()) {
7359         prefix(REX_RXB);
7360       } else {
7361         prefix(REX_RB);
7362       }
7363     } else {
7364       if (adr.index_needs_rex()) {
7365         prefix(REX_RX);
7366       } else {
7367         prefix(REX_R);
7368       }
7369     }
7370   }
7371 }
7372 
7373 void Assembler::prefixq(Address adr, XMMRegister src) {
7374   if (src->encoding() < 8) {
7375     if (adr.base_needs_rex()) {
7376       if (adr.index_needs_rex()) {
7377         prefix(REX_WXB);
7378       } else {
7379         prefix(REX_WB);
7380       }
7381     } else {
7382       if (adr.index_needs_rex()) {
7383         prefix(REX_WX);
7384       } else {
7385         prefix(REX_W);
7386       }
7387     }
7388   } else {
7389     if (adr.base_needs_rex()) {
7390       if (adr.index_needs_rex()) {
7391         prefix(REX_WRXB);
7392       } else {
7393         prefix(REX_WRB);
7394       }
7395     } else {
7396       if (adr.index_needs_rex()) {
7397         prefix(REX_WRX);
7398       } else {
7399         prefix(REX_WR);
7400       }
7401     }
7402   }
7403 }
7404 
7405 void Assembler::adcq(Register dst, int32_t imm32) {
7406   (void) prefixq_and_encode(dst->encoding());
7407   emit_arith(0x81, 0xD0, dst, imm32);
7408 }
7409 
7410 void Assembler::adcq(Register dst, Address src) {
7411   InstructionMark im(this);
7412   prefixq(src, dst);
7413   emit_int8(0x13);
7414   emit_operand(dst, src);
7415 }
7416 
7417 void Assembler::adcq(Register dst, Register src) {
7418   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7419   emit_arith(0x13, 0xC0, dst, src);
7420 }
7421 
7422 void Assembler::addq(Address dst, int32_t imm32) {
7423   InstructionMark im(this);
7424   prefixq(dst);
7425   emit_arith_operand(0x81, rax, dst,imm32);
7426 }
7427 
7428 void Assembler::addq(Address dst, Register src) {
7429   InstructionMark im(this);
7430   prefixq(dst, src);
7431   emit_int8(0x01);
7432   emit_operand(src, dst);
7433 }
7434 
7435 void Assembler::addq(Register dst, int32_t imm32) {
7436   (void) prefixq_and_encode(dst->encoding());
7437   emit_arith(0x81, 0xC0, dst, imm32);
7438 }
7439 
7440 void Assembler::addq(Register dst, Address src) {
7441   InstructionMark im(this);
7442   prefixq(src, dst);
7443   emit_int8(0x03);
7444   emit_operand(dst, src);
7445 }
7446 
7447 void Assembler::addq(Register dst, Register src) {
7448   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7449   emit_arith(0x03, 0xC0, dst, src);
7450 }
7451 
7452 void Assembler::adcxq(Register dst, Register src) {
7453   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7454   emit_int8((unsigned char)0x66);
7455   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7456   emit_int8(0x0F);
7457   emit_int8(0x38);
7458   emit_int8((unsigned char)0xF6);
7459   emit_int8((unsigned char)(0xC0 | encode));
7460 }
7461 
7462 void Assembler::adoxq(Register dst, Register src) {
7463   //assert(VM_Version::supports_adx(), "adx instructions not supported");
7464   emit_int8((unsigned char)0xF3);
7465   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7466   emit_int8(0x0F);
7467   emit_int8(0x38);
7468   emit_int8((unsigned char)0xF6);
7469   emit_int8((unsigned char)(0xC0 | encode));
7470 }
7471 
7472 void Assembler::andq(Address dst, int32_t imm32) {
7473   InstructionMark im(this);
7474   prefixq(dst);
7475   emit_int8((unsigned char)0x81);
7476   emit_operand(rsp, dst, 4);
7477   emit_int32(imm32);
7478 }
7479 
7480 void Assembler::andq(Register dst, int32_t imm32) {
7481   (void) prefixq_and_encode(dst->encoding());
7482   emit_arith(0x81, 0xE0, dst, imm32);
7483 }
7484 
7485 void Assembler::andq(Register dst, Address src) {
7486   InstructionMark im(this);
7487   prefixq(src, dst);
7488   emit_int8(0x23);
7489   emit_operand(dst, src);
7490 }
7491 
7492 void Assembler::andq(Register dst, Register src) {
7493   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7494   emit_arith(0x23, 0xC0, dst, src);
7495 }
7496 
7497 void Assembler::andnq(Register dst, Register src1, Register src2) {
7498   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7499   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7500   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7501   emit_int8((unsigned char)0xF2);
7502   emit_int8((unsigned char)(0xC0 | encode));
7503 }
7504 
7505 void Assembler::andnq(Register dst, Register src1, Address src2) {
7506   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7507   InstructionMark im(this);
7508   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7509   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7510   emit_int8((unsigned char)0xF2);
7511   emit_operand(dst, src2);
7512 }
7513 
7514 void Assembler::bsfq(Register dst, Register src) {
7515   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7516   emit_int8(0x0F);
7517   emit_int8((unsigned char)0xBC);
7518   emit_int8((unsigned char)(0xC0 | encode));
7519 }
7520 
7521 void Assembler::bsrq(Register dst, Register src) {
7522   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7523   emit_int8(0x0F);
7524   emit_int8((unsigned char)0xBD);
7525   emit_int8((unsigned char)(0xC0 | encode));
7526 }
7527 
7528 void Assembler::bswapq(Register reg) {
7529   int encode = prefixq_and_encode(reg->encoding());
7530   emit_int8(0x0F);
7531   emit_int8((unsigned char)(0xC8 | encode));
7532 }
7533 
7534 void Assembler::blsiq(Register dst, Register src) {
7535   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7536   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7537   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7538   emit_int8((unsigned char)0xF3);
7539   emit_int8((unsigned char)(0xC0 | encode));
7540 }
7541 
7542 void Assembler::blsiq(Register dst, Address src) {
7543   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7544   InstructionMark im(this);
7545   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7546   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7547   emit_int8((unsigned char)0xF3);
7548   emit_operand(rbx, src);
7549 }
7550 
7551 void Assembler::blsmskq(Register dst, Register src) {
7552   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7553   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7554   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7555   emit_int8((unsigned char)0xF3);
7556   emit_int8((unsigned char)(0xC0 | encode));
7557 }
7558 
7559 void Assembler::blsmskq(Register dst, Address src) {
7560   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7561   InstructionMark im(this);
7562   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7563   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7564   emit_int8((unsigned char)0xF3);
7565   emit_operand(rdx, src);
7566 }
7567 
7568 void Assembler::blsrq(Register dst, Register src) {
7569   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7570   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7571   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7572   emit_int8((unsigned char)0xF3);
7573   emit_int8((unsigned char)(0xC0 | encode));
7574 }
7575 
7576 void Assembler::blsrq(Register dst, Address src) {
7577   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
7578   InstructionMark im(this);
7579   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
7580   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
7581   emit_int8((unsigned char)0xF3);
7582   emit_operand(rcx, src);
7583 }
7584 
7585 void Assembler::cdqq() {
7586   prefix(REX_W);
7587   emit_int8((unsigned char)0x99);
7588 }
7589 
7590 void Assembler::clflush(Address adr) {
7591   prefix(adr);
7592   emit_int8(0x0F);
7593   emit_int8((unsigned char)0xAE);
7594   emit_operand(rdi, adr);
7595 }
7596 
7597 void Assembler::cmovq(Condition cc, Register dst, Register src) {
7598   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7599   emit_int8(0x0F);
7600   emit_int8(0x40 | cc);
7601   emit_int8((unsigned char)(0xC0 | encode));
7602 }
7603 
7604 void Assembler::cmovq(Condition cc, Register dst, Address src) {
7605   InstructionMark im(this);
7606   prefixq(src, dst);
7607   emit_int8(0x0F);
7608   emit_int8(0x40 | cc);
7609   emit_operand(dst, src);
7610 }
7611 
7612 void Assembler::cmpq(Address dst, int32_t imm32) {
7613   InstructionMark im(this);
7614   prefixq(dst);
7615   emit_int8((unsigned char)0x81);
7616   emit_operand(rdi, dst, 4);
7617   emit_int32(imm32);
7618 }
7619 
7620 void Assembler::cmpq(Register dst, int32_t imm32) {
7621   (void) prefixq_and_encode(dst->encoding());
7622   emit_arith(0x81, 0xF8, dst, imm32);
7623 }
7624 
7625 void Assembler::cmpq(Address dst, Register src) {
7626   InstructionMark im(this);
7627   prefixq(dst, src);
7628   emit_int8(0x3B);
7629   emit_operand(src, dst);
7630 }
7631 
7632 void Assembler::cmpq(Register dst, Register src) {
7633   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7634   emit_arith(0x3B, 0xC0, dst, src);
7635 }
7636 
7637 void Assembler::cmpq(Register dst, Address  src) {
7638   InstructionMark im(this);
7639   prefixq(src, dst);
7640   emit_int8(0x3B);
7641   emit_operand(dst, src);
7642 }
7643 
7644 void Assembler::cmpxchgq(Register reg, Address adr) {
7645   InstructionMark im(this);
7646   prefixq(adr, reg);
7647   emit_int8(0x0F);
7648   emit_int8((unsigned char)0xB1);
7649   emit_operand(reg, adr);
7650 }
7651 
7652 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
7653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7654   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7655   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7656   emit_int8(0x2A);
7657   emit_int8((unsigned char)(0xC0 | encode));
7658 }
7659 
7660 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
7661   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7662   InstructionMark im(this);
7663   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7664   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7665   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7666   emit_int8(0x2A);
7667   emit_operand(dst, src);
7668 }
7669 
7670 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
7671   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7672   InstructionMark im(this);
7673   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7674   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
7675   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7676   emit_int8(0x2A);
7677   emit_operand(dst, src);
7678 }
7679 
7680 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
7681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7682   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7683   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7684   emit_int8(0x2C);
7685   emit_int8((unsigned char)(0xC0 | encode));
7686 }
7687 
7688 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
7689   NOT_LP64(assert(VM_Version::supports_sse(), ""));
7690   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7691   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7692   emit_int8(0x2C);
7693   emit_int8((unsigned char)(0xC0 | encode));
7694 }
7695 
7696 void Assembler::decl(Register dst) {
7697   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7698   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
7699   int encode = prefix_and_encode(dst->encoding());
7700   emit_int8((unsigned char)0xFF);
7701   emit_int8((unsigned char)(0xC8 | encode));
7702 }
7703 
7704 void Assembler::decq(Register dst) {
7705   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7706   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7707   int encode = prefixq_and_encode(dst->encoding());
7708   emit_int8((unsigned char)0xFF);
7709   emit_int8(0xC8 | encode);
7710 }
7711 
7712 void Assembler::decq(Address dst) {
7713   // Don't use it directly. Use MacroAssembler::decrementq() instead.
7714   InstructionMark im(this);
7715   prefixq(dst);
7716   emit_int8((unsigned char)0xFF);
7717   emit_operand(rcx, dst);
7718 }
7719 
7720 void Assembler::fxrstor(Address src) {
7721   prefixq(src);
7722   emit_int8(0x0F);
7723   emit_int8((unsigned char)0xAE);
7724   emit_operand(as_Register(1), src);
7725 }
7726 
7727 void Assembler::xrstor(Address src) {
7728   prefixq(src);
7729   emit_int8(0x0F);
7730   emit_int8((unsigned char)0xAE);
7731   emit_operand(as_Register(5), src);
7732 }
7733 
7734 void Assembler::fxsave(Address dst) {
7735   prefixq(dst);
7736   emit_int8(0x0F);
7737   emit_int8((unsigned char)0xAE);
7738   emit_operand(as_Register(0), dst);
7739 }
7740 
7741 void Assembler::xsave(Address dst) {
7742   prefixq(dst);
7743   emit_int8(0x0F);
7744   emit_int8((unsigned char)0xAE);
7745   emit_operand(as_Register(4), dst);
7746 }
7747 
7748 void Assembler::idivq(Register src) {
7749   int encode = prefixq_and_encode(src->encoding());
7750   emit_int8((unsigned char)0xF7);
7751   emit_int8((unsigned char)(0xF8 | encode));
7752 }
7753 
7754 void Assembler::imulq(Register dst, Register src) {
7755   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7756   emit_int8(0x0F);
7757   emit_int8((unsigned char)0xAF);
7758   emit_int8((unsigned char)(0xC0 | encode));
7759 }
7760 
7761 void Assembler::imulq(Register dst, Register src, int value) {
7762   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7763   if (is8bit(value)) {
7764     emit_int8(0x6B);
7765     emit_int8((unsigned char)(0xC0 | encode));
7766     emit_int8(value & 0xFF);
7767   } else {
7768     emit_int8(0x69);
7769     emit_int8((unsigned char)(0xC0 | encode));
7770     emit_int32(value);
7771   }
7772 }
7773 
7774 void Assembler::imulq(Register dst, Address src) {
7775   InstructionMark im(this);
7776   prefixq(src, dst);
7777   emit_int8(0x0F);
7778   emit_int8((unsigned char) 0xAF);
7779   emit_operand(dst, src);
7780 }
7781 
7782 void Assembler::incl(Register dst) {
7783   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7784   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7785   int encode = prefix_and_encode(dst->encoding());
7786   emit_int8((unsigned char)0xFF);
7787   emit_int8((unsigned char)(0xC0 | encode));
7788 }
7789 
7790 void Assembler::incq(Register dst) {
7791   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7792   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
7793   int encode = prefixq_and_encode(dst->encoding());
7794   emit_int8((unsigned char)0xFF);
7795   emit_int8((unsigned char)(0xC0 | encode));
7796 }
7797 
7798 void Assembler::incq(Address dst) {
7799   // Don't use it directly. Use MacroAssembler::incrementq() instead.
7800   InstructionMark im(this);
7801   prefixq(dst);
7802   emit_int8((unsigned char)0xFF);
7803   emit_operand(rax, dst);
7804 }
7805 
7806 void Assembler::lea(Register dst, Address src) {
7807   leaq(dst, src);
7808 }
7809 
7810 void Assembler::leaq(Register dst, Address src) {
7811   InstructionMark im(this);
7812   prefixq(src, dst);
7813   emit_int8((unsigned char)0x8D);
7814   emit_operand(dst, src);
7815 }
7816 
7817 void Assembler::mov64(Register dst, int64_t imm64) {
7818   InstructionMark im(this);
7819   int encode = prefixq_and_encode(dst->encoding());
7820   emit_int8((unsigned char)(0xB8 | encode));
7821   emit_int64(imm64);
7822 }
7823 
7824 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
7825   InstructionMark im(this);
7826   int encode = prefixq_and_encode(dst->encoding());
7827   emit_int8(0xB8 | encode);
7828   emit_data64(imm64, rspec);
7829 }
7830 
7831 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7832   InstructionMark im(this);
7833   int encode = prefix_and_encode(dst->encoding());
7834   emit_int8((unsigned char)(0xB8 | encode));
7835   emit_data((int)imm32, rspec, narrow_oop_operand);
7836 }
7837 
7838 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
7839   InstructionMark im(this);
7840   prefix(dst);
7841   emit_int8((unsigned char)0xC7);
7842   emit_operand(rax, dst, 4);
7843   emit_data((int)imm32, rspec, narrow_oop_operand);
7844 }
7845 
7846 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7847   InstructionMark im(this);
7848   int encode = prefix_and_encode(src1->encoding());
7849   emit_int8((unsigned char)0x81);
7850   emit_int8((unsigned char)(0xF8 | encode));
7851   emit_data((int)imm32, rspec, narrow_oop_operand);
7852 }
7853 
7854 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7855   InstructionMark im(this);
7856   prefix(src1);
7857   emit_int8((unsigned char)0x81);
7858   emit_operand(rax, src1, 4);
7859   emit_data((int)imm32, rspec, narrow_oop_operand);
7860 }
7861 
7862 void Assembler::lzcntq(Register dst, Register src) {
7863   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
7864   emit_int8((unsigned char)0xF3);
7865   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7866   emit_int8(0x0F);
7867   emit_int8((unsigned char)0xBD);
7868   emit_int8((unsigned char)(0xC0 | encode));
7869 }
7870 
7871 void Assembler::movdq(XMMRegister dst, Register src) {
7872   // table D-1 says MMX/SSE2
7873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7874   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7875   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7876   emit_int8(0x6E);
7877   emit_int8((unsigned char)(0xC0 | encode));
7878 }
7879 
7880 void Assembler::movdq(Register dst, XMMRegister src) {
7881   // table D-1 says MMX/SSE2
7882   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
7883   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7884   // swap src/dst to get correct prefix
7885   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7886   emit_int8(0x7E);
7887   emit_int8((unsigned char)(0xC0 | encode));
7888 }
7889 
7890 void Assembler::movq(Register dst, Register src) {
7891   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7892   emit_int8((unsigned char)0x8B);
7893   emit_int8((unsigned char)(0xC0 | encode));
7894 }
7895 
7896 void Assembler::movq(Register dst, Address src) {
7897   InstructionMark im(this);
7898   prefixq(src, dst);
7899   emit_int8((unsigned char)0x8B);
7900   emit_operand(dst, src);
7901 }
7902 
7903 void Assembler::movq(Address dst, Register src) {
7904   InstructionMark im(this);
7905   prefixq(dst, src);
7906   emit_int8((unsigned char)0x89);
7907   emit_operand(src, dst);
7908 }
7909 
7910 void Assembler::movsbq(Register dst, Address src) {
7911   InstructionMark im(this);
7912   prefixq(src, dst);
7913   emit_int8(0x0F);
7914   emit_int8((unsigned char)0xBE);
7915   emit_operand(dst, src);
7916 }
7917 
7918 void Assembler::movsbq(Register dst, Register src) {
7919   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7920   emit_int8(0x0F);
7921   emit_int8((unsigned char)0xBE);
7922   emit_int8((unsigned char)(0xC0 | encode));
7923 }
7924 
7925 void Assembler::movslq(Register dst, int32_t imm32) {
7926   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
7927   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
7928   // as a result we shouldn't use until tested at runtime...
7929   ShouldNotReachHere();
7930   InstructionMark im(this);
7931   int encode = prefixq_and_encode(dst->encoding());
7932   emit_int8((unsigned char)(0xC7 | encode));
7933   emit_int32(imm32);
7934 }
7935 
7936 void Assembler::movslq(Address dst, int32_t imm32) {
7937   assert(is_simm32(imm32), "lost bits");
7938   InstructionMark im(this);
7939   prefixq(dst);
7940   emit_int8((unsigned char)0xC7);
7941   emit_operand(rax, dst, 4);
7942   emit_int32(imm32);
7943 }
7944 
7945 void Assembler::movslq(Register dst, Address src) {
7946   InstructionMark im(this);
7947   prefixq(src, dst);
7948   emit_int8(0x63);
7949   emit_operand(dst, src);
7950 }
7951 
7952 void Assembler::movslq(Register dst, Register src) {
7953   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7954   emit_int8(0x63);
7955   emit_int8((unsigned char)(0xC0 | encode));
7956 }
7957 
7958 void Assembler::movswq(Register dst, Address src) {
7959   InstructionMark im(this);
7960   prefixq(src, dst);
7961   emit_int8(0x0F);
7962   emit_int8((unsigned char)0xBF);
7963   emit_operand(dst, src);
7964 }
7965 
7966 void Assembler::movswq(Register dst, Register src) {
7967   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7968   emit_int8((unsigned char)0x0F);
7969   emit_int8((unsigned char)0xBF);
7970   emit_int8((unsigned char)(0xC0 | encode));
7971 }
7972 
7973 void Assembler::movzbq(Register dst, Address src) {
7974   InstructionMark im(this);
7975   prefixq(src, dst);
7976   emit_int8((unsigned char)0x0F);
7977   emit_int8((unsigned char)0xB6);
7978   emit_operand(dst, src);
7979 }
7980 
7981 void Assembler::movzbq(Register dst, Register src) {
7982   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7983   emit_int8(0x0F);
7984   emit_int8((unsigned char)0xB6);
7985   emit_int8(0xC0 | encode);
7986 }
7987 
7988 void Assembler::movzwq(Register dst, Address src) {
7989   InstructionMark im(this);
7990   prefixq(src, dst);
7991   emit_int8((unsigned char)0x0F);
7992   emit_int8((unsigned char)0xB7);
7993   emit_operand(dst, src);
7994 }
7995 
7996 void Assembler::movzwq(Register dst, Register src) {
7997   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7998   emit_int8((unsigned char)0x0F);
7999   emit_int8((unsigned char)0xB7);
8000   emit_int8((unsigned char)(0xC0 | encode));
8001 }
8002 
8003 void Assembler::mulq(Address src) {
8004   InstructionMark im(this);
8005   prefixq(src);
8006   emit_int8((unsigned char)0xF7);
8007   emit_operand(rsp, src);
8008 }
8009 
8010 void Assembler::mulq(Register src) {
8011   int encode = prefixq_and_encode(src->encoding());
8012   emit_int8((unsigned char)0xF7);
8013   emit_int8((unsigned char)(0xE0 | encode));
8014 }
8015 
8016 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8017   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8018   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8019   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8020   emit_int8((unsigned char)0xF6);
8021   emit_int8((unsigned char)(0xC0 | encode));
8022 }
8023 
8024 void Assembler::negq(Register dst) {
8025   int encode = prefixq_and_encode(dst->encoding());
8026   emit_int8((unsigned char)0xF7);
8027   emit_int8((unsigned char)(0xD8 | encode));
8028 }
8029 
8030 void Assembler::notq(Register dst) {
8031   int encode = prefixq_and_encode(dst->encoding());
8032   emit_int8((unsigned char)0xF7);
8033   emit_int8((unsigned char)(0xD0 | encode));
8034 }
8035 
8036 void Assembler::orq(Address dst, int32_t imm32) {
8037   InstructionMark im(this);
8038   prefixq(dst);
8039   emit_int8((unsigned char)0x81);
8040   emit_operand(rcx, dst, 4);
8041   emit_int32(imm32);
8042 }
8043 
8044 void Assembler::orq(Register dst, int32_t imm32) {
8045   (void) prefixq_and_encode(dst->encoding());
8046   emit_arith(0x81, 0xC8, dst, imm32);
8047 }
8048 
8049 void Assembler::orq(Register dst, Address src) {
8050   InstructionMark im(this);
8051   prefixq(src, dst);
8052   emit_int8(0x0B);
8053   emit_operand(dst, src);
8054 }
8055 
8056 void Assembler::orq(Register dst, Register src) {
8057   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8058   emit_arith(0x0B, 0xC0, dst, src);
8059 }
8060 
8061 void Assembler::popa() { // 64bit
8062   movq(r15, Address(rsp, 0));
8063   movq(r14, Address(rsp, wordSize));
8064   movq(r13, Address(rsp, 2 * wordSize));
8065   movq(r12, Address(rsp, 3 * wordSize));
8066   movq(r11, Address(rsp, 4 * wordSize));
8067   movq(r10, Address(rsp, 5 * wordSize));
8068   movq(r9,  Address(rsp, 6 * wordSize));
8069   movq(r8,  Address(rsp, 7 * wordSize));
8070   movq(rdi, Address(rsp, 8 * wordSize));
8071   movq(rsi, Address(rsp, 9 * wordSize));
8072   movq(rbp, Address(rsp, 10 * wordSize));
8073   // skip rsp
8074   movq(rbx, Address(rsp, 12 * wordSize));
8075   movq(rdx, Address(rsp, 13 * wordSize));
8076   movq(rcx, Address(rsp, 14 * wordSize));
8077   movq(rax, Address(rsp, 15 * wordSize));
8078 
8079   addq(rsp, 16 * wordSize);
8080 }
8081 
8082 void Assembler::popcntq(Register dst, Address src) {
8083   assert(VM_Version::supports_popcnt(), "must support");
8084   InstructionMark im(this);
8085   emit_int8((unsigned char)0xF3);
8086   prefixq(src, dst);
8087   emit_int8((unsigned char)0x0F);
8088   emit_int8((unsigned char)0xB8);
8089   emit_operand(dst, src);
8090 }
8091 
8092 void Assembler::popcntq(Register dst, Register src) {
8093   assert(VM_Version::supports_popcnt(), "must support");
8094   emit_int8((unsigned char)0xF3);
8095   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8096   emit_int8((unsigned char)0x0F);
8097   emit_int8((unsigned char)0xB8);
8098   emit_int8((unsigned char)(0xC0 | encode));
8099 }
8100 
8101 void Assembler::popq(Address dst) {
8102   InstructionMark im(this);
8103   prefixq(dst);
8104   emit_int8((unsigned char)0x8F);
8105   emit_operand(rax, dst);
8106 }
8107 
8108 void Assembler::pusha() { // 64bit
8109   // we have to store original rsp.  ABI says that 128 bytes
8110   // below rsp are local scratch.
8111   movq(Address(rsp, -5 * wordSize), rsp);
8112 
8113   subq(rsp, 16 * wordSize);
8114 
8115   movq(Address(rsp, 15 * wordSize), rax);
8116   movq(Address(rsp, 14 * wordSize), rcx);
8117   movq(Address(rsp, 13 * wordSize), rdx);
8118   movq(Address(rsp, 12 * wordSize), rbx);
8119   // skip rsp
8120   movq(Address(rsp, 10 * wordSize), rbp);
8121   movq(Address(rsp, 9 * wordSize), rsi);
8122   movq(Address(rsp, 8 * wordSize), rdi);
8123   movq(Address(rsp, 7 * wordSize), r8);
8124   movq(Address(rsp, 6 * wordSize), r9);
8125   movq(Address(rsp, 5 * wordSize), r10);
8126   movq(Address(rsp, 4 * wordSize), r11);
8127   movq(Address(rsp, 3 * wordSize), r12);
8128   movq(Address(rsp, 2 * wordSize), r13);
8129   movq(Address(rsp, wordSize), r14);
8130   movq(Address(rsp, 0), r15);
8131 }
8132 
8133 void Assembler::pushq(Address src) {
8134   InstructionMark im(this);
8135   prefixq(src);
8136   emit_int8((unsigned char)0xFF);
8137   emit_operand(rsi, src);
8138 }
8139 
8140 void Assembler::rclq(Register dst, int imm8) {
8141   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8142   int encode = prefixq_and_encode(dst->encoding());
8143   if (imm8 == 1) {
8144     emit_int8((unsigned char)0xD1);
8145     emit_int8((unsigned char)(0xD0 | encode));
8146   } else {
8147     emit_int8((unsigned char)0xC1);
8148     emit_int8((unsigned char)(0xD0 | encode));
8149     emit_int8(imm8);
8150   }
8151 }
8152 
8153 void Assembler::rcrq(Register dst, int imm8) {
8154   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8155   int encode = prefixq_and_encode(dst->encoding());
8156   if (imm8 == 1) {
8157     emit_int8((unsigned char)0xD1);
8158     emit_int8((unsigned char)(0xD8 | encode));
8159   } else {
8160     emit_int8((unsigned char)0xC1);
8161     emit_int8((unsigned char)(0xD8 | encode));
8162     emit_int8(imm8);
8163   }
8164 }
8165 
8166 void Assembler::rorq(Register dst, int imm8) {
8167   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8168   int encode = prefixq_and_encode(dst->encoding());
8169   if (imm8 == 1) {
8170     emit_int8((unsigned char)0xD1);
8171     emit_int8((unsigned char)(0xC8 | encode));
8172   } else {
8173     emit_int8((unsigned char)0xC1);
8174     emit_int8((unsigned char)(0xc8 | encode));
8175     emit_int8(imm8);
8176   }
8177 }
8178 
8179 void Assembler::rorxq(Register dst, Register src, int imm8) {
8180   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8181   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ false, /* uses_vl */ false);
8182   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8183   emit_int8((unsigned char)0xF0);
8184   emit_int8((unsigned char)(0xC0 | encode));
8185   emit_int8(imm8);
8186 }
8187 
8188 void Assembler::sarq(Register dst, int imm8) {
8189   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8190   int encode = prefixq_and_encode(dst->encoding());
8191   if (imm8 == 1) {
8192     emit_int8((unsigned char)0xD1);
8193     emit_int8((unsigned char)(0xF8 | encode));
8194   } else {
8195     emit_int8((unsigned char)0xC1);
8196     emit_int8((unsigned char)(0xF8 | encode));
8197     emit_int8(imm8);
8198   }
8199 }
8200 
8201 void Assembler::sarq(Register dst) {
8202   int encode = prefixq_and_encode(dst->encoding());
8203   emit_int8((unsigned char)0xD3);
8204   emit_int8((unsigned char)(0xF8 | encode));
8205 }
8206 
8207 void Assembler::sbbq(Address dst, int32_t imm32) {
8208   InstructionMark im(this);
8209   prefixq(dst);
8210   emit_arith_operand(0x81, rbx, dst, imm32);
8211 }
8212 
8213 void Assembler::sbbq(Register dst, int32_t imm32) {
8214   (void) prefixq_and_encode(dst->encoding());
8215   emit_arith(0x81, 0xD8, dst, imm32);
8216 }
8217 
8218 void Assembler::sbbq(Register dst, Address src) {
8219   InstructionMark im(this);
8220   prefixq(src, dst);
8221   emit_int8(0x1B);
8222   emit_operand(dst, src);
8223 }
8224 
8225 void Assembler::sbbq(Register dst, Register src) {
8226   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8227   emit_arith(0x1B, 0xC0, dst, src);
8228 }
8229 
8230 void Assembler::shlq(Register dst, int imm8) {
8231   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8232   int encode = prefixq_and_encode(dst->encoding());
8233   if (imm8 == 1) {
8234     emit_int8((unsigned char)0xD1);
8235     emit_int8((unsigned char)(0xE0 | encode));
8236   } else {
8237     emit_int8((unsigned char)0xC1);
8238     emit_int8((unsigned char)(0xE0 | encode));
8239     emit_int8(imm8);
8240   }
8241 }
8242 
8243 void Assembler::shlq(Register dst) {
8244   int encode = prefixq_and_encode(dst->encoding());
8245   emit_int8((unsigned char)0xD3);
8246   emit_int8((unsigned char)(0xE0 | encode));
8247 }
8248 
8249 void Assembler::shrq(Register dst, int imm8) {
8250   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8251   int encode = prefixq_and_encode(dst->encoding());
8252   emit_int8((unsigned char)0xC1);
8253   emit_int8((unsigned char)(0xE8 | encode));
8254   emit_int8(imm8);
8255 }
8256 
8257 void Assembler::shrq(Register dst) {
8258   int encode = prefixq_and_encode(dst->encoding());
8259   emit_int8((unsigned char)0xD3);
8260   emit_int8(0xE8 | encode);
8261 }
8262 
8263 void Assembler::subq(Address dst, int32_t imm32) {
8264   InstructionMark im(this);
8265   prefixq(dst);
8266   emit_arith_operand(0x81, rbp, dst, imm32);
8267 }
8268 
8269 void Assembler::subq(Address dst, Register src) {
8270   InstructionMark im(this);
8271   prefixq(dst, src);
8272   emit_int8(0x29);
8273   emit_operand(src, dst);
8274 }
8275 
8276 void Assembler::subq(Register dst, int32_t imm32) {
8277   (void) prefixq_and_encode(dst->encoding());
8278   emit_arith(0x81, 0xE8, dst, imm32);
8279 }
8280 
8281 // Force generation of a 4 byte immediate value even if it fits into 8bit
8282 void Assembler::subq_imm32(Register dst, int32_t imm32) {
8283   (void) prefixq_and_encode(dst->encoding());
8284   emit_arith_imm32(0x81, 0xE8, dst, imm32);
8285 }
8286 
8287 void Assembler::subq(Register dst, Address src) {
8288   InstructionMark im(this);
8289   prefixq(src, dst);
8290   emit_int8(0x2B);
8291   emit_operand(dst, src);
8292 }
8293 
8294 void Assembler::subq(Register dst, Register src) {
8295   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8296   emit_arith(0x2B, 0xC0, dst, src);
8297 }
8298 
8299 void Assembler::testq(Register dst, int32_t imm32) {
8300   // not using emit_arith because test
8301   // doesn't support sign-extension of
8302   // 8bit operands
8303   int encode = dst->encoding();
8304   if (encode == 0) {
8305     prefix(REX_W);
8306     emit_int8((unsigned char)0xA9);
8307   } else {
8308     encode = prefixq_and_encode(encode);
8309     emit_int8((unsigned char)0xF7);
8310     emit_int8((unsigned char)(0xC0 | encode));
8311   }
8312   emit_int32(imm32);
8313 }
8314 
8315 void Assembler::testq(Register dst, Register src) {
8316   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8317   emit_arith(0x85, 0xC0, dst, src);
8318 }
8319 
8320 void Assembler::xaddq(Address dst, Register src) {
8321   InstructionMark im(this);
8322   prefixq(dst, src);
8323   emit_int8(0x0F);
8324   emit_int8((unsigned char)0xC1);
8325   emit_operand(src, dst);
8326 }
8327 
8328 void Assembler::xchgq(Register dst, Address src) {
8329   InstructionMark im(this);
8330   prefixq(src, dst);
8331   emit_int8((unsigned char)0x87);
8332   emit_operand(dst, src);
8333 }
8334 
8335 void Assembler::xchgq(Register dst, Register src) {
8336   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8337   emit_int8((unsigned char)0x87);
8338   emit_int8((unsigned char)(0xc0 | encode));
8339 }
8340 
8341 void Assembler::xorq(Register dst, Register src) {
8342   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8343   emit_arith(0x33, 0xC0, dst, src);
8344 }
8345 
8346 void Assembler::xorq(Register dst, Address src) {
8347   InstructionMark im(this);
8348   prefixq(src, dst);
8349   emit_int8(0x33);
8350   emit_operand(dst, src);
8351 }
8352 
8353 #endif // !LP64