1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  75   // The implementation is only non-empty for the InterpreterMacroAssembler,
  76   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  77   virtual void check_and_handle_popframe(Register java_thread);
  78   virtual void check_and_handle_earlyret(Register java_thread);
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // helpers for FPU flag access
  83   // tmp is a temporary register, if none is available use noreg
  84   void save_rax   (Register tmp);
  85   void restore_rax(Register tmp);
  86 
  87  public:
  88   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   void load_mirror(Register mirror, Register method);
 331 
 332   // oop manipulations
 333   void load_klass(Register dst, Register src);
 334   void store_klass(Register dst, Register src);
 335 
 336   void load_heap_oop(Register dst, Address src);
 337   void load_heap_oop_not_null(Register dst, Address src);
 338   void store_heap_oop(Address dst, Register src);
 339   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 340 
 341   // Used for storing NULL. All other oop constants should be
 342   // stored using routines that take a jobject.
 343   void store_heap_oop_null(Address dst);
 344 
 345   void load_prototype_header(Register dst, Register src);
 346 
 347 #ifdef _LP64
 348   void store_klass_gap(Register dst, Register src);
 349 
 350   // This dummy is to prevent a call to store_heap_oop from
 351   // converting a zero (like NULL) into a Register by giving
 352   // the compiler two choices it can't resolve
 353 
 354   void store_heap_oop(Address dst, void* dummy);
 355 
 356   void encode_heap_oop(Register r);
 357   void decode_heap_oop(Register r);
 358   void encode_heap_oop_not_null(Register r);
 359   void decode_heap_oop_not_null(Register r);
 360   void encode_heap_oop_not_null(Register dst, Register src);
 361   void decode_heap_oop_not_null(Register dst, Register src);
 362 
 363   void set_narrow_oop(Register dst, jobject obj);
 364   void set_narrow_oop(Address dst, jobject obj);
 365   void cmp_narrow_oop(Register dst, jobject obj);
 366   void cmp_narrow_oop(Address dst, jobject obj);
 367 
 368   void encode_klass_not_null(Register r);
 369   void decode_klass_not_null(Register r);
 370   void encode_klass_not_null(Register dst, Register src);
 371   void decode_klass_not_null(Register dst, Register src);
 372   void set_narrow_klass(Register dst, Klass* k);
 373   void set_narrow_klass(Address dst, Klass* k);
 374   void cmp_narrow_klass(Register dst, Klass* k);
 375   void cmp_narrow_klass(Address dst, Klass* k);
 376 
 377   // Returns the byte size of the instructions generated by decode_klass_not_null()
 378   // when compressed klass pointers are being used.
 379   static int instr_size_for_decode_klass_not_null();
 380 
 381   // if heap base register is used - reinit it with the correct value
 382   void reinit_heapbase();
 383 
 384   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 385 
 386 #endif // _LP64
 387 
 388   // Int division/remainder for Java
 389   // (as idivl, but checks for special case as described in JVM spec.)
 390   // returns idivl instruction offset for implicit exception handling
 391   int corrected_idivl(Register reg);
 392 
 393   // Long division/remainder for Java
 394   // (as idivq, but checks for special case as described in JVM spec.)
 395   // returns idivq instruction offset for implicit exception handling
 396   int corrected_idivq(Register reg);
 397 
 398   void int3();
 399 
 400   // Long operation macros for a 32bit cpu
 401   // Long negation for Java
 402   void lneg(Register hi, Register lo);
 403 
 404   // Long multiplication for Java
 405   // (destroys contents of eax, ebx, ecx and edx)
 406   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 407 
 408   // Long shifts for Java
 409   // (semantics as described in JVM spec.)
 410   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 411   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 412 
 413   // Long compare for Java
 414   // (semantics as described in JVM spec.)
 415   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 416 
 417 
 418   // misc
 419 
 420   // Sign extension
 421   void sign_extend_short(Register reg);
 422   void sign_extend_byte(Register reg);
 423 
 424   // Division by power of 2, rounding towards 0
 425   void division_with_shift(Register reg, int shift_value);
 426 
 427   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 428   //
 429   // CF (corresponds to C0) if x < y
 430   // PF (corresponds to C2) if unordered
 431   // ZF (corresponds to C3) if x = y
 432   //
 433   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 434   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 435   void fcmp(Register tmp);
 436   // Variant of the above which allows y to be further down the stack
 437   // and which only pops x and y if specified. If pop_right is
 438   // specified then pop_left must also be specified.
 439   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 440 
 441   // Floating-point comparison for Java
 442   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 443   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 444   // (semantics as described in JVM spec.)
 445   void fcmp2int(Register dst, bool unordered_is_less);
 446   // Variant of the above which allows y to be further down the stack
 447   // and which only pops x and y if specified. If pop_right is
 448   // specified then pop_left must also be specified.
 449   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 450 
 451   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 452   // tmp is a temporary register, if none is available use noreg
 453   void fremr(Register tmp);
 454 
 455   // dst = c = a * b + c
 456   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 457   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458 
 459 
 460   // same as fcmp2int, but using SSE2
 461   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 462   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 463 
 464   // branch to L if FPU flag C2 is set/not set
 465   // tmp is a temporary register, if none is available use noreg
 466   void jC2 (Register tmp, Label& L);
 467   void jnC2(Register tmp, Label& L);
 468 
 469   // Pop ST (ffree & fincstp combined)
 470   void fpop();
 471 
 472   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 473   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 474   void load_float(Address src);
 475 
 476   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 477   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 478   void store_float(Address dst);
 479 
 480   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 481   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 482   void load_double(Address src);
 483 
 484   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 485   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 486   void store_double(Address dst);
 487 
 488   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 489   void push_fTOS();
 490 
 491   // pops double TOS element from CPU stack and pushes on FPU stack
 492   void pop_fTOS();
 493 
 494   void empty_FPU_stack();
 495 
 496   void push_IU_state();
 497   void pop_IU_state();
 498 
 499   void push_FPU_state();
 500   void pop_FPU_state();
 501 
 502   void push_CPU_state();
 503   void pop_CPU_state();
 504 
 505   // Round up to a power of two
 506   void round_to(Register reg, int modulus);
 507 
 508   // Callee saved registers handling
 509   void push_callee_saved_registers();
 510   void pop_callee_saved_registers();
 511 
 512   // allocation
 513   void eden_allocate(
 514     Register obj,                      // result: pointer to object after successful allocation
 515     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 516     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 517     Register t1,                       // temp register
 518     Label&   slow_case                 // continuation point if fast allocation fails
 519   );
 520   void tlab_allocate(
 521     Register obj,                      // result: pointer to object after successful allocation
 522     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 523     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 524     Register t1,                       // temp register
 525     Register t2,                       // temp register
 526     Label&   slow_case                 // continuation point if fast allocation fails
 527   );
 528   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 529   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 530 
 531   void incr_allocated_bytes(Register thread,
 532                             Register var_size_in_bytes, int con_size_in_bytes,
 533                             Register t1 = noreg);
 534 
 535   // interface method calling
 536   void lookup_interface_method(Register recv_klass,
 537                                Register intf_klass,
 538                                RegisterOrConstant itable_index,
 539                                Register method_result,
 540                                Register scan_temp,
 541                                Label& no_such_interface);
 542 
 543   // virtual method calling
 544   void lookup_virtual_method(Register recv_klass,
 545                              RegisterOrConstant vtable_index,
 546                              Register method_result);
 547 
 548   // Test sub_klass against super_klass, with fast and slow paths.
 549 
 550   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 551   // One of the three labels can be NULL, meaning take the fall-through.
 552   // If super_check_offset is -1, the value is loaded up from super_klass.
 553   // No registers are killed, except temp_reg.
 554   void check_klass_subtype_fast_path(Register sub_klass,
 555                                      Register super_klass,
 556                                      Register temp_reg,
 557                                      Label* L_success,
 558                                      Label* L_failure,
 559                                      Label* L_slow_path,
 560                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 561 
 562   // The rest of the type check; must be wired to a corresponding fast path.
 563   // It does not repeat the fast path logic, so don't use it standalone.
 564   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 565   // Updates the sub's secondary super cache as necessary.
 566   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 567   void check_klass_subtype_slow_path(Register sub_klass,
 568                                      Register super_klass,
 569                                      Register temp_reg,
 570                                      Register temp2_reg,
 571                                      Label* L_success,
 572                                      Label* L_failure,
 573                                      bool set_cond_codes = false);
 574 
 575   // Simplified, combined version, good for typical uses.
 576   // Falls through on failure.
 577   void check_klass_subtype(Register sub_klass,
 578                            Register super_klass,
 579                            Register temp_reg,
 580                            Label& L_success);
 581 
 582   // method handles (JSR 292)
 583   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 584 
 585   //----
 586   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 587 
 588   // Debugging
 589 
 590   // only if +VerifyOops
 591   // TODO: Make these macros with file and line like sparc version!
 592   void verify_oop(Register reg, const char* s = "broken oop");
 593   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 594 
 595   // TODO: verify method and klass metadata (compare against vptr?)
 596   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 597   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 598 
 599 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 600 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 601 
 602   // only if +VerifyFPU
 603   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 604 
 605   // Verify or restore cpu control state after JNI call
 606   void restore_cpu_control_state_after_jni();
 607 
 608   // prints msg, dumps registers and stops execution
 609   void stop(const char* msg);
 610 
 611   // prints msg and continues
 612   void warn(const char* msg);
 613 
 614   // dumps registers and other state
 615   void print_state();
 616 
 617   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 618   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 619   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 620   static void print_state64(int64_t pc, int64_t regs[]);
 621 
 622   void os_breakpoint();
 623 
 624   void untested()                                { stop("untested"); }
 625 
 626   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 627 
 628   void should_not_reach_here()                   { stop("should not reach here"); }
 629 
 630   void print_CPU_state();
 631 
 632   // Stack overflow checking
 633   void bang_stack_with_offset(int offset) {
 634     // stack grows down, caller passes positive offset
 635     assert(offset > 0, "must bang with negative offset");
 636     movl(Address(rsp, (-offset)), rax);
 637   }
 638 
 639   // Writes to stack successive pages until offset reached to check for
 640   // stack overflow + shadow pages.  Also, clobbers tmp
 641   void bang_stack_size(Register size, Register tmp);
 642 
 643   // Check for reserved stack access in method being exited (for JIT)
 644   void reserved_stack_check();
 645 
 646   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 647                                                 Register tmp,
 648                                                 int offset);
 649 
 650   // Support for serializing memory accesses between threads
 651   void serialize_memory(Register thread, Register tmp);
 652 
 653   void verify_tlab();
 654 
 655   // Biased locking support
 656   // lock_reg and obj_reg must be loaded up with the appropriate values.
 657   // swap_reg must be rax, and is killed.
 658   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 659   // be killed; if not supplied, push/pop will be used internally to
 660   // allocate a temporary (inefficient, avoid if possible).
 661   // Optional slow case is for implementations (interpreter and C1) which branch to
 662   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 663   // Returns offset of first potentially-faulting instruction for null
 664   // check info (currently consumed only by C1). If
 665   // swap_reg_contains_mark is true then returns -1 as it is assumed
 666   // the calling code has already passed any potential faults.
 667   int biased_locking_enter(Register lock_reg, Register obj_reg,
 668                            Register swap_reg, Register tmp_reg,
 669                            bool swap_reg_contains_mark,
 670                            Label& done, Label* slow_case = NULL,
 671                            BiasedLockingCounters* counters = NULL);
 672   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 673 #ifdef COMPILER2
 674   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 675   // See full desription in macroAssembler_x86.cpp.
 676   void fast_lock(Register obj, Register box, Register tmp,
 677                  Register scr, Register cx1, Register cx2,
 678                  BiasedLockingCounters* counters,
 679                  RTMLockingCounters* rtm_counters,
 680                  RTMLockingCounters* stack_rtm_counters,
 681                  Metadata* method_data,
 682                  bool use_rtm, bool profile_rtm);
 683   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 684 #if INCLUDE_RTM_OPT
 685   void rtm_counters_update(Register abort_status, Register rtm_counters);
 686   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 687   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 688                                    RTMLockingCounters* rtm_counters,
 689                                    Metadata* method_data);
 690   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 691                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 692   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 693   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 694   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 695                          Register retry_on_abort_count,
 696                          RTMLockingCounters* stack_rtm_counters,
 697                          Metadata* method_data, bool profile_rtm,
 698                          Label& DONE_LABEL, Label& IsInflated);
 699   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 700                             Register scr, Register retry_on_busy_count,
 701                             Register retry_on_abort_count,
 702                             RTMLockingCounters* rtm_counters,
 703                             Metadata* method_data, bool profile_rtm,
 704                             Label& DONE_LABEL);
 705 #endif
 706 #endif
 707 
 708   Condition negate_condition(Condition cond);
 709 
 710   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 711   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 712   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 713   // here in MacroAssembler. The major exception to this rule is call
 714 
 715   // Arithmetics
 716 
 717 
 718   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 719   void addptr(Address dst, Register src);
 720 
 721   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 722   void addptr(Register dst, int32_t src);
 723   void addptr(Register dst, Register src);
 724   void addptr(Register dst, RegisterOrConstant src) {
 725     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 726     else                   addptr(dst,       src.as_register());
 727   }
 728 
 729   void andptr(Register dst, int32_t src);
 730   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 731 
 732   void cmp8(AddressLiteral src1, int imm);
 733 
 734   // renamed to drag out the casting of address to int32_t/intptr_t
 735   void cmp32(Register src1, int32_t imm);
 736 
 737   void cmp32(AddressLiteral src1, int32_t imm);
 738   // compare reg - mem, or reg - &mem
 739   void cmp32(Register src1, AddressLiteral src2);
 740 
 741   void cmp32(Register src1, Address src2);
 742 
 743 #ifndef _LP64
 744   void cmpklass(Address dst, Metadata* obj);
 745   void cmpklass(Register dst, Metadata* obj);
 746   void cmpoop(Address dst, jobject obj);
 747   void cmpoop(Register dst, jobject obj);
 748 #endif // _LP64
 749 
 750   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 751   void cmpptr(Address src1, AddressLiteral src2);
 752 
 753   void cmpptr(Register src1, AddressLiteral src2);
 754 
 755   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 756   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 757   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 758 
 759   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761 
 762   // cmp64 to avoild hiding cmpq
 763   void cmp64(Register src1, AddressLiteral src);
 764 
 765   void cmpxchgptr(Register reg, Address adr);
 766 
 767   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 768 
 769 
 770   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 771   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 772 
 773 
 774   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 775 
 776   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 777 
 778   void shlptr(Register dst, int32_t shift);
 779   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 780 
 781   void shrptr(Register dst, int32_t shift);
 782   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 783 
 784   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 785   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 786 
 787   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 788 
 789   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 790   void subptr(Register dst, int32_t src);
 791   // Force generation of a 4 byte immediate value even if it fits into 8bit
 792   void subptr_imm32(Register dst, int32_t src);
 793   void subptr(Register dst, Register src);
 794   void subptr(Register dst, RegisterOrConstant src) {
 795     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 796     else                   subptr(dst,       src.as_register());
 797   }
 798 
 799   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 800   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 801 
 802   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 803   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 804 
 805   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 806 
 807 
 808 
 809   // Helper functions for statistics gathering.
 810   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 811   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 812   // Unconditional atomic increment.
 813   void atomic_incl(Address counter_addr);
 814   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 815 #ifdef _LP64
 816   void atomic_incq(Address counter_addr);
 817   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 818 #endif
 819   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 820   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 821 
 822   void lea(Register dst, AddressLiteral adr);
 823   void lea(Address dst, AddressLiteral adr);
 824   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 825 
 826   void leal32(Register dst, Address src) { leal(dst, src); }
 827 
 828   // Import other testl() methods from the parent class or else
 829   // they will be hidden by the following overriding declaration.
 830   using Assembler::testl;
 831   void testl(Register dst, AddressLiteral src);
 832 
 833   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 834   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 835   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 836   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 837 
 838   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 839   void testptr(Register src1, Register src2);
 840 
 841   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 842   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 843 
 844   // Calls
 845 
 846   void call(Label& L, relocInfo::relocType rtype);
 847   void call(Register entry);
 848 
 849   // NOTE: this call transfers to the effective address of entry NOT
 850   // the address contained by entry. This is because this is more natural
 851   // for jumps/calls.
 852   void call(AddressLiteral entry);
 853 
 854   // Emit the CompiledIC call idiom
 855   void ic_call(address entry, jint method_index = 0);
 856 
 857   // Jumps
 858 
 859   // NOTE: these jumps tranfer to the effective address of dst NOT
 860   // the address contained by dst. This is because this is more natural
 861   // for jumps/calls.
 862   void jump(AddressLiteral dst);
 863   void jump_cc(Condition cc, AddressLiteral dst);
 864 
 865   // 32bit can do a case table jump in one instruction but we no longer allow the base
 866   // to be installed in the Address class. This jump will tranfers to the address
 867   // contained in the location described by entry (not the address of entry)
 868   void jump(ArrayAddress entry);
 869 
 870   // Floating
 871 
 872   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 873   void andpd(XMMRegister dst, AddressLiteral src);
 874   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 875 
 876   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 877   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 878   void andps(XMMRegister dst, AddressLiteral src);
 879 
 880   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 881   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 882   void comiss(XMMRegister dst, AddressLiteral src);
 883 
 884   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 885   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 886   void comisd(XMMRegister dst, AddressLiteral src);
 887 
 888   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 889   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 890 
 891   void fldcw(Address src) { Assembler::fldcw(src); }
 892   void fldcw(AddressLiteral src);
 893 
 894   void fld_s(int index)   { Assembler::fld_s(index); }
 895   void fld_s(Address src) { Assembler::fld_s(src); }
 896   void fld_s(AddressLiteral src);
 897 
 898   void fld_d(Address src) { Assembler::fld_d(src); }
 899   void fld_d(AddressLiteral src);
 900 
 901   void fld_x(Address src) { Assembler::fld_x(src); }
 902   void fld_x(AddressLiteral src);
 903 
 904   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 905   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 906 
 907   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 908   void ldmxcsr(AddressLiteral src);
 909 
 910 #ifdef _LP64
 911  private:
 912   void sha256_AVX2_one_round_compute(
 913     Register  reg_old_h,
 914     Register  reg_a,
 915     Register  reg_b,
 916     Register  reg_c,
 917     Register  reg_d,
 918     Register  reg_e,
 919     Register  reg_f,
 920     Register  reg_g,
 921     Register  reg_h,
 922     int iter);
 923   void sha256_AVX2_four_rounds_compute_first(int start);
 924   void sha256_AVX2_four_rounds_compute_last(int start);
 925   void sha256_AVX2_one_round_and_sched(
 926         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 927         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 928         XMMRegister xmm_2,     /* ymm6 */
 929         XMMRegister xmm_3,     /* ymm7 */
 930         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 931         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 932         Register    reg_c,      /* edi */
 933         Register    reg_d,      /* esi */
 934         Register    reg_e,      /* r8d */
 935         Register    reg_f,      /* r9d */
 936         Register    reg_g,      /* r10d */
 937         Register    reg_h,      /* r11d */
 938         int iter);
 939 
 940   void addm(int disp, Register r1, Register r2);
 941 
 942  public:
 943   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 944                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 945                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 946                    bool multi_block, XMMRegister shuf_mask);
 947 #endif
 948 
 949 #ifdef _LP64
 950  private:
 951   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 952                                      Register e, Register f, Register g, Register h, int iteration);
 953 
 954   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 955                                           Register a, Register b, Register c, Register d, Register e, Register f,
 956                                           Register g, Register h, int iteration);
 957 
 958   void addmq(int disp, Register r1, Register r2);
 959  public:
 960   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 961                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 962                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 963                    XMMRegister shuf_mask);
 964 #endif
 965 
 966   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 967                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 968                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 969                  bool multi_block);
 970 
 971 #ifdef _LP64
 972   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 973                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 974                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 975                    bool multi_block, XMMRegister shuf_mask);
 976 #else
 977   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 978                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 979                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 980                    bool multi_block);
 981 #endif
 982 
 983   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 984                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 985                 Register rax, Register rcx, Register rdx, Register tmp);
 986 
 987 #ifdef _LP64
 988   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 991 
 992   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 993                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 994                   Register rax, Register rcx, Register rdx, Register r11);
 995 
 996   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 997                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 998                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 999 
1000   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1001                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1002                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1003                 Register tmp3, Register tmp4);
1004 
1005   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rcx, Register rdx, Register tmp1,
1008                 Register tmp2, Register tmp3, Register tmp4);
1009   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp1,
1012                 Register tmp2, Register tmp3, Register tmp4);
1013 #else
1014   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1);
1017 
1018   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1019                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1020                 Register rax, Register rcx, Register rdx, Register tmp);
1021 
1022   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1023                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1024                 Register rdx, Register tmp);
1025 
1026   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rbx, Register rdx);
1029 
1030   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032                 Register rax, Register rcx, Register rdx, Register tmp);
1033 
1034   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1035                         Register edx, Register ebx, Register esi, Register edi,
1036                         Register ebp, Register esp);
1037 
1038   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1039                          Register esi, Register edi, Register ebp, Register esp);
1040 
1041   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1042                         Register edx, Register ebx, Register esi, Register edi,
1043                         Register ebp, Register esp);
1044 
1045   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp);
1048 #endif
1049 
1050   void increase_precision();
1051   void restore_precision();
1052 
1053 private:
1054 
1055   // these are private because users should be doing movflt/movdbl
1056 
1057   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1058   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1059   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1060   void movss(XMMRegister dst, AddressLiteral src);
1061 
1062   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1063   void movlpd(XMMRegister dst, AddressLiteral src);
1064 
1065 public:
1066 
1067   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1068   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1069   void addsd(XMMRegister dst, AddressLiteral src);
1070 
1071   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1072   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1073   void addss(XMMRegister dst, AddressLiteral src);
1074 
1075   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1076   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1077   void addpd(XMMRegister dst, AddressLiteral src);
1078 
1079   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1080   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1081   void divsd(XMMRegister dst, AddressLiteral src);
1082 
1083   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1084   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1085   void divss(XMMRegister dst, AddressLiteral src);
1086 
1087   // Move Unaligned Double Quadword
1088   void movdqu(Address     dst, XMMRegister src);
1089   void movdqu(XMMRegister dst, Address src);
1090   void movdqu(XMMRegister dst, XMMRegister src);
1091   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1092   // AVX Unaligned forms
1093   void vmovdqu(Address     dst, XMMRegister src);
1094   void vmovdqu(XMMRegister dst, Address src);
1095   void vmovdqu(XMMRegister dst, XMMRegister src);
1096   void vmovdqu(XMMRegister dst, AddressLiteral src);
1097 
1098   // Move Aligned Double Quadword
1099   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1100   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1101   void movdqa(XMMRegister dst, AddressLiteral src);
1102 
1103   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1104   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1105   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1106   void movsd(XMMRegister dst, AddressLiteral src);
1107 
1108   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1109   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1110   void mulpd(XMMRegister dst, AddressLiteral src);
1111 
1112   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1113   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1114   void mulsd(XMMRegister dst, AddressLiteral src);
1115 
1116   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1117   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1118   void mulss(XMMRegister dst, AddressLiteral src);
1119 
1120   // Carry-Less Multiplication Quadword
1121   void pclmulldq(XMMRegister dst, XMMRegister src) {
1122     // 0x00 - multiply lower 64 bits [0:63]
1123     Assembler::pclmulqdq(dst, src, 0x00);
1124   }
1125   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1126     // 0x11 - multiply upper 64 bits [64:127]
1127     Assembler::pclmulqdq(dst, src, 0x11);
1128   }
1129 
1130   void pcmpeqb(XMMRegister dst, XMMRegister src);
1131   void pcmpeqw(XMMRegister dst, XMMRegister src);
1132 
1133   void pcmpestri(XMMRegister dst, Address src, int imm8);
1134   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1135 
1136   void pmovzxbw(XMMRegister dst, XMMRegister src);
1137   void pmovzxbw(XMMRegister dst, Address src);
1138 
1139   void pmovmskb(Register dst, XMMRegister src);
1140 
1141   void ptest(XMMRegister dst, XMMRegister src);
1142 
1143   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1144   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1145   void sqrtsd(XMMRegister dst, AddressLiteral src);
1146 
1147   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1148   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1149   void sqrtss(XMMRegister dst, AddressLiteral src);
1150 
1151   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1152   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1153   void subsd(XMMRegister dst, AddressLiteral src);
1154 
1155   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1156   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1157   void subss(XMMRegister dst, AddressLiteral src);
1158 
1159   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1160   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1161   void ucomiss(XMMRegister dst, AddressLiteral src);
1162 
1163   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1164   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1165   void ucomisd(XMMRegister dst, AddressLiteral src);
1166 
1167   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1168   void xorpd(XMMRegister dst, XMMRegister src);
1169   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1170   void xorpd(XMMRegister dst, AddressLiteral src);
1171 
1172   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1173   void xorps(XMMRegister dst, XMMRegister src);
1174   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1175   void xorps(XMMRegister dst, AddressLiteral src);
1176 
1177   // Shuffle Bytes
1178   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1179   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1180   void pshufb(XMMRegister dst, AddressLiteral src);
1181   // AVX 3-operands instructions
1182 
1183   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1184   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1185   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1186 
1187   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1188   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1189   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1190 
1191   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1192   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1193 
1194   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1195   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1196 
1197   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1198   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1199 
1200   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1201   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1202   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1203 
1204   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1205 
1206   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1207   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1208 
1209   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1210   void vpmovmskb(Register dst, XMMRegister src);
1211 
1212   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1213   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1214 
1215   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1217 
1218   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1220 
1221   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1222   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1223 
1224   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1225   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1226 
1227   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1228   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1229 
1230   void vptest(XMMRegister dst, XMMRegister src);
1231 
1232   void punpcklbw(XMMRegister dst, XMMRegister src);
1233   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1234 
1235   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1236   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1237 
1238   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1239   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1240   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1241 
1242   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1243   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1244   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1245 
1246   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1247   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1248   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1249 
1250   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1251   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1252   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1253 
1254   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1255   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1256   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1257 
1258   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1259   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1260   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1261 
1262   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1263   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1264   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1265 
1266   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1267   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1268   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1269 
1270   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1271   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1272 
1273   // AVX Vector instructions
1274 
1275   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1276   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1277   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1278 
1279   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1280   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1281   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1282 
1283   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1284     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1285       Assembler::vpxor(dst, nds, src, vector_len);
1286     else
1287       Assembler::vxorpd(dst, nds, src, vector_len);
1288   }
1289   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1290     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1291       Assembler::vpxor(dst, nds, src, vector_len);
1292     else
1293       Assembler::vxorpd(dst, nds, src, vector_len);
1294   }
1295 
1296   // Simple version for AVX2 256bit vectors
1297   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1298   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1299 
1300   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1301     if (UseAVX > 2) {
1302       Assembler::vinserti32x4(dst, dst, src, imm8);
1303     } else if (UseAVX > 1) {
1304       // vinserti128 is available only in AVX2
1305       Assembler::vinserti128(dst, nds, src, imm8);
1306     } else {
1307       Assembler::vinsertf128(dst, nds, src, imm8);
1308     }
1309   }
1310 
1311   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1312     if (UseAVX > 2) {
1313       Assembler::vinserti32x4(dst, dst, src, imm8);
1314     } else if (UseAVX > 1) {
1315       // vinserti128 is available only in AVX2
1316       Assembler::vinserti128(dst, nds, src, imm8);
1317     } else {
1318       Assembler::vinsertf128(dst, nds, src, imm8);
1319     }
1320   }
1321 
1322   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1323     if (UseAVX > 2) {
1324       Assembler::vextracti32x4(dst, src, imm8);
1325     } else if (UseAVX > 1) {
1326       // vextracti128 is available only in AVX2
1327       Assembler::vextracti128(dst, src, imm8);
1328     } else {
1329       Assembler::vextractf128(dst, src, imm8);
1330     }
1331   }
1332 
1333   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1334     if (UseAVX > 2) {
1335       Assembler::vextracti32x4(dst, src, imm8);
1336     } else if (UseAVX > 1) {
1337       // vextracti128 is available only in AVX2
1338       Assembler::vextracti128(dst, src, imm8);
1339     } else {
1340       Assembler::vextractf128(dst, src, imm8);
1341     }
1342   }
1343 
1344   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1345   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1346     vinserti128(dst, dst, src, 1);
1347   }
1348   void vinserti128_high(XMMRegister dst, Address src) {
1349     vinserti128(dst, dst, src, 1);
1350   }
1351   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1352     vextracti128(dst, src, 1);
1353   }
1354   void vextracti128_high(Address dst, XMMRegister src) {
1355     vextracti128(dst, src, 1);
1356   }
1357 
1358   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1359     if (UseAVX > 2) {
1360       Assembler::vinsertf32x4(dst, dst, src, 1);
1361     } else {
1362       Assembler::vinsertf128(dst, dst, src, 1);
1363     }
1364   }
1365 
1366   void vinsertf128_high(XMMRegister dst, Address src) {
1367     if (UseAVX > 2) {
1368       Assembler::vinsertf32x4(dst, dst, src, 1);
1369     } else {
1370       Assembler::vinsertf128(dst, dst, src, 1);
1371     }
1372   }
1373 
1374   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1375     if (UseAVX > 2) {
1376       Assembler::vextractf32x4(dst, src, 1);
1377     } else {
1378       Assembler::vextractf128(dst, src, 1);
1379     }
1380   }
1381 
1382   void vextractf128_high(Address dst, XMMRegister src) {
1383     if (UseAVX > 2) {
1384       Assembler::vextractf32x4(dst, src, 1);
1385     } else {
1386       Assembler::vextractf128(dst, src, 1);
1387     }
1388   }
1389 
1390   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1391   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1392     Assembler::vinserti64x4(dst, dst, src, 1);
1393   }
1394   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1395     Assembler::vinsertf64x4(dst, dst, src, 1);
1396   }
1397   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1398     Assembler::vextracti64x4(dst, src, 1);
1399   }
1400   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1401     Assembler::vextractf64x4(dst, src, 1);
1402   }
1403   void vextractf64x4_high(Address dst, XMMRegister src) {
1404     Assembler::vextractf64x4(dst, src, 1);
1405   }
1406   void vinsertf64x4_high(XMMRegister dst, Address src) {
1407     Assembler::vinsertf64x4(dst, dst, src, 1);
1408   }
1409 
1410   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1411   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1412     vinserti128(dst, dst, src, 0);
1413   }
1414   void vinserti128_low(XMMRegister dst, Address src) {
1415     vinserti128(dst, dst, src, 0);
1416   }
1417   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1418     vextracti128(dst, src, 0);
1419   }
1420   void vextracti128_low(Address dst, XMMRegister src) {
1421     vextracti128(dst, src, 0);
1422   }
1423 
1424   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1425     if (UseAVX > 2) {
1426       Assembler::vinsertf32x4(dst, dst, src, 0);
1427     } else {
1428       Assembler::vinsertf128(dst, dst, src, 0);
1429     }
1430   }
1431 
1432   void vinsertf128_low(XMMRegister dst, Address src) {
1433     if (UseAVX > 2) {
1434       Assembler::vinsertf32x4(dst, dst, src, 0);
1435     } else {
1436       Assembler::vinsertf128(dst, dst, src, 0);
1437     }
1438   }
1439 
1440   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1441     if (UseAVX > 2) {
1442       Assembler::vextractf32x4(dst, src, 0);
1443     } else {
1444       Assembler::vextractf128(dst, src, 0);
1445     }
1446   }
1447 
1448   void vextractf128_low(Address dst, XMMRegister src) {
1449     if (UseAVX > 2) {
1450       Assembler::vextractf32x4(dst, src, 0);
1451     } else {
1452       Assembler::vextractf128(dst, src, 0);
1453     }
1454   }
1455 
1456   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1457   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1458     Assembler::vinserti64x4(dst, dst, src, 0);
1459   }
1460   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1461     Assembler::vinsertf64x4(dst, dst, src, 0);
1462   }
1463   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1464     Assembler::vextracti64x4(dst, src, 0);
1465   }
1466   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1467     Assembler::vextractf64x4(dst, src, 0);
1468   }
1469   void vextractf64x4_low(Address dst, XMMRegister src) {
1470     Assembler::vextractf64x4(dst, src, 0);
1471   }
1472   void vinsertf64x4_low(XMMRegister dst, Address src) {
1473     Assembler::vinsertf64x4(dst, dst, src, 0);
1474   }
1475 
1476   // Carry-Less Multiplication Quadword
1477   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1478     // 0x00 - multiply lower 64 bits [0:63]
1479     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1480   }
1481   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1482     // 0x11 - multiply upper 64 bits [64:127]
1483     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1484   }
1485 
1486   // Data
1487 
1488   void cmov32( Condition cc, Register dst, Address  src);
1489   void cmov32( Condition cc, Register dst, Register src);
1490 
1491   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1492 
1493   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1494   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1495 
1496   void movoop(Register dst, jobject obj);
1497   void movoop(Address dst, jobject obj);
1498 
1499   void mov_metadata(Register dst, Metadata* obj);
1500   void mov_metadata(Address dst, Metadata* obj);
1501 
1502   void movptr(ArrayAddress dst, Register src);
1503   // can this do an lea?
1504   void movptr(Register dst, ArrayAddress src);
1505 
1506   void movptr(Register dst, Address src);
1507 
1508 #ifdef _LP64
1509   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1510 #else
1511   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1512 #endif
1513 
1514   void movptr(Register dst, intptr_t src);
1515   void movptr(Register dst, Register src);
1516   void movptr(Address dst, intptr_t src);
1517 
1518   void movptr(Address dst, Register src);
1519 
1520   void movptr(Register dst, RegisterOrConstant src) {
1521     if (src.is_constant()) movptr(dst, src.as_constant());
1522     else                   movptr(dst, src.as_register());
1523   }
1524 
1525 #ifdef _LP64
1526   // Generally the next two are only used for moving NULL
1527   // Although there are situations in initializing the mark word where
1528   // they could be used. They are dangerous.
1529 
1530   // They only exist on LP64 so that int32_t and intptr_t are not the same
1531   // and we have ambiguous declarations.
1532 
1533   void movptr(Address dst, int32_t imm32);
1534   void movptr(Register dst, int32_t imm32);
1535 #endif // _LP64
1536 
1537   // to avoid hiding movl
1538   void mov32(AddressLiteral dst, Register src);
1539   void mov32(Register dst, AddressLiteral src);
1540 
1541   // to avoid hiding movb
1542   void movbyte(ArrayAddress dst, int src);
1543 
1544   // Import other mov() methods from the parent class or else
1545   // they will be hidden by the following overriding declaration.
1546   using Assembler::movdl;
1547   using Assembler::movq;
1548   void movdl(XMMRegister dst, AddressLiteral src);
1549   void movq(XMMRegister dst, AddressLiteral src);
1550 
1551   // Can push value or effective address
1552   void pushptr(AddressLiteral src);
1553 
1554   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1555   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1556 
1557   void pushoop(jobject obj);
1558   void pushklass(Metadata* obj);
1559 
1560   // sign extend as need a l to ptr sized element
1561   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1562   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1563 
1564   // C2 compiled method's prolog code.
1565   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1566 
1567   // clear memory of size 'cnt' qwords, starting at 'base';
1568   // if 'is_large' is set, do not try to produce short loop
1569   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1570 
1571 #ifdef COMPILER2
1572   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1573                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1574 
1575   // IndexOf strings.
1576   // Small strings are loaded through stack if they cross page boundary.
1577   void string_indexof(Register str1, Register str2,
1578                       Register cnt1, Register cnt2,
1579                       int int_cnt2,  Register result,
1580                       XMMRegister vec, Register tmp,
1581                       int ae);
1582 
1583   // IndexOf for constant substrings with size >= 8 elements
1584   // which don't need to be loaded through stack.
1585   void string_indexofC8(Register str1, Register str2,
1586                       Register cnt1, Register cnt2,
1587                       int int_cnt2,  Register result,
1588                       XMMRegister vec, Register tmp,
1589                       int ae);
1590 
1591     // Smallest code: we don't need to load through stack,
1592     // check string tail.
1593 
1594   // helper function for string_compare
1595   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1596                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1597                           Address::ScaleFactor scale2, Register index, int ae);
1598   // Compare strings.
1599   void string_compare(Register str1, Register str2,
1600                       Register cnt1, Register cnt2, Register result,
1601                       XMMRegister vec1, int ae);
1602 
1603   // Search for Non-ASCII character (Negative byte value) in a byte array,
1604   // return true if it has any and false otherwise.
1605   void has_negatives(Register ary1, Register len,
1606                      Register result, Register tmp1,
1607                      XMMRegister vec1, XMMRegister vec2);
1608 
1609   // Compare char[] or byte[] arrays.
1610   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1611                      Register limit, Register result, Register chr,
1612                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1613 
1614 #endif
1615 
1616   // Fill primitive arrays
1617   void generate_fill(BasicType t, bool aligned,
1618                      Register to, Register value, Register count,
1619                      Register rtmp, XMMRegister xtmp);
1620 
1621   void encode_iso_array(Register src, Register dst, Register len,
1622                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1623                         XMMRegister tmp4, Register tmp5, Register result);
1624 
1625 #ifdef _LP64
1626   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1627   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1628                              Register y, Register y_idx, Register z,
1629                              Register carry, Register product,
1630                              Register idx, Register kdx);
1631   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1632                               Register yz_idx, Register idx,
1633                               Register carry, Register product, int offset);
1634   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1635                                     Register carry, Register carry2,
1636                                     Register idx, Register jdx,
1637                                     Register yz_idx1, Register yz_idx2,
1638                                     Register tmp, Register tmp3, Register tmp4);
1639   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1640                                Register yz_idx, Register idx, Register jdx,
1641                                Register carry, Register product,
1642                                Register carry2);
1643   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1644                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1645   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1646                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1647   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1648                             Register tmp2);
1649   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1650                        Register rdxReg, Register raxReg);
1651   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1652   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1653                        Register tmp3, Register tmp4);
1654   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1655                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1656 
1657   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1658                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1659                Register raxReg);
1660   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1661                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1662                Register raxReg);
1663   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1664                            Register result, Register tmp1, Register tmp2,
1665                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1666 #endif
1667 
1668   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1669   void update_byte_crc32(Register crc, Register val, Register table);
1670   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1671   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1672   // Note on a naming convention:
1673   // Prefix w = register only used on a Westmere+ architecture
1674   // Prefix n = register only used on a Nehalem architecture
1675 #ifdef _LP64
1676   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1677                        Register tmp1, Register tmp2, Register tmp3);
1678 #else
1679   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1680                        Register tmp1, Register tmp2, Register tmp3,
1681                        XMMRegister xtmp1, XMMRegister xtmp2);
1682 #endif
1683   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1684                         Register in_out,
1685                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1686                         XMMRegister w_xtmp2,
1687                         Register tmp1,
1688                         Register n_tmp2, Register n_tmp3);
1689   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1690                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1691                        Register tmp1, Register tmp2,
1692                        Register n_tmp3);
1693   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1694                          Register in_out1, Register in_out2, Register in_out3,
1695                          Register tmp1, Register tmp2, Register tmp3,
1696                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1697                          Register tmp4, Register tmp5,
1698                          Register n_tmp6);
1699   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1700                             Register tmp1, Register tmp2, Register tmp3,
1701                             Register tmp4, Register tmp5, Register tmp6,
1702                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1703                             bool is_pclmulqdq_supported);
1704   // Fold 128-bit data chunk
1705   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1706   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1707   // Fold 8-bit data
1708   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1709   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1710 
1711   // Compress char[] array to byte[].
1712   void char_array_compress(Register src, Register dst, Register len,
1713                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1714                            XMMRegister tmp4, Register tmp5, Register result);
1715 
1716   // Inflate byte[] array to char[].
1717   void byte_array_inflate(Register src, Register dst, Register len,
1718                           XMMRegister tmp1, Register tmp2);
1719 
1720 };
1721 
1722 /**
1723  * class SkipIfEqual:
1724  *
1725  * Instantiating this class will result in assembly code being output that will
1726  * jump around any code emitted between the creation of the instance and it's
1727  * automatic destruction at the end of a scope block, depending on the value of
1728  * the flag passed to the constructor, which will be checked at run-time.
1729  */
1730 class SkipIfEqual {
1731  private:
1732   MacroAssembler* _masm;
1733   Label _label;
1734 
1735  public:
1736    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1737    ~SkipIfEqual();
1738 };
1739 
1740 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP