1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class CountedLoopReserveKit;
  42 class VectorSet;
  43 class Invariance;
  44 struct small_cache;
  45 
  46 //
  47 //                  I D E A L I Z E D   L O O P S
  48 //
  49 // Idealized loops are the set of loops I perform more interesting
  50 // transformations on, beyond simple hoisting.
  51 
  52 //------------------------------LoopNode---------------------------------------
  53 // Simple loop header.  Fall in path on left, loop-back path on right.
  54 class LoopNode : public RegionNode {
  55   // Size is bigger to hold the flags.  However, the flags do not change
  56   // the semantics so it does not appear in the hash & cmp functions.
  57   virtual uint size_of() const { return sizeof(*this); }
  58 protected:
  59   short _loop_flags;
  60   // Names for flag bitfields
  61   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  62          MainHasNoPreLoop=4,
  63          HasExactTripCount=8,
  64          InnerLoop=16,
  65          PartialPeelLoop=32,
  66          PartialPeelFailed=64,
  67          HasReductions=128,
  68          WasSlpAnalyzed=256,
  69          PassedSlpAnalysis=512,
  70          DoUnrollOnly=1024,
  71          VectorizedLoop=2048,
  72          HasAtomicPostLoop=4096,
  73          HasRangeChecks=8192,
  74          IsMultiversioned=16384};
  75   char _unswitch_count;
  76   enum { _unswitch_max=3 };
  77 
  78 public:
  79   // Names for edge indices
  80   enum { Self=0, EntryControl, LoopBackControl };
  81 
  82   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  83   void set_inner_loop() { _loop_flags |= InnerLoop; }
  84 
  85   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  86   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  87   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  88   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  89   void mark_has_reductions() { _loop_flags |= HasReductions; }
  90   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
  91   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
  92   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
  93   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
  94   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
  95   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
  96   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
  97 
  98   int unswitch_max() { return _unswitch_max; }
  99   int unswitch_count() { return _unswitch_count; }
 100   void set_unswitch_count(int val) {
 101     assert (val <= unswitch_max(), "too many unswitches");
 102     _unswitch_count = val;
 103   }
 104 
 105   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
 106     init_class_id(Class_Loop);
 107     init_req(EntryControl, entry);
 108     init_req(LoopBackControl, backedge);
 109   }
 110 
 111   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 112   virtual int Opcode() const;
 113   bool can_be_counted_loop(PhaseTransform* phase) const {
 114     return req() == 3 && in(0) != NULL &&
 115       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 116       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 117   }
 118   bool is_valid_counted_loop() const;
 119 #ifndef PRODUCT
 120   virtual void dump_spec(outputStream *st) const;
 121 #endif
 122 };
 123 
 124 //------------------------------Counted Loops----------------------------------
 125 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 126 // path (and maybe some other exit paths).  The trip-counter exit is always
 127 // last in the loop.  The trip-counter have to stride by a constant;
 128 // the exit value is also loop invariant.
 129 
 130 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 131 // CountedLoopNode has the incoming loop control and the loop-back-control
 132 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 133 // CountedLoopEndNode has an incoming control (possibly not the
 134 // CountedLoopNode if there is control flow in the loop), the post-increment
 135 // trip-counter value, and the limit.  The trip-counter value is always of
 136 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 137 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 138 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 139 // CountedLoopEndNode also takes in the loop-invariant limit value.
 140 
 141 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 142 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 143 // via the old-trip-counter from the Op node.
 144 
 145 //------------------------------CountedLoopNode--------------------------------
 146 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 147 // inputs the incoming loop-start control and the loop-back control, so they
 148 // act like RegionNodes.  They also take in the initial trip counter, the
 149 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 150 // produce a loop-body control and the trip counter value.  Since
 151 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 152 
 153 class CountedLoopNode : public LoopNode {
 154   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 155   // the semantics so it does not appear in the hash & cmp functions.
 156   virtual uint size_of() const { return sizeof(*this); }
 157 
 158   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 159   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 160   node_idx_t _main_idx;
 161 
 162   // Known trip count calculated by compute_exact_trip_count()
 163   uint  _trip_count;
 164 
 165   // Expected trip count from profile data
 166   float _profile_trip_cnt;
 167 
 168   // Log2 of original loop bodies in unrolled loop
 169   int _unrolled_count_log2;
 170 
 171   // Node count prior to last unrolling - used to decide if
 172   // unroll,optimize,unroll,optimize,... is making progress
 173   int _node_count_before_unroll;
 174 
 175   // If slp analysis is performed we record the maximum
 176   // vector mapped unroll factor here
 177   int _slp_maximum_unroll_factor;
 178 
 179 public:
 180   CountedLoopNode( Node *entry, Node *backedge )
 181     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 182       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 183       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 184     init_class_id(Class_CountedLoop);
 185     // Initialize _trip_count to the largest possible value.
 186     // Will be reset (lower) if the loop's trip count is known.
 187   }
 188 
 189   virtual int Opcode() const;
 190   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 191 
 192   Node *init_control() const { return in(EntryControl); }
 193   Node *back_control() const { return in(LoopBackControl); }
 194   CountedLoopEndNode *loopexit() const;
 195   Node *init_trip() const;
 196   Node *stride() const;
 197   int   stride_con() const;
 198   bool  stride_is_con() const;
 199   Node *limit() const;
 200   Node *incr() const;
 201   Node *phi() const;
 202 
 203   // Match increment with optional truncation
 204   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 205 
 206   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 207   // can run short a few iterations and may start a few iterations in.
 208   // It will be RCE'd and unrolled and aligned.
 209 
 210   // A following 'post' loop will run any remaining iterations.  Used
 211   // during Range Check Elimination, the 'post' loop will do any final
 212   // iterations with full checks.  Also used by Loop Unrolling, where
 213   // the 'post' loop will do any epilog iterations needed.  Basically,
 214   // a 'post' loop can not profitably be further unrolled or RCE'd.
 215 
 216   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 217   // it may do under-flow checks for RCE and may do alignment iterations
 218   // so the following main loop 'knows' that it is striding down cache
 219   // lines.
 220 
 221   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 222   // Aligned, may be missing it's pre-loop.
 223   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 224   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 225   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 226   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 227   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 228   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 229   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 230   int do_unroll_only   () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 231   int is_main_no_pre_loop   () const { return _loop_flags & MainHasNoPreLoop; }
 232   int is_vectorized_loop    () const { return (_loop_flags & VectorizedLoop) == VectorizedLoop; }
 233   int has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 234   int loop_has_range_checks () const { return (_loop_flags & HasRangeChecks) == HasRangeChecks; }
 235   int loop_is_multiversioned() const { return (_loop_flags & IsMultiversioned) == IsMultiversioned; }
 236   void set_main_no_pre_loop () { _loop_flags |= MainHasNoPreLoop; }
 237 
 238   int main_idx() const { return _main_idx; }
 239 
 240 
 241   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 242   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 243   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 244   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 245 
 246   void set_trip_count(uint tc) { _trip_count = tc; }
 247   uint trip_count()            { return _trip_count; }
 248 
 249   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 250   void set_exact_trip_count(uint tc) {
 251     _trip_count = tc;
 252     _loop_flags |= HasExactTripCount;
 253   }
 254   void set_nonexact_trip_count() {
 255     _loop_flags &= ~HasExactTripCount;
 256   }
 257   void set_notpassed_slp() {
 258     _loop_flags &= ~PassedSlpAnalysis;
 259   }
 260 
 261   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 262   float profile_trip_cnt()             { return _profile_trip_cnt; }
 263 
 264   void double_unrolled_count() { _unrolled_count_log2++; }
 265   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 266 
 267   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 268   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 269   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 270   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 271 
 272 #ifndef PRODUCT
 273   virtual void dump_spec(outputStream *st) const;
 274 #endif
 275 };
 276 
 277 //------------------------------CountedLoopEndNode-----------------------------
 278 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 279 // IfNodes.
 280 class CountedLoopEndNode : public IfNode {
 281 public:
 282   enum { TestControl, TestValue };
 283 
 284   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 285     : IfNode( control, test, prob, cnt) {
 286     init_class_id(Class_CountedLoopEnd);
 287   }
 288   virtual int Opcode() const;
 289 
 290   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 291   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 292   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 293   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 294   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 295   int stride_con() const;
 296   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 297   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 298   PhiNode *phi() const {
 299     Node *tmp = incr();
 300     if (tmp && tmp->req() == 3) {
 301       Node* phi = tmp->in(1);
 302       if (phi->is_Phi()) {
 303         return phi->as_Phi();
 304       }
 305     }
 306     return NULL;
 307   }
 308   CountedLoopNode *loopnode() const {
 309     // The CountedLoopNode that goes with this CountedLoopEndNode may
 310     // have been optimized out by the IGVN so be cautious with the
 311     // pattern matching on the graph
 312     PhiNode* iv_phi = phi();
 313     if (iv_phi == NULL) {
 314       return NULL;
 315     }
 316     Node *ln = iv_phi->in(0);
 317     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 318       return (CountedLoopNode*)ln;
 319     }
 320     return NULL;
 321   }
 322 
 323 #ifndef PRODUCT
 324   virtual void dump_spec(outputStream *st) const;
 325 #endif
 326 };
 327 
 328 
 329 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 330   Node *bc = back_control();
 331   if( bc == NULL ) return NULL;
 332   Node *le = bc->in(0);
 333   if( le->Opcode() != Op_CountedLoopEnd )
 334     return NULL;
 335   return (CountedLoopEndNode*)le;
 336 }
 337 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 338 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 339 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 340 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 341 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 342 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 343 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 344 
 345 //------------------------------LoopLimitNode-----------------------------
 346 // Counted Loop limit node which represents exact final iterator value:
 347 // trip_count = (limit - init_trip + stride - 1)/stride
 348 // final_value= trip_count * stride + init_trip.
 349 // Use HW instructions to calculate it when it can overflow in integer.
 350 // Note, final_value should fit into integer since counted loop has
 351 // limit check: limit <= max_int-stride.
 352 class LoopLimitNode : public Node {
 353   enum { Init=1, Limit=2, Stride=3 };
 354  public:
 355   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 356     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 357     init_flags(Flag_is_macro);
 358     C->add_macro_node(this);
 359   }
 360   virtual int Opcode() const;
 361   virtual const Type *bottom_type() const { return TypeInt::INT; }
 362   virtual uint ideal_reg() const { return Op_RegI; }
 363   virtual const Type* Value(PhaseGVN* phase) const;
 364   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 365   virtual Node* Identity(PhaseGVN* phase);
 366 };
 367 
 368 // -----------------------------IdealLoopTree----------------------------------
 369 class IdealLoopTree : public ResourceObj {
 370 public:
 371   IdealLoopTree *_parent;       // Parent in loop tree
 372   IdealLoopTree *_next;         // Next sibling in loop tree
 373   IdealLoopTree *_child;        // First child in loop tree
 374 
 375   // The head-tail backedge defines the loop.
 376   // If tail is NULL then this loop has multiple backedges as part of the
 377   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 378   // them at the loop bottom and flow 1 real backedge into the loop.
 379   Node *_head;                  // Head of loop
 380   Node *_tail;                  // Tail of loop
 381   inline Node *tail();          // Handle lazy update of _tail field
 382   PhaseIdealLoop* _phase;
 383   int _local_loop_unroll_limit;
 384   int _local_loop_unroll_factor;
 385 
 386   Node_List _body;              // Loop body for inner loops
 387 
 388   uint8_t _nest;                // Nesting depth
 389   uint8_t _irreducible:1,       // True if irreducible
 390           _has_call:1,          // True if has call safepoint
 391           _has_sfpt:1,          // True if has non-call safepoint
 392           _rce_candidate:1;     // True if candidate for range check elimination
 393 
 394   Node_List* _safepts;          // List of safepoints in this loop
 395   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 396   bool  _allow_optimizations;   // Allow loop optimizations
 397 
 398   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 399     : _parent(0), _next(0), _child(0),
 400       _head(head), _tail(tail),
 401       _phase(phase),
 402       _safepts(NULL),
 403       _required_safept(NULL),
 404       _allow_optimizations(true),
 405       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 406       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 407   { }
 408 
 409   // Is 'l' a member of 'this'?
 410   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 411 
 412   // Set loop nesting depth.  Accumulate has_call bits.
 413   int set_nest( uint depth );
 414 
 415   // Split out multiple fall-in edges from the loop header.  Move them to a
 416   // private RegionNode before the loop.  This becomes the loop landing pad.
 417   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 418 
 419   // Split out the outermost loop from this shared header.
 420   void split_outer_loop( PhaseIdealLoop *phase );
 421 
 422   // Merge all the backedges from the shared header into a private Region.
 423   // Feed that region as the one backedge to this loop.
 424   void merge_many_backedges( PhaseIdealLoop *phase );
 425 
 426   // Split shared headers and insert loop landing pads.
 427   // Insert a LoopNode to replace the RegionNode.
 428   // Returns TRUE if loop tree is structurally changed.
 429   bool beautify_loops( PhaseIdealLoop *phase );
 430 
 431   // Perform optimization to use the loop predicates for null checks and range checks.
 432   // Applies to any loop level (not just the innermost one)
 433   bool loop_predication( PhaseIdealLoop *phase);
 434 
 435   // Perform iteration-splitting on inner loops.  Split iterations to
 436   // avoid range checks or one-shot null checks.  Returns false if the
 437   // current round of loop opts should stop.
 438   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 439 
 440   // Driver for various flavors of iteration splitting.  Returns false
 441   // if the current round of loop opts should stop.
 442   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 443 
 444   // Given dominators, try to find loops with calls that must always be
 445   // executed (call dominates loop tail).  These loops do not need non-call
 446   // safepoints (ncsfpt).
 447   void check_safepts(VectorSet &visited, Node_List &stack);
 448 
 449   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 450   // encountered.
 451   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 452 
 453   // Remove safepoints from loop. Optionally keeping one.
 454   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 455 
 456   // Convert to counted loops where possible
 457   void counted_loop( PhaseIdealLoop *phase );
 458 
 459   // Check for Node being a loop-breaking test
 460   Node *is_loop_exit(Node *iff) const;
 461 
 462   // Returns true if ctrl is executed on every complete iteration
 463   bool dominates_backedge(Node* ctrl);
 464 
 465   // Remove simplistic dead code from loop body
 466   void DCE_loop_body();
 467 
 468   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 469   // Replace with a 1-in-10 exit guess.
 470   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 471 
 472   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 473   // Useful for unrolling loops with NO array accesses.
 474   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 475 
 476   // Return TRUE or FALSE if the loop should be unswitched -- clone
 477   // loop with an invariant test
 478   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 479 
 480   // Micro-benchmark spamming.  Remove empty loops.
 481   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 482 
 483   // Convert one iteration loop into normal code.
 484   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 485 
 486   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 487   // make some loop-invariant test (usually a null-check) happen before the
 488   // loop.
 489   bool policy_peeling( PhaseIdealLoop *phase ) const;
 490 
 491   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 492   // known trip count in the counted loop node.
 493   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 494 
 495   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 496   // the loop is a CountedLoop and the body is small enough.
 497   bool policy_unroll(PhaseIdealLoop *phase);
 498 
 499   // Loop analyses to map to a maximal superword unrolling for vectorization.
 500   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 501 
 502   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 503   // Gather a list of IF tests that are dominated by iteration splitting;
 504   // also gather the end of the first split and the start of the 2nd split.
 505   bool policy_range_check( PhaseIdealLoop *phase ) const;
 506 
 507   // Return TRUE or FALSE if the loop should be cache-line aligned.
 508   // Gather the expression that does the alignment.  Note that only
 509   // one array base can be aligned in a loop (unless the VM guarantees
 510   // mutual alignment).  Note that if we vectorize short memory ops
 511   // into longer memory ops, we may want to increase alignment.
 512   bool policy_align( PhaseIdealLoop *phase ) const;
 513 
 514   // Return TRUE if "iff" is a range check.
 515   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 516 
 517   // Compute loop exact trip count if possible
 518   void compute_exact_trip_count( PhaseIdealLoop *phase );
 519 
 520   // Compute loop trip count from profile data
 521   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 522 
 523   // Reassociate invariant expressions.
 524   void reassociate_invariants(PhaseIdealLoop *phase);
 525   // Reassociate invariant add and subtract expressions.
 526   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 527   // Return nonzero index of invariant operand if invariant and variant
 528   // are combined with an Add or Sub. Helper for reassociate_invariants.
 529   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 530 
 531   // Return true if n is invariant
 532   bool is_invariant(Node* n) const;
 533 
 534   // Put loop body on igvn work list
 535   void record_for_igvn();
 536 
 537   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 538   bool is_inner()   { return is_loop() && _child == NULL; }
 539   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 540 
 541   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 542 
 543 #ifndef PRODUCT
 544   void dump_head( ) const;      // Dump loop head only
 545   void dump() const;            // Dump this loop recursively
 546   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 547 #endif
 548 
 549 };
 550 
 551 class PostLoopInfo {
 552 public:
 553   Node *new_main_exit;
 554   CountedLoopNode *post_head;
 555 
 556   PostLoopInfo() { init(); }
 557 
 558   void init() { new_main_exit = NULL;  post_head = NULL; }
 559 };
 560 
 561 // -----------------------------PhaseIdealLoop---------------------------------
 562 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 563 // loop tree.  Drives the loop-based transformations on the ideal graph.
 564 class PhaseIdealLoop : public PhaseTransform {
 565   friend class IdealLoopTree;
 566   friend class SuperWord;
 567   friend class CountedLoopReserveKit;
 568 
 569   // Pre-computed def-use info
 570   PhaseIterGVN &_igvn;
 571 
 572   // Head of loop tree
 573   IdealLoopTree *_ltree_root;
 574 
 575   // Array of pre-order numbers, plus post-visited bit.
 576   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 577   // ODD for post-visited.  Other bits are the pre-order number.
 578   uint *_preorders;
 579   uint _max_preorder;
 580 
 581   const PhaseIdealLoop* _verify_me;
 582   bool _verify_only;
 583 
 584   // Allocate _preorders[] array
 585   void allocate_preorders() {
 586     _max_preorder = C->unique()+8;
 587     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 588     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 589   }
 590 
 591   // Allocate _preorders[] array
 592   void reallocate_preorders() {
 593     if ( _max_preorder < C->unique() ) {
 594       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 595       _max_preorder = C->unique();
 596     }
 597     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 598   }
 599 
 600   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 601   // adds new nodes.
 602   void check_grow_preorders( ) {
 603     if ( _max_preorder < C->unique() ) {
 604       uint newsize = _max_preorder<<1;  // double size of array
 605       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 606       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 607       _max_preorder = newsize;
 608     }
 609   }
 610   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 611   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 612   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 613   void set_preorder_visited( Node *n, int pre_order ) {
 614     assert( !is_visited( n ), "already set" );
 615     _preorders[n->_idx] = (pre_order<<1);
 616   };
 617   // Return pre-order number.
 618   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 619 
 620   // Check for being post-visited.
 621   // Should be previsited already (checked with assert(is_visited(n))).
 622   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 623 
 624   // Mark as post visited
 625   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 626 
 627   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 628   // Returns true if "n" is a data node, false if it's a control node.
 629   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 630 
 631   // clear out dead code after build_loop_late
 632   Node_List _deadlist;
 633 
 634   // Support for faster execution of get_late_ctrl()/dom_lca()
 635   // when a node has many uses and dominator depth is deep.
 636   Node_Array _dom_lca_tags;
 637   void   init_dom_lca_tags();
 638   void   clear_dom_lca_tags();
 639 
 640   // Helper for debugging bad dominance relationships
 641   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 642 
 643   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 644 
 645   // Inline wrapper for frequent cases:
 646   // 1) only one use
 647   // 2) a use is the same as the current LCA passed as 'n1'
 648   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 649     assert( n->is_CFG(), "" );
 650     // Fast-path NULL lca
 651     if( lca != NULL && lca != n ) {
 652       assert( lca->is_CFG(), "" );
 653       // find LCA of all uses
 654       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 655     }
 656     return find_non_split_ctrl(n);
 657   }
 658   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 659 
 660   // Helper function for directing control inputs away from CFG split
 661   // points.
 662   Node *find_non_split_ctrl( Node *ctrl ) const {
 663     if (ctrl != NULL) {
 664       if (ctrl->is_MultiBranch()) {
 665         ctrl = ctrl->in(0);
 666       }
 667       assert(ctrl->is_CFG(), "CFG");
 668     }
 669     return ctrl;
 670   }
 671 
 672   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 673 
 674 public:
 675   bool has_node( Node* n ) const {
 676     guarantee(n != NULL, "No Node.");
 677     return _nodes[n->_idx] != NULL;
 678   }
 679   // check if transform created new nodes that need _ctrl recorded
 680   Node *get_late_ctrl( Node *n, Node *early );
 681   Node *get_early_ctrl( Node *n );
 682   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 683   void set_early_ctrl( Node *n );
 684   void set_subtree_ctrl( Node *root );
 685   void set_ctrl( Node *n, Node *ctrl ) {
 686     assert( !has_node(n) || has_ctrl(n), "" );
 687     assert( ctrl->in(0), "cannot set dead control node" );
 688     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 689     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 690   }
 691   // Set control and update loop membership
 692   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 693     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 694     IdealLoopTree* new_loop = get_loop(ctrl);
 695     if (old_loop != new_loop) {
 696       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 697       if (new_loop->_child == NULL) new_loop->_body.push(n);
 698     }
 699     set_ctrl(n, ctrl);
 700   }
 701   // Control nodes can be replaced or subsumed.  During this pass they
 702   // get their replacement Node in slot 1.  Instead of updating the block
 703   // location of all Nodes in the subsumed block, we lazily do it.  As we
 704   // pull such a subsumed block out of the array, we write back the final
 705   // correct block.
 706   Node *get_ctrl( Node *i ) {
 707     assert(has_node(i), "");
 708     Node *n = get_ctrl_no_update(i);
 709     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 710     assert(has_node(i) && has_ctrl(i), "");
 711     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 712     return n;
 713   }
 714   // true if CFG node d dominates CFG node n
 715   bool is_dominator(Node *d, Node *n);
 716   // return get_ctrl for a data node and self(n) for a CFG node
 717   Node* ctrl_or_self(Node* n) {
 718     if (has_ctrl(n))
 719       return get_ctrl(n);
 720     else {
 721       assert (n->is_CFG(), "must be a CFG node");
 722       return n;
 723     }
 724   }
 725 
 726 private:
 727   Node *get_ctrl_no_update_helper(Node *i) const {
 728     assert(has_ctrl(i), "should be control, not loop");
 729     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 730   }
 731 
 732   Node *get_ctrl_no_update(Node *i) const {
 733     assert( has_ctrl(i), "" );
 734     Node *n = get_ctrl_no_update_helper(i);
 735     if (!n->in(0)) {
 736       // Skip dead CFG nodes
 737       do {
 738         n = get_ctrl_no_update_helper(n);
 739       } while (!n->in(0));
 740       n = find_non_split_ctrl(n);
 741     }
 742     return n;
 743   }
 744 
 745   // Check for loop being set
 746   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 747   bool has_loop( Node *n ) const {
 748     assert(!has_node(n) || !has_ctrl(n), "");
 749     return has_node(n);
 750   }
 751   // Set loop
 752   void set_loop( Node *n, IdealLoopTree *loop ) {
 753     _nodes.map(n->_idx, (Node*)loop);
 754   }
 755   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 756   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 757   // from old_node to new_node to support the lazy update.  Reference
 758   // replaces loop reference, since that is not needed for dead node.
 759 public:
 760   void lazy_update(Node *old_node, Node *new_node) {
 761     assert(old_node != new_node, "no cycles please");
 762     // Re-use the side array slot for this node to provide the
 763     // forwarding pointer.
 764     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 765   }
 766   void lazy_replace(Node *old_node, Node *new_node) {
 767     _igvn.replace_node(old_node, new_node);
 768     lazy_update(old_node, new_node);
 769   }
 770 
 771 private:
 772 
 773   // Place 'n' in some loop nest, where 'n' is a CFG node
 774   void build_loop_tree();
 775   int build_loop_tree_impl( Node *n, int pre_order );
 776   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 777   // loop tree, not the root.
 778   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 779 
 780   // Place Data nodes in some loop nest
 781   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 782   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 783   void build_loop_late_post ( Node* n );
 784 
 785   // Array of immediate dominance info for each CFG node indexed by node idx
 786 private:
 787   uint _idom_size;
 788   Node **_idom;                 // Array of immediate dominators
 789   uint *_dom_depth;           // Used for fast LCA test
 790   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 791 
 792   Node* idom_no_update(Node* d) const {
 793     assert(d->_idx < _idom_size, "oob");
 794     Node* n = _idom[d->_idx];
 795     assert(n != NULL,"Bad immediate dominator info.");
 796     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 797       //n = n->in(1);
 798       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 799       assert(n != NULL,"Bad immediate dominator info.");
 800     }
 801     return n;
 802   }
 803   Node *idom(Node* d) const {
 804     uint didx = d->_idx;
 805     Node *n = idom_no_update(d);
 806     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 807     return n;
 808   }
 809   uint dom_depth(Node* d) const {
 810     guarantee(d != NULL, "Null dominator info.");
 811     guarantee(d->_idx < _idom_size, "");
 812     return _dom_depth[d->_idx];
 813   }
 814   void set_idom(Node* d, Node* n, uint dom_depth);
 815   // Locally compute IDOM using dom_lca call
 816   Node *compute_idom( Node *region ) const;
 817   // Recompute dom_depth
 818   void recompute_dom_depth();
 819 
 820   // Is safept not required by an outer loop?
 821   bool is_deleteable_safept(Node* sfpt);
 822 
 823   // Replace parallel induction variable (parallel to trip counter)
 824   void replace_parallel_iv(IdealLoopTree *loop);
 825 
 826   // Perform verification that the graph is valid.
 827   PhaseIdealLoop( PhaseIterGVN &igvn) :
 828     PhaseTransform(Ideal_Loop),
 829     _igvn(igvn),
 830     _dom_lca_tags(arena()), // Thread::resource_area
 831     _verify_me(NULL),
 832     _verify_only(true) {
 833     build_and_optimize(false, false);
 834   }
 835 
 836   // build the loop tree and perform any requested optimizations
 837   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 838 
 839 public:
 840   // Dominators for the sea of nodes
 841   void Dominators();
 842   Node *dom_lca( Node *n1, Node *n2 ) const {
 843     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 844   }
 845   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 846 
 847   // Compute the Ideal Node to Loop mapping
 848   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 849     PhaseTransform(Ideal_Loop),
 850     _igvn(igvn),
 851     _dom_lca_tags(arena()), // Thread::resource_area
 852     _verify_me(NULL),
 853     _verify_only(false) {
 854     build_and_optimize(do_split_ifs, skip_loop_opts);
 855   }
 856 
 857   // Verify that verify_me made the same decisions as a fresh run.
 858   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 859     PhaseTransform(Ideal_Loop),
 860     _igvn(igvn),
 861     _dom_lca_tags(arena()), // Thread::resource_area
 862     _verify_me(verify_me),
 863     _verify_only(false) {
 864     build_and_optimize(false, false);
 865   }
 866 
 867   // Build and verify the loop tree without modifying the graph.  This
 868   // is useful to verify that all inputs properly dominate their uses.
 869   static void verify(PhaseIterGVN& igvn) {
 870 #ifdef ASSERT
 871     PhaseIdealLoop v(igvn);
 872 #endif
 873   }
 874 
 875   // True if the method has at least 1 irreducible loop
 876   bool _has_irreducible_loops;
 877 
 878   // Per-Node transform
 879   virtual Node *transform( Node *a_node ) { return 0; }
 880 
 881   bool is_counted_loop( Node *x, IdealLoopTree *loop );
 882 
 883   Node* exact_limit( IdealLoopTree *loop );
 884 
 885   // Return a post-walked LoopNode
 886   IdealLoopTree *get_loop( Node *n ) const {
 887     // Dead nodes have no loop, so return the top level loop instead
 888     if (!has_node(n))  return _ltree_root;
 889     assert(!has_ctrl(n), "");
 890     return (IdealLoopTree*)_nodes[n->_idx];
 891   }
 892 
 893   // Is 'n' a (nested) member of 'loop'?
 894   int is_member( const IdealLoopTree *loop, Node *n ) const {
 895     return loop->is_member(get_loop(n)); }
 896 
 897   // This is the basic building block of the loop optimizations.  It clones an
 898   // entire loop body.  It makes an old_new loop body mapping; with this
 899   // mapping you can find the new-loop equivalent to an old-loop node.  All
 900   // new-loop nodes are exactly equal to their old-loop counterparts, all
 901   // edges are the same.  All exits from the old-loop now have a RegionNode
 902   // that merges the equivalent new-loop path.  This is true even for the
 903   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 904   // now come from (one or more) Phis that merge their new-loop equivalents.
 905   // Parameter side_by_side_idom:
 906   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 907   //      the clone loop to dominate the original.  Used in construction of
 908   //      pre-main-post loop sequence.
 909   //   When nonnull, the clone and original are side-by-side, both are
 910   //      dominated by the passed in side_by_side_idom node.  Used in
 911   //      construction of unswitched loops.
 912   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 913                    Node* side_by_side_idom = NULL);
 914 
 915   // If we got the effect of peeling, either by actually peeling or by
 916   // making a pre-loop which must execute at least once, we can remove
 917   // all loop-invariant dominated tests in the main body.
 918   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 919 
 920   // Generate code to do a loop peel for the given loop (and body).
 921   // old_new is a temp array.
 922   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 923 
 924   // Add pre and post loops around the given loop.  These loops are used
 925   // during RCE, unrolling and aligning loops.
 926   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 927 
 928   // Add post loop after the given loop.
 929   void insert_post_loop( IdealLoopTree *loop, Node_List &old_new,
 930                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
 931                          Node *incr, Node *limit, PostLoopInfo &post_loop_info );
 932 
 933   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
 934   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
 935 
 936   // Add a vector post loop between a vector main loop and the current post loop
 937   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
 938 
 939   // If Node n lives in the back_ctrl block, we clone a private version of n
 940   // in preheader_ctrl block and return that, otherwise return n.
 941   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 942 
 943   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 944   // unroll to do double iterations.  The next round of major loop transforms
 945   // will repeat till the doubled loop body does all remaining iterations in 1
 946   // pass.
 947   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 948 
 949   // Unroll the loop body one step - make each trip do 2 iterations.
 950   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 951 
 952   // Mark vector reduction candidates before loop unrolling
 953   void mark_reductions( IdealLoopTree *loop );
 954 
 955   // Return true if exp is a constant times an induction var
 956   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 957 
 958   // Return true if exp is a scaled induction var plus (or minus) constant
 959   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 960 
 961   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 962   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 963                                         Deoptimization::DeoptReason reason,
 964                                         int opcode);
 965   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 966 
 967   // Clone loop predicates to cloned loops (peeled, unswitched)
 968   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
 969                                    Deoptimization::DeoptReason reason,
 970                                    PhaseIdealLoop* loop_phase,
 971                                    PhaseIterGVN* igvn);
 972 
 973   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
 974                                          bool clone_limit_check,
 975                                          PhaseIdealLoop* loop_phase,
 976                                          PhaseIterGVN* igvn);
 977   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 978 
 979   static Node* skip_loop_predicates(Node* entry);
 980 
 981   // Find a good location to insert a predicate
 982   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
 983   // Find a predicate
 984   static Node* find_predicate(Node* entry);
 985   // Construct a range check for a predicate if
 986   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
 987                          int scale, Node* offset,
 988                          Node* init, Node* limit, Node* stride,
 989                          Node* range, bool upper);
 990 
 991   // Implementation of the loop predication to promote checks outside the loop
 992   bool loop_predication_impl(IdealLoopTree *loop);
 993 
 994   // Helper function to collect predicate for eliminating the useless ones
 995   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 996   void eliminate_useless_predicates();
 997 
 998   // Change the control input of expensive nodes to allow commoning by
 999   // IGVN when it is guaranteed to not result in a more frequent
1000   // execution of the expensive node. Return true if progress.
1001   bool process_expensive_nodes();
1002 
1003   // Check whether node has become unreachable
1004   bool is_node_unreachable(Node *n) const {
1005     return !has_node(n) || n->is_unreachable(_igvn);
1006   }
1007 
1008   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1009   void do_range_check(IdealLoopTree *loop, Node_List &range_check_list);
1010 
1011   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1012   void has_range_checks(IdealLoopTree *loop);
1013 
1014   // Process post loops which have range checks and try to build a multi-version
1015   // guard to safely determine if we can execute the post loop which was RCE'd.
1016   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1017 
1018   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1019   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1020 
1021   // Create a slow version of the loop by cloning the loop
1022   // and inserting an if to select fast-slow versions.
1023   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1024                                         Node_List &old_new,
1025                                         int opcode);
1026 
1027   // Clone a loop and return the clone head (clone_loop_head).
1028   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1029   // This routine was created for usage in CountedLoopReserveKit.
1030   //
1031   //    int(1) -> If -> IfTrue -> original_loop_head
1032   //              |
1033   //              V
1034   //           IfFalse -> clone_loop_head (returned by function pointer)
1035   //
1036   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1037   // Clone loop with an invariant test (that does not exit) and
1038   // insert a clone of the test that selects which version to
1039   // execute.
1040   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1041 
1042   // Find candidate "if" for unswitching
1043   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1044 
1045   // Range Check Elimination uses this function!
1046   // Constrain the main loop iterations so the affine function:
1047   //    low_limit <= scale_con * I + offset  <  upper_limit
1048   // always holds true.  That is, either increase the number of iterations in
1049   // the pre-loop or the post-loop until the condition holds true in the main
1050   // loop.  Scale_con, offset and limit are all loop invariant.
1051   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1052   // Helper function for add_constraint().
1053   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1054 
1055   // Partially peel loop up through last_peel node.
1056   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1057 
1058   // Create a scheduled list of nodes control dependent on ctrl set.
1059   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1060   // Has a use in the vector set
1061   bool has_use_in_set( Node* n, VectorSet& vset );
1062   // Has use internal to the vector set (ie. not in a phi at the loop head)
1063   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1064   // clone "n" for uses that are outside of loop
1065   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1066   // clone "n" for special uses that are in the not_peeled region
1067   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1068                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1069   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1070   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1071 #ifdef ASSERT
1072   // Validate the loop partition sets: peel and not_peel
1073   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1074   // Ensure that uses outside of loop are of the right form
1075   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1076                                  uint orig_exit_idx, uint clone_exit_idx);
1077   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1078 #endif
1079 
1080   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1081   int stride_of_possible_iv( Node* iff );
1082   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1083   // Return the (unique) control output node that's in the loop (if it exists.)
1084   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1085   // Insert a signed compare loop exit cloned from an unsigned compare.
1086   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1087   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1088   // Utility to register node "n" with PhaseIdealLoop
1089   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1090   // Utility to create an if-projection
1091   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1092   // Force the iff control output to be the live_proj
1093   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1094   // Insert a region before an if projection
1095   RegionNode* insert_region_before_proj(ProjNode* proj);
1096   // Insert a new if before an if projection
1097   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1098 
1099   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1100   // "Nearly" because all Nodes have been cloned from the original in the loop,
1101   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1102   // through the Phi recursively, and return a Bool.
1103   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1104   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1105 
1106 
1107   // Rework addressing expressions to get the most loop-invariant stuff
1108   // moved out.  We'd like to do all associative operators, but it's especially
1109   // important (common) to do address expressions.
1110   Node *remix_address_expressions( Node *n );
1111 
1112   // Attempt to use a conditional move instead of a phi/branch
1113   Node *conditional_move( Node *n );
1114 
1115   // Reorganize offset computations to lower register pressure.
1116   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1117   // (which are then alive with the post-incremented trip counter
1118   // forcing an extra register move)
1119   void reorg_offsets( IdealLoopTree *loop );
1120 
1121   // Check for aggressive application of 'split-if' optimization,
1122   // using basic block level info.
1123   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1124   Node *split_if_with_blocks_pre ( Node *n );
1125   void  split_if_with_blocks_post( Node *n );
1126   Node *has_local_phi_input( Node *n );
1127   // Mark an IfNode as being dominated by a prior test,
1128   // without actually altering the CFG (and hence IDOM info).
1129   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1130 
1131   // Split Node 'n' through merge point
1132   Node *split_thru_region( Node *n, Node *region );
1133   // Split Node 'n' through merge point if there is enough win.
1134   Node *split_thru_phi( Node *n, Node *region, int policy );
1135   // Found an If getting its condition-code input from a Phi in the
1136   // same block.  Split thru the Region.
1137   void do_split_if( Node *iff );
1138 
1139   // Conversion of fill/copy patterns into intrisic versions
1140   bool do_intrinsify_fill();
1141   bool intrinsify_fill(IdealLoopTree* lpt);
1142   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1143                        Node*& shift, Node*& offset);
1144 
1145 private:
1146   // Return a type based on condition control flow
1147   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1148   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1149  // Helpers for filtered type
1150   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1151 
1152   // Helper functions
1153   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1154   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1155   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1156   bool split_up( Node *n, Node *blk1, Node *blk2 );
1157   void sink_use( Node *use, Node *post_loop );
1158   Node *place_near_use( Node *useblock ) const;
1159   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1160   void try_move_store_after_loop(Node* n);
1161   bool identical_backtoback_ifs(Node *n);
1162   bool can_split_if(Node *n_ctrl);
1163 
1164   bool _created_loop_node;
1165 public:
1166   void set_created_loop_node() { _created_loop_node = true; }
1167   bool created_loop_node()     { return _created_loop_node; }
1168   void register_new_node( Node *n, Node *blk );
1169 
1170 #ifdef ASSERT
1171   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1172 #endif
1173 
1174 #ifndef PRODUCT
1175   void dump( ) const;
1176   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1177   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1178   void verify() const;          // Major slow  :-)
1179   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1180   IdealLoopTree *get_loop_idx(Node* n) const {
1181     // Dead nodes have no loop, so return the top level loop instead
1182     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1183   }
1184   // Print some stats
1185   static void print_statistics();
1186   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1187   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1188 #endif
1189 };
1190 
1191 // This kit may be used for making of a reserved copy of a loop before this loop
1192 //  goes under non-reversible changes.
1193 //
1194 // Function create_reserve() creates a reserved copy (clone) of the loop.
1195 // The reserved copy is created by calling
1196 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1197 // the original and reserved loops are connected in the outer graph.
1198 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1199 //
1200 // By default the reserved copy (clone) of the loop is created as dead code - it is
1201 // dominated in the outer loop by this node chain:
1202 //   intcon(1)->If->IfFalse->reserved_copy.
1203 // The original loop is dominated by the the same node chain but IfTrue projection:
1204 //   intcon(0)->If->IfTrue->original_loop.
1205 //
1206 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1207 // and the dtor, checks _use_new value.
1208 // If _use_new == false, it "switches" control to reserved copy of the loop
1209 // by simple replacing of node intcon(1) with node intcon(0).
1210 //
1211 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1212 //
1213 // void CountedLoopReserveKit_example()
1214 // {
1215 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1216 //    if (DoReserveCopy && !lrk.has_reserved()) {
1217 //      return; //failed to create reserved loop copy
1218 //    }
1219 //    ...
1220 //    //something is wrong, switch to original loop
1221 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1222 //    ...
1223 //    //everything worked ok, return with the newly modified loop
1224 //    lrk.use_new();
1225 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1226 //  }
1227 //
1228 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1229 // the dtor will "switch to the original" loop.
1230 // NOTE. You you modify outside of the original loop this class is no help.
1231 //
1232 class CountedLoopReserveKit {
1233   private:
1234     PhaseIdealLoop* _phase;
1235     IdealLoopTree*  _lpt;
1236     LoopNode*       _lp;
1237     IfNode*         _iff;
1238     LoopNode*       _lp_reserved;
1239     bool            _has_reserved;
1240     bool            _use_new;
1241     const bool      _active; //may be set to false in ctor, then the object is dummy
1242 
1243   public:
1244     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1245     ~CountedLoopReserveKit();
1246     void use_new()                {_use_new = true;}
1247     void set_iff(IfNode* x)       {_iff = x;}
1248     bool has_reserved()     const { return _active && _has_reserved;}
1249   private:
1250     bool create_reserve();
1251 };// class CountedLoopReserveKit
1252 
1253 inline Node* IdealLoopTree::tail() {
1254 // Handle lazy update of _tail field
1255   Node *n = _tail;
1256   //while( !n->in(0) )  // Skip dead CFG nodes
1257     //n = n->in(1);
1258   if (n->in(0) == NULL)
1259     n = _phase->get_ctrl(n);
1260   _tail = n;
1261   return n;
1262 }
1263 
1264 
1265 // Iterate over the loop tree using a preorder, left-to-right traversal.
1266 //
1267 // Example that visits all counted loops from within PhaseIdealLoop
1268 //
1269 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1270 //   IdealLoopTree* lpt = iter.current();
1271 //   if (!lpt->is_counted()) continue;
1272 //   ...
1273 class LoopTreeIterator : public StackObj {
1274 private:
1275   IdealLoopTree* _root;
1276   IdealLoopTree* _curnt;
1277 
1278 public:
1279   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1280 
1281   bool done() { return _curnt == NULL; }       // Finished iterating?
1282 
1283   void next();                                 // Advance to next loop tree
1284 
1285   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1286 };
1287 
1288 #endif // SHARE_VM_OPTO_LOOPNODE_HPP