1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangInvokeAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.org.objectweb.asm.ClassWriter;
  31 import jdk.internal.org.objectweb.asm.MethodVisitor;
  32 import jdk.internal.reflect.CallerSensitive;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.vm.annotation.ForceInline;
  35 import jdk.internal.vm.annotation.Hidden;
  36 import jdk.internal.vm.annotation.Stable;
  37 import sun.invoke.empty.Empty;
  38 import sun.invoke.util.ValueConversions;
  39 import sun.invoke.util.VerifyType;
  40 import sun.invoke.util.Wrapper;
  41 
  42 import java.lang.invoke.MethodHandles.Lookup;
  43 import java.lang.reflect.Array;
  44 import java.nio.ByteOrder;
  45 import java.util.Arrays;
  46 import java.util.Collections;
  47 import java.util.HashMap;
  48 import java.util.Iterator;
  49 import java.util.List;
  50 import java.util.Map;
  51 import java.util.function.Function;
  52 import java.util.stream.Stream;
  53 
  54 import static java.lang.invoke.LambdaForm.*;
  55 import static java.lang.invoke.MethodHandleStatics.*;
  56 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  57 import static java.lang.invoke.MethodHandleNatives.Constants.HIDDEN_CLASS;
  58 import static jdk.internal.org.objectweb.asm.Opcodes.*;
  59 
  60 /**
  61  * Trusted implementation code for MethodHandle.
  62  * @author jrose
  63  */
  64 /*non-public*/
  65 abstract class MethodHandleImpl {
  66 
  67     /// Factory methods to create method handles:
  68 
  69     static MethodHandle makeArrayElementAccessor(Class<?> arrayClass, ArrayAccess access) {
  70         if (arrayClass == Object[].class) {
  71             return ArrayAccess.objectAccessor(access);
  72         }
  73         if (!arrayClass.isArray())
  74             throw newIllegalArgumentException("not an array: "+arrayClass);
  75         MethodHandle[] cache = ArrayAccessor.TYPED_ACCESSORS.get(arrayClass);
  76         int cacheIndex = ArrayAccess.cacheIndex(access);
  77         MethodHandle mh = cache[cacheIndex];
  78         if (mh != null)  return mh;
  79         mh = ArrayAccessor.getAccessor(arrayClass, access);
  80         MethodType correctType = ArrayAccessor.correctType(arrayClass, access);
  81         if (mh.type() != correctType) {
  82             assert(mh.type().parameterType(0) == Object[].class);
  83             /* if access == SET */ assert(access != ArrayAccess.SET || mh.type().parameterType(2) == Object.class);
  84             /* if access == GET */ assert(access != ArrayAccess.GET ||
  85                     (mh.type().returnType() == Object.class &&
  86                      correctType.parameterType(0).getComponentType() == correctType.returnType()));
  87             // safe to view non-strictly, because element type follows from array type
  88             mh = mh.viewAsType(correctType, false);
  89         }
  90         mh = makeIntrinsic(mh, ArrayAccess.intrinsic(access));
  91         // Atomically update accessor cache.
  92         synchronized(cache) {
  93             if (cache[cacheIndex] == null) {
  94                 cache[cacheIndex] = mh;
  95             } else {
  96                 // Throw away newly constructed accessor and use cached version.
  97                 mh = cache[cacheIndex];
  98             }
  99         }
 100         return mh;
 101     }
 102 
 103     enum ArrayAccess {
 104         GET, SET, LENGTH;
 105 
 106         // As ArrayAccess and ArrayAccessor have a circular dependency, the ArrayAccess properties cannot be stored in
 107         // final fields.
 108 
 109         static String opName(ArrayAccess a) {
 110             switch (a) {
 111                 case GET: return "getElement";
 112                 case SET: return "setElement";
 113                 case LENGTH: return "length";
 114             }
 115             throw unmatchedArrayAccess(a);
 116         }
 117 
 118         static MethodHandle objectAccessor(ArrayAccess a) {
 119             switch (a) {
 120                 case GET: return ArrayAccessor.OBJECT_ARRAY_GETTER;
 121                 case SET: return ArrayAccessor.OBJECT_ARRAY_SETTER;
 122                 case LENGTH: return ArrayAccessor.OBJECT_ARRAY_LENGTH;
 123             }
 124             throw unmatchedArrayAccess(a);
 125         }
 126 
 127         static int cacheIndex(ArrayAccess a) {
 128             switch (a) {
 129                 case GET: return ArrayAccessor.GETTER_INDEX;
 130                 case SET: return ArrayAccessor.SETTER_INDEX;
 131                 case LENGTH: return ArrayAccessor.LENGTH_INDEX;
 132             }
 133             throw unmatchedArrayAccess(a);
 134         }
 135 
 136         static Intrinsic intrinsic(ArrayAccess a) {
 137             switch (a) {
 138                 case GET: return Intrinsic.ARRAY_LOAD;
 139                 case SET: return Intrinsic.ARRAY_STORE;
 140                 case LENGTH: return Intrinsic.ARRAY_LENGTH;
 141             }
 142             throw unmatchedArrayAccess(a);
 143         }
 144     }
 145 
 146     static InternalError unmatchedArrayAccess(ArrayAccess a) {
 147         return newInternalError("should not reach here (unmatched ArrayAccess: " + a + ")");
 148     }
 149 
 150     static final class ArrayAccessor {
 151         /// Support for array element and length access
 152         static final int GETTER_INDEX = 0, SETTER_INDEX = 1, LENGTH_INDEX = 2, INDEX_LIMIT = 3;
 153         static final ClassValue<MethodHandle[]> TYPED_ACCESSORS
 154                 = new ClassValue<MethodHandle[]>() {
 155                     @Override
 156                     protected MethodHandle[] computeValue(Class<?> type) {
 157                         return new MethodHandle[INDEX_LIMIT];
 158                     }
 159                 };
 160         static final MethodHandle OBJECT_ARRAY_GETTER, OBJECT_ARRAY_SETTER, OBJECT_ARRAY_LENGTH;
 161         static {
 162             MethodHandle[] cache = TYPED_ACCESSORS.get(Object[].class);
 163             cache[GETTER_INDEX] = OBJECT_ARRAY_GETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.GET),    Intrinsic.ARRAY_LOAD);
 164             cache[SETTER_INDEX] = OBJECT_ARRAY_SETTER = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.SET),    Intrinsic.ARRAY_STORE);
 165             cache[LENGTH_INDEX] = OBJECT_ARRAY_LENGTH = makeIntrinsic(getAccessor(Object[].class, ArrayAccess.LENGTH), Intrinsic.ARRAY_LENGTH);
 166 
 167             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_GETTER.internalMemberName()));
 168             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_SETTER.internalMemberName()));
 169             assert(InvokerBytecodeGenerator.isStaticallyInvocable(ArrayAccessor.OBJECT_ARRAY_LENGTH.internalMemberName()));
 170         }
 171 
 172         static int     getElementI(int[]     a, int i)            { return              a[i]; }
 173         static long    getElementJ(long[]    a, int i)            { return              a[i]; }
 174         static float   getElementF(float[]   a, int i)            { return              a[i]; }
 175         static double  getElementD(double[]  a, int i)            { return              a[i]; }
 176         static boolean getElementZ(boolean[] a, int i)            { return              a[i]; }
 177         static byte    getElementB(byte[]    a, int i)            { return              a[i]; }
 178         static short   getElementS(short[]   a, int i)            { return              a[i]; }
 179         static char    getElementC(char[]    a, int i)            { return              a[i]; }
 180         static Object  getElementL(Object[]  a, int i)            { return              a[i]; }
 181 
 182         static void    setElementI(int[]     a, int i, int     x) {              a[i] = x; }
 183         static void    setElementJ(long[]    a, int i, long    x) {              a[i] = x; }
 184         static void    setElementF(float[]   a, int i, float   x) {              a[i] = x; }
 185         static void    setElementD(double[]  a, int i, double  x) {              a[i] = x; }
 186         static void    setElementZ(boolean[] a, int i, boolean x) {              a[i] = x; }
 187         static void    setElementB(byte[]    a, int i, byte    x) {              a[i] = x; }
 188         static void    setElementS(short[]   a, int i, short   x) {              a[i] = x; }
 189         static void    setElementC(char[]    a, int i, char    x) {              a[i] = x; }
 190         static void    setElementL(Object[]  a, int i, Object  x) {              a[i] = x; }
 191 
 192         static int     lengthI(int[]     a)                       { return a.length; }
 193         static int     lengthJ(long[]    a)                       { return a.length; }
 194         static int     lengthF(float[]   a)                       { return a.length; }
 195         static int     lengthD(double[]  a)                       { return a.length; }
 196         static int     lengthZ(boolean[] a)                       { return a.length; }
 197         static int     lengthB(byte[]    a)                       { return a.length; }
 198         static int     lengthS(short[]   a)                       { return a.length; }
 199         static int     lengthC(char[]    a)                       { return a.length; }
 200         static int     lengthL(Object[]  a)                       { return a.length; }
 201 
 202         static String name(Class<?> arrayClass, ArrayAccess access) {
 203             Class<?> elemClass = arrayClass.getComponentType();
 204             if (elemClass == null)  throw newIllegalArgumentException("not an array", arrayClass);
 205             return ArrayAccess.opName(access) + Wrapper.basicTypeChar(elemClass);
 206         }
 207         static MethodType type(Class<?> arrayClass, ArrayAccess access) {
 208             Class<?> elemClass = arrayClass.getComponentType();
 209             Class<?> arrayArgClass = arrayClass;
 210             if (!elemClass.isPrimitive()) {
 211                 arrayArgClass = Object[].class;
 212                 elemClass = Object.class;
 213             }
 214             switch (access) {
 215                 case GET:    return MethodType.methodType(elemClass,  arrayArgClass, int.class);
 216                 case SET:    return MethodType.methodType(void.class, arrayArgClass, int.class, elemClass);
 217                 case LENGTH: return MethodType.methodType(int.class,  arrayArgClass);
 218             }
 219             throw unmatchedArrayAccess(access);
 220         }
 221         static MethodType correctType(Class<?> arrayClass, ArrayAccess access) {
 222             Class<?> elemClass = arrayClass.getComponentType();
 223             switch (access) {
 224                 case GET:    return MethodType.methodType(elemClass,  arrayClass, int.class);
 225                 case SET:    return MethodType.methodType(void.class, arrayClass, int.class, elemClass);
 226                 case LENGTH: return MethodType.methodType(int.class,  arrayClass);
 227             }
 228             throw unmatchedArrayAccess(access);
 229         }
 230         static MethodHandle getAccessor(Class<?> arrayClass, ArrayAccess access) {
 231             String     name = name(arrayClass, access);
 232             MethodType type = type(arrayClass, access);
 233             try {
 234                 return IMPL_LOOKUP.findStatic(ArrayAccessor.class, name, type);
 235             } catch (ReflectiveOperationException ex) {
 236                 throw uncaughtException(ex);
 237             }
 238         }
 239     }
 240 
 241     /**
 242      * Create a JVM-level adapter method handle to conform the given method
 243      * handle to the similar newType, using only pairwise argument conversions.
 244      * For each argument, convert incoming argument to the exact type needed.
 245      * The argument conversions allowed are casting, boxing and unboxing,
 246      * integral widening or narrowing, and floating point widening or narrowing.
 247      * @param srcType required call type
 248      * @param target original method handle
 249      * @param strict if true, only asType conversions are allowed; if false, explicitCastArguments conversions allowed
 250      * @param monobox if true, unboxing conversions are assumed to be exactly typed (Integer to int only, not long or double)
 251      * @return an adapter to the original handle with the desired new type,
 252      *          or the original target if the types are already identical
 253      *          or null if the adaptation cannot be made
 254      */
 255     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 256                                             boolean strict, boolean monobox) {
 257         MethodType dstType = target.type();
 258         if (srcType == dstType)
 259             return target;
 260         return makePairwiseConvertByEditor(target, srcType, strict, monobox);
 261     }
 262 
 263     private static int countNonNull(Object[] array) {
 264         int count = 0;
 265         if (array != null) {
 266             for (Object x : array) {
 267                 if (x != null) ++count;
 268             }
 269         }
 270         return count;
 271     }
 272 
 273     static MethodHandle makePairwiseConvertByEditor(MethodHandle target, MethodType srcType,
 274                                                     boolean strict, boolean monobox) {
 275         // In method types arguments start at index 0, while the LF
 276         // editor have the MH receiver at position 0 - adjust appropriately.
 277         final int MH_RECEIVER_OFFSET = 1;
 278         Object[] convSpecs = computeValueConversions(srcType, target.type(), strict, monobox);
 279         int convCount = countNonNull(convSpecs);
 280         if (convCount == 0)
 281             return target.viewAsType(srcType, strict);
 282         MethodType basicSrcType = srcType.basicType();
 283         MethodType midType = target.type().basicType();
 284         BoundMethodHandle mh = target.rebind();
 285 
 286         // Match each unique conversion to the positions at which it is to be applied
 287         var convSpecMap = new HashMap<Object, int[]>(((4 * convCount) / 3) + 1);
 288         for (int i = 0; i < convSpecs.length - MH_RECEIVER_OFFSET; i++) {
 289             Object convSpec = convSpecs[i];
 290             if (convSpec == null) continue;
 291             int[] positions = convSpecMap.get(convSpec);
 292             if (positions == null) {
 293                 positions = new int[] { i + MH_RECEIVER_OFFSET };
 294             } else {
 295                 positions = Arrays.copyOf(positions, positions.length + 1);
 296                 positions[positions.length - 1] = i + MH_RECEIVER_OFFSET;
 297             }
 298             convSpecMap.put(convSpec, positions);
 299         }
 300         for (var entry : convSpecMap.entrySet()) {
 301             Object convSpec = entry.getKey();
 302 
 303             MethodHandle fn;
 304             if (convSpec instanceof Class) {
 305                 fn = getConstantHandle(MH_cast).bindTo(convSpec);
 306             } else {
 307                 fn = (MethodHandle) convSpec;
 308             }
 309             int[] positions = entry.getValue();
 310             Class<?> newType = basicSrcType.parameterType(positions[0] - MH_RECEIVER_OFFSET);
 311             BasicType newBasicType = BasicType.basicType(newType);
 312             convCount -= positions.length;
 313             if (convCount == 0) {
 314                 midType = srcType;
 315             } else {
 316                 Class<?>[] ptypes = midType.ptypes().clone();
 317                 for (int pos : positions) {
 318                     ptypes[pos - 1] = newType;
 319                 }
 320                 midType = MethodType.makeImpl(midType.rtype(), ptypes, true);
 321             }
 322             LambdaForm form2;
 323             if (positions.length > 1) {
 324                 form2 = mh.editor().filterRepeatedArgumentForm(newBasicType, positions);
 325             } else {
 326                 form2 = mh.editor().filterArgumentForm(positions[0], newBasicType);
 327             }
 328             mh = mh.copyWithExtendL(midType, form2, fn);
 329         }
 330         Object convSpec = convSpecs[convSpecs.length - 1];
 331         if (convSpec != null) {
 332             MethodHandle fn;
 333             if (convSpec instanceof Class) {
 334                 if (convSpec == void.class)
 335                     fn = null;
 336                 else
 337                     fn = getConstantHandle(MH_cast).bindTo(convSpec);
 338             } else {
 339                 fn = (MethodHandle) convSpec;
 340             }
 341             Class<?> newType = basicSrcType.returnType();
 342             assert(--convCount == 0);
 343             midType = srcType;
 344             if (fn != null) {
 345                 mh = mh.rebind();  // rebind if too complex
 346                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), false);
 347                 mh = mh.copyWithExtendL(midType, form2, fn);
 348             } else {
 349                 LambdaForm form2 = mh.editor().filterReturnForm(BasicType.basicType(newType), true);
 350                 mh = mh.copyWith(midType, form2);
 351             }
 352         }
 353         assert(convCount == 0);
 354         assert(mh.type().equals(srcType));
 355         return mh;
 356     }
 357 
 358     static Object[] computeValueConversions(MethodType srcType, MethodType dstType,
 359                                             boolean strict, boolean monobox) {
 360         final int INARG_COUNT = srcType.parameterCount();
 361         Object[] convSpecs = null;
 362         for (int i = 0; i <= INARG_COUNT; i++) {
 363             boolean isRet = (i == INARG_COUNT);
 364             Class<?> src = isRet ? dstType.returnType() : srcType.parameterType(i);
 365             Class<?> dst = isRet ? srcType.returnType() : dstType.parameterType(i);
 366             if (!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict)) {
 367                 if (convSpecs == null) {
 368                     convSpecs = new Object[INARG_COUNT + 1];
 369                 }
 370                 convSpecs[i] = valueConversion(src, dst, strict, monobox);
 371             }
 372         }
 373         return convSpecs;
 374     }
 375     static MethodHandle makePairwiseConvert(MethodHandle target, MethodType srcType,
 376                                             boolean strict) {
 377         return makePairwiseConvert(target, srcType, strict, /*monobox=*/ false);
 378     }
 379 
 380     /**
 381      * Find a conversion function from the given source to the given destination.
 382      * This conversion function will be used as a LF NamedFunction.
 383      * Return a Class object if a simple cast is needed.
 384      * Return void.class if void is involved.
 385      */
 386     static Object valueConversion(Class<?> src, Class<?> dst, boolean strict, boolean monobox) {
 387         assert(!VerifyType.isNullConversion(src, dst, /*keepInterfaces=*/ strict));  // caller responsibility
 388         if (dst == void.class)
 389             return dst;
 390         MethodHandle fn;
 391         if (src.isPrimitive()) {
 392             if (src == void.class) {
 393                 return void.class;  // caller must recognize this specially
 394             } else if (dst.isPrimitive()) {
 395                 // Examples: int->byte, byte->int, boolean->int (!strict)
 396                 fn = ValueConversions.convertPrimitive(src, dst);
 397             } else {
 398                 // Examples: int->Integer, boolean->Object, float->Number
 399                 Wrapper wsrc = Wrapper.forPrimitiveType(src);
 400                 fn = ValueConversions.boxExact(wsrc);
 401                 assert(fn.type().parameterType(0) == wsrc.primitiveType());
 402                 assert(fn.type().returnType() == wsrc.wrapperType());
 403                 if (!VerifyType.isNullConversion(wsrc.wrapperType(), dst, strict)) {
 404                     // Corner case, such as int->Long, which will probably fail.
 405                     MethodType mt = MethodType.methodType(dst, src);
 406                     if (strict)
 407                         fn = fn.asType(mt);
 408                     else
 409                         fn = MethodHandleImpl.makePairwiseConvert(fn, mt, /*strict=*/ false);
 410                 }
 411             }
 412         } else if (dst.isPrimitive()) {
 413             Wrapper wdst = Wrapper.forPrimitiveType(dst);
 414             if (monobox || src == wdst.wrapperType()) {
 415                 // Use a strongly-typed unboxer, if possible.
 416                 fn = ValueConversions.unboxExact(wdst, strict);
 417             } else {
 418                 // Examples:  Object->int, Number->int, Comparable->int, Byte->int
 419                 // must include additional conversions
 420                 // src must be examined at runtime, to detect Byte, Character, etc.
 421                 fn = (strict
 422                         ? ValueConversions.unboxWiden(wdst)
 423                         : ValueConversions.unboxCast(wdst));
 424             }
 425         } else {
 426             // Simple reference conversion.
 427             // Note:  Do not check for a class hierarchy relation
 428             // between src and dst.  In all cases a 'null' argument
 429             // will pass the cast conversion.
 430             return dst;
 431         }
 432         assert(fn.type().parameterCount() <= 1) : "pc"+Arrays.asList(src.getSimpleName(), dst.getSimpleName(), fn);
 433         return fn;
 434     }
 435 
 436     static MethodHandle makeVarargsCollector(MethodHandle target, Class<?> arrayType) {
 437         MethodType type = target.type();
 438         int last = type.parameterCount() - 1;
 439         if (type.parameterType(last) != arrayType)
 440             target = target.asType(type.changeParameterType(last, arrayType));
 441         target = target.asFixedArity();  // make sure this attribute is turned off
 442         return new AsVarargsCollector(target, arrayType);
 443     }
 444 
 445     private static final class AsVarargsCollector extends DelegatingMethodHandle {
 446         private final MethodHandle target;
 447         private final Class<?> arrayType;
 448         private @Stable MethodHandle asCollectorCache;
 449 
 450         AsVarargsCollector(MethodHandle target, Class<?> arrayType) {
 451             this(target.type(), target, arrayType);
 452         }
 453         AsVarargsCollector(MethodType type, MethodHandle target, Class<?> arrayType) {
 454             super(type, target);
 455             this.target = target;
 456             this.arrayType = arrayType;
 457         }
 458 
 459         @Override
 460         public boolean isVarargsCollector() {
 461             return true;
 462         }
 463 
 464         @Override
 465         protected MethodHandle getTarget() {
 466             return target;
 467         }
 468 
 469         @Override
 470         public MethodHandle asFixedArity() {
 471             return target;
 472         }
 473 
 474         @Override
 475         MethodHandle setVarargs(MemberName member) {
 476             if (member.isVarargs())  return this;
 477             return asFixedArity();
 478         }
 479 
 480         @Override
 481         public MethodHandle withVarargs(boolean makeVarargs) {
 482             if (makeVarargs)  return this;
 483             return asFixedArity();
 484         }
 485 
 486         @Override
 487         public MethodHandle asTypeUncached(MethodType newType) {
 488             MethodType type = this.type();
 489             int collectArg = type.parameterCount() - 1;
 490             int newArity = newType.parameterCount();
 491             if (newArity == collectArg+1 &&
 492                 type.parameterType(collectArg).isAssignableFrom(newType.parameterType(collectArg))) {
 493                 // if arity and trailing parameter are compatible, do normal thing
 494                 return asTypeCache = asFixedArity().asType(newType);
 495             }
 496             // check cache
 497             MethodHandle acc = asCollectorCache;
 498             if (acc != null && acc.type().parameterCount() == newArity)
 499                 return asTypeCache = acc.asType(newType);
 500             // build and cache a collector
 501             int arrayLength = newArity - collectArg;
 502             MethodHandle collector;
 503             try {
 504                 collector = asFixedArity().asCollector(arrayType, arrayLength);
 505                 assert(collector.type().parameterCount() == newArity) : "newArity="+newArity+" but collector="+collector;
 506             } catch (IllegalArgumentException ex) {
 507                 throw new WrongMethodTypeException("cannot build collector", ex);
 508             }
 509             asCollectorCache = collector;
 510             return asTypeCache = collector.asType(newType);
 511         }
 512 
 513         @Override
 514         boolean viewAsTypeChecks(MethodType newType, boolean strict) {
 515             super.viewAsTypeChecks(newType, true);
 516             if (strict) return true;
 517             // extra assertion for non-strict checks:
 518             assert (type().lastParameterType().getComponentType()
 519                     .isAssignableFrom(
 520                             newType.lastParameterType().getComponentType()))
 521                     : Arrays.asList(this, newType);
 522             return true;
 523         }
 524 
 525         @Override
 526         public Object invokeWithArguments(Object... arguments) throws Throwable {
 527             MethodType type = this.type();
 528             int argc;
 529             final int MAX_SAFE = 127;  // 127 longs require 254 slots, which is safe to spread
 530             if (arguments == null
 531                     || (argc = arguments.length) <= MAX_SAFE
 532                     || argc < type.parameterCount()) {
 533                 return super.invokeWithArguments(arguments);
 534             }
 535 
 536             // a jumbo invocation requires more explicit reboxing of the trailing arguments
 537             int uncollected = type.parameterCount() - 1;
 538             Class<?> elemType = arrayType.getComponentType();
 539             int collected = argc - uncollected;
 540             Object collArgs = (elemType == Object.class)
 541                 ? new Object[collected] : Array.newInstance(elemType, collected);
 542             if (!elemType.isPrimitive()) {
 543                 // simple cast:  just do some casting
 544                 try {
 545                     System.arraycopy(arguments, uncollected, collArgs, 0, collected);
 546                 } catch (ArrayStoreException ex) {
 547                     return super.invokeWithArguments(arguments);
 548                 }
 549             } else {
 550                 // corner case of flat array requires reflection (or specialized copy loop)
 551                 MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 552                 try {
 553                     for (int i = 0; i < collected; i++) {
 554                         arraySetter.invoke(collArgs, i, arguments[uncollected + i]);
 555                     }
 556                 } catch (WrongMethodTypeException|ClassCastException ex) {
 557                     return super.invokeWithArguments(arguments);
 558                 }
 559             }
 560 
 561             // chop the jumbo list down to size and call in non-varargs mode
 562             Object[] newArgs = new Object[uncollected + 1];
 563             System.arraycopy(arguments, 0, newArgs, 0, uncollected);
 564             newArgs[uncollected] = collArgs;
 565             return asFixedArity().invokeWithArguments(newArgs);
 566         }
 567     }
 568 
 569     /** Factory method:  Spread selected argument. */
 570     static MethodHandle makeSpreadArguments(MethodHandle target,
 571                                             Class<?> spreadArgType, int spreadArgPos, int spreadArgCount) {
 572         MethodType targetType = target.type();
 573 
 574         for (int i = 0; i < spreadArgCount; i++) {
 575             Class<?> arg = VerifyType.spreadArgElementType(spreadArgType, i);
 576             if (arg == null)  arg = Object.class;
 577             targetType = targetType.changeParameterType(spreadArgPos + i, arg);
 578         }
 579         target = target.asType(targetType);
 580 
 581         MethodType srcType = targetType
 582                 .replaceParameterTypes(spreadArgPos, spreadArgPos + spreadArgCount, spreadArgType);
 583         // Now build a LambdaForm.
 584         MethodType lambdaType = srcType.invokerType();
 585         Name[] names = arguments(spreadArgCount + 2, lambdaType);
 586         int nameCursor = lambdaType.parameterCount();
 587         int[] indexes = new int[targetType.parameterCount()];
 588 
 589         for (int i = 0, argIndex = 1; i < targetType.parameterCount() + 1; i++, argIndex++) {
 590             Class<?> src = lambdaType.parameterType(i);
 591             if (i == spreadArgPos) {
 592                 // Spread the array.
 593                 MethodHandle aload = MethodHandles.arrayElementGetter(spreadArgType);
 594                 Name array = names[argIndex];
 595                 names[nameCursor++] = new Name(getFunction(NF_checkSpreadArgument), array, spreadArgCount);
 596                 for (int j = 0; j < spreadArgCount; i++, j++) {
 597                     indexes[i] = nameCursor;
 598                     names[nameCursor++] = new Name(new NamedFunction(aload, Intrinsic.ARRAY_LOAD), array, j);
 599                 }
 600             } else if (i < indexes.length) {
 601                 indexes[i] = argIndex;
 602             }
 603         }
 604         assert(nameCursor == names.length-1);  // leave room for the final call
 605 
 606         // Build argument array for the call.
 607         Name[] targetArgs = new Name[targetType.parameterCount()];
 608         for (int i = 0; i < targetType.parameterCount(); i++) {
 609             int idx = indexes[i];
 610             targetArgs[i] = names[idx];
 611         }
 612         names[names.length - 1] = new Name(target, (Object[]) targetArgs);
 613 
 614         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.SPREAD);
 615         return SimpleMethodHandle.make(srcType, form);
 616     }
 617 
 618     static void checkSpreadArgument(Object av, int n) {
 619         if (av == null && n == 0) {
 620             return;
 621         } else if (av == null) {
 622             throw new NullPointerException("null array reference");
 623         } else if (av instanceof Object[]) {
 624             int len = ((Object[])av).length;
 625             if (len == n)  return;
 626         } else {
 627             int len = java.lang.reflect.Array.getLength(av);
 628             if (len == n)  return;
 629         }
 630         // fall through to error:
 631         throw newIllegalArgumentException("array is not of length "+n);
 632     }
 633 
 634     /** Factory method:  Collect or filter selected argument(s). */
 635     static MethodHandle makeCollectArguments(MethodHandle target,
 636                 MethodHandle collector, int collectArgPos, boolean retainOriginalArgs) {
 637         MethodType targetType = target.type();          // (a..., c, [b...])=>r
 638         MethodType collectorType = collector.type();    // (b...)=>c
 639         int collectArgCount = collectorType.parameterCount();
 640         Class<?> collectValType = collectorType.returnType();
 641         int collectValCount = (collectValType == void.class ? 0 : 1);
 642         MethodType srcType = targetType                 // (a..., [b...])=>r
 643                 .dropParameterTypes(collectArgPos, collectArgPos+collectValCount);
 644         if (!retainOriginalArgs) {                      // (a..., b...)=>r
 645             srcType = srcType.insertParameterTypes(collectArgPos, collectorType.parameterArray());
 646         }
 647         // in  arglist: [0: ...keep1 | cpos: collect...  | cpos+cacount: keep2... ]
 648         // out arglist: [0: ...keep1 | cpos: collectVal? | cpos+cvcount: keep2... ]
 649         // out(retain): [0: ...keep1 | cpos: cV? coll... | cpos+cvc+cac: keep2... ]
 650 
 651         // Now build a LambdaForm.
 652         MethodType lambdaType = srcType.invokerType();
 653         Name[] names = arguments(2, lambdaType);
 654         final int collectNamePos = names.length - 2;
 655         final int targetNamePos  = names.length - 1;
 656 
 657         Name[] collectorArgs = Arrays.copyOfRange(names, 1 + collectArgPos, 1 + collectArgPos + collectArgCount);
 658         names[collectNamePos] = new Name(collector, (Object[]) collectorArgs);
 659 
 660         // Build argument array for the target.
 661         // Incoming LF args to copy are: [ (mh) headArgs collectArgs tailArgs ].
 662         // Output argument array is [ headArgs (collectVal)? (collectArgs)? tailArgs ].
 663         Name[] targetArgs = new Name[targetType.parameterCount()];
 664         int inputArgPos  = 1;  // incoming LF args to copy to target
 665         int targetArgPos = 0;  // fill pointer for targetArgs
 666         int chunk = collectArgPos;  // |headArgs|
 667         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 668         inputArgPos  += chunk;
 669         targetArgPos += chunk;
 670         if (collectValType != void.class) {
 671             targetArgs[targetArgPos++] = names[collectNamePos];
 672         }
 673         chunk = collectArgCount;
 674         if (retainOriginalArgs) {
 675             System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 676             targetArgPos += chunk;   // optionally pass on the collected chunk
 677         }
 678         inputArgPos += chunk;
 679         chunk = targetArgs.length - targetArgPos;  // all the rest
 680         System.arraycopy(names, inputArgPos, targetArgs, targetArgPos, chunk);
 681         assert(inputArgPos + chunk == collectNamePos);  // use of rest of input args also
 682         names[targetNamePos] = new Name(target, (Object[]) targetArgs);
 683 
 684         LambdaForm form = new LambdaForm(lambdaType.parameterCount(), names, Kind.COLLECT);
 685         return SimpleMethodHandle.make(srcType, form);
 686     }
 687 
 688     @Hidden
 689     static MethodHandle selectAlternative(boolean testResult, MethodHandle target, MethodHandle fallback) {
 690         if (testResult) {
 691             return target;
 692         } else {
 693             return fallback;
 694         }
 695     }
 696 
 697     // Intrinsified by C2. Counters are used during parsing to calculate branch frequencies.
 698     @Hidden
 699     @jdk.internal.HotSpotIntrinsicCandidate
 700     static boolean profileBoolean(boolean result, int[] counters) {
 701         // Profile is int[2] where [0] and [1] correspond to false and true occurrences respectively.
 702         int idx = result ? 1 : 0;
 703         try {
 704             counters[idx] = Math.addExact(counters[idx], 1);
 705         } catch (ArithmeticException e) {
 706             // Avoid continuous overflow by halving the problematic count.
 707             counters[idx] = counters[idx] / 2;
 708         }
 709         return result;
 710     }
 711 
 712     // Intrinsified by C2. Returns true if obj is a compile-time constant.
 713     @Hidden
 714     @jdk.internal.HotSpotIntrinsicCandidate
 715     static boolean isCompileConstant(Object obj) {
 716         return false;
 717     }
 718 
 719     static MethodHandle makeGuardWithTest(MethodHandle test,
 720                                    MethodHandle target,
 721                                    MethodHandle fallback) {
 722         MethodType type = target.type();
 723         assert(test.type().equals(type.changeReturnType(boolean.class)) && fallback.type().equals(type));
 724         MethodType basicType = type.basicType();
 725         LambdaForm form = makeGuardWithTestForm(basicType);
 726         BoundMethodHandle mh;
 727         try {
 728             if (PROFILE_GWT) {
 729                 int[] counts = new int[2];
 730                 mh = (BoundMethodHandle)
 731                         BoundMethodHandle.speciesData_LLLL().factory().invokeBasic(type, form,
 732                                 (Object) test, (Object) profile(target), (Object) profile(fallback), counts);
 733             } else {
 734                 mh = (BoundMethodHandle)
 735                         BoundMethodHandle.speciesData_LLL().factory().invokeBasic(type, form,
 736                                 (Object) test, (Object) profile(target), (Object) profile(fallback));
 737             }
 738         } catch (Throwable ex) {
 739             throw uncaughtException(ex);
 740         }
 741         assert(mh.type() == type);
 742         return mh;
 743     }
 744 
 745 
 746     static MethodHandle profile(MethodHandle target) {
 747         if (DONT_INLINE_THRESHOLD >= 0) {
 748             return makeBlockInliningWrapper(target);
 749         } else {
 750             return target;
 751         }
 752     }
 753 
 754     /**
 755      * Block inlining during JIT-compilation of a target method handle if it hasn't been invoked enough times.
 756      * Corresponding LambdaForm has @DontInline when compiled into bytecode.
 757      */
 758     static MethodHandle makeBlockInliningWrapper(MethodHandle target) {
 759         LambdaForm lform;
 760         if (DONT_INLINE_THRESHOLD > 0) {
 761             lform = Makers.PRODUCE_BLOCK_INLINING_FORM.apply(target);
 762         } else {
 763             lform = Makers.PRODUCE_REINVOKER_FORM.apply(target);
 764         }
 765         return new CountingWrapper(target, lform,
 766                 Makers.PRODUCE_BLOCK_INLINING_FORM, Makers.PRODUCE_REINVOKER_FORM,
 767                                    DONT_INLINE_THRESHOLD);
 768     }
 769 
 770     private final static class Makers {
 771         /** Constructs reinvoker lambda form which block inlining during JIT-compilation for a particular method handle */
 772         static final Function<MethodHandle, LambdaForm> PRODUCE_BLOCK_INLINING_FORM = new Function<MethodHandle, LambdaForm>() {
 773             @Override
 774             public LambdaForm apply(MethodHandle target) {
 775                 return DelegatingMethodHandle.makeReinvokerForm(target,
 776                                    MethodTypeForm.LF_DELEGATE_BLOCK_INLINING, CountingWrapper.class, false,
 777                                    DelegatingMethodHandle.NF_getTarget, CountingWrapper.NF_maybeStopCounting);
 778             }
 779         };
 780 
 781         /** Constructs simple reinvoker lambda form for a particular method handle */
 782         static final Function<MethodHandle, LambdaForm> PRODUCE_REINVOKER_FORM = new Function<MethodHandle, LambdaForm>() {
 783             @Override
 784             public LambdaForm apply(MethodHandle target) {
 785                 return DelegatingMethodHandle.makeReinvokerForm(target,
 786                         MethodTypeForm.LF_DELEGATE, DelegatingMethodHandle.class, DelegatingMethodHandle.NF_getTarget);
 787             }
 788         };
 789 
 790         /** Maker of type-polymorphic varargs */
 791         static final ClassValue<MethodHandle[]> TYPED_COLLECTORS = new ClassValue<MethodHandle[]>() {
 792             @Override
 793             protected MethodHandle[] computeValue(Class<?> type) {
 794                 return new MethodHandle[MAX_JVM_ARITY + 1];
 795             }
 796         };
 797     }
 798 
 799     /**
 800      * Counting method handle. It has 2 states: counting and non-counting.
 801      * It is in counting state for the first n invocations and then transitions to non-counting state.
 802      * Behavior in counting and non-counting states is determined by lambda forms produced by
 803      * countingFormProducer & nonCountingFormProducer respectively.
 804      */
 805     static class CountingWrapper extends DelegatingMethodHandle {
 806         private final MethodHandle target;
 807         private int count;
 808         private Function<MethodHandle, LambdaForm> countingFormProducer;
 809         private Function<MethodHandle, LambdaForm> nonCountingFormProducer;
 810         private volatile boolean isCounting;
 811 
 812         private CountingWrapper(MethodHandle target, LambdaForm lform,
 813                                 Function<MethodHandle, LambdaForm> countingFromProducer,
 814                                 Function<MethodHandle, LambdaForm> nonCountingFormProducer,
 815                                 int count) {
 816             super(target.type(), lform);
 817             this.target = target;
 818             this.count = count;
 819             this.countingFormProducer = countingFromProducer;
 820             this.nonCountingFormProducer = nonCountingFormProducer;
 821             this.isCounting = (count > 0);
 822         }
 823 
 824         @Hidden
 825         @Override
 826         protected MethodHandle getTarget() {
 827             return target;
 828         }
 829 
 830         @Override
 831         public MethodHandle asTypeUncached(MethodType newType) {
 832             MethodHandle newTarget = target.asType(newType);
 833             MethodHandle wrapper;
 834             if (isCounting) {
 835                 LambdaForm lform;
 836                 lform = countingFormProducer.apply(newTarget);
 837                 wrapper = new CountingWrapper(newTarget, lform, countingFormProducer, nonCountingFormProducer, DONT_INLINE_THRESHOLD);
 838             } else {
 839                 wrapper = newTarget; // no need for a counting wrapper anymore
 840             }
 841             return (asTypeCache = wrapper);
 842         }
 843 
 844         // Customize target if counting happens for too long.
 845         private int invocations = CUSTOMIZE_THRESHOLD;
 846         private void maybeCustomizeTarget() {
 847             int c = invocations;
 848             if (c >= 0) {
 849                 if (c == 1) {
 850                     target.customize();
 851                 }
 852                 invocations = c - 1;
 853             }
 854         }
 855 
 856         boolean countDown() {
 857             int c = count;
 858             maybeCustomizeTarget();
 859             if (c <= 1) {
 860                 // Try to limit number of updates. MethodHandle.updateForm() doesn't guarantee LF update visibility.
 861                 if (isCounting) {
 862                     isCounting = false;
 863                     return true;
 864                 } else {
 865                     return false;
 866                 }
 867             } else {
 868                 count = c - 1;
 869                 return false;
 870             }
 871         }
 872 
 873         @Hidden
 874         static void maybeStopCounting(Object o1) {
 875              CountingWrapper wrapper = (CountingWrapper) o1;
 876              if (wrapper.countDown()) {
 877                  // Reached invocation threshold. Replace counting behavior with a non-counting one.
 878                  LambdaForm lform = wrapper.nonCountingFormProducer.apply(wrapper.target);
 879                  lform.compileToBytecode(); // speed up warmup by avoiding LF interpretation again after transition
 880                  wrapper.updateForm(lform);
 881              }
 882         }
 883 
 884         static final NamedFunction NF_maybeStopCounting;
 885         static {
 886             Class<?> THIS_CLASS = CountingWrapper.class;
 887             try {
 888                 NF_maybeStopCounting = new NamedFunction(THIS_CLASS.getDeclaredMethod("maybeStopCounting", Object.class));
 889             } catch (ReflectiveOperationException ex) {
 890                 throw newInternalError(ex);
 891             }
 892         }
 893     }
 894 
 895     static LambdaForm makeGuardWithTestForm(MethodType basicType) {
 896         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWT);
 897         if (lform != null)  return lform;
 898         final int THIS_MH      = 0;  // the BMH_LLL
 899         final int ARG_BASE     = 1;  // start of incoming arguments
 900         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 901         int nameCursor = ARG_LIMIT;
 902         final int GET_TEST     = nameCursor++;
 903         final int GET_TARGET   = nameCursor++;
 904         final int GET_FALLBACK = nameCursor++;
 905         final int GET_COUNTERS = PROFILE_GWT ? nameCursor++ : -1;
 906         final int CALL_TEST    = nameCursor++;
 907         final int PROFILE      = (GET_COUNTERS != -1) ? nameCursor++ : -1;
 908         final int TEST         = nameCursor-1; // previous statement: either PROFILE or CALL_TEST
 909         final int SELECT_ALT   = nameCursor++;
 910         final int CALL_TARGET  = nameCursor++;
 911         assert(CALL_TARGET == SELECT_ALT+1);  // must be true to trigger IBG.emitSelectAlternative
 912 
 913         MethodType lambdaType = basicType.invokerType();
 914         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 915 
 916         BoundMethodHandle.SpeciesData data =
 917                 (GET_COUNTERS != -1) ? BoundMethodHandle.speciesData_LLLL()
 918                                      : BoundMethodHandle.speciesData_LLL();
 919         names[THIS_MH] = names[THIS_MH].withConstraint(data);
 920         names[GET_TEST]     = new Name(data.getterFunction(0), names[THIS_MH]);
 921         names[GET_TARGET]   = new Name(data.getterFunction(1), names[THIS_MH]);
 922         names[GET_FALLBACK] = new Name(data.getterFunction(2), names[THIS_MH]);
 923         if (GET_COUNTERS != -1) {
 924             names[GET_COUNTERS] = new Name(data.getterFunction(3), names[THIS_MH]);
 925         }
 926         Object[] invokeArgs = Arrays.copyOfRange(names, 0, ARG_LIMIT, Object[].class);
 927 
 928         // call test
 929         MethodType testType = basicType.changeReturnType(boolean.class).basicType();
 930         invokeArgs[0] = names[GET_TEST];
 931         names[CALL_TEST] = new Name(testType, invokeArgs);
 932 
 933         // profile branch
 934         if (PROFILE != -1) {
 935             names[PROFILE] = new Name(getFunction(NF_profileBoolean), names[CALL_TEST], names[GET_COUNTERS]);
 936         }
 937         // call selectAlternative
 938         names[SELECT_ALT] = new Name(new NamedFunction(getConstantHandle(MH_selectAlternative), Intrinsic.SELECT_ALTERNATIVE), names[TEST], names[GET_TARGET], names[GET_FALLBACK]);
 939 
 940         // call target or fallback
 941         invokeArgs[0] = names[SELECT_ALT];
 942         names[CALL_TARGET] = new Name(basicType, invokeArgs);
 943 
 944         lform = new LambdaForm(lambdaType.parameterCount(), names, /*forceInline=*/true, Kind.GUARD);
 945 
 946         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWT, lform);
 947     }
 948 
 949     /**
 950      * The LambdaForm shape for catchException combinator is the following:
 951      * <blockquote><pre>{@code
 952      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L)=>{
 953      *    t3:L=BoundMethodHandle$Species_LLLLL.argL0(a0:L);
 954      *    t4:L=BoundMethodHandle$Species_LLLLL.argL1(a0:L);
 955      *    t5:L=BoundMethodHandle$Species_LLLLL.argL2(a0:L);
 956      *    t6:L=BoundMethodHandle$Species_LLLLL.argL3(a0:L);
 957      *    t7:L=BoundMethodHandle$Species_LLLLL.argL4(a0:L);
 958      *    t8:L=MethodHandle.invokeBasic(t6:L,a1:L,a2:L);
 959      *    t9:L=MethodHandleImpl.guardWithCatch(t3:L,t4:L,t5:L,t8:L);
 960      *   t10:I=MethodHandle.invokeBasic(t7:L,t9:L);t10:I}
 961      * }</pre></blockquote>
 962      *
 963      * argL0 and argL2 are target and catcher method handles. argL1 is exception class.
 964      * argL3 and argL4 are auxiliary method handles: argL3 boxes arguments and wraps them into Object[]
 965      * (ValueConversions.array()) and argL4 unboxes result if necessary (ValueConversions.unbox()).
 966      *
 967      * Having t8 and t10 passed outside and not hardcoded into a lambda form allows to share lambda forms
 968      * among catchException combinators with the same basic type.
 969      */
 970     private static LambdaForm makeGuardWithCatchForm(MethodType basicType) {
 971         MethodType lambdaType = basicType.invokerType();
 972 
 973         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_GWC);
 974         if (lform != null) {
 975             return lform;
 976         }
 977         final int THIS_MH      = 0;  // the BMH_LLLLL
 978         final int ARG_BASE     = 1;  // start of incoming arguments
 979         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
 980 
 981         int nameCursor = ARG_LIMIT;
 982         final int GET_TARGET       = nameCursor++;
 983         final int GET_CLASS        = nameCursor++;
 984         final int GET_CATCHER      = nameCursor++;
 985         final int GET_COLLECT_ARGS = nameCursor++;
 986         final int GET_UNBOX_RESULT = nameCursor++;
 987         final int BOXED_ARGS       = nameCursor++;
 988         final int TRY_CATCH        = nameCursor++;
 989         final int UNBOX_RESULT     = nameCursor++;
 990 
 991         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
 992 
 993         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
 994         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
 995         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
 996         names[GET_CLASS]        = new Name(data.getterFunction(1), names[THIS_MH]);
 997         names[GET_CATCHER]      = new Name(data.getterFunction(2), names[THIS_MH]);
 998         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(3), names[THIS_MH]);
 999         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(4), names[THIS_MH]);
1000 
1001         // FIXME: rework argument boxing/result unboxing logic for LF interpretation
1002 
1003         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1004         MethodType collectArgsType = basicType.changeReturnType(Object.class);
1005         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1006         Object[] args = new Object[invokeBasic.type().parameterCount()];
1007         args[0] = names[GET_COLLECT_ARGS];
1008         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
1009         names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.GUARD_WITH_CATCH), args);
1010 
1011         // t_{i+1}:L=MethodHandleImpl.guardWithCatch(target:L,exType:L,catcher:L,t_{i}:L);
1012         Object[] gwcArgs = new Object[] {names[GET_TARGET], names[GET_CLASS], names[GET_CATCHER], names[BOXED_ARGS]};
1013         names[TRY_CATCH] = new Name(getFunction(NF_guardWithCatch), gwcArgs);
1014 
1015         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1016         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1017         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_CATCH]};
1018         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1019 
1020         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.GUARD_WITH_CATCH);
1021 
1022         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_GWC, lform);
1023     }
1024 
1025     static MethodHandle makeGuardWithCatch(MethodHandle target,
1026                                     Class<? extends Throwable> exType,
1027                                     MethodHandle catcher) {
1028         MethodType type = target.type();
1029         LambdaForm form = makeGuardWithCatchForm(type.basicType());
1030 
1031         // Prepare auxiliary method handles used during LambdaForm interpretation.
1032         // Box arguments and wrap them into Object[]: ValueConversions.array().
1033         MethodType varargsType = type.changeReturnType(Object[].class);
1034         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1035         MethodHandle unboxResult = unboxResultHandle(type.returnType());
1036 
1037         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLLL();
1038         BoundMethodHandle mh;
1039         try {
1040             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) exType,
1041                     (Object) catcher, (Object) collectArgs, (Object) unboxResult);
1042         } catch (Throwable ex) {
1043             throw uncaughtException(ex);
1044         }
1045         assert(mh.type() == type);
1046         return mh;
1047     }
1048 
1049     /**
1050      * Intrinsified during LambdaForm compilation
1051      * (see {@link InvokerBytecodeGenerator#emitGuardWithCatch emitGuardWithCatch}).
1052      */
1053     @Hidden
1054     static Object guardWithCatch(MethodHandle target, Class<? extends Throwable> exType, MethodHandle catcher,
1055                                  Object... av) throws Throwable {
1056         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
1057         try {
1058             return target.asFixedArity().invokeWithArguments(av);
1059         } catch (Throwable t) {
1060             if (!exType.isInstance(t)) throw t;
1061             return catcher.asFixedArity().invokeWithArguments(prepend(av, t));
1062         }
1063     }
1064 
1065     /** Prepend elements to an array. */
1066     @Hidden
1067     private static Object[] prepend(Object[] array, Object... elems) {
1068         int nArray = array.length;
1069         int nElems = elems.length;
1070         Object[] newArray = new Object[nArray + nElems];
1071         System.arraycopy(elems, 0, newArray, 0, nElems);
1072         System.arraycopy(array, 0, newArray, nElems, nArray);
1073         return newArray;
1074     }
1075 
1076     static MethodHandle throwException(MethodType type) {
1077         assert(Throwable.class.isAssignableFrom(type.parameterType(0)));
1078         int arity = type.parameterCount();
1079         if (arity > 1) {
1080             MethodHandle mh = throwException(type.dropParameterTypes(1, arity));
1081             mh = MethodHandles.dropArguments(mh, 1, Arrays.copyOfRange(type.parameterArray(), 1, arity));
1082             return mh;
1083         }
1084         return makePairwiseConvert(getFunction(NF_throwException).resolvedHandle(), type, false, true);
1085     }
1086 
1087     static <T extends Throwable> Empty throwException(T t) throws T { throw t; }
1088 
1089     static MethodHandle[] FAKE_METHOD_HANDLE_INVOKE = new MethodHandle[2];
1090     static MethodHandle fakeMethodHandleInvoke(MemberName method) {
1091         int idx;
1092         assert(method.isMethodHandleInvoke());
1093         switch (method.getName()) {
1094         case "invoke":       idx = 0; break;
1095         case "invokeExact":  idx = 1; break;
1096         default:             throw new InternalError(method.getName());
1097         }
1098         MethodHandle mh = FAKE_METHOD_HANDLE_INVOKE[idx];
1099         if (mh != null)  return mh;
1100         MethodType type = MethodType.methodType(Object.class, UnsupportedOperationException.class,
1101                                                 MethodHandle.class, Object[].class);
1102         mh = throwException(type);
1103         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke MethodHandle"));
1104         if (!method.getInvocationType().equals(mh.type()))
1105             throw new InternalError(method.toString());
1106         mh = mh.withInternalMemberName(method, false);
1107         mh = mh.withVarargs(true);
1108         assert(method.isVarargs());
1109         FAKE_METHOD_HANDLE_INVOKE[idx] = mh;
1110         return mh;
1111     }
1112     static MethodHandle fakeVarHandleInvoke(MemberName method) {
1113         // TODO caching, is it necessary?
1114         MethodType type = MethodType.methodType(method.getReturnType(), UnsupportedOperationException.class,
1115                                                 VarHandle.class, Object[].class);
1116         MethodHandle mh = throwException(type);
1117         mh = mh.bindTo(new UnsupportedOperationException("cannot reflectively invoke VarHandle"));
1118         if (!method.getInvocationType().equals(mh.type()))
1119             throw new InternalError(method.toString());
1120         mh = mh.withInternalMemberName(method, false);
1121         mh = mh.asVarargsCollector(Object[].class);
1122         assert(method.isVarargs());
1123         return mh;
1124     }
1125 
1126     /**
1127      * Create an alias for the method handle which, when called,
1128      * appears to be called from the same class loader and protection domain
1129      * as hostClass.
1130      * This is an expensive no-op unless the method which is called
1131      * is sensitive to its caller.  A small number of system methods
1132      * are in this category, including Class.forName and Method.invoke.
1133      */
1134     static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1135         return BindCaller.bindCaller(mh, hostClass);
1136     }
1137 
1138     // Put the whole mess into its own nested class.
1139     // That way we can lazily load the code and set up the constants.
1140     private static class BindCaller {
1141         private static MethodType INVOKER_MT = MethodType.methodType(Object.class, MethodHandle.class, Object[].class);
1142 
1143         static MethodHandle bindCaller(MethodHandle mh, Class<?> hostClass) {
1144             // Code in the boot layer should now be careful while creating method handles or
1145             // functional interface instances created from method references to @CallerSensitive  methods,
1146             // it needs to be ensured the handles or interface instances are kept safe and are not passed
1147             // from the boot layer to untrusted code.
1148             if (hostClass == null
1149                 ||    (hostClass.isArray() ||
1150                        hostClass.isPrimitive() ||
1151                        hostClass.getName().startsWith("java.lang.invoke."))) {
1152                 throw new InternalError();  // does not happen, and should not anyway
1153             }
1154             // For simplicity, convert mh to a varargs-like method.
1155             MethodHandle vamh = prepareForInvoker(mh);
1156             // Cache the result of makeInjectedInvoker once per argument class.
1157             MethodHandle bccInvoker = CV_makeInjectedInvoker.get(hostClass);
1158             return restoreToType(bccInvoker.bindTo(vamh), mh, hostClass);
1159         }
1160 
1161         private static MethodHandle makeInjectedInvoker(Class<?> targetClass) {
1162             try {
1163                 /*
1164                  * The invoker class defined to the same class loader as the lookup class
1165                  * but in an unnamed package so that the class bytes can be cached and
1166                  * reused for any @CSM.
1167                  *
1168                  * @CSM must be public and exported if called by any module.
1169                  */
1170                 String name = targetClass.getName() + "$$InjectedInvoker";
1171                 if (targetClass.isHiddenClass()) {
1172                     // use the original class name
1173                     name = name.replace('/', '_');
1174                 }
1175                 Class<?> invokerClass = new Lookup(targetClass)
1176                         .makeHiddenClassDefiner(name, INJECTED_INVOKER_TEMPLATE, 0).defineClass(true);
1177                 assert checkInjectedInvoker(targetClass, invokerClass);
1178                 return IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1179             } catch (ReflectiveOperationException ex) {
1180                 throw uncaughtException(ex);
1181             }
1182         }
1183 
1184         private static ClassValue<MethodHandle> CV_makeInjectedInvoker = new ClassValue<MethodHandle>() {
1185             @Override protected MethodHandle computeValue(Class<?> hostClass) {
1186                 return makeInjectedInvoker(hostClass);
1187             }
1188         };
1189 
1190         // Adapt mh so that it can be called directly from an injected invoker:
1191         private static MethodHandle prepareForInvoker(MethodHandle mh) {
1192             mh = mh.asFixedArity();
1193             MethodType mt = mh.type();
1194             int arity = mt.parameterCount();
1195             MethodHandle vamh = mh.asType(mt.generic());
1196             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1197             vamh = vamh.asSpreader(Object[].class, arity);
1198             vamh.internalForm().compileToBytecode();  // eliminate LFI stack frames
1199             return vamh;
1200         }
1201 
1202         // Undo the adapter effect of prepareForInvoker:
1203         private static MethodHandle restoreToType(MethodHandle vamh,
1204                                                   MethodHandle original,
1205                                                   Class<?> hostClass) {
1206             MethodType type = original.type();
1207             MethodHandle mh = vamh.asCollector(Object[].class, type.parameterCount());
1208             MemberName member = original.internalMemberName();
1209             mh = mh.asType(type);
1210             mh = new WrappedMember(mh, type, member, original.isInvokeSpecial(), hostClass);
1211             return mh;
1212         }
1213 
1214         private static boolean checkInjectedInvoker(Class<?> hostClass, Class<?> invokerClass) {
1215             assert (hostClass.getClassLoader() == invokerClass.getClassLoader()) : hostClass.getName()+" (CL)";
1216             try {
1217                 assert (hostClass.getProtectionDomain() == invokerClass.getProtectionDomain()) : hostClass.getName()+" (PD)";
1218             } catch (SecurityException ex) {
1219                 // Self-check was blocked by security manager. This is OK.
1220             }
1221             try {
1222                 // Test the invoker to ensure that it really injects into the right place.
1223                 MethodHandle invoker = IMPL_LOOKUP.findStatic(invokerClass, "invoke_V", INVOKER_MT);
1224                 MethodHandle vamh = prepareForInvoker(MH_checkCallerClass);
1225                 return (boolean)invoker.invoke(vamh, new Object[]{ invokerClass });
1226             } catch (Throwable ex) {
1227                 throw new InternalError(ex);
1228             }
1229         }
1230 
1231         private static final MethodHandle MH_checkCallerClass;
1232         static {
1233             final Class<?> THIS_CLASS = BindCaller.class;
1234             assert(checkCallerClass(THIS_CLASS));
1235             try {
1236                 MH_checkCallerClass = IMPL_LOOKUP
1237                     .findStatic(THIS_CLASS, "checkCallerClass",
1238                                 MethodType.methodType(boolean.class, Class.class));
1239                 assert((boolean) MH_checkCallerClass.invokeExact(THIS_CLASS));
1240             } catch (Throwable ex) {
1241                 throw new InternalError(ex);
1242             }
1243         }
1244 
1245         @CallerSensitive
1246         @ForceInline // to ensure Reflection.getCallerClass optimization
1247         private static boolean checkCallerClass(Class<?> expected) {
1248             // This method is called via MH_checkCallerClass and so it's correct to ask for the immediate caller here.
1249             Class<?> actual = Reflection.getCallerClass();
1250             if (actual != expected)
1251                 throw new InternalError("found " + actual.getName() + ", expected " + expected.getName());
1252             return true;
1253         }
1254 
1255         private static final byte[] INJECTED_INVOKER_TEMPLATE = generateInvokerTemplate();
1256 
1257         /** Produces byte code for a class that is used as an injected invoker. */
1258         private static byte[] generateInvokerTemplate() {
1259             ClassWriter cw = new ClassWriter(0);
1260 
1261             // private static class InjectedInvoker {
1262             //     @Hidden
1263             //     static Object invoke_V(MethodHandle vamh, Object[] args) throws Throwable {
1264             //        return vamh.invokeExact(args);
1265             //     }
1266             // }
1267             cw.visit(52, ACC_PRIVATE | ACC_SUPER, "InjectedInvoker", null, "java/lang/Object", null);
1268 
1269             MethodVisitor mv = cw.visitMethod(ACC_STATIC, "invoke_V",
1270                           "(Ljava/lang/invoke/MethodHandle;[Ljava/lang/Object;)Ljava/lang/Object;",
1271                           null, null);
1272 
1273             mv.visitCode();
1274             mv.visitVarInsn(ALOAD, 0);
1275             mv.visitVarInsn(ALOAD, 1);
1276             mv.visitMethodInsn(INVOKEVIRTUAL, "java/lang/invoke/MethodHandle", "invokeExact",
1277                                "([Ljava/lang/Object;)Ljava/lang/Object;", false);
1278             mv.visitInsn(ARETURN);
1279             mv.visitMaxs(2, 2);
1280             mv.visitEnd();
1281 
1282             cw.visitEnd();
1283             return cw.toByteArray();
1284         }
1285     }
1286 
1287     /** This subclass allows a wrapped method handle to be re-associated with an arbitrary member name. */
1288     private static final class WrappedMember extends DelegatingMethodHandle {
1289         private final MethodHandle target;
1290         private final MemberName member;
1291         private final Class<?> callerClass;
1292         private final boolean isInvokeSpecial;
1293 
1294         private WrappedMember(MethodHandle target, MethodType type,
1295                               MemberName member, boolean isInvokeSpecial,
1296                               Class<?> callerClass) {
1297             super(type, target);
1298             this.target = target;
1299             this.member = member;
1300             this.callerClass = callerClass;
1301             this.isInvokeSpecial = isInvokeSpecial;
1302         }
1303 
1304         @Override
1305         MemberName internalMemberName() {
1306             return member;
1307         }
1308         @Override
1309         Class<?> internalCallerClass() {
1310             return callerClass;
1311         }
1312         @Override
1313         boolean isInvokeSpecial() {
1314             return isInvokeSpecial;
1315         }
1316         @Override
1317         protected MethodHandle getTarget() {
1318             return target;
1319         }
1320         @Override
1321         public MethodHandle asTypeUncached(MethodType newType) {
1322             // This MH is an alias for target, except for the MemberName
1323             // Drop the MemberName if there is any conversion.
1324             return asTypeCache = target.asType(newType);
1325         }
1326     }
1327 
1328     static MethodHandle makeWrappedMember(MethodHandle target, MemberName member, boolean isInvokeSpecial) {
1329         if (member.equals(target.internalMemberName()) && isInvokeSpecial == target.isInvokeSpecial())
1330             return target;
1331         return new WrappedMember(target, target.type(), member, isInvokeSpecial, null);
1332     }
1333 
1334     /** Intrinsic IDs */
1335     /*non-public*/
1336     enum Intrinsic {
1337         SELECT_ALTERNATIVE,
1338         GUARD_WITH_CATCH,
1339         TRY_FINALLY,
1340         LOOP,
1341         NEW_ARRAY,
1342         ARRAY_LOAD,
1343         ARRAY_STORE,
1344         ARRAY_LENGTH,
1345         IDENTITY,
1346         ZERO,
1347         NONE // no intrinsic associated
1348     }
1349 
1350     /** Mark arbitrary method handle as intrinsic.
1351      * InvokerBytecodeGenerator uses this info to produce more efficient bytecode shape. */
1352     static final class IntrinsicMethodHandle extends DelegatingMethodHandle {
1353         private final MethodHandle target;
1354         private final Intrinsic intrinsicName;
1355 
1356         IntrinsicMethodHandle(MethodHandle target, Intrinsic intrinsicName) {
1357             super(target.type(), target);
1358             this.target = target;
1359             this.intrinsicName = intrinsicName;
1360         }
1361 
1362         @Override
1363         protected MethodHandle getTarget() {
1364             return target;
1365         }
1366 
1367         @Override
1368         Intrinsic intrinsicName() {
1369             return intrinsicName;
1370         }
1371 
1372         @Override
1373         public MethodHandle asTypeUncached(MethodType newType) {
1374             // This MH is an alias for target, except for the intrinsic name
1375             // Drop the name if there is any conversion.
1376             return asTypeCache = target.asType(newType);
1377         }
1378 
1379         @Override
1380         String internalProperties() {
1381             return super.internalProperties() +
1382                     "\n& Intrinsic="+intrinsicName;
1383         }
1384 
1385         @Override
1386         public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1387             if (intrinsicName == Intrinsic.IDENTITY) {
1388                 MethodType resultType = type().asCollectorType(arrayType, type().parameterCount() - 1, arrayLength);
1389                 MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1390                 return newArray.asType(resultType);
1391             }
1392             return super.asCollector(arrayType, arrayLength);
1393         }
1394     }
1395 
1396     static MethodHandle makeIntrinsic(MethodHandle target, Intrinsic intrinsicName) {
1397         if (intrinsicName == target.intrinsicName())
1398             return target;
1399         return new IntrinsicMethodHandle(target, intrinsicName);
1400     }
1401 
1402     static MethodHandle makeIntrinsic(MethodType type, LambdaForm form, Intrinsic intrinsicName) {
1403         return new IntrinsicMethodHandle(SimpleMethodHandle.make(type, form), intrinsicName);
1404     }
1405 
1406     /// Collection of multiple arguments.
1407 
1408     private static MethodHandle findCollector(String name, int nargs, Class<?> rtype, Class<?>... ptypes) {
1409         MethodType type = MethodType.genericMethodType(nargs)
1410                 .changeReturnType(rtype)
1411                 .insertParameterTypes(0, ptypes);
1412         try {
1413             return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, name, type);
1414         } catch (ReflectiveOperationException ex) {
1415             return null;
1416         }
1417     }
1418 
1419     private static final Object[] NO_ARGS_ARRAY = {};
1420     private static Object[] makeArray(Object... args) { return args; }
1421     private static Object[] array() { return NO_ARGS_ARRAY; }
1422     private static Object[] array(Object a0)
1423                 { return makeArray(a0); }
1424     private static Object[] array(Object a0, Object a1)
1425                 { return makeArray(a0, a1); }
1426     private static Object[] array(Object a0, Object a1, Object a2)
1427                 { return makeArray(a0, a1, a2); }
1428     private static Object[] array(Object a0, Object a1, Object a2, Object a3)
1429                 { return makeArray(a0, a1, a2, a3); }
1430     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1431                                   Object a4)
1432                 { return makeArray(a0, a1, a2, a3, a4); }
1433     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1434                                   Object a4, Object a5)
1435                 { return makeArray(a0, a1, a2, a3, a4, a5); }
1436     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1437                                   Object a4, Object a5, Object a6)
1438                 { return makeArray(a0, a1, a2, a3, a4, a5, a6); }
1439     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1440                                   Object a4, Object a5, Object a6, Object a7)
1441                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7); }
1442     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1443                                   Object a4, Object a5, Object a6, Object a7,
1444                                   Object a8)
1445                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8); }
1446     private static Object[] array(Object a0, Object a1, Object a2, Object a3,
1447                                   Object a4, Object a5, Object a6, Object a7,
1448                                   Object a8, Object a9)
1449                 { return makeArray(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); }
1450 
1451     private static final int ARRAYS_COUNT = 11;
1452     private static final @Stable MethodHandle[] ARRAYS = new MethodHandle[MAX_ARITY + 1];
1453 
1454     // filling versions of the above:
1455     // using Integer len instead of int len and no varargs to avoid bootstrapping problems
1456     private static Object[] fillNewArray(Integer len, Object[] /*not ...*/ args) {
1457         Object[] a = new Object[len];
1458         fillWithArguments(a, 0, args);
1459         return a;
1460     }
1461     private static Object[] fillNewTypedArray(Object[] example, Integer len, Object[] /*not ...*/ args) {
1462         Object[] a = Arrays.copyOf(example, len);
1463         assert(a.getClass() != Object[].class);
1464         fillWithArguments(a, 0, args);
1465         return a;
1466     }
1467     private static void fillWithArguments(Object[] a, int pos, Object... args) {
1468         System.arraycopy(args, 0, a, pos, args.length);
1469     }
1470     // using Integer pos instead of int pos to avoid bootstrapping problems
1471     private static Object[] fillArray(Integer pos, Object[] a, Object a0)
1472                 { fillWithArguments(a, pos, a0); return a; }
1473     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1)
1474                 { fillWithArguments(a, pos, a0, a1); return a; }
1475     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2)
1476                 { fillWithArguments(a, pos, a0, a1, a2); return a; }
1477     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3)
1478                 { fillWithArguments(a, pos, a0, a1, a2, a3); return a; }
1479     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1480                                   Object a4)
1481                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4); return a; }
1482     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1483                                   Object a4, Object a5)
1484                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5); return a; }
1485     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1486                                   Object a4, Object a5, Object a6)
1487                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6); return a; }
1488     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1489                                   Object a4, Object a5, Object a6, Object a7)
1490                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7); return a; }
1491     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1492                                   Object a4, Object a5, Object a6, Object a7,
1493                                   Object a8)
1494                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8); return a; }
1495     private static Object[] fillArray(Integer pos, Object[] a, Object a0, Object a1, Object a2, Object a3,
1496                                   Object a4, Object a5, Object a6, Object a7,
1497                                   Object a8, Object a9)
1498                 { fillWithArguments(a, pos, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9); return a; }
1499 
1500     private static final int FILL_ARRAYS_COUNT = 11; // current number of fillArray methods
1501     private static final @Stable MethodHandle[] FILL_ARRAYS = new MethodHandle[FILL_ARRAYS_COUNT];
1502 
1503     private static MethodHandle getFillArray(int count) {
1504         assert (count > 0 && count < FILL_ARRAYS_COUNT);
1505         MethodHandle mh = FILL_ARRAYS[count];
1506         if (mh != null) {
1507             return mh;
1508         }
1509         mh = findCollector("fillArray", count, Object[].class, Integer.class, Object[].class);
1510         FILL_ARRAYS[count] = mh;
1511         return mh;
1512     }
1513 
1514     private static Object copyAsPrimitiveArray(Wrapper w, Object... boxes) {
1515         Object a = w.makeArray(boxes.length);
1516         w.copyArrayUnboxing(boxes, 0, a, 0, boxes.length);
1517         return a;
1518     }
1519 
1520     /** Return a method handle that takes the indicated number of Object
1521      *  arguments and returns an Object array of them, as if for varargs.
1522      */
1523     static MethodHandle varargsArray(int nargs) {
1524         MethodHandle mh = ARRAYS[nargs];
1525         if (mh != null) {
1526             return mh;
1527         }
1528         if (nargs < ARRAYS_COUNT) {
1529             mh = findCollector("array", nargs, Object[].class);
1530         } else {
1531             mh = buildVarargsArray(getConstantHandle(MH_fillNewArray),
1532                     getConstantHandle(MH_arrayIdentity), nargs);
1533         }
1534         assert(assertCorrectArity(mh, nargs));
1535         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1536         return ARRAYS[nargs] = mh;
1537     }
1538 
1539     private static boolean assertCorrectArity(MethodHandle mh, int arity) {
1540         assert(mh.type().parameterCount() == arity) : "arity != "+arity+": "+mh;
1541         return true;
1542     }
1543 
1544     // Array identity function (used as getConstantHandle(MH_arrayIdentity)).
1545     static <T> T[] identity(T[] x) {
1546         return x;
1547     }
1548 
1549     private static MethodHandle buildVarargsArray(MethodHandle newArray, MethodHandle finisher, int nargs) {
1550         // Build up the result mh as a sequence of fills like this:
1551         //   finisher(fill(fill(newArrayWA(23,x1..x10),10,x11..x20),20,x21..x23))
1552         // The various fill(_,10*I,___*[J]) are reusable.
1553         int leftLen = Math.min(nargs, LEFT_ARGS);  // absorb some arguments immediately
1554         int rightLen = nargs - leftLen;
1555         MethodHandle leftCollector = newArray.bindTo(nargs);
1556         leftCollector = leftCollector.asCollector(Object[].class, leftLen);
1557         MethodHandle mh = finisher;
1558         if (rightLen > 0) {
1559             MethodHandle rightFiller = fillToRight(LEFT_ARGS + rightLen);
1560             if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1561                 mh = rightFiller;
1562             else
1563                 mh = MethodHandles.collectArguments(mh, 0, rightFiller);
1564         }
1565         if (mh.equals(getConstantHandle(MH_arrayIdentity)))
1566             mh = leftCollector;
1567         else
1568             mh = MethodHandles.collectArguments(mh, 0, leftCollector);
1569         return mh;
1570     }
1571 
1572     private static final int LEFT_ARGS = FILL_ARRAYS_COUNT - 1;
1573     private static final @Stable MethodHandle[] FILL_ARRAY_TO_RIGHT = new MethodHandle[MAX_ARITY + 1];
1574     /** fill_array_to_right(N).invoke(a, argL..arg[N-1])
1575      *  fills a[L]..a[N-1] with corresponding arguments,
1576      *  and then returns a.  The value L is a global constant (LEFT_ARGS).
1577      */
1578     private static MethodHandle fillToRight(int nargs) {
1579         MethodHandle filler = FILL_ARRAY_TO_RIGHT[nargs];
1580         if (filler != null)  return filler;
1581         filler = buildFiller(nargs);
1582         assert(assertCorrectArity(filler, nargs - LEFT_ARGS + 1));
1583         return FILL_ARRAY_TO_RIGHT[nargs] = filler;
1584     }
1585     private static MethodHandle buildFiller(int nargs) {
1586         if (nargs <= LEFT_ARGS)
1587             return getConstantHandle(MH_arrayIdentity);  // no args to fill; return the array unchanged
1588         // we need room for both mh and a in mh.invoke(a, arg*[nargs])
1589         final int CHUNK = LEFT_ARGS;
1590         int rightLen = nargs % CHUNK;
1591         int midLen = nargs - rightLen;
1592         if (rightLen == 0) {
1593             midLen = nargs - (rightLen = CHUNK);
1594             if (FILL_ARRAY_TO_RIGHT[midLen] == null) {
1595                 // build some precursors from left to right
1596                 for (int j = LEFT_ARGS % CHUNK; j < midLen; j += CHUNK)
1597                     if (j > LEFT_ARGS)  fillToRight(j);
1598             }
1599         }
1600         if (midLen < LEFT_ARGS) rightLen = nargs - (midLen = LEFT_ARGS);
1601         assert(rightLen > 0);
1602         MethodHandle midFill = fillToRight(midLen);  // recursive fill
1603         MethodHandle rightFill = getFillArray(rightLen).bindTo(midLen);  // [midLen..nargs-1]
1604         assert(midFill.type().parameterCount()   == 1 + midLen - LEFT_ARGS);
1605         assert(rightFill.type().parameterCount() == 1 + rightLen);
1606 
1607         // Combine the two fills:
1608         //   right(mid(a, x10..x19), x20..x23)
1609         // The final product will look like this:
1610         //   right(mid(newArrayLeft(24, x0..x9), x10..x19), x20..x23)
1611         if (midLen == LEFT_ARGS)
1612             return rightFill;
1613         else
1614             return MethodHandles.collectArguments(rightFill, 0, midFill);
1615     }
1616 
1617     static final int MAX_JVM_ARITY = 255;  // limit imposed by the JVM
1618 
1619     /** Return a method handle that takes the indicated number of
1620      *  typed arguments and returns an array of them.
1621      *  The type argument is the array type.
1622      */
1623     static MethodHandle varargsArray(Class<?> arrayType, int nargs) {
1624         Class<?> elemType = arrayType.getComponentType();
1625         if (elemType == null)  throw new IllegalArgumentException("not an array: "+arrayType);
1626         // FIXME: Need more special casing and caching here.
1627         if (nargs >= MAX_JVM_ARITY/2 - 1) {
1628             int slots = nargs;
1629             final int MAX_ARRAY_SLOTS = MAX_JVM_ARITY - 1;  // 1 for receiver MH
1630             if (slots <= MAX_ARRAY_SLOTS && elemType.isPrimitive())
1631                 slots *= Wrapper.forPrimitiveType(elemType).stackSlots();
1632             if (slots > MAX_ARRAY_SLOTS)
1633                 throw new IllegalArgumentException("too many arguments: "+arrayType.getSimpleName()+", length "+nargs);
1634         }
1635         if (elemType == Object.class)
1636             return varargsArray(nargs);
1637         // other cases:  primitive arrays, subtypes of Object[]
1638         MethodHandle cache[] = Makers.TYPED_COLLECTORS.get(elemType);
1639         MethodHandle mh = nargs < cache.length ? cache[nargs] : null;
1640         if (mh != null)  return mh;
1641         if (nargs == 0) {
1642             Object example = java.lang.reflect.Array.newInstance(arrayType.getComponentType(), 0);
1643             mh = MethodHandles.constant(arrayType, example);
1644         } else if (elemType.isPrimitive()) {
1645             MethodHandle builder = getConstantHandle(MH_fillNewArray);
1646             MethodHandle producer = buildArrayProducer(arrayType);
1647             mh = buildVarargsArray(builder, producer, nargs);
1648         } else {
1649             Class<? extends Object[]> objArrayType = arrayType.asSubclass(Object[].class);
1650             Object[] example = Arrays.copyOf(NO_ARGS_ARRAY, 0, objArrayType);
1651             MethodHandle builder = getConstantHandle(MH_fillNewTypedArray).bindTo(example);
1652             MethodHandle producer = getConstantHandle(MH_arrayIdentity); // must be weakly typed
1653             mh = buildVarargsArray(builder, producer, nargs);
1654         }
1655         mh = mh.asType(MethodType.methodType(arrayType, Collections.<Class<?>>nCopies(nargs, elemType)));
1656         mh = makeIntrinsic(mh, Intrinsic.NEW_ARRAY);
1657         assert(assertCorrectArity(mh, nargs));
1658         if (nargs < cache.length)
1659             cache[nargs] = mh;
1660         return mh;
1661     }
1662 
1663     private static MethodHandle buildArrayProducer(Class<?> arrayType) {
1664         Class<?> elemType = arrayType.getComponentType();
1665         assert(elemType.isPrimitive());
1666         return getConstantHandle(MH_copyAsPrimitiveArray).bindTo(Wrapper.forPrimitiveType(elemType));
1667     }
1668 
1669     /*non-public*/
1670     static void assertSame(Object mh1, Object mh2) {
1671         if (mh1 != mh2) {
1672             String msg = String.format("mh1 != mh2: mh1 = %s (form: %s); mh2 = %s (form: %s)",
1673                     mh1, ((MethodHandle)mh1).form,
1674                     mh2, ((MethodHandle)mh2).form);
1675             throw newInternalError(msg);
1676         }
1677     }
1678 
1679     // Local constant functions:
1680 
1681     /* non-public */
1682     static final byte NF_checkSpreadArgument = 0,
1683             NF_guardWithCatch = 1,
1684             NF_throwException = 2,
1685             NF_tryFinally = 3,
1686             NF_loop = 4,
1687             NF_profileBoolean = 5,
1688             NF_LIMIT = 6;
1689 
1690     private static final @Stable NamedFunction[] NFS = new NamedFunction[NF_LIMIT];
1691 
1692     static NamedFunction getFunction(byte func) {
1693         NamedFunction nf = NFS[func];
1694         if (nf != null) {
1695             return nf;
1696         }
1697         return NFS[func] = createFunction(func);
1698     }
1699 
1700     private static NamedFunction createFunction(byte func) {
1701         try {
1702             switch (func) {
1703                 case NF_checkSpreadArgument:
1704                     return new NamedFunction(MethodHandleImpl.class
1705                             .getDeclaredMethod("checkSpreadArgument", Object.class, int.class));
1706                 case NF_guardWithCatch:
1707                     return new NamedFunction(MethodHandleImpl.class
1708                             .getDeclaredMethod("guardWithCatch", MethodHandle.class, Class.class,
1709                                     MethodHandle.class, Object[].class));
1710                 case NF_tryFinally:
1711                     return new NamedFunction(MethodHandleImpl.class
1712                             .getDeclaredMethod("tryFinally", MethodHandle.class, MethodHandle.class, Object[].class));
1713                 case NF_loop:
1714                     return new NamedFunction(MethodHandleImpl.class
1715                             .getDeclaredMethod("loop", BasicType[].class, LoopClauses.class, Object[].class));
1716                 case NF_throwException:
1717                     return new NamedFunction(MethodHandleImpl.class
1718                             .getDeclaredMethod("throwException", Throwable.class));
1719                 case NF_profileBoolean:
1720                     return new NamedFunction(MethodHandleImpl.class
1721                             .getDeclaredMethod("profileBoolean", boolean.class, int[].class));
1722                 default:
1723                     throw new InternalError("Undefined function: " + func);
1724             }
1725         } catch (ReflectiveOperationException ex) {
1726             throw newInternalError(ex);
1727         }
1728     }
1729 
1730     static {
1731         SharedSecrets.setJavaLangInvokeAccess(new JavaLangInvokeAccess() {
1732             @Override
1733             public Object newMemberName() {
1734                 return new MemberName();
1735             }
1736 
1737             @Override
1738             public String getName(Object mname) {
1739                 MemberName memberName = (MemberName)mname;
1740                 return memberName.getName();
1741             }
1742             @Override
1743             public Class<?> getDeclaringClass(Object mname) {
1744                 MemberName memberName = (MemberName)mname;
1745                 return memberName.getDeclaringClass();
1746             }
1747 
1748             @Override
1749             public MethodType getMethodType(Object mname) {
1750                 MemberName memberName = (MemberName)mname;
1751                 return memberName.getMethodType();
1752             }
1753 
1754             @Override
1755             public String getMethodDescriptor(Object mname) {
1756                 MemberName memberName = (MemberName)mname;
1757                 return memberName.getMethodDescriptor();
1758             }
1759 
1760             @Override
1761             public boolean isNative(Object mname) {
1762                 MemberName memberName = (MemberName)mname;
1763                 return memberName.isNative();
1764             }
1765 
1766             @Override
1767             public byte[] generateDirectMethodHandleHolderClassBytes(
1768                     String className, MethodType[] methodTypes, int[] types) {
1769                 return GenerateJLIClassesHelper
1770                         .generateDirectMethodHandleHolderClassBytes(
1771                                 className, methodTypes, types);
1772             }
1773 
1774             @Override
1775             public byte[] generateDelegatingMethodHandleHolderClassBytes(
1776                     String className, MethodType[] methodTypes) {
1777                 return GenerateJLIClassesHelper
1778                         .generateDelegatingMethodHandleHolderClassBytes(
1779                                 className, methodTypes);
1780             }
1781 
1782             @Override
1783             public Map.Entry<String, byte[]> generateConcreteBMHClassBytes(
1784                     final String types) {
1785                 return GenerateJLIClassesHelper
1786                         .generateConcreteBMHClassBytes(types);
1787             }
1788 
1789             @Override
1790             public byte[] generateBasicFormsClassBytes(final String className) {
1791                 return GenerateJLIClassesHelper
1792                         .generateBasicFormsClassBytes(className);
1793             }
1794 
1795             @Override
1796             public byte[] generateInvokersHolderClassBytes(final String className,
1797                     MethodType[] invokerMethodTypes,
1798                     MethodType[] callSiteMethodTypes) {
1799                 return GenerateJLIClassesHelper
1800                         .generateInvokersHolderClassBytes(className,
1801                                 invokerMethodTypes, callSiteMethodTypes);
1802             }
1803 
1804             @Override
1805             public VarHandle memoryAddressViewVarHandle(Class<?> carrier, long alignmentMask,
1806                                                         ByteOrder order, long offset, long[] strides) {
1807                 return VarHandles.makeMemoryAddressViewHandle(carrier, alignmentMask, order, offset, strides);
1808             }
1809 
1810             @Override
1811             public Class<?> memoryAddressCarrier(VarHandle handle) {
1812                 return checkMemAccessHandle(handle).carrier();
1813             }
1814 
1815             @Override
1816             public long memoryAddressAlignmentMask(VarHandle handle) {
1817                 return checkMemAccessHandle(handle).alignmentMask;
1818             }
1819 
1820             @Override
1821             public ByteOrder memoryAddressByteOrder(VarHandle handle) {
1822                 return checkMemAccessHandle(handle).be ?
1823                         ByteOrder.BIG_ENDIAN : ByteOrder.LITTLE_ENDIAN;
1824             }
1825 
1826             @Override
1827             public long memoryAddressOffset(VarHandle handle) {
1828                 return checkMemAccessHandle(handle).offset;
1829             }
1830 
1831             @Override
1832             public long[] memoryAddressStrides(VarHandle handle) {
1833                 return checkMemAccessHandle(handle).strides();
1834             }
1835 
1836             private VarHandleMemoryAddressBase checkMemAccessHandle(VarHandle handle) {
1837                 if (!(handle instanceof VarHandleMemoryAddressBase)) {
1838                     throw new IllegalArgumentException("Not a memory access varhandle: " + handle);
1839                 }
1840                 return (VarHandleMemoryAddressBase) handle;
1841             }
1842         });
1843     }
1844 
1845     /** Result unboxing: ValueConversions.unbox() OR ValueConversions.identity() OR ValueConversions.ignore(). */
1846     private static MethodHandle unboxResultHandle(Class<?> returnType) {
1847         if (returnType.isPrimitive()) {
1848             if (returnType == void.class) {
1849                 return ValueConversions.ignore();
1850             } else {
1851                 Wrapper w = Wrapper.forPrimitiveType(returnType);
1852                 return ValueConversions.unboxExact(w);
1853             }
1854         } else {
1855             return MethodHandles.identity(Object.class);
1856         }
1857     }
1858 
1859     /**
1860      * Assembles a loop method handle from the given handles and type information.
1861      *
1862      * @param tloop the return type of the loop.
1863      * @param targs types of the arguments to be passed to the loop.
1864      * @param init sanitized array of initializers for loop-local variables.
1865      * @param step sanitited array of loop bodies.
1866      * @param pred sanitized array of predicates.
1867      * @param fini sanitized array of loop finalizers.
1868      *
1869      * @return a handle that, when invoked, will execute the loop.
1870      */
1871     static MethodHandle makeLoop(Class<?> tloop, List<Class<?>> targs, List<MethodHandle> init, List<MethodHandle> step,
1872                                  List<MethodHandle> pred, List<MethodHandle> fini) {
1873         MethodType type = MethodType.methodType(tloop, targs);
1874         BasicType[] initClauseTypes =
1875                 init.stream().map(h -> h.type().returnType()).map(BasicType::basicType).toArray(BasicType[]::new);
1876         LambdaForm form = makeLoopForm(type.basicType(), initClauseTypes);
1877 
1878         // Prepare auxiliary method handles used during LambdaForm interpretation.
1879         // Box arguments and wrap them into Object[]: ValueConversions.array().
1880         MethodType varargsType = type.changeReturnType(Object[].class);
1881         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
1882         MethodHandle unboxResult = unboxResultHandle(tloop);
1883 
1884         LoopClauses clauseData =
1885                 new LoopClauses(new MethodHandle[][]{toArray(init), toArray(step), toArray(pred), toArray(fini)});
1886         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1887         BoundMethodHandle mh;
1888         try {
1889             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) clauseData,
1890                     (Object) collectArgs, (Object) unboxResult);
1891         } catch (Throwable ex) {
1892             throw uncaughtException(ex);
1893         }
1894         assert(mh.type() == type);
1895         return mh;
1896     }
1897 
1898     private static MethodHandle[] toArray(List<MethodHandle> l) {
1899         return l.toArray(new MethodHandle[0]);
1900     }
1901 
1902     /**
1903      * Loops introduce some complexity as they can have additional local state. Hence, LambdaForms for loops are
1904      * generated from a template. The LambdaForm template shape for the loop combinator is as follows (assuming one
1905      * reference parameter passed in {@code a1}, and a reference return type, with the return value represented by
1906      * {@code t12}):
1907      * <blockquote><pre>{@code
1908      *  loop=Lambda(a0:L,a1:L)=>{
1909      *    t2:L=BoundMethodHandle$Species_L3.argL0(a0:L);    // LoopClauses holding init, step, pred, fini handles
1910      *    t3:L=BoundMethodHandle$Species_L3.argL1(a0:L);    // helper handle to box the arguments into an Object[]
1911      *    t4:L=BoundMethodHandle$Species_L3.argL2(a0:L);    // helper handle to unbox the result
1912      *    t5:L=MethodHandle.invokeBasic(t3:L,a1:L);         // box the arguments into an Object[]
1913      *    t6:L=MethodHandleImpl.loop(null,t2:L,t3:L);       // call the loop executor
1914      *    t7:L=MethodHandle.invokeBasic(t4:L,t6:L);t7:L}    // unbox the result; return the result
1915      * }</pre></blockquote>
1916      * <p>
1917      * {@code argL0} is a LoopClauses instance holding, in a 2-dimensional array, the init, step, pred, and fini method
1918      * handles. {@code argL1} and {@code argL2} are auxiliary method handles: {@code argL1} boxes arguments and wraps
1919      * them into {@code Object[]} ({@code ValueConversions.array()}), and {@code argL2} unboxes the result if necessary
1920      * ({@code ValueConversions.unbox()}).
1921      * <p>
1922      * Having {@code t3} and {@code t4} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
1923      * forms among loop combinators with the same basic type.
1924      * <p>
1925      * The above template is instantiated by using the {@link LambdaFormEditor} to replace the {@code null} argument to
1926      * the {@code loop} invocation with the {@code BasicType} array describing the loop clause types. This argument is
1927      * ignored in the loop invoker, but will be extracted and used in {@linkplain InvokerBytecodeGenerator#emitLoop(int)
1928      * bytecode generation}.
1929      */
1930     private static LambdaForm makeLoopForm(MethodType basicType, BasicType[] localVarTypes) {
1931         MethodType lambdaType = basicType.invokerType();
1932 
1933         final int THIS_MH = 0;  // the BMH_LLL
1934         final int ARG_BASE = 1; // start of incoming arguments
1935         final int ARG_LIMIT = ARG_BASE + basicType.parameterCount();
1936 
1937         int nameCursor = ARG_LIMIT;
1938         final int GET_CLAUSE_DATA = nameCursor++;
1939         final int GET_COLLECT_ARGS = nameCursor++;
1940         final int GET_UNBOX_RESULT = nameCursor++;
1941         final int BOXED_ARGS = nameCursor++;
1942         final int LOOP = nameCursor++;
1943         final int UNBOX_RESULT = nameCursor++;
1944 
1945         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_LOOP);
1946         if (lform == null) {
1947             Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
1948 
1949             BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLL();
1950             names[THIS_MH] = names[THIS_MH].withConstraint(data);
1951             names[GET_CLAUSE_DATA] = new Name(data.getterFunction(0), names[THIS_MH]);
1952             names[GET_COLLECT_ARGS] = new Name(data.getterFunction(1), names[THIS_MH]);
1953             names[GET_UNBOX_RESULT] = new Name(data.getterFunction(2), names[THIS_MH]);
1954 
1955             // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
1956             MethodType collectArgsType = basicType.changeReturnType(Object.class);
1957             MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
1958             Object[] args = new Object[invokeBasic.type().parameterCount()];
1959             args[0] = names[GET_COLLECT_ARGS];
1960             System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT - ARG_BASE);
1961             names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.LOOP), args);
1962 
1963             // t_{i+1}:L=MethodHandleImpl.loop(localTypes:L,clauses:L,t_{i}:L);
1964             Object[] lArgs =
1965                     new Object[]{null, // placeholder for BasicType[] localTypes - will be added by LambdaFormEditor
1966                             names[GET_CLAUSE_DATA], names[BOXED_ARGS]};
1967             names[LOOP] = new Name(getFunction(NF_loop), lArgs);
1968 
1969             // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
1970             MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
1971             Object[] unboxArgs = new Object[]{names[GET_UNBOX_RESULT], names[LOOP]};
1972             names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
1973 
1974             lform = basicType.form().setCachedLambdaForm(MethodTypeForm.LF_LOOP,
1975                     new LambdaForm(lambdaType.parameterCount(), names, Kind.LOOP));
1976         }
1977 
1978         // BOXED_ARGS is the index into the names array where the loop idiom starts
1979         return lform.editor().noteLoopLocalTypesForm(BOXED_ARGS, localVarTypes);
1980     }
1981 
1982     static class LoopClauses {
1983         @Stable final MethodHandle[][] clauses;
1984         LoopClauses(MethodHandle[][] clauses) {
1985             assert clauses.length == 4;
1986             this.clauses = clauses;
1987         }
1988         @Override
1989         public String toString() {
1990             StringBuffer sb = new StringBuffer("LoopClauses -- ");
1991             for (int i = 0; i < 4; ++i) {
1992                 if (i > 0) {
1993                     sb.append("       ");
1994                 }
1995                 sb.append('<').append(i).append(">: ");
1996                 MethodHandle[] hs = clauses[i];
1997                 for (int j = 0; j < hs.length; ++j) {
1998                     if (j > 0) {
1999                         sb.append("          ");
2000                     }
2001                     sb.append('*').append(j).append(": ").append(hs[j]).append('\n');
2002                 }
2003             }
2004             sb.append(" --\n");
2005             return sb.toString();
2006         }
2007     }
2008 
2009     /**
2010      * Intrinsified during LambdaForm compilation
2011      * (see {@link InvokerBytecodeGenerator#emitLoop(int)}).
2012      */
2013     @Hidden
2014     static Object loop(BasicType[] localTypes, LoopClauses clauseData, Object... av) throws Throwable {
2015         final MethodHandle[] init = clauseData.clauses[0];
2016         final MethodHandle[] step = clauseData.clauses[1];
2017         final MethodHandle[] pred = clauseData.clauses[2];
2018         final MethodHandle[] fini = clauseData.clauses[3];
2019         int varSize = (int) Stream.of(init).filter(h -> h.type().returnType() != void.class).count();
2020         int nArgs = init[0].type().parameterCount();
2021         Object[] varsAndArgs = new Object[varSize + nArgs];
2022         for (int i = 0, v = 0; i < init.length; ++i) {
2023             MethodHandle ih = init[i];
2024             if (ih.type().returnType() == void.class) {
2025                 ih.invokeWithArguments(av);
2026             } else {
2027                 varsAndArgs[v++] = ih.invokeWithArguments(av);
2028             }
2029         }
2030         System.arraycopy(av, 0, varsAndArgs, varSize, nArgs);
2031         final int nSteps = step.length;
2032         for (; ; ) {
2033             for (int i = 0, v = 0; i < nSteps; ++i) {
2034                 MethodHandle p = pred[i];
2035                 MethodHandle s = step[i];
2036                 MethodHandle f = fini[i];
2037                 if (s.type().returnType() == void.class) {
2038                     s.invokeWithArguments(varsAndArgs);
2039                 } else {
2040                     varsAndArgs[v++] = s.invokeWithArguments(varsAndArgs);
2041                 }
2042                 if (!(boolean) p.invokeWithArguments(varsAndArgs)) {
2043                     return f.invokeWithArguments(varsAndArgs);
2044                 }
2045             }
2046         }
2047     }
2048 
2049     /**
2050      * This method is bound as the predicate in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2051      * MethodHandle) counting loops}.
2052      *
2053      * @param limit the upper bound of the parameter, statically bound at loop creation time.
2054      * @param counter the counter parameter, passed in during loop execution.
2055      *
2056      * @return whether the counter has reached the limit.
2057      */
2058     static boolean countedLoopPredicate(int limit, int counter) {
2059         return counter < limit;
2060     }
2061 
2062     /**
2063      * This method is bound as the step function in {@linkplain MethodHandles#countedLoop(MethodHandle, MethodHandle,
2064      * MethodHandle) counting loops} to increment the counter.
2065      *
2066      * @param limit the upper bound of the loop counter (ignored).
2067      * @param counter the loop counter.
2068      *
2069      * @return the loop counter incremented by 1.
2070      */
2071     static int countedLoopStep(int limit, int counter) {
2072         return counter + 1;
2073     }
2074 
2075     /**
2076      * This is bound to initialize the loop-local iterator in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2077      *
2078      * @param it the {@link Iterable} over which the loop iterates.
2079      *
2080      * @return an {@link Iterator} over the argument's elements.
2081      */
2082     static Iterator<?> initIterator(Iterable<?> it) {
2083         return it.iterator();
2084     }
2085 
2086     /**
2087      * This method is bound as the predicate in {@linkplain MethodHandles#iteratedLoop iterating loops}.
2088      *
2089      * @param it the iterator to be checked.
2090      *
2091      * @return {@code true} iff there are more elements to iterate over.
2092      */
2093     static boolean iteratePredicate(Iterator<?> it) {
2094         return it.hasNext();
2095     }
2096 
2097     /**
2098      * This method is bound as the step for retrieving the current value from the iterator in {@linkplain
2099      * MethodHandles#iteratedLoop iterating loops}.
2100      *
2101      * @param it the iterator.
2102      *
2103      * @return the next element from the iterator.
2104      */
2105     static Object iterateNext(Iterator<?> it) {
2106         return it.next();
2107     }
2108 
2109     /**
2110      * Makes a {@code try-finally} handle that conforms to the type constraints.
2111      *
2112      * @param target the target to execute in a {@code try-finally} block.
2113      * @param cleanup the cleanup to execute in the {@code finally} block.
2114      * @param rtype the result type of the entire construct.
2115      * @param argTypes the types of the arguments.
2116      *
2117      * @return a handle on the constructed {@code try-finally} block.
2118      */
2119     static MethodHandle makeTryFinally(MethodHandle target, MethodHandle cleanup, Class<?> rtype, List<Class<?>> argTypes) {
2120         MethodType type = MethodType.methodType(rtype, argTypes);
2121         LambdaForm form = makeTryFinallyForm(type.basicType());
2122 
2123         // Prepare auxiliary method handles used during LambdaForm interpretation.
2124         // Box arguments and wrap them into Object[]: ValueConversions.array().
2125         MethodType varargsType = type.changeReturnType(Object[].class);
2126         MethodHandle collectArgs = varargsArray(type.parameterCount()).asType(varargsType);
2127         MethodHandle unboxResult = unboxResultHandle(rtype);
2128 
2129         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2130         BoundMethodHandle mh;
2131         try {
2132             mh = (BoundMethodHandle) data.factory().invokeBasic(type, form, (Object) target, (Object) cleanup,
2133                     (Object) collectArgs, (Object) unboxResult);
2134         } catch (Throwable ex) {
2135             throw uncaughtException(ex);
2136         }
2137         assert(mh.type() == type);
2138         return mh;
2139     }
2140 
2141     /**
2142      * The LambdaForm shape for the tryFinally combinator is as follows (assuming one reference parameter passed in
2143      * {@code a1}, and a reference return type, with the return value represented by {@code t8}):
2144      * <blockquote><pre>{@code
2145      *  tryFinally=Lambda(a0:L,a1:L)=>{
2146      *    t2:L=BoundMethodHandle$Species_LLLL.argL0(a0:L);  // target method handle
2147      *    t3:L=BoundMethodHandle$Species_LLLL.argL1(a0:L);  // cleanup method handle
2148      *    t4:L=BoundMethodHandle$Species_LLLL.argL2(a0:L);  // helper handle to box the arguments into an Object[]
2149      *    t5:L=BoundMethodHandle$Species_LLLL.argL3(a0:L);  // helper handle to unbox the result
2150      *    t6:L=MethodHandle.invokeBasic(t4:L,a1:L);         // box the arguments into an Object[]
2151      *    t7:L=MethodHandleImpl.tryFinally(t2:L,t3:L,t6:L); // call the tryFinally executor
2152      *    t8:L=MethodHandle.invokeBasic(t5:L,t7:L);t8:L}    // unbox the result; return the result
2153      * }</pre></blockquote>
2154      * <p>
2155      * {@code argL0} and {@code argL1} are the target and cleanup method handles.
2156      * {@code argL2} and {@code argL3} are auxiliary method handles: {@code argL2} boxes arguments and wraps them into
2157      * {@code Object[]} ({@code ValueConversions.array()}), and {@code argL3} unboxes the result if necessary
2158      * ({@code ValueConversions.unbox()}).
2159      * <p>
2160      * Having {@code t4} and {@code t5} passed in via a BMH and not hardcoded in the lambda form allows to share lambda
2161      * forms among tryFinally combinators with the same basic type.
2162      */
2163     private static LambdaForm makeTryFinallyForm(MethodType basicType) {
2164         MethodType lambdaType = basicType.invokerType();
2165 
2166         LambdaForm lform = basicType.form().cachedLambdaForm(MethodTypeForm.LF_TF);
2167         if (lform != null) {
2168             return lform;
2169         }
2170         final int THIS_MH      = 0;  // the BMH_LLLL
2171         final int ARG_BASE     = 1;  // start of incoming arguments
2172         final int ARG_LIMIT    = ARG_BASE + basicType.parameterCount();
2173 
2174         int nameCursor = ARG_LIMIT;
2175         final int GET_TARGET       = nameCursor++;
2176         final int GET_CLEANUP      = nameCursor++;
2177         final int GET_COLLECT_ARGS = nameCursor++;
2178         final int GET_UNBOX_RESULT = nameCursor++;
2179         final int BOXED_ARGS       = nameCursor++;
2180         final int TRY_FINALLY      = nameCursor++;
2181         final int UNBOX_RESULT     = nameCursor++;
2182 
2183         Name[] names = arguments(nameCursor - ARG_LIMIT, lambdaType);
2184 
2185         BoundMethodHandle.SpeciesData data = BoundMethodHandle.speciesData_LLLL();
2186         names[THIS_MH]          = names[THIS_MH].withConstraint(data);
2187         names[GET_TARGET]       = new Name(data.getterFunction(0), names[THIS_MH]);
2188         names[GET_CLEANUP]      = new Name(data.getterFunction(1), names[THIS_MH]);
2189         names[GET_COLLECT_ARGS] = new Name(data.getterFunction(2), names[THIS_MH]);
2190         names[GET_UNBOX_RESULT] = new Name(data.getterFunction(3), names[THIS_MH]);
2191 
2192         // t_{i}:L=MethodHandle.invokeBasic(collectArgs:L,a1:L,...);
2193         MethodType collectArgsType = basicType.changeReturnType(Object.class);
2194         MethodHandle invokeBasic = MethodHandles.basicInvoker(collectArgsType);
2195         Object[] args = new Object[invokeBasic.type().parameterCount()];
2196         args[0] = names[GET_COLLECT_ARGS];
2197         System.arraycopy(names, ARG_BASE, args, 1, ARG_LIMIT-ARG_BASE);
2198         names[BOXED_ARGS] = new Name(new NamedFunction(invokeBasic, Intrinsic.TRY_FINALLY), args);
2199 
2200         // t_{i+1}:L=MethodHandleImpl.tryFinally(target:L,exType:L,catcher:L,t_{i}:L);
2201         Object[] tfArgs = new Object[] {names[GET_TARGET], names[GET_CLEANUP], names[BOXED_ARGS]};
2202         names[TRY_FINALLY] = new Name(getFunction(NF_tryFinally), tfArgs);
2203 
2204         // t_{i+2}:I=MethodHandle.invokeBasic(unbox:L,t_{i+1}:L);
2205         MethodHandle invokeBasicUnbox = MethodHandles.basicInvoker(MethodType.methodType(basicType.rtype(), Object.class));
2206         Object[] unboxArgs  = new Object[] {names[GET_UNBOX_RESULT], names[TRY_FINALLY]};
2207         names[UNBOX_RESULT] = new Name(invokeBasicUnbox, unboxArgs);
2208 
2209         lform = new LambdaForm(lambdaType.parameterCount(), names, Kind.TRY_FINALLY);
2210 
2211         return basicType.form().setCachedLambdaForm(MethodTypeForm.LF_TF, lform);
2212     }
2213 
2214     /**
2215      * Intrinsified during LambdaForm compilation
2216      * (see {@link InvokerBytecodeGenerator#emitTryFinally emitTryFinally}).
2217      */
2218     @Hidden
2219     static Object tryFinally(MethodHandle target, MethodHandle cleanup, Object... av) throws Throwable {
2220         Throwable t = null;
2221         Object r = null;
2222         try {
2223             r = target.invokeWithArguments(av);
2224         } catch (Throwable thrown) {
2225             t = thrown;
2226             throw t;
2227         } finally {
2228             Object[] args = target.type().returnType() == void.class ? prepend(av, t) : prepend(av, t, r);
2229             r = cleanup.invokeWithArguments(args);
2230         }
2231         return r;
2232     }
2233 
2234     // Indexes into constant method handles:
2235     static final int
2236             MH_cast                  =  0,
2237             MH_selectAlternative     =  1,
2238             MH_copyAsPrimitiveArray  =  2,
2239             MH_fillNewTypedArray     =  3,
2240             MH_fillNewArray          =  4,
2241             MH_arrayIdentity         =  5,
2242             MH_countedLoopPred       =  6,
2243             MH_countedLoopStep       =  7,
2244             MH_initIterator          =  8,
2245             MH_iteratePred           =  9,
2246             MH_iterateNext           = 10,
2247             MH_Array_newInstance     = 11,
2248             MH_LIMIT                 = 12;
2249 
2250     static MethodHandle getConstantHandle(int idx) {
2251         MethodHandle handle = HANDLES[idx];
2252         if (handle != null) {
2253             return handle;
2254         }
2255         return setCachedHandle(idx, makeConstantHandle(idx));
2256     }
2257 
2258     private static synchronized MethodHandle setCachedHandle(int idx, final MethodHandle method) {
2259         // Simulate a CAS, to avoid racy duplication of results.
2260         MethodHandle prev = HANDLES[idx];
2261         if (prev != null) {
2262             return prev;
2263         }
2264         HANDLES[idx] = method;
2265         return method;
2266     }
2267 
2268     // Local constant method handles:
2269     private static final @Stable MethodHandle[] HANDLES = new MethodHandle[MH_LIMIT];
2270 
2271     private static MethodHandle makeConstantHandle(int idx) {
2272         try {
2273             switch (idx) {
2274                 case MH_cast:
2275                     return IMPL_LOOKUP.findVirtual(Class.class, "cast",
2276                             MethodType.methodType(Object.class, Object.class));
2277                 case MH_copyAsPrimitiveArray:
2278                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "copyAsPrimitiveArray",
2279                             MethodType.methodType(Object.class, Wrapper.class, Object[].class));
2280                 case MH_arrayIdentity:
2281                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "identity",
2282                             MethodType.methodType(Object[].class, Object[].class));
2283                 case MH_fillNewArray:
2284                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewArray",
2285                             MethodType.methodType(Object[].class, Integer.class, Object[].class));
2286                 case MH_fillNewTypedArray:
2287                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "fillNewTypedArray",
2288                             MethodType.methodType(Object[].class, Object[].class, Integer.class, Object[].class));
2289                 case MH_selectAlternative:
2290                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "selectAlternative",
2291                             MethodType.methodType(MethodHandle.class, boolean.class, MethodHandle.class, MethodHandle.class));
2292                 case MH_countedLoopPred:
2293                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopPredicate",
2294                             MethodType.methodType(boolean.class, int.class, int.class));
2295                 case MH_countedLoopStep:
2296                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "countedLoopStep",
2297                             MethodType.methodType(int.class, int.class, int.class));
2298                 case MH_initIterator:
2299                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "initIterator",
2300                             MethodType.methodType(Iterator.class, Iterable.class));
2301                 case MH_iteratePred:
2302                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iteratePredicate",
2303                             MethodType.methodType(boolean.class, Iterator.class));
2304                 case MH_iterateNext:
2305                     return IMPL_LOOKUP.findStatic(MethodHandleImpl.class, "iterateNext",
2306                             MethodType.methodType(Object.class, Iterator.class));
2307                 case MH_Array_newInstance:
2308                     return IMPL_LOOKUP.findStatic(Array.class, "newInstance",
2309                             MethodType.methodType(Object.class, Class.class, int.class));
2310             }
2311         } catch (ReflectiveOperationException ex) {
2312             throw newInternalError(ex);
2313         }
2314         throw newInternalError("Unknown function index: " + idx);
2315     }
2316 }