1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766 }
 767 
 768 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 769                                          Register last_java_fp,
 770                                          address  last_java_pc) {
 771   // determine last_java_sp register
 772   if (!last_java_sp->is_valid()) {
 773     last_java_sp = rsp;
 774   }
 775 
 776   // last_java_fp is optional
 777   if (last_java_fp->is_valid()) {
 778     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 779            last_java_fp);
 780   }
 781 
 782   // last_java_pc is optional
 783   if (last_java_pc != NULL) {
 784     Address java_pc(r15_thread,
 785                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 786     lea(rscratch1, InternalAddress(last_java_pc));
 787     movptr(java_pc, rscratch1);
 788   }
 789 
 790   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 791 }
 792 
 793 static void pass_arg0(MacroAssembler* masm, Register arg) {
 794   if (c_rarg0 != arg ) {
 795     masm->mov(c_rarg0, arg);
 796   }
 797 }
 798 
 799 static void pass_arg1(MacroAssembler* masm, Register arg) {
 800   if (c_rarg1 != arg ) {
 801     masm->mov(c_rarg1, arg);
 802   }
 803 }
 804 
 805 static void pass_arg2(MacroAssembler* masm, Register arg) {
 806   if (c_rarg2 != arg ) {
 807     masm->mov(c_rarg2, arg);
 808   }
 809 }
 810 
 811 static void pass_arg3(MacroAssembler* masm, Register arg) {
 812   if (c_rarg3 != arg ) {
 813     masm->mov(c_rarg3, arg);
 814   }
 815 }
 816 
 817 void MacroAssembler::stop(const char* msg) {
 818   address rip = pc();
 819   pusha(); // get regs on stack
 820   lea(c_rarg0, ExternalAddress((address) msg));
 821   lea(c_rarg1, InternalAddress(rip));
 822   movq(c_rarg2, rsp); // pass pointer to regs array
 823   andq(rsp, -16); // align stack as required by ABI
 824   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 825   hlt();
 826 }
 827 
 828 void MacroAssembler::warn(const char* msg) {
 829   push(rbp);
 830   movq(rbp, rsp);
 831   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 832   push_CPU_state();   // keeps alignment at 16 bytes
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 835   pop_CPU_state();
 836   mov(rsp, rbp);
 837   pop(rbp);
 838 }
 839 
 840 void MacroAssembler::print_state() {
 841   address rip = pc();
 842   pusha();            // get regs on stack
 843   push(rbp);
 844   movq(rbp, rsp);
 845   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 846   push_CPU_state();   // keeps alignment at 16 bytes
 847 
 848   lea(c_rarg0, InternalAddress(rip));
 849   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 850   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 851 
 852   pop_CPU_state();
 853   mov(rsp, rbp);
 854   pop(rbp);
 855   popa();
 856 }
 857 
 858 #ifndef PRODUCT
 859 extern "C" void findpc(intptr_t x);
 860 #endif
 861 
 862 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 863   // In order to get locks to work, we need to fake a in_VM state
 864   if (ShowMessageBoxOnError) {
 865     JavaThread* thread = JavaThread::current();
 866     JavaThreadState saved_state = thread->thread_state();
 867     thread->set_thread_state(_thread_in_vm);
 868 #ifndef PRODUCT
 869     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 870       ttyLocker ttyl;
 871       BytecodeCounter::print();
 872     }
 873 #endif
 874     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 875     // XXX correct this offset for amd64
 876     // This is the value of eip which points to where verify_oop will return.
 877     if (os::message_box(msg, "Execution stopped, print registers?")) {
 878       print_state64(pc, regs);
 879       BREAKPOINT;
 880       assert(false, "start up GDB");
 881     }
 882     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 883   } else {
 884     ttyLocker ttyl;
 885     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 886                     msg);
 887     assert(false, "DEBUG MESSAGE: %s", msg);
 888   }
 889 }
 890 
 891 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 892   ttyLocker ttyl;
 893   FlagSetting fs(Debugging, true);
 894   tty->print_cr("rip = 0x%016lx", pc);
 895 #ifndef PRODUCT
 896   tty->cr();
 897   findpc(pc);
 898   tty->cr();
 899 #endif
 900 #define PRINT_REG(rax, value) \
 901   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 902   PRINT_REG(rax, regs[15]);
 903   PRINT_REG(rbx, regs[12]);
 904   PRINT_REG(rcx, regs[14]);
 905   PRINT_REG(rdx, regs[13]);
 906   PRINT_REG(rdi, regs[8]);
 907   PRINT_REG(rsi, regs[9]);
 908   PRINT_REG(rbp, regs[10]);
 909   PRINT_REG(rsp, regs[11]);
 910   PRINT_REG(r8 , regs[7]);
 911   PRINT_REG(r9 , regs[6]);
 912   PRINT_REG(r10, regs[5]);
 913   PRINT_REG(r11, regs[4]);
 914   PRINT_REG(r12, regs[3]);
 915   PRINT_REG(r13, regs[2]);
 916   PRINT_REG(r14, regs[1]);
 917   PRINT_REG(r15, regs[0]);
 918 #undef PRINT_REG
 919   // Print some words near top of staack.
 920   int64_t* rsp = (int64_t*) regs[11];
 921   int64_t* dump_sp = rsp;
 922   for (int col1 = 0; col1 < 8; col1++) {
 923     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 924     os::print_location(tty, *dump_sp++);
 925   }
 926   for (int row = 0; row < 25; row++) {
 927     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 928     for (int col = 0; col < 4; col++) {
 929       tty->print(" 0x%016lx", *dump_sp++);
 930     }
 931     tty->cr();
 932   }
 933   // Print some instructions around pc:
 934   Disassembler::decode((address)pc-64, (address)pc);
 935   tty->print_cr("--------");
 936   Disassembler::decode((address)pc, (address)pc+32);
 937 }
 938 
 939 #endif // _LP64
 940 
 941 // Now versions that are common to 32/64 bit
 942 
 943 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 944   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 945 }
 946 
 947 void MacroAssembler::addptr(Register dst, Register src) {
 948   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 949 }
 950 
 951 void MacroAssembler::addptr(Address dst, Register src) {
 952   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 953 }
 954 
 955 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 956   if (reachable(src)) {
 957     Assembler::addsd(dst, as_Address(src));
 958   } else {
 959     lea(rscratch1, src);
 960     Assembler::addsd(dst, Address(rscratch1, 0));
 961   }
 962 }
 963 
 964 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 965   if (reachable(src)) {
 966     addss(dst, as_Address(src));
 967   } else {
 968     lea(rscratch1, src);
 969     addss(dst, Address(rscratch1, 0));
 970   }
 971 }
 972 
 973 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 974   if (reachable(src)) {
 975     Assembler::addpd(dst, as_Address(src));
 976   } else {
 977     lea(rscratch1, src);
 978     Assembler::addpd(dst, Address(rscratch1, 0));
 979   }
 980 }
 981 
 982 void MacroAssembler::align(int modulus) {
 983   align(modulus, offset());
 984 }
 985 
 986 void MacroAssembler::align(int modulus, int target) {
 987   if (target % modulus != 0) {
 988     nop(modulus - (target % modulus));
 989   }
 990 }
 991 
 992 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 993   // Used in sign-masking with aligned address.
 994   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 995   if (reachable(src)) {
 996     Assembler::andpd(dst, as_Address(src));
 997   } else {
 998     lea(rscratch1, src);
 999     Assembler::andpd(dst, Address(rscratch1, 0));
1000   }
1001 }
1002 
1003 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1004   // Used in sign-masking with aligned address.
1005   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1006   if (reachable(src)) {
1007     Assembler::andps(dst, as_Address(src));
1008   } else {
1009     lea(rscratch1, src);
1010     Assembler::andps(dst, Address(rscratch1, 0));
1011   }
1012 }
1013 
1014 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1015   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1016 }
1017 
1018 void MacroAssembler::atomic_incl(Address counter_addr) {
1019   if (os::is_MP())
1020     lock();
1021   incrementl(counter_addr);
1022 }
1023 
1024 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1025   if (reachable(counter_addr)) {
1026     atomic_incl(as_Address(counter_addr));
1027   } else {
1028     lea(scr, counter_addr);
1029     atomic_incl(Address(scr, 0));
1030   }
1031 }
1032 
1033 #ifdef _LP64
1034 void MacroAssembler::atomic_incq(Address counter_addr) {
1035   if (os::is_MP())
1036     lock();
1037   incrementq(counter_addr);
1038 }
1039 
1040 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1041   if (reachable(counter_addr)) {
1042     atomic_incq(as_Address(counter_addr));
1043   } else {
1044     lea(scr, counter_addr);
1045     atomic_incq(Address(scr, 0));
1046   }
1047 }
1048 #endif
1049 
1050 // Writes to stack successive pages until offset reached to check for
1051 // stack overflow + shadow pages.  This clobbers tmp.
1052 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1053   movptr(tmp, rsp);
1054   // Bang stack for total size given plus shadow page size.
1055   // Bang one page at a time because large size can bang beyond yellow and
1056   // red zones.
1057   Label loop;
1058   bind(loop);
1059   movl(Address(tmp, (-os::vm_page_size())), size );
1060   subptr(tmp, os::vm_page_size());
1061   subl(size, os::vm_page_size());
1062   jcc(Assembler::greater, loop);
1063 
1064   // Bang down shadow pages too.
1065   // At this point, (tmp-0) is the last address touched, so don't
1066   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1067   // was post-decremented.)  Skip this address by starting at i=1, and
1068   // touch a few more pages below.  N.B.  It is important to touch all
1069   // the way down including all pages in the shadow zone.
1070   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1071     // this could be any sized move but this is can be a debugging crumb
1072     // so the bigger the better.
1073     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1074   }
1075 }
1076 
1077 void MacroAssembler::reserved_stack_check() {
1078     // testing if reserved zone needs to be enabled
1079     Label no_reserved_zone_enabling;
1080     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1081     NOT_LP64(get_thread(rsi);)
1082 
1083     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1084     jcc(Assembler::below, no_reserved_zone_enabling);
1085 
1086     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1087     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1088     should_not_reach_here();
1089 
1090     bind(no_reserved_zone_enabling);
1091 }
1092 
1093 int MacroAssembler::biased_locking_enter(Register lock_reg,
1094                                          Register obj_reg,
1095                                          Register swap_reg,
1096                                          Register tmp_reg,
1097                                          bool swap_reg_contains_mark,
1098                                          Label& done,
1099                                          Label* slow_case,
1100                                          BiasedLockingCounters* counters) {
1101   assert(UseBiasedLocking, "why call this otherwise?");
1102   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1103   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1104   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1105   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1106   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1107   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1108 
1109   if (PrintBiasedLockingStatistics && counters == NULL) {
1110     counters = BiasedLocking::counters();
1111   }
1112   // Biased locking
1113   // See whether the lock is currently biased toward our thread and
1114   // whether the epoch is still valid
1115   // Note that the runtime guarantees sufficient alignment of JavaThread
1116   // pointers to allow age to be placed into low bits
1117   // First check to see whether biasing is even enabled for this object
1118   Label cas_label;
1119   int null_check_offset = -1;
1120   if (!swap_reg_contains_mark) {
1121     null_check_offset = offset();
1122     movptr(swap_reg, mark_addr);
1123   }
1124   movptr(tmp_reg, swap_reg);
1125   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1126   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1127   jcc(Assembler::notEqual, cas_label);
1128   // The bias pattern is present in the object's header. Need to check
1129   // whether the bias owner and the epoch are both still current.
1130 #ifndef _LP64
1131   // Note that because there is no current thread register on x86_32 we
1132   // need to store off the mark word we read out of the object to
1133   // avoid reloading it and needing to recheck invariants below. This
1134   // store is unfortunate but it makes the overall code shorter and
1135   // simpler.
1136   movptr(saved_mark_addr, swap_reg);
1137 #endif
1138   if (swap_reg_contains_mark) {
1139     null_check_offset = offset();
1140   }
1141   load_prototype_header(tmp_reg, obj_reg);
1142 #ifdef _LP64
1143   orptr(tmp_reg, r15_thread);
1144   xorptr(tmp_reg, swap_reg);
1145   Register header_reg = tmp_reg;
1146 #else
1147   xorptr(tmp_reg, swap_reg);
1148   get_thread(swap_reg);
1149   xorptr(swap_reg, tmp_reg);
1150   Register header_reg = swap_reg;
1151 #endif
1152   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1153   if (counters != NULL) {
1154     cond_inc32(Assembler::zero,
1155                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1156   }
1157   jcc(Assembler::equal, done);
1158 
1159   Label try_revoke_bias;
1160   Label try_rebias;
1161 
1162   // At this point we know that the header has the bias pattern and
1163   // that we are not the bias owner in the current epoch. We need to
1164   // figure out more details about the state of the header in order to
1165   // know what operations can be legally performed on the object's
1166   // header.
1167 
1168   // If the low three bits in the xor result aren't clear, that means
1169   // the prototype header is no longer biased and we have to revoke
1170   // the bias on this object.
1171   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1172   jccb(Assembler::notZero, try_revoke_bias);
1173 
1174   // Biasing is still enabled for this data type. See whether the
1175   // epoch of the current bias is still valid, meaning that the epoch
1176   // bits of the mark word are equal to the epoch bits of the
1177   // prototype header. (Note that the prototype header's epoch bits
1178   // only change at a safepoint.) If not, attempt to rebias the object
1179   // toward the current thread. Note that we must be absolutely sure
1180   // that the current epoch is invalid in order to do this because
1181   // otherwise the manipulations it performs on the mark word are
1182   // illegal.
1183   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1184   jccb(Assembler::notZero, try_rebias);
1185 
1186   // The epoch of the current bias is still valid but we know nothing
1187   // about the owner; it might be set or it might be clear. Try to
1188   // acquire the bias of the object using an atomic operation. If this
1189   // fails we will go in to the runtime to revoke the object's bias.
1190   // Note that we first construct the presumed unbiased header so we
1191   // don't accidentally blow away another thread's valid bias.
1192   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1193   andptr(swap_reg,
1194          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1195 #ifdef _LP64
1196   movptr(tmp_reg, swap_reg);
1197   orptr(tmp_reg, r15_thread);
1198 #else
1199   get_thread(tmp_reg);
1200   orptr(tmp_reg, swap_reg);
1201 #endif
1202   if (os::is_MP()) {
1203     lock();
1204   }
1205   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1206   // If the biasing toward our thread failed, this means that
1207   // another thread succeeded in biasing it toward itself and we
1208   // need to revoke that bias. The revocation will occur in the
1209   // interpreter runtime in the slow case.
1210   if (counters != NULL) {
1211     cond_inc32(Assembler::zero,
1212                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1213   }
1214   if (slow_case != NULL) {
1215     jcc(Assembler::notZero, *slow_case);
1216   }
1217   jmp(done);
1218 
1219   bind(try_rebias);
1220   // At this point we know the epoch has expired, meaning that the
1221   // current "bias owner", if any, is actually invalid. Under these
1222   // circumstances _only_, we are allowed to use the current header's
1223   // value as the comparison value when doing the cas to acquire the
1224   // bias in the current epoch. In other words, we allow transfer of
1225   // the bias from one thread to another directly in this situation.
1226   //
1227   // FIXME: due to a lack of registers we currently blow away the age
1228   // bits in this situation. Should attempt to preserve them.
1229   load_prototype_header(tmp_reg, obj_reg);
1230 #ifdef _LP64
1231   orptr(tmp_reg, r15_thread);
1232 #else
1233   get_thread(swap_reg);
1234   orptr(tmp_reg, swap_reg);
1235   movptr(swap_reg, saved_mark_addr);
1236 #endif
1237   if (os::is_MP()) {
1238     lock();
1239   }
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   if (os::is_MP()) {
1268     lock();
1269   }
1270   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1271   // Fall through to the normal CAS-based lock, because no matter what
1272   // the result of the above CAS, some thread must have succeeded in
1273   // removing the bias bit from the object's header.
1274   if (counters != NULL) {
1275     cond_inc32(Assembler::zero,
1276                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1277   }
1278 
1279   bind(cas_label);
1280 
1281   return null_check_offset;
1282 }
1283 
1284 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1285   assert(UseBiasedLocking, "why call this otherwise?");
1286 
1287   // Check for biased locking unlock case, which is a no-op
1288   // Note: we do not have to check the thread ID for two reasons.
1289   // First, the interpreter checks for IllegalMonitorStateException at
1290   // a higher level. Second, if the bias was revoked while we held the
1291   // lock, the object could not be rebiased toward another thread, so
1292   // the bias bit would be clear.
1293   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1294   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1295   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1296   jcc(Assembler::equal, done);
1297 }
1298 
1299 #ifdef COMPILER2
1300 
1301 #if INCLUDE_RTM_OPT
1302 
1303 // Update rtm_counters based on abort status
1304 // input: abort_status
1305 //        rtm_counters (RTMLockingCounters*)
1306 // flags are killed
1307 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1308 
1309   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1310   if (PrintPreciseRTMLockingStatistics) {
1311     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1312       Label check_abort;
1313       testl(abort_status, (1<<i));
1314       jccb(Assembler::equal, check_abort);
1315       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1316       bind(check_abort);
1317     }
1318   }
1319 }
1320 
1321 // Branch if (random & (count-1) != 0), count is 2^n
1322 // tmp, scr and flags are killed
1323 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1324   assert(tmp == rax, "");
1325   assert(scr == rdx, "");
1326   rdtsc(); // modifies EDX:EAX
1327   andptr(tmp, count-1);
1328   jccb(Assembler::notZero, brLabel);
1329 }
1330 
1331 // Perform abort ratio calculation, set no_rtm bit if high ratio
1332 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1333 // tmpReg, rtm_counters_Reg and flags are killed
1334 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1335                                                  Register rtm_counters_Reg,
1336                                                  RTMLockingCounters* rtm_counters,
1337                                                  Metadata* method_data) {
1338   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1339 
1340   if (RTMLockingCalculationDelay > 0) {
1341     // Delay calculation
1342     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1343     testptr(tmpReg, tmpReg);
1344     jccb(Assembler::equal, L_done);
1345   }
1346   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1347   //   Aborted transactions = abort_count * 100
1348   //   All transactions = total_count *  RTMTotalCountIncrRate
1349   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1350 
1351   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1352   cmpptr(tmpReg, RTMAbortThreshold);
1353   jccb(Assembler::below, L_check_always_rtm2);
1354   imulptr(tmpReg, tmpReg, 100);
1355 
1356   Register scrReg = rtm_counters_Reg;
1357   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1358   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1359   imulptr(scrReg, scrReg, RTMAbortRatio);
1360   cmpptr(tmpReg, scrReg);
1361   jccb(Assembler::below, L_check_always_rtm1);
1362   if (method_data != NULL) {
1363     // set rtm_state to "no rtm" in MDO
1364     mov_metadata(tmpReg, method_data);
1365     if (os::is_MP()) {
1366       lock();
1367     }
1368     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1369   }
1370   jmpb(L_done);
1371   bind(L_check_always_rtm1);
1372   // Reload RTMLockingCounters* address
1373   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1374   bind(L_check_always_rtm2);
1375   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1376   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1377   jccb(Assembler::below, L_done);
1378   if (method_data != NULL) {
1379     // set rtm_state to "always rtm" in MDO
1380     mov_metadata(tmpReg, method_data);
1381     if (os::is_MP()) {
1382       lock();
1383     }
1384     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1385   }
1386   bind(L_done);
1387 }
1388 
1389 // Update counters and perform abort ratio calculation
1390 // input:  abort_status_Reg
1391 // rtm_counters_Reg, flags are killed
1392 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1393                                    Register rtm_counters_Reg,
1394                                    RTMLockingCounters* rtm_counters,
1395                                    Metadata* method_data,
1396                                    bool profile_rtm) {
1397 
1398   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1399   // update rtm counters based on rax value at abort
1400   // reads abort_status_Reg, updates flags
1401   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1402   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1403   if (profile_rtm) {
1404     // Save abort status because abort_status_Reg is used by following code.
1405     if (RTMRetryCount > 0) {
1406       push(abort_status_Reg);
1407     }
1408     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1409     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1410     // restore abort status
1411     if (RTMRetryCount > 0) {
1412       pop(abort_status_Reg);
1413     }
1414   }
1415 }
1416 
1417 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1418 // inputs: retry_count_Reg
1419 //       : abort_status_Reg
1420 // output: retry_count_Reg decremented by 1
1421 // flags are killed
1422 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1423   Label doneRetry;
1424   assert(abort_status_Reg == rax, "");
1425   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1426   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1427   // if reason is in 0x6 and retry count != 0 then retry
1428   andptr(abort_status_Reg, 0x6);
1429   jccb(Assembler::zero, doneRetry);
1430   testl(retry_count_Reg, retry_count_Reg);
1431   jccb(Assembler::zero, doneRetry);
1432   pause();
1433   decrementl(retry_count_Reg);
1434   jmp(retryLabel);
1435   bind(doneRetry);
1436 }
1437 
1438 // Spin and retry if lock is busy,
1439 // inputs: box_Reg (monitor address)
1440 //       : retry_count_Reg
1441 // output: retry_count_Reg decremented by 1
1442 //       : clear z flag if retry count exceeded
1443 // tmp_Reg, scr_Reg, flags are killed
1444 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1445                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1446   Label SpinLoop, SpinExit, doneRetry;
1447   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1448 
1449   testl(retry_count_Reg, retry_count_Reg);
1450   jccb(Assembler::zero, doneRetry);
1451   decrementl(retry_count_Reg);
1452   movptr(scr_Reg, RTMSpinLoopCount);
1453 
1454   bind(SpinLoop);
1455   pause();
1456   decrementl(scr_Reg);
1457   jccb(Assembler::lessEqual, SpinExit);
1458   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1459   testptr(tmp_Reg, tmp_Reg);
1460   jccb(Assembler::notZero, SpinLoop);
1461 
1462   bind(SpinExit);
1463   jmp(retryLabel);
1464   bind(doneRetry);
1465   incrementl(retry_count_Reg); // clear z flag
1466 }
1467 
1468 // Use RTM for normal stack locks
1469 // Input: objReg (object to lock)
1470 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1471                                        Register retry_on_abort_count_Reg,
1472                                        RTMLockingCounters* stack_rtm_counters,
1473                                        Metadata* method_data, bool profile_rtm,
1474                                        Label& DONE_LABEL, Label& IsInflated) {
1475   assert(UseRTMForStackLocks, "why call this otherwise?");
1476   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1477   assert(tmpReg == rax, "");
1478   assert(scrReg == rdx, "");
1479   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1480 
1481   if (RTMRetryCount > 0) {
1482     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1483     bind(L_rtm_retry);
1484   }
1485   movptr(tmpReg, Address(objReg, 0));
1486   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1487   jcc(Assembler::notZero, IsInflated);
1488 
1489   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1490     Label L_noincrement;
1491     if (RTMTotalCountIncrRate > 1) {
1492       // tmpReg, scrReg and flags are killed
1493       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1494     }
1495     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1496     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1497     bind(L_noincrement);
1498   }
1499   xbegin(L_on_abort);
1500   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1501   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1502   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1503   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1504 
1505   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1506   if (UseRTMXendForLockBusy) {
1507     xend();
1508     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1509     jmp(L_decrement_retry);
1510   }
1511   else {
1512     xabort(0);
1513   }
1514   bind(L_on_abort);
1515   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1516     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1517   }
1518   bind(L_decrement_retry);
1519   if (RTMRetryCount > 0) {
1520     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1521     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1522   }
1523 }
1524 
1525 // Use RTM for inflating locks
1526 // inputs: objReg (object to lock)
1527 //         boxReg (on-stack box address (displaced header location) - KILLED)
1528 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1529 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1530                                           Register scrReg, Register retry_on_busy_count_Reg,
1531                                           Register retry_on_abort_count_Reg,
1532                                           RTMLockingCounters* rtm_counters,
1533                                           Metadata* method_data, bool profile_rtm,
1534                                           Label& DONE_LABEL) {
1535   assert(UseRTMLocking, "why call this otherwise?");
1536   assert(tmpReg == rax, "");
1537   assert(scrReg == rdx, "");
1538   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1539   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1540 
1541   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1542   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1543   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1544 
1545   if (RTMRetryCount > 0) {
1546     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1547     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1548     bind(L_rtm_retry);
1549   }
1550   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1551     Label L_noincrement;
1552     if (RTMTotalCountIncrRate > 1) {
1553       // tmpReg, scrReg and flags are killed
1554       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1555     }
1556     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1557     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1558     bind(L_noincrement);
1559   }
1560   xbegin(L_on_abort);
1561   movptr(tmpReg, Address(objReg, 0));
1562   movptr(tmpReg, Address(tmpReg, owner_offset));
1563   testptr(tmpReg, tmpReg);
1564   jcc(Assembler::zero, DONE_LABEL);
1565   if (UseRTMXendForLockBusy) {
1566     xend();
1567     jmp(L_decrement_retry);
1568   }
1569   else {
1570     xabort(0);
1571   }
1572   bind(L_on_abort);
1573   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1574   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1575     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1576   }
1577   if (RTMRetryCount > 0) {
1578     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1579     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1580   }
1581 
1582   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1583   testptr(tmpReg, tmpReg) ;
1584   jccb(Assembler::notZero, L_decrement_retry) ;
1585 
1586   // Appears unlocked - try to swing _owner from null to non-null.
1587   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1588 #ifdef _LP64
1589   Register threadReg = r15_thread;
1590 #else
1591   get_thread(scrReg);
1592   Register threadReg = scrReg;
1593 #endif
1594   if (os::is_MP()) {
1595     lock();
1596   }
1597   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1598 
1599   if (RTMRetryCount > 0) {
1600     // success done else retry
1601     jccb(Assembler::equal, DONE_LABEL) ;
1602     bind(L_decrement_retry);
1603     // Spin and retry if lock is busy.
1604     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1605   }
1606   else {
1607     bind(L_decrement_retry);
1608   }
1609 }
1610 
1611 #endif //  INCLUDE_RTM_OPT
1612 
1613 // Fast_Lock and Fast_Unlock used by C2
1614 
1615 // Because the transitions from emitted code to the runtime
1616 // monitorenter/exit helper stubs are so slow it's critical that
1617 // we inline both the stack-locking fast-path and the inflated fast path.
1618 //
1619 // See also: cmpFastLock and cmpFastUnlock.
1620 //
1621 // What follows is a specialized inline transliteration of the code
1622 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1623 // another option would be to emit TrySlowEnter and TrySlowExit methods
1624 // at startup-time.  These methods would accept arguments as
1625 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1626 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1627 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1628 // In practice, however, the # of lock sites is bounded and is usually small.
1629 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1630 // if the processor uses simple bimodal branch predictors keyed by EIP
1631 // Since the helper routines would be called from multiple synchronization
1632 // sites.
1633 //
1634 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1635 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1636 // to those specialized methods.  That'd give us a mostly platform-independent
1637 // implementation that the JITs could optimize and inline at their pleasure.
1638 // Done correctly, the only time we'd need to cross to native could would be
1639 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1640 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1641 // (b) explicit barriers or fence operations.
1642 //
1643 // TODO:
1644 //
1645 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1646 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1647 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1648 //    the lock operators would typically be faster than reifying Self.
1649 //
1650 // *  Ideally I'd define the primitives as:
1651 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1652 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1653 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1654 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1655 //    Furthermore the register assignments are overconstrained, possibly resulting in
1656 //    sub-optimal code near the synchronization site.
1657 //
1658 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1659 //    Alternately, use a better sp-proximity test.
1660 //
1661 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1662 //    Either one is sufficient to uniquely identify a thread.
1663 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1664 //
1665 // *  Intrinsify notify() and notifyAll() for the common cases where the
1666 //    object is locked by the calling thread but the waitlist is empty.
1667 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1668 //
1669 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1670 //    But beware of excessive branch density on AMD Opterons.
1671 //
1672 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1673 //    or failure of the fast-path.  If the fast-path fails then we pass
1674 //    control to the slow-path, typically in C.  In Fast_Lock and
1675 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1676 //    will emit a conditional branch immediately after the node.
1677 //    So we have branches to branches and lots of ICC.ZF games.
1678 //    Instead, it might be better to have C2 pass a "FailureLabel"
1679 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1680 //    will drop through the node.  ICC.ZF is undefined at exit.
1681 //    In the case of failure, the node will branch directly to the
1682 //    FailureLabel
1683 
1684 
1685 // obj: object to lock
1686 // box: on-stack box address (displaced header location) - KILLED
1687 // rax,: tmp -- KILLED
1688 // scr: tmp -- KILLED
1689 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1690                                Register scrReg, Register cx1Reg, Register cx2Reg,
1691                                BiasedLockingCounters* counters,
1692                                RTMLockingCounters* rtm_counters,
1693                                RTMLockingCounters* stack_rtm_counters,
1694                                Metadata* method_data,
1695                                bool use_rtm, bool profile_rtm) {
1696   // Ensure the register assignments are disjoint
1697   assert(tmpReg == rax, "");
1698 
1699   if (use_rtm) {
1700     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1701   } else {
1702     assert(cx1Reg == noreg, "");
1703     assert(cx2Reg == noreg, "");
1704     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1705   }
1706 
1707   if (counters != NULL) {
1708     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1709   }
1710   if (EmitSync & 1) {
1711       // set box->dhw = markOopDesc::unused_mark()
1712       // Force all sync thru slow-path: slow_enter() and slow_exit()
1713       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1714       cmpptr (rsp, (int32_t)NULL_WORD);
1715   } else {
1716     // Possible cases that we'll encounter in fast_lock
1717     // ------------------------------------------------
1718     // * Inflated
1719     //    -- unlocked
1720     //    -- Locked
1721     //       = by self
1722     //       = by other
1723     // * biased
1724     //    -- by Self
1725     //    -- by other
1726     // * neutral
1727     // * stack-locked
1728     //    -- by self
1729     //       = sp-proximity test hits
1730     //       = sp-proximity test generates false-negative
1731     //    -- by other
1732     //
1733 
1734     Label IsInflated, DONE_LABEL;
1735 
1736     // it's stack-locked, biased or neutral
1737     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1738     // order to reduce the number of conditional branches in the most common cases.
1739     // Beware -- there's a subtle invariant that fetch of the markword
1740     // at [FETCH], below, will never observe a biased encoding (*101b).
1741     // If this invariant is not held we risk exclusion (safety) failure.
1742     if (UseBiasedLocking && !UseOptoBiasInlining) {
1743       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1744     }
1745 
1746 #if INCLUDE_RTM_OPT
1747     if (UseRTMForStackLocks && use_rtm) {
1748       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1749                         stack_rtm_counters, method_data, profile_rtm,
1750                         DONE_LABEL, IsInflated);
1751     }
1752 #endif // INCLUDE_RTM_OPT
1753 
1754     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1755     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1756     jccb(Assembler::notZero, IsInflated);
1757 
1758     // Attempt stack-locking ...
1759     orptr (tmpReg, markOopDesc::unlocked_value);
1760     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1761     if (os::is_MP()) {
1762       lock();
1763     }
1764     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1765     if (counters != NULL) {
1766       cond_inc32(Assembler::equal,
1767                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1768     }
1769     jcc(Assembler::equal, DONE_LABEL);           // Success
1770 
1771     // Recursive locking.
1772     // The object is stack-locked: markword contains stack pointer to BasicLock.
1773     // Locked by current thread if difference with current SP is less than one page.
1774     subptr(tmpReg, rsp);
1775     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1776     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1777     movptr(Address(boxReg, 0), tmpReg);
1778     if (counters != NULL) {
1779       cond_inc32(Assembler::equal,
1780                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1781     }
1782     jmp(DONE_LABEL);
1783 
1784     bind(IsInflated);
1785     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1786 
1787 #if INCLUDE_RTM_OPT
1788     // Use the same RTM locking code in 32- and 64-bit VM.
1789     if (use_rtm) {
1790       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1791                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1792     } else {
1793 #endif // INCLUDE_RTM_OPT
1794 
1795 #ifndef _LP64
1796     // The object is inflated.
1797 
1798     // boxReg refers to the on-stack BasicLock in the current frame.
1799     // We'd like to write:
1800     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1801     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1802     // additional latency as we have another ST in the store buffer that must drain.
1803 
1804     if (EmitSync & 8192) {
1805        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1806        get_thread (scrReg);
1807        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1808        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1809        if (os::is_MP()) {
1810          lock();
1811        }
1812        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1813     } else
1814     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1815        // register juggle because we need tmpReg for cmpxchgptr below
1816        movptr(scrReg, boxReg);
1817        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1818 
1819        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1820        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1821           // prefetchw [eax + Offset(_owner)-2]
1822           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1823        }
1824 
1825        if ((EmitSync & 64) == 0) {
1826          // Optimistic form: consider XORL tmpReg,tmpReg
1827          movptr(tmpReg, NULL_WORD);
1828        } else {
1829          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1830          // Test-And-CAS instead of CAS
1831          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1832          testptr(tmpReg, tmpReg);                   // Locked ?
1833          jccb  (Assembler::notZero, DONE_LABEL);
1834        }
1835 
1836        // Appears unlocked - try to swing _owner from null to non-null.
1837        // Ideally, I'd manifest "Self" with get_thread and then attempt
1838        // to CAS the register containing Self into m->Owner.
1839        // But we don't have enough registers, so instead we can either try to CAS
1840        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1841        // we later store "Self" into m->Owner.  Transiently storing a stack address
1842        // (rsp or the address of the box) into  m->owner is harmless.
1843        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1844        if (os::is_MP()) {
1845          lock();
1846        }
1847        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1848        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1849        // If we weren't able to swing _owner from NULL to the BasicLock
1850        // then take the slow path.
1851        jccb  (Assembler::notZero, DONE_LABEL);
1852        // update _owner from BasicLock to thread
1853        get_thread (scrReg);                    // beware: clobbers ICCs
1854        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1855        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1856 
1857        // If the CAS fails we can either retry or pass control to the slow-path.
1858        // We use the latter tactic.
1859        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1860        // If the CAS was successful ...
1861        //   Self has acquired the lock
1862        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1863        // Intentional fall-through into DONE_LABEL ...
1864     } else {
1865        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1866        movptr(boxReg, tmpReg);
1867 
1868        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1869        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1870           // prefetchw [eax + Offset(_owner)-2]
1871           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1872        }
1873 
1874        if ((EmitSync & 64) == 0) {
1875          // Optimistic form
1876          xorptr  (tmpReg, tmpReg);
1877        } else {
1878          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1879          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1880          testptr(tmpReg, tmpReg);                   // Locked ?
1881          jccb  (Assembler::notZero, DONE_LABEL);
1882        }
1883 
1884        // Appears unlocked - try to swing _owner from null to non-null.
1885        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1886        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1887        get_thread (scrReg);
1888        if (os::is_MP()) {
1889          lock();
1890        }
1891        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1892 
1893        // If the CAS fails we can either retry or pass control to the slow-path.
1894        // We use the latter tactic.
1895        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1896        // If the CAS was successful ...
1897        //   Self has acquired the lock
1898        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1899        // Intentional fall-through into DONE_LABEL ...
1900     }
1901 #else // _LP64
1902     // It's inflated
1903     movq(scrReg, tmpReg);
1904     xorq(tmpReg, tmpReg);
1905 
1906     if (os::is_MP()) {
1907       lock();
1908     }
1909     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1910     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1911     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1912     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1913     // Intentional fall-through into DONE_LABEL ...
1914     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1915 #endif // _LP64
1916 #if INCLUDE_RTM_OPT
1917     } // use_rtm()
1918 #endif
1919     // DONE_LABEL is a hot target - we'd really like to place it at the
1920     // start of cache line by padding with NOPs.
1921     // See the AMD and Intel software optimization manuals for the
1922     // most efficient "long" NOP encodings.
1923     // Unfortunately none of our alignment mechanisms suffice.
1924     bind(DONE_LABEL);
1925 
1926     // At DONE_LABEL the icc ZFlag is set as follows ...
1927     // Fast_Unlock uses the same protocol.
1928     // ZFlag == 1 -> Success
1929     // ZFlag == 0 -> Failure - force control through the slow-path
1930   }
1931 }
1932 
1933 // obj: object to unlock
1934 // box: box address (displaced header location), killed.  Must be EAX.
1935 // tmp: killed, cannot be obj nor box.
1936 //
1937 // Some commentary on balanced locking:
1938 //
1939 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1940 // Methods that don't have provably balanced locking are forced to run in the
1941 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1942 // The interpreter provides two properties:
1943 // I1:  At return-time the interpreter automatically and quietly unlocks any
1944 //      objects acquired the current activation (frame).  Recall that the
1945 //      interpreter maintains an on-stack list of locks currently held by
1946 //      a frame.
1947 // I2:  If a method attempts to unlock an object that is not held by the
1948 //      the frame the interpreter throws IMSX.
1949 //
1950 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1951 // B() doesn't have provably balanced locking so it runs in the interpreter.
1952 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1953 // is still locked by A().
1954 //
1955 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1956 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1957 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1958 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1959 // Arguably given that the spec legislates the JNI case as undefined our implementation
1960 // could reasonably *avoid* checking owner in Fast_Unlock().
1961 // In the interest of performance we elide m->Owner==Self check in unlock.
1962 // A perfectly viable alternative is to elide the owner check except when
1963 // Xcheck:jni is enabled.
1964 
1965 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1966   assert(boxReg == rax, "");
1967   assert_different_registers(objReg, boxReg, tmpReg);
1968 
1969   if (EmitSync & 4) {
1970     // Disable - inhibit all inlining.  Force control through the slow-path
1971     cmpptr (rsp, 0);
1972   } else {
1973     Label DONE_LABEL, Stacked, CheckSucc;
1974 
1975     // Critically, the biased locking test must have precedence over
1976     // and appear before the (box->dhw == 0) recursive stack-lock test.
1977     if (UseBiasedLocking && !UseOptoBiasInlining) {
1978        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1979     }
1980 
1981 #if INCLUDE_RTM_OPT
1982     if (UseRTMForStackLocks && use_rtm) {
1983       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1984       Label L_regular_unlock;
1985       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1986       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1987       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1988       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1989       xend();                                       // otherwise end...
1990       jmp(DONE_LABEL);                              // ... and we're done
1991       bind(L_regular_unlock);
1992     }
1993 #endif
1994 
1995     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1996     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1997     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
1998     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
1999     jccb  (Assembler::zero, Stacked);
2000 
2001     // It's inflated.
2002 #if INCLUDE_RTM_OPT
2003     if (use_rtm) {
2004       Label L_regular_inflated_unlock;
2005       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2006       movptr(boxReg, Address(tmpReg, owner_offset));
2007       testptr(boxReg, boxReg);
2008       jccb(Assembler::notZero, L_regular_inflated_unlock);
2009       xend();
2010       jmpb(DONE_LABEL);
2011       bind(L_regular_inflated_unlock);
2012     }
2013 #endif
2014 
2015     // Despite our balanced locking property we still check that m->_owner == Self
2016     // as java routines or native JNI code called by this thread might
2017     // have released the lock.
2018     // Refer to the comments in synchronizer.cpp for how we might encode extra
2019     // state in _succ so we can avoid fetching EntryList|cxq.
2020     //
2021     // I'd like to add more cases in fast_lock() and fast_unlock() --
2022     // such as recursive enter and exit -- but we have to be wary of
2023     // I$ bloat, T$ effects and BP$ effects.
2024     //
2025     // If there's no contention try a 1-0 exit.  That is, exit without
2026     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2027     // we detect and recover from the race that the 1-0 exit admits.
2028     //
2029     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2030     // before it STs null into _owner, releasing the lock.  Updates
2031     // to data protected by the critical section must be visible before
2032     // we drop the lock (and thus before any other thread could acquire
2033     // the lock and observe the fields protected by the lock).
2034     // IA32's memory-model is SPO, so STs are ordered with respect to
2035     // each other and there's no need for an explicit barrier (fence).
2036     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2037 #ifndef _LP64
2038     get_thread (boxReg);
2039     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2040       // prefetchw [ebx + Offset(_owner)-2]
2041       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2042     }
2043 
2044     // Note that we could employ various encoding schemes to reduce
2045     // the number of loads below (currently 4) to just 2 or 3.
2046     // Refer to the comments in synchronizer.cpp.
2047     // In practice the chain of fetches doesn't seem to impact performance, however.
2048     xorptr(boxReg, boxReg);
2049     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2050        // Attempt to reduce branch density - AMD's branch predictor.
2051        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2052        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2054        jccb  (Assembler::notZero, DONE_LABEL);
2055        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2056        jmpb  (DONE_LABEL);
2057     } else {
2058        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2059        jccb  (Assembler::notZero, DONE_LABEL);
2060        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2061        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2062        jccb  (Assembler::notZero, CheckSucc);
2063        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2064        jmpb  (DONE_LABEL);
2065     }
2066 
2067     // The Following code fragment (EmitSync & 65536) improves the performance of
2068     // contended applications and contended synchronization microbenchmarks.
2069     // Unfortunately the emission of the code - even though not executed - causes regressions
2070     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2071     // with an equal number of never-executed NOPs results in the same regression.
2072     // We leave it off by default.
2073 
2074     if ((EmitSync & 65536) != 0) {
2075        Label LSuccess, LGoSlowPath ;
2076 
2077        bind  (CheckSucc);
2078 
2079        // Optional pre-test ... it's safe to elide this
2080        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2081        jccb(Assembler::zero, LGoSlowPath);
2082 
2083        // We have a classic Dekker-style idiom:
2084        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2085        // There are a number of ways to implement the barrier:
2086        // (1) lock:andl &m->_owner, 0
2087        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2088        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2089        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2090        // (2) If supported, an explicit MFENCE is appealing.
2091        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2092        //     particularly if the write-buffer is full as might be the case if
2093        //     if stores closely precede the fence or fence-equivalent instruction.
2094        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2095        //     as the situation has changed with Nehalem and Shanghai.
2096        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2097        //     The $lines underlying the top-of-stack should be in M-state.
2098        //     The locked add instruction is serializing, of course.
2099        // (4) Use xchg, which is serializing
2100        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2101        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2102        //     The integer condition codes will tell us if succ was 0.
2103        //     Since _succ and _owner should reside in the same $line and
2104        //     we just stored into _owner, it's likely that the $line
2105        //     remains in M-state for the lock:orl.
2106        //
2107        // We currently use (3), although it's likely that switching to (2)
2108        // is correct for the future.
2109 
2110        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2111        if (os::is_MP()) {
2112          lock(); addptr(Address(rsp, 0), 0);
2113        }
2114        // Ratify _succ remains non-null
2115        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2116        jccb  (Assembler::notZero, LSuccess);
2117 
2118        xorptr(boxReg, boxReg);                  // box is really EAX
2119        if (os::is_MP()) { lock(); }
2120        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2121        // There's no successor so we tried to regrab the lock with the
2122        // placeholder value. If that didn't work, then another thread
2123        // grabbed the lock so we're done (and exit was a success).
2124        jccb  (Assembler::notEqual, LSuccess);
2125        // Since we're low on registers we installed rsp as a placeholding in _owner.
2126        // Now install Self over rsp.  This is safe as we're transitioning from
2127        // non-null to non=null
2128        get_thread (boxReg);
2129        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2130        // Intentional fall-through into LGoSlowPath ...
2131 
2132        bind  (LGoSlowPath);
2133        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2134        jmpb  (DONE_LABEL);
2135 
2136        bind  (LSuccess);
2137        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2138        jmpb  (DONE_LABEL);
2139     }
2140 
2141     bind (Stacked);
2142     // It's not inflated and it's not recursively stack-locked and it's not biased.
2143     // It must be stack-locked.
2144     // Try to reset the header to displaced header.
2145     // The "box" value on the stack is stable, so we can reload
2146     // and be assured we observe the same value as above.
2147     movptr(tmpReg, Address(boxReg, 0));
2148     if (os::is_MP()) {
2149       lock();
2150     }
2151     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2152     // Intention fall-thru into DONE_LABEL
2153 
2154     // DONE_LABEL is a hot target - we'd really like to place it at the
2155     // start of cache line by padding with NOPs.
2156     // See the AMD and Intel software optimization manuals for the
2157     // most efficient "long" NOP encodings.
2158     // Unfortunately none of our alignment mechanisms suffice.
2159     if ((EmitSync & 65536) == 0) {
2160        bind (CheckSucc);
2161     }
2162 #else // _LP64
2163     // It's inflated
2164     if (EmitSync & 1024) {
2165       // Emit code to check that _owner == Self
2166       // We could fold the _owner test into subsequent code more efficiently
2167       // than using a stand-alone check, but since _owner checking is off by
2168       // default we don't bother. We also might consider predicating the
2169       // _owner==Self check on Xcheck:jni or running on a debug build.
2170       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2171       xorptr(boxReg, r15_thread);
2172     } else {
2173       xorptr(boxReg, boxReg);
2174     }
2175     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2176     jccb  (Assembler::notZero, DONE_LABEL);
2177     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2178     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2179     jccb  (Assembler::notZero, CheckSucc);
2180     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2181     jmpb  (DONE_LABEL);
2182 
2183     if ((EmitSync & 65536) == 0) {
2184       // Try to avoid passing control into the slow_path ...
2185       Label LSuccess, LGoSlowPath ;
2186       bind  (CheckSucc);
2187 
2188       // The following optional optimization can be elided if necessary
2189       // Effectively: if (succ == null) goto SlowPath
2190       // The code reduces the window for a race, however,
2191       // and thus benefits performance.
2192       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2193       jccb  (Assembler::zero, LGoSlowPath);
2194 
2195       xorptr(boxReg, boxReg);
2196       if ((EmitSync & 16) && os::is_MP()) {
2197         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2198       } else {
2199         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2200         if (os::is_MP()) {
2201           // Memory barrier/fence
2202           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2203           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2204           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2205           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2206           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2207           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2208           lock(); addl(Address(rsp, 0), 0);
2209         }
2210       }
2211       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2212       jccb  (Assembler::notZero, LSuccess);
2213 
2214       // Rare inopportune interleaving - race.
2215       // The successor vanished in the small window above.
2216       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2217       // We need to ensure progress and succession.
2218       // Try to reacquire the lock.
2219       // If that fails then the new owner is responsible for succession and this
2220       // thread needs to take no further action and can exit via the fast path (success).
2221       // If the re-acquire succeeds then pass control into the slow path.
2222       // As implemented, this latter mode is horrible because we generated more
2223       // coherence traffic on the lock *and* artifically extended the critical section
2224       // length while by virtue of passing control into the slow path.
2225 
2226       // box is really RAX -- the following CMPXCHG depends on that binding
2227       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2228       if (os::is_MP()) { lock(); }
2229       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2230       // There's no successor so we tried to regrab the lock.
2231       // If that didn't work, then another thread grabbed the
2232       // lock so we're done (and exit was a success).
2233       jccb  (Assembler::notEqual, LSuccess);
2234       // Intentional fall-through into slow-path
2235 
2236       bind  (LGoSlowPath);
2237       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2238       jmpb  (DONE_LABEL);
2239 
2240       bind  (LSuccess);
2241       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2242       jmpb  (DONE_LABEL);
2243     }
2244 
2245     bind  (Stacked);
2246     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2247     if (os::is_MP()) { lock(); }
2248     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2249 
2250     if (EmitSync & 65536) {
2251        bind (CheckSucc);
2252     }
2253 #endif
2254     bind(DONE_LABEL);
2255   }
2256 }
2257 #endif // COMPILER2
2258 
2259 void MacroAssembler::c2bool(Register x) {
2260   // implements x == 0 ? 0 : 1
2261   // note: must only look at least-significant byte of x
2262   //       since C-style booleans are stored in one byte
2263   //       only! (was bug)
2264   andl(x, 0xFF);
2265   setb(Assembler::notZero, x);
2266 }
2267 
2268 // Wouldn't need if AddressLiteral version had new name
2269 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2270   Assembler::call(L, rtype);
2271 }
2272 
2273 void MacroAssembler::call(Register entry) {
2274   Assembler::call(entry);
2275 }
2276 
2277 void MacroAssembler::call(AddressLiteral entry) {
2278   if (reachable(entry)) {
2279     Assembler::call_literal(entry.target(), entry.rspec());
2280   } else {
2281     lea(rscratch1, entry);
2282     Assembler::call(rscratch1);
2283   }
2284 }
2285 
2286 void MacroAssembler::ic_call(address entry, jint method_index) {
2287   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2288   movptr(rax, (intptr_t)Universe::non_oop_word());
2289   call(AddressLiteral(entry, rh));
2290 }
2291 
2292 // Implementation of call_VM versions
2293 
2294 void MacroAssembler::call_VM(Register oop_result,
2295                              address entry_point,
2296                              bool check_exceptions) {
2297   Label C, E;
2298   call(C, relocInfo::none);
2299   jmp(E);
2300 
2301   bind(C);
2302   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2303   ret(0);
2304 
2305   bind(E);
2306 }
2307 
2308 void MacroAssembler::call_VM(Register oop_result,
2309                              address entry_point,
2310                              Register arg_1,
2311                              bool check_exceptions) {
2312   Label C, E;
2313   call(C, relocInfo::none);
2314   jmp(E);
2315 
2316   bind(C);
2317   pass_arg1(this, arg_1);
2318   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2319   ret(0);
2320 
2321   bind(E);
2322 }
2323 
2324 void MacroAssembler::call_VM(Register oop_result,
2325                              address entry_point,
2326                              Register arg_1,
2327                              Register arg_2,
2328                              bool check_exceptions) {
2329   Label C, E;
2330   call(C, relocInfo::none);
2331   jmp(E);
2332 
2333   bind(C);
2334 
2335   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2336 
2337   pass_arg2(this, arg_2);
2338   pass_arg1(this, arg_1);
2339   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2340   ret(0);
2341 
2342   bind(E);
2343 }
2344 
2345 void MacroAssembler::call_VM(Register oop_result,
2346                              address entry_point,
2347                              Register arg_1,
2348                              Register arg_2,
2349                              Register arg_3,
2350                              bool check_exceptions) {
2351   Label C, E;
2352   call(C, relocInfo::none);
2353   jmp(E);
2354 
2355   bind(C);
2356 
2357   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2358   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2359   pass_arg3(this, arg_3);
2360 
2361   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2362   pass_arg2(this, arg_2);
2363 
2364   pass_arg1(this, arg_1);
2365   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2366   ret(0);
2367 
2368   bind(E);
2369 }
2370 
2371 void MacroAssembler::call_VM(Register oop_result,
2372                              Register last_java_sp,
2373                              address entry_point,
2374                              int number_of_arguments,
2375                              bool check_exceptions) {
2376   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2377   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2378 }
2379 
2380 void MacroAssembler::call_VM(Register oop_result,
2381                              Register last_java_sp,
2382                              address entry_point,
2383                              Register arg_1,
2384                              bool check_exceptions) {
2385   pass_arg1(this, arg_1);
2386   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2387 }
2388 
2389 void MacroAssembler::call_VM(Register oop_result,
2390                              Register last_java_sp,
2391                              address entry_point,
2392                              Register arg_1,
2393                              Register arg_2,
2394                              bool check_exceptions) {
2395 
2396   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2397   pass_arg2(this, arg_2);
2398   pass_arg1(this, arg_1);
2399   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2400 }
2401 
2402 void MacroAssembler::call_VM(Register oop_result,
2403                              Register last_java_sp,
2404                              address entry_point,
2405                              Register arg_1,
2406                              Register arg_2,
2407                              Register arg_3,
2408                              bool check_exceptions) {
2409   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2410   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2411   pass_arg3(this, arg_3);
2412   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2413   pass_arg2(this, arg_2);
2414   pass_arg1(this, arg_1);
2415   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2416 }
2417 
2418 void MacroAssembler::super_call_VM(Register oop_result,
2419                                    Register last_java_sp,
2420                                    address entry_point,
2421                                    int number_of_arguments,
2422                                    bool check_exceptions) {
2423   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2424   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2425 }
2426 
2427 void MacroAssembler::super_call_VM(Register oop_result,
2428                                    Register last_java_sp,
2429                                    address entry_point,
2430                                    Register arg_1,
2431                                    bool check_exceptions) {
2432   pass_arg1(this, arg_1);
2433   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2434 }
2435 
2436 void MacroAssembler::super_call_VM(Register oop_result,
2437                                    Register last_java_sp,
2438                                    address entry_point,
2439                                    Register arg_1,
2440                                    Register arg_2,
2441                                    bool check_exceptions) {
2442 
2443   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2444   pass_arg2(this, arg_2);
2445   pass_arg1(this, arg_1);
2446   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2447 }
2448 
2449 void MacroAssembler::super_call_VM(Register oop_result,
2450                                    Register last_java_sp,
2451                                    address entry_point,
2452                                    Register arg_1,
2453                                    Register arg_2,
2454                                    Register arg_3,
2455                                    bool check_exceptions) {
2456   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2457   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2458   pass_arg3(this, arg_3);
2459   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2460   pass_arg2(this, arg_2);
2461   pass_arg1(this, arg_1);
2462   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2463 }
2464 
2465 void MacroAssembler::call_VM_base(Register oop_result,
2466                                   Register java_thread,
2467                                   Register last_java_sp,
2468                                   address  entry_point,
2469                                   int      number_of_arguments,
2470                                   bool     check_exceptions) {
2471   // determine java_thread register
2472   if (!java_thread->is_valid()) {
2473 #ifdef _LP64
2474     java_thread = r15_thread;
2475 #else
2476     java_thread = rdi;
2477     get_thread(java_thread);
2478 #endif // LP64
2479   }
2480   // determine last_java_sp register
2481   if (!last_java_sp->is_valid()) {
2482     last_java_sp = rsp;
2483   }
2484   // debugging support
2485   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2486   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2487 #ifdef ASSERT
2488   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2489   // r12 is the heapbase.
2490   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2491 #endif // ASSERT
2492 
2493   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2494   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2495 
2496   // push java thread (becomes first argument of C function)
2497 
2498   NOT_LP64(push(java_thread); number_of_arguments++);
2499   LP64_ONLY(mov(c_rarg0, r15_thread));
2500 
2501   // set last Java frame before call
2502   assert(last_java_sp != rbp, "can't use ebp/rbp");
2503 
2504   // Only interpreter should have to set fp
2505   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2506 
2507   // do the call, remove parameters
2508   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2509 
2510   // restore the thread (cannot use the pushed argument since arguments
2511   // may be overwritten by C code generated by an optimizing compiler);
2512   // however can use the register value directly if it is callee saved.
2513   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2514     // rdi & rsi (also r15) are callee saved -> nothing to do
2515 #ifdef ASSERT
2516     guarantee(java_thread != rax, "change this code");
2517     push(rax);
2518     { Label L;
2519       get_thread(rax);
2520       cmpptr(java_thread, rax);
2521       jcc(Assembler::equal, L);
2522       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2523       bind(L);
2524     }
2525     pop(rax);
2526 #endif
2527   } else {
2528     get_thread(java_thread);
2529   }
2530   // reset last Java frame
2531   // Only interpreter should have to clear fp
2532   reset_last_Java_frame(java_thread, true);
2533 
2534    // C++ interp handles this in the interpreter
2535   check_and_handle_popframe(java_thread);
2536   check_and_handle_earlyret(java_thread);
2537 
2538   if (check_exceptions) {
2539     // check for pending exceptions (java_thread is set upon return)
2540     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2541 #ifndef _LP64
2542     jump_cc(Assembler::notEqual,
2543             RuntimeAddress(StubRoutines::forward_exception_entry()));
2544 #else
2545     // This used to conditionally jump to forward_exception however it is
2546     // possible if we relocate that the branch will not reach. So we must jump
2547     // around so we can always reach
2548 
2549     Label ok;
2550     jcc(Assembler::equal, ok);
2551     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2552     bind(ok);
2553 #endif // LP64
2554   }
2555 
2556   // get oop result if there is one and reset the value in the thread
2557   if (oop_result->is_valid()) {
2558     get_vm_result(oop_result, java_thread);
2559   }
2560 }
2561 
2562 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2563 
2564   // Calculate the value for last_Java_sp
2565   // somewhat subtle. call_VM does an intermediate call
2566   // which places a return address on the stack just under the
2567   // stack pointer as the user finsihed with it. This allows
2568   // use to retrieve last_Java_pc from last_Java_sp[-1].
2569   // On 32bit we then have to push additional args on the stack to accomplish
2570   // the actual requested call. On 64bit call_VM only can use register args
2571   // so the only extra space is the return address that call_VM created.
2572   // This hopefully explains the calculations here.
2573 
2574 #ifdef _LP64
2575   // We've pushed one address, correct last_Java_sp
2576   lea(rax, Address(rsp, wordSize));
2577 #else
2578   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2579 #endif // LP64
2580 
2581   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2582 
2583 }
2584 
2585 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2586 void MacroAssembler::call_VM_leaf0(address entry_point) {
2587   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2588 }
2589 
2590 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2591   call_VM_leaf_base(entry_point, number_of_arguments);
2592 }
2593 
2594 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2595   pass_arg0(this, arg_0);
2596   call_VM_leaf(entry_point, 1);
2597 }
2598 
2599 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2600 
2601   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2602   pass_arg1(this, arg_1);
2603   pass_arg0(this, arg_0);
2604   call_VM_leaf(entry_point, 2);
2605 }
2606 
2607 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2608   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2609   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2610   pass_arg2(this, arg_2);
2611   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2612   pass_arg1(this, arg_1);
2613   pass_arg0(this, arg_0);
2614   call_VM_leaf(entry_point, 3);
2615 }
2616 
2617 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2618   pass_arg0(this, arg_0);
2619   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2620 }
2621 
2622 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2623 
2624   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2625   pass_arg1(this, arg_1);
2626   pass_arg0(this, arg_0);
2627   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2628 }
2629 
2630 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2631   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2632   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2633   pass_arg2(this, arg_2);
2634   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2635   pass_arg1(this, arg_1);
2636   pass_arg0(this, arg_0);
2637   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2638 }
2639 
2640 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2641   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2642   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2643   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2644   pass_arg3(this, arg_3);
2645   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2646   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2647   pass_arg2(this, arg_2);
2648   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2649   pass_arg1(this, arg_1);
2650   pass_arg0(this, arg_0);
2651   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2652 }
2653 
2654 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2655   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2656   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2657   verify_oop(oop_result, "broken oop in call_VM_base");
2658 }
2659 
2660 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2661   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2662   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2663 }
2664 
2665 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2666 }
2667 
2668 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2669 }
2670 
2671 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2672   if (reachable(src1)) {
2673     cmpl(as_Address(src1), imm);
2674   } else {
2675     lea(rscratch1, src1);
2676     cmpl(Address(rscratch1, 0), imm);
2677   }
2678 }
2679 
2680 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2681   assert(!src2.is_lval(), "use cmpptr");
2682   if (reachable(src2)) {
2683     cmpl(src1, as_Address(src2));
2684   } else {
2685     lea(rscratch1, src2);
2686     cmpl(src1, Address(rscratch1, 0));
2687   }
2688 }
2689 
2690 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2691   Assembler::cmpl(src1, imm);
2692 }
2693 
2694 void MacroAssembler::cmp32(Register src1, Address src2) {
2695   Assembler::cmpl(src1, src2);
2696 }
2697 
2698 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2699   ucomisd(opr1, opr2);
2700 
2701   Label L;
2702   if (unordered_is_less) {
2703     movl(dst, -1);
2704     jcc(Assembler::parity, L);
2705     jcc(Assembler::below , L);
2706     movl(dst, 0);
2707     jcc(Assembler::equal , L);
2708     increment(dst);
2709   } else { // unordered is greater
2710     movl(dst, 1);
2711     jcc(Assembler::parity, L);
2712     jcc(Assembler::above , L);
2713     movl(dst, 0);
2714     jcc(Assembler::equal , L);
2715     decrementl(dst);
2716   }
2717   bind(L);
2718 }
2719 
2720 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2721   ucomiss(opr1, opr2);
2722 
2723   Label L;
2724   if (unordered_is_less) {
2725     movl(dst, -1);
2726     jcc(Assembler::parity, L);
2727     jcc(Assembler::below , L);
2728     movl(dst, 0);
2729     jcc(Assembler::equal , L);
2730     increment(dst);
2731   } else { // unordered is greater
2732     movl(dst, 1);
2733     jcc(Assembler::parity, L);
2734     jcc(Assembler::above , L);
2735     movl(dst, 0);
2736     jcc(Assembler::equal , L);
2737     decrementl(dst);
2738   }
2739   bind(L);
2740 }
2741 
2742 
2743 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2744   if (reachable(src1)) {
2745     cmpb(as_Address(src1), imm);
2746   } else {
2747     lea(rscratch1, src1);
2748     cmpb(Address(rscratch1, 0), imm);
2749   }
2750 }
2751 
2752 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2753 #ifdef _LP64
2754   if (src2.is_lval()) {
2755     movptr(rscratch1, src2);
2756     Assembler::cmpq(src1, rscratch1);
2757   } else if (reachable(src2)) {
2758     cmpq(src1, as_Address(src2));
2759   } else {
2760     lea(rscratch1, src2);
2761     Assembler::cmpq(src1, Address(rscratch1, 0));
2762   }
2763 #else
2764   if (src2.is_lval()) {
2765     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2766   } else {
2767     cmpl(src1, as_Address(src2));
2768   }
2769 #endif // _LP64
2770 }
2771 
2772 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2773   assert(src2.is_lval(), "not a mem-mem compare");
2774 #ifdef _LP64
2775   // moves src2's literal address
2776   movptr(rscratch1, src2);
2777   Assembler::cmpq(src1, rscratch1);
2778 #else
2779   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2780 #endif // _LP64
2781 }
2782 
2783 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2784   if (reachable(adr)) {
2785     if (os::is_MP())
2786       lock();
2787     cmpxchgptr(reg, as_Address(adr));
2788   } else {
2789     lea(rscratch1, adr);
2790     if (os::is_MP())
2791       lock();
2792     cmpxchgptr(reg, Address(rscratch1, 0));
2793   }
2794 }
2795 
2796 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2797   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2798 }
2799 
2800 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2801   if (reachable(src)) {
2802     Assembler::comisd(dst, as_Address(src));
2803   } else {
2804     lea(rscratch1, src);
2805     Assembler::comisd(dst, Address(rscratch1, 0));
2806   }
2807 }
2808 
2809 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2810   if (reachable(src)) {
2811     Assembler::comiss(dst, as_Address(src));
2812   } else {
2813     lea(rscratch1, src);
2814     Assembler::comiss(dst, Address(rscratch1, 0));
2815   }
2816 }
2817 
2818 
2819 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2820   Condition negated_cond = negate_condition(cond);
2821   Label L;
2822   jcc(negated_cond, L);
2823   pushf(); // Preserve flags
2824   atomic_incl(counter_addr);
2825   popf();
2826   bind(L);
2827 }
2828 
2829 int MacroAssembler::corrected_idivl(Register reg) {
2830   // Full implementation of Java idiv and irem; checks for
2831   // special case as described in JVM spec., p.243 & p.271.
2832   // The function returns the (pc) offset of the idivl
2833   // instruction - may be needed for implicit exceptions.
2834   //
2835   //         normal case                           special case
2836   //
2837   // input : rax,: dividend                         min_int
2838   //         reg: divisor   (may not be rax,/rdx)   -1
2839   //
2840   // output: rax,: quotient  (= rax, idiv reg)       min_int
2841   //         rdx: remainder (= rax, irem reg)       0
2842   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2843   const int min_int = 0x80000000;
2844   Label normal_case, special_case;
2845 
2846   // check for special case
2847   cmpl(rax, min_int);
2848   jcc(Assembler::notEqual, normal_case);
2849   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2850   cmpl(reg, -1);
2851   jcc(Assembler::equal, special_case);
2852 
2853   // handle normal case
2854   bind(normal_case);
2855   cdql();
2856   int idivl_offset = offset();
2857   idivl(reg);
2858 
2859   // normal and special case exit
2860   bind(special_case);
2861 
2862   return idivl_offset;
2863 }
2864 
2865 
2866 
2867 void MacroAssembler::decrementl(Register reg, int value) {
2868   if (value == min_jint) {subl(reg, value) ; return; }
2869   if (value <  0) { incrementl(reg, -value); return; }
2870   if (value == 0) {                        ; return; }
2871   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2872   /* else */      { subl(reg, value)       ; return; }
2873 }
2874 
2875 void MacroAssembler::decrementl(Address dst, int value) {
2876   if (value == min_jint) {subl(dst, value) ; return; }
2877   if (value <  0) { incrementl(dst, -value); return; }
2878   if (value == 0) {                        ; return; }
2879   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2880   /* else */      { subl(dst, value)       ; return; }
2881 }
2882 
2883 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2884   assert (shift_value > 0, "illegal shift value");
2885   Label _is_positive;
2886   testl (reg, reg);
2887   jcc (Assembler::positive, _is_positive);
2888   int offset = (1 << shift_value) - 1 ;
2889 
2890   if (offset == 1) {
2891     incrementl(reg);
2892   } else {
2893     addl(reg, offset);
2894   }
2895 
2896   bind (_is_positive);
2897   sarl(reg, shift_value);
2898 }
2899 
2900 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2901   if (reachable(src)) {
2902     Assembler::divsd(dst, as_Address(src));
2903   } else {
2904     lea(rscratch1, src);
2905     Assembler::divsd(dst, Address(rscratch1, 0));
2906   }
2907 }
2908 
2909 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2910   if (reachable(src)) {
2911     Assembler::divss(dst, as_Address(src));
2912   } else {
2913     lea(rscratch1, src);
2914     Assembler::divss(dst, Address(rscratch1, 0));
2915   }
2916 }
2917 
2918 // !defined(COMPILER2) is because of stupid core builds
2919 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2920 void MacroAssembler::empty_FPU_stack() {
2921   if (VM_Version::supports_mmx()) {
2922     emms();
2923   } else {
2924     for (int i = 8; i-- > 0; ) ffree(i);
2925   }
2926 }
2927 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2928 
2929 
2930 // Defines obj, preserves var_size_in_bytes
2931 void MacroAssembler::eden_allocate(Register obj,
2932                                    Register var_size_in_bytes,
2933                                    int con_size_in_bytes,
2934                                    Register t1,
2935                                    Label& slow_case) {
2936   assert(obj == rax, "obj must be in rax, for cmpxchg");
2937   assert_different_registers(obj, var_size_in_bytes, t1);
2938   if (!Universe::heap()->supports_inline_contig_alloc()) {
2939     jmp(slow_case);
2940   } else {
2941     Register end = t1;
2942     Label retry;
2943     bind(retry);
2944     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2945     movptr(obj, heap_top);
2946     if (var_size_in_bytes == noreg) {
2947       lea(end, Address(obj, con_size_in_bytes));
2948     } else {
2949       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2950     }
2951     // if end < obj then we wrapped around => object too long => slow case
2952     cmpptr(end, obj);
2953     jcc(Assembler::below, slow_case);
2954     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2955     jcc(Assembler::above, slow_case);
2956     // Compare obj with the top addr, and if still equal, store the new top addr in
2957     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2958     // it otherwise. Use lock prefix for atomicity on MPs.
2959     locked_cmpxchgptr(end, heap_top);
2960     jcc(Assembler::notEqual, retry);
2961   }
2962 }
2963 
2964 void MacroAssembler::enter() {
2965   push(rbp);
2966   mov(rbp, rsp);
2967 }
2968 
2969 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2970 void MacroAssembler::fat_nop() {
2971   if (UseAddressNop) {
2972     addr_nop_5();
2973   } else {
2974     emit_int8(0x26); // es:
2975     emit_int8(0x2e); // cs:
2976     emit_int8(0x64); // fs:
2977     emit_int8(0x65); // gs:
2978     emit_int8((unsigned char)0x90);
2979   }
2980 }
2981 
2982 void MacroAssembler::fcmp(Register tmp) {
2983   fcmp(tmp, 1, true, true);
2984 }
2985 
2986 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2987   assert(!pop_right || pop_left, "usage error");
2988   if (VM_Version::supports_cmov()) {
2989     assert(tmp == noreg, "unneeded temp");
2990     if (pop_left) {
2991       fucomip(index);
2992     } else {
2993       fucomi(index);
2994     }
2995     if (pop_right) {
2996       fpop();
2997     }
2998   } else {
2999     assert(tmp != noreg, "need temp");
3000     if (pop_left) {
3001       if (pop_right) {
3002         fcompp();
3003       } else {
3004         fcomp(index);
3005       }
3006     } else {
3007       fcom(index);
3008     }
3009     // convert FPU condition into eflags condition via rax,
3010     save_rax(tmp);
3011     fwait(); fnstsw_ax();
3012     sahf();
3013     restore_rax(tmp);
3014   }
3015   // condition codes set as follows:
3016   //
3017   // CF (corresponds to C0) if x < y
3018   // PF (corresponds to C2) if unordered
3019   // ZF (corresponds to C3) if x = y
3020 }
3021 
3022 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3023   fcmp2int(dst, unordered_is_less, 1, true, true);
3024 }
3025 
3026 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3027   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3028   Label L;
3029   if (unordered_is_less) {
3030     movl(dst, -1);
3031     jcc(Assembler::parity, L);
3032     jcc(Assembler::below , L);
3033     movl(dst, 0);
3034     jcc(Assembler::equal , L);
3035     increment(dst);
3036   } else { // unordered is greater
3037     movl(dst, 1);
3038     jcc(Assembler::parity, L);
3039     jcc(Assembler::above , L);
3040     movl(dst, 0);
3041     jcc(Assembler::equal , L);
3042     decrementl(dst);
3043   }
3044   bind(L);
3045 }
3046 
3047 void MacroAssembler::fld_d(AddressLiteral src) {
3048   fld_d(as_Address(src));
3049 }
3050 
3051 void MacroAssembler::fld_s(AddressLiteral src) {
3052   fld_s(as_Address(src));
3053 }
3054 
3055 void MacroAssembler::fld_x(AddressLiteral src) {
3056   Assembler::fld_x(as_Address(src));
3057 }
3058 
3059 void MacroAssembler::fldcw(AddressLiteral src) {
3060   Assembler::fldcw(as_Address(src));
3061 }
3062 
3063 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3064   if (reachable(src)) {
3065     Assembler::mulpd(dst, as_Address(src));
3066   } else {
3067     lea(rscratch1, src);
3068     Assembler::mulpd(dst, Address(rscratch1, 0));
3069   }
3070 }
3071 
3072 void MacroAssembler::increase_precision() {
3073   subptr(rsp, BytesPerWord);
3074   fnstcw(Address(rsp, 0));
3075   movl(rax, Address(rsp, 0));
3076   orl(rax, 0x300);
3077   push(rax);
3078   fldcw(Address(rsp, 0));
3079   pop(rax);
3080 }
3081 
3082 void MacroAssembler::restore_precision() {
3083   fldcw(Address(rsp, 0));
3084   addptr(rsp, BytesPerWord);
3085 }
3086 
3087 void MacroAssembler::fpop() {
3088   ffree();
3089   fincstp();
3090 }
3091 
3092 void MacroAssembler::load_float(Address src) {
3093   if (UseSSE >= 1) {
3094     movflt(xmm0, src);
3095   } else {
3096     LP64_ONLY(ShouldNotReachHere());
3097     NOT_LP64(fld_s(src));
3098   }
3099 }
3100 
3101 void MacroAssembler::store_float(Address dst) {
3102   if (UseSSE >= 1) {
3103     movflt(dst, xmm0);
3104   } else {
3105     LP64_ONLY(ShouldNotReachHere());
3106     NOT_LP64(fstp_s(dst));
3107   }
3108 }
3109 
3110 void MacroAssembler::load_double(Address src) {
3111   if (UseSSE >= 2) {
3112     movdbl(xmm0, src);
3113   } else {
3114     LP64_ONLY(ShouldNotReachHere());
3115     NOT_LP64(fld_d(src));
3116   }
3117 }
3118 
3119 void MacroAssembler::store_double(Address dst) {
3120   if (UseSSE >= 2) {
3121     movdbl(dst, xmm0);
3122   } else {
3123     LP64_ONLY(ShouldNotReachHere());
3124     NOT_LP64(fstp_d(dst));
3125   }
3126 }
3127 
3128 void MacroAssembler::fremr(Register tmp) {
3129   save_rax(tmp);
3130   { Label L;
3131     bind(L);
3132     fprem();
3133     fwait(); fnstsw_ax();
3134 #ifdef _LP64
3135     testl(rax, 0x400);
3136     jcc(Assembler::notEqual, L);
3137 #else
3138     sahf();
3139     jcc(Assembler::parity, L);
3140 #endif // _LP64
3141   }
3142   restore_rax(tmp);
3143   // Result is in ST0.
3144   // Note: fxch & fpop to get rid of ST1
3145   // (otherwise FPU stack could overflow eventually)
3146   fxch(1);
3147   fpop();
3148 }
3149 
3150 // dst = c = a * b + c
3151 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3152   Assembler::vfmadd231sd(c, a, b);
3153   if (dst != c) {
3154     movdbl(dst, c);
3155   }
3156 }
3157 
3158 // dst = c = a * b + c
3159 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3160   Assembler::vfmadd231ss(c, a, b);
3161   if (dst != c) {
3162     movflt(dst, c);
3163   }
3164 }
3165 
3166 
3167 
3168 
3169 void MacroAssembler::incrementl(AddressLiteral dst) {
3170   if (reachable(dst)) {
3171     incrementl(as_Address(dst));
3172   } else {
3173     lea(rscratch1, dst);
3174     incrementl(Address(rscratch1, 0));
3175   }
3176 }
3177 
3178 void MacroAssembler::incrementl(ArrayAddress dst) {
3179   incrementl(as_Address(dst));
3180 }
3181 
3182 void MacroAssembler::incrementl(Register reg, int value) {
3183   if (value == min_jint) {addl(reg, value) ; return; }
3184   if (value <  0) { decrementl(reg, -value); return; }
3185   if (value == 0) {                        ; return; }
3186   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3187   /* else */      { addl(reg, value)       ; return; }
3188 }
3189 
3190 void MacroAssembler::incrementl(Address dst, int value) {
3191   if (value == min_jint) {addl(dst, value) ; return; }
3192   if (value <  0) { decrementl(dst, -value); return; }
3193   if (value == 0) {                        ; return; }
3194   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3195   /* else */      { addl(dst, value)       ; return; }
3196 }
3197 
3198 void MacroAssembler::jump(AddressLiteral dst) {
3199   if (reachable(dst)) {
3200     jmp_literal(dst.target(), dst.rspec());
3201   } else {
3202     lea(rscratch1, dst);
3203     jmp(rscratch1);
3204   }
3205 }
3206 
3207 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3208   if (reachable(dst)) {
3209     InstructionMark im(this);
3210     relocate(dst.reloc());
3211     const int short_size = 2;
3212     const int long_size = 6;
3213     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3214     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3215       // 0111 tttn #8-bit disp
3216       emit_int8(0x70 | cc);
3217       emit_int8((offs - short_size) & 0xFF);
3218     } else {
3219       // 0000 1111 1000 tttn #32-bit disp
3220       emit_int8(0x0F);
3221       emit_int8((unsigned char)(0x80 | cc));
3222       emit_int32(offs - long_size);
3223     }
3224   } else {
3225 #ifdef ASSERT
3226     warning("reversing conditional branch");
3227 #endif /* ASSERT */
3228     Label skip;
3229     jccb(reverse[cc], skip);
3230     lea(rscratch1, dst);
3231     Assembler::jmp(rscratch1);
3232     bind(skip);
3233   }
3234 }
3235 
3236 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3237   if (reachable(src)) {
3238     Assembler::ldmxcsr(as_Address(src));
3239   } else {
3240     lea(rscratch1, src);
3241     Assembler::ldmxcsr(Address(rscratch1, 0));
3242   }
3243 }
3244 
3245 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3246   int off;
3247   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3248     off = offset();
3249     movsbl(dst, src); // movsxb
3250   } else {
3251     off = load_unsigned_byte(dst, src);
3252     shll(dst, 24);
3253     sarl(dst, 24);
3254   }
3255   return off;
3256 }
3257 
3258 // Note: load_signed_short used to be called load_signed_word.
3259 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3260 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3261 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3262 int MacroAssembler::load_signed_short(Register dst, Address src) {
3263   int off;
3264   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3265     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3266     // version but this is what 64bit has always done. This seems to imply
3267     // that users are only using 32bits worth.
3268     off = offset();
3269     movswl(dst, src); // movsxw
3270   } else {
3271     off = load_unsigned_short(dst, src);
3272     shll(dst, 16);
3273     sarl(dst, 16);
3274   }
3275   return off;
3276 }
3277 
3278 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3279   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3280   // and "3.9 Partial Register Penalties", p. 22).
3281   int off;
3282   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3283     off = offset();
3284     movzbl(dst, src); // movzxb
3285   } else {
3286     xorl(dst, dst);
3287     off = offset();
3288     movb(dst, src);
3289   }
3290   return off;
3291 }
3292 
3293 // Note: load_unsigned_short used to be called load_unsigned_word.
3294 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3295   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3296   // and "3.9 Partial Register Penalties", p. 22).
3297   int off;
3298   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3299     off = offset();
3300     movzwl(dst, src); // movzxw
3301   } else {
3302     xorl(dst, dst);
3303     off = offset();
3304     movw(dst, src);
3305   }
3306   return off;
3307 }
3308 
3309 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3310   switch (size_in_bytes) {
3311 #ifndef _LP64
3312   case  8:
3313     assert(dst2 != noreg, "second dest register required");
3314     movl(dst,  src);
3315     movl(dst2, src.plus_disp(BytesPerInt));
3316     break;
3317 #else
3318   case  8:  movq(dst, src); break;
3319 #endif
3320   case  4:  movl(dst, src); break;
3321   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3322   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3323   default:  ShouldNotReachHere();
3324   }
3325 }
3326 
3327 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3328   switch (size_in_bytes) {
3329 #ifndef _LP64
3330   case  8:
3331     assert(src2 != noreg, "second source register required");
3332     movl(dst,                        src);
3333     movl(dst.plus_disp(BytesPerInt), src2);
3334     break;
3335 #else
3336   case  8:  movq(dst, src); break;
3337 #endif
3338   case  4:  movl(dst, src); break;
3339   case  2:  movw(dst, src); break;
3340   case  1:  movb(dst, src); break;
3341   default:  ShouldNotReachHere();
3342   }
3343 }
3344 
3345 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3346   if (reachable(dst)) {
3347     movl(as_Address(dst), src);
3348   } else {
3349     lea(rscratch1, dst);
3350     movl(Address(rscratch1, 0), src);
3351   }
3352 }
3353 
3354 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3355   if (reachable(src)) {
3356     movl(dst, as_Address(src));
3357   } else {
3358     lea(rscratch1, src);
3359     movl(dst, Address(rscratch1, 0));
3360   }
3361 }
3362 
3363 // C++ bool manipulation
3364 
3365 void MacroAssembler::movbool(Register dst, Address src) {
3366   if(sizeof(bool) == 1)
3367     movb(dst, src);
3368   else if(sizeof(bool) == 2)
3369     movw(dst, src);
3370   else if(sizeof(bool) == 4)
3371     movl(dst, src);
3372   else
3373     // unsupported
3374     ShouldNotReachHere();
3375 }
3376 
3377 void MacroAssembler::movbool(Address dst, bool boolconst) {
3378   if(sizeof(bool) == 1)
3379     movb(dst, (int) boolconst);
3380   else if(sizeof(bool) == 2)
3381     movw(dst, (int) boolconst);
3382   else if(sizeof(bool) == 4)
3383     movl(dst, (int) boolconst);
3384   else
3385     // unsupported
3386     ShouldNotReachHere();
3387 }
3388 
3389 void MacroAssembler::movbool(Address dst, Register src) {
3390   if(sizeof(bool) == 1)
3391     movb(dst, src);
3392   else if(sizeof(bool) == 2)
3393     movw(dst, src);
3394   else if(sizeof(bool) == 4)
3395     movl(dst, src);
3396   else
3397     // unsupported
3398     ShouldNotReachHere();
3399 }
3400 
3401 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3402   movb(as_Address(dst), src);
3403 }
3404 
3405 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3406   if (reachable(src)) {
3407     movdl(dst, as_Address(src));
3408   } else {
3409     lea(rscratch1, src);
3410     movdl(dst, Address(rscratch1, 0));
3411   }
3412 }
3413 
3414 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3415   if (reachable(src)) {
3416     movq(dst, as_Address(src));
3417   } else {
3418     lea(rscratch1, src);
3419     movq(dst, Address(rscratch1, 0));
3420   }
3421 }
3422 
3423 void MacroAssembler::setvectmask(Register dst, Register src) {
3424   Assembler::movl(dst, 1);
3425   Assembler::shlxl(dst, dst, src);
3426   Assembler::decl(dst);
3427   Assembler::kmovdl(k1, dst);
3428   Assembler::movl(dst, src);
3429 }
3430 
3431 void MacroAssembler::restorevectmask() {
3432   Assembler::knotwl(k1, k0);
3433 }
3434 
3435 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3436   if (reachable(src)) {
3437     if (UseXmmLoadAndClearUpper) {
3438       movsd (dst, as_Address(src));
3439     } else {
3440       movlpd(dst, as_Address(src));
3441     }
3442   } else {
3443     lea(rscratch1, src);
3444     if (UseXmmLoadAndClearUpper) {
3445       movsd (dst, Address(rscratch1, 0));
3446     } else {
3447       movlpd(dst, Address(rscratch1, 0));
3448     }
3449   }
3450 }
3451 
3452 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3453   if (reachable(src)) {
3454     movss(dst, as_Address(src));
3455   } else {
3456     lea(rscratch1, src);
3457     movss(dst, Address(rscratch1, 0));
3458   }
3459 }
3460 
3461 void MacroAssembler::movptr(Register dst, Register src) {
3462   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3463 }
3464 
3465 void MacroAssembler::movptr(Register dst, Address src) {
3466   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3467 }
3468 
3469 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3470 void MacroAssembler::movptr(Register dst, intptr_t src) {
3471   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3472 }
3473 
3474 void MacroAssembler::movptr(Address dst, Register src) {
3475   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3476 }
3477 
3478 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3479   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3480     Assembler::vextractf32x4(dst, src, 0);
3481   } else {
3482     Assembler::movdqu(dst, src);
3483   }
3484 }
3485 
3486 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3487   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3488     Assembler::vinsertf32x4(dst, dst, src, 0);
3489   } else {
3490     Assembler::movdqu(dst, src);
3491   }
3492 }
3493 
3494 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3495   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3496     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3497   } else {
3498     Assembler::movdqu(dst, src);
3499   }
3500 }
3501 
3502 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3503   if (reachable(src)) {
3504     movdqu(dst, as_Address(src));
3505   } else {
3506     lea(scratchReg, src);
3507     movdqu(dst, Address(scratchReg, 0));
3508   }
3509 }
3510 
3511 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3512   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3513     vextractf64x4_low(dst, src);
3514   } else {
3515     Assembler::vmovdqu(dst, src);
3516   }
3517 }
3518 
3519 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3520   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3521     vinsertf64x4_low(dst, src);
3522   } else {
3523     Assembler::vmovdqu(dst, src);
3524   }
3525 }
3526 
3527 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3528   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3529     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3530   }
3531   else {
3532     Assembler::vmovdqu(dst, src);
3533   }
3534 }
3535 
3536 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3537   if (reachable(src)) {
3538     vmovdqu(dst, as_Address(src));
3539   }
3540   else {
3541     lea(rscratch1, src);
3542     vmovdqu(dst, Address(rscratch1, 0));
3543   }
3544 }
3545 
3546 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3547   if (reachable(src)) {
3548     Assembler::movdqa(dst, as_Address(src));
3549   } else {
3550     lea(rscratch1, src);
3551     Assembler::movdqa(dst, Address(rscratch1, 0));
3552   }
3553 }
3554 
3555 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3556   if (reachable(src)) {
3557     Assembler::movsd(dst, as_Address(src));
3558   } else {
3559     lea(rscratch1, src);
3560     Assembler::movsd(dst, Address(rscratch1, 0));
3561   }
3562 }
3563 
3564 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3565   if (reachable(src)) {
3566     Assembler::movss(dst, as_Address(src));
3567   } else {
3568     lea(rscratch1, src);
3569     Assembler::movss(dst, Address(rscratch1, 0));
3570   }
3571 }
3572 
3573 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3574   if (reachable(src)) {
3575     Assembler::mulsd(dst, as_Address(src));
3576   } else {
3577     lea(rscratch1, src);
3578     Assembler::mulsd(dst, Address(rscratch1, 0));
3579   }
3580 }
3581 
3582 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3583   if (reachable(src)) {
3584     Assembler::mulss(dst, as_Address(src));
3585   } else {
3586     lea(rscratch1, src);
3587     Assembler::mulss(dst, Address(rscratch1, 0));
3588   }
3589 }
3590 
3591 void MacroAssembler::null_check(Register reg, int offset) {
3592   if (needs_explicit_null_check(offset)) {
3593     // provoke OS NULL exception if reg = NULL by
3594     // accessing M[reg] w/o changing any (non-CC) registers
3595     // NOTE: cmpl is plenty here to provoke a segv
3596     cmpptr(rax, Address(reg, 0));
3597     // Note: should probably use testl(rax, Address(reg, 0));
3598     //       may be shorter code (however, this version of
3599     //       testl needs to be implemented first)
3600   } else {
3601     // nothing to do, (later) access of M[reg + offset]
3602     // will provoke OS NULL exception if reg = NULL
3603   }
3604 }
3605 
3606 void MacroAssembler::os_breakpoint() {
3607   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3608   // (e.g., MSVC can't call ps() otherwise)
3609   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3610 }
3611 
3612 #ifdef _LP64
3613 #define XSTATE_BV 0x200
3614 #endif
3615 
3616 void MacroAssembler::pop_CPU_state() {
3617   pop_FPU_state();
3618   pop_IU_state();
3619 }
3620 
3621 void MacroAssembler::pop_FPU_state() {
3622 #ifndef _LP64
3623   frstor(Address(rsp, 0));
3624 #else
3625   fxrstor(Address(rsp, 0));
3626 #endif
3627   addptr(rsp, FPUStateSizeInWords * wordSize);
3628 }
3629 
3630 void MacroAssembler::pop_IU_state() {
3631   popa();
3632   LP64_ONLY(addq(rsp, 8));
3633   popf();
3634 }
3635 
3636 // Save Integer and Float state
3637 // Warning: Stack must be 16 byte aligned (64bit)
3638 void MacroAssembler::push_CPU_state() {
3639   push_IU_state();
3640   push_FPU_state();
3641 }
3642 
3643 void MacroAssembler::push_FPU_state() {
3644   subptr(rsp, FPUStateSizeInWords * wordSize);
3645 #ifndef _LP64
3646   fnsave(Address(rsp, 0));
3647   fwait();
3648 #else
3649   fxsave(Address(rsp, 0));
3650 #endif // LP64
3651 }
3652 
3653 void MacroAssembler::push_IU_state() {
3654   // Push flags first because pusha kills them
3655   pushf();
3656   // Make sure rsp stays 16-byte aligned
3657   LP64_ONLY(subq(rsp, 8));
3658   pusha();
3659 }
3660 
3661 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3662   if (!java_thread->is_valid()) {
3663     java_thread = rdi;
3664     get_thread(java_thread);
3665   }
3666   // we must set sp to zero to clear frame
3667   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3668   if (clear_fp) {
3669     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3670   }
3671 
3672   // Always clear the pc because it could have been set by make_walkable()
3673   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3674 
3675 }
3676 
3677 void MacroAssembler::restore_rax(Register tmp) {
3678   if (tmp == noreg) pop(rax);
3679   else if (tmp != rax) mov(rax, tmp);
3680 }
3681 
3682 void MacroAssembler::round_to(Register reg, int modulus) {
3683   addptr(reg, modulus - 1);
3684   andptr(reg, -modulus);
3685 }
3686 
3687 void MacroAssembler::save_rax(Register tmp) {
3688   if (tmp == noreg) push(rax);
3689   else if (tmp != rax) mov(tmp, rax);
3690 }
3691 
3692 // Write serialization page so VM thread can do a pseudo remote membar.
3693 // We use the current thread pointer to calculate a thread specific
3694 // offset to write to within the page. This minimizes bus traffic
3695 // due to cache line collision.
3696 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3697   movl(tmp, thread);
3698   shrl(tmp, os::get_serialize_page_shift_count());
3699   andl(tmp, (os::vm_page_size() - sizeof(int)));
3700 
3701   Address index(noreg, tmp, Address::times_1);
3702   ExternalAddress page(os::get_memory_serialize_page());
3703 
3704   // Size of store must match masking code above
3705   movl(as_Address(ArrayAddress(page, index)), tmp);
3706 }
3707 
3708 // Calls to C land
3709 //
3710 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3711 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3712 // has to be reset to 0. This is required to allow proper stack traversal.
3713 void MacroAssembler::set_last_Java_frame(Register java_thread,
3714                                          Register last_java_sp,
3715                                          Register last_java_fp,
3716                                          address  last_java_pc) {
3717   // determine java_thread register
3718   if (!java_thread->is_valid()) {
3719     java_thread = rdi;
3720     get_thread(java_thread);
3721   }
3722   // determine last_java_sp register
3723   if (!last_java_sp->is_valid()) {
3724     last_java_sp = rsp;
3725   }
3726 
3727   // last_java_fp is optional
3728 
3729   if (last_java_fp->is_valid()) {
3730     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3731   }
3732 
3733   // last_java_pc is optional
3734 
3735   if (last_java_pc != NULL) {
3736     lea(Address(java_thread,
3737                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3738         InternalAddress(last_java_pc));
3739 
3740   }
3741   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3742 }
3743 
3744 void MacroAssembler::shlptr(Register dst, int imm8) {
3745   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3746 }
3747 
3748 void MacroAssembler::shrptr(Register dst, int imm8) {
3749   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3750 }
3751 
3752 void MacroAssembler::sign_extend_byte(Register reg) {
3753   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3754     movsbl(reg, reg); // movsxb
3755   } else {
3756     shll(reg, 24);
3757     sarl(reg, 24);
3758   }
3759 }
3760 
3761 void MacroAssembler::sign_extend_short(Register reg) {
3762   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3763     movswl(reg, reg); // movsxw
3764   } else {
3765     shll(reg, 16);
3766     sarl(reg, 16);
3767   }
3768 }
3769 
3770 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3771   assert(reachable(src), "Address should be reachable");
3772   testl(dst, as_Address(src));
3773 }
3774 
3775 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3776   int dst_enc = dst->encoding();
3777   int src_enc = src->encoding();
3778   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3779     Assembler::pcmpeqb(dst, src);
3780   } else if ((dst_enc < 16) && (src_enc < 16)) {
3781     Assembler::pcmpeqb(dst, src);
3782   } else if (src_enc < 16) {
3783     subptr(rsp, 64);
3784     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3785     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3786     Assembler::pcmpeqb(xmm0, src);
3787     movdqu(dst, xmm0);
3788     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3789     addptr(rsp, 64);
3790   } else if (dst_enc < 16) {
3791     subptr(rsp, 64);
3792     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3793     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3794     Assembler::pcmpeqb(dst, xmm0);
3795     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3796     addptr(rsp, 64);
3797   } else {
3798     subptr(rsp, 64);
3799     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3800     subptr(rsp, 64);
3801     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3802     movdqu(xmm0, src);
3803     movdqu(xmm1, dst);
3804     Assembler::pcmpeqb(xmm1, xmm0);
3805     movdqu(dst, xmm1);
3806     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3807     addptr(rsp, 64);
3808     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3809     addptr(rsp, 64);
3810   }
3811 }
3812 
3813 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3814   int dst_enc = dst->encoding();
3815   int src_enc = src->encoding();
3816   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3817     Assembler::pcmpeqw(dst, src);
3818   } else if ((dst_enc < 16) && (src_enc < 16)) {
3819     Assembler::pcmpeqw(dst, src);
3820   } else if (src_enc < 16) {
3821     subptr(rsp, 64);
3822     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3823     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3824     Assembler::pcmpeqw(xmm0, src);
3825     movdqu(dst, xmm0);
3826     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3827     addptr(rsp, 64);
3828   } else if (dst_enc < 16) {
3829     subptr(rsp, 64);
3830     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3831     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3832     Assembler::pcmpeqw(dst, xmm0);
3833     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3834     addptr(rsp, 64);
3835   } else {
3836     subptr(rsp, 64);
3837     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3838     subptr(rsp, 64);
3839     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3840     movdqu(xmm0, src);
3841     movdqu(xmm1, dst);
3842     Assembler::pcmpeqw(xmm1, xmm0);
3843     movdqu(dst, xmm1);
3844     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3845     addptr(rsp, 64);
3846     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3847     addptr(rsp, 64);
3848   }
3849 }
3850 
3851 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3852   int dst_enc = dst->encoding();
3853   if (dst_enc < 16) {
3854     Assembler::pcmpestri(dst, src, imm8);
3855   } else {
3856     subptr(rsp, 64);
3857     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3858     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3859     Assembler::pcmpestri(xmm0, src, imm8);
3860     movdqu(dst, xmm0);
3861     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3862     addptr(rsp, 64);
3863   }
3864 }
3865 
3866 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3867   int dst_enc = dst->encoding();
3868   int src_enc = src->encoding();
3869   if ((dst_enc < 16) && (src_enc < 16)) {
3870     Assembler::pcmpestri(dst, src, imm8);
3871   } else if (src_enc < 16) {
3872     subptr(rsp, 64);
3873     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3874     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3875     Assembler::pcmpestri(xmm0, src, imm8);
3876     movdqu(dst, xmm0);
3877     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3878     addptr(rsp, 64);
3879   } else if (dst_enc < 16) {
3880     subptr(rsp, 64);
3881     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3882     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3883     Assembler::pcmpestri(dst, xmm0, imm8);
3884     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3885     addptr(rsp, 64);
3886   } else {
3887     subptr(rsp, 64);
3888     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3889     subptr(rsp, 64);
3890     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3891     movdqu(xmm0, src);
3892     movdqu(xmm1, dst);
3893     Assembler::pcmpestri(xmm1, xmm0, imm8);
3894     movdqu(dst, xmm1);
3895     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3896     addptr(rsp, 64);
3897     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3898     addptr(rsp, 64);
3899   }
3900 }
3901 
3902 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3903   int dst_enc = dst->encoding();
3904   int src_enc = src->encoding();
3905   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3906     Assembler::pmovzxbw(dst, src);
3907   } else if ((dst_enc < 16) && (src_enc < 16)) {
3908     Assembler::pmovzxbw(dst, src);
3909   } else if (src_enc < 16) {
3910     subptr(rsp, 64);
3911     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3912     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3913     Assembler::pmovzxbw(xmm0, src);
3914     movdqu(dst, xmm0);
3915     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3916     addptr(rsp, 64);
3917   } else if (dst_enc < 16) {
3918     subptr(rsp, 64);
3919     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3920     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3921     Assembler::pmovzxbw(dst, xmm0);
3922     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3923     addptr(rsp, 64);
3924   } else {
3925     subptr(rsp, 64);
3926     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3927     subptr(rsp, 64);
3928     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3929     movdqu(xmm0, src);
3930     movdqu(xmm1, dst);
3931     Assembler::pmovzxbw(xmm1, xmm0);
3932     movdqu(dst, xmm1);
3933     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3934     addptr(rsp, 64);
3935     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3936     addptr(rsp, 64);
3937   }
3938 }
3939 
3940 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3941   int dst_enc = dst->encoding();
3942   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3943     Assembler::pmovzxbw(dst, src);
3944   } else if (dst_enc < 16) {
3945     Assembler::pmovzxbw(dst, src);
3946   } else {
3947     subptr(rsp, 64);
3948     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3949     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3950     Assembler::pmovzxbw(xmm0, src);
3951     movdqu(dst, xmm0);
3952     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3953     addptr(rsp, 64);
3954   }
3955 }
3956 
3957 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3958   int src_enc = src->encoding();
3959   if (src_enc < 16) {
3960     Assembler::pmovmskb(dst, src);
3961   } else {
3962     subptr(rsp, 64);
3963     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3964     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3965     Assembler::pmovmskb(dst, xmm0);
3966     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3967     addptr(rsp, 64);
3968   }
3969 }
3970 
3971 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3972   int dst_enc = dst->encoding();
3973   int src_enc = src->encoding();
3974   if ((dst_enc < 16) && (src_enc < 16)) {
3975     Assembler::ptest(dst, src);
3976   } else if (src_enc < 16) {
3977     subptr(rsp, 64);
3978     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3979     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3980     Assembler::ptest(xmm0, src);
3981     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3982     addptr(rsp, 64);
3983   } else if (dst_enc < 16) {
3984     subptr(rsp, 64);
3985     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3986     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3987     Assembler::ptest(dst, xmm0);
3988     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3989     addptr(rsp, 64);
3990   } else {
3991     subptr(rsp, 64);
3992     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3993     subptr(rsp, 64);
3994     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3995     movdqu(xmm0, src);
3996     movdqu(xmm1, dst);
3997     Assembler::ptest(xmm1, xmm0);
3998     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3999     addptr(rsp, 64);
4000     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4001     addptr(rsp, 64);
4002   }
4003 }
4004 
4005 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4006   if (reachable(src)) {
4007     Assembler::sqrtsd(dst, as_Address(src));
4008   } else {
4009     lea(rscratch1, src);
4010     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4011   }
4012 }
4013 
4014 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4015   if (reachable(src)) {
4016     Assembler::sqrtss(dst, as_Address(src));
4017   } else {
4018     lea(rscratch1, src);
4019     Assembler::sqrtss(dst, Address(rscratch1, 0));
4020   }
4021 }
4022 
4023 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4024   if (reachable(src)) {
4025     Assembler::subsd(dst, as_Address(src));
4026   } else {
4027     lea(rscratch1, src);
4028     Assembler::subsd(dst, Address(rscratch1, 0));
4029   }
4030 }
4031 
4032 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4033   if (reachable(src)) {
4034     Assembler::subss(dst, as_Address(src));
4035   } else {
4036     lea(rscratch1, src);
4037     Assembler::subss(dst, Address(rscratch1, 0));
4038   }
4039 }
4040 
4041 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4042   if (reachable(src)) {
4043     Assembler::ucomisd(dst, as_Address(src));
4044   } else {
4045     lea(rscratch1, src);
4046     Assembler::ucomisd(dst, Address(rscratch1, 0));
4047   }
4048 }
4049 
4050 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4051   if (reachable(src)) {
4052     Assembler::ucomiss(dst, as_Address(src));
4053   } else {
4054     lea(rscratch1, src);
4055     Assembler::ucomiss(dst, Address(rscratch1, 0));
4056   }
4057 }
4058 
4059 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4060   // Used in sign-bit flipping with aligned address.
4061   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4062   if (reachable(src)) {
4063     Assembler::xorpd(dst, as_Address(src));
4064   } else {
4065     lea(rscratch1, src);
4066     Assembler::xorpd(dst, Address(rscratch1, 0));
4067   }
4068 }
4069 
4070 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4071   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4072     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4073   }
4074   else {
4075     Assembler::xorpd(dst, src);
4076   }
4077 }
4078 
4079 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4080   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4081     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4082   } else {
4083     Assembler::xorps(dst, src);
4084   }
4085 }
4086 
4087 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4088   // Used in sign-bit flipping with aligned address.
4089   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4090   if (reachable(src)) {
4091     Assembler::xorps(dst, as_Address(src));
4092   } else {
4093     lea(rscratch1, src);
4094     Assembler::xorps(dst, Address(rscratch1, 0));
4095   }
4096 }
4097 
4098 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4099   // Used in sign-bit flipping with aligned address.
4100   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4101   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4102   if (reachable(src)) {
4103     Assembler::pshufb(dst, as_Address(src));
4104   } else {
4105     lea(rscratch1, src);
4106     Assembler::pshufb(dst, Address(rscratch1, 0));
4107   }
4108 }
4109 
4110 // AVX 3-operands instructions
4111 
4112 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4113   if (reachable(src)) {
4114     vaddsd(dst, nds, as_Address(src));
4115   } else {
4116     lea(rscratch1, src);
4117     vaddsd(dst, nds, Address(rscratch1, 0));
4118   }
4119 }
4120 
4121 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4122   if (reachable(src)) {
4123     vaddss(dst, nds, as_Address(src));
4124   } else {
4125     lea(rscratch1, src);
4126     vaddss(dst, nds, Address(rscratch1, 0));
4127   }
4128 }
4129 
4130 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4131   int dst_enc = dst->encoding();
4132   int nds_enc = nds->encoding();
4133   int src_enc = src->encoding();
4134   if ((dst_enc < 16) && (nds_enc < 16)) {
4135     vandps(dst, nds, negate_field, vector_len);
4136   } else if ((src_enc < 16) && (dst_enc < 16)) {
4137     movss(src, nds);
4138     vandps(dst, src, negate_field, vector_len);
4139   } else if (src_enc < 16) {
4140     movss(src, nds);
4141     vandps(src, src, negate_field, vector_len);
4142     movss(dst, src);
4143   } else if (dst_enc < 16) {
4144     movdqu(src, xmm0);
4145     movss(xmm0, nds);
4146     vandps(dst, xmm0, negate_field, vector_len);
4147     movdqu(xmm0, src);
4148   } else {
4149     if (src_enc != dst_enc) {
4150       movdqu(src, xmm0);
4151       movss(xmm0, nds);
4152       vandps(xmm0, xmm0, negate_field, vector_len);
4153       movss(dst, xmm0);
4154       movdqu(xmm0, src);
4155     } else {
4156       subptr(rsp, 64);
4157       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4158       movss(xmm0, nds);
4159       vandps(xmm0, xmm0, negate_field, vector_len);
4160       movss(dst, xmm0);
4161       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4162       addptr(rsp, 64);
4163     }
4164   }
4165 }
4166 
4167 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4168   int dst_enc = dst->encoding();
4169   int nds_enc = nds->encoding();
4170   int src_enc = src->encoding();
4171   if ((dst_enc < 16) && (nds_enc < 16)) {
4172     vandpd(dst, nds, negate_field, vector_len);
4173   } else if ((src_enc < 16) && (dst_enc < 16)) {
4174     movsd(src, nds);
4175     vandpd(dst, src, negate_field, vector_len);
4176   } else if (src_enc < 16) {
4177     movsd(src, nds);
4178     vandpd(src, src, negate_field, vector_len);
4179     movsd(dst, src);
4180   } else if (dst_enc < 16) {
4181     movdqu(src, xmm0);
4182     movsd(xmm0, nds);
4183     vandpd(dst, xmm0, negate_field, vector_len);
4184     movdqu(xmm0, src);
4185   } else {
4186     if (src_enc != dst_enc) {
4187       movdqu(src, xmm0);
4188       movsd(xmm0, nds);
4189       vandpd(xmm0, xmm0, negate_field, vector_len);
4190       movsd(dst, xmm0);
4191       movdqu(xmm0, src);
4192     } else {
4193       subptr(rsp, 64);
4194       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4195       movsd(xmm0, nds);
4196       vandpd(xmm0, xmm0, negate_field, vector_len);
4197       movsd(dst, xmm0);
4198       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4199       addptr(rsp, 64);
4200     }
4201   }
4202 }
4203 
4204 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4205   int dst_enc = dst->encoding();
4206   int nds_enc = nds->encoding();
4207   int src_enc = src->encoding();
4208   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4209     Assembler::vpaddb(dst, nds, src, vector_len);
4210   } else if ((dst_enc < 16) && (src_enc < 16)) {
4211     Assembler::vpaddb(dst, dst, src, vector_len);
4212   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4213     // use nds as scratch for src
4214     evmovdqul(nds, src, Assembler::AVX_512bit);
4215     Assembler::vpaddb(dst, dst, nds, vector_len);
4216   } else if ((src_enc < 16) && (nds_enc < 16)) {
4217     // use nds as scratch for dst
4218     evmovdqul(nds, dst, Assembler::AVX_512bit);
4219     Assembler::vpaddb(nds, nds, src, vector_len);
4220     evmovdqul(dst, nds, Assembler::AVX_512bit);
4221   } else if (dst_enc < 16) {
4222     // use nds as scatch for xmm0 to hold src
4223     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4224     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4225     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4226     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4227   } else {
4228     // worse case scenario, all regs are in the upper bank
4229     subptr(rsp, 64);
4230     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4231     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4232     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4233     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4234     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4235     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4236     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4237     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4238     addptr(rsp, 64);
4239   }
4240 }
4241 
4242 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4243   int dst_enc = dst->encoding();
4244   int nds_enc = nds->encoding();
4245   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4246     Assembler::vpaddb(dst, nds, src, vector_len);
4247   } else if (dst_enc < 16) {
4248     Assembler::vpaddb(dst, dst, src, vector_len);
4249   } else if (nds_enc < 16) {
4250     // implies dst_enc in upper bank with src as scratch
4251     evmovdqul(nds, dst, Assembler::AVX_512bit);
4252     Assembler::vpaddb(nds, nds, src, vector_len);
4253     evmovdqul(dst, nds, Assembler::AVX_512bit);
4254   } else {
4255     // worse case scenario, all regs in upper bank
4256     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4257     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4258     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4259     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4260   }
4261 }
4262 
4263 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4264   int dst_enc = dst->encoding();
4265   int nds_enc = nds->encoding();
4266   int src_enc = src->encoding();
4267   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4268     Assembler::vpaddw(dst, nds, src, vector_len);
4269   } else if ((dst_enc < 16) && (src_enc < 16)) {
4270     Assembler::vpaddw(dst, dst, src, vector_len);
4271   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4272     // use nds as scratch for src
4273     evmovdqul(nds, src, Assembler::AVX_512bit);
4274     Assembler::vpaddw(dst, dst, nds, vector_len);
4275   } else if ((src_enc < 16) && (nds_enc < 16)) {
4276     // use nds as scratch for dst
4277     evmovdqul(nds, dst, Assembler::AVX_512bit);
4278     Assembler::vpaddw(nds, nds, src, vector_len);
4279     evmovdqul(dst, nds, Assembler::AVX_512bit);
4280   } else if (dst_enc < 16) {
4281     // use nds as scatch for xmm0 to hold src
4282     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4283     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4284     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4285     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4286   } else {
4287     // worse case scenario, all regs are in the upper bank
4288     subptr(rsp, 64);
4289     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4290     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4291     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4292     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4293     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4294     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4295     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4296     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4297     addptr(rsp, 64);
4298   }
4299 }
4300 
4301 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4302   int dst_enc = dst->encoding();
4303   int nds_enc = nds->encoding();
4304   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4305     Assembler::vpaddw(dst, nds, src, vector_len);
4306   } else if (dst_enc < 16) {
4307     Assembler::vpaddw(dst, dst, src, vector_len);
4308   } else if (nds_enc < 16) {
4309     // implies dst_enc in upper bank with src as scratch
4310     evmovdqul(nds, dst, Assembler::AVX_512bit);
4311     Assembler::vpaddw(nds, nds, src, vector_len);
4312     evmovdqul(dst, nds, Assembler::AVX_512bit);
4313   } else {
4314     // worse case scenario, all regs in upper bank
4315     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4316     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4317     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4318     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4319   }
4320 }
4321 
4322 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4323   if (reachable(src)) {
4324     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4325   } else {
4326     lea(rscratch1, src);
4327     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4328   }
4329 }
4330 
4331 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4332   int dst_enc = dst->encoding();
4333   int src_enc = src->encoding();
4334   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4335     Assembler::vpbroadcastw(dst, src);
4336   } else if ((dst_enc < 16) && (src_enc < 16)) {
4337     Assembler::vpbroadcastw(dst, src);
4338   } else if (src_enc < 16) {
4339     subptr(rsp, 64);
4340     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4341     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4342     Assembler::vpbroadcastw(xmm0, src);
4343     movdqu(dst, xmm0);
4344     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4345     addptr(rsp, 64);
4346   } else if (dst_enc < 16) {
4347     subptr(rsp, 64);
4348     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4349     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4350     Assembler::vpbroadcastw(dst, xmm0);
4351     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4352     addptr(rsp, 64);
4353   } else {
4354     subptr(rsp, 64);
4355     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4356     subptr(rsp, 64);
4357     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4358     movdqu(xmm0, src);
4359     movdqu(xmm1, dst);
4360     Assembler::vpbroadcastw(xmm1, xmm0);
4361     movdqu(dst, xmm1);
4362     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4363     addptr(rsp, 64);
4364     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4365     addptr(rsp, 64);
4366   }
4367 }
4368 
4369 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4370   int dst_enc = dst->encoding();
4371   int nds_enc = nds->encoding();
4372   int src_enc = src->encoding();
4373   assert(dst_enc == nds_enc, "");
4374   if ((dst_enc < 16) && (src_enc < 16)) {
4375     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4376   } else if (src_enc < 16) {
4377     subptr(rsp, 64);
4378     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4379     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4380     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4381     movdqu(dst, xmm0);
4382     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4383     addptr(rsp, 64);
4384   } else if (dst_enc < 16) {
4385     subptr(rsp, 64);
4386     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4387     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4388     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4389     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4390     addptr(rsp, 64);
4391   } else {
4392     subptr(rsp, 64);
4393     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4394     subptr(rsp, 64);
4395     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4396     movdqu(xmm0, src);
4397     movdqu(xmm1, dst);
4398     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4399     movdqu(dst, xmm1);
4400     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4401     addptr(rsp, 64);
4402     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4403     addptr(rsp, 64);
4404   }
4405 }
4406 
4407 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4408   int dst_enc = dst->encoding();
4409   int nds_enc = nds->encoding();
4410   int src_enc = src->encoding();
4411   assert(dst_enc == nds_enc, "");
4412   if ((dst_enc < 16) && (src_enc < 16)) {
4413     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4414   } else if (src_enc < 16) {
4415     subptr(rsp, 64);
4416     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4417     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4418     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4419     movdqu(dst, xmm0);
4420     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4421     addptr(rsp, 64);
4422   } else if (dst_enc < 16) {
4423     subptr(rsp, 64);
4424     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4425     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4426     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4427     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4428     addptr(rsp, 64);
4429   } else {
4430     subptr(rsp, 64);
4431     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4432     subptr(rsp, 64);
4433     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4434     movdqu(xmm0, src);
4435     movdqu(xmm1, dst);
4436     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4437     movdqu(dst, xmm1);
4438     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4439     addptr(rsp, 64);
4440     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4441     addptr(rsp, 64);
4442   }
4443 }
4444 
4445 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4446   int dst_enc = dst->encoding();
4447   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4448     Assembler::vpmovzxbw(dst, src, vector_len);
4449   } else if (dst_enc < 16) {
4450     Assembler::vpmovzxbw(dst, src, vector_len);
4451   } else {
4452     subptr(rsp, 64);
4453     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4454     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4455     Assembler::vpmovzxbw(xmm0, src, vector_len);
4456     movdqu(dst, xmm0);
4457     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4458     addptr(rsp, 64);
4459   }
4460 }
4461 
4462 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4463   int src_enc = src->encoding();
4464   if (src_enc < 16) {
4465     Assembler::vpmovmskb(dst, src);
4466   } else {
4467     subptr(rsp, 64);
4468     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4469     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4470     Assembler::vpmovmskb(dst, xmm0);
4471     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4472     addptr(rsp, 64);
4473   }
4474 }
4475 
4476 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4477   int dst_enc = dst->encoding();
4478   int nds_enc = nds->encoding();
4479   int src_enc = src->encoding();
4480   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4481     Assembler::vpmullw(dst, nds, src, vector_len);
4482   } else if ((dst_enc < 16) && (src_enc < 16)) {
4483     Assembler::vpmullw(dst, dst, src, vector_len);
4484   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4485     // use nds as scratch for src
4486     evmovdqul(nds, src, Assembler::AVX_512bit);
4487     Assembler::vpmullw(dst, dst, nds, vector_len);
4488   } else if ((src_enc < 16) && (nds_enc < 16)) {
4489     // use nds as scratch for dst
4490     evmovdqul(nds, dst, Assembler::AVX_512bit);
4491     Assembler::vpmullw(nds, nds, src, vector_len);
4492     evmovdqul(dst, nds, Assembler::AVX_512bit);
4493   } else if (dst_enc < 16) {
4494     // use nds as scatch for xmm0 to hold src
4495     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4496     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4497     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4498     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4499   } else {
4500     // worse case scenario, all regs are in the upper bank
4501     subptr(rsp, 64);
4502     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4503     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4504     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4505     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4506     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4507     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4508     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4509     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4510     addptr(rsp, 64);
4511   }
4512 }
4513 
4514 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4515   int dst_enc = dst->encoding();
4516   int nds_enc = nds->encoding();
4517   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4518     Assembler::vpmullw(dst, nds, src, vector_len);
4519   } else if (dst_enc < 16) {
4520     Assembler::vpmullw(dst, dst, src, vector_len);
4521   } else if (nds_enc < 16) {
4522     // implies dst_enc in upper bank with src as scratch
4523     evmovdqul(nds, dst, Assembler::AVX_512bit);
4524     Assembler::vpmullw(nds, nds, src, vector_len);
4525     evmovdqul(dst, nds, Assembler::AVX_512bit);
4526   } else {
4527     // worse case scenario, all regs in upper bank
4528     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4529     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4530     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4531     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4532   }
4533 }
4534 
4535 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4536   int dst_enc = dst->encoding();
4537   int nds_enc = nds->encoding();
4538   int src_enc = src->encoding();
4539   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4540     Assembler::vpsubb(dst, nds, src, vector_len);
4541   } else if ((dst_enc < 16) && (src_enc < 16)) {
4542     Assembler::vpsubb(dst, dst, src, vector_len);
4543   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4544     // use nds as scratch for src
4545     evmovdqul(nds, src, Assembler::AVX_512bit);
4546     Assembler::vpsubb(dst, dst, nds, vector_len);
4547   } else if ((src_enc < 16) && (nds_enc < 16)) {
4548     // use nds as scratch for dst
4549     evmovdqul(nds, dst, Assembler::AVX_512bit);
4550     Assembler::vpsubb(nds, nds, src, vector_len);
4551     evmovdqul(dst, nds, Assembler::AVX_512bit);
4552   } else if (dst_enc < 16) {
4553     // use nds as scatch for xmm0 to hold src
4554     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4555     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4556     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4557     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4558   } else {
4559     // worse case scenario, all regs are in the upper bank
4560     subptr(rsp, 64);
4561     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4562     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4563     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4564     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4565     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4566     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4567     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4568     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4569     addptr(rsp, 64);
4570   }
4571 }
4572 
4573 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4574   int dst_enc = dst->encoding();
4575   int nds_enc = nds->encoding();
4576   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4577     Assembler::vpsubb(dst, nds, src, vector_len);
4578   } else if (dst_enc < 16) {
4579     Assembler::vpsubb(dst, dst, src, vector_len);
4580   } else if (nds_enc < 16) {
4581     // implies dst_enc in upper bank with src as scratch
4582     evmovdqul(nds, dst, Assembler::AVX_512bit);
4583     Assembler::vpsubb(nds, nds, src, vector_len);
4584     evmovdqul(dst, nds, Assembler::AVX_512bit);
4585   } else {
4586     // worse case scenario, all regs in upper bank
4587     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4588     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4589     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4590     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4591   }
4592 }
4593 
4594 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4595   int dst_enc = dst->encoding();
4596   int nds_enc = nds->encoding();
4597   int src_enc = src->encoding();
4598   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4599     Assembler::vpsubw(dst, nds, src, vector_len);
4600   } else if ((dst_enc < 16) && (src_enc < 16)) {
4601     Assembler::vpsubw(dst, dst, src, vector_len);
4602   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4603     // use nds as scratch for src
4604     evmovdqul(nds, src, Assembler::AVX_512bit);
4605     Assembler::vpsubw(dst, dst, nds, vector_len);
4606   } else if ((src_enc < 16) && (nds_enc < 16)) {
4607     // use nds as scratch for dst
4608     evmovdqul(nds, dst, Assembler::AVX_512bit);
4609     Assembler::vpsubw(nds, nds, src, vector_len);
4610     evmovdqul(dst, nds, Assembler::AVX_512bit);
4611   } else if (dst_enc < 16) {
4612     // use nds as scatch for xmm0 to hold src
4613     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4614     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4615     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4616     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4617   } else {
4618     // worse case scenario, all regs are in the upper bank
4619     subptr(rsp, 64);
4620     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4621     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4622     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4623     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4624     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4625     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4626     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4627     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4628     addptr(rsp, 64);
4629   }
4630 }
4631 
4632 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4633   int dst_enc = dst->encoding();
4634   int nds_enc = nds->encoding();
4635   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4636     Assembler::vpsubw(dst, nds, src, vector_len);
4637   } else if (dst_enc < 16) {
4638     Assembler::vpsubw(dst, dst, src, vector_len);
4639   } else if (nds_enc < 16) {
4640     // implies dst_enc in upper bank with src as scratch
4641     evmovdqul(nds, dst, Assembler::AVX_512bit);
4642     Assembler::vpsubw(nds, nds, src, vector_len);
4643     evmovdqul(dst, nds, Assembler::AVX_512bit);
4644   } else {
4645     // worse case scenario, all regs in upper bank
4646     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4647     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4648     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4649     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4650   }
4651 }
4652 
4653 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4654   int dst_enc = dst->encoding();
4655   int nds_enc = nds->encoding();
4656   int shift_enc = shift->encoding();
4657   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4658     Assembler::vpsraw(dst, nds, shift, vector_len);
4659   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4660     Assembler::vpsraw(dst, dst, shift, vector_len);
4661   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4662     // use nds_enc as scratch with shift
4663     evmovdqul(nds, shift, Assembler::AVX_512bit);
4664     Assembler::vpsraw(dst, dst, nds, vector_len);
4665   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4666     // use nds as scratch with dst
4667     evmovdqul(nds, dst, Assembler::AVX_512bit);
4668     Assembler::vpsraw(nds, nds, shift, vector_len);
4669     evmovdqul(dst, nds, Assembler::AVX_512bit);
4670   } else if (dst_enc < 16) {
4671     // use nds to save a copy of xmm0 and hold shift
4672     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4673     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4674     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4675     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4676   } else if (nds_enc < 16) {
4677     // use nds as dest as temps
4678     evmovdqul(nds, dst, Assembler::AVX_512bit);
4679     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4680     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4681     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4682     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4683     evmovdqul(dst, nds, Assembler::AVX_512bit);
4684   } else {
4685     // worse case scenario, all regs are in the upper bank
4686     subptr(rsp, 64);
4687     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4688     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4689     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4690     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4691     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4692     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4693     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4694     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4695     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4696     addptr(rsp, 64);
4697   }
4698 }
4699 
4700 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4701   int dst_enc = dst->encoding();
4702   int nds_enc = nds->encoding();
4703   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4704     Assembler::vpsraw(dst, nds, shift, vector_len);
4705   } else if (dst_enc < 16) {
4706     Assembler::vpsraw(dst, dst, shift, vector_len);
4707   } else if (nds_enc < 16) {
4708     // use nds as scratch
4709     evmovdqul(nds, dst, Assembler::AVX_512bit);
4710     Assembler::vpsraw(nds, nds, shift, vector_len);
4711     evmovdqul(dst, nds, Assembler::AVX_512bit);
4712   } else {
4713     // use nds as scratch for xmm0
4714     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4715     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4716     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4717     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4718   }
4719 }
4720 
4721 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4722   int dst_enc = dst->encoding();
4723   int nds_enc = nds->encoding();
4724   int shift_enc = shift->encoding();
4725   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4726     Assembler::vpsrlw(dst, nds, shift, vector_len);
4727   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4728     Assembler::vpsrlw(dst, dst, shift, vector_len);
4729   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4730     // use nds_enc as scratch with shift
4731     evmovdqul(nds, shift, Assembler::AVX_512bit);
4732     Assembler::vpsrlw(dst, dst, nds, vector_len);
4733   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4734     // use nds as scratch with dst
4735     evmovdqul(nds, dst, Assembler::AVX_512bit);
4736     Assembler::vpsrlw(nds, nds, shift, vector_len);
4737     evmovdqul(dst, nds, Assembler::AVX_512bit);
4738   } else if (dst_enc < 16) {
4739     // use nds to save a copy of xmm0 and hold shift
4740     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4741     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4742     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4743     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4744   } else if (nds_enc < 16) {
4745     // use nds as dest as temps
4746     evmovdqul(nds, dst, Assembler::AVX_512bit);
4747     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4748     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4749     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4750     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4751     evmovdqul(dst, nds, Assembler::AVX_512bit);
4752   } else {
4753     // worse case scenario, all regs are in the upper bank
4754     subptr(rsp, 64);
4755     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4756     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4757     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4758     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4759     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4760     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4761     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4762     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4763     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4764     addptr(rsp, 64);
4765   }
4766 }
4767 
4768 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4769   int dst_enc = dst->encoding();
4770   int nds_enc = nds->encoding();
4771   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4772     Assembler::vpsrlw(dst, nds, shift, vector_len);
4773   } else if (dst_enc < 16) {
4774     Assembler::vpsrlw(dst, dst, shift, vector_len);
4775   } else if (nds_enc < 16) {
4776     // use nds as scratch
4777     evmovdqul(nds, dst, Assembler::AVX_512bit);
4778     Assembler::vpsrlw(nds, nds, shift, vector_len);
4779     evmovdqul(dst, nds, Assembler::AVX_512bit);
4780   } else {
4781     // use nds as scratch for xmm0
4782     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4783     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4784     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4785     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4786   }
4787 }
4788 
4789 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4790   int dst_enc = dst->encoding();
4791   int nds_enc = nds->encoding();
4792   int shift_enc = shift->encoding();
4793   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4794     Assembler::vpsllw(dst, nds, shift, vector_len);
4795   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4796     Assembler::vpsllw(dst, dst, shift, vector_len);
4797   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4798     // use nds_enc as scratch with shift
4799     evmovdqul(nds, shift, Assembler::AVX_512bit);
4800     Assembler::vpsllw(dst, dst, nds, vector_len);
4801   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4802     // use nds as scratch with dst
4803     evmovdqul(nds, dst, Assembler::AVX_512bit);
4804     Assembler::vpsllw(nds, nds, shift, vector_len);
4805     evmovdqul(dst, nds, Assembler::AVX_512bit);
4806   } else if (dst_enc < 16) {
4807     // use nds to save a copy of xmm0 and hold shift
4808     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4809     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4810     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4811     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4812   } else if (nds_enc < 16) {
4813     // use nds as dest as temps
4814     evmovdqul(nds, dst, Assembler::AVX_512bit);
4815     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4816     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4817     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4818     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4819     evmovdqul(dst, nds, Assembler::AVX_512bit);
4820   } else {
4821     // worse case scenario, all regs are in the upper bank
4822     subptr(rsp, 64);
4823     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4824     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4825     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4826     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4827     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4828     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4829     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4830     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4831     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4832     addptr(rsp, 64);
4833   }
4834 }
4835 
4836 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4837   int dst_enc = dst->encoding();
4838   int nds_enc = nds->encoding();
4839   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4840     Assembler::vpsllw(dst, nds, shift, vector_len);
4841   } else if (dst_enc < 16) {
4842     Assembler::vpsllw(dst, dst, shift, vector_len);
4843   } else if (nds_enc < 16) {
4844     // use nds as scratch
4845     evmovdqul(nds, dst, Assembler::AVX_512bit);
4846     Assembler::vpsllw(nds, nds, shift, vector_len);
4847     evmovdqul(dst, nds, Assembler::AVX_512bit);
4848   } else {
4849     // use nds as scratch for xmm0
4850     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4851     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4852     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4853     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4854   }
4855 }
4856 
4857 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4858   int dst_enc = dst->encoding();
4859   int src_enc = src->encoding();
4860   if ((dst_enc < 16) && (src_enc < 16)) {
4861     Assembler::vptest(dst, src);
4862   } else if (src_enc < 16) {
4863     subptr(rsp, 64);
4864     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4865     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4866     Assembler::vptest(xmm0, src);
4867     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4868     addptr(rsp, 64);
4869   } else if (dst_enc < 16) {
4870     subptr(rsp, 64);
4871     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4872     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4873     Assembler::vptest(dst, xmm0);
4874     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4875     addptr(rsp, 64);
4876   } else {
4877     subptr(rsp, 64);
4878     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4879     subptr(rsp, 64);
4880     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4881     movdqu(xmm0, src);
4882     movdqu(xmm1, dst);
4883     Assembler::vptest(xmm1, xmm0);
4884     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4885     addptr(rsp, 64);
4886     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4887     addptr(rsp, 64);
4888   }
4889 }
4890 
4891 // This instruction exists within macros, ergo we cannot control its input
4892 // when emitted through those patterns.
4893 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4894   if (VM_Version::supports_avx512nobw()) {
4895     int dst_enc = dst->encoding();
4896     int src_enc = src->encoding();
4897     if (dst_enc == src_enc) {
4898       if (dst_enc < 16) {
4899         Assembler::punpcklbw(dst, src);
4900       } else {
4901         subptr(rsp, 64);
4902         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4903         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4904         Assembler::punpcklbw(xmm0, xmm0);
4905         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4906         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4907         addptr(rsp, 64);
4908       }
4909     } else {
4910       if ((src_enc < 16) && (dst_enc < 16)) {
4911         Assembler::punpcklbw(dst, src);
4912       } else if (src_enc < 16) {
4913         subptr(rsp, 64);
4914         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4915         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4916         Assembler::punpcklbw(xmm0, src);
4917         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4918         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4919         addptr(rsp, 64);
4920       } else if (dst_enc < 16) {
4921         subptr(rsp, 64);
4922         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4923         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4924         Assembler::punpcklbw(dst, xmm0);
4925         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4926         addptr(rsp, 64);
4927       } else {
4928         subptr(rsp, 64);
4929         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4930         subptr(rsp, 64);
4931         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4932         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4933         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4934         Assembler::punpcklbw(xmm0, xmm1);
4935         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4936         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4937         addptr(rsp, 64);
4938         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4939         addptr(rsp, 64);
4940       }
4941     }
4942   } else {
4943     Assembler::punpcklbw(dst, src);
4944   }
4945 }
4946 
4947 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
4948   if (VM_Version::supports_avx512vl()) {
4949     Assembler::pshufd(dst, src, mode);
4950   } else {
4951     int dst_enc = dst->encoding();
4952     if (dst_enc < 16) {
4953       Assembler::pshufd(dst, src, mode);
4954     } else {
4955       subptr(rsp, 64);
4956       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4957       evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4958       Assembler::pshufd(xmm0, src, mode);
4959       movdqu(dst, xmm0);
4960       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4961       addptr(rsp, 64);
4962     }
4963   }
4964 }
4965 
4966 // This instruction exists within macros, ergo we cannot control its input
4967 // when emitted through those patterns.
4968 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4969   if (VM_Version::supports_avx512nobw()) {
4970     int dst_enc = dst->encoding();
4971     int src_enc = src->encoding();
4972     if (dst_enc == src_enc) {
4973       if (dst_enc < 16) {
4974         Assembler::pshuflw(dst, src, mode);
4975       } else {
4976         subptr(rsp, 64);
4977         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4978         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4979         Assembler::pshuflw(xmm0, xmm0, mode);
4980         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4981         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4982         addptr(rsp, 64);
4983       }
4984     } else {
4985       if ((src_enc < 16) && (dst_enc < 16)) {
4986         Assembler::pshuflw(dst, src, mode);
4987       } else if (src_enc < 16) {
4988         subptr(rsp, 64);
4989         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4990         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4991         Assembler::pshuflw(xmm0, src, mode);
4992         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4993         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4994         addptr(rsp, 64);
4995       } else if (dst_enc < 16) {
4996         subptr(rsp, 64);
4997         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4998         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4999         Assembler::pshuflw(dst, xmm0, mode);
5000         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5001         addptr(rsp, 64);
5002       } else {
5003         subptr(rsp, 64);
5004         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5005         subptr(rsp, 64);
5006         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
5007         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
5008         evmovdqul(xmm1, src, Assembler::AVX_512bit);
5009         Assembler::pshuflw(xmm0, xmm1, mode);
5010         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
5011         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
5012         addptr(rsp, 64);
5013         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5014         addptr(rsp, 64);
5015       }
5016     }
5017   } else {
5018     Assembler::pshuflw(dst, src, mode);
5019   }
5020 }
5021 
5022 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5023   if (reachable(src)) {
5024     vandpd(dst, nds, as_Address(src), vector_len);
5025   } else {
5026     lea(rscratch1, src);
5027     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5028   }
5029 }
5030 
5031 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5032   if (reachable(src)) {
5033     vandps(dst, nds, as_Address(src), vector_len);
5034   } else {
5035     lea(rscratch1, src);
5036     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5037   }
5038 }
5039 
5040 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5041   if (reachable(src)) {
5042     vdivsd(dst, nds, as_Address(src));
5043   } else {
5044     lea(rscratch1, src);
5045     vdivsd(dst, nds, Address(rscratch1, 0));
5046   }
5047 }
5048 
5049 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5050   if (reachable(src)) {
5051     vdivss(dst, nds, as_Address(src));
5052   } else {
5053     lea(rscratch1, src);
5054     vdivss(dst, nds, Address(rscratch1, 0));
5055   }
5056 }
5057 
5058 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5059   if (reachable(src)) {
5060     vmulsd(dst, nds, as_Address(src));
5061   } else {
5062     lea(rscratch1, src);
5063     vmulsd(dst, nds, Address(rscratch1, 0));
5064   }
5065 }
5066 
5067 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5068   if (reachable(src)) {
5069     vmulss(dst, nds, as_Address(src));
5070   } else {
5071     lea(rscratch1, src);
5072     vmulss(dst, nds, Address(rscratch1, 0));
5073   }
5074 }
5075 
5076 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5077   if (reachable(src)) {
5078     vsubsd(dst, nds, as_Address(src));
5079   } else {
5080     lea(rscratch1, src);
5081     vsubsd(dst, nds, Address(rscratch1, 0));
5082   }
5083 }
5084 
5085 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5086   if (reachable(src)) {
5087     vsubss(dst, nds, as_Address(src));
5088   } else {
5089     lea(rscratch1, src);
5090     vsubss(dst, nds, Address(rscratch1, 0));
5091   }
5092 }
5093 
5094 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5095   int nds_enc = nds->encoding();
5096   int dst_enc = dst->encoding();
5097   bool dst_upper_bank = (dst_enc > 15);
5098   bool nds_upper_bank = (nds_enc > 15);
5099   if (VM_Version::supports_avx512novl() &&
5100       (nds_upper_bank || dst_upper_bank)) {
5101     if (dst_upper_bank) {
5102       subptr(rsp, 64);
5103       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5104       movflt(xmm0, nds);
5105       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5106       movflt(dst, xmm0);
5107       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5108       addptr(rsp, 64);
5109     } else {
5110       movflt(dst, nds);
5111       vxorps(dst, dst, src, Assembler::AVX_128bit);
5112     }
5113   } else {
5114     vxorps(dst, nds, src, Assembler::AVX_128bit);
5115   }
5116 }
5117 
5118 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5119   int nds_enc = nds->encoding();
5120   int dst_enc = dst->encoding();
5121   bool dst_upper_bank = (dst_enc > 15);
5122   bool nds_upper_bank = (nds_enc > 15);
5123   if (VM_Version::supports_avx512novl() &&
5124       (nds_upper_bank || dst_upper_bank)) {
5125     if (dst_upper_bank) {
5126       subptr(rsp, 64);
5127       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5128       movdbl(xmm0, nds);
5129       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5130       movdbl(dst, xmm0);
5131       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5132       addptr(rsp, 64);
5133     } else {
5134       movdbl(dst, nds);
5135       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5136     }
5137   } else {
5138     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5139   }
5140 }
5141 
5142 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5143   if (reachable(src)) {
5144     vxorpd(dst, nds, as_Address(src), vector_len);
5145   } else {
5146     lea(rscratch1, src);
5147     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5148   }
5149 }
5150 
5151 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5152   if (reachable(src)) {
5153     vxorps(dst, nds, as_Address(src), vector_len);
5154   } else {
5155     lea(rscratch1, src);
5156     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5157   }
5158 }
5159 
5160 
5161 void MacroAssembler::resolve_jobject(Register value,
5162                                      Register thread,
5163                                      Register tmp) {
5164   assert_different_registers(value, thread, tmp);
5165   Label done, not_weak;
5166   testptr(value, value);
5167   jcc(Assembler::zero, done);                // Use NULL as-is.
5168   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5169   jcc(Assembler::zero, not_weak);
5170   // Resolve jweak.
5171   movptr(value, Address(value, -JNIHandles::weak_tag_value));
5172   verify_oop(value);
5173 #if INCLUDE_ALL_GCS
5174   if (UseG1GC) {
5175     g1_write_barrier_pre(noreg /* obj */,
5176                          value /* pre_val */,
5177                          thread /* thread */,
5178                          tmp /* tmp */,
5179                          true /* tosca_live */,
5180                          true /* expand_call */);
5181   }
5182 #endif // INCLUDE_ALL_GCS
5183   jmp(done);
5184   bind(not_weak);
5185   // Resolve (untagged) jobject.
5186   movptr(value, Address(value, 0));
5187   verify_oop(value);
5188   bind(done);
5189 }
5190 
5191 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5192   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5193   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5194   // The inverted mask is sign-extended
5195   andptr(possibly_jweak, inverted_jweak_mask);
5196 }
5197 
5198 //////////////////////////////////////////////////////////////////////////////////
5199 #if INCLUDE_ALL_GCS
5200 
5201 void MacroAssembler::g1_write_barrier_pre(Register obj,
5202                                           Register pre_val,
5203                                           Register thread,
5204                                           Register tmp,
5205                                           bool tosca_live,
5206                                           bool expand_call) {
5207 
5208   // If expand_call is true then we expand the call_VM_leaf macro
5209   // directly to skip generating the check by
5210   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5211 
5212 #ifdef _LP64
5213   assert(thread == r15_thread, "must be");
5214 #endif // _LP64
5215 
5216   Label done;
5217   Label runtime;
5218 
5219   assert(pre_val != noreg, "check this code");
5220 
5221   if (obj != noreg) {
5222     assert_different_registers(obj, pre_val, tmp);
5223     assert(pre_val != rax, "check this code");
5224   }
5225 
5226   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5227                                        SATBMarkQueue::byte_offset_of_active()));
5228   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5229                                        SATBMarkQueue::byte_offset_of_index()));
5230   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5231                                        SATBMarkQueue::byte_offset_of_buf()));
5232 
5233 
5234   // Is marking active?
5235   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5236     cmpl(in_progress, 0);
5237   } else {
5238     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5239     cmpb(in_progress, 0);
5240   }
5241   jcc(Assembler::equal, done);
5242 
5243   // Do we need to load the previous value?
5244   if (obj != noreg) {
5245     load_heap_oop(pre_val, Address(obj, 0));
5246   }
5247 
5248   // Is the previous value null?
5249   cmpptr(pre_val, (int32_t) NULL_WORD);
5250   jcc(Assembler::equal, done);
5251 
5252   // Can we store original value in the thread's buffer?
5253   // Is index == 0?
5254   // (The index field is typed as size_t.)
5255 
5256   movptr(tmp, index);                   // tmp := *index_adr
5257   cmpptr(tmp, 0);                       // tmp == 0?
5258   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5259 
5260   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5261   movptr(index, tmp);                   // *index_adr := tmp
5262   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5263 
5264   // Record the previous value
5265   movptr(Address(tmp, 0), pre_val);
5266   jmp(done);
5267 
5268   bind(runtime);
5269   // save the live input values
5270   if(tosca_live) push(rax);
5271 
5272   if (obj != noreg && obj != rax)
5273     push(obj);
5274 
5275   if (pre_val != rax)
5276     push(pre_val);
5277 
5278   // Calling the runtime using the regular call_VM_leaf mechanism generates
5279   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5280   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5281   //
5282   // If we care generating the pre-barrier without a frame (e.g. in the
5283   // intrinsified Reference.get() routine) then ebp might be pointing to
5284   // the caller frame and so this check will most likely fail at runtime.
5285   //
5286   // Expanding the call directly bypasses the generation of the check.
5287   // So when we do not have have a full interpreter frame on the stack
5288   // expand_call should be passed true.
5289 
5290   NOT_LP64( push(thread); )
5291 
5292   if (expand_call) {
5293     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5294     pass_arg1(this, thread);
5295     pass_arg0(this, pre_val);
5296     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5297   } else {
5298     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5299   }
5300 
5301   NOT_LP64( pop(thread); )
5302 
5303   // save the live input values
5304   if (pre_val != rax)
5305     pop(pre_val);
5306 
5307   if (obj != noreg && obj != rax)
5308     pop(obj);
5309 
5310   if(tosca_live) pop(rax);
5311 
5312   bind(done);
5313 }
5314 
5315 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5316                                            Register new_val,
5317                                            Register thread,
5318                                            Register tmp,
5319                                            Register tmp2) {
5320 #ifdef _LP64
5321   assert(thread == r15_thread, "must be");
5322 #endif // _LP64
5323 
5324   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5325                                        DirtyCardQueue::byte_offset_of_index()));
5326   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5327                                        DirtyCardQueue::byte_offset_of_buf()));
5328 
5329   CardTableModRefBS* ct =
5330     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5331   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5332 
5333   Label done;
5334   Label runtime;
5335 
5336   // Does store cross heap regions?
5337 
5338   movptr(tmp, store_addr);
5339   xorptr(tmp, new_val);
5340   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5341   jcc(Assembler::equal, done);
5342 
5343   // crosses regions, storing NULL?
5344 
5345   cmpptr(new_val, (int32_t) NULL_WORD);
5346   jcc(Assembler::equal, done);
5347 
5348   // storing region crossing non-NULL, is card already dirty?
5349 
5350   const Register card_addr = tmp;
5351   const Register cardtable = tmp2;
5352 
5353   movptr(card_addr, store_addr);
5354   shrptr(card_addr, CardTableModRefBS::card_shift);
5355   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5356   // a valid address and therefore is not properly handled by the relocation code.
5357   movptr(cardtable, (intptr_t)ct->byte_map_base);
5358   addptr(card_addr, cardtable);
5359 
5360   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5361   jcc(Assembler::equal, done);
5362 
5363   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5364   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5365   jcc(Assembler::equal, done);
5366 
5367 
5368   // storing a region crossing, non-NULL oop, card is clean.
5369   // dirty card and log.
5370 
5371   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5372 
5373   cmpl(queue_index, 0);
5374   jcc(Assembler::equal, runtime);
5375   subl(queue_index, wordSize);
5376   movptr(tmp2, buffer);
5377 #ifdef _LP64
5378   movslq(rscratch1, queue_index);
5379   addq(tmp2, rscratch1);
5380   movq(Address(tmp2, 0), card_addr);
5381 #else
5382   addl(tmp2, queue_index);
5383   movl(Address(tmp2, 0), card_addr);
5384 #endif
5385   jmp(done);
5386 
5387   bind(runtime);
5388   // save the live input values
5389   push(store_addr);
5390   push(new_val);
5391 #ifdef _LP64
5392   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5393 #else
5394   push(thread);
5395   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5396   pop(thread);
5397 #endif
5398   pop(new_val);
5399   pop(store_addr);
5400 
5401   bind(done);
5402 }
5403 
5404 #endif // INCLUDE_ALL_GCS
5405 //////////////////////////////////////////////////////////////////////////////////
5406 
5407 
5408 void MacroAssembler::store_check(Register obj, Address dst) {
5409   store_check(obj);
5410 }
5411 
5412 void MacroAssembler::store_check(Register obj) {
5413   // Does a store check for the oop in register obj. The content of
5414   // register obj is destroyed afterwards.
5415   BarrierSet* bs = Universe::heap()->barrier_set();
5416   assert(bs->kind() == BarrierSet::CardTableForRS ||
5417          bs->kind() == BarrierSet::CardTableExtension,
5418          "Wrong barrier set kind");
5419 
5420   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5421   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5422 
5423   shrptr(obj, CardTableModRefBS::card_shift);
5424 
5425   Address card_addr;
5426 
5427   // The calculation for byte_map_base is as follows:
5428   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5429   // So this essentially converts an address to a displacement and it will
5430   // never need to be relocated. On 64bit however the value may be too
5431   // large for a 32bit displacement.
5432   intptr_t disp = (intptr_t) ct->byte_map_base;
5433   if (is_simm32(disp)) {
5434     card_addr = Address(noreg, obj, Address::times_1, disp);
5435   } else {
5436     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5437     // displacement and done in a single instruction given favorable mapping and a
5438     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5439     // entry and that entry is not properly handled by the relocation code.
5440     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5441     Address index(noreg, obj, Address::times_1);
5442     card_addr = as_Address(ArrayAddress(cardtable, index));
5443   }
5444 
5445   int dirty = CardTableModRefBS::dirty_card_val();
5446   if (UseCondCardMark) {
5447     Label L_already_dirty;
5448     if (UseConcMarkSweepGC) {
5449       membar(Assembler::StoreLoad);
5450     }
5451     cmpb(card_addr, dirty);
5452     jcc(Assembler::equal, L_already_dirty);
5453     movb(card_addr, dirty);
5454     bind(L_already_dirty);
5455   } else {
5456     movb(card_addr, dirty);
5457   }
5458 }
5459 
5460 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5461   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5462 }
5463 
5464 // Force generation of a 4 byte immediate value even if it fits into 8bit
5465 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5466   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5467 }
5468 
5469 void MacroAssembler::subptr(Register dst, Register src) {
5470   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5471 }
5472 
5473 // C++ bool manipulation
5474 void MacroAssembler::testbool(Register dst) {
5475   if(sizeof(bool) == 1)
5476     testb(dst, 0xff);
5477   else if(sizeof(bool) == 2) {
5478     // testw implementation needed for two byte bools
5479     ShouldNotReachHere();
5480   } else if(sizeof(bool) == 4)
5481     testl(dst, dst);
5482   else
5483     // unsupported
5484     ShouldNotReachHere();
5485 }
5486 
5487 void MacroAssembler::testptr(Register dst, Register src) {
5488   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5489 }
5490 
5491 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5492 void MacroAssembler::tlab_allocate(Register obj,
5493                                    Register var_size_in_bytes,
5494                                    int con_size_in_bytes,
5495                                    Register t1,
5496                                    Register t2,
5497                                    Label& slow_case) {
5498   assert_different_registers(obj, t1, t2);
5499   assert_different_registers(obj, var_size_in_bytes, t1);
5500   Register end = t2;
5501   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5502 
5503   verify_tlab();
5504 
5505   NOT_LP64(get_thread(thread));
5506 
5507   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5508   if (var_size_in_bytes == noreg) {
5509     lea(end, Address(obj, con_size_in_bytes));
5510   } else {
5511     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5512   }
5513   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5514   jcc(Assembler::above, slow_case);
5515 
5516   // update the tlab top pointer
5517   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5518 
5519   // recover var_size_in_bytes if necessary
5520   if (var_size_in_bytes == end) {
5521     subptr(var_size_in_bytes, obj);
5522   }
5523   verify_tlab();
5524 }
5525 
5526 // Preserves rbx, and rdx.
5527 Register MacroAssembler::tlab_refill(Label& retry,
5528                                      Label& try_eden,
5529                                      Label& slow_case) {
5530   Register top = rax;
5531   Register t1  = rcx; // object size
5532   Register t2  = rsi;
5533   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5534   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5535   Label do_refill, discard_tlab;
5536 
5537   if (!Universe::heap()->supports_inline_contig_alloc()) {
5538     // No allocation in the shared eden.
5539     jmp(slow_case);
5540   }
5541 
5542   NOT_LP64(get_thread(thread_reg));
5543 
5544   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5545   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5546 
5547   // calculate amount of free space
5548   subptr(t1, top);
5549   shrptr(t1, LogHeapWordSize);
5550 
5551   // Retain tlab and allocate object in shared space if
5552   // the amount free in the tlab is too large to discard.
5553   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5554   jcc(Assembler::lessEqual, discard_tlab);
5555 
5556   // Retain
5557   // %%% yuck as movptr...
5558   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5559   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5560   if (TLABStats) {
5561     // increment number of slow_allocations
5562     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5563   }
5564   jmp(try_eden);
5565 
5566   bind(discard_tlab);
5567   if (TLABStats) {
5568     // increment number of refills
5569     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5570     // accumulate wastage -- t1 is amount free in tlab
5571     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5572   }
5573 
5574   // if tlab is currently allocated (top or end != null) then
5575   // fill [top, end + alignment_reserve) with array object
5576   testptr(top, top);
5577   jcc(Assembler::zero, do_refill);
5578 
5579   // set up the mark word
5580   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5581   // set the length to the remaining space
5582   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5583   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5584   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5585   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5586   // set klass to intArrayKlass
5587   // dubious reloc why not an oop reloc?
5588   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5589   // store klass last.  concurrent gcs assumes klass length is valid if
5590   // klass field is not null.
5591   store_klass(top, t1);
5592 
5593   movptr(t1, top);
5594   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5595   incr_allocated_bytes(thread_reg, t1, 0);
5596 
5597   // refill the tlab with an eden allocation
5598   bind(do_refill);
5599   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5600   shlptr(t1, LogHeapWordSize);
5601   // allocate new tlab, address returned in top
5602   eden_allocate(top, t1, 0, t2, slow_case);
5603 
5604   // Check that t1 was preserved in eden_allocate.
5605 #ifdef ASSERT
5606   if (UseTLAB) {
5607     Label ok;
5608     Register tsize = rsi;
5609     assert_different_registers(tsize, thread_reg, t1);
5610     push(tsize);
5611     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5612     shlptr(tsize, LogHeapWordSize);
5613     cmpptr(t1, tsize);
5614     jcc(Assembler::equal, ok);
5615     STOP("assert(t1 != tlab size)");
5616     should_not_reach_here();
5617 
5618     bind(ok);
5619     pop(tsize);
5620   }
5621 #endif
5622   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5623   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5624   addptr(top, t1);
5625   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5626   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5627 
5628   if (ZeroTLAB) {
5629     // This is a fast TLAB refill, therefore the GC is not notified of it.
5630     // So compiled code must fill the new TLAB with zeroes.
5631     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5632     zero_memory(top, t1, 0, t2);
5633   }
5634 
5635   verify_tlab();
5636   jmp(retry);
5637 
5638   return thread_reg; // for use by caller
5639 }
5640 
5641 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5642 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5643   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5644   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5645   Label done;
5646 
5647   testptr(length_in_bytes, length_in_bytes);
5648   jcc(Assembler::zero, done);
5649 
5650   // initialize topmost word, divide index by 2, check if odd and test if zero
5651   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5652 #ifdef ASSERT
5653   {
5654     Label L;
5655     testptr(length_in_bytes, BytesPerWord - 1);
5656     jcc(Assembler::zero, L);
5657     stop("length must be a multiple of BytesPerWord");
5658     bind(L);
5659   }
5660 #endif
5661   Register index = length_in_bytes;
5662   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5663   if (UseIncDec) {
5664     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5665   } else {
5666     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5667     shrptr(index, 1);
5668   }
5669 #ifndef _LP64
5670   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5671   {
5672     Label even;
5673     // note: if index was a multiple of 8, then it cannot
5674     //       be 0 now otherwise it must have been 0 before
5675     //       => if it is even, we don't need to check for 0 again
5676     jcc(Assembler::carryClear, even);
5677     // clear topmost word (no jump would be needed if conditional assignment worked here)
5678     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5679     // index could be 0 now, must check again
5680     jcc(Assembler::zero, done);
5681     bind(even);
5682   }
5683 #endif // !_LP64
5684   // initialize remaining object fields: index is a multiple of 2 now
5685   {
5686     Label loop;
5687     bind(loop);
5688     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5689     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5690     decrement(index);
5691     jcc(Assembler::notZero, loop);
5692   }
5693 
5694   bind(done);
5695 }
5696 
5697 void MacroAssembler::incr_allocated_bytes(Register thread,
5698                                           Register var_size_in_bytes,
5699                                           int con_size_in_bytes,
5700                                           Register t1) {
5701   if (!thread->is_valid()) {
5702 #ifdef _LP64
5703     thread = r15_thread;
5704 #else
5705     assert(t1->is_valid(), "need temp reg");
5706     thread = t1;
5707     get_thread(thread);
5708 #endif
5709   }
5710 
5711 #ifdef _LP64
5712   if (var_size_in_bytes->is_valid()) {
5713     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5714   } else {
5715     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5716   }
5717 #else
5718   if (var_size_in_bytes->is_valid()) {
5719     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5720   } else {
5721     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5722   }
5723   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5724 #endif
5725 }
5726 
5727 // Look up the method for a megamorphic invokeinterface call.
5728 // The target method is determined by <intf_klass, itable_index>.
5729 // The receiver klass is in recv_klass.
5730 // On success, the result will be in method_result, and execution falls through.
5731 // On failure, execution transfers to the given label.
5732 void MacroAssembler::lookup_interface_method(Register recv_klass,
5733                                              Register intf_klass,
5734                                              RegisterOrConstant itable_index,
5735                                              Register method_result,
5736                                              Register scan_temp,
5737                                              Label& L_no_such_interface) {
5738   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5739   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5740          "caller must use same register for non-constant itable index as for method");
5741 
5742   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5743   int vtable_base = in_bytes(Klass::vtable_start_offset());
5744   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5745   int scan_step   = itableOffsetEntry::size() * wordSize;
5746   int vte_size    = vtableEntry::size_in_bytes();
5747   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5748   assert(vte_size == wordSize, "else adjust times_vte_scale");
5749 
5750   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5751 
5752   // %%% Could store the aligned, prescaled offset in the klassoop.
5753   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5754 
5755   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5756   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5757   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5758 
5759   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5760   //   if (scan->interface() == intf) {
5761   //     result = (klass + scan->offset() + itable_index);
5762   //   }
5763   // }
5764   Label search, found_method;
5765 
5766   for (int peel = 1; peel >= 0; peel--) {
5767     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5768     cmpptr(intf_klass, method_result);
5769 
5770     if (peel) {
5771       jccb(Assembler::equal, found_method);
5772     } else {
5773       jccb(Assembler::notEqual, search);
5774       // (invert the test to fall through to found_method...)
5775     }
5776 
5777     if (!peel)  break;
5778 
5779     bind(search);
5780 
5781     // Check that the previous entry is non-null.  A null entry means that
5782     // the receiver class doesn't implement the interface, and wasn't the
5783     // same as when the caller was compiled.
5784     testptr(method_result, method_result);
5785     jcc(Assembler::zero, L_no_such_interface);
5786     addptr(scan_temp, scan_step);
5787   }
5788 
5789   bind(found_method);
5790 
5791   // Got a hit.
5792   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5793   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5794 }
5795 
5796 
5797 // virtual method calling
5798 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5799                                            RegisterOrConstant vtable_index,
5800                                            Register method_result) {
5801   const int base = in_bytes(Klass::vtable_start_offset());
5802   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5803   Address vtable_entry_addr(recv_klass,
5804                             vtable_index, Address::times_ptr,
5805                             base + vtableEntry::method_offset_in_bytes());
5806   movptr(method_result, vtable_entry_addr);
5807 }
5808 
5809 
5810 void MacroAssembler::check_klass_subtype(Register sub_klass,
5811                            Register super_klass,
5812                            Register temp_reg,
5813                            Label& L_success) {
5814   Label L_failure;
5815   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5816   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5817   bind(L_failure);
5818 }
5819 
5820 
5821 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5822                                                    Register super_klass,
5823                                                    Register temp_reg,
5824                                                    Label* L_success,
5825                                                    Label* L_failure,
5826                                                    Label* L_slow_path,
5827                                         RegisterOrConstant super_check_offset) {
5828   assert_different_registers(sub_klass, super_klass, temp_reg);
5829   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5830   if (super_check_offset.is_register()) {
5831     assert_different_registers(sub_klass, super_klass,
5832                                super_check_offset.as_register());
5833   } else if (must_load_sco) {
5834     assert(temp_reg != noreg, "supply either a temp or a register offset");
5835   }
5836 
5837   Label L_fallthrough;
5838   int label_nulls = 0;
5839   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5840   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5841   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5842   assert(label_nulls <= 1, "at most one NULL in the batch");
5843 
5844   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5845   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5846   Address super_check_offset_addr(super_klass, sco_offset);
5847 
5848   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5849   // range of a jccb.  If this routine grows larger, reconsider at
5850   // least some of these.
5851 #define local_jcc(assembler_cond, label)                                \
5852   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5853   else                             jcc( assembler_cond, label) /*omit semi*/
5854 
5855   // Hacked jmp, which may only be used just before L_fallthrough.
5856 #define final_jmp(label)                                                \
5857   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5858   else                            jmp(label)                /*omit semi*/
5859 
5860   // If the pointers are equal, we are done (e.g., String[] elements).
5861   // This self-check enables sharing of secondary supertype arrays among
5862   // non-primary types such as array-of-interface.  Otherwise, each such
5863   // type would need its own customized SSA.
5864   // We move this check to the front of the fast path because many
5865   // type checks are in fact trivially successful in this manner,
5866   // so we get a nicely predicted branch right at the start of the check.
5867   cmpptr(sub_klass, super_klass);
5868   local_jcc(Assembler::equal, *L_success);
5869 
5870   // Check the supertype display:
5871   if (must_load_sco) {
5872     // Positive movl does right thing on LP64.
5873     movl(temp_reg, super_check_offset_addr);
5874     super_check_offset = RegisterOrConstant(temp_reg);
5875   }
5876   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5877   cmpptr(super_klass, super_check_addr); // load displayed supertype
5878 
5879   // This check has worked decisively for primary supers.
5880   // Secondary supers are sought in the super_cache ('super_cache_addr').
5881   // (Secondary supers are interfaces and very deeply nested subtypes.)
5882   // This works in the same check above because of a tricky aliasing
5883   // between the super_cache and the primary super display elements.
5884   // (The 'super_check_addr' can address either, as the case requires.)
5885   // Note that the cache is updated below if it does not help us find
5886   // what we need immediately.
5887   // So if it was a primary super, we can just fail immediately.
5888   // Otherwise, it's the slow path for us (no success at this point).
5889 
5890   if (super_check_offset.is_register()) {
5891     local_jcc(Assembler::equal, *L_success);
5892     cmpl(super_check_offset.as_register(), sc_offset);
5893     if (L_failure == &L_fallthrough) {
5894       local_jcc(Assembler::equal, *L_slow_path);
5895     } else {
5896       local_jcc(Assembler::notEqual, *L_failure);
5897       final_jmp(*L_slow_path);
5898     }
5899   } else if (super_check_offset.as_constant() == sc_offset) {
5900     // Need a slow path; fast failure is impossible.
5901     if (L_slow_path == &L_fallthrough) {
5902       local_jcc(Assembler::equal, *L_success);
5903     } else {
5904       local_jcc(Assembler::notEqual, *L_slow_path);
5905       final_jmp(*L_success);
5906     }
5907   } else {
5908     // No slow path; it's a fast decision.
5909     if (L_failure == &L_fallthrough) {
5910       local_jcc(Assembler::equal, *L_success);
5911     } else {
5912       local_jcc(Assembler::notEqual, *L_failure);
5913       final_jmp(*L_success);
5914     }
5915   }
5916 
5917   bind(L_fallthrough);
5918 
5919 #undef local_jcc
5920 #undef final_jmp
5921 }
5922 
5923 
5924 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5925                                                    Register super_klass,
5926                                                    Register temp_reg,
5927                                                    Register temp2_reg,
5928                                                    Label* L_success,
5929                                                    Label* L_failure,
5930                                                    bool set_cond_codes) {
5931   assert_different_registers(sub_klass, super_klass, temp_reg);
5932   if (temp2_reg != noreg)
5933     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5934 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5935 
5936   Label L_fallthrough;
5937   int label_nulls = 0;
5938   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5939   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5940   assert(label_nulls <= 1, "at most one NULL in the batch");
5941 
5942   // a couple of useful fields in sub_klass:
5943   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5944   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5945   Address secondary_supers_addr(sub_klass, ss_offset);
5946   Address super_cache_addr(     sub_klass, sc_offset);
5947 
5948   // Do a linear scan of the secondary super-klass chain.
5949   // This code is rarely used, so simplicity is a virtue here.
5950   // The repne_scan instruction uses fixed registers, which we must spill.
5951   // Don't worry too much about pre-existing connections with the input regs.
5952 
5953   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5954   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5955 
5956   // Get super_klass value into rax (even if it was in rdi or rcx).
5957   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5958   if (super_klass != rax || UseCompressedOops) {
5959     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5960     mov(rax, super_klass);
5961   }
5962   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5963   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5964 
5965 #ifndef PRODUCT
5966   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5967   ExternalAddress pst_counter_addr((address) pst_counter);
5968   NOT_LP64(  incrementl(pst_counter_addr) );
5969   LP64_ONLY( lea(rcx, pst_counter_addr) );
5970   LP64_ONLY( incrementl(Address(rcx, 0)) );
5971 #endif //PRODUCT
5972 
5973   // We will consult the secondary-super array.
5974   movptr(rdi, secondary_supers_addr);
5975   // Load the array length.  (Positive movl does right thing on LP64.)
5976   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5977   // Skip to start of data.
5978   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5979 
5980   // Scan RCX words at [RDI] for an occurrence of RAX.
5981   // Set NZ/Z based on last compare.
5982   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5983   // not change flags (only scas instruction which is repeated sets flags).
5984   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5985 
5986     testptr(rax,rax); // Set Z = 0
5987     repne_scan();
5988 
5989   // Unspill the temp. registers:
5990   if (pushed_rdi)  pop(rdi);
5991   if (pushed_rcx)  pop(rcx);
5992   if (pushed_rax)  pop(rax);
5993 
5994   if (set_cond_codes) {
5995     // Special hack for the AD files:  rdi is guaranteed non-zero.
5996     assert(!pushed_rdi, "rdi must be left non-NULL");
5997     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5998   }
5999 
6000   if (L_failure == &L_fallthrough)
6001         jccb(Assembler::notEqual, *L_failure);
6002   else  jcc(Assembler::notEqual, *L_failure);
6003 
6004   // Success.  Cache the super we found and proceed in triumph.
6005   movptr(super_cache_addr, super_klass);
6006 
6007   if (L_success != &L_fallthrough) {
6008     jmp(*L_success);
6009   }
6010 
6011 #undef IS_A_TEMP
6012 
6013   bind(L_fallthrough);
6014 }
6015 
6016 
6017 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
6018   if (VM_Version::supports_cmov()) {
6019     cmovl(cc, dst, src);
6020   } else {
6021     Label L;
6022     jccb(negate_condition(cc), L);
6023     movl(dst, src);
6024     bind(L);
6025   }
6026 }
6027 
6028 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6029   if (VM_Version::supports_cmov()) {
6030     cmovl(cc, dst, src);
6031   } else {
6032     Label L;
6033     jccb(negate_condition(cc), L);
6034     movl(dst, src);
6035     bind(L);
6036   }
6037 }
6038 
6039 void MacroAssembler::verify_oop(Register reg, const char* s) {
6040   if (!VerifyOops) return;
6041 
6042   // Pass register number to verify_oop_subroutine
6043   const char* b = NULL;
6044   {
6045     ResourceMark rm;
6046     stringStream ss;
6047     ss.print("verify_oop: %s: %s", reg->name(), s);
6048     b = code_string(ss.as_string());
6049   }
6050   BLOCK_COMMENT("verify_oop {");
6051 #ifdef _LP64
6052   push(rscratch1);                    // save r10, trashed by movptr()
6053 #endif
6054   push(rax);                          // save rax,
6055   push(reg);                          // pass register argument
6056   ExternalAddress buffer((address) b);
6057   // avoid using pushptr, as it modifies scratch registers
6058   // and our contract is not to modify anything
6059   movptr(rax, buffer.addr());
6060   push(rax);
6061   // call indirectly to solve generation ordering problem
6062   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6063   call(rax);
6064   // Caller pops the arguments (oop, message) and restores rax, r10
6065   BLOCK_COMMENT("} verify_oop");
6066 }
6067 
6068 
6069 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6070                                                       Register tmp,
6071                                                       int offset) {
6072   intptr_t value = *delayed_value_addr;
6073   if (value != 0)
6074     return RegisterOrConstant(value + offset);
6075 
6076   // load indirectly to solve generation ordering problem
6077   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6078 
6079 #ifdef ASSERT
6080   { Label L;
6081     testptr(tmp, tmp);
6082     if (WizardMode) {
6083       const char* buf = NULL;
6084       {
6085         ResourceMark rm;
6086         stringStream ss;
6087         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6088         buf = code_string(ss.as_string());
6089       }
6090       jcc(Assembler::notZero, L);
6091       STOP(buf);
6092     } else {
6093       jccb(Assembler::notZero, L);
6094       hlt();
6095     }
6096     bind(L);
6097   }
6098 #endif
6099 
6100   if (offset != 0)
6101     addptr(tmp, offset);
6102 
6103   return RegisterOrConstant(tmp);
6104 }
6105 
6106 
6107 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6108                                          int extra_slot_offset) {
6109   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6110   int stackElementSize = Interpreter::stackElementSize;
6111   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6112 #ifdef ASSERT
6113   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6114   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6115 #endif
6116   Register             scale_reg    = noreg;
6117   Address::ScaleFactor scale_factor = Address::no_scale;
6118   if (arg_slot.is_constant()) {
6119     offset += arg_slot.as_constant() * stackElementSize;
6120   } else {
6121     scale_reg    = arg_slot.as_register();
6122     scale_factor = Address::times(stackElementSize);
6123   }
6124   offset += wordSize;           // return PC is on stack
6125   return Address(rsp, scale_reg, scale_factor, offset);
6126 }
6127 
6128 
6129 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6130   if (!VerifyOops) return;
6131 
6132   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6133   // Pass register number to verify_oop_subroutine
6134   const char* b = NULL;
6135   {
6136     ResourceMark rm;
6137     stringStream ss;
6138     ss.print("verify_oop_addr: %s", s);
6139     b = code_string(ss.as_string());
6140   }
6141 #ifdef _LP64
6142   push(rscratch1);                    // save r10, trashed by movptr()
6143 #endif
6144   push(rax);                          // save rax,
6145   // addr may contain rsp so we will have to adjust it based on the push
6146   // we just did (and on 64 bit we do two pushes)
6147   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6148   // stores rax into addr which is backwards of what was intended.
6149   if (addr.uses(rsp)) {
6150     lea(rax, addr);
6151     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6152   } else {
6153     pushptr(addr);
6154   }
6155 
6156   ExternalAddress buffer((address) b);
6157   // pass msg argument
6158   // avoid using pushptr, as it modifies scratch registers
6159   // and our contract is not to modify anything
6160   movptr(rax, buffer.addr());
6161   push(rax);
6162 
6163   // call indirectly to solve generation ordering problem
6164   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6165   call(rax);
6166   // Caller pops the arguments (addr, message) and restores rax, r10.
6167 }
6168 
6169 void MacroAssembler::verify_tlab() {
6170 #ifdef ASSERT
6171   if (UseTLAB && VerifyOops) {
6172     Label next, ok;
6173     Register t1 = rsi;
6174     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6175 
6176     push(t1);
6177     NOT_LP64(push(thread_reg));
6178     NOT_LP64(get_thread(thread_reg));
6179 
6180     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6181     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6182     jcc(Assembler::aboveEqual, next);
6183     STOP("assert(top >= start)");
6184     should_not_reach_here();
6185 
6186     bind(next);
6187     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6188     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6189     jcc(Assembler::aboveEqual, ok);
6190     STOP("assert(top <= end)");
6191     should_not_reach_here();
6192 
6193     bind(ok);
6194     NOT_LP64(pop(thread_reg));
6195     pop(t1);
6196   }
6197 #endif
6198 }
6199 
6200 class ControlWord {
6201  public:
6202   int32_t _value;
6203 
6204   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6205   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6206   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6207   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6208   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6209   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6210   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6211   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6212 
6213   void print() const {
6214     // rounding control
6215     const char* rc;
6216     switch (rounding_control()) {
6217       case 0: rc = "round near"; break;
6218       case 1: rc = "round down"; break;
6219       case 2: rc = "round up  "; break;
6220       case 3: rc = "chop      "; break;
6221     };
6222     // precision control
6223     const char* pc;
6224     switch (precision_control()) {
6225       case 0: pc = "24 bits "; break;
6226       case 1: pc = "reserved"; break;
6227       case 2: pc = "53 bits "; break;
6228       case 3: pc = "64 bits "; break;
6229     };
6230     // flags
6231     char f[9];
6232     f[0] = ' ';
6233     f[1] = ' ';
6234     f[2] = (precision   ()) ? 'P' : 'p';
6235     f[3] = (underflow   ()) ? 'U' : 'u';
6236     f[4] = (overflow    ()) ? 'O' : 'o';
6237     f[5] = (zero_divide ()) ? 'Z' : 'z';
6238     f[6] = (denormalized()) ? 'D' : 'd';
6239     f[7] = (invalid     ()) ? 'I' : 'i';
6240     f[8] = '\x0';
6241     // output
6242     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6243   }
6244 
6245 };
6246 
6247 class StatusWord {
6248  public:
6249   int32_t _value;
6250 
6251   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6252   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6253   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6254   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6255   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6256   int  top() const                     { return  (_value >> 11) & 7      ; }
6257   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6258   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6259   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6260   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6261   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6262   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6263   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6264   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6265 
6266   void print() const {
6267     // condition codes
6268     char c[5];
6269     c[0] = (C3()) ? '3' : '-';
6270     c[1] = (C2()) ? '2' : '-';
6271     c[2] = (C1()) ? '1' : '-';
6272     c[3] = (C0()) ? '0' : '-';
6273     c[4] = '\x0';
6274     // flags
6275     char f[9];
6276     f[0] = (error_status()) ? 'E' : '-';
6277     f[1] = (stack_fault ()) ? 'S' : '-';
6278     f[2] = (precision   ()) ? 'P' : '-';
6279     f[3] = (underflow   ()) ? 'U' : '-';
6280     f[4] = (overflow    ()) ? 'O' : '-';
6281     f[5] = (zero_divide ()) ? 'Z' : '-';
6282     f[6] = (denormalized()) ? 'D' : '-';
6283     f[7] = (invalid     ()) ? 'I' : '-';
6284     f[8] = '\x0';
6285     // output
6286     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6287   }
6288 
6289 };
6290 
6291 class TagWord {
6292  public:
6293   int32_t _value;
6294 
6295   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6296 
6297   void print() const {
6298     printf("%04x", _value & 0xFFFF);
6299   }
6300 
6301 };
6302 
6303 class FPU_Register {
6304  public:
6305   int32_t _m0;
6306   int32_t _m1;
6307   int16_t _ex;
6308 
6309   bool is_indefinite() const           {
6310     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6311   }
6312 
6313   void print() const {
6314     char  sign = (_ex < 0) ? '-' : '+';
6315     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6316     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6317   };
6318 
6319 };
6320 
6321 class FPU_State {
6322  public:
6323   enum {
6324     register_size       = 10,
6325     number_of_registers =  8,
6326     register_mask       =  7
6327   };
6328 
6329   ControlWord  _control_word;
6330   StatusWord   _status_word;
6331   TagWord      _tag_word;
6332   int32_t      _error_offset;
6333   int32_t      _error_selector;
6334   int32_t      _data_offset;
6335   int32_t      _data_selector;
6336   int8_t       _register[register_size * number_of_registers];
6337 
6338   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6339   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6340 
6341   const char* tag_as_string(int tag) const {
6342     switch (tag) {
6343       case 0: return "valid";
6344       case 1: return "zero";
6345       case 2: return "special";
6346       case 3: return "empty";
6347     }
6348     ShouldNotReachHere();
6349     return NULL;
6350   }
6351 
6352   void print() const {
6353     // print computation registers
6354     { int t = _status_word.top();
6355       for (int i = 0; i < number_of_registers; i++) {
6356         int j = (i - t) & register_mask;
6357         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6358         st(j)->print();
6359         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6360       }
6361     }
6362     printf("\n");
6363     // print control registers
6364     printf("ctrl = "); _control_word.print(); printf("\n");
6365     printf("stat = "); _status_word .print(); printf("\n");
6366     printf("tags = "); _tag_word    .print(); printf("\n");
6367   }
6368 
6369 };
6370 
6371 class Flag_Register {
6372  public:
6373   int32_t _value;
6374 
6375   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6376   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6377   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6378   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6379   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6380   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6381   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6382 
6383   void print() const {
6384     // flags
6385     char f[8];
6386     f[0] = (overflow       ()) ? 'O' : '-';
6387     f[1] = (direction      ()) ? 'D' : '-';
6388     f[2] = (sign           ()) ? 'S' : '-';
6389     f[3] = (zero           ()) ? 'Z' : '-';
6390     f[4] = (auxiliary_carry()) ? 'A' : '-';
6391     f[5] = (parity         ()) ? 'P' : '-';
6392     f[6] = (carry          ()) ? 'C' : '-';
6393     f[7] = '\x0';
6394     // output
6395     printf("%08x  flags = %s", _value, f);
6396   }
6397 
6398 };
6399 
6400 class IU_Register {
6401  public:
6402   int32_t _value;
6403 
6404   void print() const {
6405     printf("%08x  %11d", _value, _value);
6406   }
6407 
6408 };
6409 
6410 class IU_State {
6411  public:
6412   Flag_Register _eflags;
6413   IU_Register   _rdi;
6414   IU_Register   _rsi;
6415   IU_Register   _rbp;
6416   IU_Register   _rsp;
6417   IU_Register   _rbx;
6418   IU_Register   _rdx;
6419   IU_Register   _rcx;
6420   IU_Register   _rax;
6421 
6422   void print() const {
6423     // computation registers
6424     printf("rax,  = "); _rax.print(); printf("\n");
6425     printf("rbx,  = "); _rbx.print(); printf("\n");
6426     printf("rcx  = "); _rcx.print(); printf("\n");
6427     printf("rdx  = "); _rdx.print(); printf("\n");
6428     printf("rdi  = "); _rdi.print(); printf("\n");
6429     printf("rsi  = "); _rsi.print(); printf("\n");
6430     printf("rbp,  = "); _rbp.print(); printf("\n");
6431     printf("rsp  = "); _rsp.print(); printf("\n");
6432     printf("\n");
6433     // control registers
6434     printf("flgs = "); _eflags.print(); printf("\n");
6435   }
6436 };
6437 
6438 
6439 class CPU_State {
6440  public:
6441   FPU_State _fpu_state;
6442   IU_State  _iu_state;
6443 
6444   void print() const {
6445     printf("--------------------------------------------------\n");
6446     _iu_state .print();
6447     printf("\n");
6448     _fpu_state.print();
6449     printf("--------------------------------------------------\n");
6450   }
6451 
6452 };
6453 
6454 
6455 static void _print_CPU_state(CPU_State* state) {
6456   state->print();
6457 };
6458 
6459 
6460 void MacroAssembler::print_CPU_state() {
6461   push_CPU_state();
6462   push(rsp);                // pass CPU state
6463   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6464   addptr(rsp, wordSize);       // discard argument
6465   pop_CPU_state();
6466 }
6467 
6468 
6469 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6470   static int counter = 0;
6471   FPU_State* fs = &state->_fpu_state;
6472   counter++;
6473   // For leaf calls, only verify that the top few elements remain empty.
6474   // We only need 1 empty at the top for C2 code.
6475   if( stack_depth < 0 ) {
6476     if( fs->tag_for_st(7) != 3 ) {
6477       printf("FPR7 not empty\n");
6478       state->print();
6479       assert(false, "error");
6480       return false;
6481     }
6482     return true;                // All other stack states do not matter
6483   }
6484 
6485   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6486          "bad FPU control word");
6487 
6488   // compute stack depth
6489   int i = 0;
6490   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6491   int d = i;
6492   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6493   // verify findings
6494   if (i != FPU_State::number_of_registers) {
6495     // stack not contiguous
6496     printf("%s: stack not contiguous at ST%d\n", s, i);
6497     state->print();
6498     assert(false, "error");
6499     return false;
6500   }
6501   // check if computed stack depth corresponds to expected stack depth
6502   if (stack_depth < 0) {
6503     // expected stack depth is -stack_depth or less
6504     if (d > -stack_depth) {
6505       // too many elements on the stack
6506       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6507       state->print();
6508       assert(false, "error");
6509       return false;
6510     }
6511   } else {
6512     // expected stack depth is stack_depth
6513     if (d != stack_depth) {
6514       // wrong stack depth
6515       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6516       state->print();
6517       assert(false, "error");
6518       return false;
6519     }
6520   }
6521   // everything is cool
6522   return true;
6523 }
6524 
6525 
6526 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6527   if (!VerifyFPU) return;
6528   push_CPU_state();
6529   push(rsp);                // pass CPU state
6530   ExternalAddress msg((address) s);
6531   // pass message string s
6532   pushptr(msg.addr());
6533   push(stack_depth);        // pass stack depth
6534   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6535   addptr(rsp, 3 * wordSize);   // discard arguments
6536   // check for error
6537   { Label L;
6538     testl(rax, rax);
6539     jcc(Assembler::notZero, L);
6540     int3();                  // break if error condition
6541     bind(L);
6542   }
6543   pop_CPU_state();
6544 }
6545 
6546 void MacroAssembler::restore_cpu_control_state_after_jni() {
6547   // Either restore the MXCSR register after returning from the JNI Call
6548   // or verify that it wasn't changed (with -Xcheck:jni flag).
6549   if (VM_Version::supports_sse()) {
6550     if (RestoreMXCSROnJNICalls) {
6551       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6552     } else if (CheckJNICalls) {
6553       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6554     }
6555   }
6556   if (VM_Version::supports_avx()) {
6557     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6558     vzeroupper();
6559   }
6560 
6561 #ifndef _LP64
6562   // Either restore the x87 floating pointer control word after returning
6563   // from the JNI call or verify that it wasn't changed.
6564   if (CheckJNICalls) {
6565     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6566   }
6567 #endif // _LP64
6568 }
6569 
6570 void MacroAssembler::load_mirror(Register mirror, Register method) {
6571   // get mirror
6572   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6573   movptr(mirror, Address(method, Method::const_offset()));
6574   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6575   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6576   movptr(mirror, Address(mirror, mirror_offset));
6577 }
6578 
6579 void MacroAssembler::load_klass(Register dst, Register src) {
6580 #ifdef _LP64
6581   if (UseCompressedClassPointers) {
6582     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6583     decode_klass_not_null(dst);
6584   } else
6585 #endif
6586     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6587 }
6588 
6589 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6590   load_klass(dst, src);
6591   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6592 }
6593 
6594 void MacroAssembler::store_klass(Register dst, Register src) {
6595 #ifdef _LP64
6596   if (UseCompressedClassPointers) {
6597     encode_klass_not_null(src);
6598     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6599   } else
6600 #endif
6601     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6602 }
6603 
6604 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6605 #ifdef _LP64
6606   // FIXME: Must change all places where we try to load the klass.
6607   if (UseCompressedOops) {
6608     movl(dst, src);
6609     decode_heap_oop(dst);
6610   } else
6611 #endif
6612     movptr(dst, src);
6613 }
6614 
6615 // Doesn't do verfication, generates fixed size code
6616 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6617 #ifdef _LP64
6618   if (UseCompressedOops) {
6619     movl(dst, src);
6620     decode_heap_oop_not_null(dst);
6621   } else
6622 #endif
6623     movptr(dst, src);
6624 }
6625 
6626 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6627 #ifdef _LP64
6628   if (UseCompressedOops) {
6629     assert(!dst.uses(src), "not enough registers");
6630     encode_heap_oop(src);
6631     movl(dst, src);
6632   } else
6633 #endif
6634     movptr(dst, src);
6635 }
6636 
6637 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6638   assert_different_registers(src1, tmp);
6639 #ifdef _LP64
6640   if (UseCompressedOops) {
6641     bool did_push = false;
6642     if (tmp == noreg) {
6643       tmp = rax;
6644       push(tmp);
6645       did_push = true;
6646       assert(!src2.uses(rsp), "can't push");
6647     }
6648     load_heap_oop(tmp, src2);
6649     cmpptr(src1, tmp);
6650     if (did_push)  pop(tmp);
6651   } else
6652 #endif
6653     cmpptr(src1, src2);
6654 }
6655 
6656 // Used for storing NULLs.
6657 void MacroAssembler::store_heap_oop_null(Address dst) {
6658 #ifdef _LP64
6659   if (UseCompressedOops) {
6660     movl(dst, (int32_t)NULL_WORD);
6661   } else {
6662     movslq(dst, (int32_t)NULL_WORD);
6663   }
6664 #else
6665   movl(dst, (int32_t)NULL_WORD);
6666 #endif
6667 }
6668 
6669 #ifdef _LP64
6670 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6671   if (UseCompressedClassPointers) {
6672     // Store to klass gap in destination
6673     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6674   }
6675 }
6676 
6677 #ifdef ASSERT
6678 void MacroAssembler::verify_heapbase(const char* msg) {
6679   assert (UseCompressedOops, "should be compressed");
6680   assert (Universe::heap() != NULL, "java heap should be initialized");
6681   if (CheckCompressedOops) {
6682     Label ok;
6683     push(rscratch1); // cmpptr trashes rscratch1
6684     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6685     jcc(Assembler::equal, ok);
6686     STOP(msg);
6687     bind(ok);
6688     pop(rscratch1);
6689   }
6690 }
6691 #endif
6692 
6693 // Algorithm must match oop.inline.hpp encode_heap_oop.
6694 void MacroAssembler::encode_heap_oop(Register r) {
6695 #ifdef ASSERT
6696   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6697 #endif
6698   verify_oop(r, "broken oop in encode_heap_oop");
6699   if (Universe::narrow_oop_base() == NULL) {
6700     if (Universe::narrow_oop_shift() != 0) {
6701       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6702       shrq(r, LogMinObjAlignmentInBytes);
6703     }
6704     return;
6705   }
6706   testq(r, r);
6707   cmovq(Assembler::equal, r, r12_heapbase);
6708   subq(r, r12_heapbase);
6709   shrq(r, LogMinObjAlignmentInBytes);
6710 }
6711 
6712 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6713 #ifdef ASSERT
6714   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6715   if (CheckCompressedOops) {
6716     Label ok;
6717     testq(r, r);
6718     jcc(Assembler::notEqual, ok);
6719     STOP("null oop passed to encode_heap_oop_not_null");
6720     bind(ok);
6721   }
6722 #endif
6723   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6724   if (Universe::narrow_oop_base() != NULL) {
6725     subq(r, r12_heapbase);
6726   }
6727   if (Universe::narrow_oop_shift() != 0) {
6728     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6729     shrq(r, LogMinObjAlignmentInBytes);
6730   }
6731 }
6732 
6733 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6734 #ifdef ASSERT
6735   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6736   if (CheckCompressedOops) {
6737     Label ok;
6738     testq(src, src);
6739     jcc(Assembler::notEqual, ok);
6740     STOP("null oop passed to encode_heap_oop_not_null2");
6741     bind(ok);
6742   }
6743 #endif
6744   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6745   if (dst != src) {
6746     movq(dst, src);
6747   }
6748   if (Universe::narrow_oop_base() != NULL) {
6749     subq(dst, r12_heapbase);
6750   }
6751   if (Universe::narrow_oop_shift() != 0) {
6752     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6753     shrq(dst, LogMinObjAlignmentInBytes);
6754   }
6755 }
6756 
6757 void  MacroAssembler::decode_heap_oop(Register r) {
6758 #ifdef ASSERT
6759   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6760 #endif
6761   if (Universe::narrow_oop_base() == NULL) {
6762     if (Universe::narrow_oop_shift() != 0) {
6763       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6764       shlq(r, LogMinObjAlignmentInBytes);
6765     }
6766   } else {
6767     Label done;
6768     shlq(r, LogMinObjAlignmentInBytes);
6769     jccb(Assembler::equal, done);
6770     addq(r, r12_heapbase);
6771     bind(done);
6772   }
6773   verify_oop(r, "broken oop in decode_heap_oop");
6774 }
6775 
6776 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6777   // Note: it will change flags
6778   assert (UseCompressedOops, "should only be used for compressed headers");
6779   assert (Universe::heap() != NULL, "java heap should be initialized");
6780   // Cannot assert, unverified entry point counts instructions (see .ad file)
6781   // vtableStubs also counts instructions in pd_code_size_limit.
6782   // Also do not verify_oop as this is called by verify_oop.
6783   if (Universe::narrow_oop_shift() != 0) {
6784     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6785     shlq(r, LogMinObjAlignmentInBytes);
6786     if (Universe::narrow_oop_base() != NULL) {
6787       addq(r, r12_heapbase);
6788     }
6789   } else {
6790     assert (Universe::narrow_oop_base() == NULL, "sanity");
6791   }
6792 }
6793 
6794 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6795   // Note: it will change flags
6796   assert (UseCompressedOops, "should only be used for compressed headers");
6797   assert (Universe::heap() != NULL, "java heap should be initialized");
6798   // Cannot assert, unverified entry point counts instructions (see .ad file)
6799   // vtableStubs also counts instructions in pd_code_size_limit.
6800   // Also do not verify_oop as this is called by verify_oop.
6801   if (Universe::narrow_oop_shift() != 0) {
6802     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6803     if (LogMinObjAlignmentInBytes == Address::times_8) {
6804       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6805     } else {
6806       if (dst != src) {
6807         movq(dst, src);
6808       }
6809       shlq(dst, LogMinObjAlignmentInBytes);
6810       if (Universe::narrow_oop_base() != NULL) {
6811         addq(dst, r12_heapbase);
6812       }
6813     }
6814   } else {
6815     assert (Universe::narrow_oop_base() == NULL, "sanity");
6816     if (dst != src) {
6817       movq(dst, src);
6818     }
6819   }
6820 }
6821 
6822 void MacroAssembler::encode_klass_not_null(Register r) {
6823   if (Universe::narrow_klass_base() != NULL) {
6824     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6825     assert(r != r12_heapbase, "Encoding a klass in r12");
6826     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6827     subq(r, r12_heapbase);
6828   }
6829   if (Universe::narrow_klass_shift() != 0) {
6830     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6831     shrq(r, LogKlassAlignmentInBytes);
6832   }
6833   if (Universe::narrow_klass_base() != NULL) {
6834     reinit_heapbase();
6835   }
6836 }
6837 
6838 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6839   if (dst == src) {
6840     encode_klass_not_null(src);
6841   } else {
6842     if (Universe::narrow_klass_base() != NULL) {
6843       mov64(dst, (int64_t)Universe::narrow_klass_base());
6844       negq(dst);
6845       addq(dst, src);
6846     } else {
6847       movptr(dst, src);
6848     }
6849     if (Universe::narrow_klass_shift() != 0) {
6850       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6851       shrq(dst, LogKlassAlignmentInBytes);
6852     }
6853   }
6854 }
6855 
6856 // Function instr_size_for_decode_klass_not_null() counts the instructions
6857 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6858 // when (Universe::heap() != NULL).  Hence, if the instructions they
6859 // generate change, then this method needs to be updated.
6860 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6861   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6862   if (Universe::narrow_klass_base() != NULL) {
6863     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6864     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6865   } else {
6866     // longest load decode klass function, mov64, leaq
6867     return 16;
6868   }
6869 }
6870 
6871 // !!! If the instructions that get generated here change then function
6872 // instr_size_for_decode_klass_not_null() needs to get updated.
6873 void  MacroAssembler::decode_klass_not_null(Register r) {
6874   // Note: it will change flags
6875   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6876   assert(r != r12_heapbase, "Decoding a klass in r12");
6877   // Cannot assert, unverified entry point counts instructions (see .ad file)
6878   // vtableStubs also counts instructions in pd_code_size_limit.
6879   // Also do not verify_oop as this is called by verify_oop.
6880   if (Universe::narrow_klass_shift() != 0) {
6881     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6882     shlq(r, LogKlassAlignmentInBytes);
6883   }
6884   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6885   if (Universe::narrow_klass_base() != NULL) {
6886     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6887     addq(r, r12_heapbase);
6888     reinit_heapbase();
6889   }
6890 }
6891 
6892 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6893   // Note: it will change flags
6894   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6895   if (dst == src) {
6896     decode_klass_not_null(dst);
6897   } else {
6898     // Cannot assert, unverified entry point counts instructions (see .ad file)
6899     // vtableStubs also counts instructions in pd_code_size_limit.
6900     // Also do not verify_oop as this is called by verify_oop.
6901     mov64(dst, (int64_t)Universe::narrow_klass_base());
6902     if (Universe::narrow_klass_shift() != 0) {
6903       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6904       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6905       leaq(dst, Address(dst, src, Address::times_8, 0));
6906     } else {
6907       addq(dst, src);
6908     }
6909   }
6910 }
6911 
6912 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6913   assert (UseCompressedOops, "should only be used for compressed headers");
6914   assert (Universe::heap() != NULL, "java heap should be initialized");
6915   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6916   int oop_index = oop_recorder()->find_index(obj);
6917   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6918   mov_narrow_oop(dst, oop_index, rspec);
6919 }
6920 
6921 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6922   assert (UseCompressedOops, "should only be used for compressed headers");
6923   assert (Universe::heap() != NULL, "java heap should be initialized");
6924   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6925   int oop_index = oop_recorder()->find_index(obj);
6926   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6927   mov_narrow_oop(dst, oop_index, rspec);
6928 }
6929 
6930 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6931   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6932   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6933   int klass_index = oop_recorder()->find_index(k);
6934   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6935   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6936 }
6937 
6938 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6939   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6940   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6941   int klass_index = oop_recorder()->find_index(k);
6942   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6943   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6944 }
6945 
6946 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6947   assert (UseCompressedOops, "should only be used for compressed headers");
6948   assert (Universe::heap() != NULL, "java heap should be initialized");
6949   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6950   int oop_index = oop_recorder()->find_index(obj);
6951   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6952   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6953 }
6954 
6955 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6956   assert (UseCompressedOops, "should only be used for compressed headers");
6957   assert (Universe::heap() != NULL, "java heap should be initialized");
6958   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6959   int oop_index = oop_recorder()->find_index(obj);
6960   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6961   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6962 }
6963 
6964 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6965   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6966   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6967   int klass_index = oop_recorder()->find_index(k);
6968   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6969   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6970 }
6971 
6972 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6973   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6974   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6975   int klass_index = oop_recorder()->find_index(k);
6976   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6977   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6978 }
6979 
6980 void MacroAssembler::reinit_heapbase() {
6981   if (UseCompressedOops || UseCompressedClassPointers) {
6982     if (Universe::heap() != NULL) {
6983       if (Universe::narrow_oop_base() == NULL) {
6984         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6985       } else {
6986         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6987       }
6988     } else {
6989       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6990     }
6991   }
6992 }
6993 
6994 #endif // _LP64
6995 
6996 
6997 // C2 compiled method's prolog code.
6998 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6999 
7000   // WARNING: Initial instruction MUST be 5 bytes or longer so that
7001   // NativeJump::patch_verified_entry will be able to patch out the entry
7002   // code safely. The push to verify stack depth is ok at 5 bytes,
7003   // the frame allocation can be either 3 or 6 bytes. So if we don't do
7004   // stack bang then we must use the 6 byte frame allocation even if
7005   // we have no frame. :-(
7006   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
7007 
7008   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
7009   // Remove word for return addr
7010   framesize -= wordSize;
7011   stack_bang_size -= wordSize;
7012 
7013   // Calls to C2R adapters often do not accept exceptional returns.
7014   // We require that their callers must bang for them.  But be careful, because
7015   // some VM calls (such as call site linkage) can use several kilobytes of
7016   // stack.  But the stack safety zone should account for that.
7017   // See bugs 4446381, 4468289, 4497237.
7018   if (stack_bang_size > 0) {
7019     generate_stack_overflow_check(stack_bang_size);
7020 
7021     // We always push rbp, so that on return to interpreter rbp, will be
7022     // restored correctly and we can correct the stack.
7023     push(rbp);
7024     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7025     if (PreserveFramePointer) {
7026       mov(rbp, rsp);
7027     }
7028     // Remove word for ebp
7029     framesize -= wordSize;
7030 
7031     // Create frame
7032     if (framesize) {
7033       subptr(rsp, framesize);
7034     }
7035   } else {
7036     // Create frame (force generation of a 4 byte immediate value)
7037     subptr_imm32(rsp, framesize);
7038 
7039     // Save RBP register now.
7040     framesize -= wordSize;
7041     movptr(Address(rsp, framesize), rbp);
7042     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7043     if (PreserveFramePointer) {
7044       movptr(rbp, rsp);
7045       if (framesize > 0) {
7046         addptr(rbp, framesize);
7047       }
7048     }
7049   }
7050 
7051   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7052     framesize -= wordSize;
7053     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7054   }
7055 
7056 #ifndef _LP64
7057   // If method sets FPU control word do it now
7058   if (fp_mode_24b) {
7059     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7060   }
7061   if (UseSSE >= 2 && VerifyFPU) {
7062     verify_FPU(0, "FPU stack must be clean on entry");
7063   }
7064 #endif
7065 
7066 #ifdef ASSERT
7067   if (VerifyStackAtCalls) {
7068     Label L;
7069     push(rax);
7070     mov(rax, rsp);
7071     andptr(rax, StackAlignmentInBytes-1);
7072     cmpptr(rax, StackAlignmentInBytes-wordSize);
7073     pop(rax);
7074     jcc(Assembler::equal, L);
7075     STOP("Stack is not properly aligned!");
7076     bind(L);
7077   }
7078 #endif
7079 
7080 }
7081 
7082 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7083   // cnt - number of qwords (8-byte words).
7084   // base - start address, qword aligned.
7085   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7086   assert(base==rdi, "base register must be edi for rep stos");
7087   assert(tmp==rax,   "tmp register must be eax for rep stos");
7088   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7089   assert(InitArrayShortSize % BytesPerLong == 0,
7090     "InitArrayShortSize should be the multiple of BytesPerLong");
7091 
7092   Label DONE;
7093 
7094   xorptr(tmp, tmp);
7095 
7096   if (!is_large) {
7097     Label LOOP, LONG;
7098     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7099     jccb(Assembler::greater, LONG);
7100 
7101     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7102 
7103     decrement(cnt);
7104     jccb(Assembler::negative, DONE); // Zero length
7105 
7106     // Use individual pointer-sized stores for small counts:
7107     BIND(LOOP);
7108     movptr(Address(base, cnt, Address::times_ptr), tmp);
7109     decrement(cnt);
7110     jccb(Assembler::greaterEqual, LOOP);
7111     jmpb(DONE);
7112 
7113     BIND(LONG);
7114   }
7115 
7116   // Use longer rep-prefixed ops for non-small counts:
7117   if (UseFastStosb) {
7118     shlptr(cnt, 3); // convert to number of bytes
7119     rep_stosb();
7120   } else {
7121     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7122     rep_stos();
7123   }
7124 
7125   BIND(DONE);
7126 }
7127 
7128 #ifdef COMPILER2
7129 
7130 // IndexOf for constant substrings with size >= 8 chars
7131 // which don't need to be loaded through stack.
7132 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7133                                       Register cnt1, Register cnt2,
7134                                       int int_cnt2,  Register result,
7135                                       XMMRegister vec, Register tmp,
7136                                       int ae) {
7137   ShortBranchVerifier sbv(this);
7138   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7139   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7140 
7141   // This method uses the pcmpestri instruction with bound registers
7142   //   inputs:
7143   //     xmm - substring
7144   //     rax - substring length (elements count)
7145   //     mem - scanned string
7146   //     rdx - string length (elements count)
7147   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7148   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7149   //   outputs:
7150   //     rcx - matched index in string
7151   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7152   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7153   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7154   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7155   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7156 
7157   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7158         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7159         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7160 
7161   // Note, inline_string_indexOf() generates checks:
7162   // if (substr.count > string.count) return -1;
7163   // if (substr.count == 0) return 0;
7164   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7165 
7166   // Load substring.
7167   if (ae == StrIntrinsicNode::UL) {
7168     pmovzxbw(vec, Address(str2, 0));
7169   } else {
7170     movdqu(vec, Address(str2, 0));
7171   }
7172   movl(cnt2, int_cnt2);
7173   movptr(result, str1); // string addr
7174 
7175   if (int_cnt2 > stride) {
7176     jmpb(SCAN_TO_SUBSTR);
7177 
7178     // Reload substr for rescan, this code
7179     // is executed only for large substrings (> 8 chars)
7180     bind(RELOAD_SUBSTR);
7181     if (ae == StrIntrinsicNode::UL) {
7182       pmovzxbw(vec, Address(str2, 0));
7183     } else {
7184       movdqu(vec, Address(str2, 0));
7185     }
7186     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7187 
7188     bind(RELOAD_STR);
7189     // We came here after the beginning of the substring was
7190     // matched but the rest of it was not so we need to search
7191     // again. Start from the next element after the previous match.
7192 
7193     // cnt2 is number of substring reminding elements and
7194     // cnt1 is number of string reminding elements when cmp failed.
7195     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7196     subl(cnt1, cnt2);
7197     addl(cnt1, int_cnt2);
7198     movl(cnt2, int_cnt2); // Now restore cnt2
7199 
7200     decrementl(cnt1);     // Shift to next element
7201     cmpl(cnt1, cnt2);
7202     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7203 
7204     addptr(result, (1<<scale1));
7205 
7206   } // (int_cnt2 > 8)
7207 
7208   // Scan string for start of substr in 16-byte vectors
7209   bind(SCAN_TO_SUBSTR);
7210   pcmpestri(vec, Address(result, 0), mode);
7211   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7212   subl(cnt1, stride);
7213   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7214   cmpl(cnt1, cnt2);
7215   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7216   addptr(result, 16);
7217   jmpb(SCAN_TO_SUBSTR);
7218 
7219   // Found a potential substr
7220   bind(FOUND_CANDIDATE);
7221   // Matched whole vector if first element matched (tmp(rcx) == 0).
7222   if (int_cnt2 == stride) {
7223     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7224   } else { // int_cnt2 > 8
7225     jccb(Assembler::overflow, FOUND_SUBSTR);
7226   }
7227   // After pcmpestri tmp(rcx) contains matched element index
7228   // Compute start addr of substr
7229   lea(result, Address(result, tmp, scale1));
7230 
7231   // Make sure string is still long enough
7232   subl(cnt1, tmp);
7233   cmpl(cnt1, cnt2);
7234   if (int_cnt2 == stride) {
7235     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7236   } else { // int_cnt2 > 8
7237     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7238   }
7239   // Left less then substring.
7240 
7241   bind(RET_NOT_FOUND);
7242   movl(result, -1);
7243   jmp(EXIT);
7244 
7245   if (int_cnt2 > stride) {
7246     // This code is optimized for the case when whole substring
7247     // is matched if its head is matched.
7248     bind(MATCH_SUBSTR_HEAD);
7249     pcmpestri(vec, Address(result, 0), mode);
7250     // Reload only string if does not match
7251     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7252 
7253     Label CONT_SCAN_SUBSTR;
7254     // Compare the rest of substring (> 8 chars).
7255     bind(FOUND_SUBSTR);
7256     // First 8 chars are already matched.
7257     negptr(cnt2);
7258     addptr(cnt2, stride);
7259 
7260     bind(SCAN_SUBSTR);
7261     subl(cnt1, stride);
7262     cmpl(cnt2, -stride); // Do not read beyond substring
7263     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7264     // Back-up strings to avoid reading beyond substring:
7265     // cnt1 = cnt1 - cnt2 + 8
7266     addl(cnt1, cnt2); // cnt2 is negative
7267     addl(cnt1, stride);
7268     movl(cnt2, stride); negptr(cnt2);
7269     bind(CONT_SCAN_SUBSTR);
7270     if (int_cnt2 < (int)G) {
7271       int tail_off1 = int_cnt2<<scale1;
7272       int tail_off2 = int_cnt2<<scale2;
7273       if (ae == StrIntrinsicNode::UL) {
7274         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7275       } else {
7276         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7277       }
7278       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7279     } else {
7280       // calculate index in register to avoid integer overflow (int_cnt2*2)
7281       movl(tmp, int_cnt2);
7282       addptr(tmp, cnt2);
7283       if (ae == StrIntrinsicNode::UL) {
7284         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7285       } else {
7286         movdqu(vec, Address(str2, tmp, scale2, 0));
7287       }
7288       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7289     }
7290     // Need to reload strings pointers if not matched whole vector
7291     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7292     addptr(cnt2, stride);
7293     jcc(Assembler::negative, SCAN_SUBSTR);
7294     // Fall through if found full substring
7295 
7296   } // (int_cnt2 > 8)
7297 
7298   bind(RET_FOUND);
7299   // Found result if we matched full small substring.
7300   // Compute substr offset
7301   subptr(result, str1);
7302   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7303     shrl(result, 1); // index
7304   }
7305   bind(EXIT);
7306 
7307 } // string_indexofC8
7308 
7309 // Small strings are loaded through stack if they cross page boundary.
7310 void MacroAssembler::string_indexof(Register str1, Register str2,
7311                                     Register cnt1, Register cnt2,
7312                                     int int_cnt2,  Register result,
7313                                     XMMRegister vec, Register tmp,
7314                                     int ae) {
7315   ShortBranchVerifier sbv(this);
7316   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7317   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7318 
7319   //
7320   // int_cnt2 is length of small (< 8 chars) constant substring
7321   // or (-1) for non constant substring in which case its length
7322   // is in cnt2 register.
7323   //
7324   // Note, inline_string_indexOf() generates checks:
7325   // if (substr.count > string.count) return -1;
7326   // if (substr.count == 0) return 0;
7327   //
7328   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7329   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7330   // This method uses the pcmpestri instruction with bound registers
7331   //   inputs:
7332   //     xmm - substring
7333   //     rax - substring length (elements count)
7334   //     mem - scanned string
7335   //     rdx - string length (elements count)
7336   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7337   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7338   //   outputs:
7339   //     rcx - matched index in string
7340   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7341   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7342   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7343   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7344 
7345   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7346         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7347         FOUND_CANDIDATE;
7348 
7349   { //========================================================
7350     // We don't know where these strings are located
7351     // and we can't read beyond them. Load them through stack.
7352     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7353 
7354     movptr(tmp, rsp); // save old SP
7355 
7356     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7357       if (int_cnt2 == (1>>scale2)) { // One byte
7358         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7359         load_unsigned_byte(result, Address(str2, 0));
7360         movdl(vec, result); // move 32 bits
7361       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7362         // Not enough header space in 32-bit VM: 12+3 = 15.
7363         movl(result, Address(str2, -1));
7364         shrl(result, 8);
7365         movdl(vec, result); // move 32 bits
7366       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7367         load_unsigned_short(result, Address(str2, 0));
7368         movdl(vec, result); // move 32 bits
7369       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7370         movdl(vec, Address(str2, 0)); // move 32 bits
7371       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7372         movq(vec, Address(str2, 0));  // move 64 bits
7373       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7374         // Array header size is 12 bytes in 32-bit VM
7375         // + 6 bytes for 3 chars == 18 bytes,
7376         // enough space to load vec and shift.
7377         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7378         if (ae == StrIntrinsicNode::UL) {
7379           int tail_off = int_cnt2-8;
7380           pmovzxbw(vec, Address(str2, tail_off));
7381           psrldq(vec, -2*tail_off);
7382         }
7383         else {
7384           int tail_off = int_cnt2*(1<<scale2);
7385           movdqu(vec, Address(str2, tail_off-16));
7386           psrldq(vec, 16-tail_off);
7387         }
7388       }
7389     } else { // not constant substring
7390       cmpl(cnt2, stride);
7391       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7392 
7393       // We can read beyond string if srt+16 does not cross page boundary
7394       // since heaps are aligned and mapped by pages.
7395       assert(os::vm_page_size() < (int)G, "default page should be small");
7396       movl(result, str2); // We need only low 32 bits
7397       andl(result, (os::vm_page_size()-1));
7398       cmpl(result, (os::vm_page_size()-16));
7399       jccb(Assembler::belowEqual, CHECK_STR);
7400 
7401       // Move small strings to stack to allow load 16 bytes into vec.
7402       subptr(rsp, 16);
7403       int stk_offset = wordSize-(1<<scale2);
7404       push(cnt2);
7405 
7406       bind(COPY_SUBSTR);
7407       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7408         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7409         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7410       } else if (ae == StrIntrinsicNode::UU) {
7411         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7412         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7413       }
7414       decrement(cnt2);
7415       jccb(Assembler::notZero, COPY_SUBSTR);
7416 
7417       pop(cnt2);
7418       movptr(str2, rsp);  // New substring address
7419     } // non constant
7420 
7421     bind(CHECK_STR);
7422     cmpl(cnt1, stride);
7423     jccb(Assembler::aboveEqual, BIG_STRINGS);
7424 
7425     // Check cross page boundary.
7426     movl(result, str1); // We need only low 32 bits
7427     andl(result, (os::vm_page_size()-1));
7428     cmpl(result, (os::vm_page_size()-16));
7429     jccb(Assembler::belowEqual, BIG_STRINGS);
7430 
7431     subptr(rsp, 16);
7432     int stk_offset = -(1<<scale1);
7433     if (int_cnt2 < 0) { // not constant
7434       push(cnt2);
7435       stk_offset += wordSize;
7436     }
7437     movl(cnt2, cnt1);
7438 
7439     bind(COPY_STR);
7440     if (ae == StrIntrinsicNode::LL) {
7441       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7442       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7443     } else {
7444       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7445       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7446     }
7447     decrement(cnt2);
7448     jccb(Assembler::notZero, COPY_STR);
7449 
7450     if (int_cnt2 < 0) { // not constant
7451       pop(cnt2);
7452     }
7453     movptr(str1, rsp);  // New string address
7454 
7455     bind(BIG_STRINGS);
7456     // Load substring.
7457     if (int_cnt2 < 0) { // -1
7458       if (ae == StrIntrinsicNode::UL) {
7459         pmovzxbw(vec, Address(str2, 0));
7460       } else {
7461         movdqu(vec, Address(str2, 0));
7462       }
7463       push(cnt2);       // substr count
7464       push(str2);       // substr addr
7465       push(str1);       // string addr
7466     } else {
7467       // Small (< 8 chars) constant substrings are loaded already.
7468       movl(cnt2, int_cnt2);
7469     }
7470     push(tmp);  // original SP
7471 
7472   } // Finished loading
7473 
7474   //========================================================
7475   // Start search
7476   //
7477 
7478   movptr(result, str1); // string addr
7479 
7480   if (int_cnt2  < 0) {  // Only for non constant substring
7481     jmpb(SCAN_TO_SUBSTR);
7482 
7483     // SP saved at sp+0
7484     // String saved at sp+1*wordSize
7485     // Substr saved at sp+2*wordSize
7486     // Substr count saved at sp+3*wordSize
7487 
7488     // Reload substr for rescan, this code
7489     // is executed only for large substrings (> 8 chars)
7490     bind(RELOAD_SUBSTR);
7491     movptr(str2, Address(rsp, 2*wordSize));
7492     movl(cnt2, Address(rsp, 3*wordSize));
7493     if (ae == StrIntrinsicNode::UL) {
7494       pmovzxbw(vec, Address(str2, 0));
7495     } else {
7496       movdqu(vec, Address(str2, 0));
7497     }
7498     // We came here after the beginning of the substring was
7499     // matched but the rest of it was not so we need to search
7500     // again. Start from the next element after the previous match.
7501     subptr(str1, result); // Restore counter
7502     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7503       shrl(str1, 1);
7504     }
7505     addl(cnt1, str1);
7506     decrementl(cnt1);   // Shift to next element
7507     cmpl(cnt1, cnt2);
7508     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7509 
7510     addptr(result, (1<<scale1));
7511   } // non constant
7512 
7513   // Scan string for start of substr in 16-byte vectors
7514   bind(SCAN_TO_SUBSTR);
7515   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7516   pcmpestri(vec, Address(result, 0), mode);
7517   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7518   subl(cnt1, stride);
7519   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7520   cmpl(cnt1, cnt2);
7521   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7522   addptr(result, 16);
7523 
7524   bind(ADJUST_STR);
7525   cmpl(cnt1, stride); // Do not read beyond string
7526   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7527   // Back-up string to avoid reading beyond string.
7528   lea(result, Address(result, cnt1, scale1, -16));
7529   movl(cnt1, stride);
7530   jmpb(SCAN_TO_SUBSTR);
7531 
7532   // Found a potential substr
7533   bind(FOUND_CANDIDATE);
7534   // After pcmpestri tmp(rcx) contains matched element index
7535 
7536   // Make sure string is still long enough
7537   subl(cnt1, tmp);
7538   cmpl(cnt1, cnt2);
7539   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7540   // Left less then substring.
7541 
7542   bind(RET_NOT_FOUND);
7543   movl(result, -1);
7544   jmpb(CLEANUP);
7545 
7546   bind(FOUND_SUBSTR);
7547   // Compute start addr of substr
7548   lea(result, Address(result, tmp, scale1));
7549   if (int_cnt2 > 0) { // Constant substring
7550     // Repeat search for small substring (< 8 chars)
7551     // from new point without reloading substring.
7552     // Have to check that we don't read beyond string.
7553     cmpl(tmp, stride-int_cnt2);
7554     jccb(Assembler::greater, ADJUST_STR);
7555     // Fall through if matched whole substring.
7556   } else { // non constant
7557     assert(int_cnt2 == -1, "should be != 0");
7558 
7559     addl(tmp, cnt2);
7560     // Found result if we matched whole substring.
7561     cmpl(tmp, stride);
7562     jccb(Assembler::lessEqual, RET_FOUND);
7563 
7564     // Repeat search for small substring (<= 8 chars)
7565     // from new point 'str1' without reloading substring.
7566     cmpl(cnt2, stride);
7567     // Have to check that we don't read beyond string.
7568     jccb(Assembler::lessEqual, ADJUST_STR);
7569 
7570     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7571     // Compare the rest of substring (> 8 chars).
7572     movptr(str1, result);
7573 
7574     cmpl(tmp, cnt2);
7575     // First 8 chars are already matched.
7576     jccb(Assembler::equal, CHECK_NEXT);
7577 
7578     bind(SCAN_SUBSTR);
7579     pcmpestri(vec, Address(str1, 0), mode);
7580     // Need to reload strings pointers if not matched whole vector
7581     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7582 
7583     bind(CHECK_NEXT);
7584     subl(cnt2, stride);
7585     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7586     addptr(str1, 16);
7587     if (ae == StrIntrinsicNode::UL) {
7588       addptr(str2, 8);
7589     } else {
7590       addptr(str2, 16);
7591     }
7592     subl(cnt1, stride);
7593     cmpl(cnt2, stride); // Do not read beyond substring
7594     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7595     // Back-up strings to avoid reading beyond substring.
7596 
7597     if (ae == StrIntrinsicNode::UL) {
7598       lea(str2, Address(str2, cnt2, scale2, -8));
7599       lea(str1, Address(str1, cnt2, scale1, -16));
7600     } else {
7601       lea(str2, Address(str2, cnt2, scale2, -16));
7602       lea(str1, Address(str1, cnt2, scale1, -16));
7603     }
7604     subl(cnt1, cnt2);
7605     movl(cnt2, stride);
7606     addl(cnt1, stride);
7607     bind(CONT_SCAN_SUBSTR);
7608     if (ae == StrIntrinsicNode::UL) {
7609       pmovzxbw(vec, Address(str2, 0));
7610     } else {
7611       movdqu(vec, Address(str2, 0));
7612     }
7613     jmp(SCAN_SUBSTR);
7614 
7615     bind(RET_FOUND_LONG);
7616     movptr(str1, Address(rsp, wordSize));
7617   } // non constant
7618 
7619   bind(RET_FOUND);
7620   // Compute substr offset
7621   subptr(result, str1);
7622   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7623     shrl(result, 1); // index
7624   }
7625   bind(CLEANUP);
7626   pop(rsp); // restore SP
7627 
7628 } // string_indexof
7629 
7630 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7631                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7632   ShortBranchVerifier sbv(this);
7633   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7634 
7635   int stride = 8;
7636 
7637   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7638         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7639         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7640         FOUND_SEQ_CHAR, DONE_LABEL;
7641 
7642   movptr(result, str1);
7643   if (UseAVX >= 2) {
7644     cmpl(cnt1, stride);
7645     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7646     cmpl(cnt1, 2*stride);
7647     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7648     movdl(vec1, ch);
7649     vpbroadcastw(vec1, vec1);
7650     vpxor(vec2, vec2);
7651     movl(tmp, cnt1);
7652     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7653     andl(cnt1,0x0000000F);  //tail count (in chars)
7654 
7655     bind(SCAN_TO_16_CHAR_LOOP);
7656     vmovdqu(vec3, Address(result, 0));
7657     vpcmpeqw(vec3, vec3, vec1, 1);
7658     vptest(vec2, vec3);
7659     jcc(Assembler::carryClear, FOUND_CHAR);
7660     addptr(result, 32);
7661     subl(tmp, 2*stride);
7662     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7663     jmp(SCAN_TO_8_CHAR);
7664     bind(SCAN_TO_8_CHAR_INIT);
7665     movdl(vec1, ch);
7666     pshuflw(vec1, vec1, 0x00);
7667     pshufd(vec1, vec1, 0);
7668     pxor(vec2, vec2);
7669   }
7670   bind(SCAN_TO_8_CHAR);
7671   cmpl(cnt1, stride);
7672   if (UseAVX >= 2) {
7673     jcc(Assembler::less, SCAN_TO_CHAR);
7674   } else {
7675     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7676     movdl(vec1, ch);
7677     pshuflw(vec1, vec1, 0x00);
7678     pshufd(vec1, vec1, 0);
7679     pxor(vec2, vec2);
7680   }
7681   movl(tmp, cnt1);
7682   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7683   andl(cnt1,0x00000007);  //tail count (in chars)
7684 
7685   bind(SCAN_TO_8_CHAR_LOOP);
7686   movdqu(vec3, Address(result, 0));
7687   pcmpeqw(vec3, vec1);
7688   ptest(vec2, vec3);
7689   jcc(Assembler::carryClear, FOUND_CHAR);
7690   addptr(result, 16);
7691   subl(tmp, stride);
7692   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7693   bind(SCAN_TO_CHAR);
7694   testl(cnt1, cnt1);
7695   jcc(Assembler::zero, RET_NOT_FOUND);
7696   bind(SCAN_TO_CHAR_LOOP);
7697   load_unsigned_short(tmp, Address(result, 0));
7698   cmpl(ch, tmp);
7699   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7700   addptr(result, 2);
7701   subl(cnt1, 1);
7702   jccb(Assembler::zero, RET_NOT_FOUND);
7703   jmp(SCAN_TO_CHAR_LOOP);
7704 
7705   bind(RET_NOT_FOUND);
7706   movl(result, -1);
7707   jmpb(DONE_LABEL);
7708 
7709   bind(FOUND_CHAR);
7710   if (UseAVX >= 2) {
7711     vpmovmskb(tmp, vec3);
7712   } else {
7713     pmovmskb(tmp, vec3);
7714   }
7715   bsfl(ch, tmp);
7716   addl(result, ch);
7717 
7718   bind(FOUND_SEQ_CHAR);
7719   subptr(result, str1);
7720   shrl(result, 1);
7721 
7722   bind(DONE_LABEL);
7723 } // string_indexof_char
7724 
7725 // helper function for string_compare
7726 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7727                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7728                                         Address::ScaleFactor scale2, Register index, int ae) {
7729   if (ae == StrIntrinsicNode::LL) {
7730     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7731     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7732   } else if (ae == StrIntrinsicNode::UU) {
7733     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7734     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7735   } else {
7736     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7737     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7738   }
7739 }
7740 
7741 // Compare strings, used for char[] and byte[].
7742 void MacroAssembler::string_compare(Register str1, Register str2,
7743                                     Register cnt1, Register cnt2, Register result,
7744                                     XMMRegister vec1, int ae) {
7745   ShortBranchVerifier sbv(this);
7746   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7747   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7748   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7749   int stride2x2 = 0x40;
7750   Address::ScaleFactor scale = Address::no_scale;
7751   Address::ScaleFactor scale1 = Address::no_scale;
7752   Address::ScaleFactor scale2 = Address::no_scale;
7753 
7754   if (ae != StrIntrinsicNode::LL) {
7755     stride2x2 = 0x20;
7756   }
7757 
7758   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7759     shrl(cnt2, 1);
7760   }
7761   // Compute the minimum of the string lengths and the
7762   // difference of the string lengths (stack).
7763   // Do the conditional move stuff
7764   movl(result, cnt1);
7765   subl(cnt1, cnt2);
7766   push(cnt1);
7767   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7768 
7769   // Is the minimum length zero?
7770   testl(cnt2, cnt2);
7771   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7772   if (ae == StrIntrinsicNode::LL) {
7773     // Load first bytes
7774     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7775     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7776   } else if (ae == StrIntrinsicNode::UU) {
7777     // Load first characters
7778     load_unsigned_short(result, Address(str1, 0));
7779     load_unsigned_short(cnt1, Address(str2, 0));
7780   } else {
7781     load_unsigned_byte(result, Address(str1, 0));
7782     load_unsigned_short(cnt1, Address(str2, 0));
7783   }
7784   subl(result, cnt1);
7785   jcc(Assembler::notZero,  POP_LABEL);
7786 
7787   if (ae == StrIntrinsicNode::UU) {
7788     // Divide length by 2 to get number of chars
7789     shrl(cnt2, 1);
7790   }
7791   cmpl(cnt2, 1);
7792   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7793 
7794   // Check if the strings start at the same location and setup scale and stride
7795   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7796     cmpptr(str1, str2);
7797     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7798     if (ae == StrIntrinsicNode::LL) {
7799       scale = Address::times_1;
7800       stride = 16;
7801     } else {
7802       scale = Address::times_2;
7803       stride = 8;
7804     }
7805   } else {
7806     scale1 = Address::times_1;
7807     scale2 = Address::times_2;
7808     // scale not used
7809     stride = 8;
7810   }
7811 
7812   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7813     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7814     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7815     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7816     Label COMPARE_TAIL_LONG;
7817     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7818 
7819     int pcmpmask = 0x19;
7820     if (ae == StrIntrinsicNode::LL) {
7821       pcmpmask &= ~0x01;
7822     }
7823 
7824     // Setup to compare 16-chars (32-bytes) vectors,
7825     // start from first character again because it has aligned address.
7826     if (ae == StrIntrinsicNode::LL) {
7827       stride2 = 32;
7828     } else {
7829       stride2 = 16;
7830     }
7831     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7832       adr_stride = stride << scale;
7833     } else {
7834       adr_stride1 = 8;  //stride << scale1;
7835       adr_stride2 = 16; //stride << scale2;
7836     }
7837 
7838     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7839     // rax and rdx are used by pcmpestri as elements counters
7840     movl(result, cnt2);
7841     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7842     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7843 
7844     // fast path : compare first 2 8-char vectors.
7845     bind(COMPARE_16_CHARS);
7846     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7847       movdqu(vec1, Address(str1, 0));
7848     } else {
7849       pmovzxbw(vec1, Address(str1, 0));
7850     }
7851     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7852     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7853 
7854     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7855       movdqu(vec1, Address(str1, adr_stride));
7856       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7857     } else {
7858       pmovzxbw(vec1, Address(str1, adr_stride1));
7859       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7860     }
7861     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7862     addl(cnt1, stride);
7863 
7864     // Compare the characters at index in cnt1
7865     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7866     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7867     subl(result, cnt2);
7868     jmp(POP_LABEL);
7869 
7870     // Setup the registers to start vector comparison loop
7871     bind(COMPARE_WIDE_VECTORS);
7872     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7873       lea(str1, Address(str1, result, scale));
7874       lea(str2, Address(str2, result, scale));
7875     } else {
7876       lea(str1, Address(str1, result, scale1));
7877       lea(str2, Address(str2, result, scale2));
7878     }
7879     subl(result, stride2);
7880     subl(cnt2, stride2);
7881     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7882     negptr(result);
7883 
7884     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7885     bind(COMPARE_WIDE_VECTORS_LOOP);
7886 
7887 #ifdef _LP64
7888     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7889       cmpl(cnt2, stride2x2);
7890       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7891       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7892       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7893 
7894       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7895       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7896         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7897         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7898       } else {
7899         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7900         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7901       }
7902       kortestql(k7, k7);
7903       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7904       addptr(result, stride2x2);  // update since we already compared at this addr
7905       subl(cnt2, stride2x2);      // and sub the size too
7906       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7907 
7908       vpxor(vec1, vec1);
7909       jmpb(COMPARE_WIDE_TAIL);
7910     }//if (VM_Version::supports_avx512vlbw())
7911 #endif // _LP64
7912 
7913 
7914     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7915     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7916       vmovdqu(vec1, Address(str1, result, scale));
7917       vpxor(vec1, Address(str2, result, scale));
7918     } else {
7919       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7920       vpxor(vec1, Address(str2, result, scale2));
7921     }
7922     vptest(vec1, vec1);
7923     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7924     addptr(result, stride2);
7925     subl(cnt2, stride2);
7926     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7927     // clean upper bits of YMM registers
7928     vpxor(vec1, vec1);
7929 
7930     // compare wide vectors tail
7931     bind(COMPARE_WIDE_TAIL);
7932     testptr(result, result);
7933     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7934 
7935     movl(result, stride2);
7936     movl(cnt2, result);
7937     negptr(result);
7938     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7939 
7940     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7941     bind(VECTOR_NOT_EQUAL);
7942     // clean upper bits of YMM registers
7943     vpxor(vec1, vec1);
7944     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7945       lea(str1, Address(str1, result, scale));
7946       lea(str2, Address(str2, result, scale));
7947     } else {
7948       lea(str1, Address(str1, result, scale1));
7949       lea(str2, Address(str2, result, scale2));
7950     }
7951     jmp(COMPARE_16_CHARS);
7952 
7953     // Compare tail chars, length between 1 to 15 chars
7954     bind(COMPARE_TAIL_LONG);
7955     movl(cnt2, result);
7956     cmpl(cnt2, stride);
7957     jcc(Assembler::less, COMPARE_SMALL_STR);
7958 
7959     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7960       movdqu(vec1, Address(str1, 0));
7961     } else {
7962       pmovzxbw(vec1, Address(str1, 0));
7963     }
7964     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7965     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7966     subptr(cnt2, stride);
7967     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7968     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7969       lea(str1, Address(str1, result, scale));
7970       lea(str2, Address(str2, result, scale));
7971     } else {
7972       lea(str1, Address(str1, result, scale1));
7973       lea(str2, Address(str2, result, scale2));
7974     }
7975     negptr(cnt2);
7976     jmpb(WHILE_HEAD_LABEL);
7977 
7978     bind(COMPARE_SMALL_STR);
7979   } else if (UseSSE42Intrinsics) {
7980     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7981     int pcmpmask = 0x19;
7982     // Setup to compare 8-char (16-byte) vectors,
7983     // start from first character again because it has aligned address.
7984     movl(result, cnt2);
7985     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7986     if (ae == StrIntrinsicNode::LL) {
7987       pcmpmask &= ~0x01;
7988     }
7989     jcc(Assembler::zero, COMPARE_TAIL);
7990     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7991       lea(str1, Address(str1, result, scale));
7992       lea(str2, Address(str2, result, scale));
7993     } else {
7994       lea(str1, Address(str1, result, scale1));
7995       lea(str2, Address(str2, result, scale2));
7996     }
7997     negptr(result);
7998 
7999     // pcmpestri
8000     //   inputs:
8001     //     vec1- substring
8002     //     rax - negative string length (elements count)
8003     //     mem - scanned string
8004     //     rdx - string length (elements count)
8005     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
8006     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
8007     //   outputs:
8008     //     rcx - first mismatched element index
8009     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
8010 
8011     bind(COMPARE_WIDE_VECTORS);
8012     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8013       movdqu(vec1, Address(str1, result, scale));
8014       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8015     } else {
8016       pmovzxbw(vec1, Address(str1, result, scale1));
8017       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8018     }
8019     // After pcmpestri cnt1(rcx) contains mismatched element index
8020 
8021     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8022     addptr(result, stride);
8023     subptr(cnt2, stride);
8024     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8025 
8026     // compare wide vectors tail
8027     testptr(result, result);
8028     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8029 
8030     movl(cnt2, stride);
8031     movl(result, stride);
8032     negptr(result);
8033     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8034       movdqu(vec1, Address(str1, result, scale));
8035       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8036     } else {
8037       pmovzxbw(vec1, Address(str1, result, scale1));
8038       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8039     }
8040     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8041 
8042     // Mismatched characters in the vectors
8043     bind(VECTOR_NOT_EQUAL);
8044     addptr(cnt1, result);
8045     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8046     subl(result, cnt2);
8047     jmpb(POP_LABEL);
8048 
8049     bind(COMPARE_TAIL); // limit is zero
8050     movl(cnt2, result);
8051     // Fallthru to tail compare
8052   }
8053   // Shift str2 and str1 to the end of the arrays, negate min
8054   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8055     lea(str1, Address(str1, cnt2, scale));
8056     lea(str2, Address(str2, cnt2, scale));
8057   } else {
8058     lea(str1, Address(str1, cnt2, scale1));
8059     lea(str2, Address(str2, cnt2, scale2));
8060   }
8061   decrementl(cnt2);  // first character was compared already
8062   negptr(cnt2);
8063 
8064   // Compare the rest of the elements
8065   bind(WHILE_HEAD_LABEL);
8066   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8067   subl(result, cnt1);
8068   jccb(Assembler::notZero, POP_LABEL);
8069   increment(cnt2);
8070   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8071 
8072   // Strings are equal up to min length.  Return the length difference.
8073   bind(LENGTH_DIFF_LABEL);
8074   pop(result);
8075   if (ae == StrIntrinsicNode::UU) {
8076     // Divide diff by 2 to get number of chars
8077     sarl(result, 1);
8078   }
8079   jmpb(DONE_LABEL);
8080 
8081 #ifdef _LP64
8082   if (VM_Version::supports_avx512vlbw()) {
8083 
8084     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8085 
8086     kmovql(cnt1, k7);
8087     notq(cnt1);
8088     bsfq(cnt2, cnt1);
8089     if (ae != StrIntrinsicNode::LL) {
8090       // Divide diff by 2 to get number of chars
8091       sarl(cnt2, 1);
8092     }
8093     addq(result, cnt2);
8094     if (ae == StrIntrinsicNode::LL) {
8095       load_unsigned_byte(cnt1, Address(str2, result));
8096       load_unsigned_byte(result, Address(str1, result));
8097     } else if (ae == StrIntrinsicNode::UU) {
8098       load_unsigned_short(cnt1, Address(str2, result, scale));
8099       load_unsigned_short(result, Address(str1, result, scale));
8100     } else {
8101       load_unsigned_short(cnt1, Address(str2, result, scale2));
8102       load_unsigned_byte(result, Address(str1, result, scale1));
8103     }
8104     subl(result, cnt1);
8105     jmpb(POP_LABEL);
8106   }//if (VM_Version::supports_avx512vlbw())
8107 #endif // _LP64
8108 
8109   // Discard the stored length difference
8110   bind(POP_LABEL);
8111   pop(cnt1);
8112 
8113   // That's it
8114   bind(DONE_LABEL);
8115   if(ae == StrIntrinsicNode::UL) {
8116     negl(result);
8117   }
8118 
8119 }
8120 
8121 // Search for Non-ASCII character (Negative byte value) in a byte array,
8122 // return true if it has any and false otherwise.
8123 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8124 //   @HotSpotIntrinsicCandidate
8125 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8126 //     for (int i = off; i < off + len; i++) {
8127 //       if (ba[i] < 0) {
8128 //         return true;
8129 //       }
8130 //     }
8131 //     return false;
8132 //   }
8133 void MacroAssembler::has_negatives(Register ary1, Register len,
8134   Register result, Register tmp1,
8135   XMMRegister vec1, XMMRegister vec2) {
8136   // rsi: byte array
8137   // rcx: len
8138   // rax: result
8139   ShortBranchVerifier sbv(this);
8140   assert_different_registers(ary1, len, result, tmp1);
8141   assert_different_registers(vec1, vec2);
8142   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8143 
8144   // len == 0
8145   testl(len, len);
8146   jcc(Assembler::zero, FALSE_LABEL);
8147 
8148   if ((UseAVX > 2) && // AVX512
8149     VM_Version::supports_avx512vlbw() &&
8150     VM_Version::supports_bmi2()) {
8151 
8152     set_vector_masking();  // opening of the stub context for programming mask registers
8153 
8154     Label test_64_loop, test_tail;
8155     Register tmp3_aliased = len;
8156 
8157     movl(tmp1, len);
8158     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8159 
8160     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8161     andl(len, ~(64 - 1));    // vector count (in chars)
8162     jccb(Assembler::zero, test_tail);
8163 
8164     lea(ary1, Address(ary1, len, Address::times_1));
8165     negptr(len);
8166 
8167     bind(test_64_loop);
8168     // Check whether our 64 elements of size byte contain negatives
8169     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8170     kortestql(k2, k2);
8171     jcc(Assembler::notZero, TRUE_LABEL);
8172 
8173     addptr(len, 64);
8174     jccb(Assembler::notZero, test_64_loop);
8175 
8176 
8177     bind(test_tail);
8178     // bail out when there is nothing to be done
8179     testl(tmp1, -1);
8180     jcc(Assembler::zero, FALSE_LABEL);
8181 
8182     // Save k1
8183     kmovql(k3, k1);
8184 
8185     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8186 #ifdef _LP64
8187     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8188     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8189     notq(tmp3_aliased);
8190     kmovql(k1, tmp3_aliased);
8191 #else
8192     Label k_init;
8193     jmp(k_init);
8194 
8195     // We could not read 64-bits from a general purpose register thus we move
8196     // data required to compose 64 1's to the instruction stream
8197     // We emit 64 byte wide series of elements from 0..63 which later on would
8198     // be used as a compare targets with tail count contained in tmp1 register.
8199     // Result would be a k1 register having tmp1 consecutive number or 1
8200     // counting from least significant bit.
8201     address tmp = pc();
8202     emit_int64(0x0706050403020100);
8203     emit_int64(0x0F0E0D0C0B0A0908);
8204     emit_int64(0x1716151413121110);
8205     emit_int64(0x1F1E1D1C1B1A1918);
8206     emit_int64(0x2726252423222120);
8207     emit_int64(0x2F2E2D2C2B2A2928);
8208     emit_int64(0x3736353433323130);
8209     emit_int64(0x3F3E3D3C3B3A3938);
8210 
8211     bind(k_init);
8212     lea(len, InternalAddress(tmp));
8213     // create mask to test for negative byte inside a vector
8214     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8215     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8216 
8217 #endif
8218     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8219     ktestq(k2, k1);
8220     // Restore k1
8221     kmovql(k1, k3);
8222     jcc(Assembler::notZero, TRUE_LABEL);
8223 
8224     jmp(FALSE_LABEL);
8225 
8226     clear_vector_masking();   // closing of the stub context for programming mask registers
8227   } else {
8228     movl(result, len); // copy
8229 
8230     if (UseAVX == 2 && UseSSE >= 2) {
8231       // With AVX2, use 32-byte vector compare
8232       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8233 
8234       // Compare 32-byte vectors
8235       andl(result, 0x0000001f);  //   tail count (in bytes)
8236       andl(len, 0xffffffe0);   // vector count (in bytes)
8237       jccb(Assembler::zero, COMPARE_TAIL);
8238 
8239       lea(ary1, Address(ary1, len, Address::times_1));
8240       negptr(len);
8241 
8242       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8243       movdl(vec2, tmp1);
8244       vpbroadcastd(vec2, vec2);
8245 
8246       bind(COMPARE_WIDE_VECTORS);
8247       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8248       vptest(vec1, vec2);
8249       jccb(Assembler::notZero, TRUE_LABEL);
8250       addptr(len, 32);
8251       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8252 
8253       testl(result, result);
8254       jccb(Assembler::zero, FALSE_LABEL);
8255 
8256       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8257       vptest(vec1, vec2);
8258       jccb(Assembler::notZero, TRUE_LABEL);
8259       jmpb(FALSE_LABEL);
8260 
8261       bind(COMPARE_TAIL); // len is zero
8262       movl(len, result);
8263       // Fallthru to tail compare
8264     } else if (UseSSE42Intrinsics) {
8265       // With SSE4.2, use double quad vector compare
8266       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8267 
8268       // Compare 16-byte vectors
8269       andl(result, 0x0000000f);  //   tail count (in bytes)
8270       andl(len, 0xfffffff0);   // vector count (in bytes)
8271       jccb(Assembler::zero, COMPARE_TAIL);
8272 
8273       lea(ary1, Address(ary1, len, Address::times_1));
8274       negptr(len);
8275 
8276       movl(tmp1, 0x80808080);
8277       movdl(vec2, tmp1);
8278       pshufd(vec2, vec2, 0);
8279 
8280       bind(COMPARE_WIDE_VECTORS);
8281       movdqu(vec1, Address(ary1, len, Address::times_1));
8282       ptest(vec1, vec2);
8283       jccb(Assembler::notZero, TRUE_LABEL);
8284       addptr(len, 16);
8285       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8286 
8287       testl(result, result);
8288       jccb(Assembler::zero, FALSE_LABEL);
8289 
8290       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8291       ptest(vec1, vec2);
8292       jccb(Assembler::notZero, TRUE_LABEL);
8293       jmpb(FALSE_LABEL);
8294 
8295       bind(COMPARE_TAIL); // len is zero
8296       movl(len, result);
8297       // Fallthru to tail compare
8298     }
8299   }
8300   // Compare 4-byte vectors
8301   andl(len, 0xfffffffc); // vector count (in bytes)
8302   jccb(Assembler::zero, COMPARE_CHAR);
8303 
8304   lea(ary1, Address(ary1, len, Address::times_1));
8305   negptr(len);
8306 
8307   bind(COMPARE_VECTORS);
8308   movl(tmp1, Address(ary1, len, Address::times_1));
8309   andl(tmp1, 0x80808080);
8310   jccb(Assembler::notZero, TRUE_LABEL);
8311   addptr(len, 4);
8312   jcc(Assembler::notZero, COMPARE_VECTORS);
8313 
8314   // Compare trailing char (final 2 bytes), if any
8315   bind(COMPARE_CHAR);
8316   testl(result, 0x2);   // tail  char
8317   jccb(Assembler::zero, COMPARE_BYTE);
8318   load_unsigned_short(tmp1, Address(ary1, 0));
8319   andl(tmp1, 0x00008080);
8320   jccb(Assembler::notZero, TRUE_LABEL);
8321   subptr(result, 2);
8322   lea(ary1, Address(ary1, 2));
8323 
8324   bind(COMPARE_BYTE);
8325   testl(result, 0x1);   // tail  byte
8326   jccb(Assembler::zero, FALSE_LABEL);
8327   load_unsigned_byte(tmp1, Address(ary1, 0));
8328   andl(tmp1, 0x00000080);
8329   jccb(Assembler::notEqual, TRUE_LABEL);
8330   jmpb(FALSE_LABEL);
8331 
8332   bind(TRUE_LABEL);
8333   movl(result, 1);   // return true
8334   jmpb(DONE);
8335 
8336   bind(FALSE_LABEL);
8337   xorl(result, result); // return false
8338 
8339   // That's it
8340   bind(DONE);
8341   if (UseAVX >= 2 && UseSSE >= 2) {
8342     // clean upper bits of YMM registers
8343     vpxor(vec1, vec1);
8344     vpxor(vec2, vec2);
8345   }
8346 }
8347 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8348 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8349                                    Register limit, Register result, Register chr,
8350                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8351   ShortBranchVerifier sbv(this);
8352   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8353 
8354   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8355   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8356 
8357   if (is_array_equ) {
8358     // Check the input args
8359     cmpptr(ary1, ary2);
8360     jcc(Assembler::equal, TRUE_LABEL);
8361 
8362     // Need additional checks for arrays_equals.
8363     testptr(ary1, ary1);
8364     jcc(Assembler::zero, FALSE_LABEL);
8365     testptr(ary2, ary2);
8366     jcc(Assembler::zero, FALSE_LABEL);
8367 
8368     // Check the lengths
8369     movl(limit, Address(ary1, length_offset));
8370     cmpl(limit, Address(ary2, length_offset));
8371     jcc(Assembler::notEqual, FALSE_LABEL);
8372   }
8373 
8374   // count == 0
8375   testl(limit, limit);
8376   jcc(Assembler::zero, TRUE_LABEL);
8377 
8378   if (is_array_equ) {
8379     // Load array address
8380     lea(ary1, Address(ary1, base_offset));
8381     lea(ary2, Address(ary2, base_offset));
8382   }
8383 
8384   if (is_array_equ && is_char) {
8385     // arrays_equals when used for char[].
8386     shll(limit, 1);      // byte count != 0
8387   }
8388   movl(result, limit); // copy
8389 
8390   if (UseAVX >= 2) {
8391     // With AVX2, use 32-byte vector compare
8392     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8393 
8394     // Compare 32-byte vectors
8395     andl(result, 0x0000001f);  //   tail count (in bytes)
8396     andl(limit, 0xffffffe0);   // vector count (in bytes)
8397     jcc(Assembler::zero, COMPARE_TAIL);
8398 
8399     lea(ary1, Address(ary1, limit, Address::times_1));
8400     lea(ary2, Address(ary2, limit, Address::times_1));
8401     negptr(limit);
8402 
8403     bind(COMPARE_WIDE_VECTORS);
8404 
8405 #ifdef _LP64
8406     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8407       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8408 
8409       cmpl(limit, -64);
8410       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8411 
8412       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8413 
8414       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8415       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8416       kortestql(k7, k7);
8417       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8418       addptr(limit, 64);  // update since we already compared at this addr
8419       cmpl(limit, -64);
8420       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8421 
8422       // At this point we may still need to compare -limit+result bytes.
8423       // We could execute the next two instruction and just continue via non-wide path:
8424       //  cmpl(limit, 0);
8425       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8426       // But since we stopped at the points ary{1,2}+limit which are
8427       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8428       // (|limit| <= 32 and result < 32),
8429       // we may just compare the last 64 bytes.
8430       //
8431       addptr(result, -64);   // it is safe, bc we just came from this area
8432       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8433       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8434       kortestql(k7, k7);
8435       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8436 
8437       jmp(TRUE_LABEL);
8438 
8439       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8440 
8441     }//if (VM_Version::supports_avx512vlbw())
8442 #endif //_LP64
8443 
8444     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8445     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8446     vpxor(vec1, vec2);
8447 
8448     vptest(vec1, vec1);
8449     jcc(Assembler::notZero, FALSE_LABEL);
8450     addptr(limit, 32);
8451     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8452 
8453     testl(result, result);
8454     jcc(Assembler::zero, TRUE_LABEL);
8455 
8456     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8457     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8458     vpxor(vec1, vec2);
8459 
8460     vptest(vec1, vec1);
8461     jccb(Assembler::notZero, FALSE_LABEL);
8462     jmpb(TRUE_LABEL);
8463 
8464     bind(COMPARE_TAIL); // limit is zero
8465     movl(limit, result);
8466     // Fallthru to tail compare
8467   } else if (UseSSE42Intrinsics) {
8468     // With SSE4.2, use double quad vector compare
8469     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8470 
8471     // Compare 16-byte vectors
8472     andl(result, 0x0000000f);  //   tail count (in bytes)
8473     andl(limit, 0xfffffff0);   // vector count (in bytes)
8474     jcc(Assembler::zero, COMPARE_TAIL);
8475 
8476     lea(ary1, Address(ary1, limit, Address::times_1));
8477     lea(ary2, Address(ary2, limit, Address::times_1));
8478     negptr(limit);
8479 
8480     bind(COMPARE_WIDE_VECTORS);
8481     movdqu(vec1, Address(ary1, limit, Address::times_1));
8482     movdqu(vec2, Address(ary2, limit, Address::times_1));
8483     pxor(vec1, vec2);
8484 
8485     ptest(vec1, vec1);
8486     jcc(Assembler::notZero, FALSE_LABEL);
8487     addptr(limit, 16);
8488     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8489 
8490     testl(result, result);
8491     jcc(Assembler::zero, TRUE_LABEL);
8492 
8493     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8494     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8495     pxor(vec1, vec2);
8496 
8497     ptest(vec1, vec1);
8498     jccb(Assembler::notZero, FALSE_LABEL);
8499     jmpb(TRUE_LABEL);
8500 
8501     bind(COMPARE_TAIL); // limit is zero
8502     movl(limit, result);
8503     // Fallthru to tail compare
8504   }
8505 
8506   // Compare 4-byte vectors
8507   andl(limit, 0xfffffffc); // vector count (in bytes)
8508   jccb(Assembler::zero, COMPARE_CHAR);
8509 
8510   lea(ary1, Address(ary1, limit, Address::times_1));
8511   lea(ary2, Address(ary2, limit, Address::times_1));
8512   negptr(limit);
8513 
8514   bind(COMPARE_VECTORS);
8515   movl(chr, Address(ary1, limit, Address::times_1));
8516   cmpl(chr, Address(ary2, limit, Address::times_1));
8517   jccb(Assembler::notEqual, FALSE_LABEL);
8518   addptr(limit, 4);
8519   jcc(Assembler::notZero, COMPARE_VECTORS);
8520 
8521   // Compare trailing char (final 2 bytes), if any
8522   bind(COMPARE_CHAR);
8523   testl(result, 0x2);   // tail  char
8524   jccb(Assembler::zero, COMPARE_BYTE);
8525   load_unsigned_short(chr, Address(ary1, 0));
8526   load_unsigned_short(limit, Address(ary2, 0));
8527   cmpl(chr, limit);
8528   jccb(Assembler::notEqual, FALSE_LABEL);
8529 
8530   if (is_array_equ && is_char) {
8531     bind(COMPARE_BYTE);
8532   } else {
8533     lea(ary1, Address(ary1, 2));
8534     lea(ary2, Address(ary2, 2));
8535 
8536     bind(COMPARE_BYTE);
8537     testl(result, 0x1);   // tail  byte
8538     jccb(Assembler::zero, TRUE_LABEL);
8539     load_unsigned_byte(chr, Address(ary1, 0));
8540     load_unsigned_byte(limit, Address(ary2, 0));
8541     cmpl(chr, limit);
8542     jccb(Assembler::notEqual, FALSE_LABEL);
8543   }
8544   bind(TRUE_LABEL);
8545   movl(result, 1);   // return true
8546   jmpb(DONE);
8547 
8548   bind(FALSE_LABEL);
8549   xorl(result, result); // return false
8550 
8551   // That's it
8552   bind(DONE);
8553   if (UseAVX >= 2) {
8554     // clean upper bits of YMM registers
8555     vpxor(vec1, vec1);
8556     vpxor(vec2, vec2);
8557   }
8558 }
8559 
8560 #endif
8561 
8562 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8563                                    Register to, Register value, Register count,
8564                                    Register rtmp, XMMRegister xtmp) {
8565   ShortBranchVerifier sbv(this);
8566   assert_different_registers(to, value, count, rtmp);
8567   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8568   Label L_fill_2_bytes, L_fill_4_bytes;
8569 
8570   int shift = -1;
8571   switch (t) {
8572     case T_BYTE:
8573       shift = 2;
8574       break;
8575     case T_SHORT:
8576       shift = 1;
8577       break;
8578     case T_INT:
8579       shift = 0;
8580       break;
8581     default: ShouldNotReachHere();
8582   }
8583 
8584   if (t == T_BYTE) {
8585     andl(value, 0xff);
8586     movl(rtmp, value);
8587     shll(rtmp, 8);
8588     orl(value, rtmp);
8589   }
8590   if (t == T_SHORT) {
8591     andl(value, 0xffff);
8592   }
8593   if (t == T_BYTE || t == T_SHORT) {
8594     movl(rtmp, value);
8595     shll(rtmp, 16);
8596     orl(value, rtmp);
8597   }
8598 
8599   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8600   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8601   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8602     // align source address at 4 bytes address boundary
8603     if (t == T_BYTE) {
8604       // One byte misalignment happens only for byte arrays
8605       testptr(to, 1);
8606       jccb(Assembler::zero, L_skip_align1);
8607       movb(Address(to, 0), value);
8608       increment(to);
8609       decrement(count);
8610       BIND(L_skip_align1);
8611     }
8612     // Two bytes misalignment happens only for byte and short (char) arrays
8613     testptr(to, 2);
8614     jccb(Assembler::zero, L_skip_align2);
8615     movw(Address(to, 0), value);
8616     addptr(to, 2);
8617     subl(count, 1<<(shift-1));
8618     BIND(L_skip_align2);
8619   }
8620   if (UseSSE < 2) {
8621     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8622     // Fill 32-byte chunks
8623     subl(count, 8 << shift);
8624     jcc(Assembler::less, L_check_fill_8_bytes);
8625     align(16);
8626 
8627     BIND(L_fill_32_bytes_loop);
8628 
8629     for (int i = 0; i < 32; i += 4) {
8630       movl(Address(to, i), value);
8631     }
8632 
8633     addptr(to, 32);
8634     subl(count, 8 << shift);
8635     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8636     BIND(L_check_fill_8_bytes);
8637     addl(count, 8 << shift);
8638     jccb(Assembler::zero, L_exit);
8639     jmpb(L_fill_8_bytes);
8640 
8641     //
8642     // length is too short, just fill qwords
8643     //
8644     BIND(L_fill_8_bytes_loop);
8645     movl(Address(to, 0), value);
8646     movl(Address(to, 4), value);
8647     addptr(to, 8);
8648     BIND(L_fill_8_bytes);
8649     subl(count, 1 << (shift + 1));
8650     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8651     // fall through to fill 4 bytes
8652   } else {
8653     Label L_fill_32_bytes;
8654     if (!UseUnalignedLoadStores) {
8655       // align to 8 bytes, we know we are 4 byte aligned to start
8656       testptr(to, 4);
8657       jccb(Assembler::zero, L_fill_32_bytes);
8658       movl(Address(to, 0), value);
8659       addptr(to, 4);
8660       subl(count, 1<<shift);
8661     }
8662     BIND(L_fill_32_bytes);
8663     {
8664       assert( UseSSE >= 2, "supported cpu only" );
8665       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8666       if (UseAVX > 2) {
8667         movl(rtmp, 0xffff);
8668         kmovwl(k1, rtmp);
8669       }
8670       movdl(xtmp, value);
8671       if (UseAVX > 2 && UseUnalignedLoadStores) {
8672         // Fill 64-byte chunks
8673         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8674         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8675 
8676         subl(count, 16 << shift);
8677         jcc(Assembler::less, L_check_fill_32_bytes);
8678         align(16);
8679 
8680         BIND(L_fill_64_bytes_loop);
8681         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8682         addptr(to, 64);
8683         subl(count, 16 << shift);
8684         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8685 
8686         BIND(L_check_fill_32_bytes);
8687         addl(count, 8 << shift);
8688         jccb(Assembler::less, L_check_fill_8_bytes);
8689         vmovdqu(Address(to, 0), xtmp);
8690         addptr(to, 32);
8691         subl(count, 8 << shift);
8692 
8693         BIND(L_check_fill_8_bytes);
8694       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8695         // Fill 64-byte chunks
8696         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8697         vpbroadcastd(xtmp, xtmp);
8698 
8699         subl(count, 16 << shift);
8700         jcc(Assembler::less, L_check_fill_32_bytes);
8701         align(16);
8702 
8703         BIND(L_fill_64_bytes_loop);
8704         vmovdqu(Address(to, 0), xtmp);
8705         vmovdqu(Address(to, 32), xtmp);
8706         addptr(to, 64);
8707         subl(count, 16 << shift);
8708         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8709 
8710         BIND(L_check_fill_32_bytes);
8711         addl(count, 8 << shift);
8712         jccb(Assembler::less, L_check_fill_8_bytes);
8713         vmovdqu(Address(to, 0), xtmp);
8714         addptr(to, 32);
8715         subl(count, 8 << shift);
8716 
8717         BIND(L_check_fill_8_bytes);
8718         // clean upper bits of YMM registers
8719         movdl(xtmp, value);
8720         pshufd(xtmp, xtmp, 0);
8721       } else {
8722         // Fill 32-byte chunks
8723         pshufd(xtmp, xtmp, 0);
8724 
8725         subl(count, 8 << shift);
8726         jcc(Assembler::less, L_check_fill_8_bytes);
8727         align(16);
8728 
8729         BIND(L_fill_32_bytes_loop);
8730 
8731         if (UseUnalignedLoadStores) {
8732           movdqu(Address(to, 0), xtmp);
8733           movdqu(Address(to, 16), xtmp);
8734         } else {
8735           movq(Address(to, 0), xtmp);
8736           movq(Address(to, 8), xtmp);
8737           movq(Address(to, 16), xtmp);
8738           movq(Address(to, 24), xtmp);
8739         }
8740 
8741         addptr(to, 32);
8742         subl(count, 8 << shift);
8743         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8744 
8745         BIND(L_check_fill_8_bytes);
8746       }
8747       addl(count, 8 << shift);
8748       jccb(Assembler::zero, L_exit);
8749       jmpb(L_fill_8_bytes);
8750 
8751       //
8752       // length is too short, just fill qwords
8753       //
8754       BIND(L_fill_8_bytes_loop);
8755       movq(Address(to, 0), xtmp);
8756       addptr(to, 8);
8757       BIND(L_fill_8_bytes);
8758       subl(count, 1 << (shift + 1));
8759       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8760     }
8761   }
8762   // fill trailing 4 bytes
8763   BIND(L_fill_4_bytes);
8764   testl(count, 1<<shift);
8765   jccb(Assembler::zero, L_fill_2_bytes);
8766   movl(Address(to, 0), value);
8767   if (t == T_BYTE || t == T_SHORT) {
8768     addptr(to, 4);
8769     BIND(L_fill_2_bytes);
8770     // fill trailing 2 bytes
8771     testl(count, 1<<(shift-1));
8772     jccb(Assembler::zero, L_fill_byte);
8773     movw(Address(to, 0), value);
8774     if (t == T_BYTE) {
8775       addptr(to, 2);
8776       BIND(L_fill_byte);
8777       // fill trailing byte
8778       testl(count, 1);
8779       jccb(Assembler::zero, L_exit);
8780       movb(Address(to, 0), value);
8781     } else {
8782       BIND(L_fill_byte);
8783     }
8784   } else {
8785     BIND(L_fill_2_bytes);
8786   }
8787   BIND(L_exit);
8788 }
8789 
8790 // encode char[] to byte[] in ISO_8859_1
8791    //@HotSpotIntrinsicCandidate
8792    //private static int implEncodeISOArray(byte[] sa, int sp,
8793    //byte[] da, int dp, int len) {
8794    //  int i = 0;
8795    //  for (; i < len; i++) {
8796    //    char c = StringUTF16.getChar(sa, sp++);
8797    //    if (c > '\u00FF')
8798    //      break;
8799    //    da[dp++] = (byte)c;
8800    //  }
8801    //  return i;
8802    //}
8803 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8804   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8805   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8806   Register tmp5, Register result) {
8807 
8808   // rsi: src
8809   // rdi: dst
8810   // rdx: len
8811   // rcx: tmp5
8812   // rax: result
8813   ShortBranchVerifier sbv(this);
8814   assert_different_registers(src, dst, len, tmp5, result);
8815   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8816 
8817   // set result
8818   xorl(result, result);
8819   // check for zero length
8820   testl(len, len);
8821   jcc(Assembler::zero, L_done);
8822 
8823   movl(result, len);
8824 
8825   // Setup pointers
8826   lea(src, Address(src, len, Address::times_2)); // char[]
8827   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8828   negptr(len);
8829 
8830   if (UseSSE42Intrinsics || UseAVX >= 2) {
8831     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8832     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8833 
8834     if (UseAVX >= 2) {
8835       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8836       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8837       movdl(tmp1Reg, tmp5);
8838       vpbroadcastd(tmp1Reg, tmp1Reg);
8839       jmp(L_chars_32_check);
8840 
8841       bind(L_copy_32_chars);
8842       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8843       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8844       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8845       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8846       jccb(Assembler::notZero, L_copy_32_chars_exit);
8847       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8848       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8849       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8850 
8851       bind(L_chars_32_check);
8852       addptr(len, 32);
8853       jcc(Assembler::lessEqual, L_copy_32_chars);
8854 
8855       bind(L_copy_32_chars_exit);
8856       subptr(len, 16);
8857       jccb(Assembler::greater, L_copy_16_chars_exit);
8858 
8859     } else if (UseSSE42Intrinsics) {
8860       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8861       movdl(tmp1Reg, tmp5);
8862       pshufd(tmp1Reg, tmp1Reg, 0);
8863       jmpb(L_chars_16_check);
8864     }
8865 
8866     bind(L_copy_16_chars);
8867     if (UseAVX >= 2) {
8868       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8869       vptest(tmp2Reg, tmp1Reg);
8870       jcc(Assembler::notZero, L_copy_16_chars_exit);
8871       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8872       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8873     } else {
8874       if (UseAVX > 0) {
8875         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8876         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8877         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8878       } else {
8879         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8880         por(tmp2Reg, tmp3Reg);
8881         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8882         por(tmp2Reg, tmp4Reg);
8883       }
8884       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8885       jccb(Assembler::notZero, L_copy_16_chars_exit);
8886       packuswb(tmp3Reg, tmp4Reg);
8887     }
8888     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8889 
8890     bind(L_chars_16_check);
8891     addptr(len, 16);
8892     jcc(Assembler::lessEqual, L_copy_16_chars);
8893 
8894     bind(L_copy_16_chars_exit);
8895     if (UseAVX >= 2) {
8896       // clean upper bits of YMM registers
8897       vpxor(tmp2Reg, tmp2Reg);
8898       vpxor(tmp3Reg, tmp3Reg);
8899       vpxor(tmp4Reg, tmp4Reg);
8900       movdl(tmp1Reg, tmp5);
8901       pshufd(tmp1Reg, tmp1Reg, 0);
8902     }
8903     subptr(len, 8);
8904     jccb(Assembler::greater, L_copy_8_chars_exit);
8905 
8906     bind(L_copy_8_chars);
8907     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8908     ptest(tmp3Reg, tmp1Reg);
8909     jccb(Assembler::notZero, L_copy_8_chars_exit);
8910     packuswb(tmp3Reg, tmp1Reg);
8911     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8912     addptr(len, 8);
8913     jccb(Assembler::lessEqual, L_copy_8_chars);
8914 
8915     bind(L_copy_8_chars_exit);
8916     subptr(len, 8);
8917     jccb(Assembler::zero, L_done);
8918   }
8919 
8920   bind(L_copy_1_char);
8921   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8922   testl(tmp5, 0xff00);      // check if Unicode char
8923   jccb(Assembler::notZero, L_copy_1_char_exit);
8924   movb(Address(dst, len, Address::times_1, 0), tmp5);
8925   addptr(len, 1);
8926   jccb(Assembler::less, L_copy_1_char);
8927 
8928   bind(L_copy_1_char_exit);
8929   addptr(result, len); // len is negative count of not processed elements
8930 
8931   bind(L_done);
8932 }
8933 
8934 #ifdef _LP64
8935 /**
8936  * Helper for multiply_to_len().
8937  */
8938 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8939   addq(dest_lo, src1);
8940   adcq(dest_hi, 0);
8941   addq(dest_lo, src2);
8942   adcq(dest_hi, 0);
8943 }
8944 
8945 /**
8946  * Multiply 64 bit by 64 bit first loop.
8947  */
8948 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8949                                            Register y, Register y_idx, Register z,
8950                                            Register carry, Register product,
8951                                            Register idx, Register kdx) {
8952   //
8953   //  jlong carry, x[], y[], z[];
8954   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8955   //    huge_128 product = y[idx] * x[xstart] + carry;
8956   //    z[kdx] = (jlong)product;
8957   //    carry  = (jlong)(product >>> 64);
8958   //  }
8959   //  z[xstart] = carry;
8960   //
8961 
8962   Label L_first_loop, L_first_loop_exit;
8963   Label L_one_x, L_one_y, L_multiply;
8964 
8965   decrementl(xstart);
8966   jcc(Assembler::negative, L_one_x);
8967 
8968   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8969   rorq(x_xstart, 32); // convert big-endian to little-endian
8970 
8971   bind(L_first_loop);
8972   decrementl(idx);
8973   jcc(Assembler::negative, L_first_loop_exit);
8974   decrementl(idx);
8975   jcc(Assembler::negative, L_one_y);
8976   movq(y_idx, Address(y, idx, Address::times_4,  0));
8977   rorq(y_idx, 32); // convert big-endian to little-endian
8978   bind(L_multiply);
8979   movq(product, x_xstart);
8980   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8981   addq(product, carry);
8982   adcq(rdx, 0);
8983   subl(kdx, 2);
8984   movl(Address(z, kdx, Address::times_4,  4), product);
8985   shrq(product, 32);
8986   movl(Address(z, kdx, Address::times_4,  0), product);
8987   movq(carry, rdx);
8988   jmp(L_first_loop);
8989 
8990   bind(L_one_y);
8991   movl(y_idx, Address(y,  0));
8992   jmp(L_multiply);
8993 
8994   bind(L_one_x);
8995   movl(x_xstart, Address(x,  0));
8996   jmp(L_first_loop);
8997 
8998   bind(L_first_loop_exit);
8999 }
9000 
9001 /**
9002  * Multiply 64 bit by 64 bit and add 128 bit.
9003  */
9004 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
9005                                             Register yz_idx, Register idx,
9006                                             Register carry, Register product, int offset) {
9007   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
9008   //     z[kdx] = (jlong)product;
9009 
9010   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
9011   rorq(yz_idx, 32); // convert big-endian to little-endian
9012   movq(product, x_xstart);
9013   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
9014   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9015   rorq(yz_idx, 32); // convert big-endian to little-endian
9016 
9017   add2_with_carry(rdx, product, carry, yz_idx);
9018 
9019   movl(Address(z, idx, Address::times_4,  offset+4), product);
9020   shrq(product, 32);
9021   movl(Address(z, idx, Address::times_4,  offset), product);
9022 
9023 }
9024 
9025 /**
9026  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9027  */
9028 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9029                                              Register yz_idx, Register idx, Register jdx,
9030                                              Register carry, Register product,
9031                                              Register carry2) {
9032   //   jlong carry, x[], y[], z[];
9033   //   int kdx = ystart+1;
9034   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9035   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9036   //     z[kdx+idx+1] = (jlong)product;
9037   //     jlong carry2  = (jlong)(product >>> 64);
9038   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9039   //     z[kdx+idx] = (jlong)product;
9040   //     carry  = (jlong)(product >>> 64);
9041   //   }
9042   //   idx += 2;
9043   //   if (idx > 0) {
9044   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9045   //     z[kdx+idx] = (jlong)product;
9046   //     carry  = (jlong)(product >>> 64);
9047   //   }
9048   //
9049 
9050   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9051 
9052   movl(jdx, idx);
9053   andl(jdx, 0xFFFFFFFC);
9054   shrl(jdx, 2);
9055 
9056   bind(L_third_loop);
9057   subl(jdx, 1);
9058   jcc(Assembler::negative, L_third_loop_exit);
9059   subl(idx, 4);
9060 
9061   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9062   movq(carry2, rdx);
9063 
9064   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9065   movq(carry, rdx);
9066   jmp(L_third_loop);
9067 
9068   bind (L_third_loop_exit);
9069 
9070   andl (idx, 0x3);
9071   jcc(Assembler::zero, L_post_third_loop_done);
9072 
9073   Label L_check_1;
9074   subl(idx, 2);
9075   jcc(Assembler::negative, L_check_1);
9076 
9077   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9078   movq(carry, rdx);
9079 
9080   bind (L_check_1);
9081   addl (idx, 0x2);
9082   andl (idx, 0x1);
9083   subl(idx, 1);
9084   jcc(Assembler::negative, L_post_third_loop_done);
9085 
9086   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9087   movq(product, x_xstart);
9088   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9089   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9090 
9091   add2_with_carry(rdx, product, yz_idx, carry);
9092 
9093   movl(Address(z, idx, Address::times_4,  0), product);
9094   shrq(product, 32);
9095 
9096   shlq(rdx, 32);
9097   orq(product, rdx);
9098   movq(carry, product);
9099 
9100   bind(L_post_third_loop_done);
9101 }
9102 
9103 /**
9104  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9105  *
9106  */
9107 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9108                                                   Register carry, Register carry2,
9109                                                   Register idx, Register jdx,
9110                                                   Register yz_idx1, Register yz_idx2,
9111                                                   Register tmp, Register tmp3, Register tmp4) {
9112   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9113 
9114   //   jlong carry, x[], y[], z[];
9115   //   int kdx = ystart+1;
9116   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9117   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9118   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9119   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9120   //     carry  = (jlong)(tmp4 >>> 64);
9121   //     z[kdx+idx+1] = (jlong)tmp3;
9122   //     z[kdx+idx] = (jlong)tmp4;
9123   //   }
9124   //   idx += 2;
9125   //   if (idx > 0) {
9126   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9127   //     z[kdx+idx] = (jlong)yz_idx1;
9128   //     carry  = (jlong)(yz_idx1 >>> 64);
9129   //   }
9130   //
9131 
9132   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9133 
9134   movl(jdx, idx);
9135   andl(jdx, 0xFFFFFFFC);
9136   shrl(jdx, 2);
9137 
9138   bind(L_third_loop);
9139   subl(jdx, 1);
9140   jcc(Assembler::negative, L_third_loop_exit);
9141   subl(idx, 4);
9142 
9143   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9144   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9145   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9146   rorxq(yz_idx2, yz_idx2, 32);
9147 
9148   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9149   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9150 
9151   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9152   rorxq(yz_idx1, yz_idx1, 32);
9153   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9154   rorxq(yz_idx2, yz_idx2, 32);
9155 
9156   if (VM_Version::supports_adx()) {
9157     adcxq(tmp3, carry);
9158     adoxq(tmp3, yz_idx1);
9159 
9160     adcxq(tmp4, tmp);
9161     adoxq(tmp4, yz_idx2);
9162 
9163     movl(carry, 0); // does not affect flags
9164     adcxq(carry2, carry);
9165     adoxq(carry2, carry);
9166   } else {
9167     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9168     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9169   }
9170   movq(carry, carry2);
9171 
9172   movl(Address(z, idx, Address::times_4, 12), tmp3);
9173   shrq(tmp3, 32);
9174   movl(Address(z, idx, Address::times_4,  8), tmp3);
9175 
9176   movl(Address(z, idx, Address::times_4,  4), tmp4);
9177   shrq(tmp4, 32);
9178   movl(Address(z, idx, Address::times_4,  0), tmp4);
9179 
9180   jmp(L_third_loop);
9181 
9182   bind (L_third_loop_exit);
9183 
9184   andl (idx, 0x3);
9185   jcc(Assembler::zero, L_post_third_loop_done);
9186 
9187   Label L_check_1;
9188   subl(idx, 2);
9189   jcc(Assembler::negative, L_check_1);
9190 
9191   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9192   rorxq(yz_idx1, yz_idx1, 32);
9193   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9194   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9195   rorxq(yz_idx2, yz_idx2, 32);
9196 
9197   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9198 
9199   movl(Address(z, idx, Address::times_4,  4), tmp3);
9200   shrq(tmp3, 32);
9201   movl(Address(z, idx, Address::times_4,  0), tmp3);
9202   movq(carry, tmp4);
9203 
9204   bind (L_check_1);
9205   addl (idx, 0x2);
9206   andl (idx, 0x1);
9207   subl(idx, 1);
9208   jcc(Assembler::negative, L_post_third_loop_done);
9209   movl(tmp4, Address(y, idx, Address::times_4,  0));
9210   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9211   movl(tmp4, Address(z, idx, Address::times_4,  0));
9212 
9213   add2_with_carry(carry2, tmp3, tmp4, carry);
9214 
9215   movl(Address(z, idx, Address::times_4,  0), tmp3);
9216   shrq(tmp3, 32);
9217 
9218   shlq(carry2, 32);
9219   orq(tmp3, carry2);
9220   movq(carry, tmp3);
9221 
9222   bind(L_post_third_loop_done);
9223 }
9224 
9225 /**
9226  * Code for BigInteger::multiplyToLen() instrinsic.
9227  *
9228  * rdi: x
9229  * rax: xlen
9230  * rsi: y
9231  * rcx: ylen
9232  * r8:  z
9233  * r11: zlen
9234  * r12: tmp1
9235  * r13: tmp2
9236  * r14: tmp3
9237  * r15: tmp4
9238  * rbx: tmp5
9239  *
9240  */
9241 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9242                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9243   ShortBranchVerifier sbv(this);
9244   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9245 
9246   push(tmp1);
9247   push(tmp2);
9248   push(tmp3);
9249   push(tmp4);
9250   push(tmp5);
9251 
9252   push(xlen);
9253   push(zlen);
9254 
9255   const Register idx = tmp1;
9256   const Register kdx = tmp2;
9257   const Register xstart = tmp3;
9258 
9259   const Register y_idx = tmp4;
9260   const Register carry = tmp5;
9261   const Register product  = xlen;
9262   const Register x_xstart = zlen;  // reuse register
9263 
9264   // First Loop.
9265   //
9266   //  final static long LONG_MASK = 0xffffffffL;
9267   //  int xstart = xlen - 1;
9268   //  int ystart = ylen - 1;
9269   //  long carry = 0;
9270   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9271   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9272   //    z[kdx] = (int)product;
9273   //    carry = product >>> 32;
9274   //  }
9275   //  z[xstart] = (int)carry;
9276   //
9277 
9278   movl(idx, ylen);      // idx = ylen;
9279   movl(kdx, zlen);      // kdx = xlen+ylen;
9280   xorq(carry, carry);   // carry = 0;
9281 
9282   Label L_done;
9283 
9284   movl(xstart, xlen);
9285   decrementl(xstart);
9286   jcc(Assembler::negative, L_done);
9287 
9288   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9289 
9290   Label L_second_loop;
9291   testl(kdx, kdx);
9292   jcc(Assembler::zero, L_second_loop);
9293 
9294   Label L_carry;
9295   subl(kdx, 1);
9296   jcc(Assembler::zero, L_carry);
9297 
9298   movl(Address(z, kdx, Address::times_4,  0), carry);
9299   shrq(carry, 32);
9300   subl(kdx, 1);
9301 
9302   bind(L_carry);
9303   movl(Address(z, kdx, Address::times_4,  0), carry);
9304 
9305   // Second and third (nested) loops.
9306   //
9307   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9308   //   carry = 0;
9309   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9310   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9311   //                    (z[k] & LONG_MASK) + carry;
9312   //     z[k] = (int)product;
9313   //     carry = product >>> 32;
9314   //   }
9315   //   z[i] = (int)carry;
9316   // }
9317   //
9318   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9319 
9320   const Register jdx = tmp1;
9321 
9322   bind(L_second_loop);
9323   xorl(carry, carry);    // carry = 0;
9324   movl(jdx, ylen);       // j = ystart+1
9325 
9326   subl(xstart, 1);       // i = xstart-1;
9327   jcc(Assembler::negative, L_done);
9328 
9329   push (z);
9330 
9331   Label L_last_x;
9332   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9333   subl(xstart, 1);       // i = xstart-1;
9334   jcc(Assembler::negative, L_last_x);
9335 
9336   if (UseBMI2Instructions) {
9337     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9338     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9339   } else {
9340     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9341     rorq(x_xstart, 32);  // convert big-endian to little-endian
9342   }
9343 
9344   Label L_third_loop_prologue;
9345   bind(L_third_loop_prologue);
9346 
9347   push (x);
9348   push (xstart);
9349   push (ylen);
9350 
9351 
9352   if (UseBMI2Instructions) {
9353     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9354   } else { // !UseBMI2Instructions
9355     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9356   }
9357 
9358   pop(ylen);
9359   pop(xlen);
9360   pop(x);
9361   pop(z);
9362 
9363   movl(tmp3, xlen);
9364   addl(tmp3, 1);
9365   movl(Address(z, tmp3, Address::times_4,  0), carry);
9366   subl(tmp3, 1);
9367   jccb(Assembler::negative, L_done);
9368 
9369   shrq(carry, 32);
9370   movl(Address(z, tmp3, Address::times_4,  0), carry);
9371   jmp(L_second_loop);
9372 
9373   // Next infrequent code is moved outside loops.
9374   bind(L_last_x);
9375   if (UseBMI2Instructions) {
9376     movl(rdx, Address(x,  0));
9377   } else {
9378     movl(x_xstart, Address(x,  0));
9379   }
9380   jmp(L_third_loop_prologue);
9381 
9382   bind(L_done);
9383 
9384   pop(zlen);
9385   pop(xlen);
9386 
9387   pop(tmp5);
9388   pop(tmp4);
9389   pop(tmp3);
9390   pop(tmp2);
9391   pop(tmp1);
9392 }
9393 
9394 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9395   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9396   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9397   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9398   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9399   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9400   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9401   Label SAME_TILL_END, DONE;
9402   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9403 
9404   //scale is in rcx in both Win64 and Unix
9405   ShortBranchVerifier sbv(this);
9406 
9407   shlq(length);
9408   xorq(result, result);
9409 
9410   if ((UseAVX > 2) &&
9411       VM_Version::supports_avx512vlbw()) {
9412     set_vector_masking();  // opening of the stub context for programming mask registers
9413     cmpq(length, 64);
9414     jcc(Assembler::less, VECTOR32_TAIL);
9415     movq(tmp1, length);
9416     andq(tmp1, 0x3F);      // tail count
9417     andq(length, ~(0x3F)); //vector count
9418 
9419     bind(VECTOR64_LOOP);
9420     // AVX512 code to compare 64 byte vectors.
9421     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9422     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9423     kortestql(k7, k7);
9424     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9425     addq(result, 64);
9426     subq(length, 64);
9427     jccb(Assembler::notZero, VECTOR64_LOOP);
9428 
9429     //bind(VECTOR64_TAIL);
9430     testq(tmp1, tmp1);
9431     jcc(Assembler::zero, SAME_TILL_END);
9432 
9433     bind(VECTOR64_TAIL);
9434     // AVX512 code to compare upto 63 byte vectors.
9435     // Save k1
9436     kmovql(k3, k1);
9437     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9438     shlxq(tmp2, tmp2, tmp1);
9439     notq(tmp2);
9440     kmovql(k1, tmp2);
9441 
9442     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9443     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9444 
9445     ktestql(k7, k1);
9446     // Restore k1
9447     kmovql(k1, k3);
9448     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9449 
9450     bind(VECTOR64_NOT_EQUAL);
9451     kmovql(tmp1, k7);
9452     notq(tmp1);
9453     tzcntq(tmp1, tmp1);
9454     addq(result, tmp1);
9455     shrq(result);
9456     jmp(DONE);
9457     bind(VECTOR32_TAIL);
9458     clear_vector_masking();   // closing of the stub context for programming mask registers
9459   }
9460 
9461   cmpq(length, 8);
9462   jcc(Assembler::equal, VECTOR8_LOOP);
9463   jcc(Assembler::less, VECTOR4_TAIL);
9464 
9465   if (UseAVX >= 2) {
9466 
9467     cmpq(length, 16);
9468     jcc(Assembler::equal, VECTOR16_LOOP);
9469     jcc(Assembler::less, VECTOR8_LOOP);
9470 
9471     cmpq(length, 32);
9472     jccb(Assembler::less, VECTOR16_TAIL);
9473 
9474     subq(length, 32);
9475     bind(VECTOR32_LOOP);
9476     vmovdqu(rymm0, Address(obja, result));
9477     vmovdqu(rymm1, Address(objb, result));
9478     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9479     vptest(rymm2, rymm2);
9480     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9481     addq(result, 32);
9482     subq(length, 32);
9483     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9484     addq(length, 32);
9485     jcc(Assembler::equal, SAME_TILL_END);
9486     //falling through if less than 32 bytes left //close the branch here.
9487 
9488     bind(VECTOR16_TAIL);
9489     cmpq(length, 16);
9490     jccb(Assembler::less, VECTOR8_TAIL);
9491     bind(VECTOR16_LOOP);
9492     movdqu(rymm0, Address(obja, result));
9493     movdqu(rymm1, Address(objb, result));
9494     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9495     ptest(rymm2, rymm2);
9496     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9497     addq(result, 16);
9498     subq(length, 16);
9499     jcc(Assembler::equal, SAME_TILL_END);
9500     //falling through if less than 16 bytes left
9501   } else {//regular intrinsics
9502 
9503     cmpq(length, 16);
9504     jccb(Assembler::less, VECTOR8_TAIL);
9505 
9506     subq(length, 16);
9507     bind(VECTOR16_LOOP);
9508     movdqu(rymm0, Address(obja, result));
9509     movdqu(rymm1, Address(objb, result));
9510     pxor(rymm0, rymm1);
9511     ptest(rymm0, rymm0);
9512     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9513     addq(result, 16);
9514     subq(length, 16);
9515     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9516     addq(length, 16);
9517     jcc(Assembler::equal, SAME_TILL_END);
9518     //falling through if less than 16 bytes left
9519   }
9520 
9521   bind(VECTOR8_TAIL);
9522   cmpq(length, 8);
9523   jccb(Assembler::less, VECTOR4_TAIL);
9524   bind(VECTOR8_LOOP);
9525   movq(tmp1, Address(obja, result));
9526   movq(tmp2, Address(objb, result));
9527   xorq(tmp1, tmp2);
9528   testq(tmp1, tmp1);
9529   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9530   addq(result, 8);
9531   subq(length, 8);
9532   jcc(Assembler::equal, SAME_TILL_END);
9533   //falling through if less than 8 bytes left
9534 
9535   bind(VECTOR4_TAIL);
9536   cmpq(length, 4);
9537   jccb(Assembler::less, BYTES_TAIL);
9538   bind(VECTOR4_LOOP);
9539   movl(tmp1, Address(obja, result));
9540   xorl(tmp1, Address(objb, result));
9541   testl(tmp1, tmp1);
9542   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9543   addq(result, 4);
9544   subq(length, 4);
9545   jcc(Assembler::equal, SAME_TILL_END);
9546   //falling through if less than 4 bytes left
9547 
9548   bind(BYTES_TAIL);
9549   bind(BYTES_LOOP);
9550   load_unsigned_byte(tmp1, Address(obja, result));
9551   load_unsigned_byte(tmp2, Address(objb, result));
9552   xorl(tmp1, tmp2);
9553   testl(tmp1, tmp1);
9554   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9555   decq(length);
9556   jccb(Assembler::zero, SAME_TILL_END);
9557   incq(result);
9558   load_unsigned_byte(tmp1, Address(obja, result));
9559   load_unsigned_byte(tmp2, Address(objb, result));
9560   xorl(tmp1, tmp2);
9561   testl(tmp1, tmp1);
9562   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9563   decq(length);
9564   jccb(Assembler::zero, SAME_TILL_END);
9565   incq(result);
9566   load_unsigned_byte(tmp1, Address(obja, result));
9567   load_unsigned_byte(tmp2, Address(objb, result));
9568   xorl(tmp1, tmp2);
9569   testl(tmp1, tmp1);
9570   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9571   jmpb(SAME_TILL_END);
9572 
9573   if (UseAVX >= 2) {
9574     bind(VECTOR32_NOT_EQUAL);
9575     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9576     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9577     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9578     vpmovmskb(tmp1, rymm0);
9579     bsfq(tmp1, tmp1);
9580     addq(result, tmp1);
9581     shrq(result);
9582     jmpb(DONE);
9583   }
9584 
9585   bind(VECTOR16_NOT_EQUAL);
9586   if (UseAVX >= 2) {
9587     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9588     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9589     pxor(rymm0, rymm2);
9590   } else {
9591     pcmpeqb(rymm2, rymm2);
9592     pxor(rymm0, rymm1);
9593     pcmpeqb(rymm0, rymm1);
9594     pxor(rymm0, rymm2);
9595   }
9596   pmovmskb(tmp1, rymm0);
9597   bsfq(tmp1, tmp1);
9598   addq(result, tmp1);
9599   shrq(result);
9600   jmpb(DONE);
9601 
9602   bind(VECTOR8_NOT_EQUAL);
9603   bind(VECTOR4_NOT_EQUAL);
9604   bsfq(tmp1, tmp1);
9605   shrq(tmp1, 3);
9606   addq(result, tmp1);
9607   bind(BYTES_NOT_EQUAL);
9608   shrq(result);
9609   jmpb(DONE);
9610 
9611   bind(SAME_TILL_END);
9612   mov64(result, -1);
9613 
9614   bind(DONE);
9615 }
9616 
9617 //Helper functions for square_to_len()
9618 
9619 /**
9620  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9621  * Preserves x and z and modifies rest of the registers.
9622  */
9623 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9624   // Perform square and right shift by 1
9625   // Handle odd xlen case first, then for even xlen do the following
9626   // jlong carry = 0;
9627   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9628   //     huge_128 product = x[j:j+1] * x[j:j+1];
9629   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9630   //     z[i+2:i+3] = (jlong)(product >>> 1);
9631   //     carry = (jlong)product;
9632   // }
9633 
9634   xorq(tmp5, tmp5);     // carry
9635   xorq(rdxReg, rdxReg);
9636   xorl(tmp1, tmp1);     // index for x
9637   xorl(tmp4, tmp4);     // index for z
9638 
9639   Label L_first_loop, L_first_loop_exit;
9640 
9641   testl(xlen, 1);
9642   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9643 
9644   // Square and right shift by 1 the odd element using 32 bit multiply
9645   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9646   imulq(raxReg, raxReg);
9647   shrq(raxReg, 1);
9648   adcq(tmp5, 0);
9649   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9650   incrementl(tmp1);
9651   addl(tmp4, 2);
9652 
9653   // Square and  right shift by 1 the rest using 64 bit multiply
9654   bind(L_first_loop);
9655   cmpptr(tmp1, xlen);
9656   jccb(Assembler::equal, L_first_loop_exit);
9657 
9658   // Square
9659   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9660   rorq(raxReg, 32);    // convert big-endian to little-endian
9661   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9662 
9663   // Right shift by 1 and save carry
9664   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9665   rcrq(rdxReg, 1);
9666   rcrq(raxReg, 1);
9667   adcq(tmp5, 0);
9668 
9669   // Store result in z
9670   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9671   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9672 
9673   // Update indices for x and z
9674   addl(tmp1, 2);
9675   addl(tmp4, 4);
9676   jmp(L_first_loop);
9677 
9678   bind(L_first_loop_exit);
9679 }
9680 
9681 
9682 /**
9683  * Perform the following multiply add operation using BMI2 instructions
9684  * carry:sum = sum + op1*op2 + carry
9685  * op2 should be in rdx
9686  * op2 is preserved, all other registers are modified
9687  */
9688 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9689   // assert op2 is rdx
9690   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9691   addq(sum, carry);
9692   adcq(tmp2, 0);
9693   addq(sum, op1);
9694   adcq(tmp2, 0);
9695   movq(carry, tmp2);
9696 }
9697 
9698 /**
9699  * Perform the following multiply add operation:
9700  * carry:sum = sum + op1*op2 + carry
9701  * Preserves op1, op2 and modifies rest of registers
9702  */
9703 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9704   // rdx:rax = op1 * op2
9705   movq(raxReg, op2);
9706   mulq(op1);
9707 
9708   //  rdx:rax = sum + carry + rdx:rax
9709   addq(sum, carry);
9710   adcq(rdxReg, 0);
9711   addq(sum, raxReg);
9712   adcq(rdxReg, 0);
9713 
9714   // carry:sum = rdx:sum
9715   movq(carry, rdxReg);
9716 }
9717 
9718 /**
9719  * Add 64 bit long carry into z[] with carry propogation.
9720  * Preserves z and carry register values and modifies rest of registers.
9721  *
9722  */
9723 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9724   Label L_fourth_loop, L_fourth_loop_exit;
9725 
9726   movl(tmp1, 1);
9727   subl(zlen, 2);
9728   addq(Address(z, zlen, Address::times_4, 0), carry);
9729 
9730   bind(L_fourth_loop);
9731   jccb(Assembler::carryClear, L_fourth_loop_exit);
9732   subl(zlen, 2);
9733   jccb(Assembler::negative, L_fourth_loop_exit);
9734   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9735   jmp(L_fourth_loop);
9736   bind(L_fourth_loop_exit);
9737 }
9738 
9739 /**
9740  * Shift z[] left by 1 bit.
9741  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9742  *
9743  */
9744 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9745 
9746   Label L_fifth_loop, L_fifth_loop_exit;
9747 
9748   // Fifth loop
9749   // Perform primitiveLeftShift(z, zlen, 1)
9750 
9751   const Register prev_carry = tmp1;
9752   const Register new_carry = tmp4;
9753   const Register value = tmp2;
9754   const Register zidx = tmp3;
9755 
9756   // int zidx, carry;
9757   // long value;
9758   // carry = 0;
9759   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9760   //    (carry:value)  = (z[i] << 1) | carry ;
9761   //    z[i] = value;
9762   // }
9763 
9764   movl(zidx, zlen);
9765   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9766 
9767   bind(L_fifth_loop);
9768   decl(zidx);  // Use decl to preserve carry flag
9769   decl(zidx);
9770   jccb(Assembler::negative, L_fifth_loop_exit);
9771 
9772   if (UseBMI2Instructions) {
9773      movq(value, Address(z, zidx, Address::times_4, 0));
9774      rclq(value, 1);
9775      rorxq(value, value, 32);
9776      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9777   }
9778   else {
9779     // clear new_carry
9780     xorl(new_carry, new_carry);
9781 
9782     // Shift z[i] by 1, or in previous carry and save new carry
9783     movq(value, Address(z, zidx, Address::times_4, 0));
9784     shlq(value, 1);
9785     adcl(new_carry, 0);
9786 
9787     orq(value, prev_carry);
9788     rorq(value, 0x20);
9789     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9790 
9791     // Set previous carry = new carry
9792     movl(prev_carry, new_carry);
9793   }
9794   jmp(L_fifth_loop);
9795 
9796   bind(L_fifth_loop_exit);
9797 }
9798 
9799 
9800 /**
9801  * Code for BigInteger::squareToLen() intrinsic
9802  *
9803  * rdi: x
9804  * rsi: len
9805  * r8:  z
9806  * rcx: zlen
9807  * r12: tmp1
9808  * r13: tmp2
9809  * r14: tmp3
9810  * r15: tmp4
9811  * rbx: tmp5
9812  *
9813  */
9814 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9815 
9816   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9817   push(tmp1);
9818   push(tmp2);
9819   push(tmp3);
9820   push(tmp4);
9821   push(tmp5);
9822 
9823   // First loop
9824   // Store the squares, right shifted one bit (i.e., divided by 2).
9825   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9826 
9827   // Add in off-diagonal sums.
9828   //
9829   // Second, third (nested) and fourth loops.
9830   // zlen +=2;
9831   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9832   //    carry = 0;
9833   //    long op2 = x[xidx:xidx+1];
9834   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9835   //       k -= 2;
9836   //       long op1 = x[j:j+1];
9837   //       long sum = z[k:k+1];
9838   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9839   //       z[k:k+1] = sum;
9840   //    }
9841   //    add_one_64(z, k, carry, tmp_regs);
9842   // }
9843 
9844   const Register carry = tmp5;
9845   const Register sum = tmp3;
9846   const Register op1 = tmp4;
9847   Register op2 = tmp2;
9848 
9849   push(zlen);
9850   push(len);
9851   addl(zlen,2);
9852   bind(L_second_loop);
9853   xorq(carry, carry);
9854   subl(zlen, 4);
9855   subl(len, 2);
9856   push(zlen);
9857   push(len);
9858   cmpl(len, 0);
9859   jccb(Assembler::lessEqual, L_second_loop_exit);
9860 
9861   // Multiply an array by one 64 bit long.
9862   if (UseBMI2Instructions) {
9863     op2 = rdxReg;
9864     movq(op2, Address(x, len, Address::times_4,  0));
9865     rorxq(op2, op2, 32);
9866   }
9867   else {
9868     movq(op2, Address(x, len, Address::times_4,  0));
9869     rorq(op2, 32);
9870   }
9871 
9872   bind(L_third_loop);
9873   decrementl(len);
9874   jccb(Assembler::negative, L_third_loop_exit);
9875   decrementl(len);
9876   jccb(Assembler::negative, L_last_x);
9877 
9878   movq(op1, Address(x, len, Address::times_4,  0));
9879   rorq(op1, 32);
9880 
9881   bind(L_multiply);
9882   subl(zlen, 2);
9883   movq(sum, Address(z, zlen, Address::times_4,  0));
9884 
9885   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9886   if (UseBMI2Instructions) {
9887     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9888   }
9889   else {
9890     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9891   }
9892 
9893   movq(Address(z, zlen, Address::times_4, 0), sum);
9894 
9895   jmp(L_third_loop);
9896   bind(L_third_loop_exit);
9897 
9898   // Fourth loop
9899   // Add 64 bit long carry into z with carry propogation.
9900   // Uses offsetted zlen.
9901   add_one_64(z, zlen, carry, tmp1);
9902 
9903   pop(len);
9904   pop(zlen);
9905   jmp(L_second_loop);
9906 
9907   // Next infrequent code is moved outside loops.
9908   bind(L_last_x);
9909   movl(op1, Address(x, 0));
9910   jmp(L_multiply);
9911 
9912   bind(L_second_loop_exit);
9913   pop(len);
9914   pop(zlen);
9915   pop(len);
9916   pop(zlen);
9917 
9918   // Fifth loop
9919   // Shift z left 1 bit.
9920   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9921 
9922   // z[zlen-1] |= x[len-1] & 1;
9923   movl(tmp3, Address(x, len, Address::times_4, -4));
9924   andl(tmp3, 1);
9925   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9926 
9927   pop(tmp5);
9928   pop(tmp4);
9929   pop(tmp3);
9930   pop(tmp2);
9931   pop(tmp1);
9932 }
9933 
9934 /**
9935  * Helper function for mul_add()
9936  * Multiply the in[] by int k and add to out[] starting at offset offs using
9937  * 128 bit by 32 bit multiply and return the carry in tmp5.
9938  * Only quad int aligned length of in[] is operated on in this function.
9939  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9940  * This function preserves out, in and k registers.
9941  * len and offset point to the appropriate index in "in" & "out" correspondingly
9942  * tmp5 has the carry.
9943  * other registers are temporary and are modified.
9944  *
9945  */
9946 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9947   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9948   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9949 
9950   Label L_first_loop, L_first_loop_exit;
9951 
9952   movl(tmp1, len);
9953   shrl(tmp1, 2);
9954 
9955   bind(L_first_loop);
9956   subl(tmp1, 1);
9957   jccb(Assembler::negative, L_first_loop_exit);
9958 
9959   subl(len, 4);
9960   subl(offset, 4);
9961 
9962   Register op2 = tmp2;
9963   const Register sum = tmp3;
9964   const Register op1 = tmp4;
9965   const Register carry = tmp5;
9966 
9967   if (UseBMI2Instructions) {
9968     op2 = rdxReg;
9969   }
9970 
9971   movq(op1, Address(in, len, Address::times_4,  8));
9972   rorq(op1, 32);
9973   movq(sum, Address(out, offset, Address::times_4,  8));
9974   rorq(sum, 32);
9975   if (UseBMI2Instructions) {
9976     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9977   }
9978   else {
9979     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9980   }
9981   // Store back in big endian from little endian
9982   rorq(sum, 0x20);
9983   movq(Address(out, offset, Address::times_4,  8), sum);
9984 
9985   movq(op1, Address(in, len, Address::times_4,  0));
9986   rorq(op1, 32);
9987   movq(sum, Address(out, offset, Address::times_4,  0));
9988   rorq(sum, 32);
9989   if (UseBMI2Instructions) {
9990     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9991   }
9992   else {
9993     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9994   }
9995   // Store back in big endian from little endian
9996   rorq(sum, 0x20);
9997   movq(Address(out, offset, Address::times_4,  0), sum);
9998 
9999   jmp(L_first_loop);
10000   bind(L_first_loop_exit);
10001 }
10002 
10003 /**
10004  * Code for BigInteger::mulAdd() intrinsic
10005  *
10006  * rdi: out
10007  * rsi: in
10008  * r11: offs (out.length - offset)
10009  * rcx: len
10010  * r8:  k
10011  * r12: tmp1
10012  * r13: tmp2
10013  * r14: tmp3
10014  * r15: tmp4
10015  * rbx: tmp5
10016  * Multiply the in[] by word k and add to out[], return the carry in rax
10017  */
10018 void MacroAssembler::mul_add(Register out, Register in, Register offs,
10019    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
10020    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10021 
10022   Label L_carry, L_last_in, L_done;
10023 
10024 // carry = 0;
10025 // for (int j=len-1; j >= 0; j--) {
10026 //    long product = (in[j] & LONG_MASK) * kLong +
10027 //                   (out[offs] & LONG_MASK) + carry;
10028 //    out[offs--] = (int)product;
10029 //    carry = product >>> 32;
10030 // }
10031 //
10032   push(tmp1);
10033   push(tmp2);
10034   push(tmp3);
10035   push(tmp4);
10036   push(tmp5);
10037 
10038   Register op2 = tmp2;
10039   const Register sum = tmp3;
10040   const Register op1 = tmp4;
10041   const Register carry =  tmp5;
10042 
10043   if (UseBMI2Instructions) {
10044     op2 = rdxReg;
10045     movl(op2, k);
10046   }
10047   else {
10048     movl(op2, k);
10049   }
10050 
10051   xorq(carry, carry);
10052 
10053   //First loop
10054 
10055   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10056   //The carry is in tmp5
10057   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10058 
10059   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10060   decrementl(len);
10061   jccb(Assembler::negative, L_carry);
10062   decrementl(len);
10063   jccb(Assembler::negative, L_last_in);
10064 
10065   movq(op1, Address(in, len, Address::times_4,  0));
10066   rorq(op1, 32);
10067 
10068   subl(offs, 2);
10069   movq(sum, Address(out, offs, Address::times_4,  0));
10070   rorq(sum, 32);
10071 
10072   if (UseBMI2Instructions) {
10073     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10074   }
10075   else {
10076     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10077   }
10078 
10079   // Store back in big endian from little endian
10080   rorq(sum, 0x20);
10081   movq(Address(out, offs, Address::times_4,  0), sum);
10082 
10083   testl(len, len);
10084   jccb(Assembler::zero, L_carry);
10085 
10086   //Multiply the last in[] entry, if any
10087   bind(L_last_in);
10088   movl(op1, Address(in, 0));
10089   movl(sum, Address(out, offs, Address::times_4,  -4));
10090 
10091   movl(raxReg, k);
10092   mull(op1); //tmp4 * eax -> edx:eax
10093   addl(sum, carry);
10094   adcl(rdxReg, 0);
10095   addl(sum, raxReg);
10096   adcl(rdxReg, 0);
10097   movl(carry, rdxReg);
10098 
10099   movl(Address(out, offs, Address::times_4,  -4), sum);
10100 
10101   bind(L_carry);
10102   //return tmp5/carry as carry in rax
10103   movl(rax, carry);
10104 
10105   bind(L_done);
10106   pop(tmp5);
10107   pop(tmp4);
10108   pop(tmp3);
10109   pop(tmp2);
10110   pop(tmp1);
10111 }
10112 #endif
10113 
10114 /**
10115  * Emits code to update CRC-32 with a byte value according to constants in table
10116  *
10117  * @param [in,out]crc   Register containing the crc.
10118  * @param [in]val       Register containing the byte to fold into the CRC.
10119  * @param [in]table     Register containing the table of crc constants.
10120  *
10121  * uint32_t crc;
10122  * val = crc_table[(val ^ crc) & 0xFF];
10123  * crc = val ^ (crc >> 8);
10124  *
10125  */
10126 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10127   xorl(val, crc);
10128   andl(val, 0xFF);
10129   shrl(crc, 8); // unsigned shift
10130   xorl(crc, Address(table, val, Address::times_4, 0));
10131 }
10132 
10133 /**
10134  * Fold 128-bit data chunk
10135  */
10136 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10137   if (UseAVX > 0) {
10138     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10139     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10140     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10141     pxor(xcrc, xtmp);
10142   } else {
10143     movdqa(xtmp, xcrc);
10144     pclmulhdq(xtmp, xK);   // [123:64]
10145     pclmulldq(xcrc, xK);   // [63:0]
10146     pxor(xcrc, xtmp);
10147     movdqu(xtmp, Address(buf, offset));
10148     pxor(xcrc, xtmp);
10149   }
10150 }
10151 
10152 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10153   if (UseAVX > 0) {
10154     vpclmulhdq(xtmp, xK, xcrc);
10155     vpclmulldq(xcrc, xK, xcrc);
10156     pxor(xcrc, xbuf);
10157     pxor(xcrc, xtmp);
10158   } else {
10159     movdqa(xtmp, xcrc);
10160     pclmulhdq(xtmp, xK);
10161     pclmulldq(xcrc, xK);
10162     pxor(xcrc, xbuf);
10163     pxor(xcrc, xtmp);
10164   }
10165 }
10166 
10167 /**
10168  * 8-bit folds to compute 32-bit CRC
10169  *
10170  * uint64_t xcrc;
10171  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10172  */
10173 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10174   movdl(tmp, xcrc);
10175   andl(tmp, 0xFF);
10176   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10177   psrldq(xcrc, 1); // unsigned shift one byte
10178   pxor(xcrc, xtmp);
10179 }
10180 
10181 /**
10182  * uint32_t crc;
10183  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10184  */
10185 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10186   movl(tmp, crc);
10187   andl(tmp, 0xFF);
10188   shrl(crc, 8);
10189   xorl(crc, Address(table, tmp, Address::times_4, 0));
10190 }
10191 
10192 /**
10193  * @param crc   register containing existing CRC (32-bit)
10194  * @param buf   register pointing to input byte buffer (byte*)
10195  * @param len   register containing number of bytes
10196  * @param table register that will contain address of CRC table
10197  * @param tmp   scratch register
10198  */
10199 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10200   assert_different_registers(crc, buf, len, table, tmp, rax);
10201 
10202   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10203   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10204 
10205   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10206   // context for the registers used, where all instructions below are using 128-bit mode
10207   // On EVEX without VL and BW, these instructions will all be AVX.
10208   if (VM_Version::supports_avx512vlbw()) {
10209     movl(tmp, 0xffff);
10210     kmovwl(k1, tmp);
10211   }
10212 
10213   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10214   notl(crc); // ~crc
10215   cmpl(len, 16);
10216   jcc(Assembler::less, L_tail);
10217 
10218   // Align buffer to 16 bytes
10219   movl(tmp, buf);
10220   andl(tmp, 0xF);
10221   jccb(Assembler::zero, L_aligned);
10222   subl(tmp,  16);
10223   addl(len, tmp);
10224 
10225   align(4);
10226   BIND(L_align_loop);
10227   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10228   update_byte_crc32(crc, rax, table);
10229   increment(buf);
10230   incrementl(tmp);
10231   jccb(Assembler::less, L_align_loop);
10232 
10233   BIND(L_aligned);
10234   movl(tmp, len); // save
10235   shrl(len, 4);
10236   jcc(Assembler::zero, L_tail_restore);
10237 
10238   // Fold crc into first bytes of vector
10239   movdqa(xmm1, Address(buf, 0));
10240   movdl(rax, xmm1);
10241   xorl(crc, rax);
10242   if (VM_Version::supports_sse4_1()) {
10243     pinsrd(xmm1, crc, 0);
10244   } else {
10245     pinsrw(xmm1, crc, 0);
10246     shrl(crc, 16);
10247     pinsrw(xmm1, crc, 1);
10248   }
10249   addptr(buf, 16);
10250   subl(len, 4); // len > 0
10251   jcc(Assembler::less, L_fold_tail);
10252 
10253   movdqa(xmm2, Address(buf,  0));
10254   movdqa(xmm3, Address(buf, 16));
10255   movdqa(xmm4, Address(buf, 32));
10256   addptr(buf, 48);
10257   subl(len, 3);
10258   jcc(Assembler::lessEqual, L_fold_512b);
10259 
10260   // Fold total 512 bits of polynomial on each iteration,
10261   // 128 bits per each of 4 parallel streams.
10262   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10263 
10264   align(32);
10265   BIND(L_fold_512b_loop);
10266   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10267   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10268   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10269   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10270   addptr(buf, 64);
10271   subl(len, 4);
10272   jcc(Assembler::greater, L_fold_512b_loop);
10273 
10274   // Fold 512 bits to 128 bits.
10275   BIND(L_fold_512b);
10276   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10277   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10278   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10279   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10280 
10281   // Fold the rest of 128 bits data chunks
10282   BIND(L_fold_tail);
10283   addl(len, 3);
10284   jccb(Assembler::lessEqual, L_fold_128b);
10285   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10286 
10287   BIND(L_fold_tail_loop);
10288   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10289   addptr(buf, 16);
10290   decrementl(len);
10291   jccb(Assembler::greater, L_fold_tail_loop);
10292 
10293   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10294   BIND(L_fold_128b);
10295   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10296   if (UseAVX > 0) {
10297     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10298     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10299     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10300   } else {
10301     movdqa(xmm2, xmm0);
10302     pclmulqdq(xmm2, xmm1, 0x1);
10303     movdqa(xmm3, xmm0);
10304     pand(xmm3, xmm2);
10305     pclmulqdq(xmm0, xmm3, 0x1);
10306   }
10307   psrldq(xmm1, 8);
10308   psrldq(xmm2, 4);
10309   pxor(xmm0, xmm1);
10310   pxor(xmm0, xmm2);
10311 
10312   // 8 8-bit folds to compute 32-bit CRC.
10313   for (int j = 0; j < 4; j++) {
10314     fold_8bit_crc32(xmm0, table, xmm1, rax);
10315   }
10316   movdl(crc, xmm0); // mov 32 bits to general register
10317   for (int j = 0; j < 4; j++) {
10318     fold_8bit_crc32(crc, table, rax);
10319   }
10320 
10321   BIND(L_tail_restore);
10322   movl(len, tmp); // restore
10323   BIND(L_tail);
10324   andl(len, 0xf);
10325   jccb(Assembler::zero, L_exit);
10326 
10327   // Fold the rest of bytes
10328   align(4);
10329   BIND(L_tail_loop);
10330   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10331   update_byte_crc32(crc, rax, table);
10332   increment(buf);
10333   decrementl(len);
10334   jccb(Assembler::greater, L_tail_loop);
10335 
10336   BIND(L_exit);
10337   notl(crc); // ~c
10338 }
10339 
10340 #ifdef _LP64
10341 // S. Gueron / Information Processing Letters 112 (2012) 184
10342 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10343 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10344 // Output: the 64-bit carry-less product of B * CONST
10345 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10346                                      Register tmp1, Register tmp2, Register tmp3) {
10347   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10348   if (n > 0) {
10349     addq(tmp3, n * 256 * 8);
10350   }
10351   //    Q1 = TABLEExt[n][B & 0xFF];
10352   movl(tmp1, in);
10353   andl(tmp1, 0x000000FF);
10354   shll(tmp1, 3);
10355   addq(tmp1, tmp3);
10356   movq(tmp1, Address(tmp1, 0));
10357 
10358   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10359   movl(tmp2, in);
10360   shrl(tmp2, 8);
10361   andl(tmp2, 0x000000FF);
10362   shll(tmp2, 3);
10363   addq(tmp2, tmp3);
10364   movq(tmp2, Address(tmp2, 0));
10365 
10366   shlq(tmp2, 8);
10367   xorq(tmp1, tmp2);
10368 
10369   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10370   movl(tmp2, in);
10371   shrl(tmp2, 16);
10372   andl(tmp2, 0x000000FF);
10373   shll(tmp2, 3);
10374   addq(tmp2, tmp3);
10375   movq(tmp2, Address(tmp2, 0));
10376 
10377   shlq(tmp2, 16);
10378   xorq(tmp1, tmp2);
10379 
10380   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10381   shrl(in, 24);
10382   andl(in, 0x000000FF);
10383   shll(in, 3);
10384   addq(in, tmp3);
10385   movq(in, Address(in, 0));
10386 
10387   shlq(in, 24);
10388   xorq(in, tmp1);
10389   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10390 }
10391 
10392 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10393                                       Register in_out,
10394                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10395                                       XMMRegister w_xtmp2,
10396                                       Register tmp1,
10397                                       Register n_tmp2, Register n_tmp3) {
10398   if (is_pclmulqdq_supported) {
10399     movdl(w_xtmp1, in_out); // modified blindly
10400 
10401     movl(tmp1, const_or_pre_comp_const_index);
10402     movdl(w_xtmp2, tmp1);
10403     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10404 
10405     movdq(in_out, w_xtmp1);
10406   } else {
10407     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10408   }
10409 }
10410 
10411 // Recombination Alternative 2: No bit-reflections
10412 // T1 = (CRC_A * U1) << 1
10413 // T2 = (CRC_B * U2) << 1
10414 // C1 = T1 >> 32
10415 // C2 = T2 >> 32
10416 // T1 = T1 & 0xFFFFFFFF
10417 // T2 = T2 & 0xFFFFFFFF
10418 // T1 = CRC32(0, T1)
10419 // T2 = CRC32(0, T2)
10420 // C1 = C1 ^ T1
10421 // C2 = C2 ^ T2
10422 // CRC = C1 ^ C2 ^ CRC_C
10423 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10424                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10425                                      Register tmp1, Register tmp2,
10426                                      Register n_tmp3) {
10427   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10428   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10429   shlq(in_out, 1);
10430   movl(tmp1, in_out);
10431   shrq(in_out, 32);
10432   xorl(tmp2, tmp2);
10433   crc32(tmp2, tmp1, 4);
10434   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10435   shlq(in1, 1);
10436   movl(tmp1, in1);
10437   shrq(in1, 32);
10438   xorl(tmp2, tmp2);
10439   crc32(tmp2, tmp1, 4);
10440   xorl(in1, tmp2);
10441   xorl(in_out, in1);
10442   xorl(in_out, in2);
10443 }
10444 
10445 // Set N to predefined value
10446 // Subtract from a lenght of a buffer
10447 // execute in a loop:
10448 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10449 // for i = 1 to N do
10450 //  CRC_A = CRC32(CRC_A, A[i])
10451 //  CRC_B = CRC32(CRC_B, B[i])
10452 //  CRC_C = CRC32(CRC_C, C[i])
10453 // end for
10454 // Recombine
10455 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10456                                        Register in_out1, Register in_out2, Register in_out3,
10457                                        Register tmp1, Register tmp2, Register tmp3,
10458                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10459                                        Register tmp4, Register tmp5,
10460                                        Register n_tmp6) {
10461   Label L_processPartitions;
10462   Label L_processPartition;
10463   Label L_exit;
10464 
10465   bind(L_processPartitions);
10466   cmpl(in_out1, 3 * size);
10467   jcc(Assembler::less, L_exit);
10468     xorl(tmp1, tmp1);
10469     xorl(tmp2, tmp2);
10470     movq(tmp3, in_out2);
10471     addq(tmp3, size);
10472 
10473     bind(L_processPartition);
10474       crc32(in_out3, Address(in_out2, 0), 8);
10475       crc32(tmp1, Address(in_out2, size), 8);
10476       crc32(tmp2, Address(in_out2, size * 2), 8);
10477       addq(in_out2, 8);
10478       cmpq(in_out2, tmp3);
10479       jcc(Assembler::less, L_processPartition);
10480     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10481             w_xtmp1, w_xtmp2, w_xtmp3,
10482             tmp4, tmp5,
10483             n_tmp6);
10484     addq(in_out2, 2 * size);
10485     subl(in_out1, 3 * size);
10486     jmp(L_processPartitions);
10487 
10488   bind(L_exit);
10489 }
10490 #else
10491 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10492                                      Register tmp1, Register tmp2, Register tmp3,
10493                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10494   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10495   if (n > 0) {
10496     addl(tmp3, n * 256 * 8);
10497   }
10498   //    Q1 = TABLEExt[n][B & 0xFF];
10499   movl(tmp1, in_out);
10500   andl(tmp1, 0x000000FF);
10501   shll(tmp1, 3);
10502   addl(tmp1, tmp3);
10503   movq(xtmp1, Address(tmp1, 0));
10504 
10505   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10506   movl(tmp2, in_out);
10507   shrl(tmp2, 8);
10508   andl(tmp2, 0x000000FF);
10509   shll(tmp2, 3);
10510   addl(tmp2, tmp3);
10511   movq(xtmp2, Address(tmp2, 0));
10512 
10513   psllq(xtmp2, 8);
10514   pxor(xtmp1, xtmp2);
10515 
10516   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10517   movl(tmp2, in_out);
10518   shrl(tmp2, 16);
10519   andl(tmp2, 0x000000FF);
10520   shll(tmp2, 3);
10521   addl(tmp2, tmp3);
10522   movq(xtmp2, Address(tmp2, 0));
10523 
10524   psllq(xtmp2, 16);
10525   pxor(xtmp1, xtmp2);
10526 
10527   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10528   shrl(in_out, 24);
10529   andl(in_out, 0x000000FF);
10530   shll(in_out, 3);
10531   addl(in_out, tmp3);
10532   movq(xtmp2, Address(in_out, 0));
10533 
10534   psllq(xtmp2, 24);
10535   pxor(xtmp1, xtmp2); // Result in CXMM
10536   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10537 }
10538 
10539 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10540                                       Register in_out,
10541                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10542                                       XMMRegister w_xtmp2,
10543                                       Register tmp1,
10544                                       Register n_tmp2, Register n_tmp3) {
10545   if (is_pclmulqdq_supported) {
10546     movdl(w_xtmp1, in_out);
10547 
10548     movl(tmp1, const_or_pre_comp_const_index);
10549     movdl(w_xtmp2, tmp1);
10550     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10551     // Keep result in XMM since GPR is 32 bit in length
10552   } else {
10553     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10554   }
10555 }
10556 
10557 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10558                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10559                                      Register tmp1, Register tmp2,
10560                                      Register n_tmp3) {
10561   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10562   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10563 
10564   psllq(w_xtmp1, 1);
10565   movdl(tmp1, w_xtmp1);
10566   psrlq(w_xtmp1, 32);
10567   movdl(in_out, w_xtmp1);
10568 
10569   xorl(tmp2, tmp2);
10570   crc32(tmp2, tmp1, 4);
10571   xorl(in_out, tmp2);
10572 
10573   psllq(w_xtmp2, 1);
10574   movdl(tmp1, w_xtmp2);
10575   psrlq(w_xtmp2, 32);
10576   movdl(in1, w_xtmp2);
10577 
10578   xorl(tmp2, tmp2);
10579   crc32(tmp2, tmp1, 4);
10580   xorl(in1, tmp2);
10581   xorl(in_out, in1);
10582   xorl(in_out, in2);
10583 }
10584 
10585 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10586                                        Register in_out1, Register in_out2, Register in_out3,
10587                                        Register tmp1, Register tmp2, Register tmp3,
10588                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10589                                        Register tmp4, Register tmp5,
10590                                        Register n_tmp6) {
10591   Label L_processPartitions;
10592   Label L_processPartition;
10593   Label L_exit;
10594 
10595   bind(L_processPartitions);
10596   cmpl(in_out1, 3 * size);
10597   jcc(Assembler::less, L_exit);
10598     xorl(tmp1, tmp1);
10599     xorl(tmp2, tmp2);
10600     movl(tmp3, in_out2);
10601     addl(tmp3, size);
10602 
10603     bind(L_processPartition);
10604       crc32(in_out3, Address(in_out2, 0), 4);
10605       crc32(tmp1, Address(in_out2, size), 4);
10606       crc32(tmp2, Address(in_out2, size*2), 4);
10607       crc32(in_out3, Address(in_out2, 0+4), 4);
10608       crc32(tmp1, Address(in_out2, size+4), 4);
10609       crc32(tmp2, Address(in_out2, size*2+4), 4);
10610       addl(in_out2, 8);
10611       cmpl(in_out2, tmp3);
10612       jcc(Assembler::less, L_processPartition);
10613 
10614         push(tmp3);
10615         push(in_out1);
10616         push(in_out2);
10617         tmp4 = tmp3;
10618         tmp5 = in_out1;
10619         n_tmp6 = in_out2;
10620 
10621       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10622             w_xtmp1, w_xtmp2, w_xtmp3,
10623             tmp4, tmp5,
10624             n_tmp6);
10625 
10626         pop(in_out2);
10627         pop(in_out1);
10628         pop(tmp3);
10629 
10630     addl(in_out2, 2 * size);
10631     subl(in_out1, 3 * size);
10632     jmp(L_processPartitions);
10633 
10634   bind(L_exit);
10635 }
10636 #endif //LP64
10637 
10638 #ifdef _LP64
10639 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10640 // Input: A buffer I of L bytes.
10641 // Output: the CRC32C value of the buffer.
10642 // Notations:
10643 // Write L = 24N + r, with N = floor (L/24).
10644 // r = L mod 24 (0 <= r < 24).
10645 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10646 // N quadwords, and R consists of r bytes.
10647 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10648 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10649 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10650 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10651 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10652                                           Register tmp1, Register tmp2, Register tmp3,
10653                                           Register tmp4, Register tmp5, Register tmp6,
10654                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10655                                           bool is_pclmulqdq_supported) {
10656   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10657   Label L_wordByWord;
10658   Label L_byteByByteProlog;
10659   Label L_byteByByte;
10660   Label L_exit;
10661 
10662   if (is_pclmulqdq_supported ) {
10663     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10664     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10665 
10666     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10667     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10668 
10669     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10670     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10671     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10672   } else {
10673     const_or_pre_comp_const_index[0] = 1;
10674     const_or_pre_comp_const_index[1] = 0;
10675 
10676     const_or_pre_comp_const_index[2] = 3;
10677     const_or_pre_comp_const_index[3] = 2;
10678 
10679     const_or_pre_comp_const_index[4] = 5;
10680     const_or_pre_comp_const_index[5] = 4;
10681    }
10682   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10683                     in2, in1, in_out,
10684                     tmp1, tmp2, tmp3,
10685                     w_xtmp1, w_xtmp2, w_xtmp3,
10686                     tmp4, tmp5,
10687                     tmp6);
10688   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10689                     in2, in1, in_out,
10690                     tmp1, tmp2, tmp3,
10691                     w_xtmp1, w_xtmp2, w_xtmp3,
10692                     tmp4, tmp5,
10693                     tmp6);
10694   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10695                     in2, in1, in_out,
10696                     tmp1, tmp2, tmp3,
10697                     w_xtmp1, w_xtmp2, w_xtmp3,
10698                     tmp4, tmp5,
10699                     tmp6);
10700   movl(tmp1, in2);
10701   andl(tmp1, 0x00000007);
10702   negl(tmp1);
10703   addl(tmp1, in2);
10704   addq(tmp1, in1);
10705 
10706   BIND(L_wordByWord);
10707   cmpq(in1, tmp1);
10708   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10709     crc32(in_out, Address(in1, 0), 4);
10710     addq(in1, 4);
10711     jmp(L_wordByWord);
10712 
10713   BIND(L_byteByByteProlog);
10714   andl(in2, 0x00000007);
10715   movl(tmp2, 1);
10716 
10717   BIND(L_byteByByte);
10718   cmpl(tmp2, in2);
10719   jccb(Assembler::greater, L_exit);
10720     crc32(in_out, Address(in1, 0), 1);
10721     incq(in1);
10722     incl(tmp2);
10723     jmp(L_byteByByte);
10724 
10725   BIND(L_exit);
10726 }
10727 #else
10728 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10729                                           Register tmp1, Register  tmp2, Register tmp3,
10730                                           Register tmp4, Register  tmp5, Register tmp6,
10731                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10732                                           bool is_pclmulqdq_supported) {
10733   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10734   Label L_wordByWord;
10735   Label L_byteByByteProlog;
10736   Label L_byteByByte;
10737   Label L_exit;
10738 
10739   if (is_pclmulqdq_supported) {
10740     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10741     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10742 
10743     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10744     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10745 
10746     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10747     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10748   } else {
10749     const_or_pre_comp_const_index[0] = 1;
10750     const_or_pre_comp_const_index[1] = 0;
10751 
10752     const_or_pre_comp_const_index[2] = 3;
10753     const_or_pre_comp_const_index[3] = 2;
10754 
10755     const_or_pre_comp_const_index[4] = 5;
10756     const_or_pre_comp_const_index[5] = 4;
10757   }
10758   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10759                     in2, in1, in_out,
10760                     tmp1, tmp2, tmp3,
10761                     w_xtmp1, w_xtmp2, w_xtmp3,
10762                     tmp4, tmp5,
10763                     tmp6);
10764   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10765                     in2, in1, in_out,
10766                     tmp1, tmp2, tmp3,
10767                     w_xtmp1, w_xtmp2, w_xtmp3,
10768                     tmp4, tmp5,
10769                     tmp6);
10770   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10771                     in2, in1, in_out,
10772                     tmp1, tmp2, tmp3,
10773                     w_xtmp1, w_xtmp2, w_xtmp3,
10774                     tmp4, tmp5,
10775                     tmp6);
10776   movl(tmp1, in2);
10777   andl(tmp1, 0x00000007);
10778   negl(tmp1);
10779   addl(tmp1, in2);
10780   addl(tmp1, in1);
10781 
10782   BIND(L_wordByWord);
10783   cmpl(in1, tmp1);
10784   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10785     crc32(in_out, Address(in1,0), 4);
10786     addl(in1, 4);
10787     jmp(L_wordByWord);
10788 
10789   BIND(L_byteByByteProlog);
10790   andl(in2, 0x00000007);
10791   movl(tmp2, 1);
10792 
10793   BIND(L_byteByByte);
10794   cmpl(tmp2, in2);
10795   jccb(Assembler::greater, L_exit);
10796     movb(tmp1, Address(in1, 0));
10797     crc32(in_out, tmp1, 1);
10798     incl(in1);
10799     incl(tmp2);
10800     jmp(L_byteByByte);
10801 
10802   BIND(L_exit);
10803 }
10804 #endif // LP64
10805 #undef BIND
10806 #undef BLOCK_COMMENT
10807 
10808 // Compress char[] array to byte[].
10809 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10810 //   @HotSpotIntrinsicCandidate
10811 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10812 //     for (int i = 0; i < len; i++) {
10813 //       int c = src[srcOff++];
10814 //       if (c >>> 8 != 0) {
10815 //         return 0;
10816 //       }
10817 //       dst[dstOff++] = (byte)c;
10818 //     }
10819 //     return len;
10820 //   }
10821 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10822   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10823   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10824   Register tmp5, Register result) {
10825   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10826 
10827   // rsi: src
10828   // rdi: dst
10829   // rdx: len
10830   // rcx: tmp5
10831   // rax: result
10832 
10833   // rsi holds start addr of source char[] to be compressed
10834   // rdi holds start addr of destination byte[]
10835   // rdx holds length
10836 
10837   assert(len != result, "");
10838 
10839   // save length for return
10840   push(len);
10841 
10842   if ((UseAVX > 2) && // AVX512
10843     VM_Version::supports_avx512vlbw() &&
10844     VM_Version::supports_bmi2()) {
10845 
10846     set_vector_masking();  // opening of the stub context for programming mask registers
10847 
10848     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10849 
10850     // alignement
10851     Label post_alignement;
10852 
10853     // if length of the string is less than 16, handle it in an old fashioned
10854     // way
10855     testl(len, -32);
10856     jcc(Assembler::zero, below_threshold);
10857 
10858     // First check whether a character is compressable ( <= 0xFF).
10859     // Create mask to test for Unicode chars inside zmm vector
10860     movl(result, 0x00FF);
10861     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10862 
10863     // Save k1
10864     kmovql(k3, k1);
10865 
10866     testl(len, -64);
10867     jcc(Assembler::zero, post_alignement);
10868 
10869     movl(tmp5, dst);
10870     andl(tmp5, (32 - 1));
10871     negl(tmp5);
10872     andl(tmp5, (32 - 1));
10873 
10874     // bail out when there is nothing to be done
10875     testl(tmp5, 0xFFFFFFFF);
10876     jcc(Assembler::zero, post_alignement);
10877 
10878     // ~(~0 << len), where len is the # of remaining elements to process
10879     movl(result, 0xFFFFFFFF);
10880     shlxl(result, result, tmp5);
10881     notl(result);
10882     kmovdl(k1, result);
10883 
10884     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10885     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10886     ktestd(k2, k1);
10887     jcc(Assembler::carryClear, restore_k1_return_zero);
10888 
10889     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10890 
10891     addptr(src, tmp5);
10892     addptr(src, tmp5);
10893     addptr(dst, tmp5);
10894     subl(len, tmp5);
10895 
10896     bind(post_alignement);
10897     // end of alignement
10898 
10899     movl(tmp5, len);
10900     andl(tmp5, (32 - 1));    // tail count (in chars)
10901     andl(len, ~(32 - 1));    // vector count (in chars)
10902     jcc(Assembler::zero, copy_loop_tail);
10903 
10904     lea(src, Address(src, len, Address::times_2));
10905     lea(dst, Address(dst, len, Address::times_1));
10906     negptr(len);
10907 
10908     bind(copy_32_loop);
10909     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10910     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10911     kortestdl(k2, k2);
10912     jcc(Assembler::carryClear, restore_k1_return_zero);
10913 
10914     // All elements in current processed chunk are valid candidates for
10915     // compression. Write a truncated byte elements to the memory.
10916     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10917     addptr(len, 32);
10918     jcc(Assembler::notZero, copy_32_loop);
10919 
10920     bind(copy_loop_tail);
10921     // bail out when there is nothing to be done
10922     testl(tmp5, 0xFFFFFFFF);
10923     // Restore k1
10924     kmovql(k1, k3);
10925     jcc(Assembler::zero, return_length);
10926 
10927     movl(len, tmp5);
10928 
10929     // ~(~0 << len), where len is the # of remaining elements to process
10930     movl(result, 0xFFFFFFFF);
10931     shlxl(result, result, len);
10932     notl(result);
10933 
10934     kmovdl(k1, result);
10935 
10936     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10937     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10938     ktestd(k2, k1);
10939     jcc(Assembler::carryClear, restore_k1_return_zero);
10940 
10941     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10942     // Restore k1
10943     kmovql(k1, k3);
10944     jmp(return_length);
10945 
10946     bind(restore_k1_return_zero);
10947     // Restore k1
10948     kmovql(k1, k3);
10949     jmp(return_zero);
10950 
10951     clear_vector_masking();   // closing of the stub context for programming mask registers
10952   }
10953   if (UseSSE42Intrinsics) {
10954     Label copy_32_loop, copy_16, copy_tail;
10955 
10956     bind(below_threshold);
10957 
10958     movl(result, len);
10959 
10960     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10961 
10962     // vectored compression
10963     andl(len, 0xfffffff0);    // vector count (in chars)
10964     andl(result, 0x0000000f);    // tail count (in chars)
10965     testl(len, len);
10966     jccb(Assembler::zero, copy_16);
10967 
10968     // compress 16 chars per iter
10969     movdl(tmp1Reg, tmp5);
10970     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10971     pxor(tmp4Reg, tmp4Reg);
10972 
10973     lea(src, Address(src, len, Address::times_2));
10974     lea(dst, Address(dst, len, Address::times_1));
10975     negptr(len);
10976 
10977     bind(copy_32_loop);
10978     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10979     por(tmp4Reg, tmp2Reg);
10980     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10981     por(tmp4Reg, tmp3Reg);
10982     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10983     jcc(Assembler::notZero, return_zero);
10984     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10985     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10986     addptr(len, 16);
10987     jcc(Assembler::notZero, copy_32_loop);
10988 
10989     // compress next vector of 8 chars (if any)
10990     bind(copy_16);
10991     movl(len, result);
10992     andl(len, 0xfffffff8);    // vector count (in chars)
10993     andl(result, 0x00000007);    // tail count (in chars)
10994     testl(len, len);
10995     jccb(Assembler::zero, copy_tail);
10996 
10997     movdl(tmp1Reg, tmp5);
10998     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10999     pxor(tmp3Reg, tmp3Reg);
11000 
11001     movdqu(tmp2Reg, Address(src, 0));
11002     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
11003     jccb(Assembler::notZero, return_zero);
11004     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
11005     movq(Address(dst, 0), tmp2Reg);
11006     addptr(src, 16);
11007     addptr(dst, 8);
11008 
11009     bind(copy_tail);
11010     movl(len, result);
11011   }
11012   // compress 1 char per iter
11013   testl(len, len);
11014   jccb(Assembler::zero, return_length);
11015   lea(src, Address(src, len, Address::times_2));
11016   lea(dst, Address(dst, len, Address::times_1));
11017   negptr(len);
11018 
11019   bind(copy_chars_loop);
11020   load_unsigned_short(result, Address(src, len, Address::times_2));
11021   testl(result, 0xff00);      // check if Unicode char
11022   jccb(Assembler::notZero, return_zero);
11023   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11024   increment(len);
11025   jcc(Assembler::notZero, copy_chars_loop);
11026 
11027   // if compression succeeded, return length
11028   bind(return_length);
11029   pop(result);
11030   jmpb(done);
11031 
11032   // if compression failed, return 0
11033   bind(return_zero);
11034   xorl(result, result);
11035   addptr(rsp, wordSize);
11036 
11037   bind(done);
11038 }
11039 
11040 // Inflate byte[] array to char[].
11041 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11042 //   @HotSpotIntrinsicCandidate
11043 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11044 //     for (int i = 0; i < len; i++) {
11045 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11046 //     }
11047 //   }
11048 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11049   XMMRegister tmp1, Register tmp2) {
11050   Label copy_chars_loop, done, below_threshold;
11051   // rsi: src
11052   // rdi: dst
11053   // rdx: len
11054   // rcx: tmp2
11055 
11056   // rsi holds start addr of source byte[] to be inflated
11057   // rdi holds start addr of destination char[]
11058   // rdx holds length
11059   assert_different_registers(src, dst, len, tmp2);
11060 
11061   if ((UseAVX > 2) && // AVX512
11062     VM_Version::supports_avx512vlbw() &&
11063     VM_Version::supports_bmi2()) {
11064 
11065     set_vector_masking();  // opening of the stub context for programming mask registers
11066 
11067     Label copy_32_loop, copy_tail;
11068     Register tmp3_aliased = len;
11069 
11070     // if length of the string is less than 16, handle it in an old fashioned
11071     // way
11072     testl(len, -16);
11073     jcc(Assembler::zero, below_threshold);
11074 
11075     // In order to use only one arithmetic operation for the main loop we use
11076     // this pre-calculation
11077     movl(tmp2, len);
11078     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11079     andl(len, -32);     // vector count
11080     jccb(Assembler::zero, copy_tail);
11081 
11082     lea(src, Address(src, len, Address::times_1));
11083     lea(dst, Address(dst, len, Address::times_2));
11084     negptr(len);
11085 
11086 
11087     // inflate 32 chars per iter
11088     bind(copy_32_loop);
11089     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11090     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11091     addptr(len, 32);
11092     jcc(Assembler::notZero, copy_32_loop);
11093 
11094     bind(copy_tail);
11095     // bail out when there is nothing to be done
11096     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11097     jcc(Assembler::zero, done);
11098 
11099     // Save k1
11100     kmovql(k2, k1);
11101 
11102     // ~(~0 << length), where length is the # of remaining elements to process
11103     movl(tmp3_aliased, -1);
11104     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11105     notl(tmp3_aliased);
11106     kmovdl(k1, tmp3_aliased);
11107     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11108     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11109 
11110     // Restore k1
11111     kmovql(k1, k2);
11112     jmp(done);
11113 
11114     clear_vector_masking();   // closing of the stub context for programming mask registers
11115   }
11116   if (UseSSE42Intrinsics) {
11117     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11118 
11119     movl(tmp2, len);
11120 
11121     if (UseAVX > 1) {
11122       andl(tmp2, (16 - 1));
11123       andl(len, -16);
11124       jccb(Assembler::zero, copy_new_tail);
11125     } else {
11126       andl(tmp2, 0x00000007);   // tail count (in chars)
11127       andl(len, 0xfffffff8);    // vector count (in chars)
11128       jccb(Assembler::zero, copy_tail);
11129     }
11130 
11131     // vectored inflation
11132     lea(src, Address(src, len, Address::times_1));
11133     lea(dst, Address(dst, len, Address::times_2));
11134     negptr(len);
11135 
11136     if (UseAVX > 1) {
11137       bind(copy_16_loop);
11138       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11139       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11140       addptr(len, 16);
11141       jcc(Assembler::notZero, copy_16_loop);
11142 
11143       bind(below_threshold);
11144       bind(copy_new_tail);
11145       if ((UseAVX > 2) &&
11146         VM_Version::supports_avx512vlbw() &&
11147         VM_Version::supports_bmi2()) {
11148         movl(tmp2, len);
11149       } else {
11150         movl(len, tmp2);
11151       }
11152       andl(tmp2, 0x00000007);
11153       andl(len, 0xFFFFFFF8);
11154       jccb(Assembler::zero, copy_tail);
11155 
11156       pmovzxbw(tmp1, Address(src, 0));
11157       movdqu(Address(dst, 0), tmp1);
11158       addptr(src, 8);
11159       addptr(dst, 2 * 8);
11160 
11161       jmp(copy_tail, true);
11162     }
11163 
11164     // inflate 8 chars per iter
11165     bind(copy_8_loop);
11166     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11167     movdqu(Address(dst, len, Address::times_2), tmp1);
11168     addptr(len, 8);
11169     jcc(Assembler::notZero, copy_8_loop);
11170 
11171     bind(copy_tail);
11172     movl(len, tmp2);
11173 
11174     cmpl(len, 4);
11175     jccb(Assembler::less, copy_bytes);
11176 
11177     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11178     pmovzxbw(tmp1, tmp1);
11179     movq(Address(dst, 0), tmp1);
11180     subptr(len, 4);
11181     addptr(src, 4);
11182     addptr(dst, 8);
11183 
11184     bind(copy_bytes);
11185   }
11186   testl(len, len);
11187   jccb(Assembler::zero, done);
11188   lea(src, Address(src, len, Address::times_1));
11189   lea(dst, Address(dst, len, Address::times_2));
11190   negptr(len);
11191 
11192   // inflate 1 char per iter
11193   bind(copy_chars_loop);
11194   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11195   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11196   increment(len);
11197   jcc(Assembler::notZero, copy_chars_loop);
11198 
11199   bind(done);
11200 }
11201 
11202 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11203   switch (cond) {
11204     // Note some conditions are synonyms for others
11205     case Assembler::zero:         return Assembler::notZero;
11206     case Assembler::notZero:      return Assembler::zero;
11207     case Assembler::less:         return Assembler::greaterEqual;
11208     case Assembler::lessEqual:    return Assembler::greater;
11209     case Assembler::greater:      return Assembler::lessEqual;
11210     case Assembler::greaterEqual: return Assembler::less;
11211     case Assembler::below:        return Assembler::aboveEqual;
11212     case Assembler::belowEqual:   return Assembler::above;
11213     case Assembler::above:        return Assembler::belowEqual;
11214     case Assembler::aboveEqual:   return Assembler::below;
11215     case Assembler::overflow:     return Assembler::noOverflow;
11216     case Assembler::noOverflow:   return Assembler::overflow;
11217     case Assembler::negative:     return Assembler::positive;
11218     case Assembler::positive:     return Assembler::negative;
11219     case Assembler::parity:       return Assembler::noParity;
11220     case Assembler::noParity:     return Assembler::parity;
11221   }
11222   ShouldNotReachHere(); return Assembler::overflow;
11223 }
11224 
11225 SkipIfEqual::SkipIfEqual(
11226     MacroAssembler* masm, const bool* flag_addr, bool value) {
11227   _masm = masm;
11228   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11229   _masm->jcc(Assembler::equal, _label);
11230 }
11231 
11232 SkipIfEqual::~SkipIfEqual() {
11233   _masm->bind(_label);
11234 }
11235 
11236 // 32-bit Windows has its own fast-path implementation
11237 // of get_thread
11238 #if !defined(WIN32) || defined(_LP64)
11239 
11240 // This is simply a call to Thread::current()
11241 void MacroAssembler::get_thread(Register thread) {
11242   if (thread != rax) {
11243     push(rax);
11244   }
11245   LP64_ONLY(push(rdi);)
11246   LP64_ONLY(push(rsi);)
11247   push(rdx);
11248   push(rcx);
11249 #ifdef _LP64
11250   push(r8);
11251   push(r9);
11252   push(r10);
11253   push(r11);
11254 #endif
11255 
11256   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11257 
11258 #ifdef _LP64
11259   pop(r11);
11260   pop(r10);
11261   pop(r9);
11262   pop(r8);
11263 #endif
11264   pop(rcx);
11265   pop(rdx);
11266   LP64_ONLY(pop(rsi);)
11267   LP64_ONLY(pop(rdi);)
11268   if (thread != rax) {
11269     mov(thread, rax);
11270     pop(rax);
11271   }
11272 }
11273 
11274 #endif