1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "compiler/compilerDirectives.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/chaitin.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/opcodes.hpp"
  36 #include "opto/rootnode.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 void Block_Array::grow( uint i ) {
  40   assert(i >= Max(), "must be an overflow");
  41   debug_only(_limit = i+1);
  42   if( i < _size )  return;
  43   if( !_size ) {
  44     _size = 1;
  45     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
  46     _blocks[0] = NULL;
  47   }
  48   uint old = _size;
  49   while( i >= _size ) _size <<= 1;      // Double to fit
  50   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
  51   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
  52 }
  53 
  54 void Block_List::remove(uint i) {
  55   assert(i < _cnt, "index out of bounds");
  56   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
  57   pop(); // shrink list by one block
  58 }
  59 
  60 void Block_List::insert(uint i, Block *b) {
  61   push(b); // grow list by one block
  62   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
  63   _blocks[i] = b;
  64 }
  65 
  66 #ifndef PRODUCT
  67 void Block_List::print() {
  68   for (uint i=0; i < size(); i++) {
  69     tty->print("B%d ", _blocks[i]->_pre_order);
  70   }
  71   tty->print("size = %d\n", size());
  72 }
  73 #endif
  74 
  75 uint Block::code_alignment() {
  76   // Check for Root block
  77   if (_pre_order == 0) return CodeEntryAlignment;
  78   // Check for Start block
  79   if (_pre_order == 1) return InteriorEntryAlignment;
  80   // Check for loop alignment
  81   if (has_loop_alignment()) return loop_alignment();
  82 
  83   return relocInfo::addr_unit(); // no particular alignment
  84 }
  85 
  86 uint Block::compute_loop_alignment() {
  87   Node *h = head();
  88   int unit_sz = relocInfo::addr_unit();
  89   if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
  90     // Pre- and post-loops have low trip count so do not bother with
  91     // NOPs for align loop head.  The constants are hidden from tuning
  92     // but only because my "divide by 4" heuristic surely gets nearly
  93     // all possible gain (a "do not align at all" heuristic has a
  94     // chance of getting a really tiny gain).
  95     if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
  96                                 h->as_CountedLoop()->is_post_loop())) {
  97       return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
  98     }
  99     // Loops with low backedge frequency should not be aligned.
 100     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
 101     if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
 102       return unit_sz; // Loop does not loop, more often than not!
 103     }
 104     return OptoLoopAlignment; // Otherwise align loop head
 105   }
 106 
 107   return unit_sz; // no particular alignment
 108 }
 109 
 110 // Compute the size of first 'inst_cnt' instructions in this block.
 111 // Return the number of instructions left to compute if the block has
 112 // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
 113 // exceeds OptoLoopAlignment.
 114 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
 115                                     PhaseRegAlloc* ra) {
 116   uint last_inst = number_of_nodes();
 117   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
 118     uint inst_size = get_node(j)->size(ra);
 119     if( inst_size > 0 ) {
 120       inst_cnt--;
 121       uint sz = sum_size + inst_size;
 122       if( sz <= (uint)OptoLoopAlignment ) {
 123         // Compute size of instructions which fit into fetch buffer only
 124         // since all inst_cnt instructions will not fit even if we align them.
 125         sum_size = sz;
 126       } else {
 127         return 0;
 128       }
 129     }
 130   }
 131   return inst_cnt;
 132 }
 133 
 134 uint Block::find_node( const Node *n ) const {
 135   for( uint i = 0; i < number_of_nodes(); i++ ) {
 136     if( get_node(i) == n )
 137       return i;
 138   }
 139   ShouldNotReachHere();
 140   return 0;
 141 }
 142 
 143 // Find and remove n from block list
 144 void Block::find_remove( const Node *n ) {
 145   remove_node(find_node(n));
 146 }
 147 
 148 bool Block::contains(const Node *n) const {
 149   return _nodes.contains(n);
 150 }
 151 
 152 // Return empty status of a block.  Empty blocks contain only the head, other
 153 // ideal nodes, and an optional trailing goto.
 154 int Block::is_Empty() const {
 155 
 156   // Root or start block is not considered empty
 157   if (head()->is_Root() || head()->is_Start()) {
 158     return not_empty;
 159   }
 160 
 161   int success_result = completely_empty;
 162   int end_idx = number_of_nodes() - 1;
 163 
 164   // Check for ending goto
 165   if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
 166     success_result = empty_with_goto;
 167     end_idx--;
 168   }
 169 
 170   // Unreachable blocks are considered empty
 171   if (num_preds() <= 1) {
 172     return success_result;
 173   }
 174 
 175   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
 176   // turn directly into code, because only MachNodes have non-trivial
 177   // emit() functions.
 178   while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
 179     end_idx--;
 180   }
 181 
 182   // No room for any interesting instructions?
 183   if (end_idx == 0) {
 184     return success_result;
 185   }
 186 
 187   return not_empty;
 188 }
 189 
 190 // Return true if the block's code implies that it is likely to be
 191 // executed infrequently.  Check to see if the block ends in a Halt or
 192 // a low probability call.
 193 bool Block::has_uncommon_code() const {
 194   Node* en = end();
 195 
 196   if (en->is_MachGoto())
 197     en = en->in(0);
 198   if (en->is_Catch())
 199     en = en->in(0);
 200   if (en->is_MachProj() && en->in(0)->is_MachCall()) {
 201     MachCallNode* call = en->in(0)->as_MachCall();
 202     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
 203       // This is true for slow-path stubs like new_{instance,array},
 204       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
 205       // The magic number corresponds to the probability of an uncommon_trap,
 206       // even though it is a count not a probability.
 207       return true;
 208     }
 209   }
 210 
 211   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
 212   return op == Op_Halt;
 213 }
 214 
 215 // True if block is low enough frequency or guarded by a test which
 216 // mostly does not go here.
 217 bool PhaseCFG::is_uncommon(const Block* block) {
 218   // Initial blocks must never be moved, so are never uncommon.
 219   if (block->head()->is_Root() || block->head()->is_Start())  return false;
 220 
 221   // Check for way-low freq
 222   if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
 223 
 224   // Look for code shape indicating uncommon_trap or slow path
 225   if (block->has_uncommon_code()) return true;
 226 
 227   const float epsilon = 0.05f;
 228   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
 229   uint uncommon_preds = 0;
 230   uint freq_preds = 0;
 231   uint uncommon_for_freq_preds = 0;
 232 
 233   for( uint i=1; i< block->num_preds(); i++ ) {
 234     Block* guard = get_block_for_node(block->pred(i));
 235     // Check to see if this block follows its guard 1 time out of 10000
 236     // or less.
 237     //
 238     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
 239     // we intend to be "uncommon", such as slow-path TLE allocation,
 240     // predicted call failure, and uncommon trap triggers.
 241     //
 242     // Use an epsilon value of 5% to allow for variability in frequency
 243     // predictions and floating point calculations. The net effect is
 244     // that guard_factor is set to 9500.
 245     //
 246     // Ignore low-frequency blocks.
 247     // The next check is (guard->_freq < 1.e-5 * 9500.).
 248     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
 249       uncommon_preds++;
 250     } else {
 251       freq_preds++;
 252       if(block->_freq < guard->_freq * guard_factor ) {
 253         uncommon_for_freq_preds++;
 254       }
 255     }
 256   }
 257   if( block->num_preds() > 1 &&
 258       // The block is uncommon if all preds are uncommon or
 259       (uncommon_preds == (block->num_preds()-1) ||
 260       // it is uncommon for all frequent preds.
 261        uncommon_for_freq_preds == freq_preds) ) {
 262     return true;
 263   }
 264   return false;
 265 }
 266 
 267 #ifndef PRODUCT
 268 void Block::dump_bidx(const Block* orig, outputStream* st) const {
 269   if (_pre_order) st->print("B%d",_pre_order);
 270   else st->print("N%d", head()->_idx);
 271 
 272   if (Verbose && orig != this) {
 273     // Dump the original block's idx
 274     st->print(" (");
 275     orig->dump_bidx(orig, st);
 276     st->print(")");
 277   }
 278 }
 279 
 280 void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
 281   if (is_connector()) {
 282     for (uint i=1; i<num_preds(); i++) {
 283       Block *p = cfg->get_block_for_node(pred(i));
 284       p->dump_pred(cfg, orig, st);
 285     }
 286   } else {
 287     dump_bidx(orig, st);
 288     st->print(" ");
 289   }
 290 }
 291 
 292 void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
 293   // Print the basic block
 294   dump_bidx(this, st);
 295   st->print(": #\t");
 296 
 297   // Print the incoming CFG edges and the outgoing CFG edges
 298   for( uint i=0; i<_num_succs; i++ ) {
 299     non_connector_successor(i)->dump_bidx(_succs[i], st);
 300     st->print(" ");
 301   }
 302   st->print("<- ");
 303   if( head()->is_block_start() ) {
 304     for (uint i=1; i<num_preds(); i++) {
 305       Node *s = pred(i);
 306       if (cfg != NULL) {
 307         Block *p = cfg->get_block_for_node(s);
 308         p->dump_pred(cfg, p, st);
 309       } else {
 310         while (!s->is_block_start())
 311           s = s->in(0);
 312         st->print("N%d ", s->_idx );
 313       }
 314     }
 315   } else {
 316     st->print("BLOCK HEAD IS JUNK  ");
 317   }
 318 
 319   // Print loop, if any
 320   const Block *bhead = this;    // Head of self-loop
 321   Node *bh = bhead->head();
 322 
 323   if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
 324     LoopNode *loop = bh->as_Loop();
 325     const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
 326     while (bx->is_connector()) {
 327       bx = cfg->get_block_for_node(bx->pred(1));
 328     }
 329     st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
 330     // Dump any loop-specific bits, especially for CountedLoops.
 331     loop->dump_spec(st);
 332   } else if (has_loop_alignment()) {
 333     st->print(" top-of-loop");
 334   }
 335   st->print(" Freq: %g",_freq);
 336   if( Verbose || WizardMode ) {
 337     st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
 338     st->print(" RegPressure: %d",_reg_pressure);
 339     st->print(" IHRP Index: %d",_ihrp_index);
 340     st->print(" FRegPressure: %d",_freg_pressure);
 341     st->print(" FHRP Index: %d",_fhrp_index);
 342   }
 343   st->cr();
 344 }
 345 
 346 void Block::dump() const {
 347   dump(NULL);
 348 }
 349 
 350 void Block::dump(const PhaseCFG* cfg) const {
 351   dump_head(cfg);
 352   for (uint i=0; i< number_of_nodes(); i++) {
 353     get_node(i)->dump();
 354   }
 355   tty->print("\n");
 356 }
 357 #endif
 358 
 359 PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
 360 : Phase(CFG)
 361 , _block_arena(arena)
 362 , _regalloc(NULL)
 363 , _scheduling_for_pressure(false)
 364 , _root(root)
 365 , _matcher(matcher)
 366 , _node_to_block_mapping(arena)
 367 , _node_latency(NULL)
 368 #ifndef PRODUCT
 369 , _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
 370 #endif
 371 #ifdef ASSERT
 372 , _raw_oops(arena)
 373 #endif
 374 {
 375   ResourceMark rm;
 376   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
 377   // then Match it into a machine-specific Node.  Then clone the machine
 378   // Node on demand.
 379   Node *x = new GotoNode(NULL);
 380   x->init_req(0, x);
 381   _goto = matcher.match_tree(x);
 382   assert(_goto != NULL, "");
 383   _goto->set_req(0,_goto);
 384 
 385   // Build the CFG in Reverse Post Order
 386   _number_of_blocks = build_cfg();
 387   _root_block = get_block_for_node(_root);
 388 }
 389 
 390 // Build a proper looking CFG.  Make every block begin with either a StartNode
 391 // or a RegionNode.  Make every block end with either a Goto, If or Return.
 392 // The RootNode both starts and ends it's own block.  Do this with a recursive
 393 // backwards walk over the control edges.
 394 uint PhaseCFG::build_cfg() {
 395   Arena *a = Thread::current()->resource_area();
 396   VectorSet visited(a);
 397 
 398   // Allocate stack with enough space to avoid frequent realloc
 399   Node_Stack nstack(a, C->live_nodes() >> 1);
 400   nstack.push(_root, 0);
 401   uint sum = 0;                 // Counter for blocks
 402 
 403   while (nstack.is_nonempty()) {
 404     // node and in's index from stack's top
 405     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
 406     // only nodes which point to the start of basic block (see below).
 407     Node *np = nstack.node();
 408     // idx > 0, except for the first node (_root) pushed on stack
 409     // at the beginning when idx == 0.
 410     // We will use the condition (idx == 0) later to end the build.
 411     uint idx = nstack.index();
 412     Node *proj = np->in(idx);
 413     const Node *x = proj->is_block_proj();
 414     // Does the block end with a proper block-ending Node?  One of Return,
 415     // If or Goto? (This check should be done for visited nodes also).
 416     if (x == NULL) {                    // Does not end right...
 417       Node *g = _goto->clone(); // Force it to end in a Goto
 418       g->set_req(0, proj);
 419       np->set_req(idx, g);
 420       x = proj = g;
 421     }
 422     if (!visited.test_set(x->_idx)) { // Visit this block once
 423       // Skip any control-pinned middle'in stuff
 424       Node *p = proj;
 425       do {
 426         proj = p;                   // Update pointer to last Control
 427         p = p->in(0);               // Move control forward
 428       } while( !p->is_block_proj() &&
 429                !p->is_block_start() );
 430       // Make the block begin with one of Region or StartNode.
 431       if( !p->is_block_start() ) {
 432         RegionNode *r = new RegionNode( 2 );
 433         r->init_req(1, p);         // Insert RegionNode in the way
 434         proj->set_req(0, r);        // Insert RegionNode in the way
 435         p = r;
 436       }
 437       // 'p' now points to the start of this basic block
 438 
 439       // Put self in array of basic blocks
 440       Block *bb = new (_block_arena) Block(_block_arena, p);
 441       map_node_to_block(p, bb);
 442       map_node_to_block(x, bb);
 443       if( x != p ) {                // Only for root is x == p
 444         bb->push_node((Node*)x);
 445       }
 446       // Now handle predecessors
 447       ++sum;                        // Count 1 for self block
 448       uint cnt = bb->num_preds();
 449       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
 450         Node *prevproj = p->in(i);  // Get prior input
 451         assert( !prevproj->is_Con(), "dead input not removed" );
 452         // Check to see if p->in(i) is a "control-dependent" CFG edge -
 453         // i.e., it splits at the source (via an IF or SWITCH) and merges
 454         // at the destination (via a many-input Region).
 455         // This breaks critical edges.  The RegionNode to start the block
 456         // will be added when <p,i> is pulled off the node stack
 457         if ( cnt > 2 ) {             // Merging many things?
 458           assert( prevproj== bb->pred(i),"");
 459           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
 460             // Force a block on the control-dependent edge
 461             Node *g = _goto->clone();       // Force it to end in a Goto
 462             g->set_req(0,prevproj);
 463             p->set_req(i,g);
 464           }
 465         }
 466         nstack.push(p, i);  // 'p' is RegionNode or StartNode
 467       }
 468     } else { // Post-processing visited nodes
 469       nstack.pop();                 // remove node from stack
 470       // Check if it the fist node pushed on stack at the beginning.
 471       if (idx == 0) break;          // end of the build
 472       // Find predecessor basic block
 473       Block *pb = get_block_for_node(x);
 474       // Insert into nodes array, if not already there
 475       if (!has_block(proj)) {
 476         assert( x != proj, "" );
 477         // Map basic block of projection
 478         map_node_to_block(proj, pb);
 479         pb->push_node(proj);
 480       }
 481       // Insert self as a child of my predecessor block
 482       pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
 483       assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
 484               "too many control users, not a CFG?" );
 485     }
 486   }
 487   // Return number of basic blocks for all children and self
 488   return sum;
 489 }
 490 
 491 // Inserts a goto & corresponding basic block between
 492 // block[block_no] and its succ_no'th successor block
 493 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
 494   // get block with block_no
 495   assert(block_no < number_of_blocks(), "illegal block number");
 496   Block* in  = get_block(block_no);
 497   // get successor block succ_no
 498   assert(succ_no < in->_num_succs, "illegal successor number");
 499   Block* out = in->_succs[succ_no];
 500   // Compute frequency of the new block. Do this before inserting
 501   // new block in case succ_prob() needs to infer the probability from
 502   // surrounding blocks.
 503   float freq = in->_freq * in->succ_prob(succ_no);
 504   // get ProjNode corresponding to the succ_no'th successor of the in block
 505   ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
 506   // create region for basic block
 507   RegionNode* region = new RegionNode(2);
 508   region->init_req(1, proj);
 509   // setup corresponding basic block
 510   Block* block = new (_block_arena) Block(_block_arena, region);
 511   map_node_to_block(region, block);
 512   C->regalloc()->set_bad(region->_idx);
 513   // add a goto node
 514   Node* gto = _goto->clone(); // get a new goto node
 515   gto->set_req(0, region);
 516   // add it to the basic block
 517   block->push_node(gto);
 518   map_node_to_block(gto, block);
 519   C->regalloc()->set_bad(gto->_idx);
 520   // hook up successor block
 521   block->_succs.map(block->_num_succs++, out);
 522   // remap successor's predecessors if necessary
 523   for (uint i = 1; i < out->num_preds(); i++) {
 524     if (out->pred(i) == proj) out->head()->set_req(i, gto);
 525   }
 526   // remap predecessor's successor to new block
 527   in->_succs.map(succ_no, block);
 528   // Set the frequency of the new block
 529   block->_freq = freq;
 530   // add new basic block to basic block list
 531   add_block_at(block_no + 1, block);
 532 }
 533 
 534 // Does this block end in a multiway branch that cannot have the default case
 535 // flipped for another case?
 536 static bool no_flip_branch(Block *b) {
 537   int branch_idx = b->number_of_nodes() - b->_num_succs-1;
 538   if (branch_idx < 1) {
 539     return false;
 540   }
 541   Node *branch = b->get_node(branch_idx);
 542   if (branch->is_Catch()) {
 543     return true;
 544   }
 545   if (branch->is_Mach()) {
 546     if (branch->is_MachNullCheck()) {
 547       return true;
 548     }
 549     int iop = branch->as_Mach()->ideal_Opcode();
 550     if (iop == Op_FastLock || iop == Op_FastUnlock) {
 551       return true;
 552     }
 553     // Don't flip if branch has an implicit check.
 554     if (branch->as_Mach()->is_TrapBasedCheckNode()) {
 555       return true;
 556     }
 557   }
 558   return false;
 559 }
 560 
 561 // Check for NeverBranch at block end.  This needs to become a GOTO to the
 562 // true target.  NeverBranch are treated as a conditional branch that always
 563 // goes the same direction for most of the optimizer and are used to give a
 564 // fake exit path to infinite loops.  At this late stage they need to turn
 565 // into Goto's so that when you enter the infinite loop you indeed hang.
 566 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
 567   // Find true target
 568   int end_idx = b->end_idx();
 569   int idx = b->get_node(end_idx+1)->as_Proj()->_con;
 570   Block *succ = b->_succs[idx];
 571   Node* gto = _goto->clone(); // get a new goto node
 572   gto->set_req(0, b->head());
 573   Node *bp = b->get_node(end_idx);
 574   b->map_node(gto, end_idx); // Slam over NeverBranch
 575   map_node_to_block(gto, b);
 576   C->regalloc()->set_bad(gto->_idx);
 577   b->pop_node();              // Yank projections
 578   b->pop_node();              // Yank projections
 579   b->_succs.map(0,succ);        // Map only successor
 580   b->_num_succs = 1;
 581   // remap successor's predecessors if necessary
 582   uint j;
 583   for( j = 1; j < succ->num_preds(); j++)
 584     if( succ->pred(j)->in(0) == bp )
 585       succ->head()->set_req(j, gto);
 586   // Kill alternate exit path
 587   Block *dead = b->_succs[1-idx];
 588   for( j = 1; j < dead->num_preds(); j++)
 589     if( dead->pred(j)->in(0) == bp )
 590       break;
 591   // Scan through block, yanking dead path from
 592   // all regions and phis.
 593   dead->head()->del_req(j);
 594   for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
 595     dead->get_node(k)->del_req(j);
 596 }
 597 
 598 // Helper function to move block bx to the slot following b_index. Return
 599 // true if the move is successful, otherwise false
 600 bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
 601   if (bx == NULL) return false;
 602 
 603   // Return false if bx is already scheduled.
 604   uint bx_index = bx->_pre_order;
 605   if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
 606     return false;
 607   }
 608 
 609   // Find the current index of block bx on the block list
 610   bx_index = b_index + 1;
 611   while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
 612     bx_index++;
 613   }
 614   assert(get_block(bx_index) == bx, "block not found");
 615 
 616   // If the previous block conditionally falls into bx, return false,
 617   // because moving bx will create an extra jump.
 618   for(uint k = 1; k < bx->num_preds(); k++ ) {
 619     Block* pred = get_block_for_node(bx->pred(k));
 620     if (pred == get_block(bx_index - 1)) {
 621       if (pred->_num_succs != 1) {
 622         return false;
 623       }
 624     }
 625   }
 626 
 627   // Reinsert bx just past block 'b'
 628   _blocks.remove(bx_index);
 629   _blocks.insert(b_index + 1, bx);
 630   return true;
 631 }
 632 
 633 // Move empty and uncommon blocks to the end.
 634 void PhaseCFG::move_to_end(Block *b, uint i) {
 635   int e = b->is_Empty();
 636   if (e != Block::not_empty) {
 637     if (e == Block::empty_with_goto) {
 638       // Remove the goto, but leave the block.
 639       b->pop_node();
 640     }
 641     // Mark this block as a connector block, which will cause it to be
 642     // ignored in certain functions such as non_connector_successor().
 643     b->set_connector();
 644   }
 645   // Move the empty block to the end, and don't recheck.
 646   _blocks.remove(i);
 647   _blocks.push(b);
 648 }
 649 
 650 // Set loop alignment for every block
 651 void PhaseCFG::set_loop_alignment() {
 652   uint last = number_of_blocks();
 653   assert(get_block(0) == get_root_block(), "");
 654 
 655   for (uint i = 1; i < last; i++) {
 656     Block* block = get_block(i);
 657     if (block->head()->is_Loop()) {
 658       block->set_loop_alignment(block);
 659     }
 660   }
 661 }
 662 
 663 // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
 664 // to the end.
 665 void PhaseCFG::remove_empty_blocks() {
 666   // Move uncommon blocks to the end
 667   uint last = number_of_blocks();
 668   assert(get_block(0) == get_root_block(), "");
 669 
 670   for (uint i = 1; i < last; i++) {
 671     Block* block = get_block(i);
 672     if (block->is_connector()) {
 673       break;
 674     }
 675 
 676     // Check for NeverBranch at block end.  This needs to become a GOTO to the
 677     // true target.  NeverBranch are treated as a conditional branch that
 678     // always goes the same direction for most of the optimizer and are used
 679     // to give a fake exit path to infinite loops.  At this late stage they
 680     // need to turn into Goto's so that when you enter the infinite loop you
 681     // indeed hang.
 682     if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
 683       convert_NeverBranch_to_Goto(block);
 684     }
 685 
 686     // Look for uncommon blocks and move to end.
 687     if (!C->do_freq_based_layout()) {
 688       if (is_uncommon(block)) {
 689         move_to_end(block, i);
 690         last--;                   // No longer check for being uncommon!
 691         if (no_flip_branch(block)) { // Fall-thru case must follow?
 692           // Find the fall-thru block
 693           block = get_block(i);
 694           move_to_end(block, i);
 695           last--;
 696         }
 697         // backup block counter post-increment
 698         i--;
 699       }
 700     }
 701   }
 702 
 703   // Move empty blocks to the end
 704   last = number_of_blocks();
 705   for (uint i = 1; i < last; i++) {
 706     Block* block = get_block(i);
 707     if (block->is_Empty() != Block::not_empty) {
 708       move_to_end(block, i);
 709       last--;
 710       i--;
 711     }
 712   } // End of for all blocks
 713 }
 714 
 715 Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
 716   // Trap based checks must fall through to the successor with
 717   // PROB_ALWAYS.
 718   // They should be an If with 2 successors.
 719   assert(branch->is_MachIf(),   "must be If");
 720   assert(block->_num_succs == 2, "must have 2 successors");
 721 
 722   // Get the If node and the projection for the first successor.
 723   MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
 724   ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
 725   ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
 726   ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
 727   ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
 728 
 729   // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 730   assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 731   assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 732 
 733   ProjNode *proj_always;
 734   ProjNode *proj_never;
 735   // We must negate the branch if the implicit check doesn't follow
 736   // the branch's TRUE path. Then, the new TRUE branch target will
 737   // be the old FALSE branch target.
 738   if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
 739     proj_never  = projt;
 740     proj_always = projf;
 741   } else {
 742     // We must negate the branch if the trap doesn't follow the
 743     // branch's TRUE path. Then, the new TRUE branch target will
 744     // be the old FALSE branch target.
 745     proj_never  = projf;
 746     proj_always = projt;
 747     iff->negate();
 748   }
 749   assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
 750   // Map the successors properly
 751   block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
 752   block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
 753 
 754   if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
 755     block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
 756     block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
 757   }
 758 
 759   // Place the fall through block after this block.
 760   Block *bs1 = block->non_connector_successor(1);
 761   if (bs1 != bnext && move_to_next(bs1, block_pos)) {
 762     bnext = bs1;
 763   }
 764   // If the fall through block still is not the next block, insert a goto.
 765   if (bs1 != bnext) {
 766     insert_goto_at(block_pos, 1);
 767   }
 768   return bnext;
 769 }
 770 
 771 // Fix up the final control flow for basic blocks.
 772 void PhaseCFG::fixup_flow() {
 773   // Fixup final control flow for the blocks.  Remove jump-to-next
 774   // block. If neither arm of an IF follows the conditional branch, we
 775   // have to add a second jump after the conditional.  We place the
 776   // TRUE branch target in succs[0] for both GOTOs and IFs.
 777   bool found_fixup_loops = false;
 778   for (uint i = 0; i < number_of_blocks(); i++) {
 779     Block* block = get_block(i);
 780     block->_pre_order = i;          // turn pre-order into block-index
 781 
 782     Node *bh = block->head();
 783     if (bh->is_Loop()) {
 784       LoopNode *loop = bh->as_Loop();
 785       if (loop->is_inner_loop() && loop->is_multiversioned() && loop->is_vectorized_loop() && !loop->range_checks_present()) {
 786         found_fixup_loops = true;
 787       }
 788     }
 789 
 790     // Connector blocks need no further processing.
 791     if (block->is_connector()) {
 792       assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
 793       continue;
 794     }
 795     assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
 796 
 797     Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
 798     Block* bs0 = block->non_connector_successor(0);
 799 
 800     // Check for multi-way branches where I cannot negate the test to
 801     // exchange the true and false targets.
 802     if (no_flip_branch(block)) {
 803       // Find fall through case - if must fall into its target.
 804       // Get the index of the branch's first successor.
 805       int branch_idx = block->number_of_nodes() - block->_num_succs;
 806 
 807       // The branch is 1 before the branch's first successor.
 808       Node *branch = block->get_node(branch_idx-1);
 809 
 810       // Handle no-flip branches which have implicit checks and which require
 811       // special block ordering and individual semantics of the 'fall through
 812       // case'.
 813       if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
 814           branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
 815         bnext = fixup_trap_based_check(branch, block, i, bnext);
 816       } else {
 817         // Else, default handling for no-flip branches
 818         for (uint j2 = 0; j2 < block->_num_succs; j2++) {
 819           const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
 820           if (p->_con == 0) {
 821             // successor j2 is fall through case
 822             if (block->non_connector_successor(j2) != bnext) {
 823               // but it is not the next block => insert a goto
 824               insert_goto_at(i, j2);
 825             }
 826             // Put taken branch in slot 0
 827             if (j2 == 0 && block->_num_succs == 2) {
 828               // Flip targets in succs map
 829               Block *tbs0 = block->_succs[0];
 830               Block *tbs1 = block->_succs[1];
 831               block->_succs.map(0, tbs1);
 832               block->_succs.map(1, tbs0);
 833             }
 834             break;
 835           }
 836         }
 837       }
 838 
 839       // Remove all CatchProjs
 840       for (uint j = 0; j < block->_num_succs; j++) {
 841         block->pop_node();
 842       }
 843 
 844     } else if (block->_num_succs == 1) {
 845       // Block ends in a Goto?
 846       if (bnext == bs0) {
 847         // We fall into next block; remove the Goto
 848         block->pop_node();
 849       }
 850 
 851     } else if(block->_num_succs == 2) { // Block ends in a If?
 852       // Get opcode of 1st projection (matches _succs[0])
 853       // Note: Since this basic block has 2 exits, the last 2 nodes must
 854       //       be projections (in any order), the 3rd last node must be
 855       //       the IfNode (we have excluded other 2-way exits such as
 856       //       CatchNodes already).
 857       MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
 858       ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
 859       ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
 860 
 861       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
 862       assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
 863       assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
 864 
 865       Block* bs1 = block->non_connector_successor(1);
 866 
 867       // Check for neither successor block following the current
 868       // block ending in a conditional. If so, move one of the
 869       // successors after the current one, provided that the
 870       // successor was previously unscheduled, but moveable
 871       // (i.e., all paths to it involve a branch).
 872       if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
 873         // Choose the more common successor based on the probability
 874         // of the conditional branch.
 875         Block* bx = bs0;
 876         Block* by = bs1;
 877 
 878         // _prob is the probability of taking the true path. Make
 879         // p the probability of taking successor #1.
 880         float p = iff->as_MachIf()->_prob;
 881         if (proj0->Opcode() == Op_IfTrue) {
 882           p = 1.0 - p;
 883         }
 884 
 885         // Prefer successor #1 if p > 0.5
 886         if (p > PROB_FAIR) {
 887           bx = bs1;
 888           by = bs0;
 889         }
 890 
 891         // Attempt the more common successor first
 892         if (move_to_next(bx, i)) {
 893           bnext = bx;
 894         } else if (move_to_next(by, i)) {
 895           bnext = by;
 896         }
 897       }
 898 
 899       // Check for conditional branching the wrong way.  Negate
 900       // conditional, if needed, so it falls into the following block
 901       // and branches to the not-following block.
 902 
 903       // Check for the next block being in succs[0].  We are going to branch
 904       // to succs[0], so we want the fall-thru case as the next block in
 905       // succs[1].
 906       if (bnext == bs0) {
 907         // Fall-thru case in succs[0], so flip targets in succs map
 908         Block* tbs0 = block->_succs[0];
 909         Block* tbs1 = block->_succs[1];
 910         block->_succs.map(0, tbs1);
 911         block->_succs.map(1, tbs0);
 912         // Flip projection for each target
 913         ProjNode* tmp = proj0;
 914         proj0 = proj1;
 915         proj1 = tmp;
 916 
 917       } else if(bnext != bs1) {
 918         // Need a double-branch
 919         // The existing conditional branch need not change.
 920         // Add a unconditional branch to the false target.
 921         // Alas, it must appear in its own block and adding a
 922         // block this late in the game is complicated.  Sigh.
 923         insert_goto_at(i, 1);
 924       }
 925 
 926       // Make sure we TRUE branch to the target
 927       if (proj0->Opcode() == Op_IfFalse) {
 928         iff->as_MachIf()->negate();
 929       }
 930 
 931       block->pop_node();          // Remove IfFalse & IfTrue projections
 932       block->pop_node();
 933 
 934     } else {
 935       // Multi-exit block, e.g. a switch statement
 936       // But we don't need to do anything here
 937     }
 938   } // End of for all blocks
 939 
 940   if (found_fixup_loops) {
 941     // find all fixup-loops and process them
 942     for (uint i = 0; i < number_of_blocks(); i++) {
 943       Block* block = get_block(i);
 944       Node *bh = block->head();
 945       if (bh->is_Loop()) {
 946         LoopNode *loop = bh->as_Loop();
 947         // fixup loops are only marked for processing when they are predicated and
 948         // vectorized else they are just post loops.
 949         if (Matcher::has_predicated_vectors()) {
 950           if (loop->is_inner_loop() && loop->is_multiversioned() && loop->is_vectorized_loop() && !loop->range_checks_present()) {
 951             CFGLoop *cur_loop = block->_loop;
 952             // fixup loops can have multiple exits, so we need to find the backedge
 953             Block *back_edge = cur_loop->backedge_block();
 954             if (back_edge) {
 955               // fetch the region of the back edge
 956               Node *backedge_region = back_edge->get_node(0);
 957               Block *idom = back_edge->_idom;
 958               if (backedge_region->is_Region()) {
 959                 Node *if_true = backedge_region->in(1);
 960                 if (if_true->Opcode() == Op_IfTrue) {
 961                   Node *backedge_iff = if_true->in(0);
 962                   if (backedge_iff->is_MachIf() && idom) {
 963                     for (uint j = 0; j < idom->number_of_nodes(); j++) {
 964                       Node *n = idom->get_node(j);
 965                       if (n == backedge_iff) {
 966                         MachMskNode *mask = new MachMskNode(true);
 967                         if (mask) {
 968                           idom->insert_node(mask, j);
 969                           map_node_to_block(mask, idom);
 970                           break;
 971                         }
 972                       }
 973                     }
 974                   }
 975                 }
 976               }
 977             }
 978           }
 979         }
 980       }
 981     }
 982   }
 983 }
 984 
 985 
 986 // postalloc_expand: Expand nodes after register allocation.
 987 //
 988 // postalloc_expand has to be called after register allocation, just
 989 // before output (i.e. scheduling). It only gets called if
 990 // Matcher::require_postalloc_expand is true.
 991 //
 992 // Background:
 993 //
 994 // Nodes that are expandend (one compound node requiring several
 995 // assembler instructions to be implemented split into two or more
 996 // non-compound nodes) after register allocation are not as nice as
 997 // the ones expanded before register allocation - they don't
 998 // participate in optimizations as global code motion. But after
 999 // register allocation we can expand nodes that use registers which
1000 // are not spillable or registers that are not allocated, because the
1001 // old compound node is simply replaced (in its location in the basic
1002 // block) by a new subgraph which does not contain compound nodes any
1003 // more. The scheduler called during output can later on process these
1004 // non-compound nodes.
1005 //
1006 // Implementation:
1007 //
1008 // Nodes requiring postalloc expand are specified in the ad file by using
1009 // a postalloc_expand statement instead of ins_encode. A postalloc_expand
1010 // contains a single call to an encoding, as does an ins_encode
1011 // statement. Instead of an emit() function a postalloc_expand() function
1012 // is generated that doesn't emit assembler but creates a new
1013 // subgraph. The code below calls this postalloc_expand function for each
1014 // node with the appropriate attribute. This function returns the new
1015 // nodes generated in an array passed in the call. The old node,
1016 // potential MachTemps before and potential Projs after it then get
1017 // disconnected and replaced by the new nodes. The instruction
1018 // generating the result has to be the last one in the array. In
1019 // general it is assumed that Projs after the node expanded are
1020 // kills. These kills are not required any more after expanding as
1021 // there are now explicitly visible def-use chains and the Projs are
1022 // removed. This does not hold for calls: They do not only have
1023 // kill-Projs but also Projs defining values. Therefore Projs after
1024 // the node expanded are removed for all but for calls. If a node is
1025 // to be reused, it must be added to the nodes list returned, and it
1026 // will be added again.
1027 //
1028 // Implementing the postalloc_expand function for a node in an enc_class
1029 // is rather tedious. It requires knowledge about many node details, as
1030 // the nodes and the subgraph must be hand crafted. To simplify this,
1031 // adlc generates some utility variables into the postalloc_expand function,
1032 // e.g., holding the operands as specified by the postalloc_expand encoding
1033 // specification, e.g.:
1034 //  * unsigned idx_<par_name>  holding the index of the node in the ins
1035 //  * Node *n_<par_name>       holding the node loaded from the ins
1036 //  * MachOpnd *op_<par_name>  holding the corresponding operand
1037 //
1038 // The ordering of operands can not be determined by looking at a
1039 // rule. Especially if a match rule matches several different trees,
1040 // several nodes are generated from one instruct specification with
1041 // different operand orderings. In this case the adlc generated
1042 // variables are the only way to access the ins and operands
1043 // deterministically.
1044 //
1045 // If assigning a register to a node that contains an oop, don't
1046 // forget to call ra_->set_oop() for the node.
1047 void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
1048   GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
1049   GrowableArray <Node *> remove(32);
1050   GrowableArray <Node *> succs(32);
1051   unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
1052   DEBUG_ONLY(bool foundNode = false);
1053 
1054   // for all blocks
1055   for (uint i = 0; i < number_of_blocks(); i++) {
1056     Block *b = _blocks[i];
1057     // For all instructions in the current block.
1058     for (uint j = 0; j < b->number_of_nodes(); j++) {
1059       Node *n = b->get_node(j);
1060       if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
1061 #ifdef ASSERT
1062         if (TracePostallocExpand) {
1063           if (!foundNode) {
1064             foundNode = true;
1065             tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
1066                        C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1067           }
1068           tty->print("  postalloc expanding "); n->dump();
1069           if (Verbose) {
1070             tty->print("    with ins:\n");
1071             for (uint k = 0; k < n->len(); ++k) {
1072               if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
1073             }
1074           }
1075         }
1076 #endif
1077         new_nodes.clear();
1078         // Collect nodes that have to be removed from the block later on.
1079         uint req = n->req();
1080         remove.clear();
1081         for (uint k = 0; k < req; ++k) {
1082           if (n->in(k) && n->in(k)->is_MachTemp()) {
1083             remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
1084             n->in(k)->del_req(0);
1085             j--;
1086           }
1087         }
1088 
1089         // Check whether we can allocate enough nodes. We set a fix limit for
1090         // the size of postalloc expands with this.
1091         uint unique_limit = C->unique() + 40;
1092         if (unique_limit >= _ra->node_regs_max_index()) {
1093           Compile::current()->record_failure("out of nodes in postalloc expand");
1094           return;
1095         }
1096 
1097         // Emit (i.e. generate new nodes).
1098         n->as_Mach()->postalloc_expand(&new_nodes, _ra);
1099 
1100         assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
1101 
1102         // Disconnect the inputs of the old node.
1103         //
1104         // We reuse MachSpillCopy nodes. If we need to expand them, there
1105         // are many, so reusing pays off. If reused, the node already
1106         // has the new ins. n must be the last node on new_nodes list.
1107         if (!n->is_MachSpillCopy()) {
1108           for (int k = req - 1; k >= 0; --k) {
1109             n->del_req(k);
1110           }
1111         }
1112 
1113 #ifdef ASSERT
1114         // Check that all nodes have proper operands.
1115         for (int k = 0; k < new_nodes.length(); ++k) {
1116           if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
1117           MachNode *m = new_nodes.at(k)->as_Mach();
1118           for (unsigned int l = 0; l < m->num_opnds(); ++l) {
1119             if (MachOper::notAnOper(m->_opnds[l])) {
1120               outputStream *os = tty;
1121               os->print("Node %s ", m->Name());
1122               os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
1123               assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
1124             }
1125           }
1126         }
1127 #endif
1128 
1129         // Collect succs of old node in remove (for projections) and in succs (for
1130         // all other nodes) do _not_ collect projections in remove (but in succs)
1131         // in case the node is a call. We need the projections for calls as they are
1132         // associated with registes (i.e. they are defs).
1133         succs.clear();
1134         for (DUIterator k = n->outs(); n->has_out(k); k++) {
1135           if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
1136             remove.push(n->out(k));
1137           } else {
1138             succs.push(n->out(k));
1139           }
1140         }
1141         // Replace old node n as input of its succs by last of the new nodes.
1142         for (int k = 0; k < succs.length(); ++k) {
1143           Node *succ = succs.at(k);
1144           for (uint l = 0; l < succ->req(); ++l) {
1145             if (succ->in(l) == n) {
1146               succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
1147             }
1148           }
1149           for (uint l = succ->req(); l < succ->len(); ++l) {
1150             if (succ->in(l) == n) {
1151               succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
1152             }
1153           }
1154         }
1155 
1156         // Index of old node in block.
1157         uint index = b->find_node(n);
1158         // Insert new nodes into block and map them in nodes->blocks array
1159         // and remember last node in n2.
1160         Node *n2 = NULL;
1161         for (int k = 0; k < new_nodes.length(); ++k) {
1162           n2 = new_nodes.at(k);
1163           b->insert_node(n2, ++index);
1164           map_node_to_block(n2, b);
1165         }
1166 
1167         // Add old node n to remove and remove them all from block.
1168         remove.push(n);
1169         j--;
1170 #ifdef ASSERT
1171         if (TracePostallocExpand && Verbose) {
1172           tty->print("    removing:\n");
1173           for (int k = 0; k < remove.length(); ++k) {
1174             tty->print("        "); remove.at(k)->dump();
1175           }
1176           tty->print("    inserting:\n");
1177           for (int k = 0; k < new_nodes.length(); ++k) {
1178             tty->print("        "); new_nodes.at(k)->dump();
1179           }
1180         }
1181 #endif
1182         for (int k = 0; k < remove.length(); ++k) {
1183           if (b->contains(remove.at(k))) {
1184             b->find_remove(remove.at(k));
1185           } else {
1186             assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
1187           }
1188         }
1189         // If anything has been inserted (n2 != NULL), continue after last node inserted.
1190         // This does not always work. Some postalloc expands don't insert any nodes, if they
1191         // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
1192         j = n2 ? b->find_node(n2) : j;
1193       }
1194     }
1195   }
1196 
1197 #ifdef ASSERT
1198   if (foundNode) {
1199     tty->print("FINISHED %d %s\n", C->compile_id(),
1200                C->method() ? C->method()->name()->as_utf8() : C->stub_name());
1201     tty->flush();
1202   }
1203 #endif
1204 }
1205 
1206 
1207 //------------------------------dump-------------------------------------------
1208 #ifndef PRODUCT
1209 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
1210   const Node *x = end->is_block_proj();
1211   assert( x, "not a CFG" );
1212 
1213   // Do not visit this block again
1214   if( visited.test_set(x->_idx) ) return;
1215 
1216   // Skip through this block
1217   const Node *p = x;
1218   do {
1219     p = p->in(0);               // Move control forward
1220     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
1221   } while( !p->is_block_start() );
1222 
1223   // Recursively visit
1224   for (uint i = 1; i < p->req(); i++) {
1225     _dump_cfg(p->in(i), visited);
1226   }
1227 
1228   // Dump the block
1229   get_block_for_node(p)->dump(this);
1230 }
1231 
1232 void PhaseCFG::dump( ) const {
1233   tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
1234   if (_blocks.size()) {        // Did we do basic-block layout?
1235     for (uint i = 0; i < number_of_blocks(); i++) {
1236       const Block* block = get_block(i);
1237       block->dump(this);
1238     }
1239   } else {                      // Else do it with a DFS
1240     VectorSet visited(_block_arena);
1241     _dump_cfg(_root,visited);
1242   }
1243 }
1244 
1245 void PhaseCFG::dump_headers() {
1246   for (uint i = 0; i < number_of_blocks(); i++) {
1247     Block* block = get_block(i);
1248     if (block != NULL) {
1249       block->dump_head(this);
1250     }
1251   }
1252 }
1253 
1254 void PhaseCFG::verify() const {
1255 #ifdef ASSERT
1256   // Verify sane CFG
1257   for (uint i = 0; i < number_of_blocks(); i++) {
1258     Block* block = get_block(i);
1259     uint cnt = block->number_of_nodes();
1260     uint j;
1261     for (j = 0; j < cnt; j++)  {
1262       Node *n = block->get_node(j);
1263       assert(get_block_for_node(n) == block, "");
1264       if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1265         assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
1266       }
1267       for (uint k = 0; k < n->req(); k++) {
1268         Node *def = n->in(k);
1269         if (def && def != n) {
1270           assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
1271           // Verify that instructions in the block is in correct order.
1272           // Uses must follow their definition if they are at the same block.
1273           // Mostly done to check that MachSpillCopy nodes are placed correctly
1274           // when CreateEx node is moved in build_ifg_physical().
1275           if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
1276               // See (+++) comment in reg_split.cpp
1277               !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
1278             bool is_loop = false;
1279             if (n->is_Phi()) {
1280               for (uint l = 1; l < def->req(); l++) {
1281                 if (n == def->in(l)) {
1282                   is_loop = true;
1283                   break; // Some kind of loop
1284                 }
1285               }
1286             }
1287             assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
1288           }
1289         }
1290       }
1291     }
1292 
1293     j = block->end_idx();
1294     Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
1295     assert(bp, "last instruction must be a block proj");
1296     assert(bp == block->get_node(j), "wrong number of successors for this block");
1297     if (bp->is_Catch()) {
1298       while (block->get_node(--j)->is_MachProj()) {
1299         ;
1300       }
1301       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1302     } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
1303       assert(block->_num_succs == 2, "Conditional branch must have two targets");
1304     }
1305   }
1306 #endif
1307 }
1308 #endif
1309 
1310 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
1311   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
1312 }
1313 
1314 void UnionFind::extend( uint from_idx, uint to_idx ) {
1315   _nesting.check();
1316   if( from_idx >= _max ) {
1317     uint size = 16;
1318     while( size <= from_idx ) size <<=1;
1319     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
1320     _max = size;
1321   }
1322   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
1323   _indices[from_idx] = to_idx;
1324 }
1325 
1326 void UnionFind::reset( uint max ) {
1327   // Force the Union-Find mapping to be at least this large
1328   extend(max,0);
1329   // Initialize to be the ID mapping.
1330   for( uint i=0; i<max; i++ ) map(i,i);
1331 }
1332 
1333 // Straight out of Tarjan's union-find algorithm
1334 uint UnionFind::Find_compress( uint idx ) {
1335   uint cur  = idx;
1336   uint next = lookup(cur);
1337   while( next != cur ) {        // Scan chain of equivalences
1338     assert( next < cur, "always union smaller" );
1339     cur = next;                 // until find a fixed-point
1340     next = lookup(cur);
1341   }
1342   // Core of union-find algorithm: update chain of
1343   // equivalences to be equal to the root.
1344   while( idx != next ) {
1345     uint tmp = lookup(idx);
1346     map(idx, next);
1347     idx = tmp;
1348   }
1349   return idx;
1350 }
1351 
1352 // Like Find above, but no path compress, so bad asymptotic behavior
1353 uint UnionFind::Find_const( uint idx ) const {
1354   if( idx == 0 ) return idx;    // Ignore the zero idx
1355   // Off the end?  This can happen during debugging dumps
1356   // when data structures have not finished being updated.
1357   if( idx >= _max ) return idx;
1358   uint next = lookup(idx);
1359   while( next != idx ) {        // Scan chain of equivalences
1360     idx = next;                 // until find a fixed-point
1361     next = lookup(idx);
1362   }
1363   return next;
1364 }
1365 
1366 // union 2 sets together.
1367 void UnionFind::Union( uint idx1, uint idx2 ) {
1368   uint src = Find(idx1);
1369   uint dst = Find(idx2);
1370   assert( src, "" );
1371   assert( dst, "" );
1372   assert( src < _max, "oob" );
1373   assert( dst < _max, "oob" );
1374   assert( src < dst, "always union smaller" );
1375   map(dst,src);
1376 }
1377 
1378 #ifndef PRODUCT
1379 void Trace::dump( ) const {
1380   tty->print_cr("Trace (freq %f)", first_block()->_freq);
1381   for (Block *b = first_block(); b != NULL; b = next(b)) {
1382     tty->print("  B%d", b->_pre_order);
1383     if (b->head()->is_Loop()) {
1384       tty->print(" (L%d)", b->compute_loop_alignment());
1385     }
1386     if (b->has_loop_alignment()) {
1387       tty->print(" (T%d)", b->code_alignment());
1388     }
1389   }
1390   tty->cr();
1391 }
1392 
1393 void CFGEdge::dump( ) const {
1394   tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
1395              from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
1396   switch(state()) {
1397   case connected:
1398     tty->print("connected");
1399     break;
1400   case open:
1401     tty->print("open");
1402     break;
1403   case interior:
1404     tty->print("interior");
1405     break;
1406   }
1407   if (infrequent()) {
1408     tty->print("  infrequent");
1409   }
1410   tty->cr();
1411 }
1412 #endif
1413 
1414 // Comparison function for edges
1415 static int edge_order(CFGEdge **e0, CFGEdge **e1) {
1416   float freq0 = (*e0)->freq();
1417   float freq1 = (*e1)->freq();
1418   if (freq0 != freq1) {
1419     return freq0 > freq1 ? -1 : 1;
1420   }
1421 
1422   int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
1423   int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
1424 
1425   return dist1 - dist0;
1426 }
1427 
1428 // Comparison function for edges
1429 extern "C" int trace_frequency_order(const void *p0, const void *p1) {
1430   Trace *tr0 = *(Trace **) p0;
1431   Trace *tr1 = *(Trace **) p1;
1432   Block *b0 = tr0->first_block();
1433   Block *b1 = tr1->first_block();
1434 
1435   // The trace of connector blocks goes at the end;
1436   // we only expect one such trace
1437   if (b0->is_connector() != b1->is_connector()) {
1438     return b1->is_connector() ? -1 : 1;
1439   }
1440 
1441   // Pull more frequently executed blocks to the beginning
1442   float freq0 = b0->_freq;
1443   float freq1 = b1->_freq;
1444   if (freq0 != freq1) {
1445     return freq0 > freq1 ? -1 : 1;
1446   }
1447 
1448   int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
1449 
1450   return diff;
1451 }
1452 
1453 // Find edges of interest, i.e, those which can fall through. Presumes that
1454 // edges which don't fall through are of low frequency and can be generally
1455 // ignored.  Initialize the list of traces.
1456 void PhaseBlockLayout::find_edges() {
1457   // Walk the blocks, creating edges and Traces
1458   uint i;
1459   Trace *tr = NULL;
1460   for (i = 0; i < _cfg.number_of_blocks(); i++) {
1461     Block* b = _cfg.get_block(i);
1462     tr = new Trace(b, next, prev);
1463     traces[tr->id()] = tr;
1464 
1465     // All connector blocks should be at the end of the list
1466     if (b->is_connector()) break;
1467 
1468     // If this block and the next one have a one-to-one successor
1469     // predecessor relationship, simply append the next block
1470     int nfallthru = b->num_fall_throughs();
1471     while (nfallthru == 1 &&
1472            b->succ_fall_through(0)) {
1473       Block *n = b->_succs[0];
1474 
1475       // Skip over single-entry connector blocks, we don't want to
1476       // add them to the trace.
1477       while (n->is_connector() && n->num_preds() == 1) {
1478         n = n->_succs[0];
1479       }
1480 
1481       // We see a merge point, so stop search for the next block
1482       if (n->num_preds() != 1) break;
1483 
1484       i++;
1485       assert(n = _cfg.get_block(i), "expecting next block");
1486       tr->append(n);
1487       uf->map(n->_pre_order, tr->id());
1488       traces[n->_pre_order] = NULL;
1489       nfallthru = b->num_fall_throughs();
1490       b = n;
1491     }
1492 
1493     if (nfallthru > 0) {
1494       // Create a CFGEdge for each outgoing
1495       // edge that could be a fall-through.
1496       for (uint j = 0; j < b->_num_succs; j++ ) {
1497         if (b->succ_fall_through(j)) {
1498           Block *target = b->non_connector_successor(j);
1499           float freq = b->_freq * b->succ_prob(j);
1500           int from_pct = (int) ((100 * freq) / b->_freq);
1501           int to_pct = (int) ((100 * freq) / target->_freq);
1502           edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
1503         }
1504       }
1505     }
1506   }
1507 
1508   // Group connector blocks into one trace
1509   for (i++; i < _cfg.number_of_blocks(); i++) {
1510     Block *b = _cfg.get_block(i);
1511     assert(b->is_connector(), "connector blocks at the end");
1512     tr->append(b);
1513     uf->map(b->_pre_order, tr->id());
1514     traces[b->_pre_order] = NULL;
1515   }
1516 }
1517 
1518 // Union two traces together in uf, and null out the trace in the list
1519 void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
1520   uint old_id = old_trace->id();
1521   uint updated_id = updated_trace->id();
1522 
1523   uint lo_id = updated_id;
1524   uint hi_id = old_id;
1525 
1526   // If from is greater than to, swap values to meet
1527   // UnionFind guarantee.
1528   if (updated_id > old_id) {
1529     lo_id = old_id;
1530     hi_id = updated_id;
1531 
1532     // Fix up the trace ids
1533     traces[lo_id] = traces[updated_id];
1534     updated_trace->set_id(lo_id);
1535   }
1536 
1537   // Union the lower with the higher and remove the pointer
1538   // to the higher.
1539   uf->Union(lo_id, hi_id);
1540   traces[hi_id] = NULL;
1541 }
1542 
1543 // Append traces together via the most frequently executed edges
1544 void PhaseBlockLayout::grow_traces() {
1545   // Order the edges, and drive the growth of Traces via the most
1546   // frequently executed edges.
1547   edges->sort(edge_order);
1548   for (int i = 0; i < edges->length(); i++) {
1549     CFGEdge *e = edges->at(i);
1550 
1551     if (e->state() != CFGEdge::open) continue;
1552 
1553     Block *src_block = e->from();
1554     Block *targ_block = e->to();
1555 
1556     // Don't grow traces along backedges?
1557     if (!BlockLayoutRotateLoops) {
1558       if (targ_block->_rpo <= src_block->_rpo) {
1559         targ_block->set_loop_alignment(targ_block);
1560         continue;
1561       }
1562     }
1563 
1564     Trace *src_trace = trace(src_block);
1565     Trace *targ_trace = trace(targ_block);
1566 
1567     // If the edge in question can join two traces at their ends,
1568     // append one trace to the other.
1569    if (src_trace->last_block() == src_block) {
1570       if (src_trace == targ_trace) {
1571         e->set_state(CFGEdge::interior);
1572         if (targ_trace->backedge(e)) {
1573           // Reset i to catch any newly eligible edge
1574           // (Or we could remember the first "open" edge, and reset there)
1575           i = 0;
1576         }
1577       } else if (targ_trace->first_block() == targ_block) {
1578         e->set_state(CFGEdge::connected);
1579         src_trace->append(targ_trace);
1580         union_traces(src_trace, targ_trace);
1581       }
1582     }
1583   }
1584 }
1585 
1586 // Embed one trace into another, if the fork or join points are sufficiently
1587 // balanced.
1588 void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
1589   // Walk the edge list a another time, looking at unprocessed edges.
1590   // Fold in diamonds
1591   for (int i = 0; i < edges->length(); i++) {
1592     CFGEdge *e = edges->at(i);
1593 
1594     if (e->state() != CFGEdge::open) continue;
1595     if (fall_thru_only) {
1596       if (e->infrequent()) continue;
1597     }
1598 
1599     Block *src_block = e->from();
1600     Trace *src_trace = trace(src_block);
1601     bool src_at_tail = src_trace->last_block() == src_block;
1602 
1603     Block *targ_block  = e->to();
1604     Trace *targ_trace  = trace(targ_block);
1605     bool targ_at_start = targ_trace->first_block() == targ_block;
1606 
1607     if (src_trace == targ_trace) {
1608       // This may be a loop, but we can't do much about it.
1609       e->set_state(CFGEdge::interior);
1610       continue;
1611     }
1612 
1613     if (fall_thru_only) {
1614       // If the edge links the middle of two traces, we can't do anything.
1615       // Mark the edge and continue.
1616       if (!src_at_tail & !targ_at_start) {
1617         continue;
1618       }
1619 
1620       // Don't grow traces along backedges?
1621       if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
1622           continue;
1623       }
1624 
1625       // If both ends of the edge are available, why didn't we handle it earlier?
1626       assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
1627 
1628       if (targ_at_start) {
1629         // Insert the "targ" trace in the "src" trace if the insertion point
1630         // is a two way branch.
1631         // Better profitability check possible, but may not be worth it.
1632         // Someday, see if the this "fork" has an associated "join";
1633         // then make a policy on merging this trace at the fork or join.
1634         // For example, other things being equal, it may be better to place this
1635         // trace at the join point if the "src" trace ends in a two-way, but
1636         // the insertion point is one-way.
1637         assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
1638         e->set_state(CFGEdge::connected);
1639         src_trace->insert_after(src_block, targ_trace);
1640         union_traces(src_trace, targ_trace);
1641       } else if (src_at_tail) {
1642         if (src_trace != trace(_cfg.get_root_block())) {
1643           e->set_state(CFGEdge::connected);
1644           targ_trace->insert_before(targ_block, src_trace);
1645           union_traces(targ_trace, src_trace);
1646         }
1647       }
1648     } else if (e->state() == CFGEdge::open) {
1649       // Append traces, even without a fall-thru connection.
1650       // But leave root entry at the beginning of the block list.
1651       if (targ_trace != trace(_cfg.get_root_block())) {
1652         e->set_state(CFGEdge::connected);
1653         src_trace->append(targ_trace);
1654         union_traces(src_trace, targ_trace);
1655       }
1656     }
1657   }
1658 }
1659 
1660 // Order the sequence of the traces in some desirable way, and fixup the
1661 // jumps at the end of each block.
1662 void PhaseBlockLayout::reorder_traces(int count) {
1663   ResourceArea *area = Thread::current()->resource_area();
1664   Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
1665   Block_List worklist;
1666   int new_count = 0;
1667 
1668   // Compact the traces.
1669   for (int i = 0; i < count; i++) {
1670     Trace *tr = traces[i];
1671     if (tr != NULL) {
1672       new_traces[new_count++] = tr;
1673     }
1674   }
1675 
1676   // The entry block should be first on the new trace list.
1677   Trace *tr = trace(_cfg.get_root_block());
1678   assert(tr == new_traces[0], "entry trace misplaced");
1679 
1680   // Sort the new trace list by frequency
1681   qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
1682 
1683   // Patch up the successor blocks
1684   _cfg.clear_blocks();
1685   for (int i = 0; i < new_count; i++) {
1686     Trace *tr = new_traces[i];
1687     if (tr != NULL) {
1688       tr->fixup_blocks(_cfg);
1689     }
1690   }
1691 }
1692 
1693 // Order basic blocks based on frequency
1694 PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
1695 : Phase(BlockLayout)
1696 , _cfg(cfg) {
1697   ResourceMark rm;
1698   ResourceArea *area = Thread::current()->resource_area();
1699 
1700   // List of traces
1701   int size = _cfg.number_of_blocks() + 1;
1702   traces = NEW_ARENA_ARRAY(area, Trace *, size);
1703   memset(traces, 0, size*sizeof(Trace*));
1704   next = NEW_ARENA_ARRAY(area, Block *, size);
1705   memset(next,   0, size*sizeof(Block *));
1706   prev = NEW_ARENA_ARRAY(area, Block *, size);
1707   memset(prev  , 0, size*sizeof(Block *));
1708 
1709   // List of edges
1710   edges = new GrowableArray<CFGEdge*>;
1711 
1712   // Mapping block index --> block_trace
1713   uf = new UnionFind(size);
1714   uf->reset(size);
1715 
1716   // Find edges and create traces.
1717   find_edges();
1718 
1719   // Grow traces at their ends via most frequent edges.
1720   grow_traces();
1721 
1722   // Merge one trace into another, but only at fall-through points.
1723   // This may make diamonds and other related shapes in a trace.
1724   merge_traces(true);
1725 
1726   // Run merge again, allowing two traces to be catenated, even if
1727   // one does not fall through into the other. This appends loosely
1728   // related traces to be near each other.
1729   merge_traces(false);
1730 
1731   // Re-order all the remaining traces by frequency
1732   reorder_traces(size);
1733 
1734   assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
1735 }
1736 
1737 
1738 // Edge e completes a loop in a trace. If the target block is head of the
1739 // loop, rotate the loop block so that the loop ends in a conditional branch.
1740 bool Trace::backedge(CFGEdge *e) {
1741   bool loop_rotated = false;
1742   Block *src_block  = e->from();
1743   Block *targ_block    = e->to();
1744 
1745   assert(last_block() == src_block, "loop discovery at back branch");
1746   if (first_block() == targ_block) {
1747     if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
1748       // Find the last block in the trace that has a conditional
1749       // branch.
1750       Block *b;
1751       for (b = last_block(); b != NULL; b = prev(b)) {
1752         if (b->num_fall_throughs() == 2) {
1753           break;
1754         }
1755       }
1756 
1757       if (b != last_block() && b != NULL) {
1758         loop_rotated = true;
1759 
1760         // Rotate the loop by doing two-part linked-list surgery.
1761         append(first_block());
1762         break_loop_after(b);
1763       }
1764     }
1765 
1766     // Backbranch to the top of a trace
1767     // Scroll forward through the trace from the targ_block. If we find
1768     // a loop head before another loop top, use the the loop head alignment.
1769     for (Block *b = targ_block; b != NULL; b = next(b)) {
1770       if (b->has_loop_alignment()) {
1771         break;
1772       }
1773       if (b->head()->is_Loop()) {
1774         targ_block = b;
1775         break;
1776       }
1777     }
1778 
1779     first_block()->set_loop_alignment(targ_block);
1780 
1781   } else {
1782     // Backbranch into the middle of a trace
1783     targ_block->set_loop_alignment(targ_block);
1784   }
1785 
1786   return loop_rotated;
1787 }
1788 
1789 // push blocks onto the CFG list
1790 // ensure that blocks have the correct two-way branch sense
1791 void Trace::fixup_blocks(PhaseCFG &cfg) {
1792   Block *last = last_block();
1793   for (Block *b = first_block(); b != NULL; b = next(b)) {
1794     cfg.add_block(b);
1795     if (!b->is_connector()) {
1796       int nfallthru = b->num_fall_throughs();
1797       if (b != last) {
1798         if (nfallthru == 2) {
1799           // Ensure that the sense of the branch is correct
1800           Block *bnext = next(b);
1801           Block *bs0 = b->non_connector_successor(0);
1802 
1803           MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
1804           ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
1805           ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
1806 
1807           if (bnext == bs0) {
1808             // Fall-thru case in succs[0], should be in succs[1]
1809 
1810             // Flip targets in _succs map
1811             Block *tbs0 = b->_succs[0];
1812             Block *tbs1 = b->_succs[1];
1813             b->_succs.map( 0, tbs1 );
1814             b->_succs.map( 1, tbs0 );
1815 
1816             // Flip projections to match targets
1817             b->map_node(proj1, b->number_of_nodes() - 2);
1818             b->map_node(proj0, b->number_of_nodes() - 1);
1819           }
1820         }
1821       }
1822     }
1823   }
1824 }