1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class PhaseIdealLoop;
  41 class CountedLoopReserveKit;
  42 class VectorSet;
  43 class Invariance;
  44 struct small_cache;
  45 
  46 //
  47 //                  I D E A L I Z E D   L O O P S
  48 //
  49 // Idealized loops are the set of loops I perform more interesting
  50 // transformations on, beyond simple hoisting.
  51 
  52 //------------------------------LoopNode---------------------------------------
  53 // Simple loop header.  Fall in path on left, loop-back path on right.
  54 class LoopNode : public RegionNode {
  55   // Size is bigger to hold the flags.  However, the flags do not change
  56   // the semantics so it does not appear in the hash & cmp functions.
  57   virtual uint size_of() const { return sizeof(*this); }
  58 protected:
  59   short _loop_flags;
  60   // Names for flag bitfields
  61   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  62          MainHasNoPreLoop=4,
  63          HasExactTripCount=8,
  64          InnerLoop=16,
  65          PartialPeelLoop=32,
  66          PartialPeelFailed=64,
  67          HasReductions=128,
  68          WasSlpAnalyzed=256,
  69          PassedSlpAnalysis=512,
  70          DoUnrollOnly=1024,
  71          VectorizedLoop=2048,
  72          HasAtomicPostLoop=4096 };
  73   char _unswitch_count;
  74   enum { _unswitch_max=3 };
  75 
  76 public:
  77   // Names for edge indices
  78   enum { Self=0, EntryControl, LoopBackControl };
  79 
  80   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  81   void set_inner_loop() { _loop_flags |= InnerLoop; }
  82 
  83   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  84   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  85   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  86   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  87   void mark_has_reductions() { _loop_flags |= HasReductions; }
  88   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
  89   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
  90   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
  91   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
  92   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
  93 
  94   int unswitch_max() { return _unswitch_max; }
  95   int unswitch_count() { return _unswitch_count; }
  96   void set_unswitch_count(int val) {
  97     assert (val <= unswitch_max(), "too many unswitches");
  98     _unswitch_count = val;
  99   }
 100 
 101   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
 102     init_class_id(Class_Loop);
 103     init_req(EntryControl, entry);
 104     init_req(LoopBackControl, backedge);
 105   }
 106 
 107   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 108   virtual int Opcode() const;
 109   bool can_be_counted_loop(PhaseTransform* phase) const {
 110     return req() == 3 && in(0) != NULL &&
 111       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 112       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 113   }
 114   bool is_valid_counted_loop() const;
 115 #ifndef PRODUCT
 116   virtual void dump_spec(outputStream *st) const;
 117 #endif
 118 };
 119 
 120 //------------------------------Counted Loops----------------------------------
 121 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 122 // path (and maybe some other exit paths).  The trip-counter exit is always
 123 // last in the loop.  The trip-counter have to stride by a constant;
 124 // the exit value is also loop invariant.
 125 
 126 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 127 // CountedLoopNode has the incoming loop control and the loop-back-control
 128 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 129 // CountedLoopEndNode has an incoming control (possibly not the
 130 // CountedLoopNode if there is control flow in the loop), the post-increment
 131 // trip-counter value, and the limit.  The trip-counter value is always of
 132 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 133 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 134 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 135 // CountedLoopEndNode also takes in the loop-invariant limit value.
 136 
 137 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 138 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 139 // via the old-trip-counter from the Op node.
 140 
 141 //------------------------------CountedLoopNode--------------------------------
 142 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 143 // inputs the incoming loop-start control and the loop-back control, so they
 144 // act like RegionNodes.  They also take in the initial trip counter, the
 145 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 146 // produce a loop-body control and the trip counter value.  Since
 147 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 148 
 149 class CountedLoopNode : public LoopNode {
 150   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 151   // the semantics so it does not appear in the hash & cmp functions.
 152   virtual uint size_of() const { return sizeof(*this); }
 153 
 154   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 155   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 156   node_idx_t _main_idx;
 157 
 158   // Known trip count calculated by compute_exact_trip_count()
 159   uint  _trip_count;
 160 
 161   // Expected trip count from profile data
 162   float _profile_trip_cnt;
 163 
 164   // Log2 of original loop bodies in unrolled loop
 165   int _unrolled_count_log2;
 166 
 167   // Node count prior to last unrolling - used to decide if
 168   // unroll,optimize,unroll,optimize,... is making progress
 169   int _node_count_before_unroll;
 170 
 171   // If slp analysis is performed we record the maximum
 172   // vector mapped unroll factor here
 173   int _slp_maximum_unroll_factor;
 174 
 175 public:
 176   CountedLoopNode( Node *entry, Node *backedge )
 177     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 178       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 179       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 180     init_class_id(Class_CountedLoop);
 181     // Initialize _trip_count to the largest possible value.
 182     // Will be reset (lower) if the loop's trip count is known.
 183   }
 184 
 185   virtual int Opcode() const;
 186   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 187 
 188   Node *init_control() const { return in(EntryControl); }
 189   Node *back_control() const { return in(LoopBackControl); }
 190   CountedLoopEndNode *loopexit() const;
 191   Node *init_trip() const;
 192   Node *stride() const;
 193   int   stride_con() const;
 194   bool  stride_is_con() const;
 195   Node *limit() const;
 196   Node *incr() const;
 197   Node *phi() const;
 198 
 199   // Match increment with optional truncation
 200   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 201 
 202   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 203   // can run short a few iterations and may start a few iterations in.
 204   // It will be RCE'd and unrolled and aligned.
 205 
 206   // A following 'post' loop will run any remaining iterations.  Used
 207   // during Range Check Elimination, the 'post' loop will do any final
 208   // iterations with full checks.  Also used by Loop Unrolling, where
 209   // the 'post' loop will do any epilog iterations needed.  Basically,
 210   // a 'post' loop can not profitably be further unrolled or RCE'd.
 211 
 212   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 213   // it may do under-flow checks for RCE and may do alignment iterations
 214   // so the following main loop 'knows' that it is striding down cache
 215   // lines.
 216 
 217   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 218   // Aligned, may be missing it's pre-loop.
 219   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 220   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 221   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 222   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 223   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 224   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 225   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 226   int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 227   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 228   int is_vectorized_loop    () const { return (_loop_flags & VectorizedLoop) == VectorizedLoop; }
 229   int has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 230   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 231 
 232   int main_idx() const { return _main_idx; }
 233 
 234 
 235   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 236   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 237   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 238   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 239 
 240   void set_trip_count(uint tc) { _trip_count = tc; }
 241   uint trip_count()            { return _trip_count; }
 242 
 243   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 244   void set_exact_trip_count(uint tc) {
 245     _trip_count = tc;
 246     _loop_flags |= HasExactTripCount;
 247   }
 248   void set_nonexact_trip_count() {
 249     _loop_flags &= ~HasExactTripCount;
 250   }
 251   void set_notpassed_slp() {
 252     _loop_flags &= ~PassedSlpAnalysis;
 253   }
 254 
 255   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 256   float profile_trip_cnt()             { return _profile_trip_cnt; }
 257 
 258   void double_unrolled_count() { _unrolled_count_log2++; }
 259   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 260 
 261   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 262   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 263   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 264   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 265 
 266 #ifndef PRODUCT
 267   virtual void dump_spec(outputStream *st) const;
 268 #endif
 269 };
 270 
 271 //------------------------------CountedLoopEndNode-----------------------------
 272 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 273 // IfNodes.
 274 class CountedLoopEndNode : public IfNode {
 275 public:
 276   enum { TestControl, TestValue };
 277 
 278   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 279     : IfNode( control, test, prob, cnt) {
 280     init_class_id(Class_CountedLoopEnd);
 281   }
 282   virtual int Opcode() const;
 283 
 284   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 285   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 286   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 287   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 288   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 289   int stride_con() const;
 290   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 291   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 292   PhiNode *phi() const {
 293     Node *tmp = incr();
 294     if (tmp && tmp->req() == 3) {
 295       Node* phi = tmp->in(1);
 296       if (phi->is_Phi()) {
 297         return phi->as_Phi();
 298       }
 299     }
 300     return NULL;
 301   }
 302   CountedLoopNode *loopnode() const {
 303     // The CountedLoopNode that goes with this CountedLoopEndNode may
 304     // have been optimized out by the IGVN so be cautious with the
 305     // pattern matching on the graph
 306     PhiNode* iv_phi = phi();
 307     if (iv_phi == NULL) {
 308       return NULL;
 309     }
 310     Node *ln = iv_phi->in(0);
 311     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
 312       return (CountedLoopNode*)ln;
 313     }
 314     return NULL;
 315   }
 316 
 317 #ifndef PRODUCT
 318   virtual void dump_spec(outputStream *st) const;
 319 #endif
 320 };
 321 
 322 
 323 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 324   Node *bc = back_control();
 325   if( bc == NULL ) return NULL;
 326   Node *le = bc->in(0);
 327   if( le->Opcode() != Op_CountedLoopEnd )
 328     return NULL;
 329   return (CountedLoopEndNode*)le;
 330 }
 331 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 332 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 333 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 334 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 335 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 336 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 337 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 338 
 339 //------------------------------LoopLimitNode-----------------------------
 340 // Counted Loop limit node which represents exact final iterator value:
 341 // trip_count = (limit - init_trip + stride - 1)/stride
 342 // final_value= trip_count * stride + init_trip.
 343 // Use HW instructions to calculate it when it can overflow in integer.
 344 // Note, final_value should fit into integer since counted loop has
 345 // limit check: limit <= max_int-stride.
 346 class LoopLimitNode : public Node {
 347   enum { Init=1, Limit=2, Stride=3 };
 348  public:
 349   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 350     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 351     init_flags(Flag_is_macro);
 352     C->add_macro_node(this);
 353   }
 354   virtual int Opcode() const;
 355   virtual const Type *bottom_type() const { return TypeInt::INT; }
 356   virtual uint ideal_reg() const { return Op_RegI; }
 357   virtual const Type* Value(PhaseGVN* phase) const;
 358   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 359   virtual Node* Identity(PhaseGVN* phase);
 360 };
 361 
 362 // -----------------------------IdealLoopTree----------------------------------
 363 class IdealLoopTree : public ResourceObj {
 364 public:
 365   IdealLoopTree *_parent;       // Parent in loop tree
 366   IdealLoopTree *_next;         // Next sibling in loop tree
 367   IdealLoopTree *_child;        // First child in loop tree
 368 
 369   // The head-tail backedge defines the loop.
 370   // If tail is NULL then this loop has multiple backedges as part of the
 371   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 372   // them at the loop bottom and flow 1 real backedge into the loop.
 373   Node *_head;                  // Head of loop
 374   Node *_tail;                  // Tail of loop
 375   inline Node *tail();          // Handle lazy update of _tail field
 376   PhaseIdealLoop* _phase;
 377   int _local_loop_unroll_limit;
 378   int _local_loop_unroll_factor;
 379 
 380   Node_List _body;              // Loop body for inner loops
 381 
 382   uint8_t _nest;                // Nesting depth
 383   uint8_t _irreducible:1,       // True if irreducible
 384           _has_call:1,          // True if has call safepoint
 385           _has_sfpt:1,          // True if has non-call safepoint
 386           _rce_candidate:1;     // True if candidate for range check elimination
 387 
 388   Node_List* _safepts;          // List of safepoints in this loop
 389   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 390   bool  _allow_optimizations;   // Allow loop optimizations
 391 
 392   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 393     : _parent(0), _next(0), _child(0),
 394       _head(head), _tail(tail),
 395       _phase(phase),
 396       _safepts(NULL),
 397       _required_safept(NULL),
 398       _allow_optimizations(true),
 399       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 400       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 401   { }
 402 
 403   // Is 'l' a member of 'this'?
 404   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 405 
 406   // Set loop nesting depth.  Accumulate has_call bits.
 407   int set_nest( uint depth );
 408 
 409   // Split out multiple fall-in edges from the loop header.  Move them to a
 410   // private RegionNode before the loop.  This becomes the loop landing pad.
 411   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 412 
 413   // Split out the outermost loop from this shared header.
 414   void split_outer_loop( PhaseIdealLoop *phase );
 415 
 416   // Merge all the backedges from the shared header into a private Region.
 417   // Feed that region as the one backedge to this loop.
 418   void merge_many_backedges( PhaseIdealLoop *phase );
 419 
 420   // Split shared headers and insert loop landing pads.
 421   // Insert a LoopNode to replace the RegionNode.
 422   // Returns TRUE if loop tree is structurally changed.
 423   bool beautify_loops( PhaseIdealLoop *phase );
 424 
 425   // Perform optimization to use the loop predicates for null checks and range checks.
 426   // Applies to any loop level (not just the innermost one)
 427   bool loop_predication( PhaseIdealLoop *phase);
 428 
 429   // Perform iteration-splitting on inner loops.  Split iterations to
 430   // avoid range checks or one-shot null checks.  Returns false if the
 431   // current round of loop opts should stop.
 432   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 433 
 434   // Driver for various flavors of iteration splitting.  Returns false
 435   // if the current round of loop opts should stop.
 436   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 437 
 438   // Given dominators, try to find loops with calls that must always be
 439   // executed (call dominates loop tail).  These loops do not need non-call
 440   // safepoints (ncsfpt).
 441   void check_safepts(VectorSet &visited, Node_List &stack);
 442 
 443   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 444   // encountered.
 445   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 446 
 447   // Remove safepoints from loop. Optionally keeping one.
 448   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 449 
 450   // Convert to counted loops where possible
 451   void counted_loop( PhaseIdealLoop *phase );
 452 
 453   // Check for Node being a loop-breaking test
 454   Node *is_loop_exit(Node *iff) const;
 455 
 456   // Returns true if ctrl is executed on every complete iteration
 457   bool dominates_backedge(Node* ctrl);
 458 
 459   // Remove simplistic dead code from loop body
 460   void DCE_loop_body();
 461 
 462   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 463   // Replace with a 1-in-10 exit guess.
 464   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 465 
 466   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 467   // Useful for unrolling loops with NO array accesses.
 468   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 469 
 470   // Return TRUE or FALSE if the loop should be unswitched -- clone
 471   // loop with an invariant test
 472   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 473 
 474   // Micro-benchmark spamming.  Remove empty loops.
 475   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 476 
 477   // Convert one iteration loop into normal code.
 478   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 479 
 480   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 481   // make some loop-invariant test (usually a null-check) happen before the
 482   // loop.
 483   bool policy_peeling( PhaseIdealLoop *phase ) const;
 484 
 485   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 486   // known trip count in the counted loop node.
 487   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 488 
 489   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 490   // the loop is a CountedLoop and the body is small enough.
 491   bool policy_unroll(PhaseIdealLoop *phase);
 492 
 493   // Loop analyses to map to a maximal superword unrolling for vectorization.
 494   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 495 
 496   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 497   // Gather a list of IF tests that are dominated by iteration splitting;
 498   // also gather the end of the first split and the start of the 2nd split.
 499   bool policy_range_check( PhaseIdealLoop *phase ) const;
 500 
 501   // Return TRUE or FALSE if the loop should be cache-line aligned.
 502   // Gather the expression that does the alignment.  Note that only
 503   // one array base can be aligned in a loop (unless the VM guarantees
 504   // mutual alignment).  Note that if we vectorize short memory ops
 505   // into longer memory ops, we may want to increase alignment.
 506   bool policy_align( PhaseIdealLoop *phase ) const;
 507 
 508   // Return TRUE if "iff" is a range check.
 509   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 510 
 511   // Compute loop exact trip count if possible
 512   void compute_exact_trip_count( PhaseIdealLoop *phase );
 513 
 514   // Compute loop trip count from profile data
 515   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 516 
 517   // Reassociate invariant expressions.
 518   void reassociate_invariants(PhaseIdealLoop *phase);
 519   // Reassociate invariant add and subtract expressions.
 520   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 521   // Return nonzero index of invariant operand if invariant and variant
 522   // are combined with an Add or Sub. Helper for reassociate_invariants.
 523   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 524 
 525   // Return true if n is invariant
 526   bool is_invariant(Node* n) const;
 527 
 528   // Put loop body on igvn work list
 529   void record_for_igvn();
 530 
 531   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 532   bool is_inner()   { return is_loop() && _child == NULL; }
 533   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 534 
 535   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 536 
 537 #ifndef PRODUCT
 538   void dump_head( ) const;      // Dump loop head only
 539   void dump() const;            // Dump this loop recursively
 540   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 541 #endif
 542 
 543 };
 544 
 545 // -----------------------------PhaseIdealLoop---------------------------------
 546 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 547 // loop tree.  Drives the loop-based transformations on the ideal graph.
 548 class PhaseIdealLoop : public PhaseTransform {
 549   friend class IdealLoopTree;
 550   friend class SuperWord;
 551   friend class CountedLoopReserveKit;
 552 
 553   // Pre-computed def-use info
 554   PhaseIterGVN &_igvn;
 555 
 556   // Head of loop tree
 557   IdealLoopTree *_ltree_root;
 558 
 559   // Array of pre-order numbers, plus post-visited bit.
 560   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 561   // ODD for post-visited.  Other bits are the pre-order number.
 562   uint *_preorders;
 563   uint _max_preorder;
 564 
 565   const PhaseIdealLoop* _verify_me;
 566   bool _verify_only;
 567 
 568   // Allocate _preorders[] array
 569   void allocate_preorders() {
 570     _max_preorder = C->unique()+8;
 571     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 572     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 573   }
 574 
 575   // Allocate _preorders[] array
 576   void reallocate_preorders() {
 577     if ( _max_preorder < C->unique() ) {
 578       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 579       _max_preorder = C->unique();
 580     }
 581     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 582   }
 583 
 584   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 585   // adds new nodes.
 586   void check_grow_preorders( ) {
 587     if ( _max_preorder < C->unique() ) {
 588       uint newsize = _max_preorder<<1;  // double size of array
 589       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 590       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 591       _max_preorder = newsize;
 592     }
 593   }
 594   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 595   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 596   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 597   void set_preorder_visited( Node *n, int pre_order ) {
 598     assert( !is_visited( n ), "already set" );
 599     _preorders[n->_idx] = (pre_order<<1);
 600   };
 601   // Return pre-order number.
 602   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 603 
 604   // Check for being post-visited.
 605   // Should be previsited already (checked with assert(is_visited(n))).
 606   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 607 
 608   // Mark as post visited
 609   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 610 
 611   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 612   // Returns true if "n" is a data node, false if it's a control node.
 613   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 614 
 615   // clear out dead code after build_loop_late
 616   Node_List _deadlist;
 617 
 618   // Support for faster execution of get_late_ctrl()/dom_lca()
 619   // when a node has many uses and dominator depth is deep.
 620   Node_Array _dom_lca_tags;
 621   void   init_dom_lca_tags();
 622   void   clear_dom_lca_tags();
 623 
 624   // Helper for debugging bad dominance relationships
 625   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 626 
 627   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 628 
 629   // Inline wrapper for frequent cases:
 630   // 1) only one use
 631   // 2) a use is the same as the current LCA passed as 'n1'
 632   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 633     assert( n->is_CFG(), "" );
 634     // Fast-path NULL lca
 635     if( lca != NULL && lca != n ) {
 636       assert( lca->is_CFG(), "" );
 637       // find LCA of all uses
 638       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 639     }
 640     return find_non_split_ctrl(n);
 641   }
 642   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 643 
 644   // Helper function for directing control inputs away from CFG split
 645   // points.
 646   Node *find_non_split_ctrl( Node *ctrl ) const {
 647     if (ctrl != NULL) {
 648       if (ctrl->is_MultiBranch()) {
 649         ctrl = ctrl->in(0);
 650       }
 651       assert(ctrl->is_CFG(), "CFG");
 652     }
 653     return ctrl;
 654   }
 655 
 656   bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 657 
 658 public:
 659   bool has_node( Node* n ) const {
 660     guarantee(n != NULL, "No Node.");
 661     return _nodes[n->_idx] != NULL;
 662   }
 663   // check if transform created new nodes that need _ctrl recorded
 664   Node *get_late_ctrl( Node *n, Node *early );
 665   Node *get_early_ctrl( Node *n );
 666   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 667   void set_early_ctrl( Node *n );
 668   void set_subtree_ctrl( Node *root );
 669   void set_ctrl( Node *n, Node *ctrl ) {
 670     assert( !has_node(n) || has_ctrl(n), "" );
 671     assert( ctrl->in(0), "cannot set dead control node" );
 672     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 673     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 674   }
 675   // Set control and update loop membership
 676   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 677     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 678     IdealLoopTree* new_loop = get_loop(ctrl);
 679     if (old_loop != new_loop) {
 680       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 681       if (new_loop->_child == NULL) new_loop->_body.push(n);
 682     }
 683     set_ctrl(n, ctrl);
 684   }
 685   // Control nodes can be replaced or subsumed.  During this pass they
 686   // get their replacement Node in slot 1.  Instead of updating the block
 687   // location of all Nodes in the subsumed block, we lazily do it.  As we
 688   // pull such a subsumed block out of the array, we write back the final
 689   // correct block.
 690   Node *get_ctrl( Node *i ) {
 691     assert(has_node(i), "");
 692     Node *n = get_ctrl_no_update(i);
 693     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 694     assert(has_node(i) && has_ctrl(i), "");
 695     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 696     return n;
 697   }
 698   // true if CFG node d dominates CFG node n
 699   bool is_dominator(Node *d, Node *n);
 700   // return get_ctrl for a data node and self(n) for a CFG node
 701   Node* ctrl_or_self(Node* n) {
 702     if (has_ctrl(n))
 703       return get_ctrl(n);
 704     else {
 705       assert (n->is_CFG(), "must be a CFG node");
 706       return n;
 707     }
 708   }
 709 
 710 private:
 711   Node *get_ctrl_no_update_helper(Node *i) const {
 712     assert(has_ctrl(i), "should be control, not loop");
 713     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 714   }
 715 
 716   Node *get_ctrl_no_update(Node *i) const {
 717     assert( has_ctrl(i), "" );
 718     Node *n = get_ctrl_no_update_helper(i);
 719     if (!n->in(0)) {
 720       // Skip dead CFG nodes
 721       do {
 722         n = get_ctrl_no_update_helper(n);
 723       } while (!n->in(0));
 724       n = find_non_split_ctrl(n);
 725     }
 726     return n;
 727   }
 728 
 729   // Check for loop being set
 730   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 731   bool has_loop( Node *n ) const {
 732     assert(!has_node(n) || !has_ctrl(n), "");
 733     return has_node(n);
 734   }
 735   // Set loop
 736   void set_loop( Node *n, IdealLoopTree *loop ) {
 737     _nodes.map(n->_idx, (Node*)loop);
 738   }
 739   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 740   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 741   // from old_node to new_node to support the lazy update.  Reference
 742   // replaces loop reference, since that is not needed for dead node.
 743 public:
 744   void lazy_update(Node *old_node, Node *new_node) {
 745     assert(old_node != new_node, "no cycles please");
 746     // Re-use the side array slot for this node to provide the
 747     // forwarding pointer.
 748     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 749   }
 750   void lazy_replace(Node *old_node, Node *new_node) {
 751     _igvn.replace_node(old_node, new_node);
 752     lazy_update(old_node, new_node);
 753   }
 754 
 755 private:
 756 
 757   // Place 'n' in some loop nest, where 'n' is a CFG node
 758   void build_loop_tree();
 759   int build_loop_tree_impl( Node *n, int pre_order );
 760   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 761   // loop tree, not the root.
 762   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 763 
 764   // Place Data nodes in some loop nest
 765   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 766   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 767   void build_loop_late_post ( Node* n );
 768 
 769   // Array of immediate dominance info for each CFG node indexed by node idx
 770 private:
 771   uint _idom_size;
 772   Node **_idom;                 // Array of immediate dominators
 773   uint *_dom_depth;           // Used for fast LCA test
 774   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 775 
 776   Node* idom_no_update(Node* d) const {
 777     assert(d->_idx < _idom_size, "oob");
 778     Node* n = _idom[d->_idx];
 779     assert(n != NULL,"Bad immediate dominator info.");
 780     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 781       //n = n->in(1);
 782       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 783       assert(n != NULL,"Bad immediate dominator info.");
 784     }
 785     return n;
 786   }
 787   Node *idom(Node* d) const {
 788     uint didx = d->_idx;
 789     Node *n = idom_no_update(d);
 790     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 791     return n;
 792   }
 793   uint dom_depth(Node* d) const {
 794     guarantee(d != NULL, "Null dominator info.");
 795     guarantee(d->_idx < _idom_size, "");
 796     return _dom_depth[d->_idx];
 797   }
 798   void set_idom(Node* d, Node* n, uint dom_depth);
 799   // Locally compute IDOM using dom_lca call
 800   Node *compute_idom( Node *region ) const;
 801   // Recompute dom_depth
 802   void recompute_dom_depth();
 803 
 804   // Is safept not required by an outer loop?
 805   bool is_deleteable_safept(Node* sfpt);
 806 
 807   // Replace parallel induction variable (parallel to trip counter)
 808   void replace_parallel_iv(IdealLoopTree *loop);
 809 
 810   // Perform verification that the graph is valid.
 811   PhaseIdealLoop( PhaseIterGVN &igvn) :
 812     PhaseTransform(Ideal_Loop),
 813     _igvn(igvn),
 814     _dom_lca_tags(arena()), // Thread::resource_area
 815     _verify_me(NULL),
 816     _verify_only(true) {
 817     build_and_optimize(false, false);
 818   }
 819 
 820   // build the loop tree and perform any requested optimizations
 821   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 822 
 823 public:
 824   // Dominators for the sea of nodes
 825   void Dominators();
 826   Node *dom_lca( Node *n1, Node *n2 ) const {
 827     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 828   }
 829   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 830 
 831   // Compute the Ideal Node to Loop mapping
 832   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 833     PhaseTransform(Ideal_Loop),
 834     _igvn(igvn),
 835     _dom_lca_tags(arena()), // Thread::resource_area
 836     _verify_me(NULL),
 837     _verify_only(false) {
 838     build_and_optimize(do_split_ifs, skip_loop_opts);
 839   }
 840 
 841   // Verify that verify_me made the same decisions as a fresh run.
 842   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 843     PhaseTransform(Ideal_Loop),
 844     _igvn(igvn),
 845     _dom_lca_tags(arena()), // Thread::resource_area
 846     _verify_me(verify_me),
 847     _verify_only(false) {
 848     build_and_optimize(false, false);
 849   }
 850 
 851   // Build and verify the loop tree without modifying the graph.  This
 852   // is useful to verify that all inputs properly dominate their uses.
 853   static void verify(PhaseIterGVN& igvn) {
 854 #ifdef ASSERT
 855     PhaseIdealLoop v(igvn);
 856 #endif
 857   }
 858 
 859   // True if the method has at least 1 irreducible loop
 860   bool _has_irreducible_loops;
 861 
 862   // Per-Node transform
 863   virtual Node *transform( Node *a_node ) { return 0; }
 864 
 865   bool is_counted_loop( Node *x, IdealLoopTree *loop );
 866 
 867   Node* exact_limit( IdealLoopTree *loop );
 868 
 869   // Return a post-walked LoopNode
 870   IdealLoopTree *get_loop( Node *n ) const {
 871     // Dead nodes have no loop, so return the top level loop instead
 872     if (!has_node(n))  return _ltree_root;
 873     assert(!has_ctrl(n), "");
 874     return (IdealLoopTree*)_nodes[n->_idx];
 875   }
 876 
 877   // Is 'n' a (nested) member of 'loop'?
 878   int is_member( const IdealLoopTree *loop, Node *n ) const {
 879     return loop->is_member(get_loop(n)); }
 880 
 881   // This is the basic building block of the loop optimizations.  It clones an
 882   // entire loop body.  It makes an old_new loop body mapping; with this
 883   // mapping you can find the new-loop equivalent to an old-loop node.  All
 884   // new-loop nodes are exactly equal to their old-loop counterparts, all
 885   // edges are the same.  All exits from the old-loop now have a RegionNode
 886   // that merges the equivalent new-loop path.  This is true even for the
 887   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 888   // now come from (one or more) Phis that merge their new-loop equivalents.
 889   // Parameter side_by_side_idom:
 890   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 891   //      the clone loop to dominate the original.  Used in construction of
 892   //      pre-main-post loop sequence.
 893   //   When nonnull, the clone and original are side-by-side, both are
 894   //      dominated by the passed in side_by_side_idom node.  Used in
 895   //      construction of unswitched loops.
 896   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 897                    Node* side_by_side_idom = NULL);
 898 
 899   // If we got the effect of peeling, either by actually peeling or by
 900   // making a pre-loop which must execute at least once, we can remove
 901   // all loop-invariant dominated tests in the main body.
 902   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 903 
 904   // Generate code to do a loop peel for the given loop (and body).
 905   // old_new is a temp array.
 906   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 907 
 908   // Add pre and post loops around the given loop.  These loops are used
 909   // during RCE, unrolling and aligning loops.
 910   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 911   // Add a vector post loop between a vector main loop and the current post loop
 912   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
 913   // If Node n lives in the back_ctrl block, we clone a private version of n
 914   // in preheader_ctrl block and return that, otherwise return n.
 915   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
 916 
 917   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 918   // unroll to do double iterations.  The next round of major loop transforms
 919   // will repeat till the doubled loop body does all remaining iterations in 1
 920   // pass.
 921   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 922 
 923   // Unroll the loop body one step - make each trip do 2 iterations.
 924   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 925 
 926   // Mark vector reduction candidates before loop unrolling
 927   void mark_reductions( IdealLoopTree *loop );
 928 
 929   // Return true if exp is a constant times an induction var
 930   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 931 
 932   // Return true if exp is a scaled induction var plus (or minus) constant
 933   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 934 
 935   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
 936   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 937                                         Deoptimization::DeoptReason reason,
 938                                         int opcode);
 939   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
 940 
 941   // Clone loop predicates to cloned loops (peeled, unswitched)
 942   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
 943                                    Deoptimization::DeoptReason reason,
 944                                    PhaseIdealLoop* loop_phase,
 945                                    PhaseIterGVN* igvn);
 946 
 947   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
 948                                          bool clone_limit_check,
 949                                          PhaseIdealLoop* loop_phase,
 950                                          PhaseIterGVN* igvn);
 951   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 952 
 953   static Node* skip_loop_predicates(Node* entry);
 954 
 955   // Find a good location to insert a predicate
 956   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
 957   // Find a predicate
 958   static Node* find_predicate(Node* entry);
 959   // Construct a range check for a predicate if
 960   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
 961                          int scale, Node* offset,
 962                          Node* init, Node* limit, Node* stride,
 963                          Node* range, bool upper);
 964 
 965   // Implementation of the loop predication to promote checks outside the loop
 966   bool loop_predication_impl(IdealLoopTree *loop);
 967 
 968   // Helper function to collect predicate for eliminating the useless ones
 969   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
 970   void eliminate_useless_predicates();
 971 
 972   // Change the control input of expensive nodes to allow commoning by
 973   // IGVN when it is guaranteed to not result in a more frequent
 974   // execution of the expensive node. Return true if progress.
 975   bool process_expensive_nodes();
 976 
 977   // Check whether node has become unreachable
 978   bool is_node_unreachable(Node *n) const {
 979     return !has_node(n) || n->is_unreachable(_igvn);
 980   }
 981 
 982   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 983   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 984 
 985   // Create a slow version of the loop by cloning the loop
 986   // and inserting an if to select fast-slow versions.
 987   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 988                                         Node_List &old_new,
 989                                         int opcode);
 990 
 991   // Clone a loop and return the clone head (clone_loop_head).
 992   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
 993   // This routine was created for usage in CountedLoopReserveKit.
 994   //
 995   //    int(1) -> If -> IfTrue -> original_loop_head
 996   //              |
 997   //              V
 998   //           IfFalse -> clone_loop_head (returned by function pointer)
 999   //
1000   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1001   // Clone loop with an invariant test (that does not exit) and
1002   // insert a clone of the test that selects which version to
1003   // execute.
1004   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1005 
1006   // Find candidate "if" for unswitching
1007   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1008 
1009   // Range Check Elimination uses this function!
1010   // Constrain the main loop iterations so the affine function:
1011   //    low_limit <= scale_con * I + offset  <  upper_limit
1012   // always holds true.  That is, either increase the number of iterations in
1013   // the pre-loop or the post-loop until the condition holds true in the main
1014   // loop.  Scale_con, offset and limit are all loop invariant.
1015   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1016   // Helper function for add_constraint().
1017   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1018 
1019   // Partially peel loop up through last_peel node.
1020   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1021 
1022   // Create a scheduled list of nodes control dependent on ctrl set.
1023   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1024   // Has a use in the vector set
1025   bool has_use_in_set( Node* n, VectorSet& vset );
1026   // Has use internal to the vector set (ie. not in a phi at the loop head)
1027   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1028   // clone "n" for uses that are outside of loop
1029   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1030   // clone "n" for special uses that are in the not_peeled region
1031   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1032                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1033   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1034   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1035 #ifdef ASSERT
1036   // Validate the loop partition sets: peel and not_peel
1037   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1038   // Ensure that uses outside of loop are of the right form
1039   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1040                                  uint orig_exit_idx, uint clone_exit_idx);
1041   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1042 #endif
1043 
1044   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1045   int stride_of_possible_iv( Node* iff );
1046   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1047   // Return the (unique) control output node that's in the loop (if it exists.)
1048   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1049   // Insert a signed compare loop exit cloned from an unsigned compare.
1050   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1051   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1052   // Utility to register node "n" with PhaseIdealLoop
1053   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1054   // Utility to create an if-projection
1055   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1056   // Force the iff control output to be the live_proj
1057   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1058   // Insert a region before an if projection
1059   RegionNode* insert_region_before_proj(ProjNode* proj);
1060   // Insert a new if before an if projection
1061   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1062 
1063   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1064   // "Nearly" because all Nodes have been cloned from the original in the loop,
1065   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1066   // through the Phi recursively, and return a Bool.
1067   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1068   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1069 
1070 
1071   // Rework addressing expressions to get the most loop-invariant stuff
1072   // moved out.  We'd like to do all associative operators, but it's especially
1073   // important (common) to do address expressions.
1074   Node *remix_address_expressions( Node *n );
1075 
1076   // Attempt to use a conditional move instead of a phi/branch
1077   Node *conditional_move( Node *n );
1078 
1079   // Reorganize offset computations to lower register pressure.
1080   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1081   // (which are then alive with the post-incremented trip counter
1082   // forcing an extra register move)
1083   void reorg_offsets( IdealLoopTree *loop );
1084 
1085   // Check for aggressive application of 'split-if' optimization,
1086   // using basic block level info.
1087   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1088   Node *split_if_with_blocks_pre ( Node *n );
1089   void  split_if_with_blocks_post( Node *n );
1090   Node *has_local_phi_input( Node *n );
1091   // Mark an IfNode as being dominated by a prior test,
1092   // without actually altering the CFG (and hence IDOM info).
1093   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1094 
1095   // Split Node 'n' through merge point
1096   Node *split_thru_region( Node *n, Node *region );
1097   // Split Node 'n' through merge point if there is enough win.
1098   Node *split_thru_phi( Node *n, Node *region, int policy );
1099   // Found an If getting its condition-code input from a Phi in the
1100   // same block.  Split thru the Region.
1101   void do_split_if( Node *iff );
1102 
1103   // Conversion of fill/copy patterns into intrisic versions
1104   bool do_intrinsify_fill();
1105   bool intrinsify_fill(IdealLoopTree* lpt);
1106   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1107                        Node*& shift, Node*& offset);
1108 
1109 private:
1110   // Return a type based on condition control flow
1111   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1112   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1113  // Helpers for filtered type
1114   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1115 
1116   // Helper functions
1117   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1118   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1119   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1120   bool split_up( Node *n, Node *blk1, Node *blk2 );
1121   void sink_use( Node *use, Node *post_loop );
1122   Node *place_near_use( Node *useblock ) const;
1123   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1124   void try_move_store_after_loop(Node* n);
1125   bool identical_backtoback_ifs(Node *n);
1126   bool can_split_if(Node *n_ctrl);
1127 
1128   bool _created_loop_node;
1129 public:
1130   void set_created_loop_node() { _created_loop_node = true; }
1131   bool created_loop_node()     { return _created_loop_node; }
1132   void register_new_node( Node *n, Node *blk );
1133 
1134 #ifdef ASSERT
1135   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1136 #endif
1137 
1138 #ifndef PRODUCT
1139   void dump( ) const;
1140   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1141   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1142   void verify() const;          // Major slow  :-)
1143   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1144   IdealLoopTree *get_loop_idx(Node* n) const {
1145     // Dead nodes have no loop, so return the top level loop instead
1146     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1147   }
1148   // Print some stats
1149   static void print_statistics();
1150   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1151   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1152 #endif
1153 };
1154 
1155 // This kit may be used for making of a reserved copy of a loop before this loop
1156 //  goes under non-reversible changes.
1157 //
1158 // Function create_reserve() creates a reserved copy (clone) of the loop.
1159 // The reserved copy is created by calling
1160 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1161 // the original and reserved loops are connected in the outer graph.
1162 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1163 //
1164 // By default the reserved copy (clone) of the loop is created as dead code - it is
1165 // dominated in the outer loop by this node chain:
1166 //   intcon(1)->If->IfFalse->reserved_copy.
1167 // The original loop is dominated by the the same node chain but IfTrue projection:
1168 //   intcon(0)->If->IfTrue->original_loop.
1169 //
1170 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1171 // and the dtor, checks _use_new value.
1172 // If _use_new == false, it "switches" control to reserved copy of the loop
1173 // by simple replacing of node intcon(1) with node intcon(0).
1174 //
1175 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1176 //
1177 // void CountedLoopReserveKit_example()
1178 // {
1179 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1180 //    if (DoReserveCopy && !lrk.has_reserved()) {
1181 //      return; //failed to create reserved loop copy
1182 //    }
1183 //    ...
1184 //    //something is wrong, switch to original loop
1185 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1186 //    ...
1187 //    //everything worked ok, return with the newly modified loop
1188 //    lrk.use_new();
1189 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1190 //  }
1191 //
1192 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1193 // the dtor will "switch to the original" loop.
1194 // NOTE. You you modify outside of the original loop this class is no help.
1195 //
1196 class CountedLoopReserveKit {
1197   private:
1198     PhaseIdealLoop* _phase;
1199     IdealLoopTree*  _lpt;
1200     LoopNode*       _lp;
1201     IfNode*         _iff;
1202     LoopNode*       _lp_reserved;
1203     bool            _has_reserved;
1204     bool            _use_new;
1205     const bool      _active; //may be set to false in ctor, then the object is dummy
1206 
1207   public:
1208     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1209     ~CountedLoopReserveKit();
1210     void use_new()                {_use_new = true;}
1211     void set_iff(IfNode* x)       {_iff = x;}
1212     bool has_reserved()     const { return _active && _has_reserved;}
1213   private:
1214     bool create_reserve();
1215 };// class CountedLoopReserveKit
1216 
1217 inline Node* IdealLoopTree::tail() {
1218 // Handle lazy update of _tail field
1219   Node *n = _tail;
1220   //while( !n->in(0) )  // Skip dead CFG nodes
1221     //n = n->in(1);
1222   if (n->in(0) == NULL)
1223     n = _phase->get_ctrl(n);
1224   _tail = n;
1225   return n;
1226 }
1227 
1228 
1229 // Iterate over the loop tree using a preorder, left-to-right traversal.
1230 //
1231 // Example that visits all counted loops from within PhaseIdealLoop
1232 //
1233 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1234 //   IdealLoopTree* lpt = iter.current();
1235 //   if (!lpt->is_counted()) continue;
1236 //   ...
1237 class LoopTreeIterator : public StackObj {
1238 private:
1239   IdealLoopTree* _root;
1240   IdealLoopTree* _curnt;
1241 
1242 public:
1243   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1244 
1245   bool done() { return _curnt == NULL; }       // Finished iterating?
1246 
1247   void next();                                 // Advance to next loop tree
1248 
1249   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1250 };
1251 
1252 #endif // SHARE_VM_OPTO_LOOPNODE_HPP