1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/superword.hpp"
  42 #include "opto/vectornode.hpp"
  43 
  44 //------------------------------is_loop_exit-----------------------------------
  45 // Given an IfNode, return the loop-exiting projection or NULL if both
  46 // arms remain in the loop.
  47 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  48   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  49   PhaseIdealLoop *phase = _phase;
  50   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  51   // we need loop unswitching instead of peeling.
  52   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  53     return iff->raw_out(0);
  54   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  55     return iff->raw_out(1);
  56   return NULL;
  57 }
  58 
  59 
  60 //=============================================================================
  61 
  62 
  63 //------------------------------record_for_igvn----------------------------
  64 // Put loop body on igvn work list
  65 void IdealLoopTree::record_for_igvn() {
  66   for( uint i = 0; i < _body.size(); i++ ) {
  67     Node *n = _body.at(i);
  68     _phase->_igvn._worklist.push(n);
  69   }
  70 }
  71 
  72 //------------------------------compute_exact_trip_count-----------------------
  73 // Compute loop exact trip count if possible. Do not recalculate trip count for
  74 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  75 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  76   if (!_head->as_Loop()->is_valid_counted_loop()) {
  77     return;
  78   }
  79   CountedLoopNode* cl = _head->as_CountedLoop();
  80   // Trip count may become nonexact for iteration split loops since
  81   // RCE modifies limits. Note, _trip_count value is not reset since
  82   // it is used to limit unrolling of main loop.
  83   cl->set_nonexact_trip_count();
  84 
  85   // Loop's test should be part of loop.
  86   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  87     return; // Infinite loop
  88 
  89 #ifdef ASSERT
  90   BoolTest::mask bt = cl->loopexit()->test_trip();
  91   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  92          bt == BoolTest::ne, "canonical test is expected");
  93 #endif
  94 
  95   Node* init_n = cl->init_trip();
  96   Node* limit_n = cl->limit();
  97   if (init_n  != NULL &&  init_n->is_Con() &&
  98       limit_n != NULL && limit_n->is_Con()) {
  99     // Use longs to avoid integer overflow.
 100     int stride_con  = cl->stride_con();
 101     jlong init_con   = cl->init_trip()->get_int();
 102     jlong limit_con  = cl->limit()->get_int();
 103     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 104     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 105     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 106       // Set exact trip count.
 107       cl->set_exact_trip_count((uint)trip_count);
 108     }
 109   }
 110 }
 111 
 112 //------------------------------compute_profile_trip_cnt----------------------------
 113 // Compute loop trip count from profile data as
 114 //    (backedge_count + loop_exit_count) / loop_exit_count
 115 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 116   if (!_head->is_CountedLoop()) {
 117     return;
 118   }
 119   CountedLoopNode* head = _head->as_CountedLoop();
 120   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 121     return; // Already computed
 122   }
 123   float trip_cnt = (float)max_jint; // default is big
 124 
 125   Node* back = head->in(LoopNode::LoopBackControl);
 126   while (back != head) {
 127     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 128         back->in(0) &&
 129         back->in(0)->is_If() &&
 130         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 131         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 132       break;
 133     }
 134     back = phase->idom(back);
 135   }
 136   if (back != head) {
 137     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 138            back->in(0), "if-projection exists");
 139     IfNode* back_if = back->in(0)->as_If();
 140     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 141 
 142     // Now compute a loop exit count
 143     float loop_exit_cnt = 0.0f;
 144     for( uint i = 0; i < _body.size(); i++ ) {
 145       Node *n = _body[i];
 146       if( n->is_If() ) {
 147         IfNode *iff = n->as_If();
 148         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 149           Node *exit = is_loop_exit(iff);
 150           if( exit ) {
 151             float exit_prob = iff->_prob;
 152             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 153             if (exit_prob > PROB_MIN) {
 154               float exit_cnt = iff->_fcnt * exit_prob;
 155               loop_exit_cnt += exit_cnt;
 156             }
 157           }
 158         }
 159       }
 160     }
 161     if (loop_exit_cnt > 0.0f) {
 162       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 163     } else {
 164       // No exit count so use
 165       trip_cnt = loop_back_cnt;
 166     }
 167   }
 168 #ifndef PRODUCT
 169   if (TraceProfileTripCount) {
 170     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 171   }
 172 #endif
 173   head->set_profile_trip_cnt(trip_cnt);
 174 }
 175 
 176 //---------------------is_invariant_addition-----------------------------
 177 // Return nonzero index of invariant operand for an Add or Sub
 178 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 179 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 180   int op = n->Opcode();
 181   if (op == Op_AddI || op == Op_SubI) {
 182     bool in1_invar = this->is_invariant(n->in(1));
 183     bool in2_invar = this->is_invariant(n->in(2));
 184     if (in1_invar && !in2_invar) return 1;
 185     if (!in1_invar && in2_invar) return 2;
 186   }
 187   return 0;
 188 }
 189 
 190 //---------------------reassociate_add_sub-----------------------------
 191 // Reassociate invariant add and subtract expressions:
 192 //
 193 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 194 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 195 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 196 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 197 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 198 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 199 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 200 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 201 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 202 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 203 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 204 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 205 //
 206 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 207   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 208   if (is_invariant(n1)) return NULL;
 209   int inv1_idx = is_invariant_addition(n1, phase);
 210   if (!inv1_idx) return NULL;
 211   // Don't mess with add of constant (igvn moves them to expression tree root.)
 212   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 213   Node* inv1 = n1->in(inv1_idx);
 214   Node* n2 = n1->in(3 - inv1_idx);
 215   int inv2_idx = is_invariant_addition(n2, phase);
 216   if (!inv2_idx) return NULL;
 217   Node* x    = n2->in(3 - inv2_idx);
 218   Node* inv2 = n2->in(inv2_idx);
 219 
 220   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 221   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 222   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 223   if (n1->is_Sub() && inv1_idx == 1) {
 224     neg_x    = !neg_x;
 225     neg_inv2 = !neg_inv2;
 226   }
 227   Node* inv1_c = phase->get_ctrl(inv1);
 228   Node* inv2_c = phase->get_ctrl(inv2);
 229   Node* n_inv1;
 230   if (neg_inv1) {
 231     Node *zero = phase->_igvn.intcon(0);
 232     phase->set_ctrl(zero, phase->C->root());
 233     n_inv1 = new SubINode(zero, inv1);
 234     phase->register_new_node(n_inv1, inv1_c);
 235   } else {
 236     n_inv1 = inv1;
 237   }
 238   Node* inv;
 239   if (neg_inv2) {
 240     inv = new SubINode(n_inv1, inv2);
 241   } else {
 242     inv = new AddINode(n_inv1, inv2);
 243   }
 244   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 245 
 246   Node* addx;
 247   if (neg_x) {
 248     addx = new SubINode(inv, x);
 249   } else {
 250     addx = new AddINode(x, inv);
 251   }
 252   phase->register_new_node(addx, phase->get_ctrl(x));
 253   phase->_igvn.replace_node(n1, addx);
 254   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 255   _body.yank(n1);
 256   return addx;
 257 }
 258 
 259 //---------------------reassociate_invariants-----------------------------
 260 // Reassociate invariant expressions:
 261 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 262   for (int i = _body.size() - 1; i >= 0; i--) {
 263     Node *n = _body.at(i);
 264     for (int j = 0; j < 5; j++) {
 265       Node* nn = reassociate_add_sub(n, phase);
 266       if (nn == NULL) break;
 267       n = nn; // again
 268     };
 269   }
 270 }
 271 
 272 //------------------------------policy_peeling---------------------------------
 273 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 274 // make some loop-invariant test (usually a null-check) happen before the loop.
 275 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 276   Node *test = ((IdealLoopTree*)this)->tail();
 277   int  body_size = ((IdealLoopTree*)this)->_body.size();
 278   // Peeling does loop cloning which can result in O(N^2) node construction
 279   if( body_size > 255 /* Prevent overflow for large body_size */
 280       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 281     return false;           // too large to safely clone
 282   }
 283 
 284   // check for vectorized loops, any peeling done was already applied
 285   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 286 
 287   while( test != _head ) {      // Scan till run off top of loop
 288     if( test->is_If() ) {       // Test?
 289       Node *ctrl = phase->get_ctrl(test->in(1));
 290       if (ctrl->is_top())
 291         return false;           // Found dead test on live IF?  No peeling!
 292       // Standard IF only has one input value to check for loop invariance
 293       assert(test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd || test->Opcode() == Op_RangeCheck, "Check this code when new subtype is added");
 294       // Condition is not a member of this loop?
 295       if( !is_member(phase->get_loop(ctrl)) &&
 296           is_loop_exit(test) )
 297         return true;            // Found reason to peel!
 298     }
 299     // Walk up dominators to loop _head looking for test which is
 300     // executed on every path thru loop.
 301     test = phase->idom(test);
 302   }
 303   return false;
 304 }
 305 
 306 //------------------------------peeled_dom_test_elim---------------------------
 307 // If we got the effect of peeling, either by actually peeling or by making
 308 // a pre-loop which must execute at least once, we can remove all
 309 // loop-invariant dominated tests in the main body.
 310 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 311   bool progress = true;
 312   while( progress ) {
 313     progress = false;           // Reset for next iteration
 314     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 315     Node *test = prev->in(0);
 316     while( test != loop->_head ) { // Scan till run off top of loop
 317 
 318       int p_op = prev->Opcode();
 319       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 320           test->is_If() &&      // Test?
 321           !test->in(1)->is_Con() && // And not already obvious?
 322           // Condition is not a member of this loop?
 323           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 324         // Walk loop body looking for instances of this test
 325         for( uint i = 0; i < loop->_body.size(); i++ ) {
 326           Node *n = loop->_body.at(i);
 327           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 328             // IfNode was dominated by version in peeled loop body
 329             progress = true;
 330             dominated_by( old_new[prev->_idx], n );
 331           }
 332         }
 333       }
 334       prev = test;
 335       test = idom(test);
 336     } // End of scan tests in loop
 337 
 338   } // End of while( progress )
 339 }
 340 
 341 //------------------------------do_peeling-------------------------------------
 342 // Peel the first iteration of the given loop.
 343 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 344 //         The pre-loop illegally has 2 control users (old & new loops).
 345 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 346 //         Do this by making the old-loop fall-in edges act as if they came
 347 //         around the loopback from the prior iteration (follow the old-loop
 348 //         backedges) and then map to the new peeled iteration.  This leaves
 349 //         the pre-loop with only 1 user (the new peeled iteration), but the
 350 //         peeled-loop backedge has 2 users.
 351 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 352 //         extra backedge user.
 353 //
 354 //                   orig
 355 //
 356 //                  stmt1
 357 //                    |
 358 //                    v
 359 //              loop predicate
 360 //                    |
 361 //                    v
 362 //                   loop<----+
 363 //                     |      |
 364 //                   stmt2    |
 365 //                     |      |
 366 //                     v      |
 367 //                    if      ^
 368 //                   / \      |
 369 //                  /   \     |
 370 //                 v     v    |
 371 //               false true   |
 372 //               /       \    |
 373 //              /         ----+
 374 //             |
 375 //             v
 376 //           exit
 377 //
 378 //
 379 //            after clone loop
 380 //
 381 //                   stmt1
 382 //                     |
 383 //                     v
 384 //               loop predicate
 385 //                 /       \
 386 //        clone   /         \   orig
 387 //               /           \
 388 //              /             \
 389 //             v               v
 390 //   +---->loop clone          loop<----+
 391 //   |      |                    |      |
 392 //   |    stmt2 clone          stmt2    |
 393 //   |      |                    |      |
 394 //   |      v                    v      |
 395 //   ^      if clone            If      ^
 396 //   |      / \                / \      |
 397 //   |     /   \              /   \     |
 398 //   |    v     v            v     v    |
 399 //   |    true  false      false true   |
 400 //   |    /         \      /       \    |
 401 //   +----           \    /         ----+
 402 //                    \  /
 403 //                    1v v2
 404 //                  region
 405 //                     |
 406 //                     v
 407 //                   exit
 408 //
 409 //
 410 //         after peel and predicate move
 411 //
 412 //                   stmt1
 413 //                    /
 414 //                   /
 415 //        clone     /            orig
 416 //                 /
 417 //                /              +----------+
 418 //               /               |          |
 419 //              /          loop predicate   |
 420 //             /                 |          |
 421 //            v                  v          |
 422 //   TOP-->loop clone          loop<----+   |
 423 //          |                    |      |   |
 424 //        stmt2 clone          stmt2    |   |
 425 //          |                    |      |   ^
 426 //          v                    v      |   |
 427 //          if clone            If      ^   |
 428 //          / \                / \      |   |
 429 //         /   \              /   \     |   |
 430 //        v     v            v     v    |   |
 431 //      true   false      false  true   |   |
 432 //        |         \      /       \    |   |
 433 //        |          \    /         ----+   ^
 434 //        |           \  /                  |
 435 //        |           1v v2                 |
 436 //        v         region                  |
 437 //        |            |                    |
 438 //        |            v                    |
 439 //        |          exit                   |
 440 //        |                                 |
 441 //        +--------------->-----------------+
 442 //
 443 //
 444 //              final graph
 445 //
 446 //                  stmt1
 447 //                    |
 448 //                    v
 449 //                  stmt2 clone
 450 //                    |
 451 //                    v
 452 //                   if clone
 453 //                  / |
 454 //                 /  |
 455 //                v   v
 456 //            false  true
 457 //             |      |
 458 //             |      v
 459 //             | loop predicate
 460 //             |      |
 461 //             |      v
 462 //             |     loop<----+
 463 //             |      |       |
 464 //             |    stmt2     |
 465 //             |      |       |
 466 //             |      v       |
 467 //             v      if      ^
 468 //             |     /  \     |
 469 //             |    /    \    |
 470 //             |   v     v    |
 471 //             | false  true  |
 472 //             |  |        \  |
 473 //             v  v         --+
 474 //            region
 475 //              |
 476 //              v
 477 //             exit
 478 //
 479 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 480 
 481   C->set_major_progress();
 482   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 483   // 'pre' loop from the main and the 'pre' can no longer have its
 484   // iterations adjusted.  Therefore, we need to declare this loop as
 485   // no longer a 'main' loop; it will need new pre and post loops before
 486   // we can do further RCE.
 487 #ifndef PRODUCT
 488   if (TraceLoopOpts) {
 489     tty->print("Peel         ");
 490     loop->dump_head();
 491   }
 492 #endif
 493   Node* head = loop->_head;
 494   bool counted_loop = head->is_CountedLoop();
 495   if (counted_loop) {
 496     CountedLoopNode *cl = head->as_CountedLoop();
 497     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 498     cl->set_trip_count(cl->trip_count() - 1);
 499     if (cl->is_main_loop()) {
 500       cl->set_normal_loop();
 501 #ifndef PRODUCT
 502       if (PrintOpto && VerifyLoopOptimizations) {
 503         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 504         loop->dump_head();
 505       }
 506 #endif
 507     }
 508   }
 509   Node* entry = head->in(LoopNode::EntryControl);
 510 
 511   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 512   //         The pre-loop illegally has 2 control users (old & new loops).
 513   clone_loop( loop, old_new, dom_depth(head) );
 514 
 515   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 516   //         Do this by making the old-loop fall-in edges act as if they came
 517   //         around the loopback from the prior iteration (follow the old-loop
 518   //         backedges) and then map to the new peeled iteration.  This leaves
 519   //         the pre-loop with only 1 user (the new peeled iteration), but the
 520   //         peeled-loop backedge has 2 users.
 521   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 522   _igvn.hash_delete(head);
 523   head->set_req(LoopNode::EntryControl, new_entry);
 524   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 525     Node* old = head->fast_out(j);
 526     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 527       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 528       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 529         // Then loop body backedge value remains the same.
 530         new_exit_value = old->in(LoopNode::LoopBackControl);
 531       _igvn.hash_delete(old);
 532       old->set_req(LoopNode::EntryControl, new_exit_value);
 533     }
 534   }
 535 
 536 
 537   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 538   //         extra backedge user.
 539   Node* new_head = old_new[head->_idx];
 540   _igvn.hash_delete(new_head);
 541   new_head->set_req(LoopNode::LoopBackControl, C->top());
 542   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 543     Node* use = new_head->fast_out(j2);
 544     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 545       _igvn.hash_delete(use);
 546       use->set_req(LoopNode::LoopBackControl, C->top());
 547     }
 548   }
 549 
 550 
 551   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 552   int dd = dom_depth(head);
 553   set_idom(head, head->in(1), dd);
 554   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 555     Node *old = loop->_body.at(j3);
 556     Node *nnn = old_new[old->_idx];
 557     if (!has_ctrl(nnn))
 558       set_idom(nnn, idom(nnn), dd-1);
 559   }
 560 
 561   // Now force out all loop-invariant dominating tests.  The optimizer
 562   // finds some, but we _know_ they are all useless.
 563   peeled_dom_test_elim(loop,old_new);
 564 
 565   loop->record_for_igvn();
 566 }
 567 
 568 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 569 
 570 //------------------------------policy_maximally_unroll------------------------
 571 // Calculate exact loop trip count and return true if loop can be maximally
 572 // unrolled.
 573 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 574   CountedLoopNode *cl = _head->as_CountedLoop();
 575   assert(cl->is_normal_loop(), "");
 576   if (!cl->is_valid_counted_loop())
 577     return false; // Malformed counted loop
 578 
 579   if (!cl->has_exact_trip_count()) {
 580     // Trip count is not exact.
 581     return false;
 582   }
 583 
 584   uint trip_count = cl->trip_count();
 585   // Note, max_juint is used to indicate unknown trip count.
 586   assert(trip_count > 1, "one iteration loop should be optimized out already");
 587   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 588 
 589   // Real policy: if we maximally unroll, does it get too big?
 590   // Allow the unrolled mess to get larger than standard loop
 591   // size.  After all, it will no longer be a loop.
 592   uint body_size    = _body.size();
 593   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 594   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 595   if (trip_count > unroll_limit || body_size > unroll_limit) {
 596     return false;
 597   }
 598 
 599   // Fully unroll a loop with few iterations regardless next
 600   // conditions since following loop optimizations will split
 601   // such loop anyway (pre-main-post).
 602   if (trip_count <= 3)
 603     return true;
 604 
 605   // Take into account that after unroll conjoined heads and tails will fold,
 606   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 607   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 608   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 609   if (body_size != tst_body_size) // Check for int overflow
 610     return false;
 611   if (new_body_size > unroll_limit ||
 612       // Unrolling can result in a large amount of node construction
 613       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 614     return false;
 615   }
 616 
 617   // Do not unroll a loop with String intrinsics code.
 618   // String intrinsics are large and have loops.
 619   for (uint k = 0; k < _body.size(); k++) {
 620     Node* n = _body.at(k);
 621     switch (n->Opcode()) {
 622       case Op_StrComp:
 623       case Op_StrEquals:
 624       case Op_StrIndexOf:
 625       case Op_StrIndexOfChar:
 626       case Op_EncodeISOArray:
 627       case Op_AryEq:
 628       case Op_HasNegatives: {
 629         return false;
 630       }
 631 #if INCLUDE_RTM_OPT
 632       case Op_FastLock:
 633       case Op_FastUnlock: {
 634         // Don't unroll RTM locking code because it is large.
 635         if (UseRTMLocking) {
 636           return false;
 637         }
 638       }
 639 #endif
 640     } // switch
 641   }
 642 
 643   return true; // Do maximally unroll
 644 }
 645 
 646 
 647 //------------------------------policy_unroll----------------------------------
 648 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 649 // the loop is a CountedLoop and the body is small enough.
 650 bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
 651 
 652   CountedLoopNode *cl = _head->as_CountedLoop();
 653   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 654 
 655   if (!cl->is_valid_counted_loop())
 656     return false; // Malformed counted loop
 657 
 658   // Protect against over-unrolling.
 659   // After split at least one iteration will be executed in pre-loop.
 660   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 661 
 662   _local_loop_unroll_limit = LoopUnrollLimit;
 663   _local_loop_unroll_factor = 4;
 664   int future_unroll_ct = cl->unrolled_count() * 2;
 665   if (!cl->do_unroll_only()) {
 666     if (future_unroll_ct > LoopMaxUnroll) return false;
 667   } else {
 668     // obey user constraints on vector mapped loops with additional unrolling applied
 669     int unroll_constraint = (cl->slp_max_unroll()) ? cl->slp_max_unroll() : 1;
 670     if ((future_unroll_ct / unroll_constraint) > LoopMaxUnroll) return false;
 671   }
 672 
 673   // Check for initial stride being a small enough constant
 674   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 675 
 676   // Don't unroll if the next round of unrolling would push us
 677   // over the expected trip count of the loop.  One is subtracted
 678   // from the expected trip count because the pre-loop normally
 679   // executes 1 iteration.
 680   if (UnrollLimitForProfileCheck > 0 &&
 681       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 682       future_unroll_ct        > UnrollLimitForProfileCheck &&
 683       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 684     return false;
 685   }
 686 
 687   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 688   //   the residual iterations are more than 10% of the trip count
 689   //   and rounds of "unroll,optimize" are not making significant progress
 690   //   Progress defined as current size less than 20% larger than previous size.
 691   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 692       future_unroll_ct > LoopUnrollMin &&
 693       (future_unroll_ct - 1) * (100 / LoopPercentProfileLimit) > cl->profile_trip_cnt() &&
 694       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 695     return false;
 696   }
 697 
 698   Node *init_n = cl->init_trip();
 699   Node *limit_n = cl->limit();
 700   int stride_con = cl->stride_con();
 701   // Non-constant bounds.
 702   // Protect against over-unrolling when init or/and limit are not constant
 703   // (so that trip_count's init value is maxint) but iv range is known.
 704   if (init_n   == NULL || !init_n->is_Con()  ||
 705       limit_n  == NULL || !limit_n->is_Con()) {
 706     Node* phi = cl->phi();
 707     if (phi != NULL) {
 708       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 709       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 710       int next_stride = stride_con * 2; // stride after this unroll
 711       if (next_stride > 0) {
 712         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 713             iv_type->_lo + next_stride >  iv_type->_hi) {
 714           return false;  // over-unrolling
 715         }
 716       } else if (next_stride < 0) {
 717         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 718             iv_type->_hi + next_stride <  iv_type->_lo) {
 719           return false;  // over-unrolling
 720         }
 721       }
 722     }
 723   }
 724 
 725   // After unroll limit will be adjusted: new_limit = limit-stride.
 726   // Bailout if adjustment overflow.
 727   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 728   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 729       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 730     return false;  // overflow
 731 
 732   // Adjust body_size to determine if we unroll or not
 733   uint body_size = _body.size();
 734   // Key test to unroll loop in CRC32 java code
 735   int xors_in_loop = 0;
 736   // Also count ModL, DivL and MulL which expand mightly
 737   for (uint k = 0; k < _body.size(); k++) {
 738     Node* n = _body.at(k);
 739     switch (n->Opcode()) {
 740       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 741       case Op_ModL: body_size += 30; break;
 742       case Op_DivL: body_size += 30; break;
 743       case Op_MulL: body_size += 10; break;
 744       case Op_StrComp:
 745       case Op_StrEquals:
 746       case Op_StrIndexOf:
 747       case Op_StrIndexOfChar:
 748       case Op_EncodeISOArray:
 749       case Op_AryEq:
 750       case Op_HasNegatives: {
 751         // Do not unroll a loop with String intrinsics code.
 752         // String intrinsics are large and have loops.
 753         return false;
 754       }
 755 #if INCLUDE_RTM_OPT
 756       case Op_FastLock:
 757       case Op_FastUnlock: {
 758         // Don't unroll RTM locking code because it is large.
 759         if (UseRTMLocking) {
 760           return false;
 761         }
 762       }
 763 #endif
 764     } // switch
 765   }
 766 
 767   if (UseSuperWord) {
 768     if (!cl->is_reduction_loop()) {
 769       phase->mark_reductions(this);
 770     }
 771 
 772     // Only attempt slp analysis when user controls do not prohibit it
 773     if (LoopMaxUnroll > _local_loop_unroll_factor) {
 774       // Once policy_slp_analysis succeeds, mark the loop with the
 775       // maximal unroll factor so that we minimize analysis passes
 776       if (future_unroll_ct >= _local_loop_unroll_factor) {
 777         policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
 778       }
 779     }
 780   }
 781 
 782   int slp_max_unroll_factor = cl->slp_max_unroll();
 783   if (cl->has_passed_slp()) {
 784     if (slp_max_unroll_factor >= future_unroll_ct) return true;
 785     // Normal case: loop too big
 786     return false;
 787   }
 788 
 789   // Check for being too big
 790   if (body_size > (uint)_local_loop_unroll_limit) {
 791     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 792     // Normal case: loop too big
 793     return false;
 794   }
 795 
 796   if (cl->do_unroll_only()) {
 797     if (TraceSuperWordLoopUnrollAnalysis) {
 798       tty->print_cr("policy_unroll passed vector loop(vlen=%d,factor = %d)\n", slp_max_unroll_factor, future_unroll_ct);
 799     }
 800   }
 801 
 802   // Unroll once!  (Each trip will soon do double iterations)
 803   return true;
 804 }
 805 
 806 void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
 807   // Enable this functionality target by target as needed
 808   if (SuperWordLoopUnrollAnalysis) {
 809     if (!cl->was_slp_analyzed()) {
 810       SuperWord sw(phase);
 811       sw.transform_loop(this, false);
 812 
 813       // If the loop is slp canonical analyze it
 814       if (sw.early_return() == false) {
 815         sw.unrolling_analysis(_local_loop_unroll_factor);
 816       }
 817     }
 818 
 819     if (cl->has_passed_slp()) {
 820       int slp_max_unroll_factor = cl->slp_max_unroll();
 821       if (slp_max_unroll_factor >= future_unroll_ct) {
 822         int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
 823         if (new_limit > LoopUnrollLimit) {
 824           if (TraceSuperWordLoopUnrollAnalysis) {
 825             tty->print_cr("slp analysis unroll=%d, default limit=%d\n", new_limit, _local_loop_unroll_limit);
 826           }
 827           _local_loop_unroll_limit = new_limit;
 828         }
 829       }
 830     }
 831   }
 832 }
 833 
 834 //------------------------------policy_align-----------------------------------
 835 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 836 // expression that does the alignment.  Note that only one array base can be
 837 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 838 // if we vectorize short memory ops into longer memory ops, we may want to
 839 // increase alignment.
 840 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 841   return false;
 842 }
 843 
 844 //------------------------------policy_range_check-----------------------------
 845 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 846 // Actually we do iteration-splitting, a more powerful form of RCE.
 847 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 848   if (!RangeCheckElimination) return false;
 849 
 850   CountedLoopNode *cl = _head->as_CountedLoop();
 851   // If we unrolled with no intention of doing RCE and we later
 852   // changed our minds, we got no pre-loop.  Either we need to
 853   // make a new pre-loop, or we gotta disallow RCE.
 854   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 855   Node *trip_counter = cl->phi();
 856 
 857   // check for vectorized loops, some opts are no longer needed
 858   if (cl->do_unroll_only()) return false;
 859 
 860   // Check loop body for tests of trip-counter plus loop-invariant vs
 861   // loop-invariant.
 862   for (uint i = 0; i < _body.size(); i++) {
 863     Node *iff = _body[i];
 864     if (iff->Opcode() == Op_If ||
 865         iff->Opcode() == Op_RangeCheck) { // Test?
 866 
 867       // Comparing trip+off vs limit
 868       Node *bol = iff->in(1);
 869       if (bol->req() != 2) continue; // dead constant test
 870       if (!bol->is_Bool()) {
 871         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 872         continue;
 873       }
 874       if (bol->as_Bool()->_test._test == BoolTest::ne)
 875         continue; // not RC
 876 
 877       Node *cmp = bol->in(1);
 878       Node *rc_exp = cmp->in(1);
 879       Node *limit = cmp->in(2);
 880 
 881       Node *limit_c = phase->get_ctrl(limit);
 882       if( limit_c == phase->C->top() )
 883         return false;           // Found dead test on live IF?  No RCE!
 884       if( is_member(phase->get_loop(limit_c) ) ) {
 885         // Compare might have operands swapped; commute them
 886         rc_exp = cmp->in(2);
 887         limit  = cmp->in(1);
 888         limit_c = phase->get_ctrl(limit);
 889         if( is_member(phase->get_loop(limit_c) ) )
 890           continue;             // Both inputs are loop varying; cannot RCE
 891       }
 892 
 893       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 894         continue;
 895       }
 896       // Yeah!  Found a test like 'trip+off vs limit'
 897       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 898       // we need loop unswitching instead of iteration splitting.
 899       if( is_loop_exit(iff) )
 900         return true;            // Found reason to split iterations
 901     } // End of is IF
 902   }
 903 
 904   return false;
 905 }
 906 
 907 //------------------------------policy_peel_only-------------------------------
 908 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 909 // for unrolling loops with NO array accesses.
 910 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 911   // check for vectorized loops, any peeling done was already applied
 912   if (_head->is_CountedLoop() && _head->as_CountedLoop()->do_unroll_only()) return false;
 913 
 914   for( uint i = 0; i < _body.size(); i++ )
 915     if( _body[i]->is_Mem() )
 916       return false;
 917 
 918   // No memory accesses at all!
 919   return true;
 920 }
 921 
 922 //------------------------------clone_up_backedge_goo--------------------------
 923 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 924 // version of n in preheader_ctrl block and return that, otherwise return n.
 925 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 926   if( get_ctrl(n) != back_ctrl ) return n;
 927 
 928   // Only visit once
 929   if (visited.test_set(n->_idx)) {
 930     Node *x = clones.find(n->_idx);
 931     if (x != NULL)
 932       return x;
 933     return n;
 934   }
 935 
 936   Node *x = NULL;               // If required, a clone of 'n'
 937   // Check for 'n' being pinned in the backedge.
 938   if( n->in(0) && n->in(0) == back_ctrl ) {
 939     assert(clones.find(n->_idx) == NULL, "dead loop");
 940     x = n->clone();             // Clone a copy of 'n' to preheader
 941     clones.push(x, n->_idx);
 942     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 943   }
 944 
 945   // Recursive fixup any other input edges into x.
 946   // If there are no changes we can just return 'n', otherwise
 947   // we need to clone a private copy and change it.
 948   for( uint i = 1; i < n->req(); i++ ) {
 949     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 950     if( g != n->in(i) ) {
 951       if( !x ) {
 952         assert(clones.find(n->_idx) == NULL, "dead loop");
 953         x = n->clone();
 954         clones.push(x, n->_idx);
 955       }
 956       x->set_req(i, g);
 957     }
 958   }
 959   if( x ) {                     // x can legally float to pre-header location
 960     register_new_node( x, preheader_ctrl );
 961     return x;
 962   } else {                      // raise n to cover LCA of uses
 963     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 964   }
 965   return n;
 966 }
 967 
 968 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
 969   Node* castii = new CastIINode(incr, TypeInt::INT, true);
 970   castii->set_req(0, ctrl);
 971   register_new_node(castii, ctrl);
 972   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
 973     Node* n = incr->fast_out(i);
 974     if (n->is_Phi() && n->in(0) == loop) {
 975       int nrep = n->replace_edge(incr, castii);
 976       return true;
 977     }
 978   }
 979   return false;
 980 }
 981 
 982 //------------------------------insert_pre_post_loops--------------------------
 983 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 984 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 985 // alignment.  Useful to unroll loops that do no array accesses.
 986 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 987 
 988 #ifndef PRODUCT
 989   if (TraceLoopOpts) {
 990     if (peel_only)
 991       tty->print("PeelMainPost ");
 992     else
 993       tty->print("PreMainPost  ");
 994     loop->dump_head();
 995   }
 996 #endif
 997   C->set_major_progress();
 998 
 999   // Find common pieces of the loop being guarded with pre & post loops
1000   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1001   assert( main_head->is_normal_loop(), "" );
1002   CountedLoopEndNode *main_end = main_head->loopexit();
1003   guarantee(main_end != NULL, "no loop exit node");
1004   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
1005   uint dd_main_head = dom_depth(main_head);
1006   uint max = main_head->outcnt();
1007 
1008   Node *pre_header= main_head->in(LoopNode::EntryControl);
1009   Node *init      = main_head->init_trip();
1010   Node *incr      = main_end ->incr();
1011   Node *limit     = main_end ->limit();
1012   Node *stride    = main_end ->stride();
1013   Node *cmp       = main_end ->cmp_node();
1014   BoolTest::mask b_test = main_end->test_trip();
1015 
1016   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
1017   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
1018   if( bol->outcnt() != 1 ) {
1019     bol = bol->clone();
1020     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
1021     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
1022   }
1023   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
1024   if( cmp->outcnt() != 1 ) {
1025     cmp = cmp->clone();
1026     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
1027     _igvn.replace_input_of(bol, 1, cmp);
1028   }
1029 
1030   // Add the post loop
1031   PostLoopInfo post_loop_info;
1032   insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_loop_info);
1033 
1034   // Update local caches for next stanza
1035   Node *main_exit = post_loop_info.new_main_exit;
1036 
1037 
1038   //------------------------------
1039   // Step B: Create Pre-Loop.
1040 
1041   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1042   // loop pre-header illegally has 2 control users (old & new loops).
1043   clone_loop( loop, old_new, dd_main_head );
1044   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1045   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1046   pre_head->set_pre_loop(main_head);
1047   Node *pre_incr = old_new[incr->_idx];
1048 
1049   // Reduce the pre-loop trip count.
1050   pre_end->_prob = PROB_FAIR;
1051 
1052   // Find the pre-loop normal exit.
1053   Node* pre_exit = pre_end->proj_out(false);
1054   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1055   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1056   _igvn.register_new_node_with_optimizer( new_pre_exit );
1057   set_idom(new_pre_exit, pre_end, dd_main_head);
1058   set_loop(new_pre_exit, loop->_parent);
1059 
1060   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1061   // pre-loop, the main-loop may not execute at all.  Later in life this
1062   // zero-trip guard will become the minimum-trip guard when we unroll
1063   // the main-loop.
1064   Node *min_opaq = new Opaque1Node(C, limit);
1065   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1066   Node *min_bol  = new BoolNode( min_cmp, b_test );
1067   register_new_node( min_opaq, new_pre_exit );
1068   register_new_node( min_cmp , new_pre_exit );
1069   register_new_node( min_bol , new_pre_exit );
1070 
1071   // Build the IfNode (assume the main-loop is executed always).
1072   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1073   _igvn.register_new_node_with_optimizer( min_iff );
1074   set_idom(min_iff, new_pre_exit, dd_main_head);
1075   set_loop(min_iff, loop->_parent);
1076 
1077   // Plug in the false-path, taken if we need to skip main-loop
1078   _igvn.hash_delete( pre_exit );
1079   pre_exit->set_req(0, min_iff);
1080   set_idom(pre_exit, min_iff, dd_main_head);
1081   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1082   // Make the true-path, must enter the main loop
1083   Node *min_taken = new IfTrueNode( min_iff );
1084   _igvn.register_new_node_with_optimizer( min_taken );
1085   set_idom(min_taken, min_iff, dd_main_head);
1086   set_loop(min_taken, loop->_parent);
1087   // Plug in the true path
1088   _igvn.hash_delete( main_head );
1089   main_head->set_req(LoopNode::EntryControl, min_taken);
1090   set_idom(main_head, min_taken, dd_main_head);
1091 
1092   Arena *a = Thread::current()->resource_area();
1093   VectorSet visited(a);
1094   Node_Stack clones(a, main_head->back_control()->outcnt());
1095   // Step B3: Make the fall-in values to the main-loop come from the
1096   // fall-out values of the pre-loop.
1097   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1098     Node* main_phi = main_head->fast_out(i2);
1099     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1100       Node *pre_phi = old_new[main_phi->_idx];
1101       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1102                                              main_head->init_control(),
1103                                              pre_phi->in(LoopNode::LoopBackControl),
1104                                              visited, clones);
1105       _igvn.hash_delete(main_phi);
1106       main_phi->set_req( LoopNode::EntryControl, fallpre );
1107     }
1108   }
1109 
1110   // Nodes inside the loop may be control dependent on a predicate
1111   // that was moved before the preloop. If the back branch of the main
1112   // or post loops becomes dead, those nodes won't be dependent on the
1113   // test that guards that loop nest anymore which could lead to an
1114   // incorrect array access because it executes independently of the
1115   // test that was guarding the loop nest. We add a special CastII on
1116   // the if branch that enters the loop, between the input induction
1117   // variable value and the induction variable Phi to preserve correct
1118   // dependencies.
1119 
1120   // CastII for the main loop:
1121   bool inserted = cast_incr_before_loop( pre_incr, min_taken, main_head );
1122   assert(inserted, "no castII inserted");
1123 
1124   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1125   // RCE and alignment may change this later.
1126   Node *cmp_end = pre_end->cmp_node();
1127   assert( cmp_end->in(2) == limit, "" );
1128   Node *pre_limit = new AddINode( init, stride );
1129 
1130   // Save the original loop limit in this Opaque1 node for
1131   // use by range check elimination.
1132   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1133 
1134   register_new_node( pre_limit, pre_head->in(0) );
1135   register_new_node( pre_opaq , pre_head->in(0) );
1136 
1137   // Since no other users of pre-loop compare, I can hack limit directly
1138   assert( cmp_end->outcnt() == 1, "no other users" );
1139   _igvn.hash_delete(cmp_end);
1140   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1141 
1142   // Special case for not-equal loop bounds:
1143   // Change pre loop test, main loop test, and the
1144   // main loop guard test to use lt or gt depending on stride
1145   // direction:
1146   // positive stride use <
1147   // negative stride use >
1148   //
1149   // not-equal test is kept for post loop to handle case
1150   // when init > limit when stride > 0 (and reverse).
1151 
1152   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1153 
1154     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1155     // Modify pre loop end condition
1156     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1157     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1158     register_new_node( new_bol0, pre_head->in(0) );
1159     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1160     // Modify main loop guard condition
1161     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1162     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1163     register_new_node( new_bol1, new_pre_exit );
1164     _igvn.hash_delete(min_iff);
1165     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1166     // Modify main loop end condition
1167     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1168     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1169     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1170     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1171   }
1172 
1173   // Flag main loop
1174   main_head->set_main_loop();
1175   if( peel_only ) main_head->set_main_no_pre_loop();
1176 
1177   // Subtract a trip count for the pre-loop.
1178   main_head->set_trip_count(main_head->trip_count() - 1);
1179 
1180   // It's difficult to be precise about the trip-counts
1181   // for the pre/post loops.  They are usually very short,
1182   // so guess that 4 trips is a reasonable value.
1183   post_loop_info.post_head->set_profile_trip_cnt(4.0);
1184   pre_head->set_profile_trip_cnt(4.0);
1185 
1186   // Now force out all loop-invariant dominating tests.  The optimizer
1187   // finds some, but we _know_ they are all useless.
1188   peeled_dom_test_elim(loop,old_new);
1189   loop->record_for_igvn();
1190 }
1191 
1192 //------------------------------insert_vector_post_loop------------------------
1193 // Insert a copy of the atomic unrolled vectorized main loop as a post loop,
1194 // unroll_policy has already informed us that more unrolling is about to happen to
1195 // the main loop.  The resultant post loop will serve as a vectorized drain loop.
1196 void PhaseIdealLoop::insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new) {
1197   if (!loop->_head->is_CountedLoop()) return;
1198 
1199   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1200 
1201   // only process vectorized main loops
1202   if (!cl->is_vectorized_loop() || !cl->is_main_loop()) return;
1203 
1204   int slp_max_unroll_factor = cl->slp_max_unroll();
1205   int cur_unroll = cl->unrolled_count();
1206 
1207   if (slp_max_unroll_factor == 0) return;
1208 
1209   // only process atomic unroll vector loops (not super unrolled after vectorization)
1210   if (cur_unroll != slp_max_unroll_factor) return;
1211 
1212   // we only ever process this one time
1213   if (cl->has_atomic_post_loop()) return;
1214 
1215 #ifndef PRODUCT
1216   if (TraceLoopOpts) {
1217     tty->print("PostVector  ");
1218     loop->dump_head();
1219   }
1220 #endif
1221   C->set_major_progress();
1222 
1223   // Find common pieces of the loop being guarded with pre & post loops
1224   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1225   CountedLoopEndNode *main_end = main_head->loopexit();
1226   guarantee(main_end != NULL, "no loop exit node");
1227   // diagnostic to show loop end is not properly formed
1228   assert(main_end->outcnt() == 2, "1 true, 1 false path only");
1229 
1230   // mark this loop as processed
1231   main_head->mark_has_atomic_post_loop();
1232 
1233   Node *incr = main_end->incr();
1234   Node *limit = main_end->limit();
1235 
1236   // In this case we throw away the result as we are not using it to connect anything else.
1237   PostLoopInfo post_loop_info;
1238   insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_loop_info);
1239 
1240   // It's difficult to be precise about the trip-counts
1241   // for post loops.  They are usually very short,
1242   // so guess that unit vector trips is a reasonable value.
1243   post_loop_info.post_head->set_profile_trip_cnt(cur_unroll);
1244 
1245   // Now force out all loop-invariant dominating tests.  The optimizer
1246   // finds some, but we _know_ they are all useless.
1247   peeled_dom_test_elim(loop, old_new);
1248   loop->record_for_igvn();
1249 }
1250 
1251 
1252 //-------------------------insert_scalar_rced_post_loop------------------------
1253 // Insert a copy of the rce'd main loop as a post loop,
1254 // We have not unrolled the main loop, so this is the right time to inject this.
1255 // Later we will examine the partner of this post loop pair which still has range checks
1256 // to see inject code which tests at runtime if the range checks are applicable.
1257 void PhaseIdealLoop::insert_scalar_rced_post_loop(IdealLoopTree *loop, Node_List &old_new) {
1258   if (!loop->_head->is_CountedLoop()) return;
1259 
1260   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1261 
1262   // only process RCE'd main loops
1263   if (cl->has_range_checks() || !cl->is_main_loop()) return;
1264 
1265 #ifndef PRODUCT
1266   if (TraceLoopOpts) {
1267     tty->print("PostScalarRce  ");
1268     loop->dump_head();
1269   }
1270 #endif
1271   C->set_major_progress();
1272 
1273   // Find common pieces of the loop being guarded with pre & post loops
1274   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
1275   CountedLoopEndNode *main_end = main_head->loopexit();
1276   guarantee(main_end != NULL, "no loop exit node");
1277   // diagnostic to show loop end is not properly formed
1278   assert(main_end->outcnt() == 2, "1 true, 1 false path only");
1279 
1280   Node *incr = main_end->incr();
1281   Node *limit = main_end->limit();
1282 
1283   // In this case we throw away the result as we are not using it to connect anything else.
1284   PostLoopInfo post_loop_info;
1285   insert_post_loop(loop, old_new, main_head, main_end, incr, limit, post_loop_info);
1286 
1287   // It's difficult to be precise about the trip-counts
1288   // for post loops.  They are usually very short,
1289   // so guess that unit vector trips is a reasonable value.
1290   post_loop_info.post_head->set_profile_trip_cnt(4.0);
1291 
1292   // Now force out all loop-invariant dominating tests.  The optimizer
1293   // finds some, but we _know_ they are all useless.
1294   peeled_dom_test_elim(loop, old_new);
1295   loop->record_for_igvn();
1296 }
1297 
1298 
1299 //------------------------------insert_post_loop-------------------------------
1300 // Insert post loops.  Add a post loop to the given loop passed.
1301 void PhaseIdealLoop::insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1302                                       CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1303                                       Node *incr, Node *limit, PostLoopInfo &post_loop_info) {
1304 
1305   //------------------------------
1306   // Step A: Create a new post-Loop.
1307   Node* main_exit = main_end->proj_out(false);
1308   assert(main_exit->Opcode() == Op_IfFalse, "");
1309   int dd_main_exit = dom_depth(main_exit);
1310 
1311   // Step A1: Clone the loop body of main.  The clone becomes the vector post-loop.
1312   // The main loop pre-header illegally has 2 control users (old & new loops).
1313   clone_loop(loop, old_new, dd_main_exit);
1314   assert(old_new[main_end->_idx]->Opcode() == Op_CountedLoopEnd, "");
1315   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
1316   post_head->set_normal_loop();
1317   post_head->set_post_loop(main_head);
1318   post_loop_info.post_head = post_head;
1319 
1320   // Reduce the post-loop trip count.
1321   CountedLoopEndNode* post_end = old_new[main_end->_idx]->as_CountedLoopEnd();
1322   post_end->_prob = PROB_FAIR;
1323 
1324   // Build the main-loop normal exit.
1325   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
1326   _igvn.register_new_node_with_optimizer(new_main_exit);
1327   set_idom(new_main_exit, main_end, dd_main_exit);
1328   set_loop(new_main_exit, loop->_parent);
1329 
1330   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
1331   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
1332   // (the previous loop trip-counter exit value) because we will be changing
1333   // the exit value (via additional unrolling) so we cannot constant-fold away the zero
1334   // trip guard until all unrolling is done.
1335   Node *zer_opaq = new Opaque1Node(C, incr);
1336   Node *zer_cmp = new CmpINode(zer_opaq, limit);
1337   Node *zer_bol = new BoolNode(zer_cmp, main_end->test_trip());
1338   register_new_node(zer_opaq, new_main_exit);
1339   register_new_node(zer_cmp, new_main_exit);
1340   register_new_node(zer_bol, new_main_exit);
1341 
1342   // Build the IfNode
1343   IfNode *zer_iff = new IfNode(new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN);
1344   _igvn.register_new_node_with_optimizer(zer_iff);
1345   set_idom(zer_iff, new_main_exit, dd_main_exit);
1346   set_loop(zer_iff, loop->_parent);
1347 
1348   // Plug in the false-path, taken if we need to skip this post-loop
1349   _igvn.replace_input_of(main_exit, 0, zer_iff);
1350   set_idom(main_exit, zer_iff, dd_main_exit);
1351   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
1352   // Make the true-path, must enter this post loop
1353   Node *zer_taken = new IfTrueNode(zer_iff);
1354   _igvn.register_new_node_with_optimizer(zer_taken);
1355   set_idom(zer_taken, zer_iff, dd_main_exit);
1356   set_loop(zer_taken, loop->_parent);
1357   // Plug in the true path
1358   _igvn.hash_delete(post_head);
1359   post_head->set_req(LoopNode::EntryControl, zer_taken);
1360   set_idom(post_head, zer_taken, dd_main_exit);
1361 
1362   Arena *a = Thread::current()->resource_area();
1363   VectorSet visited(a);
1364   Node_Stack clones(a, main_head->back_control()->outcnt());
1365   // Step A3: Make the fall-in values to the post-loop come from the
1366   // fall-out values of the main-loop.
1367   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
1368     Node* main_phi = main_head->fast_out(i);
1369     if (main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0) {
1370       Node *cur_phi = old_new[main_phi->_idx];
1371       Node *fallnew = clone_up_backedge_goo(main_head->back_control(),
1372         post_head->init_control(),
1373         main_phi->in(LoopNode::LoopBackControl),
1374         visited, clones);
1375       _igvn.hash_delete(cur_phi);
1376       cur_phi->set_req(LoopNode::EntryControl, fallnew);
1377     }
1378   }
1379 
1380   // CastII for the new post loop:
1381   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
1382   assert(inserted, "no castII inserted");
1383 
1384   post_loop_info.new_main_exit = new_main_exit;
1385 }
1386 
1387 //------------------------------is_invariant-----------------------------
1388 // Return true if n is invariant
1389 bool IdealLoopTree::is_invariant(Node* n) const {
1390   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1391   if (n_c->is_top()) return false;
1392   return !is_member(_phase->get_loop(n_c));
1393 }
1394 
1395 
1396 //------------------------------do_unroll--------------------------------------
1397 // Unroll the loop body one step - make each trip do 2 iterations.
1398 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1399   assert(LoopUnrollLimit, "");
1400   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1401   CountedLoopEndNode *loop_end = loop_head->loopexit();
1402   assert(loop_end, "");
1403 #ifndef PRODUCT
1404   if (PrintOpto && VerifyLoopOptimizations) {
1405     tty->print("Unrolling ");
1406     loop->dump_head();
1407   } else if (TraceLoopOpts) {
1408     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1409       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1410     } else {
1411       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1412     }
1413     loop->dump_head();
1414   }
1415 
1416   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1417     Arena* arena = Thread::current()->resource_area();
1418     Node_Stack stack(arena, C->live_nodes() >> 2);
1419     Node_List rpo_list;
1420     VectorSet visited(arena);
1421     visited.set(loop_head->_idx);
1422     rpo( loop_head, stack, visited, rpo_list );
1423     dump(loop, rpo_list.size(), rpo_list );
1424   }
1425 #endif
1426 
1427   // Remember loop node count before unrolling to detect
1428   // if rounds of unroll,optimize are making progress
1429   loop_head->set_node_count_before_unroll(loop->_body.size());
1430 
1431   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1432   Node *limit = loop_head->limit();
1433   Node *init  = loop_head->init_trip();
1434   Node *stride = loop_head->stride();
1435 
1436   Node *opaq = NULL;
1437   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1438     // Search for zero-trip guard.
1439     assert( loop_head->is_main_loop(), "" );
1440     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1441     Node *iff = ctrl->in(0);
1442     assert( iff->Opcode() == Op_If, "" );
1443     Node *bol = iff->in(1);
1444     assert( bol->Opcode() == Op_Bool, "" );
1445     Node *cmp = bol->in(1);
1446     assert( cmp->Opcode() == Op_CmpI, "" );
1447     opaq = cmp->in(2);
1448     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1449     // optimized away and then another round of loop opts attempted.
1450     // We can not optimize this particular loop in that case.
1451     if (opaq->Opcode() != Op_Opaque1)
1452       return; // Cannot find zero-trip guard!  Bail out!
1453     // Zero-trip test uses an 'opaque' node which is not shared.
1454     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1455   }
1456 
1457   C->set_major_progress();
1458 
1459   Node* new_limit = NULL;
1460   if (UnrollLimitCheck) {
1461     int stride_con = stride->get_int();
1462     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1463     uint old_trip_count = loop_head->trip_count();
1464     // Verify that unroll policy result is still valid.
1465     assert(old_trip_count > 1 &&
1466            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1467 
1468     // Adjust loop limit to keep valid iterations number after unroll.
1469     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1470     // which may overflow.
1471     if (!adjust_min_trip) {
1472       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1473              "odd trip count for maximally unroll");
1474       // Don't need to adjust limit for maximally unroll since trip count is even.
1475     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1476       // Loop's limit is constant. Loop's init could be constant when pre-loop
1477       // become peeled iteration.
1478       jlong init_con = init->get_int();
1479       // We can keep old loop limit if iterations count stays the same:
1480       //   old_trip_count == new_trip_count * 2
1481       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1482       // so we also don't need to adjust zero trip test.
1483       jlong limit_con  = limit->get_int();
1484       // (stride_con*2) not overflow since stride_con <= 8.
1485       int new_stride_con = stride_con * 2;
1486       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1487       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1488       // New trip count should satisfy next conditions.
1489       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1490       uint new_trip_count = (uint)trip_count;
1491       adjust_min_trip = (old_trip_count != new_trip_count*2);
1492     }
1493 
1494     if (adjust_min_trip) {
1495       // Step 2: Adjust the trip limit if it is called for.
1496       // The adjustment amount is -stride. Need to make sure if the
1497       // adjustment underflows or overflows, then the main loop is skipped.
1498       Node* cmp = loop_end->cmp_node();
1499       assert(cmp->in(2) == limit, "sanity");
1500       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1501 
1502       // Verify that policy_unroll result is still valid.
1503       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1504       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1505              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1506 
1507       if (limit->is_Con()) {
1508         // The check in policy_unroll and the assert above guarantee
1509         // no underflow if limit is constant.
1510         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1511         set_ctrl(new_limit, C->root());
1512       } else {
1513         // Limit is not constant.
1514         if (loop_head->unrolled_count() == 1) { // only for first unroll
1515           // Separate limit by Opaque node in case it is an incremented
1516           // variable from previous loop to avoid using pre-incremented
1517           // value which could increase register pressure.
1518           // Otherwise reorg_offsets() optimization will create a separate
1519           // Opaque node for each use of trip-counter and as result
1520           // zero trip guard limit will be different from loop limit.
1521           assert(has_ctrl(opaq), "should have it");
1522           Node* opaq_ctrl = get_ctrl(opaq);
1523           limit = new Opaque2Node( C, limit );
1524           register_new_node( limit, opaq_ctrl );
1525         }
1526         if (stride_con > 0 && (java_subtract(limit_type->_lo, stride_con) < limit_type->_lo) ||
1527             stride_con < 0 && (java_subtract(limit_type->_hi, stride_con) > limit_type->_hi)) {
1528           // No underflow.
1529           new_limit = new SubINode(limit, stride);
1530         } else {
1531           // (limit - stride) may underflow.
1532           // Clamp the adjustment value with MININT or MAXINT:
1533           //
1534           //   new_limit = limit-stride
1535           //   if (stride > 0)
1536           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1537           //   else
1538           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1539           //
1540           BoolTest::mask bt = loop_end->test_trip();
1541           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1542           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1543           set_ctrl(adj_max, C->root());
1544           Node* old_limit = NULL;
1545           Node* adj_limit = NULL;
1546           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1547           if (loop_head->unrolled_count() > 1 &&
1548               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1549               limit->in(CMoveNode::IfTrue) == adj_max &&
1550               bol->as_Bool()->_test._test == bt &&
1551               bol->in(1)->Opcode() == Op_CmpI &&
1552               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1553             // Loop was unrolled before.
1554             // Optimize the limit to avoid nested CMove:
1555             // use original limit as old limit.
1556             old_limit = bol->in(1)->in(1);
1557             // Adjust previous adjusted limit.
1558             adj_limit = limit->in(CMoveNode::IfFalse);
1559             adj_limit = new SubINode(adj_limit, stride);
1560           } else {
1561             old_limit = limit;
1562             adj_limit = new SubINode(limit, stride);
1563           }
1564           assert(old_limit != NULL && adj_limit != NULL, "");
1565           register_new_node( adj_limit, ctrl ); // adjust amount
1566           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1567           register_new_node( adj_cmp, ctrl );
1568           Node* adj_bool = new BoolNode(adj_cmp, bt);
1569           register_new_node( adj_bool, ctrl );
1570           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1571         }
1572         register_new_node(new_limit, ctrl);
1573       }
1574       assert(new_limit != NULL, "");
1575       // Replace in loop test.
1576       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1577       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1578         // Don't need to create new test since only one user.
1579         _igvn.hash_delete(cmp);
1580         cmp->set_req(2, new_limit);
1581       } else {
1582         // Create new test since it is shared.
1583         Node* ctrl2 = loop_end->in(0);
1584         Node* cmp2  = cmp->clone();
1585         cmp2->set_req(2, new_limit);
1586         register_new_node(cmp2, ctrl2);
1587         Node* bol2 = loop_end->in(1)->clone();
1588         bol2->set_req(1, cmp2);
1589         register_new_node(bol2, ctrl2);
1590         _igvn.replace_input_of(loop_end, 1, bol2);
1591       }
1592       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1593       // Make it a 1-trip test (means at least 2 trips).
1594 
1595       // Guard test uses an 'opaque' node which is not shared.  Hence I
1596       // can edit it's inputs directly.  Hammer in the new limit for the
1597       // minimum-trip guard.
1598       assert(opaq->outcnt() == 1, "");
1599       _igvn.replace_input_of(opaq, 1, new_limit);
1600     }
1601 
1602     // Adjust max trip count. The trip count is intentionally rounded
1603     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1604     // the main, unrolled, part of the loop will never execute as it is protected
1605     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1606     // and later determined that part of the unrolled loop was dead.
1607     loop_head->set_trip_count(old_trip_count / 2);
1608 
1609     // Double the count of original iterations in the unrolled loop body.
1610     loop_head->double_unrolled_count();
1611 
1612   } else { // LoopLimitCheck
1613 
1614     // Adjust max trip count. The trip count is intentionally rounded
1615     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1616     // the main, unrolled, part of the loop will never execute as it is protected
1617     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1618     // and later determined that part of the unrolled loop was dead.
1619     loop_head->set_trip_count(loop_head->trip_count() / 2);
1620 
1621     // Double the count of original iterations in the unrolled loop body.
1622     loop_head->double_unrolled_count();
1623 
1624     // -----------
1625     // Step 2: Cut back the trip counter for an unroll amount of 2.
1626     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1627     // CountedLoop this is exact (stride divides limit-init exactly).
1628     // We are going to double the loop body, so we want to knock off any
1629     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1630     Node *span = new SubINode( limit, init );
1631     register_new_node( span, ctrl );
1632     Node *trip = new DivINode( 0, span, stride );
1633     register_new_node( trip, ctrl );
1634     Node *mtwo = _igvn.intcon(-2);
1635     set_ctrl(mtwo, C->root());
1636     Node *rond = new AndINode( trip, mtwo );
1637     register_new_node( rond, ctrl );
1638     Node *spn2 = new MulINode( rond, stride );
1639     register_new_node( spn2, ctrl );
1640     new_limit = new AddINode( spn2, init );
1641     register_new_node( new_limit, ctrl );
1642 
1643     // Hammer in the new limit
1644     Node *ctrl2 = loop_end->in(0);
1645     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1646     register_new_node( cmp2, ctrl2 );
1647     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1648     register_new_node( bol2, ctrl2 );
1649     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1650 
1651     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1652     // Make it a 1-trip test (means at least 2 trips).
1653     if( adjust_min_trip ) {
1654       assert( new_limit != NULL, "" );
1655       // Guard test uses an 'opaque' node which is not shared.  Hence I
1656       // can edit it's inputs directly.  Hammer in the new limit for the
1657       // minimum-trip guard.
1658       assert( opaq->outcnt() == 1, "" );
1659       _igvn.hash_delete(opaq);
1660       opaq->set_req(1, new_limit);
1661     }
1662   } // LoopLimitCheck
1663 
1664   // ---------
1665   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1666   // represents the odd iterations; since the loop trips an even number of
1667   // times its backedge is never taken.  Kill the backedge.
1668   uint dd = dom_depth(loop_head);
1669   clone_loop( loop, old_new, dd );
1670 
1671   // Make backedges of the clone equal to backedges of the original.
1672   // Make the fall-in from the original come from the fall-out of the clone.
1673   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1674     Node* phi = loop_head->fast_out(j);
1675     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1676       Node *newphi = old_new[phi->_idx];
1677       _igvn.hash_delete( phi );
1678       _igvn.hash_delete( newphi );
1679 
1680       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1681       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1682       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1683     }
1684   }
1685   Node *clone_head = old_new[loop_head->_idx];
1686   _igvn.hash_delete( clone_head );
1687   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1688   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1689   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1690   loop->_head = clone_head;     // New loop header
1691 
1692   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1693   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1694 
1695   // Kill the clone's backedge
1696   Node *newcle = old_new[loop_end->_idx];
1697   _igvn.hash_delete( newcle );
1698   Node *one = _igvn.intcon(1);
1699   set_ctrl(one, C->root());
1700   newcle->set_req(1, one);
1701   // Force clone into same loop body
1702   uint max = loop->_body.size();
1703   for( uint k = 0; k < max; k++ ) {
1704     Node *old = loop->_body.at(k);
1705     Node *nnn = old_new[old->_idx];
1706     loop->_body.push(nnn);
1707     if (!has_ctrl(old))
1708       set_loop(nnn, loop);
1709   }
1710 
1711   loop->record_for_igvn();
1712 
1713 #ifndef PRODUCT
1714   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1715     tty->print("\nnew loop after unroll\n");       loop->dump_head();
1716     for (uint i = 0; i < loop->_body.size(); i++) {
1717       loop->_body.at(i)->dump();
1718     }
1719     if(C->clone_map().is_debug()) {
1720       tty->print("\nCloneMap\n");
1721       Dict* dict = C->clone_map().dict();
1722       DictI i(dict);
1723       tty->print_cr("Dict@%p[%d] = ", dict, dict->Size());
1724       for (int ii = 0; i.test(); ++i, ++ii) {
1725         NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key));
1726         tty->print("%d->%d:%d,", (int)(intptr_t)i._key, cl.idx(), cl.gen());
1727         if (ii % 10 == 9) {
1728           tty->print_cr(" ");
1729         }
1730       }
1731       tty->print_cr(" ");
1732     }
1733   }
1734 #endif
1735 
1736 }
1737 
1738 //------------------------------do_maximally_unroll----------------------------
1739 
1740 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1741   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1742   assert(cl->has_exact_trip_count(), "trip count is not exact");
1743   assert(cl->trip_count() > 0, "");
1744 #ifndef PRODUCT
1745   if (TraceLoopOpts) {
1746     tty->print("MaxUnroll  %d ", cl->trip_count());
1747     loop->dump_head();
1748   }
1749 #endif
1750 
1751   // If loop is tripping an odd number of times, peel odd iteration
1752   if ((cl->trip_count() & 1) == 1) {
1753     do_peeling(loop, old_new);
1754   }
1755 
1756   // Now its tripping an even number of times remaining.  Double loop body.
1757   // Do not adjust pre-guards; they are not needed and do not exist.
1758   if (cl->trip_count() > 0) {
1759     assert((cl->trip_count() & 1) == 0, "missed peeling");
1760     do_unroll(loop, old_new, false);
1761   }
1762 }
1763 
1764 void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
1765   if (SuperWordReductions == false) return;
1766 
1767   CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
1768   if (loop_head->unrolled_count() > 1) {
1769     return;
1770   }
1771 
1772   Node* trip_phi = loop_head->phi();
1773   for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
1774     Node* phi = loop_head->fast_out(i);
1775     if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
1776       // For definitions which are loop inclusive and not tripcounts.
1777       Node* def_node = phi->in(LoopNode::LoopBackControl);
1778 
1779       if (def_node != NULL) {
1780         Node* n_ctrl = get_ctrl(def_node);
1781         if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
1782           // Now test it to see if it fits the standard pattern for a reduction operator.
1783           int opc = def_node->Opcode();
1784           if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
1785             if (!def_node->is_reduction()) { // Not marked yet
1786               // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
1787               bool ok = false;
1788               for (unsigned j = 1; j < def_node->req(); j++) {
1789                 Node* in = def_node->in(j);
1790                 if (in == phi) {
1791                   ok = true;
1792                   break;
1793                 }
1794               }
1795 
1796               // do nothing if we did not match the initial criteria
1797               if (ok == false) {
1798                 continue;
1799               }
1800 
1801               // The result of the reduction must not be used in the loop
1802               for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) {
1803                 Node* u = def_node->fast_out(i);
1804                 if (has_ctrl(u) && !loop->is_member(get_loop(get_ctrl(u)))) {
1805                   continue;
1806                 }
1807                 if (u == phi) {
1808                   continue;
1809                 }
1810                 ok = false;
1811               }
1812 
1813               // iff the uses conform
1814               if (ok) {
1815                 def_node->add_flag(Node::Flag_is_reduction);
1816                 loop_head->mark_has_reductions();
1817               }
1818             }
1819           }
1820         }
1821       }
1822     }
1823   }
1824 }
1825 
1826 //------------------------------dominates_backedge---------------------------------
1827 // Returns true if ctrl is executed on every complete iteration
1828 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1829   assert(ctrl->is_CFG(), "must be control");
1830   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1831   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1832 }
1833 
1834 //------------------------------adjust_limit-----------------------------------
1835 // Helper function for add_constraint().
1836 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1837   // Compute "I :: (limit-offset)/scale"
1838   Node *con = new SubINode(rc_limit, offset);
1839   register_new_node(con, pre_ctrl);
1840   Node *X = new DivINode(0, con, scale);
1841   register_new_node(X, pre_ctrl);
1842 
1843   // Adjust loop limit
1844   loop_limit = (stride_con > 0)
1845                ? (Node*)(new MinINode(loop_limit, X))
1846                : (Node*)(new MaxINode(loop_limit, X));
1847   register_new_node(loop_limit, pre_ctrl);
1848   return loop_limit;
1849 }
1850 
1851 //------------------------------add_constraint---------------------------------
1852 // Constrain the main loop iterations so the conditions:
1853 //    low_limit <= scale_con * I + offset  <  upper_limit
1854 // always holds true.  That is, either increase the number of iterations in
1855 // the pre-loop or the post-loop until the condition holds true in the main
1856 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1857 // stride and scale are constants (offset and limit often are).
1858 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1859   // For positive stride, the pre-loop limit always uses a MAX function
1860   // and the main loop a MIN function.  For negative stride these are
1861   // reversed.
1862 
1863   // Also for positive stride*scale the affine function is increasing, so the
1864   // pre-loop must check for underflow and the post-loop for overflow.
1865   // Negative stride*scale reverses this; pre-loop checks for overflow and
1866   // post-loop for underflow.
1867 
1868   Node *scale = _igvn.intcon(scale_con);
1869   set_ctrl(scale, C->root());
1870 
1871   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1872     // The overflow limit: scale*I+offset < upper_limit
1873     // For main-loop compute
1874     //   ( if (scale > 0) /* and stride > 0 */
1875     //       I < (upper_limit-offset)/scale
1876     //     else /* scale < 0 and stride < 0 */
1877     //       I > (upper_limit-offset)/scale
1878     //   )
1879     //
1880     // (upper_limit-offset) may overflow or underflow.
1881     // But it is fine since main loop will either have
1882     // less iterations or will be skipped in such case.
1883     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1884 
1885     // The underflow limit: low_limit <= scale*I+offset.
1886     // For pre-loop compute
1887     //   NOT(scale*I+offset >= low_limit)
1888     //   scale*I+offset < low_limit
1889     //   ( if (scale > 0) /* and stride > 0 */
1890     //       I < (low_limit-offset)/scale
1891     //     else /* scale < 0 and stride < 0 */
1892     //       I > (low_limit-offset)/scale
1893     //   )
1894 
1895     if (low_limit->get_int() == -max_jint) {
1896       if (!RangeLimitCheck) return;
1897       // We need this guard when scale*pre_limit+offset >= limit
1898       // due to underflow. So we need execute pre-loop until
1899       // scale*I+offset >= min_int. But (min_int-offset) will
1900       // underflow when offset > 0 and X will be > original_limit
1901       // when stride > 0. To avoid it we replace positive offset with 0.
1902       //
1903       // Also (min_int+1 == -max_int) is used instead of min_int here
1904       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1905       Node* shift = _igvn.intcon(31);
1906       set_ctrl(shift, C->root());
1907       Node* sign = new RShiftINode(offset, shift);
1908       register_new_node(sign, pre_ctrl);
1909       offset = new AndINode(offset, sign);
1910       register_new_node(offset, pre_ctrl);
1911     } else {
1912       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1913       // The only problem we have here when offset == min_int
1914       // since (0-min_int) == min_int. It may be fine for stride > 0
1915       // but for stride < 0 X will be < original_limit. To avoid it
1916       // max(pre_limit, original_limit) is used in do_range_check().
1917     }
1918     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1919     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1920 
1921   } else { // stride_con*scale_con < 0
1922     // For negative stride*scale pre-loop checks for overflow and
1923     // post-loop for underflow.
1924     //
1925     // The overflow limit: scale*I+offset < upper_limit
1926     // For pre-loop compute
1927     //   NOT(scale*I+offset < upper_limit)
1928     //   scale*I+offset >= upper_limit
1929     //   scale*I+offset+1 > upper_limit
1930     //   ( if (scale < 0) /* and stride > 0 */
1931     //       I < (upper_limit-(offset+1))/scale
1932     //     else /* scale > 0 and stride < 0 */
1933     //       I > (upper_limit-(offset+1))/scale
1934     //   )
1935     //
1936     // (upper_limit-offset-1) may underflow or overflow.
1937     // To avoid it min(pre_limit, original_limit) is used
1938     // in do_range_check() for stride > 0 and max() for < 0.
1939     Node *one  = _igvn.intcon(1);
1940     set_ctrl(one, C->root());
1941 
1942     Node *plus_one = new AddINode(offset, one);
1943     register_new_node( plus_one, pre_ctrl );
1944     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1945     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1946 
1947     if (low_limit->get_int() == -max_jint) {
1948       if (!RangeLimitCheck) return;
1949       // We need this guard when scale*main_limit+offset >= limit
1950       // due to underflow. So we need execute main-loop while
1951       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1952       // underflow when (offset+1) > 0 and X will be < main_limit
1953       // when scale < 0 (and stride > 0). To avoid it we replace
1954       // positive (offset+1) with 0.
1955       //
1956       // Also (min_int+1 == -max_int) is used instead of min_int here
1957       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1958       Node* shift = _igvn.intcon(31);
1959       set_ctrl(shift, C->root());
1960       Node* sign = new RShiftINode(plus_one, shift);
1961       register_new_node(sign, pre_ctrl);
1962       plus_one = new AndINode(plus_one, sign);
1963       register_new_node(plus_one, pre_ctrl);
1964     } else {
1965       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1966       // The only problem we have here when offset == max_int
1967       // since (max_int+1) == min_int and (0-min_int) == min_int.
1968       // But it is fine since main loop will either have
1969       // less iterations or will be skipped in such case.
1970     }
1971     // The underflow limit: low_limit <= scale*I+offset.
1972     // For main-loop compute
1973     //   scale*I+offset+1 > low_limit
1974     //   ( if (scale < 0) /* and stride > 0 */
1975     //       I < (low_limit-(offset+1))/scale
1976     //     else /* scale > 0 and stride < 0 */
1977     //       I > (low_limit-(offset+1))/scale
1978     //   )
1979 
1980     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1981   }
1982 }
1983 
1984 
1985 //------------------------------is_scaled_iv---------------------------------
1986 // Return true if exp is a constant times an induction var
1987 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1988   if (exp == iv) {
1989     if (p_scale != NULL) {
1990       *p_scale = 1;
1991     }
1992     return true;
1993   }
1994   int opc = exp->Opcode();
1995   if (opc == Op_MulI) {
1996     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1997       if (p_scale != NULL) {
1998         *p_scale = exp->in(2)->get_int();
1999       }
2000       return true;
2001     }
2002     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
2003       if (p_scale != NULL) {
2004         *p_scale = exp->in(1)->get_int();
2005       }
2006       return true;
2007     }
2008   } else if (opc == Op_LShiftI) {
2009     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
2010       if (p_scale != NULL) {
2011         *p_scale = 1 << exp->in(2)->get_int();
2012       }
2013       return true;
2014     }
2015   }
2016   return false;
2017 }
2018 
2019 //-----------------------------is_scaled_iv_plus_offset------------------------------
2020 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
2021 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
2022   if (is_scaled_iv(exp, iv, p_scale)) {
2023     if (p_offset != NULL) {
2024       Node *zero = _igvn.intcon(0);
2025       set_ctrl(zero, C->root());
2026       *p_offset = zero;
2027     }
2028     return true;
2029   }
2030   int opc = exp->Opcode();
2031   if (opc == Op_AddI) {
2032     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
2033       if (p_offset != NULL) {
2034         *p_offset = exp->in(2);
2035       }
2036       return true;
2037     }
2038     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
2039       if (p_offset != NULL) {
2040         *p_offset = exp->in(1);
2041       }
2042       return true;
2043     }
2044     if (exp->in(2)->is_Con()) {
2045       Node* offset2 = NULL;
2046       if (depth < 2 &&
2047           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
2048                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
2049         if (p_offset != NULL) {
2050           Node *ctrl_off2 = get_ctrl(offset2);
2051           Node* offset = new AddINode(offset2, exp->in(2));
2052           register_new_node(offset, ctrl_off2);
2053           *p_offset = offset;
2054         }
2055         return true;
2056       }
2057     }
2058   } else if (opc == Op_SubI) {
2059     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
2060       if (p_offset != NULL) {
2061         Node *zero = _igvn.intcon(0);
2062         set_ctrl(zero, C->root());
2063         Node *ctrl_off = get_ctrl(exp->in(2));
2064         Node* offset = new SubINode(zero, exp->in(2));
2065         register_new_node(offset, ctrl_off);
2066         *p_offset = offset;
2067       }
2068       return true;
2069     }
2070     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
2071       if (p_offset != NULL) {
2072         *p_scale *= -1;
2073         *p_offset = exp->in(1);
2074       }
2075       return true;
2076     }
2077   }
2078   return false;
2079 }
2080 
2081 //------------------------------do_range_check---------------------------------
2082 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
2083 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
2084 #ifndef PRODUCT
2085   if (PrintOpto && VerifyLoopOptimizations) {
2086     tty->print("Range Check Elimination ");
2087     loop->dump_head();
2088   } else if (TraceLoopOpts) {
2089     tty->print("RangeCheck   ");
2090     loop->dump_head();
2091   }
2092 #endif
2093   assert(RangeCheckElimination, "");
2094   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2095   assert(cl->is_main_loop(), "");
2096 
2097   // protect against stride not being a constant
2098   if (!cl->stride_is_con())
2099     return;
2100 
2101   // Find the trip counter; we are iteration splitting based on it
2102   Node *trip_counter = cl->phi();
2103   // Find the main loop limit; we will trim it's iterations
2104   // to not ever trip end tests
2105   Node *main_limit = cl->limit();
2106 
2107   // Need to find the main-loop zero-trip guard
2108   Node *ctrl  = cl->in(LoopNode::EntryControl);
2109   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2110   Node *iffm = ctrl->in(0);
2111   assert(iffm->Opcode() == Op_If, "");
2112   Node *bolzm = iffm->in(1);
2113   assert(bolzm->Opcode() == Op_Bool, "");
2114   Node *cmpzm = bolzm->in(1);
2115   assert(cmpzm->is_Cmp(), "");
2116   Node *opqzm = cmpzm->in(2);
2117   // Can not optimize a loop if zero-trip Opaque1 node is optimized
2118   // away and then another round of loop opts attempted.
2119   if (opqzm->Opcode() != Op_Opaque1)
2120     return;
2121   assert(opqzm->in(1) == main_limit, "do not understand situation");
2122 
2123   // Find the pre-loop limit; we will expand its iterations to
2124   // not ever trip low tests.
2125   Node *p_f = iffm->in(0);
2126   // pre loop may have been optimized out
2127   if (p_f->Opcode() != Op_IfFalse) {
2128     return;
2129   }
2130   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2131   assert(pre_end->loopnode()->is_pre_loop(), "");
2132   Node *pre_opaq1 = pre_end->limit();
2133   // Occasionally it's possible for a pre-loop Opaque1 node to be
2134   // optimized away and then another round of loop opts attempted.
2135   // We can not optimize this particular loop in that case.
2136   if (pre_opaq1->Opcode() != Op_Opaque1)
2137     return;
2138   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
2139   Node *pre_limit = pre_opaq->in(1);
2140 
2141   // Where do we put new limit calculations
2142   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
2143 
2144   // Ensure the original loop limit is available from the
2145   // pre-loop Opaque1 node.
2146   Node *orig_limit = pre_opaq->original_loop_limit();
2147   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
2148     return;
2149 
2150   // Must know if its a count-up or count-down loop
2151 
2152   int stride_con = cl->stride_con();
2153   Node *zero = _igvn.intcon(0);
2154   Node *one  = _igvn.intcon(1);
2155   // Use symmetrical int range [-max_jint,max_jint]
2156   Node *mini = _igvn.intcon(-max_jint);
2157   set_ctrl(zero, C->root());
2158   set_ctrl(one,  C->root());
2159   set_ctrl(mini, C->root());
2160 
2161   // Range checks that do not dominate the loop backedge (ie.
2162   // conditionally executed) can lengthen the pre loop limit beyond
2163   // the original loop limit. To prevent this, the pre limit is
2164   // (for stride > 0) MINed with the original loop limit (MAXed
2165   // stride < 0) when some range_check (rc) is conditionally
2166   // executed.
2167   bool conditional_rc = false;
2168 
2169   // Check loop body for tests of trip-counter plus loop-invariant vs
2170   // loop-invariant.
2171   for( uint i = 0; i < loop->_body.size(); i++ ) {
2172     Node *iff = loop->_body[i];
2173     if (iff->Opcode() == Op_If ||
2174         iff->Opcode() == Op_RangeCheck) { // Test?
2175       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
2176       // we need loop unswitching instead of iteration splitting.
2177       old_new.push(iff);
2178       Node *exit = loop->is_loop_exit(iff);
2179       if( !exit ) continue;
2180       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
2181 
2182       // Get boolean condition to test
2183       Node *i1 = iff->in(1);
2184       if( !i1->is_Bool() ) continue;
2185       BoolNode *bol = i1->as_Bool();
2186       BoolTest b_test = bol->_test;
2187       // Flip sense of test if exit condition is flipped
2188       if( flip )
2189         b_test = b_test.negate();
2190 
2191       // Get compare
2192       Node *cmp = bol->in(1);
2193 
2194       // Look for trip_counter + offset vs limit
2195       Node *rc_exp = cmp->in(1);
2196       Node *limit  = cmp->in(2);
2197       jint scale_con= 1;        // Assume trip counter not scaled
2198 
2199       Node *limit_c = get_ctrl(limit);
2200       if( loop->is_member(get_loop(limit_c) ) ) {
2201         // Compare might have operands swapped; commute them
2202         b_test = b_test.commute();
2203         rc_exp = cmp->in(2);
2204         limit  = cmp->in(1);
2205         limit_c = get_ctrl(limit);
2206         if( loop->is_member(get_loop(limit_c) ) )
2207           continue;             // Both inputs are loop varying; cannot RCE
2208       }
2209       // Here we know 'limit' is loop invariant
2210 
2211       // 'limit' maybe pinned below the zero trip test (probably from a
2212       // previous round of rce), in which case, it can't be used in the
2213       // zero trip test expression which must occur before the zero test's if.
2214       if( limit_c == ctrl ) {
2215         continue;  // Don't rce this check but continue looking for other candidates.
2216       }
2217 
2218       // Check for scaled induction variable plus an offset
2219       Node *offset = NULL;
2220 
2221       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
2222         continue;
2223       }
2224 
2225       Node *offset_c = get_ctrl(offset);
2226       if( loop->is_member( get_loop(offset_c) ) )
2227         continue;               // Offset is not really loop invariant
2228       // Here we know 'offset' is loop invariant.
2229 
2230       // As above for the 'limit', the 'offset' maybe pinned below the
2231       // zero trip test.
2232       if( offset_c == ctrl ) {
2233         continue; // Don't rce this check but continue looking for other candidates.
2234       }
2235 #ifdef ASSERT
2236       if (TraceRangeLimitCheck) {
2237         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
2238         bol->dump(2);
2239       }
2240 #endif
2241       // At this point we have the expression as:
2242       //   scale_con * trip_counter + offset :: limit
2243       // where scale_con, offset and limit are loop invariant.  Trip_counter
2244       // monotonically increases by stride_con, a constant.  Both (or either)
2245       // stride_con and scale_con can be negative which will flip about the
2246       // sense of the test.
2247 
2248       // Adjust pre and main loop limits to guard the correct iteration set
2249       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
2250         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
2251           // The underflow and overflow limits: 0 <= scale*I+offset < limit
2252           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
2253           if (!conditional_rc) {
2254             // (0-offset)/scale could be outside of loop iterations range.
2255             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2256           }
2257         } else {
2258           if (PrintOpto) {
2259             tty->print_cr("missed RCE opportunity");
2260           }
2261           continue;             // In release mode, ignore it
2262         }
2263       } else {                  // Otherwise work on normal compares
2264         switch( b_test._test ) {
2265         case BoolTest::gt:
2266           // Fall into GE case
2267         case BoolTest::ge:
2268           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
2269           scale_con = -scale_con;
2270           offset = new SubINode( zero, offset );
2271           register_new_node( offset, pre_ctrl );
2272           limit  = new SubINode( zero, limit );
2273           register_new_node( limit, pre_ctrl );
2274           // Fall into LE case
2275         case BoolTest::le:
2276           if (b_test._test != BoolTest::gt) {
2277             // Convert X <= Y to X < Y+1
2278             limit = new AddINode( limit, one );
2279             register_new_node( limit, pre_ctrl );
2280           }
2281           // Fall into LT case
2282         case BoolTest::lt:
2283           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
2284           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
2285           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
2286           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
2287           if (!conditional_rc) {
2288             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
2289             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
2290             // still be outside of loop range.
2291             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2292           }
2293           break;
2294         default:
2295           if (PrintOpto) {
2296             tty->print_cr("missed RCE opportunity");
2297           }
2298           continue;             // Unhandled case
2299         }
2300       }
2301 
2302       // Kill the eliminated test
2303       C->set_major_progress();
2304       Node *kill_con = _igvn.intcon( 1-flip );
2305       set_ctrl(kill_con, C->root());
2306       _igvn.replace_input_of(iff, 1, kill_con);
2307       // Find surviving projection
2308       assert(iff->is_If(), "");
2309       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
2310       // Find loads off the surviving projection; remove their control edge
2311       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2312         Node* cd = dp->fast_out(i); // Control-dependent node
2313         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
2314           // Allow the load to float around in the loop, or before it
2315           // but NOT before the pre-loop.
2316           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
2317           --i;
2318           --imax;
2319         }
2320       }
2321       if (limit->Opcode() == Op_LoadRange) {
2322         old_new.pop();
2323       }
2324 
2325     } // End of is IF
2326 
2327   }
2328 
2329   // Update loop limits
2330   if (conditional_rc) {
2331     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
2332                                  : (Node*)new MaxINode(pre_limit, orig_limit);
2333     register_new_node(pre_limit, pre_ctrl);
2334   }
2335   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
2336 
2337   // Note:: we are making the main loop limit no longer precise;
2338   // need to round up based on stride.
2339   cl->set_nonexact_trip_count();
2340   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2341     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2342     // Hopefully, compiler will optimize for powers of 2.
2343     Node *ctrl = get_ctrl(main_limit);
2344     Node *stride = cl->stride();
2345     Node *init = cl->init_trip()->uncast();
2346     Node *span = new SubINode(main_limit,init);
2347     register_new_node(span,ctrl);
2348     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2349     Node *add = new AddINode(span,rndup);
2350     register_new_node(add,ctrl);
2351     Node *div = new DivINode(0,add,stride);
2352     register_new_node(div,ctrl);
2353     Node *mul = new MulINode(div,stride);
2354     register_new_node(mul,ctrl);
2355     Node *newlim = new AddINode(mul,init);
2356     register_new_node(newlim,ctrl);
2357     main_limit = newlim;
2358   }
2359 
2360   Node *main_cle = cl->loopexit();
2361   Node *main_bol = main_cle->in(1);
2362   // Hacking loop bounds; need private copies of exit test
2363   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2364     main_bol = main_bol->clone();// Clone a private BoolNode
2365     register_new_node( main_bol, main_cle->in(0) );
2366     _igvn.replace_input_of(main_cle, 1, main_bol);
2367   }
2368   Node *main_cmp = main_bol->in(1);
2369   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2370     main_cmp = main_cmp->clone();// Clone a private CmpNode
2371     register_new_node( main_cmp, main_cle->in(0) );
2372     _igvn.replace_input_of(main_bol, 1, main_cmp);
2373   }
2374   // Hack the now-private loop bounds
2375   _igvn.replace_input_of(main_cmp, 2, main_limit);
2376   // The OpaqueNode is unshared by design
2377   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2378   _igvn.replace_input_of(opqzm, 1, main_limit);
2379 }
2380 
2381 //------------------------------has_range_checks-------------------------------
2382 // Check to see if RCE cleaned the current loop of range-checks.
2383 void PhaseIdealLoop::has_range_checks(IdealLoopTree *loop) {
2384   assert(RangeCheckElimination, "");
2385 
2386   // skip if not a counted loop
2387   if (!loop->is_counted()) return;
2388 
2389   CountedLoopNode *cl = loop->_head->as_CountedLoop();
2390 
2391   // skip this loop if it is already marked
2392   if (cl->has_range_checks()) return;
2393 
2394   // Now check for existance of range checks
2395   for (uint i = 0; i < loop->_body.size(); i++) {
2396     Node *iff = loop->_body[i];
2397     if (iff->Opcode() == Op_If ||
2398       iff->Opcode() == Op_RangeCheck) {
2399       cl->mark_has_range_checks();
2400       break;
2401     }
2402   }
2403 }
2404 
2405 //-------------------------multi_version_post_loops----------------------------
2406 // Check the range checks that remain, if simple, use the bounds to guard
2407 // which version to a post loop we execute, one with range checks or one without
2408 bool PhaseIdealLoop::multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop) {
2409   bool multi_version_succeeded = false;
2410   assert(RangeCheckElimination, "");
2411   CountedLoopNode *legacy_cl = legacy_loop->_head->as_CountedLoop();
2412   assert(legacy_cl->is_post_loop(), "");
2413 
2414   // Check for existance of range checks using the unique instance to make a guard with
2415   Unique_Node_List worklist;
2416   for (uint i = 0; i < legacy_loop->_body.size(); i++) {
2417     Node *iff = legacy_loop->_body[i];
2418     if (iff->Opcode() == Op_If || iff->Opcode() == Op_RangeCheck) {
2419       worklist.push(iff);
2420     }
2421   }
2422 
2423   // Find RCE'd post loop so that we can stage its guard.
2424   Node* ctrl = legacy_cl->in(LoopNode::EntryControl);
2425   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded;
2426   Node* iffm = ctrl->in(0);
2427   if (!iffm->is_If()) return multi_version_succeeded;
2428   Node* cur_bool = iffm->in(1);
2429   if (!cur_bool->is_Bool()) return multi_version_succeeded;
2430   Node* cur_cmp = cur_bool->in(1);
2431   if (!cur_cmp->is_Cmp()) return multi_version_succeeded;
2432   Node* cur_opq = cur_cmp->in(1);
2433   // Can not optimize a loop if zero-trip Opaque1 node is optimized away.
2434   if (cur_opq->Opcode() != Op_Opaque1) return multi_version_succeeded;
2435 
2436   // Now we test that both the post loops are connected
2437   Node* post_loop_region = iffm->in(0);
2438   if (post_loop_region == NULL) return multi_version_succeeded;
2439   if (!post_loop_region->is_Region()) return multi_version_succeeded;
2440   Node* covering_region = post_loop_region->in(RegionNode::Control+1);
2441   if (covering_region == NULL) return multi_version_succeeded;
2442   if (!covering_region->is_Region()) return multi_version_succeeded;
2443   Node* p_f = covering_region->in(RegionNode::Control);
2444   if (p_f == NULL) return multi_version_succeeded;
2445   if (!p_f->is_IfFalse()) return multi_version_succeeded;
2446   if (!p_f->in(0)->is_CountedLoopEnd()) return multi_version_succeeded;
2447   CountedLoopEndNode* rce_loop_end = p_f->in(0)->as_CountedLoopEnd();
2448   if (rce_loop_end == NULL) return multi_version_succeeded;
2449   CountedLoopNode* rce_cl = rce_loop_end->loopnode();
2450   if (rce_cl == NULL || !rce_cl->is_post_loop()) return multi_version_succeeded;
2451   CountedLoopNode *known_rce_cl = rce_loop->_head->as_CountedLoop();
2452   if (rce_cl != known_rce_cl) return multi_version_succeeded;
2453 
2454   // Then we fetch the cover entry test
2455   ctrl = rce_cl->in(LoopNode::EntryControl);
2456   if (!ctrl->is_IfTrue() && !ctrl->is_IfFalse()) return multi_version_succeeded;
2457 
2458 #ifndef PRODUCT
2459   if (TraceLoopOpts) {
2460     tty->print("PostMultiVersion\n");
2461     rce_loop->dump_head();
2462     legacy_loop->dump_head();
2463   }
2464 #endif
2465 
2466   // Now fetch the limit we want to compare against
2467   Node *limit = rce_cl->limit();
2468   bool first_time = true;
2469 
2470   // If we got this far, we identified the post loop which has been RCE'd and
2471   // we have a work list.  Now we will try to transform the if guard to cause
2472   // the loop pair to be multi version executed with the determination left to runtime
2473   // or the optimizer if full information is known about the given arrays at compile time.
2474   Node *last_min = NULL;
2475   multi_version_succeeded = true;
2476   while (worklist.size()) {
2477     Node* rc_iffm = worklist.pop();
2478     if (rc_iffm->is_If()) {
2479       Node *rc_bolzm = rc_iffm->in(1);
2480       if (rc_bolzm->is_Bool()) {
2481         Node *rc_cmpzm = rc_bolzm->in(1);
2482         if (rc_cmpzm->is_Cmp()) {
2483           Node *rc_left = rc_cmpzm->in(2);
2484           if (rc_left->Opcode() != Op_LoadRange) {
2485             multi_version_succeeded = false;
2486             break;
2487           }
2488           if (first_time) {
2489             last_min = rc_left;
2490             first_time = false;
2491           } else {
2492             Node *cur_min = new MinINode(last_min, rc_left);
2493             last_min = cur_min;
2494             _igvn.register_new_node_with_optimizer(last_min);
2495           }
2496         }
2497       }
2498     }
2499   }
2500 
2501   // All we have to do is update the limit of the rce loop
2502   // with the min of our expression and the current limit.
2503   // We will use this expression to replace the current limit.
2504   if (last_min && multi_version_succeeded) {
2505     Node *cur_min = new MinINode(last_min, limit);
2506     _igvn.register_new_node_with_optimizer(cur_min);
2507     Node *cmp_node = rce_loop_end->cmp_node();
2508     _igvn.replace_input_of(cmp_node, 2, cur_min);
2509     set_idom(cmp_node, cur_min, dom_depth(ctrl));
2510     set_ctrl(cur_min, ctrl);
2511     set_loop(cur_min, rce_loop->_parent);
2512 
2513     legacy_cl->mark_is_multiversioned();
2514     rce_cl->mark_is_multiversioned();
2515     multi_version_succeeded = true;
2516 
2517     C->set_major_progress();
2518   }
2519 
2520   return multi_version_succeeded;
2521 }
2522 
2523 //-------------------------poison_rce_post_loop--------------------------------
2524 // Causes the rce'd post loop to be optimized away if multiverioning fails
2525 void PhaseIdealLoop::poison_rce_post_loop(IdealLoopTree *rce_loop) {
2526   CountedLoopNode *rce_cl = rce_loop->_head->as_CountedLoop();
2527   Node* ctrl = rce_cl->in(LoopNode::EntryControl);
2528   if (ctrl->is_IfTrue() || ctrl->is_IfFalse()) {
2529     Node* iffm = ctrl->in(0);
2530     if (iffm->is_If()) {
2531       Node* cur_bool = iffm->in(1);
2532       if (cur_bool->is_Bool()) {
2533         Node* cur_cmp = cur_bool->in(1);
2534         if (cur_cmp->is_Cmp()) {
2535           BoolTest::mask new_test = BoolTest::gt;
2536           BoolNode *new_bool = new BoolNode(cur_cmp, new_test);
2537           _igvn.replace_node(cur_bool, new_bool);
2538           _igvn._worklist.push(new_bool);
2539           Node* left_op = cur_cmp->in(1);
2540           _igvn.replace_input_of(cur_cmp, 2, left_op);
2541           C->set_major_progress();
2542         }
2543       }
2544     }
2545   }
2546 }
2547 
2548 //------------------------------DCE_loop_body----------------------------------
2549 // Remove simplistic dead code from loop body
2550 void IdealLoopTree::DCE_loop_body() {
2551   for( uint i = 0; i < _body.size(); i++ )
2552     if( _body.at(i)->outcnt() == 0 )
2553       _body.map( i--, _body.pop() );
2554 }
2555 
2556 
2557 //------------------------------adjust_loop_exit_prob--------------------------
2558 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2559 // Replace with a 1-in-10 exit guess.
2560 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2561   Node *test = tail();
2562   while( test != _head ) {
2563     uint top = test->Opcode();
2564     if( top == Op_IfTrue || top == Op_IfFalse ) {
2565       int test_con = ((ProjNode*)test)->_con;
2566       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2567       IfNode *iff = test->in(0)->as_If();
2568       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2569         Node *bol = iff->in(1);
2570         if( bol && bol->req() > 1 && bol->in(1) &&
2571             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2572              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2573              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2574              (bol->in(1)->Opcode() == Op_CompareAndExchangeI ) ||
2575              (bol->in(1)->Opcode() == Op_CompareAndExchangeL ) ||
2576              (bol->in(1)->Opcode() == Op_CompareAndExchangeP ) ||
2577              (bol->in(1)->Opcode() == Op_CompareAndExchangeN ) ||
2578              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapI ) ||
2579              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapL ) ||
2580              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapP ) ||
2581              (bol->in(1)->Opcode() == Op_WeakCompareAndSwapN ) ||
2582              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2583              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2584              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2585              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2586           return;               // Allocation loops RARELY take backedge
2587         // Find the OTHER exit path from the IF
2588         Node* ex = iff->proj_out(1-test_con);
2589         float p = iff->_prob;
2590         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2591           if( top == Op_IfTrue ) {
2592             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2593               iff->_prob = PROB_STATIC_FREQUENT;
2594             }
2595           } else {
2596             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2597               iff->_prob = PROB_STATIC_INFREQUENT;
2598             }
2599           }
2600         }
2601       }
2602     }
2603     test = phase->idom(test);
2604   }
2605 }
2606 
2607 #ifdef ASSERT
2608 static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) {
2609   Node *ctrl  = cl->in(LoopNode::EntryControl);
2610   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2611   Node *iffm = ctrl->in(0);
2612   assert(iffm->Opcode() == Op_If, "");
2613   Node *p_f = iffm->in(0);
2614   assert(p_f->Opcode() == Op_IfFalse, "");
2615   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2616   assert(pre_end->loopnode()->is_pre_loop(), "");
2617   return pre_end->loopnode();
2618 }
2619 #endif
2620 
2621 // Remove the main and post loops and make the pre loop execute all
2622 // iterations. Useful when the pre loop is found empty.
2623 void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) {
2624   CountedLoopEndNode* pre_end = cl->loopexit();
2625   Node* pre_cmp = pre_end->cmp_node();
2626   if (pre_cmp->in(2)->Opcode() != Op_Opaque1) {
2627     // Only safe to remove the main loop if the compiler optimized it
2628     // out based on an unknown number of iterations
2629     return;
2630   }
2631 
2632   // Can we find the main loop?
2633   if (_next == NULL) {
2634     return;
2635   }
2636 
2637   Node* next_head = _next->_head;
2638   if (!next_head->is_CountedLoop()) {
2639     return;
2640   }
2641 
2642   CountedLoopNode* main_head = next_head->as_CountedLoop();
2643   if (!main_head->is_main_loop()) {
2644     return;
2645   }
2646 
2647   assert(locate_pre_from_main(main_head) == cl, "bad main loop");
2648   Node* main_iff = main_head->in(LoopNode::EntryControl)->in(0);
2649 
2650   // Remove the Opaque1Node of the pre loop and make it execute all iterations
2651   phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2));
2652   // Remove the Opaque1Node of the main loop so it can be optimized out
2653   Node* main_cmp = main_iff->in(1)->in(1);
2654   assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?");
2655   phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1));
2656 }
2657 
2658 //------------------------------policy_do_remove_empty_loop--------------------
2659 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2660 // The 'DO' part is to replace the trip counter with the value it will
2661 // have on the last iteration.  This will break the loop.
2662 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2663   // Minimum size must be empty loop
2664   if (_body.size() > EMPTY_LOOP_SIZE)
2665     return false;
2666 
2667   if (!_head->is_CountedLoop())
2668     return false;     // Dead loop
2669   CountedLoopNode *cl = _head->as_CountedLoop();
2670   if (!cl->is_valid_counted_loop())
2671     return false; // Malformed loop
2672   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2673     return false;             // Infinite loop
2674 
2675   if (cl->is_pre_loop()) {
2676     // If the loop we are removing is a pre-loop then the main and
2677     // post loop can be removed as well
2678     remove_main_post_loops(cl, phase);
2679   }
2680 
2681 #ifdef ASSERT
2682   // Ensure only one phi which is the iv.
2683   Node* iv = NULL;
2684   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2685     Node* n = cl->fast_out(i);
2686     if (n->Opcode() == Op_Phi) {
2687       assert(iv == NULL, "Too many phis" );
2688       iv = n;
2689     }
2690   }
2691   assert(iv == cl->phi(), "Wrong phi" );
2692 #endif
2693 
2694   // main and post loops have explicitly created zero trip guard
2695   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2696   if (needs_guard) {
2697     // Skip guard if values not overlap.
2698     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2699     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2700     int  stride_con = cl->stride_con();
2701     if (stride_con > 0) {
2702       needs_guard = (init_t->_hi >= limit_t->_lo);
2703     } else {
2704       needs_guard = (init_t->_lo <= limit_t->_hi);
2705     }
2706   }
2707   if (needs_guard) {
2708     // Check for an obvious zero trip guard.
2709     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2710     if (inctrl->Opcode() == Op_IfTrue || inctrl->Opcode() == Op_IfFalse) {
2711       bool maybe_swapped = (inctrl->Opcode() == Op_IfFalse);
2712       // The test should look like just the backedge of a CountedLoop
2713       Node* iff = inctrl->in(0);
2714       if (iff->is_If()) {
2715         Node* bol = iff->in(1);
2716         if (bol->is_Bool()) {
2717           BoolTest test = bol->as_Bool()->_test;
2718           if (maybe_swapped) {
2719             test._test = test.commute();
2720             test._test = test.negate();
2721           }
2722           if (test._test == cl->loopexit()->test_trip()) {
2723             Node* cmp = bol->in(1);
2724             int init_idx = maybe_swapped ? 2 : 1;
2725             int limit_idx = maybe_swapped ? 1 : 2;
2726             if (cmp->is_Cmp() && cmp->in(init_idx) == cl->init_trip() && cmp->in(limit_idx) == cl->limit()) {
2727               needs_guard = false;
2728             }
2729           }
2730         }
2731       }
2732     }
2733   }
2734 
2735 #ifndef PRODUCT
2736   if (PrintOpto) {
2737     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2738     this->dump_head();
2739   } else if (TraceLoopOpts) {
2740     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2741     this->dump_head();
2742   }
2743 #endif
2744 
2745   if (needs_guard) {
2746     // Peel the loop to ensure there's a zero trip guard
2747     Node_List old_new;
2748     phase->do_peeling(this, old_new);
2749   }
2750 
2751   // Replace the phi at loop head with the final value of the last
2752   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2753   // taken) and all loop-invariant uses of the exit values will be correct.
2754   Node *phi = cl->phi();
2755   Node *exact_limit = phase->exact_limit(this);
2756   if (exact_limit != cl->limit()) {
2757     // We also need to replace the original limit to collapse loop exit.
2758     Node* cmp = cl->loopexit()->cmp_node();
2759     assert(cl->limit() == cmp->in(2), "sanity");
2760     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2761     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2762   }
2763   // Note: the final value after increment should not overflow since
2764   // counted loop has limit check predicate.
2765   Node *final = new SubINode( exact_limit, cl->stride() );
2766   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2767   phase->_igvn.replace_node(phi,final);
2768   phase->C->set_major_progress();
2769   return true;
2770 }
2771 
2772 //------------------------------policy_do_one_iteration_loop-------------------
2773 // Convert one iteration loop into normal code.
2774 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2775   if (!_head->as_Loop()->is_valid_counted_loop())
2776     return false; // Only for counted loop
2777 
2778   CountedLoopNode *cl = _head->as_CountedLoop();
2779   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2780     return false;
2781   }
2782 
2783 #ifndef PRODUCT
2784   if(TraceLoopOpts) {
2785     tty->print("OneIteration ");
2786     this->dump_head();
2787   }
2788 #endif
2789 
2790   Node *init_n = cl->init_trip();
2791 #ifdef ASSERT
2792   // Loop boundaries should be constant since trip count is exact.
2793   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2794 #endif
2795   // Replace the phi at loop head with the value of the init_trip.
2796   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2797   // and all loop-invariant uses of the exit values will be correct.
2798   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2799   phase->C->set_major_progress();
2800   return true;
2801 }
2802 
2803 //=============================================================================
2804 //------------------------------iteration_split_impl---------------------------
2805 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2806   // Compute exact loop trip count if possible.
2807   compute_exact_trip_count(phase);
2808 
2809   // Convert one iteration loop into normal code.
2810   if (policy_do_one_iteration_loop(phase))
2811     return true;
2812 
2813   // Check and remove empty loops (spam micro-benchmarks)
2814   if (policy_do_remove_empty_loop(phase))
2815     return true;  // Here we removed an empty loop
2816 
2817   bool should_peel = policy_peeling(phase); // Should we peel?
2818 
2819   bool should_unswitch = policy_unswitching(phase);
2820 
2821   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2822   // This removes loop-invariant tests (usually null checks).
2823   if (!_head->is_CountedLoop()) { // Non-counted loop
2824     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2825       // Partial peel succeeded so terminate this round of loop opts
2826       return false;
2827     }
2828     if (should_peel) {            // Should we peel?
2829       if (PrintOpto) { tty->print_cr("should_peel"); }
2830       phase->do_peeling(this,old_new);
2831     } else if (should_unswitch) {
2832       phase->do_unswitching(this, old_new);
2833     }
2834     return true;
2835   }
2836   CountedLoopNode *cl = _head->as_CountedLoop();
2837 
2838   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2839 
2840   // Do nothing special to pre- and post- loops
2841   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2842 
2843   // Compute loop trip count from profile data
2844   compute_profile_trip_cnt(phase);
2845 
2846   // Before attempting fancy unrolling, RCE or alignment, see if we want
2847   // to completely unroll this loop or do loop unswitching.
2848   if (cl->is_normal_loop()) {
2849     if (should_unswitch) {
2850       phase->do_unswitching(this, old_new);
2851       return true;
2852     }
2853     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2854     if (should_maximally_unroll) {
2855       // Here we did some unrolling and peeling.  Eventually we will
2856       // completely unroll this loop and it will no longer be a loop.
2857       phase->do_maximally_unroll(this,old_new);
2858       return true;
2859     }
2860   }
2861 
2862   // Skip next optimizations if running low on nodes. Note that
2863   // policy_unswitching and policy_maximally_unroll have this check.
2864   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2865   if ((int)(2 * _body.size()) > nodes_left) {
2866     return true;
2867   }
2868 
2869   // Counted loops may be peeled, may need some iterations run up
2870   // front for RCE, and may want to align loop refs to a cache
2871   // line.  Thus we clone a full loop up front whose trip count is
2872   // at least 1 (if peeling), but may be several more.
2873 
2874   // The main loop will start cache-line aligned with at least 1
2875   // iteration of the unrolled body (zero-trip test required) and
2876   // will have some range checks removed.
2877 
2878   // A post-loop will finish any odd iterations (leftover after
2879   // unrolling), plus any needed for RCE purposes.
2880 
2881   bool should_unroll = policy_unroll(phase);
2882 
2883   bool should_rce = policy_range_check(phase);
2884 
2885   bool should_align = policy_align(phase);
2886 
2887   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2888   // need a pre-loop.  We may still need to peel an initial iteration but
2889   // we will not be needing an unknown number of pre-iterations.
2890   //
2891   // Basically, if may_rce_align reports FALSE first time through,
2892   // we will not be able to later do RCE or Aligning on this loop.
2893   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2894 
2895   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2896   // we switch to the pre-/main-/post-loop model.  This model also covers
2897   // peeling.
2898   if (should_rce || should_align || should_unroll) {
2899     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2900       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2901 
2902     // Adjust the pre- and main-loop limits to let the pre and post loops run
2903     // with full checks, but the main-loop with no checks.  Remove said
2904     // checks from the main body.
2905     if (should_rce) {
2906       old_new.clear();
2907       phase->do_range_check(this, old_new);
2908       if (old_new.size() > 0) {
2909         cl->mark_has_range_checks();
2910         old_new.clear();
2911       }
2912     }
2913 
2914     if (should_rce && should_unroll && !should_peel && PostLoopMultiversioning) {
2915       // Try to setup multiversioning on main loops before they are unrolled
2916       if (cl->is_main_loop() && (cl->unrolled_count() == 1))
2917         phase->insert_scalar_rced_post_loop(this, old_new);
2918     }
2919 
2920     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2921     // twice as many iterations as before) and the main body limit (only do
2922     // an even number of trips).  If we are peeling, we might enable some RCE
2923     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2924     // peeling.
2925     if (should_unroll && !should_peel) {
2926       if (SuperWordLoopUnrollAnalysis) {
2927         phase->insert_vector_post_loop(this, old_new);
2928       }
2929       phase->do_unroll(this, old_new, true);
2930     }
2931 
2932     // Adjust the pre-loop limits to align the main body
2933     // iterations.
2934     if (should_align)
2935       Unimplemented();
2936 
2937   } else {                      // Else we have an unchanged counted loop
2938     if (should_peel)           // Might want to peel but do nothing else
2939       phase->do_peeling(this,old_new);
2940   }
2941   return true;
2942 }
2943 
2944 
2945 //=============================================================================
2946 //------------------------------iteration_split--------------------------------
2947 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2948   // Recursively iteration split nested loops
2949   if (_child && !_child->iteration_split(phase, old_new))
2950     return false;
2951 
2952   // Clean out prior deadwood
2953   DCE_loop_body();
2954 
2955 
2956   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2957   // Replace with a 1-in-10 exit guess.
2958   if (_parent /*not the root loop*/ &&
2959       !_irreducible &&
2960       // Also ignore the occasional dead backedge
2961       !tail()->is_top()) {
2962     adjust_loop_exit_prob(phase);
2963   }
2964 
2965   // Gate unrolling, RCE and peeling efforts.
2966   if (!_child &&                // If not an inner loop, do not split
2967       !_irreducible &&
2968       _allow_optimizations &&
2969       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2970     if (!_has_call) {
2971         if (!iteration_split_impl(phase, old_new)) {
2972           return false;
2973         }
2974     } else if (policy_unswitching(phase)) {
2975       phase->do_unswitching(this, old_new);
2976     }
2977   }
2978 
2979   // Minor offset re-organization to remove loop-fallout uses of
2980   // trip counter when there was no major reshaping.
2981   phase->reorg_offsets(this);
2982 
2983   if (_next && !_next->iteration_split(phase, old_new))
2984     return false;
2985   return true;
2986 }
2987 
2988 
2989 //=============================================================================
2990 // Process all the loops in the loop tree and replace any fill
2991 // patterns with an intrinsic version.
2992 bool PhaseIdealLoop::do_intrinsify_fill() {
2993   bool changed = false;
2994   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2995     IdealLoopTree* lpt = iter.current();
2996     changed |= intrinsify_fill(lpt);
2997   }
2998   return changed;
2999 }
3000 
3001 
3002 // Examine an inner loop looking for a a single store of an invariant
3003 // value in a unit stride loop,
3004 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
3005                                      Node*& shift, Node*& con) {
3006   const char* msg = NULL;
3007   Node* msg_node = NULL;
3008 
3009   store_value = NULL;
3010   con = NULL;
3011   shift = NULL;
3012 
3013   // Process the loop looking for stores.  If there are multiple
3014   // stores or extra control flow give at this point.
3015   CountedLoopNode* head = lpt->_head->as_CountedLoop();
3016   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
3017     Node* n = lpt->_body.at(i);
3018     if (n->outcnt() == 0) continue; // Ignore dead
3019     if (n->is_Store()) {
3020       if (store != NULL) {
3021         msg = "multiple stores";
3022         break;
3023       }
3024       int opc = n->Opcode();
3025       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
3026         msg = "oop fills not handled";
3027         break;
3028       }
3029       Node* value = n->in(MemNode::ValueIn);
3030       if (!lpt->is_invariant(value)) {
3031         msg  = "variant store value";
3032       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
3033         msg = "not array address";
3034       }
3035       store = n;
3036       store_value = value;
3037     } else if (n->is_If() && n != head->loopexit()) {
3038       msg = "extra control flow";
3039       msg_node = n;
3040     }
3041   }
3042 
3043   if (store == NULL) {
3044     // No store in loop
3045     return false;
3046   }
3047 
3048   if (msg == NULL && head->stride_con() != 1) {
3049     // could handle negative strides too
3050     if (head->stride_con() < 0) {
3051       msg = "negative stride";
3052     } else {
3053       msg = "non-unit stride";
3054     }
3055   }
3056 
3057   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
3058     msg = "can't handle store address";
3059     msg_node = store->in(MemNode::Address);
3060   }
3061 
3062   if (msg == NULL &&
3063       (!store->in(MemNode::Memory)->is_Phi() ||
3064        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
3065     msg = "store memory isn't proper phi";
3066     msg_node = store->in(MemNode::Memory);
3067   }
3068 
3069   // Make sure there is an appropriate fill routine
3070   BasicType t = store->as_Mem()->memory_type();
3071   const char* fill_name;
3072   if (msg == NULL &&
3073       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
3074     msg = "unsupported store";
3075     msg_node = store;
3076   }
3077 
3078   if (msg != NULL) {
3079 #ifndef PRODUCT
3080     if (TraceOptimizeFill) {
3081       tty->print_cr("not fill intrinsic candidate: %s", msg);
3082       if (msg_node != NULL) msg_node->dump();
3083     }
3084 #endif
3085     return false;
3086   }
3087 
3088   // Make sure the address expression can be handled.  It should be
3089   // head->phi * elsize + con.  head->phi might have a ConvI2L(CastII()).
3090   Node* elements[4];
3091   Node* cast = NULL;
3092   Node* conv = NULL;
3093   bool found_index = false;
3094   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
3095   for (int e = 0; e < count; e++) {
3096     Node* n = elements[e];
3097     if (n->is_Con() && con == NULL) {
3098       con = n;
3099     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
3100       Node* value = n->in(1);
3101 #ifdef _LP64
3102       if (value->Opcode() == Op_ConvI2L) {
3103         conv = value;
3104         value = value->in(1);
3105       }
3106       if (value->Opcode() == Op_CastII &&
3107           value->as_CastII()->has_range_check()) {
3108         // Skip range check dependent CastII nodes
3109         cast = value;
3110         value = value->in(1);
3111       }
3112 #endif
3113       if (value != head->phi()) {
3114         msg = "unhandled shift in address";
3115       } else {
3116         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
3117           msg = "scale doesn't match";
3118         } else {
3119           found_index = true;
3120           shift = n;
3121         }
3122       }
3123     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
3124       conv = n;
3125       n = n->in(1);
3126       if (n->Opcode() == Op_CastII &&
3127           n->as_CastII()->has_range_check()) {
3128         // Skip range check dependent CastII nodes
3129         cast = n;
3130         n = n->in(1);
3131       }
3132       if (n == head->phi()) {
3133         found_index = true;
3134       } else {
3135         msg = "unhandled input to ConvI2L";
3136       }
3137     } else if (n == head->phi()) {
3138       // no shift, check below for allowed cases
3139       found_index = true;
3140     } else {
3141       msg = "unhandled node in address";
3142       msg_node = n;
3143     }
3144   }
3145 
3146   if (count == -1) {
3147     msg = "malformed address expression";
3148     msg_node = store;
3149   }
3150 
3151   if (!found_index) {
3152     msg = "missing use of index";
3153   }
3154 
3155   // byte sized items won't have a shift
3156   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
3157     msg = "can't find shift";
3158     msg_node = store;
3159   }
3160 
3161   if (msg != NULL) {
3162 #ifndef PRODUCT
3163     if (TraceOptimizeFill) {
3164       tty->print_cr("not fill intrinsic: %s", msg);
3165       if (msg_node != NULL) msg_node->dump();
3166     }
3167 #endif
3168     return false;
3169   }
3170 
3171   // No make sure all the other nodes in the loop can be handled
3172   VectorSet ok(Thread::current()->resource_area());
3173 
3174   // store related values are ok
3175   ok.set(store->_idx);
3176   ok.set(store->in(MemNode::Memory)->_idx);
3177 
3178   CountedLoopEndNode* loop_exit = head->loopexit();
3179   guarantee(loop_exit != NULL, "no loop exit node");
3180 
3181   // Loop structure is ok
3182   ok.set(head->_idx);
3183   ok.set(loop_exit->_idx);
3184   ok.set(head->phi()->_idx);
3185   ok.set(head->incr()->_idx);
3186   ok.set(loop_exit->cmp_node()->_idx);
3187   ok.set(loop_exit->in(1)->_idx);
3188 
3189   // Address elements are ok
3190   if (con)   ok.set(con->_idx);
3191   if (shift) ok.set(shift->_idx);
3192   if (cast)  ok.set(cast->_idx);
3193   if (conv)  ok.set(conv->_idx);
3194 
3195   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
3196     Node* n = lpt->_body.at(i);
3197     if (n->outcnt() == 0) continue; // Ignore dead
3198     if (ok.test(n->_idx)) continue;
3199     // Backedge projection is ok
3200     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
3201     if (!n->is_AddP()) {
3202       msg = "unhandled node";
3203       msg_node = n;
3204       break;
3205     }
3206   }
3207 
3208   // Make sure no unexpected values are used outside the loop
3209   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
3210     Node* n = lpt->_body.at(i);
3211     // These values can be replaced with other nodes if they are used
3212     // outside the loop.
3213     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
3214     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
3215       Node* use = iter.get();
3216       if (!lpt->_body.contains(use)) {
3217         msg = "node is used outside loop";
3218         // lpt->_body.dump();
3219         msg_node = n;
3220         break;
3221       }
3222     }
3223   }
3224 
3225 #ifdef ASSERT
3226   if (TraceOptimizeFill) {
3227     if (msg != NULL) {
3228       tty->print_cr("no fill intrinsic: %s", msg);
3229       if (msg_node != NULL) msg_node->dump();
3230     } else {
3231       tty->print_cr("fill intrinsic for:");
3232     }
3233     store->dump();
3234     if (Verbose) {
3235       lpt->_body.dump();
3236     }
3237   }
3238 #endif
3239 
3240   return msg == NULL;
3241 }
3242 
3243 
3244 
3245 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
3246   // Only for counted inner loops
3247   if (!lpt->is_counted() || !lpt->is_inner()) {
3248     return false;
3249   }
3250 
3251   // Must have constant stride
3252   CountedLoopNode* head = lpt->_head->as_CountedLoop();
3253   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
3254     return false;
3255   }
3256 
3257   // Check that the body only contains a store of a loop invariant
3258   // value that is indexed by the loop phi.
3259   Node* store = NULL;
3260   Node* store_value = NULL;
3261   Node* shift = NULL;
3262   Node* offset = NULL;
3263   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
3264     return false;
3265   }
3266 
3267 #ifndef PRODUCT
3268   if (TraceLoopOpts) {
3269     tty->print("ArrayFill    ");
3270     lpt->dump_head();
3271   }
3272 #endif
3273 
3274   // Now replace the whole loop body by a call to a fill routine that
3275   // covers the same region as the loop.
3276   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
3277 
3278   // Build an expression for the beginning of the copy region
3279   Node* index = head->init_trip();
3280 #ifdef _LP64
3281   index = new ConvI2LNode(index);
3282   _igvn.register_new_node_with_optimizer(index);
3283 #endif
3284   if (shift != NULL) {
3285     // byte arrays don't require a shift but others do.
3286     index = new LShiftXNode(index, shift->in(2));
3287     _igvn.register_new_node_with_optimizer(index);
3288   }
3289   index = new AddPNode(base, base, index);
3290   _igvn.register_new_node_with_optimizer(index);
3291   Node* from = new AddPNode(base, index, offset);
3292   _igvn.register_new_node_with_optimizer(from);
3293   // Compute the number of elements to copy
3294   Node* len = new SubINode(head->limit(), head->init_trip());
3295   _igvn.register_new_node_with_optimizer(len);
3296 
3297   BasicType t = store->as_Mem()->memory_type();
3298   bool aligned = false;
3299   if (offset != NULL && head->init_trip()->is_Con()) {
3300     int element_size = type2aelembytes(t);
3301     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
3302   }
3303 
3304   // Build a call to the fill routine
3305   const char* fill_name;
3306   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
3307   assert(fill != NULL, "what?");
3308 
3309   // Convert float/double to int/long for fill routines
3310   if (t == T_FLOAT) {
3311     store_value = new MoveF2INode(store_value);
3312     _igvn.register_new_node_with_optimizer(store_value);
3313   } else if (t == T_DOUBLE) {
3314     store_value = new MoveD2LNode(store_value);
3315     _igvn.register_new_node_with_optimizer(store_value);
3316   }
3317 
3318   Node* mem_phi = store->in(MemNode::Memory);
3319   Node* result_ctrl;
3320   Node* result_mem;
3321   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
3322   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
3323                                             fill_name, TypeAryPtr::get_array_body_type(t));
3324   uint cnt = 0;
3325   call->init_req(TypeFunc::Parms + cnt++, from);
3326   call->init_req(TypeFunc::Parms + cnt++, store_value);
3327 #ifdef _LP64
3328   len = new ConvI2LNode(len);
3329   _igvn.register_new_node_with_optimizer(len);
3330 #endif
3331   call->init_req(TypeFunc::Parms + cnt++, len);
3332 #ifdef _LP64
3333   call->init_req(TypeFunc::Parms + cnt++, C->top());
3334 #endif
3335   call->init_req(TypeFunc::Control,   head->init_control());
3336   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
3337   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
3338   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
3339   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
3340   _igvn.register_new_node_with_optimizer(call);
3341   result_ctrl = new ProjNode(call,TypeFunc::Control);
3342   _igvn.register_new_node_with_optimizer(result_ctrl);
3343   result_mem = new ProjNode(call,TypeFunc::Memory);
3344   _igvn.register_new_node_with_optimizer(result_mem);
3345 
3346 /* Disable following optimization until proper fix (add missing checks).
3347 
3348   // If this fill is tightly coupled to an allocation and overwrites
3349   // the whole body, allow it to take over the zeroing.
3350   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
3351   if (alloc != NULL && alloc->is_AllocateArray()) {
3352     Node* length = alloc->as_AllocateArray()->Ideal_length();
3353     if (head->limit() == length &&
3354         head->init_trip() == _igvn.intcon(0)) {
3355       if (TraceOptimizeFill) {
3356         tty->print_cr("Eliminated zeroing in allocation");
3357       }
3358       alloc->maybe_set_complete(&_igvn);
3359     } else {
3360 #ifdef ASSERT
3361       if (TraceOptimizeFill) {
3362         tty->print_cr("filling array but bounds don't match");
3363         alloc->dump();
3364         head->init_trip()->dump();
3365         head->limit()->dump();
3366         length->dump();
3367       }
3368 #endif
3369     }
3370   }
3371 */
3372 
3373   // Redirect the old control and memory edges that are outside the loop.
3374   Node* exit = head->loopexit()->proj_out(0);
3375   // Sometimes the memory phi of the head is used as the outgoing
3376   // state of the loop.  It's safe in this case to replace it with the
3377   // result_mem.
3378   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
3379   lazy_replace(exit, result_ctrl);
3380   _igvn.replace_node(store, result_mem);
3381   // Any uses the increment outside of the loop become the loop limit.
3382   _igvn.replace_node(head->incr(), head->limit());
3383 
3384   // Disconnect the head from the loop.
3385   for (uint i = 0; i < lpt->_body.size(); i++) {
3386     Node* n = lpt->_body.at(i);
3387     _igvn.replace_node(n, C->top());
3388   }
3389 
3390   return true;
3391 }