1 /*
   2  * Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.module.IllegalAccessLogger;
  31 import jdk.internal.org.objectweb.asm.ClassReader;
  32 import jdk.internal.org.objectweb.asm.Opcodes;
  33 import jdk.internal.reflect.CallerSensitive;
  34 import jdk.internal.reflect.Reflection;
  35 import jdk.internal.vm.annotation.ForceInline;
  36 import sun.invoke.util.ValueConversions;
  37 import sun.invoke.util.VerifyAccess;
  38 import sun.invoke.util.Wrapper;
  39 import sun.reflect.misc.ReflectUtil;
  40 import sun.security.util.SecurityConstants;
  41 
  42 import java.lang.invoke.LambdaForm.BasicType;
  43 import java.lang.reflect.Constructor;
  44 import java.lang.reflect.Field;
  45 import java.lang.reflect.Member;
  46 import java.lang.reflect.Method;
  47 import java.lang.reflect.Modifier;
  48 import java.lang.reflect.ReflectPermission;
  49 import java.nio.ByteOrder;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with
 106      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 107      */
 108     @CallerSensitive
 109     @ForceInline // to ensure Reflection.getCallerClass optimization
 110     public static Lookup lookup() {
 111         return new Lookup(Reflection.getCallerClass());
 112     }
 113 
 114     /**
 115      * This reflected$lookup method is the alternate implementation of
 116      * the lookup method when being invoked by reflection.
 117      */
 118     @CallerSensitive
 119     private static Lookup reflected$lookup() {
 120         Class<?> caller = Reflection.getCallerClass();
 121         if (caller.getClassLoader() == null) {
 122             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 123         }
 124         return new Lookup(caller);
 125     }
 126 
 127     /**
 128      * Returns a {@link Lookup lookup object} which is trusted minimally.
 129      * The lookup has the {@code UNCONDITIONAL} mode.
 130      * It can only be used to create method handles to public members of
 131      * public classes in packages that are exported unconditionally.
 132      * <p>
 133      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 134      * of this lookup object will be {@link java.lang.Object}.
 135      *
 136      * @apiNote The use of Object is conventional, and because the lookup modes are
 137      * limited, there is no special access provided to the internals of Object, its package
 138      * or its module.  This public lookup object or other lookup object with
 139      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 140      * is not used to determine the lookup context.
 141      *
 142      * <p style="font-size:smaller;">
 143      * <em>Discussion:</em>
 144      * The lookup class can be changed to any other class {@code C} using an expression of the form
 145      * {@link Lookup#in publicLookup().in(C.class)}.
 146      * A public lookup object is always subject to
 147      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 148      * Also, it cannot access
 149      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 150      * @return a lookup object which is trusted minimally
 151      *
 152      * @revised 9
 153      * @spec JPMS
 154      */
 155     public static Lookup publicLookup() {
 156         return Lookup.PUBLIC_LOOKUP;
 157     }
 158 
 159     /**
 160      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 161      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 162      * The returned lookup object can provide access to classes in modules and packages,
 163      * and members of those classes, outside the normal rules of Java access control,
 164      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 165      * <p>
 166      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 167      * allowed to do deep reflection on module {@code M2} and package of the target class
 168      * if and only if all of the following conditions are {@code true}:
 169      * <ul>
 170      * <li>If there is a security manager, its {@code checkPermission} method is
 171      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 172      * that must return normally.
 173      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 174      * full privilege access}.  Specifically:
 175      *   <ul>
 176      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 177      *         (This is because otherwise there would be no way to ensure the original lookup
 178      *         creator was a member of any particular module, and so any subsequent checks
 179      *         for readability and qualified exports would become ineffective.)
 180      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 181      *         (This is because an application intending to share intra-module access
 182      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 183      *         deep reflection to its own module.)
 184      *   </ul>
 185      * <li>The target class must be a proper class, not a primitive or array class.
 186      * (Thus, {@code M2} is well-defined.)
 187      * <li>If the caller module {@code M1} differs from
 188      * the target module {@code M2} then both of the following must be true:
 189      *   <ul>
 190      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 191      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 192      *         containing the target class to at least {@code M1}.</li>
 193      *   </ul>
 194      * </ul>
 195      * <p>
 196      * If any of the above checks is violated, this method fails with an
 197      * exception.
 198      * <p>
 199      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 200      * returns a {@code Lookup} on {@code targetClass} with
 201      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} and
 202      * {@code null} previous lookup class.  The {@code ORIGINAL} mode is dropped.
 203      * <p>
 204      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 205      * returns a {@code Lookup} on {@code targetClass} that records
 206      * the lookup class of the caller as the new previous lookup class and
 207      * drops {@code MODULE} and {@code ORIGINAL} modes from the full privilege access.
 208      *
 209      * @param targetClass the target class
 210      * @param caller the caller lookup object
 211      * @return a lookup object for the target class, with private access
 212      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 213      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 214      * @throws SecurityException if denied by the security manager
 215      * @throws IllegalAccessException if any of the other access checks specified above fails
 216      * @since 9
 217      * @spec JPMS
 218      * @see Lookup#dropLookupMode
 219      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 220      */
 221     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 222         if (caller.allowedModes == Lookup.TRUSTED) {
 223             return new Lookup(targetClass);
 224         }
 225 
 226         SecurityManager sm = System.getSecurityManager();
 227         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 228         if (targetClass.isPrimitive())
 229             throw new IllegalArgumentException(targetClass + " is a primitive class");
 230         if (targetClass.isArray())
 231             throw new IllegalArgumentException(targetClass + " is an array class");
 232         // Ensure that we can reason accurately about private and module access.
 233         if (!caller.hasFullPrivilegeAccess())
 234             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 235 
 236         // previous lookup class is never set if it has MODULE access
 237         assert caller.previousLookupClass() == null;
 238 
 239         Class<?> callerClass = caller.lookupClass();
 240         Module callerModule = callerClass.getModule();  // M1
 241         Module targetModule = targetClass.getModule();  // M2
 242         Class<?> newPreviousClass = null;
 243         int newModes = Lookup.FULL_POWER_MODES & ~Lookup.ORIGINAL;
 244 
 245         if (targetModule != callerModule) {
 246             if (!callerModule.canRead(targetModule))
 247                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 248             if (targetModule.isNamed()) {
 249                 String pn = targetClass.getPackageName();
 250                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 251                 if (!targetModule.isOpen(pn, callerModule))
 252                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 253             }
 254 
 255             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 256             newPreviousClass = callerClass;
 257             newModes &= ~Lookup.MODULE;
 258         }
 259 
 260         if (!callerModule.isNamed() && targetModule.isNamed()) {
 261             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 262             if (logger != null) {
 263                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 264             }
 265         }
 266         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 267     }
 268 
 269     /**
 270      * Returns the <em>class data</em> associated with the lookup class
 271      * of the specified {@code Lookup} object, or {@code null}.
 272      *
 273      * <p> Classes can be created with class data by calling
 274      * {@link Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 275      * Lookup::defineHiddenClassWithClassData}.
 276      * A hidden class with a class data behaves as if the hidden class
 277      * has a private static final unnamed field pre-initialized with
 278      * the class data and this method is equivalent as if calling
 279      * {@link ConstantBootstraps#getStaticFinal(Lookup, String, Class)} to
 280      * obtain the value of such field corresponding to the class data.
 281      *
 282      * <p> The {@linkplain Lookup#lookupModes() lookup modes} for this lookup
 283      * must have {@link Lookup#ORIGINAL ORIGINAL} access in order to retrieve
 284      * the class data.
 285      *
 286      * @apiNote
 287      * This method can be called as a bootstrap method for a dynamically computed
 288      * constant.  A framework can create a hidden class with class data, for
 289      * example that can be {@code List.of(o1, o2, o3....)} containing more than
 290      * one live object.  The class data is accessible only to the lookup object
 291      * created by the original caller but inaccessible to other members
 292      * in the same nest.  If a framework passes security sensitive live objects
 293      * to a hidden class via class data, it is recommended to load the value
 294      * of class data as a dynamically computed constant instead of storing
 295      * the live objects in private fields which are accessible to other
 296      * nestmates.
 297      *
 298      * @param <T> the type to cast the class data object to
 299      * @param caller the lookup context describing the class performing the
 300      * operation (normally stacked by the JVM)
 301      * @param name ignored
 302      * @param type the type of the class data
 303      * @return the value of the class data if present in the lookup class;
 304      * otherwise {@code null}
 305      * @throws IllegalAccessException if the lookup context does not have
 306      * original caller access
 307      * @throws ClassCastException if the class data cannot be converted to
 308      * the specified {@code type}
 309      * @see Lookup#defineHiddenClassWithClassData(byte[], Object, boolean, Lookup.ClassOption...)
 310      * @since 15
 311      */
 312     public static <T> T classData(Lookup caller, String name, Class<T> type) throws IllegalAccessException {
 313         if ((caller.lookupModes() & Lookup.ORIGINAL) == 0) {
 314             throw new IllegalAccessException(caller + " does not have ORIGINAL access");
 315         }
 316         Object classData = MethodHandleNatives.classData(caller.lookupClass);
 317         return type.cast(classData);
 318     }
 319 
 320     /**
 321      * Performs an unchecked "crack" of a
 322      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 323      * The result is as if the user had obtained a lookup object capable enough
 324      * to crack the target method handle, called
 325      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 326      * on the target to obtain its symbolic reference, and then called
 327      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 328      * to resolve the symbolic reference to a member.
 329      * <p>
 330      * If there is a security manager, its {@code checkPermission} method
 331      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 332      * @param <T> the desired type of the result, either {@link Member} or a subtype
 333      * @param target a direct method handle to crack into symbolic reference components
 334      * @param expected a class object representing the desired result type {@code T}
 335      * @return a reference to the method, constructor, or field object
 336      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 337      * @throws    NullPointerException if either argument is {@code null}
 338      * @throws    IllegalArgumentException if the target is not a direct method handle
 339      * @throws    ClassCastException if the member is not of the expected type
 340      * @since 1.8
 341      */
 342     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 343         SecurityManager smgr = System.getSecurityManager();
 344         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 345         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 346         return lookup.revealDirect(target).reflectAs(expected, lookup);
 347     }
 348     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 349     private static final java.security.Permission ACCESS_PERMISSION =
 350         new ReflectPermission("suppressAccessChecks");
 351 
 352     /**
 353      * A <em>lookup object</em> is a factory for creating method handles,
 354      * when the creation requires access checking.
 355      * Method handles do not perform
 356      * access checks when they are called, but rather when they are created.
 357      * Therefore, method handle access
 358      * restrictions must be enforced when a method handle is created.
 359      * The caller class against which those restrictions are enforced
 360      * is known as the {@linkplain #lookupClass() lookup class}.
 361      * <p>
 362      * A lookup class which needs to create method handles will call
 363      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 364      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 365      * determined, and securely stored in the {@code Lookup} object.
 366      * The lookup class (or its delegates) may then use factory methods
 367      * on the {@code Lookup} object to create method handles for access-checked members.
 368      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 369      * even private ones.
 370      *
 371      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 372      * The factory methods on a {@code Lookup} object correspond to all major
 373      * use cases for methods, constructors, and fields.
 374      * Each method handle created by a factory method is the functional
 375      * equivalent of a particular <em>bytecode behavior</em>.
 376      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
 377      * the Java Virtual Machine Specification.)
 378      * Here is a summary of the correspondence between these factory methods and
 379      * the behavior of the resulting method handles:
 380      * <table class="striped">
 381      * <caption style="display:none">lookup method behaviors</caption>
 382      * <thead>
 383      * <tr>
 384      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 385      *     <th scope="col">member</th>
 386      *     <th scope="col">bytecode behavior</th>
 387      * </tr>
 388      * </thead>
 389      * <tbody>
 390      * <tr>
 391      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 392      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 393      * </tr>
 394      * <tr>
 395      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 396      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 397      * </tr>
 398      * <tr>
 399      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 400      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 401      * </tr>
 402      * <tr>
 403      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 404      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 405      * </tr>
 406      * <tr>
 407      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 408      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 409      * </tr>
 410      * <tr>
 411      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 412      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 413      * </tr>
 414      * <tr>
 415      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 416      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 417      * </tr>
 418      * <tr>
 419      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 420      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 421      * </tr>
 422      * <tr>
 423      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 424      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 425      * </tr>
 426      * <tr>
 427      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 428      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 429      * </tr>
 430      * <tr>
 431      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 432      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 433      * </tr>
 434      * <tr>
 435      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 436      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 437      * </tr>
 438      * <tr>
 439      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 440      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 441      * </tr>
 442      * <tr>
 443      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 444      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 445      * </tr>
 446      * </tbody>
 447      * </table>
 448      *
 449      * Here, the type {@code C} is the class or interface being searched for a member,
 450      * documented as a parameter named {@code refc} in the lookup methods.
 451      * The method type {@code MT} is composed from the return type {@code T}
 452      * and the sequence of argument types {@code A*}.
 453      * The constructor also has a sequence of argument types {@code A*} and
 454      * is deemed to return the newly-created object of type {@code C}.
 455      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 456      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 457      * if it is present, it is always the leading argument to the method handle invocation.
 458      * (In the case of some {@code protected} members, {@code this} may be
 459      * restricted in type to the lookup class; see below.)
 460      * The name {@code arg} stands for all the other method handle arguments.
 461      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 462      * stands for a null reference if the accessed method or field is static,
 463      * and {@code this} otherwise.
 464      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 465      * for reflective objects corresponding to the given members declared in type {@code C}.
 466      * <p>
 467      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 468      * as if by {@code ldc CONSTANT_Class}.
 469      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 470      * <p>
 471      * In cases where the given member is of variable arity (i.e., a method or constructor)
 472      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 473      * In all other cases, the returned method handle will be of fixed arity.
 474      * <p style="font-size:smaller;">
 475      * <em>Discussion:</em>
 476      * The equivalence between looked-up method handles and underlying
 477      * class members and bytecode behaviors
 478      * can break down in a few ways:
 479      * <ul style="font-size:smaller;">
 480      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 481      * the lookup can still succeed, even when there is no equivalent
 482      * Java expression or bytecoded constant.
 483      * <li>Likewise, if {@code T} or {@code MT}
 484      * is not symbolically accessible from the lookup class's loader,
 485      * the lookup can still succeed.
 486      * For example, lookups for {@code MethodHandle.invokeExact} and
 487      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 488      * <li>If there is a security manager installed, it can forbid the lookup
 489      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 490      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 491      * constant is not subject to security manager checks.
 492      * <li>If the looked-up method has a
 493      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 494      * the method handle creation may fail with an
 495      * {@code IllegalArgumentException}, due to the method handle type having
 496      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 497      * </ul>
 498      *
 499      * <h2><a id="access"></a>Access checking</h2>
 500      * Access checks are applied in the factory methods of {@code Lookup},
 501      * when a method handle is created.
 502      * This is a key difference from the Core Reflection API, since
 503      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 504      * performs access checking against every caller, on every call.
 505      * <p>
 506      * All access checks start from a {@code Lookup} object, which
 507      * compares its recorded lookup class against all requests to
 508      * create method handles.
 509      * A single {@code Lookup} object can be used to create any number
 510      * of access-checked method handles, all checked against a single
 511      * lookup class.
 512      * <p>
 513      * A {@code Lookup} object can be shared with other trusted code,
 514      * such as a metaobject protocol.
 515      * A shared {@code Lookup} object delegates the capability
 516      * to create method handles on private members of the lookup class.
 517      * Even if privileged code uses the {@code Lookup} object,
 518      * the access checking is confined to the privileges of the
 519      * original lookup class.
 520      * <p>
 521      * A lookup can fail, because
 522      * the containing class is not accessible to the lookup class, or
 523      * because the desired class member is missing, or because the
 524      * desired class member is not accessible to the lookup class, or
 525      * because the lookup object is not trusted enough to access the member.
 526      * In the case of a field setter function on a {@code final} field,
 527      * finality enforcement is treated as a kind of access control,
 528      * and the lookup will fail, except in special cases of
 529      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 530      * In any of these cases, a {@code ReflectiveOperationException} will be
 531      * thrown from the attempted lookup.  The exact class will be one of
 532      * the following:
 533      * <ul>
 534      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 535      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 536      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 537      * </ul>
 538      * <p>
 539      * In general, the conditions under which a method handle may be
 540      * looked up for a method {@code M} are no more restrictive than the conditions
 541      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 542      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 543      * a method handle lookup will generally raise a corresponding
 544      * checked exception, such as {@code NoSuchMethodException}.
 545      * And the effect of invoking the method handle resulting from the lookup
 546      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 547      * to executing the compiled, verified, and resolved call to {@code M}.
 548      * The same point is true of fields and constructors.
 549      * <p style="font-size:smaller;">
 550      * <em>Discussion:</em>
 551      * Access checks only apply to named and reflected methods,
 552      * constructors, and fields.
 553      * Other method handle creation methods, such as
 554      * {@link MethodHandle#asType MethodHandle.asType},
 555      * do not require any access checks, and are used
 556      * independently of any {@code Lookup} object.
 557      * <p>
 558      * If the desired member is {@code protected}, the usual JVM rules apply,
 559      * including the requirement that the lookup class must either be in the
 560      * same package as the desired member, or must inherit that member.
 561      * (See the Java Virtual Machine Specification, sections {@jvms
 562      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 563      * In addition, if the desired member is a non-static field or method
 564      * in a different package, the resulting method handle may only be applied
 565      * to objects of the lookup class or one of its subclasses.
 566      * This requirement is enforced by narrowing the type of the leading
 567      * {@code this} parameter from {@code C}
 568      * (which will necessarily be a superclass of the lookup class)
 569      * to the lookup class itself.
 570      * <p>
 571      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 572      * that the receiver argument must match both the resolved method <em>and</em>
 573      * the current class.  Again, this requirement is enforced by narrowing the
 574      * type of the leading parameter to the resulting method handle.
 575      * (See the Java Virtual Machine Specification, section {@jmvs 4.10.1.9}.)
 576      * <p>
 577      * The JVM represents constructors and static initializer blocks as internal methods
 578      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 579      * The internal syntax of invocation instructions allows them to refer to such internal
 580      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 581      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 582      * <p>
 583      * If the relationship between nested types is expressed directly through the
 584      * {@code NestHost} and {@code NestMembers} attributes
 585      * (see the Java Virtual Machine Specification, sections {@jvms
 586      * 4.7.28} and {@jvms 4.7.29}),
 587      * then the associated {@code Lookup} object provides direct access to
 588      * the lookup class and all of its nestmates
 589      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 590      * Otherwise, access between nested classes is obtained by the Java compiler creating
 591      * a wrapper method to access a private method of another class in the same nest.
 592      * For example, a nested class {@code C.D}
 593      * can access private members within other related classes such as
 594      * {@code C}, {@code C.D.E}, or {@code C.B},
 595      * but the Java compiler may need to generate wrapper methods in
 596      * those related classes.  In such cases, a {@code Lookup} object on
 597      * {@code C.E} would be unable to access those private members.
 598      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 599      * which can transform a lookup on {@code C.E} into one on any of those other
 600      * classes, without special elevation of privilege.
 601      * <p>
 602      * The accesses permitted to a given lookup object may be limited,
 603      * according to its set of {@link #lookupModes lookupModes},
 604      * to a subset of members normally accessible to the lookup class.
 605      * For example, the {@link MethodHandles#publicLookup publicLookup}
 606      * method produces a lookup object which is only allowed to access
 607      * public members in public classes of exported packages.
 608      * The caller sensitive method {@link MethodHandles#lookup lookup}
 609      * produces a lookup object with full capabilities relative to
 610      * its caller class, to emulate all supported bytecode behaviors.
 611      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 612      * with fewer access modes than the original lookup object.
 613      *
 614      * <p style="font-size:smaller;">
 615      * <a id="privacc"></a>
 616      * <em>Discussion of private and module access:</em>
 617      * We say that a lookup has <em>private access</em>
 618      * if its {@linkplain #lookupModes lookup modes}
 619      * include the possibility of accessing {@code private} members
 620      * (which includes the private members of nestmates).
 621      * As documented in the relevant methods elsewhere,
 622      * only lookups with private access possess the following capabilities:
 623      * <ul style="font-size:smaller;">
 624      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 625      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 626      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 627      *     for classes accessible to the lookup class
 628      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 629      *     within the same package member
 630      * </ul>
 631      * <p style="font-size:smaller;">
 632      * Similarly, a lookup with module access ensures that the original lookup creator was
 633      * a member in the same module as the lookup class.
 634      * <p style="font-size:smaller;">
 635      * Private and module access are independently determined modes; a lookup may have
 636      * either or both or neither.  A lookup which possesses both access modes is said to
 637      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.  Such a lookup has
 638      * the following additional capability:
 639      * <ul style="font-size:smaller;">
 640      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 641      *     such as {@code Class.forName}
 642      * </ul>
 643      * <p style="font-size:smaller;">
 644      * Each of these permissions is a consequence of the fact that a lookup object
 645      * with private access can be securely traced back to an originating class,
 646      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 647      * can be reliably determined and emulated by method handles.
 648      *
 649      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 650      * When a lookup class in one module {@code M1} accesses a class in another module
 651      * {@code M2}, extra access checking is performed beyond the access mode bits.
 652      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 653      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 654      * and when the type is in a package of {@code M2} that is exported to
 655      * at least {@code M1}.
 656      * <p>
 657      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 658      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 659      * MethodHandles.privateLookupIn} methods.
 660      * Teleporting across modules will always record the original lookup class as
 661      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 662      * and drops {@link Lookup#MODULE MODULE} access.
 663      * If the target class is in the same module as the lookup class {@code C},
 664      * then the target class becomes the new lookup class
 665      * and there is no change to the previous lookup class.
 666      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 667      * {@code C} becomes the new previous lookup class
 668      * and the target class becomes the new lookup class.
 669      * In that case, if there was already a previous lookup class in {@code M0},
 670      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 671      * drops all privileges.
 672      * For example,
 673      * <blockquote><pre>
 674      * {@code
 675      * Lookup lookup = MethodHandles.lookup();   // in class C
 676      * Lookup lookup2 = lookup.in(D.class);
 677      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 678      * }</pre></blockquote>
 679      * <p>
 680      * The {@link #lookup()} factory method produces a {@code Lookup} object
 681      * with {@code null} previous lookup class.
 682      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 683      * to class {@code D} without elevation of privileges.
 684      * If {@code C} and {@code D} are in the same module,
 685      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 686      * same previous lookup class as the original {@code lookup}, or
 687      * {@code null} if not present.
 688      * <p>
 689      * When a {@code Lookup} teleports from a class
 690      * in one nest to another nest, {@code PRIVATE} access is dropped.
 691      * When a {@code Lookup} teleports from a class in one package to
 692      * another package, {@code PACKAGE} access is dropped.
 693      * When a {@code Lookup} teleports from a class in one module to another module,
 694      * {@code MODULE} access is dropped.
 695      * Teleporting across modules drops the ability to access non-exported classes
 696      * in both the module of the new lookup class and the module of the old lookup class
 697      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 698      * A {@code Lookup} can teleport back and forth to a class in the module of
 699      * the lookup class and the module of the previous class lookup.
 700      * Teleporting across modules can only decrease access but cannot increase it.
 701      * Teleporting to some third module drops all accesses.
 702      * <p>
 703      * In the above example, if {@code C} and {@code D} are in different modules,
 704      * {@code lookup2} records {@code D} as its lookup class and
 705      * {@code C} as its previous lookup class and {@code lookup2} has only
 706      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 707      * {@code C}'s module and {@code D}'s module.
 708      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 709      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 710      * class {@code D} is recorded as its previous lookup class.
 711      * <p>
 712      * Teleporting across modules restricts access to the public types that
 713      * both the lookup class and the previous lookup class can equally access
 714      * (see below).
 715      * <p>
 716      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 717      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 718      * and create a new {@code Lookup} with <a href="#privacc">private access</a>
 719      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 720      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 721      * to call {@code privateLookupIn}.
 722      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 723      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 724      * produces a new {@code Lookup} on {@code T} with full capabilities.
 725      * A {@code lookup} on {@code C} is also allowed
 726      * to do deep reflection on {@code T} in another module {@code M2} if
 727      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 728      * the package containing {@code T} to at least {@code M1}.
 729      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 730      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 731      * The resulting {@code Lookup} can be used to do member lookup or teleport
 732      * to another lookup class by calling {@link #in Lookup::in}.  But
 733      * it cannot be used to obtain another private {@code Lookup} by calling
 734      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 735      * because it has no {@code MODULE} access.
 736      *
 737      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 738      *
 739      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 740      * allows cross-module access. The access checking is performed with respect
 741      * to both the lookup class and the previous lookup class if present.
 742      * <p>
 743      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 744      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 745      * exported unconditionally}.
 746      * <p>
 747      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 748      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 749      * that are readable to {@code M1} and the type is in a package that is exported
 750      * at least to {@code M1}.
 751      * <p>
 752      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 753      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 754      * the intersection of all public types that are accessible to {@code M1}
 755      * with all public types that are accessible to {@code M0}. {@code M0}
 756      * reads {@code M1} and hence the set of accessible types includes:
 757      *
 758      * <table class="striped">
 759      * <caption style="display:none">
 760      * Public types in the following packages are accessible to the
 761      * lookup class and the previous lookup class.
 762      * </caption>
 763      * <thead>
 764      * <tr>
 765      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 766      * </tr>
 767      * </thead>
 768      * <tbody>
 769      * <tr>
 770      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 771      * </tr>
 772      * <tr>
 773      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 774      * </tr>
 775      * <tr>
 776      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 777      * if both {@code M0} and {@code M1} read {@code M2}</th>
 778      * </tr>
 779      * <tr>
 780      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 781      * </tr>
 782      * <tr>
 783      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 784      * if {@code M1} reads {@code M0}</th>
 785      * </tr>
 786      * <tr>
 787      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 788      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 789      * </tr>
 790      * </tbody>
 791      * </table>
 792      *
 793      * <h2><a id="access-modes"></a>Access modes</h2>
 794      *
 795      * The table below shows the access modes of a {@code Lookup} produced by
 796      * any of the following factory or transformation methods:
 797      * <ul>
 798      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 799      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 800      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 801      * <li>{@link Lookup#in}</li>
 802      * <li>{@link Lookup#dropLookupMode(int)}</li>
 803      * </ul>
 804      *
 805      * <table class="striped">
 806      * <caption style="display:none">
 807      * Access mode summary
 808      * </caption>
 809      * <thead>
 810      * <tr>
 811      * <th scope="col">Lookup object</th>
 812      * <th style="text-align:center">original</th>
 813      * <th style="text-align:center">protected</th>
 814      * <th style="text-align:center">private</th>
 815      * <th style="text-align:center">package</th>
 816      * <th style="text-align:center">module</th>
 817      * <th style="text-align:center">public</th>
 818      * </tr>
 819      * </thead>
 820      * <tbody>
 821      * <tr>
 822      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 823      * <td style="text-align:center">ORI</td>
 824      * <td style="text-align:center">PRO</td>
 825      * <td style="text-align:center">PRI</td>
 826      * <td style="text-align:center">PAC</td>
 827      * <td style="text-align:center">MOD</td>
 828      * <td style="text-align:center">1R</td>
 829      * </tr>
 830      * <tr>
 831      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 832      * <td></td>
 833      * <td></td>
 834      * <td></td>
 835      * <td style="text-align:center">PAC</td>
 836      * <td style="text-align:center">MOD</td>
 837      * <td style="text-align:center">1R</td>
 838      * </tr>
 839      * <tr>
 840      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 841      * <td></td>
 842      * <td></td>
 843      * <td></td>
 844      * <td></td>
 845      * <td style="text-align:center">MOD</td>
 846      * <td style="text-align:center">1R</td>
 847      * </tr>
 848      * <tr>
 849      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 850      * <td></td>
 851      * <td></td>
 852      * <td></td>
 853      * <td></td>
 854      * <td></td>
 855      * <td style="text-align:center">2R</td>
 856      * </tr>
 857      * <tr>
 858      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 859      * <td></td>
 860      * <td></td>
 861      * <td></td>
 862      * <td></td>
 863      * <td></td>
 864      * <td style="text-align:center">2R</td>
 865      * </tr>
 866      * <tr>
 867      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 868      * <td></td>
 869      * <td style="text-align:center">PRO</td>
 870      * <td style="text-align:center">PRI</td>
 871      * <td style="text-align:center">PAC</td>
 872      * <td style="text-align:center">MOD</td>
 873      * <td style="text-align:center">1R</td>
 874      * </tr>
 875      * <tr>
 876      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 877      * <td></td>
 878      * <td style="text-align:center">PRO</td>
 879      * <td style="text-align:center">PRI</td>
 880      * <td style="text-align:center">PAC</td>
 881      * <td style="text-align:center">MOD</td>
 882      * <td style="text-align:center">1R</td>
 883      * </tr>
 884      * <tr>
 885      * <td>{@code PRI1.in(C1)} same package</td>
 886      * <td></td>
 887      * <td></td>
 888      * <td></td>
 889      * <td style="text-align:center">PAC</td>
 890      * <td style="text-align:center">MOD</td>
 891      * <td style="text-align:center">1R</td>
 892      * </tr>
 893      * <tr>
 894      * <td>{@code PRI1.in(C1)} different package</td>
 895      * <td></td>
 896      * <td></td>
 897      * <td></td>
 898      * <td></td>
 899      * <td style="text-align:center">MOD</td>
 900      * <td style="text-align:center">1R</td>
 901      * </tr>
 902      * <tr>
 903      * <td>{@code PRI1.in(D)} different module</td>
 904      * <td></td>
 905      * <td></td>
 906      * <td></td>
 907      * <td></td>
 908      * <td></td>
 909      * <td style="text-align:center">2R</td>
 910      * </tr>
 911      * <tr>
 912      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 913      * <td></td>
 914      * <td></td>
 915      * <td style="text-align:center">PRI</td>
 916      * <td style="text-align:center">PAC</td>
 917      * <td style="text-align:center">MOD</td>
 918      * <td style="text-align:center">1R</td>
 919      * </tr>
 920      * <tr>
 921      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 922      * <td></td>
 923      * <td></td>
 924      * <td></td>
 925      * <td style="text-align:center">PAC</td>
 926      * <td style="text-align:center">MOD</td>
 927      * <td style="text-align:center">1R</td>
 928      * </tr>
 929      * <tr>
 930      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 931      * <td></td>
 932      * <td></td>
 933      * <td></td>
 934      * <td></td>
 935      * <td style="text-align:center">MOD</td>
 936      * <td style="text-align:center">1R</td>
 937      * </tr>
 938      * <tr>
 939      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 940      * <td></td>
 941      * <td></td>
 942      * <td></td>
 943      * <td></td>
 944      * <td></td>
 945      * <td style="text-align:center">1R</td>
 946      * </tr>
 947      * <tr>
 948      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 949      * <td></td>
 950      * <td></td>
 951      * <td></td>
 952      * <td></td>
 953      * <td></td>
 954      * <td style="text-align:center">none</td>
 955      * <tr>
 956      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 957      * <td></td>
 958      * <td style="text-align:center">PRO</td>
 959      * <td style="text-align:center">PRI</td>
 960      * <td style="text-align:center">PAC</td>
 961      * <td></td>
 962      * <td style="text-align:center">2R</td>
 963      * </tr>
 964      * <tr>
 965      * <td>{@code privateLookupIn(D,PRI1)}</td>
 966      * <td></td>
 967      * <td style="text-align:center">PRO</td>
 968      * <td style="text-align:center">PRI</td>
 969      * <td style="text-align:center">PAC</td>
 970      * <td></td>
 971      * <td style="text-align:center">2R</td>
 972      * </tr>
 973      * <tr>
 974      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 975      * <td></td>
 976      * <td></td>
 977      * <td></td>
 978      * <td></td>
 979      * <td></td>
 980      * <td style="text-align:center">IAE</td>
 981      * </tr>
 982      * <tr>
 983      * <td>{@code PRI2.in(D2)} same package</td>
 984      * <td></td>
 985      * <td></td>
 986      * <td></td>
 987      * <td style="text-align:center">PAC</td>
 988      * <td></td>
 989      * <td style="text-align:center">2R</td>
 990      * </tr>
 991      * <tr>
 992      * <td>{@code PRI2.in(D2)} different package</td>
 993      * <td></td>
 994      * <td></td>
 995      * <td></td>
 996      * <td></td>
 997      * <td></td>
 998      * <td style="text-align:center">2R</td>
 999      * </tr>
1000      * <tr>
1001      * <td>{@code PRI2.in(C1)} hop back to module</td>
1002      * <td></td>
1003      * <td></td>
1004      * <td></td>
1005      * <td></td>
1006      * <td></td>
1007      * <td style="text-align:center">2R</td>
1008      * </tr>
1009      * <tr>
1010      * <td>{@code PRI2.in(E)} hop to third module</td>
1011      * <td></td>
1012      * <td></td>
1013      * <td></td>
1014      * <td></td>
1015      * <td></td>
1016      * <td style="text-align:center">none</td>
1017      * </tr>
1018      * <tr>
1019      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
1020      * <td></td>
1021      * <td></td>
1022      * <td style="text-align:center">PRI</td>
1023      * <td style="text-align:center">PAC</td>
1024      * <td></td>
1025      * <td style="text-align:center">2R</td>
1026      * </tr>
1027      * <tr>
1028      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
1029      * <td></td>
1030      * <td></td>
1031      * <td></td>
1032      * <td style="text-align:center">PAC</td>
1033      * <td></td>
1034      * <td style="text-align:center">2R</td>
1035      * </tr>
1036      * <tr>
1037      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td></td>
1042      * <td></td>
1043      * <td style="text-align:center">2R</td>
1044      * </tr>
1045      * <tr>
1046      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
1047      * <td></td>
1048      * <td></td>
1049      * <td></td>
1050      * <td></td>
1051      * <td></td>
1052      * <td style="text-align:center">2R</td>
1053      * </tr>
1054      * <tr>
1055      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
1056      * <td></td>
1057      * <td></td>
1058      * <td></td>
1059      * <td></td>
1060      * <td></td>
1061      * <td style="text-align:center">none</td>
1062      * </tr>
1063      * <tr>
1064      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
1065      * <td></td>
1066      * <td></td>
1067      * <td style="text-align:center">PRI</td>
1068      * <td style="text-align:center">PAC</td>
1069      * <td style="text-align:center">MOD</td>
1070      * <td style="text-align:center">1R</td>
1071      * </tr>
1072      * <tr>
1073      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
1074      * <td></td>
1075      * <td></td>
1076      * <td></td>
1077      * <td style="text-align:center">PAC</td>
1078      * <td style="text-align:center">MOD</td>
1079      * <td style="text-align:center">1R</td>
1080      * </tr>
1081      * <tr>
1082      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
1083      * <td></td>
1084      * <td></td>
1085      * <td></td>
1086      * <td></td>
1087      * <td style="text-align:center">MOD</td>
1088      * <td style="text-align:center">1R</td>
1089      * </tr>
1090      * <tr>
1091      * <td>{@code CL.dropLookupMode(MODULE)}</td>
1092      * <td></td>
1093      * <td></td>
1094      * <td></td>
1095      * <td></td>
1096      * <td></td>
1097      * <td style="text-align:center">1R</td>
1098      * </tr>
1099      * <tr>
1100      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
1101      * <td></td>
1102      * <td></td>
1103      * <td></td>
1104      * <td></td>
1105      * <td></td>
1106      * <td style="text-align:center">none</td>
1107      * </tr>
1108      * <tr>
1109      * <td>{@code PUB = publicLookup()}</td>
1110      * <td></td>
1111      * <td></td>
1112      * <td></td>
1113      * <td></td>
1114      * <td></td>
1115      * <td style="text-align:center">U</td>
1116      * </tr>
1117      * <tr>
1118      * <td>{@code PUB.in(D)} different module</td>
1119      * <td></td>
1120      * <td></td>
1121      * <td></td>
1122      * <td></td>
1123      * <td></td>
1124      * <td style="text-align:center">U</td>
1125      * </tr>
1126      * <tr>
1127      * <td>{@code PUB.in(D).in(E)} third module</td>
1128      * <td></td>
1129      * <td></td>
1130      * <td></td>
1131      * <td></td>
1132      * <td></td>
1133      * <td style="text-align:center">U</td>
1134      * </tr>
1135      * <tr>
1136      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1137      * <td></td>
1138      * <td></td>
1139      * <td></td>
1140      * <td></td>
1141      * <td></td>
1142      * <td style="text-align:center">none</td>
1143      * </tr>
1144      * <tr>
1145      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1146      * <td></td>
1147      * <td></td>
1148      * <td></td>
1149      * <td></td>
1150      * <td></td>
1151      * <td style="text-align:center">IAE</td>
1152      * </tr>
1153      * <tr>
1154      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1155      * <td></td>
1156      * <td></td>
1157      * <td></td>
1158      * <td></td>
1159      * <td></td>
1160      * <td style="text-align:center">none</td>
1161      * </tr>
1162      * </tbody>
1163      * </table>
1164      *
1165      * <p>
1166      * Notes:
1167      * <ul>
1168      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1169      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1170      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1171      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1172      * <li>{@code ORI} indicates {@link #ORIGINAL} bit set,
1173      *     {@code PRO} indicates {@link #PROTECTED} bit set,
1174      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1175      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1176      *     {@code MOD} indicates {@link #MODULE} bit set,
1177      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1178      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1179      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1180      * <li>Public access comes in three kinds:
1181      * <ul>
1182      * <li>unconditional ({@code U}): the lookup assumes readability.
1183      *     The lookup has {@code null} previous lookup class.
1184      * <li>one-module-reads ({@code 1R}): the module access checking is
1185      *     performed with respect to the lookup class.  The lookup has {@code null}
1186      *     previous lookup class.
1187      * <li>two-module-reads ({@code 2R}): the module access checking is
1188      *     performed with respect to the lookup class and the previous lookup class.
1189      *     The lookup has a non-null previous lookup class which is in a
1190      *     different module from the current lookup class.
1191      * </ul>
1192      * <li>Any attempt to reach a third module loses all access.</li>
1193      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1194      * all access modes are dropped.</li>
1195      * </ul>
1196      *
1197      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1198      * Although bytecode instructions can only refer to classes in
1199      * a related class loader, this API can search for methods in any
1200      * class, as long as a reference to its {@code Class} object is
1201      * available.  Such cross-loader references are also possible with the
1202      * Core Reflection API, and are impossible to bytecode instructions
1203      * such as {@code invokestatic} or {@code getfield}.
1204      * There is a {@linkplain java.lang.SecurityManager security manager API}
1205      * to allow applications to check such cross-loader references.
1206      * These checks apply to both the {@code MethodHandles.Lookup} API
1207      * and the Core Reflection API
1208      * (as found on {@link java.lang.Class Class}).
1209      * <p>
1210      * If a security manager is present, member and class lookups are subject to
1211      * additional checks.
1212      * From one to three calls are made to the security manager.
1213      * Any of these calls can refuse access by throwing a
1214      * {@link java.lang.SecurityException SecurityException}.
1215      * Define {@code smgr} as the security manager,
1216      * {@code lookc} as the lookup class of the current lookup object,
1217      * {@code refc} as the containing class in which the member
1218      * is being sought, and {@code defc} as the class in which the
1219      * member is actually defined.
1220      * (If a class or other type is being accessed,
1221      * the {@code refc} and {@code defc} values are the class itself.)
1222      * The value {@code lookc} is defined as <em>not present</em>
1223      * if the current lookup object does not have
1224      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1225      * The calls are made according to the following rules:
1226      * <ul>
1227      * <li><b>Step 1:</b>
1228      *     If {@code lookc} is not present, or if its class loader is not
1229      *     the same as or an ancestor of the class loader of {@code refc},
1230      *     then {@link SecurityManager#checkPackageAccess
1231      *     smgr.checkPackageAccess(refcPkg)} is called,
1232      *     where {@code refcPkg} is the package of {@code refc}.
1233      * <li><b>Step 2a:</b>
1234      *     If the retrieved member is not public and
1235      *     {@code lookc} is not present, then
1236      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1237      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1238      * <li><b>Step 2b:</b>
1239      *     If the retrieved class has a {@code null} class loader,
1240      *     and {@code lookc} is not present, then
1241      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1242      *     with {@code RuntimePermission("getClassLoader")} is called.
1243      * <li><b>Step 3:</b>
1244      *     If the retrieved member is not public,
1245      *     and if {@code lookc} is not present,
1246      *     and if {@code defc} and {@code refc} are different,
1247      *     then {@link SecurityManager#checkPackageAccess
1248      *     smgr.checkPackageAccess(defcPkg)} is called,
1249      *     where {@code defcPkg} is the package of {@code defc}.
1250      * </ul>
1251      * Security checks are performed after other access checks have passed.
1252      * Therefore, the above rules presuppose a member or class that is public,
1253      * or else that is being accessed from a lookup class that has
1254      * rights to access the member or class.
1255      * <p>
1256      * If a security manager is present and the current lookup object does not have
1257      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1258      * {@link #defineClass(byte[]) defineClass}
1259      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1260      * with {@code RuntimePermission("defineClass")}.
1261      *
1262      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1263      * A small number of Java methods have a special property called caller sensitivity.
1264      * A <em>caller-sensitive</em> method can behave differently depending on the
1265      * identity of its immediate caller.
1266      * <p>
1267      * If a method handle for a caller-sensitive method is requested,
1268      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1269      * but they take account of the lookup class in a special way.
1270      * The resulting method handle behaves as if it were called
1271      * from an instruction contained in the lookup class,
1272      * so that the caller-sensitive method detects the lookup class.
1273      * (By contrast, the invoker of the method handle is disregarded.)
1274      * Thus, in the case of caller-sensitive methods,
1275      * different lookup classes may give rise to
1276      * differently behaving method handles.
1277      * <p>
1278      * In cases where the lookup object is
1279      * {@link MethodHandles#publicLookup() publicLookup()},
1280      * or some other lookup object without the
1281      * {@linkplain #hasFullPrivilegeAccess() full privilege access},
1282      * the lookup class is disregarded.
1283      * In such cases, no caller-sensitive method handle can be created,
1284      * access is forbidden, and the lookup fails with an
1285      * {@code IllegalAccessException}.
1286      * <p style="font-size:smaller;">
1287      * <em>Discussion:</em>
1288      * For example, the caller-sensitive method
1289      * {@link java.lang.Class#forName(String) Class.forName(x)}
1290      * can return varying classes or throw varying exceptions,
1291      * depending on the class loader of the class that calls it.
1292      * A public lookup of {@code Class.forName} will fail, because
1293      * there is no reasonable way to determine its bytecode behavior.
1294      * <p style="font-size:smaller;">
1295      * If an application caches method handles for broad sharing,
1296      * it should use {@code publicLookup()} to create them.
1297      * If there is a lookup of {@code Class.forName}, it will fail,
1298      * and the application must take appropriate action in that case.
1299      * It may be that a later lookup, perhaps during the invocation of a
1300      * bootstrap method, can incorporate the specific identity
1301      * of the caller, making the method accessible.
1302      * <p style="font-size:smaller;">
1303      * The function {@code MethodHandles.lookup} is caller sensitive
1304      * so that there can be a secure foundation for lookups.
1305      * Nearly all other methods in the JSR 292 API rely on lookup
1306      * objects to check access requests.
1307      *
1308      * @revised 9
1309      */
1310     public static final
1311     class Lookup {
1312         /** The class on behalf of whom the lookup is being performed. */
1313         private final Class<?> lookupClass;
1314 
1315         /** previous lookup class */
1316         private final Class<?> prevLookupClass;
1317 
1318         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1319         private final int allowedModes;
1320 
1321         static {
1322             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1323         }
1324 
1325         /** A single-bit mask representing {@code public} access,
1326          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1327          *  The value, {@code 0x01}, happens to be the same as the value of the
1328          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1329          *  <p>
1330          *  A {@code Lookup} with this lookup mode performs cross-module access check
1331          *  with respect to the {@linkplain #lookupClass() lookup class} and
1332          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1333          */
1334         public static final int PUBLIC = Modifier.PUBLIC;
1335 
1336         /** A single-bit mask representing {@code private} access,
1337          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1338          *  The value, {@code 0x02}, happens to be the same as the value of the
1339          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1340          */
1341         public static final int PRIVATE = Modifier.PRIVATE;
1342 
1343         /** A single-bit mask representing {@code protected} access,
1344          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1345          *  The value, {@code 0x04}, happens to be the same as the value of the
1346          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1347          */
1348         public static final int PROTECTED = Modifier.PROTECTED;
1349 
1350         /** A single-bit mask representing {@code package} access (default access),
1351          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1352          *  The value is {@code 0x08}, which does not correspond meaningfully to
1353          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1354          */
1355         public static final int PACKAGE = Modifier.STATIC;
1356 
1357         /** A single-bit mask representing {@code module} access,
1358          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1359          *  The value is {@code 0x10}, which does not correspond meaningfully to
1360          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1361          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1362          *  with this lookup mode can access all public types in the module of the
1363          *  lookup class and public types in packages exported by other modules
1364          *  to the module of the lookup class.
1365          *  <p>
1366          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1367          *  previous lookup class} is always {@code null}.
1368          *
1369          *  @since 9
1370          *  @spec JPMS
1371          */
1372         public static final int MODULE = PACKAGE << 1;
1373 
1374         /** A single-bit mask representing {@code unconditional} access
1375          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1376          *  The value is {@code 0x20}, which does not correspond meaningfully to
1377          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1378          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1379          *  java.lang.Module#canRead(java.lang.Module) readability}.
1380          *  This lookup mode can access all public members of public types
1381          *  of all modules when the type is in a package that is {@link
1382          *  java.lang.Module#isExported(String) exported unconditionally}.
1383          *
1384          *  <p>
1385          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1386          *  previous lookup class} is always {@code null}.
1387          *
1388          *  @since 9
1389          *  @spec JPMS
1390          *  @see #publicLookup()
1391          */
1392         public static final int UNCONDITIONAL = PACKAGE << 2;
1393 
1394 
1395         /** A single-bit mask representing {@code original} full privilege access
1396          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1397          *  The value is {@code 0x40}, which does not correspond meaningfully to
1398          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1399          *
1400          *  <p>
1401          *  If this lookup mode is set, the {@code Lookup} object must be
1402          *  created by the original lookup class by calling
1403          *  {@link MethodHandles#lookup()} method or by a bootstrap method
1404          *  invoked by the VM.
1405          *
1406          *  @since 14
1407          */
1408         public static final int ORIGINAL = PACKAGE << 3;
1409 
1410         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL | ORIGINAL);
1411         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1412         private static final int TRUSTED   = -1;
1413 
1414         /*
1415          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1416          * Adjust 0 => PACKAGE
1417          */
1418         private static int fixmods(int mods) {
1419             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL - ORIGINAL);
1420             if (Modifier.isPublic(mods))
1421                 mods |= UNCONDITIONAL;
1422             return (mods != 0) ? mods : PACKAGE;
1423         }
1424 
1425         /** Tells which class is performing the lookup.  It is this class against
1426          *  which checks are performed for visibility and access permissions.
1427          *  <p>
1428          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1429          *  access checks are performed against both the lookup class and the previous lookup class.
1430          *  <p>
1431          *  The class implies a maximum level of access permission,
1432          *  but the permissions may be additionally limited by the bitmask
1433          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1434          *  can be accessed.
1435          *  @return the lookup class, on behalf of which this lookup object finds members
1436          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1437          */
1438         public Class<?> lookupClass() {
1439             return lookupClass;
1440         }
1441 
1442         /** Reports a lookup class in another module that this lookup object
1443          * was previously teleported from, or {@code null}.
1444          * <p>
1445          * A {@code Lookup} object produced by the factory methods, such as the
1446          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1447          * has {@code null} previous lookup class.
1448          * A {@code Lookup} object has a non-null previous lookup class
1449          * when this lookup was teleported from an old lookup class
1450          * in one module to a new lookup class in another module.
1451          *
1452          * @return the lookup class in another module that this lookup object was
1453          *         previously teleported from, or {@code null}
1454          * @since 14
1455          * @see #in(Class)
1456          * @see MethodHandles#privateLookupIn(Class, Lookup)
1457          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1458          */
1459         public Class<?> previousLookupClass() {
1460             return prevLookupClass;
1461         }
1462 
1463         // This is just for calling out to MethodHandleImpl.
1464         private Class<?> lookupClassOrNull() {
1465             if (allowedModes == TRUSTED) {
1466                 return null;
1467             }
1468             if (allowedModes == UNCONDITIONAL) {
1469                 // use Object as the caller to pass to VM doing resolution
1470                 return Object.class;
1471             }
1472             return lookupClass;
1473         }
1474 
1475         /** Tells which access-protection classes of members this lookup object can produce.
1476          *  The result is a bit-mask of the bits
1477          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1478          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1479          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1480          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1481          *  {@linkplain #MODULE MODULE (0x10)},
1482          *  {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)},
1483          *  and {@linkplain #ORIGINAL ORIGINAL (0x40)}.
1484          *  <p>
1485          *  A freshly-created lookup object
1486          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1487          *  all possible bits set, except {@code UNCONDITIONAL}.
1488          *  A lookup object on a new lookup class
1489          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1490          *  may have some mode bits set to zero.
1491          *  Mode bits can also be
1492          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1493          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1494          *  The purpose of this is to restrict access via the new lookup object,
1495          *  so that it can access only names which can be reached by the original
1496          *  lookup object, and also by the new lookup class.
1497          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1498          *  @see #in
1499          *  @see #dropLookupMode
1500          *
1501          *  @revised 9
1502          *  @spec JPMS
1503          */
1504         public int lookupModes() {
1505             return allowedModes & ALL_MODES;
1506         }
1507 
1508         /** Embody the current class (the lookupClass) as a lookup class
1509          * for method handle creation.
1510          * Must be called by from a method in this package,
1511          * which in turn is called by a method not in this package.
1512          */
1513         Lookup(Class<?> lookupClass) {
1514             this(lookupClass, null, FULL_POWER_MODES);
1515         }
1516 
1517         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1518             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1519                     && prevLookupClass.getModule() != lookupClass.getModule());
1520             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1521             this.lookupClass = lookupClass;
1522             this.prevLookupClass = prevLookupClass;
1523             this.allowedModes = allowedModes;
1524         }
1525 
1526         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1527             // make sure we haven't accidentally picked up a privileged class:
1528             checkUnprivilegedlookupClass(lookupClass);
1529             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1530         }
1531 
1532         /**
1533          * Creates a lookup on the specified new lookup class.
1534          * The resulting object will report the specified
1535          * class as its own {@link #lookupClass() lookupClass}.
1536          *
1537          * <p>
1538          * However, the resulting {@code Lookup} object is guaranteed
1539          * to have no more access capabilities than the original.
1540          * In particular, access capabilities can be lost as follows:<ul>
1541          * <li>If the new lookup class is in a different module from the old one,
1542          * i.e. {@link #MODULE MODULE} access is lost.
1543          * <li>If the new lookup class is in a different package
1544          * than the old one, protected and default (package) members will not be accessible,
1545          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1546          * <li>If the new lookup class is not within the same package member
1547          * as the old one, private members will not be accessible, and protected members
1548          * will not be accessible by virtue of inheritance,
1549          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1550          * (Protected members may continue to be accessible because of package sharing.)
1551          * <li>If the new lookup class is different from the old lookup class,
1552          * i.e. {@link #ORIGINAL ORIGINAL} access is lost.
1553          * <li>If the new lookup class is not
1554          * {@linkplain #accessClass(Class) accessible} to this lookup,
1555          * then no members, not even public members, will be accessible
1556          * i.e. all access modes are lost.
1557          * <li>If the new lookup class, the old lookup class and the previous lookup class
1558          * are all in different modules i.e. teleporting to a third module,
1559          * all access modes are lost.
1560          * </ul>
1561          * <p>
1562          * The new previous lookup class is chosen as follows:
1563          * <ul>
1564          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1565          * the new previous lookup class is {@code null}.
1566          * <li>If the new lookup class is in the same module as the old lookup class,
1567          * the new previous lookup class is the old previous lookup class.
1568          * <li>If the new lookup class is in a different module from the old lookup class,
1569          * the new previous lookup class is the old lookup class.
1570          *</ul>
1571          * <p>
1572          * The resulting lookup's capabilities for loading classes
1573          * (used during {@link #findClass} invocations)
1574          * are determined by the lookup class' loader,
1575          * which may change due to this operation.
1576          * <p>
1577          * @param requestedLookupClass the desired lookup class for the new lookup object
1578          * @return a lookup object which reports the desired lookup class, or the same object
1579          * if there is no change
1580          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1581          * @throws NullPointerException if the argument is null
1582          *
1583          * @revised 9
1584          * @spec JPMS
1585          * @see #accessClass(Class)
1586          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1587          */
1588         public Lookup in(Class<?> requestedLookupClass) {
1589             Objects.requireNonNull(requestedLookupClass);
1590             if (requestedLookupClass.isPrimitive())
1591                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1592             if (requestedLookupClass.isArray())
1593                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1594 
1595             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1596                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1597             if (requestedLookupClass == this.lookupClass)
1598                 return this;  // keep same capabilities
1599             int newModes = (allowedModes & FULL_POWER_MODES) & ~ORIGINAL;
1600             Module fromModule = this.lookupClass.getModule();
1601             Module targetModule = requestedLookupClass.getModule();
1602             Class<?> plc = this.previousLookupClass();
1603             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1604                 assert plc == null;
1605                 newModes = UNCONDITIONAL;
1606             } else if (fromModule != targetModule) {
1607                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1608                     // allow hopping back and forth between fromModule and plc's module
1609                     // but not the third module
1610                     newModes = 0;
1611                 }
1612                 // drop MODULE access
1613                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1614                 // teleport from this lookup class
1615                 plc = this.lookupClass;
1616             }
1617             if ((newModes & PACKAGE) != 0
1618                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1619                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1620             }
1621             // Allow nestmate lookups to be created without special privilege:
1622             if ((newModes & PRIVATE) != 0
1623                     && !this.lookupClass.isNestmateOf(requestedLookupClass)
1624                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1625                 newModes &= ~(PRIVATE|PROTECTED);
1626             }
1627             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1628                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1629                 // The requested class it not accessible from the lookup class.
1630                 // No permissions.
1631                 newModes = 0;
1632             }
1633             return newLookup(requestedLookupClass, plc, newModes);
1634         }
1635 
1636         /**
1637          * Creates a lookup on the same lookup class which this lookup object
1638          * finds members, but with a lookup mode that has lost the given lookup mode.
1639          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1640          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1641          * {@link #PROTECTED PROTECTED} and and {@link #ORIGINAL ORIGINAL} are always dropped
1642          * and so the resulting lookup mode will never have this access capability.
1643          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1644          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1645          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1646          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1647          * is dropped then the resulting lookup has no access.
1648          *
1649          * @apiNote
1650          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1651          * delegate non-public access within the package of the lookup class without
1652          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1653          * A lookup with {@code MODULE} but not
1654          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1655          * the module of the lookup class without conferring package access.
1656          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1657          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1658          * to public classes accessible to both the module of the lookup class
1659          * and the module of the previous lookup class.
1660          *
1661          * @param modeToDrop the lookup mode to drop
1662          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1663          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1664          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1665          * @see MethodHandles#privateLookupIn
1666          * @since 9
1667          */
1668         public Lookup dropLookupMode(int modeToDrop) {
1669             int oldModes = lookupModes();
1670             int newModes = oldModes & ~(modeToDrop | PROTECTED | ORIGINAL);
1671             switch (modeToDrop) {
1672                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1673                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1674                 case PACKAGE: newModes &= ~(PRIVATE); break;
1675                 case PROTECTED:
1676                 case PRIVATE:
1677                 case UNCONDITIONAL: break;
1678                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1679             }
1680             if (newModes == oldModes) return this;  // return self if no change
1681             return newLookup(lookupClass(), previousLookupClass(), newModes);
1682         }
1683 
1684         /**
1685          * Defines a class to the same class loader and in the same runtime package and
1686          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1687          * {@linkplain #lookupClass() lookup class}.
1688          *
1689          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1690          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1691          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1692          * that the lookup object was created by a caller in the runtime package (or derived
1693          * from a lookup originally created by suitably privileged code to a target class in
1694          * the runtime package). </p>
1695          *
1696          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1697          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1698          * same package as the lookup class. </p>
1699          *
1700          * <p> This method does not run the class initializer.
1701          * The class initializer may run at a later time, as detailed in section 12.4 of
1702          * the <em>The Java Language Specification</em>. </p>
1703          *
1704          * <p> If there is a security manager and this lookup does not have {@linkplain
1705          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1706          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1707          *
1708          * @param bytes the class bytes
1709          * @return the {@code Class} object for the class
1710          * @throws IllegalArgumentException the bytes are for a class in a different package
1711          * to the lookup class
1712          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1713          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1714          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1715          * @throws SecurityException if a security manager is present and it
1716          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1717          * @throws NullPointerException if {@code bytes} is {@code null}
1718          * @since 9
1719          * @spec JPMS
1720          * @see Lookup#privateLookupIn
1721          * @see Lookup#dropLookupMode
1722          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1723          */
1724         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1725             ensureDefineClassPermission();
1726             if ((lookupModes() & PACKAGE) == 0)
1727                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1728             return makeClassDefiner(bytes.clone()).defineClass(false);
1729         }
1730 
1731         private void ensureDefineClassPermission() {
1732             if (allowedModes == TRUSTED)  return;
1733 
1734             if (!hasFullPrivilegeAccess()) {
1735                 SecurityManager sm = System.getSecurityManager();
1736                 if (sm != null)
1737                     sm.checkPermission(new RuntimePermission("defineClass"));
1738             }
1739         }
1740 
1741         /**
1742          * Creates a <em>hidden</em> class or interface from {@code bytes},
1743          * returning a {@code Lookup} on the newly created class or interface.
1744          *
1745          * <p> Ordinarily, a class or interface {@code C} is created by a class loader,
1746          * which either defines {@code C} directly or delegates to another class loader.
1747          * A class loader defines {@code C} directly by invoking
1748          * {@link ClassLoader#defineClass(String, byte[], int, int, ProtectionDomain)
1749          * ClassLoader::defineClass}, which causes the Java Virtual Machine
1750          * to derive {@code C} from a purported representation in {@code class} file format.
1751          * In situations where use of a class loader is undesirable, a class or interface
1752          * {@code C} can be created by this method instead. This method is capable of
1753          * defining {@code C}, and thereby creating it, without invoking
1754          * {@code ClassLoader::defineClass}.
1755          * Instead, this method defines {@code C} as if by arranging for
1756          * the Java Virtual Machine to derive a nonarray class or interface {@code C}
1757          * from a purported representation in {@code class} file format
1758          * using the following rules:
1759          *
1760          * <ol>
1761          * <li> The {@linkplain #lookupModes() lookup modes} for this {@code Lookup}
1762          * must include {@linkplain #hasFullPrivilegeAccess() full privilege} access.
1763          * This level of access is needed to create {@code C} in the module
1764          * of the lookup class of this {@code Lookup}.</li>
1765          *
1766          * <li> The purported representation in {@code bytes} must be a {@code ClassFile}
1767          * structure of a supported major and minor version. The major and minor version
1768          * may differ from the {@code class} file version of the lookup class of this
1769          * {@code Lookup}.</li>
1770          *
1771          * <li> The value of {@code this_class} must be a valid index in the
1772          * {@code constant_pool} table, and the entry at that index must be a valid
1773          * {@code CONSTANT_Class_info} structure. Let {@code N} be the binary name
1774          * encoded in internal form that is specified by this structure. {@code N} must
1775          * denote a class or interface in the same package as the lookup class.</li>
1776          *
1777          * <li> Let {@code CN} be the string {@code N + "." + <suffix>},
1778          * where {@code <suffix>} is an unqualified name that is guaranteed to be unique
1779          * during this execution of the JVM.
1780          *
1781          * <p> Let {@code newBytes} be the {@code ClassFile} structure given by
1782          * {@code bytes} with an additional entry in the {@code constant_pool} table,
1783          * indicating a {@code CONSTANT_Utf8_info} structure for {@code CN}, and
1784          * where the {@code CONSTANT_Class_info} structure indicated by {@code this_class}
1785          * refers to the new {@code CONSTANT_Utf8_info} structure.
1786          *
1787          * <p> Let {@code L} be the defining class loader of the lookup class of this {@code Lookup}.
1788          *
1789          * <p> {@code C} is derived with name {@code CN}, class loader {@code L}, and
1790          * purported representation {@code newBytes} as if by the rules of JVMS 5.3.5,
1791          * with the following adjustments:
1792          * <ul>
1793          * <li> The constant indicated by {@code this_class} is permitted to specify a name
1794          * that includes a single {@code "."} character, even though this is not a valid
1795          * binary class or interface name in internal form.</li>
1796          *
1797          * <li> The Java Virtual Machine marks {@code L} as the defining class loader of {@code C},
1798          * but no class loader is recorded as an initiating class loader of {@code C}.</li>
1799          *
1800          * <li> {@code C} is considered to have the same runtime package and
1801          * {@linkplain java.security.ProtectionDomain protection domain}
1802          * as the lookup class of this {@code Lookup}.
1803          *
1804          * <li> Let {@code GN} be the binary name obtained by taking {@code N}
1805          * (a binary name encoded in internal form) and replacing ASCII forward slashes with
1806          * ASCII periods. For the instance of {@link java.lang.Class} representing {@code C},
1807          * {@link Class#getName()} returns the string {@code GN + "/" + <suffix>}, even though
1808          * this is not a valid binary class or interface name.</li>
1809          * </ul>
1810          * </li>
1811          * </ol>
1812          *
1813          * <p> After {@code C} is derived, it is linked by the Java Virtual Machine.
1814          * Linkage occurs as specified in JVMS 5.4.3, with the following adjustments:
1815          * <ul>
1816          * <li> During verification, whenever it is necessary to load the class named
1817          * {@code CN}, the attempt succeeds, producing class {@code C}. No request is
1818          * made of any class loader.</li>
1819          *
1820          * <li> On any attempt to resolve the entry in the run-time constant pool indicated
1821          * by {@code this_class}, the symbolic reference is considered to be resolved to
1822          * {@code C} and resolution always succeeds immediately.</li>
1823          * </ul>
1824          *
1825          * <p> If the {@code initialize} parameter is {@code true},
1826          * then {@code C} is initialized by the Java Virtual Machine.
1827          *
1828          * <p>The newly created class or interface {@code C} is <em>hidden</em>, in the sense that
1829          * no other class or interface can refer to {@code C} via a constant pool entry.
1830          * That is, a hidden class or interface cannot be named as a supertype, a field type,
1831          * a method parameter type, or a method return type by any other class.
1832          * This is because a hidden class or interface does not have a binary name, so
1833          * there is no internal form available to record in any class's constant pool.
1834          * (Given the {@code Lookup} object returned this method, its lookup class
1835          * is a {@code Class} object for which {@link Class#getName()} returns a string
1836          * that is not a binary name.)
1837          * A hidden class or interface is not discoverable by {@link Class#forName(String, boolean, ClassLoader)},
1838          * {@link ClassLoader#loadClass(String, boolean)}, or {@link #findClass(String)}, and
1839          * is not {@linkplain java.lang.instrument.Instrumentation#isModifiableClass(Class)
1840          * modifiable} by Java agents or tool agents using the <a href="{@docRoot}/../specs/jvmti.html">
1841          * JVM Tool Interface</a>.
1842          *
1843          * <p> If {@code options} has the {@link ClassOption#NESTMATE NESTMATE} option, then
1844          * the newly created class or interface {@code C} is a member of a nest. The nest
1845          * to which {@code C} belongs is not based on any {@code NestHost} attribute in
1846          * the {@code ClassFile} structure from which {@code C} was derived.
1847          * Instead, the following rules determine the nest host of {@code C}:
1848          * <ul>
1849          * <li>If the nest host of the lookup class of this {@code Lookup} has previously
1850          * been determined, then {@code H} be the nest host of the lookup class.</li>
1851          * <li>Otherwise, it is determined using the algorithm in JVMS 5.4.4, yielding {@code H}.</li>
1852          * <li>The nest host of {@code C} is determined to be {@code H}, the nest host of the lookup class.</li>
1853          * </ul>
1854          *
1855          * <p> If {@code options} has {@link ClassOption#WEAK WEAK} option, then
1856          * the newly created class or interface is <em>not strongly referenced</em> from
1857          * its defining class loader. Therefore, it may be unloaded while
1858          * its defining class loader is strongly reachable.
1859          *
1860          * <p> A hidden class or interface may be serializable, but this requires a custom
1861          * serialization mechanism in order to ensure that instances are properly serialized
1862          * and deserialized. The default serialization mechanism supports only classes and
1863          * interfaces that are discoverable by their class name.
1864          *
1865          * @param bytes the bytes that make up the class data,
1866          * in the format of a valid {@code class} file as defined by
1867          * <cite>The Java Virtual Machine Specification</cite>.
1868          * @param initialize if {@code true} the class will be initialized.
1869          * @param options {@linkplain ClassOption class options}
1870          * @return the {@code Lookup} object on the hidden class
1871          *
1872          * @throws IllegalAccessException if this {@code Lookup} does not have
1873          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
1874          * @throws SecurityException if a security manager is present and it
1875          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1876          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1877          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
1878          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
1879          * {@bytes} denotes a class in a different package than the lookup class
1880          * @throws IncompatibleClassChangeError if the class or interface named as
1881          * the direct superclass of {@code C} is in fact an interface, or if any of the classes
1882          * or interfaces named as direct superinterfaces of {@code C} are not in fact interfaces
1883          * @throws ClassCircularityError if any of the superclasses or superinterfaces of
1884          * {@code C} is {@code C} itself
1885          * @throws VerifyError if the newly created class cannot be verified
1886          * @throws LinkageError if the newly created class cannot be linked for any other reason
1887          * @throws NullPointerException if any parameter is {@code null}
1888          *
1889          * @since 15
1890          * @see Class#isHiddenClass()
1891          * @jvms 4.2.1 Binary Class and Interface Names
1892          * @jvms 4.2.2 Unqualified Names
1893          * @jvms 5.4.3.1 Class and Interface Resolution
1894          * @jvms 5.4.4 Access Control
1895          * @jvms 5.3.5 Deriving a {@code Class} from a {@code class} File Representation
1896          * @jvms 5.4 Linking
1897          * @jvms 5.5 Initialization
1898          */
1899         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
1900                 throws IllegalAccessException
1901         {
1902             Objects.requireNonNull(bytes);
1903             Objects.requireNonNull(options);
1904 
1905             ensureDefineClassPermission();
1906             if (!hasFullPrivilegeAccess()) {
1907                 throw new IllegalAccessException(this + " does not have full privilege access");
1908             }
1909 
1910             Set<ClassOption> opts = options.length > 0 ? Set.of(options) : Set.of();
1911             return makeHiddenClassDefiner(bytes.clone(), opts).defineClassAsLookup(initialize);
1912         }
1913 
1914         /**
1915          * Creates a <em>hidden</em> class or interface from {@code bytes} with {@code classData},
1916          * returning a {@code Lookup} on the newly created class or interface.
1917          *
1918          * <p> This method is equivalent to calling
1919          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)}
1920          * as if the hidden class has a private static final unnamed field
1921          * pre-initialized with the given {@code classData}.
1922          * The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData} method
1923          * can be used to retrieve the {@code classData}.
1924          *
1925          * @param bytes     the class bytes
1926          * @param classData pre-initialized class data
1927          * @param initialize if {@code true} the class will be initialized.
1928          * @param options   {@linkplain ClassOption class options}
1929          * @return the {@code Lookup} object on the hidden class
1930          *
1931          * @throws IllegalAccessException if this {@code Lookup} does not have
1932          * {@linkplain #hasFullPrivilegeAccess() full privilege} access
1933          * @throws SecurityException if a security manager is present and it
1934          * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1935          * @throws ClassFormatError if {@code bytes} is not a {@code ClassFile} structure
1936          * @throws UnsupportedClassVersionError if {@code bytes} is not of a supported major or minor version
1937          * @throws IllegalArgumentException if {@code bytes} is not a class or interface or
1938          * {@bytes} denotes a class in a different package than the lookup class
1939          * @throws IncompatibleClassChangeError if the class or interface named as the direct superclass of {@code C}
1940          * is in fact an interface, or if any of the classes or interfaces named as direct superinterfaces of {@code C}
1941          * are not in fact interfaces
1942          * @throws ClassCircularityError if any of the superclasses or superinterfaces of {@code C} is {@code C} itself
1943          * @throws VerifyError if the newly created class cannot be verified
1944          * @throws LinkageError if the newly created class cannot be linked for any other reason
1945          * @throws NullPointerException if any parameter is {@code null}
1946          *
1947          * @since 15
1948          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
1949          * @see Class#isHiddenClass()
1950          */
1951         public Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options)
1952                 throws IllegalAccessException
1953         {
1954             Objects.requireNonNull(bytes);
1955             Objects.requireNonNull(classData);
1956             Objects.requireNonNull(options);
1957 
1958             ensureDefineClassPermission();
1959             if (!hasFullPrivilegeAccess()) {
1960                 throw new IllegalAccessException(this + " does not have full privilege access");
1961             }
1962 
1963             Set<ClassOption> opts = options.length > 0 ? Set.of(options) : Set.of();
1964             return makeHiddenClassDefiner(bytes.clone(), opts).defineClassAsLookup(initialize, classData);
1965         }
1966 
1967         private ClassDefiner makeClassDefiner(byte[] bytes) {
1968             return new ClassDefiner(this, bytes, Set.of(), 0);
1969         }
1970 
1971         /**
1972          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
1973          * from the given bytes and options.
1974          *
1975          * @param bytes class bytes
1976          * @param options class options
1977          * @return ClassDefiner that defines a hidden class of the given bytes and options
1978          */
1979         ClassDefiner makeHiddenClassDefiner(byte[] bytes, Set<ClassOption> options) {
1980             return new ClassDefiner(this, bytes, options, HIDDEN_CLASS);
1981         }
1982 
1983         /**
1984          * This method is only called by MethodHandleImpl.BindCaller.makeInjectedInvoker.
1985          *
1986          * @param name the name of the class and the name in the class bytes is ignored.
1987          * @param bytes class bytes
1988          * @return ClassDefiner that defines a hidden class of the given bytes
1989          */
1990         ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes, int flags) {
1991             return new ClassDefiner(this, name, bytes, HIDDEN_CLASS|flags);
1992         }
1993 
1994         static class ClassDefiner {
1995             private final Lookup lookup;
1996             private final String name;
1997             private final byte[] bytes;
1998             private final int classFlags;
1999 
2000             // caller should make a defensive copy of the arguments if needed
2001             // before calling this constructor
2002             private ClassDefiner(Lookup lookup, byte[] bytes, Set<ClassOption> options, int flags) {
2003                 this.lookup = lookup;
2004                 this.bytes = bytes;
2005                 this.classFlags = flags | ClassOption.optionsToFlag(options);
2006                 this.name = className(bytes);
2007 
2008                 int index = name.lastIndexOf('.');
2009                 String pn = (index == -1) ? "" : name.substring(0, index);
2010                 if (!pn.equals(lookup.lookupClass().getPackageName())) {
2011                     throw newIllegalArgumentException(name + " not in same package as lookup class: " +
2012                             lookup.lookupClass().getName());
2013                 }
2014             }
2015 
2016             // skip package name check
2017             private ClassDefiner(Lookup lookup, String name, byte[] bytes, int flags) {
2018                 this.lookup = lookup;
2019                 this.bytes = bytes;
2020                 this.classFlags = flags;
2021                 this.name = name;
2022             }
2023 
2024             String className() {
2025                 return name;
2026             }
2027 
2028             Class<?> defineClass(boolean initialize) {
2029                 return defineClass(initialize, null);
2030             }
2031 
2032             Lookup defineClassAsLookup(boolean initialize) {
2033                 Class<?> c = defineClass(initialize, null);
2034                 return new Lookup(c, null, FULL_POWER_MODES);
2035             }
2036 
2037             /**
2038              * Defines the class of the given bytes and the given classData.
2039              * If {@code initialize} parameter is true, then the class will be initialized.
2040              *
2041              * @param initialize true if the class to be initialized
2042              * @param classData classData or null
2043              * @return the class
2044              *
2045              * @throws LinkageError linkage error
2046              */
2047             Class<?> defineClass(boolean initialize, Object classData) {
2048                 Class<?> lookupClass = lookup.lookupClass();
2049                 ClassLoader loader = lookupClass.getClassLoader();
2050                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
2051                 Class<?> c = JLA.defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData);
2052                 assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
2053                 return c;
2054             }
2055 
2056             Lookup defineClassAsLookup(boolean initialize, Object classData) {
2057                 Class<?> c = defineClass(initialize, classData);
2058                 return new Lookup(c, null, FULL_POWER_MODES);
2059             }
2060 
2061             private boolean isNestmate() {
2062                 return (classFlags & NESTMATE_CLASS) != 0;
2063             }
2064 
2065             private static String className(byte[] bytes) {
2066                 try {
2067                     ClassReader reader = new ClassReader(bytes);
2068                     if ((reader.getAccess() & Opcodes.ACC_MODULE) != 0) {
2069                         throw newIllegalArgumentException("Not a class or interface: ACC_MODULE flag is set");
2070                     }
2071                     String name = reader.getClassName();
2072                     return name.replace('/', '.');
2073                 } catch (IllegalArgumentException e) {
2074                     throw e;
2075                 } catch (RuntimeException e) {
2076                     // ASM exceptions are poorly specified
2077                     ClassFormatError cfe = new ClassFormatError();
2078                     cfe.initCause(e);
2079                     throw cfe;
2080                 }
2081             }
2082         }
2083 
2084         private ProtectionDomain lookupClassProtectionDomain() {
2085             ProtectionDomain pd = cachedProtectionDomain;
2086             if (pd == null) {
2087                 cachedProtectionDomain = pd = JLA.protectionDomain(lookupClass);
2088             }
2089             return pd;
2090         }
2091 
2092         // cached protection domain
2093         private volatile ProtectionDomain cachedProtectionDomain;
2094 
2095         // Make sure outer class is initialized first.
2096         static { IMPL_NAMES.getClass(); }
2097 
2098         /** Package-private version of lookup which is trusted. */
2099         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
2100 
2101         /** Version of lookup which is trusted minimally.
2102          *  It can only be used to create method handles to publicly accessible
2103          *  members in packages that are exported unconditionally.
2104          */
2105         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
2106 
2107         static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess();
2108 
2109         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
2110             String name = lookupClass.getName();
2111             if (name.startsWith("java.lang.invoke."))
2112                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
2113         }
2114 
2115         /**
2116          * Displays the name of the class from which lookups are to be made.
2117          * followed with "/" and the name of the {@linkplain #previousLookupClass()
2118          * previous lookup class} if present.
2119          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
2120          * If there are restrictions on the access permitted to this lookup,
2121          * this is indicated by adding a suffix to the class name, consisting
2122          * of a slash and a keyword.  The keyword represents the strongest
2123          * allowed access, and is chosen as follows:
2124          * <ul>
2125          * <li>If no access is allowed, the suffix is "/noaccess".
2126          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
2127          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
2128          * <li>If only public and module access are allowed, the suffix is "/module".
2129          * <li>If public and package access are allowed, the suffix is "/package".
2130          * <li>If public, package, and private access are allowed, the suffix is "/private".
2131          * </ul>
2132          * If none of the above cases apply, it is the case that full access
2133          * (public, module, package, private, and protected) is allowed.
2134          * In this case, no suffix is added.
2135          * This is true only of an object obtained originally from
2136          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
2137          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
2138          * always have restricted access, and will display a suffix.
2139          * <p>
2140          * (It may seem strange that protected access should be
2141          * stronger than private access.  Viewed independently from
2142          * package access, protected access is the first to be lost,
2143          * because it requires a direct subclass relationship between
2144          * caller and callee.)
2145          * @see #in
2146          *
2147          * @revised 9
2148          * @spec JPMS
2149          */
2150         @Override
2151         public String toString() {
2152             String cname = lookupClass.getName();
2153             if (prevLookupClass != null)
2154                 cname += "/" + prevLookupClass.getName();
2155             switch (allowedModes) {
2156             case 0:  // no privileges
2157                 return cname + "/noaccess";
2158             case UNCONDITIONAL:
2159                 return cname + "/publicLookup";
2160             case PUBLIC:
2161                 return cname + "/public";
2162             case PUBLIC|MODULE:
2163                 return cname + "/module";
2164             case PUBLIC|PACKAGE:
2165             case PUBLIC|MODULE|PACKAGE:
2166                 return cname + "/package";
2167             case PUBLIC|PACKAGE|PRIVATE:
2168             case PUBLIC|MODULE|PACKAGE|PRIVATE:
2169                 return cname + "/private";
2170             case FULL_POWER_MODES:
2171             case FULL_POWER_MODES & ~ORIGINAL:
2172             case FULL_POWER_MODES & ~(MODULE|ORIGINAL):
2173                 return cname;
2174             case TRUSTED:
2175                 return "/trusted";  // internal only; not exported
2176             default:  // Should not happen, but it's a bitfield...
2177                 cname = cname + "/" + Integer.toHexString(allowedModes);
2178                 assert(false) : cname;
2179                 return cname;
2180             }
2181         }
2182 
2183         /**
2184          * Produces a method handle for a static method.
2185          * The type of the method handle will be that of the method.
2186          * (Since static methods do not take receivers, there is no
2187          * additional receiver argument inserted into the method handle type,
2188          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
2189          * The method and all its argument types must be accessible to the lookup object.
2190          * <p>
2191          * The returned method handle will have
2192          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2193          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2194          * <p>
2195          * If the returned method handle is invoked, the method's class will
2196          * be initialized, if it has not already been initialized.
2197          * <p><b>Example:</b>
2198          * <blockquote><pre>{@code
2199 import static java.lang.invoke.MethodHandles.*;
2200 import static java.lang.invoke.MethodType.*;
2201 ...
2202 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
2203   "asList", methodType(List.class, Object[].class));
2204 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
2205          * }</pre></blockquote>
2206          * @param refc the class from which the method is accessed
2207          * @param name the name of the method
2208          * @param type the type of the method
2209          * @return the desired method handle
2210          * @throws NoSuchMethodException if the method does not exist
2211          * @throws IllegalAccessException if access checking fails,
2212          *                                or if the method is not {@code static},
2213          *                                or if the method's variable arity modifier bit
2214          *                                is set and {@code asVarargsCollector} fails
2215          * @throws    SecurityException if a security manager is present and it
2216          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2217          * @throws NullPointerException if any argument is null
2218          */
2219         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2220             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
2221             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
2222         }
2223 
2224         /**
2225          * Produces a method handle for a virtual method.
2226          * The type of the method handle will be that of the method,
2227          * with the receiver type (usually {@code refc}) prepended.
2228          * The method and all its argument types must be accessible to the lookup object.
2229          * <p>
2230          * When called, the handle will treat the first argument as a receiver
2231          * and, for non-private methods, dispatch on the receiver's type to determine which method
2232          * implementation to enter.
2233          * For private methods the named method in {@code refc} will be invoked on the receiver.
2234          * (The dispatching action is identical with that performed by an
2235          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2236          * <p>
2237          * The first argument will be of type {@code refc} if the lookup
2238          * class has full privileges to access the member.  Otherwise
2239          * the member must be {@code protected} and the first argument
2240          * will be restricted in type to the lookup class.
2241          * <p>
2242          * The returned method handle will have
2243          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2244          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2245          * <p>
2246          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2247          * instructions and method handles produced by {@code findVirtual},
2248          * if the class is {@code MethodHandle} and the name string is
2249          * {@code invokeExact} or {@code invoke}, the resulting
2250          * method handle is equivalent to one produced by
2251          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2252          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2253          * with the same {@code type} argument.
2254          * <p>
2255          * If the class is {@code VarHandle} and the name string corresponds to
2256          * the name of a signature-polymorphic access mode method, the resulting
2257          * method handle is equivalent to one produced by
2258          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2259          * the access mode corresponding to the name string and with the same
2260          * {@code type} arguments.
2261          * <p>
2262          * <b>Example:</b>
2263          * <blockquote><pre>{@code
2264 import static java.lang.invoke.MethodHandles.*;
2265 import static java.lang.invoke.MethodType.*;
2266 ...
2267 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2268   "concat", methodType(String.class, String.class));
2269 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2270   "hashCode", methodType(int.class));
2271 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2272   "hashCode", methodType(int.class));
2273 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2274 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2275 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2276 // interface method:
2277 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2278   "subSequence", methodType(CharSequence.class, int.class, int.class));
2279 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2280 // constructor "internal method" must be accessed differently:
2281 MethodType MT_newString = methodType(void.class); //()V for new String()
2282 try { assertEquals("impossible", lookup()
2283         .findVirtual(String.class, "<init>", MT_newString));
2284  } catch (NoSuchMethodException ex) { } // OK
2285 MethodHandle MH_newString = publicLookup()
2286   .findConstructor(String.class, MT_newString);
2287 assertEquals("", (String) MH_newString.invokeExact());
2288          * }</pre></blockquote>
2289          *
2290          * @param refc the class or interface from which the method is accessed
2291          * @param name the name of the method
2292          * @param type the type of the method, with the receiver argument omitted
2293          * @return the desired method handle
2294          * @throws NoSuchMethodException if the method does not exist
2295          * @throws IllegalAccessException if access checking fails,
2296          *                                or if the method is {@code static},
2297          *                                or if the method's variable arity modifier bit
2298          *                                is set and {@code asVarargsCollector} fails
2299          * @throws    SecurityException if a security manager is present and it
2300          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2301          * @throws NullPointerException if any argument is null
2302          */
2303         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2304             if (refc == MethodHandle.class) {
2305                 MethodHandle mh = findVirtualForMH(name, type);
2306                 if (mh != null)  return mh;
2307             } else if (refc == VarHandle.class) {
2308                 MethodHandle mh = findVirtualForVH(name, type);
2309                 if (mh != null)  return mh;
2310             }
2311             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2312             MemberName method = resolveOrFail(refKind, refc, name, type);
2313             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
2314         }
2315         private MethodHandle findVirtualForMH(String name, MethodType type) {
2316             // these names require special lookups because of the implicit MethodType argument
2317             if ("invoke".equals(name))
2318                 return invoker(type);
2319             if ("invokeExact".equals(name))
2320                 return exactInvoker(type);
2321             assert(!MemberName.isMethodHandleInvokeName(name));
2322             return null;
2323         }
2324         private MethodHandle findVirtualForVH(String name, MethodType type) {
2325             try {
2326                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2327             } catch (IllegalArgumentException e) {
2328                 return null;
2329             }
2330         }
2331 
2332         /**
2333          * Produces a method handle which creates an object and initializes it, using
2334          * the constructor of the specified type.
2335          * The parameter types of the method handle will be those of the constructor,
2336          * while the return type will be a reference to the constructor's class.
2337          * The constructor and all its argument types must be accessible to the lookup object.
2338          * <p>
2339          * The requested type must have a return type of {@code void}.
2340          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2341          * <p>
2342          * The returned method handle will have
2343          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2344          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2345          * <p>
2346          * If the returned method handle is invoked, the constructor's class will
2347          * be initialized, if it has not already been initialized.
2348          * <p><b>Example:</b>
2349          * <blockquote><pre>{@code
2350 import static java.lang.invoke.MethodHandles.*;
2351 import static java.lang.invoke.MethodType.*;
2352 ...
2353 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2354   ArrayList.class, methodType(void.class, Collection.class));
2355 Collection orig = Arrays.asList("x", "y");
2356 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2357 assert(orig != copy);
2358 assertEquals(orig, copy);
2359 // a variable-arity constructor:
2360 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2361   ProcessBuilder.class, methodType(void.class, String[].class));
2362 ProcessBuilder pb = (ProcessBuilder)
2363   MH_newProcessBuilder.invoke("x", "y", "z");
2364 assertEquals("[x, y, z]", pb.command().toString());
2365          * }</pre></blockquote>
2366          * @param refc the class or interface from which the method is accessed
2367          * @param type the type of the method, with the receiver argument omitted, and a void return type
2368          * @return the desired method handle
2369          * @throws NoSuchMethodException if the constructor does not exist
2370          * @throws IllegalAccessException if access checking fails
2371          *                                or if the method's variable arity modifier bit
2372          *                                is set and {@code asVarargsCollector} fails
2373          * @throws    SecurityException if a security manager is present and it
2374          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2375          * @throws NullPointerException if any argument is null
2376          */
2377         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2378             if (refc.isArray()) {
2379                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2380             }
2381             String name = "<init>";
2382             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2383             return getDirectConstructor(refc, ctor);
2384         }
2385 
2386         /**
2387          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
2388          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
2389          * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class,
2390          * and then determines whether the class is accessible to this lookup object.
2391          * <p>
2392          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
2393          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
2394          *
2395          * @param targetName the fully qualified name of the class to be looked up.
2396          * @return the requested class.
2397          * @throws SecurityException if a security manager is present and it
2398          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2399          * @throws LinkageError if the linkage fails
2400          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2401          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2402          * modes.
2403          * @since 9
2404          * @jvms 5.4.3.1 Class and Interface Resolution
2405          */
2406         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2407             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2408             return accessClass(targetClass);
2409         }
2410 
2411         /**
2412          * Determines if a class can be accessed from the lookup context defined by
2413          * this {@code Lookup} object. The static initializer of the class is not run.
2414          * <p>
2415          * If the {@code targetClass} is in the same module as the lookup class,
2416          * the lookup class is {@code LC} in module {@code M1} and
2417          * the previous lookup class is in module {@code M0} or
2418          * {@code null} if not present,
2419          * {@code targetClass} is accessible if and only if one of the following is true:
2420          * <ul>
2421          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2422          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2423          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2424          *     in the same runtime package of {@code LC}.</li>
2425          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2426          *     a public type in {@code M1}.</li>
2427          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2428          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2429          *     if the previous lookup class is present; otherwise, {@code targetClass}
2430          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2431          * </ul>
2432          *
2433          * <p>
2434          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2435          * can access public types in all modules when the type is in a package
2436          * that is exported unconditionally.
2437          * <p>
2438          * Otherwise, the target class is in a different module from {@code lookupClass},
2439          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2440          * is inaccessible.
2441          * <p>
2442          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2443          * {@code M1} is the module containing {@code lookupClass} and
2444          * {@code M2} is the module containing {@code targetClass},
2445          * then {@code targetClass} is accessible if and only if
2446          * <ul>
2447          * <li>{@code M1} reads {@code M2}, and
2448          * <li>{@code targetClass} is public and in a package exported by
2449          *     {@code M2} at least to {@code M1}.
2450          * </ul>
2451          * <p>
2452          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2453          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2454          * containing the previous lookup class, then {@code targetClass} is accessible
2455          * if and only if one of the following is true:
2456          * <ul>
2457          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2458          *     {@linkplain Module#reads reads} {@code M0} and the type is
2459          *     in a package that is exported to at least {@code M1}.
2460          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2461          *     {@linkplain Module#reads reads} {@code M1} and the type is
2462          *     in a package that is exported to at least {@code M0}.
2463          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2464          *     and {@code M1} reads {@code M2} and the type is in a package
2465          *     that is exported to at least both {@code M0} and {@code M2}.
2466          * </ul>
2467          * <p>
2468          * Otherwise, {@code targetClass} is not accessible.
2469          *
2470          * @param targetClass the class to be access-checked
2471          * @return the class that has been access-checked
2472          * @throws IllegalAccessException if the class is not accessible from the lookup class
2473          * and previous lookup class, if present, using the allowed access modes.
2474          * @throws    SecurityException if a security manager is present and it
2475          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2476          * @since 9
2477          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2478          */
2479         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2480             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2481                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2482             }
2483             checkSecurityManager(targetClass, null);
2484             return targetClass;
2485         }
2486 
2487         /**
2488          * Produces an early-bound method handle for a virtual method.
2489          * It will bypass checks for overriding methods on the receiver,
2490          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2491          * instruction from within the explicitly specified {@code specialCaller}.
2492          * The type of the method handle will be that of the method,
2493          * with a suitably restricted receiver type prepended.
2494          * (The receiver type will be {@code specialCaller} or a subtype.)
2495          * The method and all its argument types must be accessible
2496          * to the lookup object.
2497          * <p>
2498          * Before method resolution,
2499          * if the explicitly specified caller class is not identical with the
2500          * lookup class, or if this lookup object does not have
2501          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2502          * privileges, the access fails.
2503          * <p>
2504          * The returned method handle will have
2505          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2506          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2507          * <p style="font-size:smaller;">
2508          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2509          * even though the {@code invokespecial} instruction can refer to them
2510          * in special circumstances.  Use {@link #findConstructor findConstructor}
2511          * to access instance initialization methods in a safe manner.)</em>
2512          * <p><b>Example:</b>
2513          * <blockquote><pre>{@code
2514 import static java.lang.invoke.MethodHandles.*;
2515 import static java.lang.invoke.MethodType.*;
2516 ...
2517 static class Listie extends ArrayList {
2518   public String toString() { return "[wee Listie]"; }
2519   static Lookup lookup() { return MethodHandles.lookup(); }
2520 }
2521 ...
2522 // no access to constructor via invokeSpecial:
2523 MethodHandle MH_newListie = Listie.lookup()
2524   .findConstructor(Listie.class, methodType(void.class));
2525 Listie l = (Listie) MH_newListie.invokeExact();
2526 try { assertEquals("impossible", Listie.lookup().findSpecial(
2527         Listie.class, "<init>", methodType(void.class), Listie.class));
2528  } catch (NoSuchMethodException ex) { } // OK
2529 // access to super and self methods via invokeSpecial:
2530 MethodHandle MH_super = Listie.lookup().findSpecial(
2531   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2532 MethodHandle MH_this = Listie.lookup().findSpecial(
2533   Listie.class, "toString" , methodType(String.class), Listie.class);
2534 MethodHandle MH_duper = Listie.lookup().findSpecial(
2535   Object.class, "toString" , methodType(String.class), Listie.class);
2536 assertEquals("[]", (String) MH_super.invokeExact(l));
2537 assertEquals(""+l, (String) MH_this.invokeExact(l));
2538 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2539 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2540         String.class, "toString", methodType(String.class), Listie.class));
2541  } catch (IllegalAccessException ex) { } // OK
2542 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2543 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2544          * }</pre></blockquote>
2545          *
2546          * @param refc the class or interface from which the method is accessed
2547          * @param name the name of the method (which must not be "&lt;init&gt;")
2548          * @param type the type of the method, with the receiver argument omitted
2549          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2550          * @return the desired method handle
2551          * @throws NoSuchMethodException if the method does not exist
2552          * @throws IllegalAccessException if access checking fails,
2553          *                                or if the method is {@code static},
2554          *                                or if the method's variable arity modifier bit
2555          *                                is set and {@code asVarargsCollector} fails
2556          * @throws    SecurityException if a security manager is present and it
2557          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2558          * @throws NullPointerException if any argument is null
2559          */
2560         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2561                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2562             checkSpecialCaller(specialCaller, refc);
2563             Lookup specialLookup = this.in(specialCaller);
2564             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2565             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
2566         }
2567 
2568         /**
2569          * Produces a method handle giving read access to a non-static field.
2570          * The type of the method handle will have a return type of the field's
2571          * value type.
2572          * The method handle's single argument will be the instance containing
2573          * the field.
2574          * Access checking is performed immediately on behalf of the lookup class.
2575          * @param refc the class or interface from which the method is accessed
2576          * @param name the field's name
2577          * @param type the field's type
2578          * @return a method handle which can load values from the field
2579          * @throws NoSuchFieldException if the field does not exist
2580          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2581          * @throws    SecurityException if a security manager is present and it
2582          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2583          * @throws NullPointerException if any argument is null
2584          * @see #findVarHandle(Class, String, Class)
2585          */
2586         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2587             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2588             return getDirectField(REF_getField, refc, field);
2589         }
2590 
2591         /**
2592          * Produces a method handle giving write access to a non-static field.
2593          * The type of the method handle will have a void return type.
2594          * The method handle will take two arguments, the instance containing
2595          * the field, and the value to be stored.
2596          * The second argument will be of the field's value type.
2597          * Access checking is performed immediately on behalf of the lookup class.
2598          * @param refc the class or interface from which the method is accessed
2599          * @param name the field's name
2600          * @param type the field's type
2601          * @return a method handle which can store values into the field
2602          * @throws NoSuchFieldException if the field does not exist
2603          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2604          *                                or {@code final}
2605          * @throws    SecurityException if a security manager is present and it
2606          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2607          * @throws NullPointerException if any argument is null
2608          * @see #findVarHandle(Class, String, Class)
2609          */
2610         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2611             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2612             return getDirectField(REF_putField, refc, field);
2613         }
2614 
2615         /**
2616          * Produces a VarHandle giving access to a non-static field {@code name}
2617          * of type {@code type} declared in a class of type {@code recv}.
2618          * The VarHandle's variable type is {@code type} and it has one
2619          * coordinate type, {@code recv}.
2620          * <p>
2621          * Access checking is performed immediately on behalf of the lookup
2622          * class.
2623          * <p>
2624          * Certain access modes of the returned VarHandle are unsupported under
2625          * the following conditions:
2626          * <ul>
2627          * <li>if the field is declared {@code final}, then the write, atomic
2628          *     update, numeric atomic update, and bitwise atomic update access
2629          *     modes are unsupported.
2630          * <li>if the field type is anything other than {@code byte},
2631          *     {@code short}, {@code char}, {@code int}, {@code long},
2632          *     {@code float}, or {@code double} then numeric atomic update
2633          *     access modes are unsupported.
2634          * <li>if the field type is anything other than {@code boolean},
2635          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2636          *     {@code long} then bitwise atomic update access modes are
2637          *     unsupported.
2638          * </ul>
2639          * <p>
2640          * If the field is declared {@code volatile} then the returned VarHandle
2641          * will override access to the field (effectively ignore the
2642          * {@code volatile} declaration) in accordance to its specified
2643          * access modes.
2644          * <p>
2645          * If the field type is {@code float} or {@code double} then numeric
2646          * and atomic update access modes compare values using their bitwise
2647          * representation (see {@link Float#floatToRawIntBits} and
2648          * {@link Double#doubleToRawLongBits}, respectively).
2649          * @apiNote
2650          * Bitwise comparison of {@code float} values or {@code double} values,
2651          * as performed by the numeric and atomic update access modes, differ
2652          * from the primitive {@code ==} operator and the {@link Float#equals}
2653          * and {@link Double#equals} methods, specifically with respect to
2654          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2655          * Care should be taken when performing a compare and set or a compare
2656          * and exchange operation with such values since the operation may
2657          * unexpectedly fail.
2658          * There are many possible NaN values that are considered to be
2659          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2660          * provided by Java can distinguish between them.  Operation failure can
2661          * occur if the expected or witness value is a NaN value and it is
2662          * transformed (perhaps in a platform specific manner) into another NaN
2663          * value, and thus has a different bitwise representation (see
2664          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2665          * details).
2666          * The values {@code -0.0} and {@code +0.0} have different bitwise
2667          * representations but are considered equal when using the primitive
2668          * {@code ==} operator.  Operation failure can occur if, for example, a
2669          * numeric algorithm computes an expected value to be say {@code -0.0}
2670          * and previously computed the witness value to be say {@code +0.0}.
2671          * @param recv the receiver class, of type {@code R}, that declares the
2672          * non-static field
2673          * @param name the field's name
2674          * @param type the field's type, of type {@code T}
2675          * @return a VarHandle giving access to non-static fields.
2676          * @throws NoSuchFieldException if the field does not exist
2677          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2678          * @throws    SecurityException if a security manager is present and it
2679          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2680          * @throws NullPointerException if any argument is null
2681          * @since 9
2682          */
2683         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2684             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2685             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2686             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2687         }
2688 
2689         /**
2690          * Produces a method handle giving read access to a static field.
2691          * The type of the method handle will have a return type of the field's
2692          * value type.
2693          * The method handle will take no arguments.
2694          * Access checking is performed immediately on behalf of the lookup class.
2695          * <p>
2696          * If the returned method handle is invoked, the field's class will
2697          * be initialized, if it has not already been initialized.
2698          * @param refc the class or interface from which the method is accessed
2699          * @param name the field's name
2700          * @param type the field's type
2701          * @return a method handle which can load values from the field
2702          * @throws NoSuchFieldException if the field does not exist
2703          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2704          * @throws    SecurityException if a security manager is present and it
2705          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2706          * @throws NullPointerException if any argument is null
2707          */
2708         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2709             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2710             return getDirectField(REF_getStatic, refc, field);
2711         }
2712 
2713         /**
2714          * Produces a method handle giving write access to a static field.
2715          * The type of the method handle will have a void return type.
2716          * The method handle will take a single
2717          * argument, of the field's value type, the value to be stored.
2718          * Access checking is performed immediately on behalf of the lookup class.
2719          * <p>
2720          * If the returned method handle is invoked, the field's class will
2721          * be initialized, if it has not already been initialized.
2722          * @param refc the class or interface from which the method is accessed
2723          * @param name the field's name
2724          * @param type the field's type
2725          * @return a method handle which can store values into the field
2726          * @throws NoSuchFieldException if the field does not exist
2727          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2728          *                                or is {@code final}
2729          * @throws    SecurityException if a security manager is present and it
2730          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2731          * @throws NullPointerException if any argument is null
2732          */
2733         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2734             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2735             return getDirectField(REF_putStatic, refc, field);
2736         }
2737 
2738         /**
2739          * Produces a VarHandle giving access to a static field {@code name} of
2740          * type {@code type} declared in a class of type {@code decl}.
2741          * The VarHandle's variable type is {@code type} and it has no
2742          * coordinate types.
2743          * <p>
2744          * Access checking is performed immediately on behalf of the lookup
2745          * class.
2746          * <p>
2747          * If the returned VarHandle is operated on, the declaring class will be
2748          * initialized, if it has not already been initialized.
2749          * <p>
2750          * Certain access modes of the returned VarHandle are unsupported under
2751          * the following conditions:
2752          * <ul>
2753          * <li>if the field is declared {@code final}, then the write, atomic
2754          *     update, numeric atomic update, and bitwise atomic update access
2755          *     modes are unsupported.
2756          * <li>if the field type is anything other than {@code byte},
2757          *     {@code short}, {@code char}, {@code int}, {@code long},
2758          *     {@code float}, or {@code double}, then numeric atomic update
2759          *     access modes are unsupported.
2760          * <li>if the field type is anything other than {@code boolean},
2761          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2762          *     {@code long} then bitwise atomic update access modes are
2763          *     unsupported.
2764          * </ul>
2765          * <p>
2766          * If the field is declared {@code volatile} then the returned VarHandle
2767          * will override access to the field (effectively ignore the
2768          * {@code volatile} declaration) in accordance to its specified
2769          * access modes.
2770          * <p>
2771          * If the field type is {@code float} or {@code double} then numeric
2772          * and atomic update access modes compare values using their bitwise
2773          * representation (see {@link Float#floatToRawIntBits} and
2774          * {@link Double#doubleToRawLongBits}, respectively).
2775          * @apiNote
2776          * Bitwise comparison of {@code float} values or {@code double} values,
2777          * as performed by the numeric and atomic update access modes, differ
2778          * from the primitive {@code ==} operator and the {@link Float#equals}
2779          * and {@link Double#equals} methods, specifically with respect to
2780          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2781          * Care should be taken when performing a compare and set or a compare
2782          * and exchange operation with such values since the operation may
2783          * unexpectedly fail.
2784          * There are many possible NaN values that are considered to be
2785          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2786          * provided by Java can distinguish between them.  Operation failure can
2787          * occur if the expected or witness value is a NaN value and it is
2788          * transformed (perhaps in a platform specific manner) into another NaN
2789          * value, and thus has a different bitwise representation (see
2790          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2791          * details).
2792          * The values {@code -0.0} and {@code +0.0} have different bitwise
2793          * representations but are considered equal when using the primitive
2794          * {@code ==} operator.  Operation failure can occur if, for example, a
2795          * numeric algorithm computes an expected value to be say {@code -0.0}
2796          * and previously computed the witness value to be say {@code +0.0}.
2797          * @param decl the class that declares the static field
2798          * @param name the field's name
2799          * @param type the field's type, of type {@code T}
2800          * @return a VarHandle giving access to a static field
2801          * @throws NoSuchFieldException if the field does not exist
2802          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2803          * @throws    SecurityException if a security manager is present and it
2804          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2805          * @throws NullPointerException if any argument is null
2806          * @since 9
2807          */
2808         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2809             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2810             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2811             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2812         }
2813 
2814         /**
2815          * Produces an early-bound method handle for a non-static method.
2816          * The receiver must have a supertype {@code defc} in which a method
2817          * of the given name and type is accessible to the lookup class.
2818          * The method and all its argument types must be accessible to the lookup object.
2819          * The type of the method handle will be that of the method,
2820          * without any insertion of an additional receiver parameter.
2821          * The given receiver will be bound into the method handle,
2822          * so that every call to the method handle will invoke the
2823          * requested method on the given receiver.
2824          * <p>
2825          * The returned method handle will have
2826          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2827          * the method's variable arity modifier bit ({@code 0x0080}) is set
2828          * <em>and</em> the trailing array argument is not the only argument.
2829          * (If the trailing array argument is the only argument,
2830          * the given receiver value will be bound to it.)
2831          * <p>
2832          * This is almost equivalent to the following code, with some differences noted below:
2833          * <blockquote><pre>{@code
2834 import static java.lang.invoke.MethodHandles.*;
2835 import static java.lang.invoke.MethodType.*;
2836 ...
2837 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2838 MethodHandle mh1 = mh0.bindTo(receiver);
2839 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2840 return mh1;
2841          * }</pre></blockquote>
2842          * where {@code defc} is either {@code receiver.getClass()} or a super
2843          * type of that class, in which the requested method is accessible
2844          * to the lookup class.
2845          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2846          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2847          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2848          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2849          * @param receiver the object from which the method is accessed
2850          * @param name the name of the method
2851          * @param type the type of the method, with the receiver argument omitted
2852          * @return the desired method handle
2853          * @throws NoSuchMethodException if the method does not exist
2854          * @throws IllegalAccessException if access checking fails
2855          *                                or if the method's variable arity modifier bit
2856          *                                is set and {@code asVarargsCollector} fails
2857          * @throws    SecurityException if a security manager is present and it
2858          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2859          * @throws NullPointerException if any argument is null
2860          * @see MethodHandle#bindTo
2861          * @see #findVirtual
2862          */
2863         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2864             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2865             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2866             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
2867             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2868                 throw new IllegalAccessException("The restricted defining class " +
2869                                                  mh.type().leadingReferenceParameter().getName() +
2870                                                  " is not assignable from receiver class " +
2871                                                  receiver.getClass().getName());
2872             }
2873             return mh.bindArgumentL(0, receiver).setVarargs(method);
2874         }
2875 
2876         /**
2877          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2878          * to <i>m</i>, if the lookup class has permission.
2879          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2880          * If <i>m</i> is virtual, overriding is respected on every call.
2881          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2882          * The type of the method handle will be that of the method,
2883          * with the receiver type prepended (but only if it is non-static).
2884          * If the method's {@code accessible} flag is not set,
2885          * access checking is performed immediately on behalf of the lookup class.
2886          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2887          * <p>
2888          * The returned method handle will have
2889          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2890          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2891          * <p>
2892          * If <i>m</i> is static, and
2893          * if the returned method handle is invoked, the method's class will
2894          * be initialized, if it has not already been initialized.
2895          * @param m the reflected method
2896          * @return a method handle which can invoke the reflected method
2897          * @throws IllegalAccessException if access checking fails
2898          *                                or if the method's variable arity modifier bit
2899          *                                is set and {@code asVarargsCollector} fails
2900          * @throws NullPointerException if the argument is null
2901          */
2902         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2903             if (m.getDeclaringClass() == MethodHandle.class) {
2904                 MethodHandle mh = unreflectForMH(m);
2905                 if (mh != null)  return mh;
2906             }
2907             if (m.getDeclaringClass() == VarHandle.class) {
2908                 MethodHandle mh = unreflectForVH(m);
2909                 if (mh != null)  return mh;
2910             }
2911             MemberName method = new MemberName(m);
2912             byte refKind = method.getReferenceKind();
2913             if (refKind == REF_invokeSpecial)
2914                 refKind = REF_invokeVirtual;
2915             assert(method.isMethod());
2916             @SuppressWarnings("deprecation")
2917             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2918             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2919         }
2920         private MethodHandle unreflectForMH(Method m) {
2921             // these names require special lookups because they throw UnsupportedOperationException
2922             if (MemberName.isMethodHandleInvokeName(m.getName()))
2923                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2924             return null;
2925         }
2926         private MethodHandle unreflectForVH(Method m) {
2927             // these names require special lookups because they throw UnsupportedOperationException
2928             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2929                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2930             return null;
2931         }
2932 
2933         /**
2934          * Produces a method handle for a reflected method.
2935          * It will bypass checks for overriding methods on the receiver,
2936          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2937          * instruction from within the explicitly specified {@code specialCaller}.
2938          * The type of the method handle will be that of the method,
2939          * with a suitably restricted receiver type prepended.
2940          * (The receiver type will be {@code specialCaller} or a subtype.)
2941          * If the method's {@code accessible} flag is not set,
2942          * access checking is performed immediately on behalf of the lookup class,
2943          * as if {@code invokespecial} instruction were being linked.
2944          * <p>
2945          * Before method resolution,
2946          * if the explicitly specified caller class is not identical with the
2947          * lookup class, or if this lookup object does not have
2948          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2949          * privileges, the access fails.
2950          * <p>
2951          * The returned method handle will have
2952          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2953          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2954          * @param m the reflected method
2955          * @param specialCaller the class nominally calling the method
2956          * @return a method handle which can invoke the reflected method
2957          * @throws IllegalAccessException if access checking fails,
2958          *                                or if the method is {@code static},
2959          *                                or if the method's variable arity modifier bit
2960          *                                is set and {@code asVarargsCollector} fails
2961          * @throws NullPointerException if any argument is null
2962          */
2963         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2964             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2965             Lookup specialLookup = this.in(specialCaller);
2966             MemberName method = new MemberName(m, true);
2967             assert(method.isMethod());
2968             // ignore m.isAccessible:  this is a new kind of access
2969             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2970         }
2971 
2972         /**
2973          * Produces a method handle for a reflected constructor.
2974          * The type of the method handle will be that of the constructor,
2975          * with the return type changed to the declaring class.
2976          * The method handle will perform a {@code newInstance} operation,
2977          * creating a new instance of the constructor's class on the
2978          * arguments passed to the method handle.
2979          * <p>
2980          * If the constructor's {@code accessible} flag is not set,
2981          * access checking is performed immediately on behalf of the lookup class.
2982          * <p>
2983          * The returned method handle will have
2984          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2985          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2986          * <p>
2987          * If the returned method handle is invoked, the constructor's class will
2988          * be initialized, if it has not already been initialized.
2989          * @param c the reflected constructor
2990          * @return a method handle which can invoke the reflected constructor
2991          * @throws IllegalAccessException if access checking fails
2992          *                                or if the method's variable arity modifier bit
2993          *                                is set and {@code asVarargsCollector} fails
2994          * @throws NullPointerException if the argument is null
2995          */
2996         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2997             MemberName ctor = new MemberName(c);
2998             assert(ctor.isConstructor());
2999             @SuppressWarnings("deprecation")
3000             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
3001             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
3002         }
3003 
3004         /**
3005          * Produces a method handle giving read access to a reflected field.
3006          * The type of the method handle will have a return type of the field's
3007          * value type.
3008          * If the field is {@code static}, the method handle will take no arguments.
3009          * Otherwise, its single argument will be the instance containing
3010          * the field.
3011          * If the {@code Field} object's {@code accessible} flag is not set,
3012          * access checking is performed immediately on behalf of the lookup class.
3013          * <p>
3014          * If the field is static, and
3015          * if the returned method handle is invoked, the field's class will
3016          * be initialized, if it has not already been initialized.
3017          * @param f the reflected field
3018          * @return a method handle which can load values from the reflected field
3019          * @throws IllegalAccessException if access checking fails
3020          * @throws NullPointerException if the argument is null
3021          */
3022         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
3023             return unreflectField(f, false);
3024         }
3025 
3026         /**
3027          * Produces a method handle giving write access to a reflected field.
3028          * The type of the method handle will have a void return type.
3029          * If the field is {@code static}, the method handle will take a single
3030          * argument, of the field's value type, the value to be stored.
3031          * Otherwise, the two arguments will be the instance containing
3032          * the field, and the value to be stored.
3033          * If the {@code Field} object's {@code accessible} flag is not set,
3034          * access checking is performed immediately on behalf of the lookup class.
3035          * <p>
3036          * If the field is {@code final}, write access will not be
3037          * allowed and access checking will fail, except under certain
3038          * narrow circumstances documented for {@link Field#set Field.set}.
3039          * A method handle is returned only if a corresponding call to
3040          * the {@code Field} object's {@code set} method could return
3041          * normally.  In particular, fields which are both {@code static}
3042          * and {@code final} may never be set.
3043          * <p>
3044          * If the field is {@code static}, and
3045          * if the returned method handle is invoked, the field's class will
3046          * be initialized, if it has not already been initialized.
3047          * @param f the reflected field
3048          * @return a method handle which can store values into the reflected field
3049          * @throws IllegalAccessException if access checking fails,
3050          *         or if the field is {@code final} and write access
3051          *         is not enabled on the {@code Field} object
3052          * @throws NullPointerException if the argument is null
3053          */
3054         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
3055             return unreflectField(f, true);
3056         }
3057 
3058         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
3059             MemberName field = new MemberName(f, isSetter);
3060             if (isSetter && field.isFinal()) {
3061                 if (field.isStatic()) {
3062                     throw field.makeAccessException("static final field has no write access", this);
3063                 } else if (field.getDeclaringClass().isHiddenClass()){
3064                     throw field.makeAccessException("final field in a hidden class has no write access", this);
3065                 }
3066             }
3067             assert(isSetter
3068                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
3069                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
3070             @SuppressWarnings("deprecation")
3071             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
3072             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
3073         }
3074 
3075         /**
3076          * Produces a VarHandle giving access to a reflected field {@code f}
3077          * of type {@code T} declared in a class of type {@code R}.
3078          * The VarHandle's variable type is {@code T}.
3079          * If the field is non-static the VarHandle has one coordinate type,
3080          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
3081          * coordinate types.
3082          * <p>
3083          * Access checking is performed immediately on behalf of the lookup
3084          * class, regardless of the value of the field's {@code accessible}
3085          * flag.
3086          * <p>
3087          * If the field is static, and if the returned VarHandle is operated
3088          * on, the field's declaring class will be initialized, if it has not
3089          * already been initialized.
3090          * <p>
3091          * Certain access modes of the returned VarHandle are unsupported under
3092          * the following conditions:
3093          * <ul>
3094          * <li>if the field is declared {@code final}, then the write, atomic
3095          *     update, numeric atomic update, and bitwise atomic update access
3096          *     modes are unsupported.
3097          * <li>if the field type is anything other than {@code byte},
3098          *     {@code short}, {@code char}, {@code int}, {@code long},
3099          *     {@code float}, or {@code double} then numeric atomic update
3100          *     access modes are unsupported.
3101          * <li>if the field type is anything other than {@code boolean},
3102          *     {@code byte}, {@code short}, {@code char}, {@code int} or
3103          *     {@code long} then bitwise atomic update access modes are
3104          *     unsupported.
3105          * </ul>
3106          * <p>
3107          * If the field is declared {@code volatile} then the returned VarHandle
3108          * will override access to the field (effectively ignore the
3109          * {@code volatile} declaration) in accordance to its specified
3110          * access modes.
3111          * <p>
3112          * If the field type is {@code float} or {@code double} then numeric
3113          * and atomic update access modes compare values using their bitwise
3114          * representation (see {@link Float#floatToRawIntBits} and
3115          * {@link Double#doubleToRawLongBits}, respectively).
3116          * @apiNote
3117          * Bitwise comparison of {@code float} values or {@code double} values,
3118          * as performed by the numeric and atomic update access modes, differ
3119          * from the primitive {@code ==} operator and the {@link Float#equals}
3120          * and {@link Double#equals} methods, specifically with respect to
3121          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3122          * Care should be taken when performing a compare and set or a compare
3123          * and exchange operation with such values since the operation may
3124          * unexpectedly fail.
3125          * There are many possible NaN values that are considered to be
3126          * {@code NaN} in Java, although no IEEE 754 floating-point operation
3127          * provided by Java can distinguish between them.  Operation failure can
3128          * occur if the expected or witness value is a NaN value and it is
3129          * transformed (perhaps in a platform specific manner) into another NaN
3130          * value, and thus has a different bitwise representation (see
3131          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3132          * details).
3133          * The values {@code -0.0} and {@code +0.0} have different bitwise
3134          * representations but are considered equal when using the primitive
3135          * {@code ==} operator.  Operation failure can occur if, for example, a
3136          * numeric algorithm computes an expected value to be say {@code -0.0}
3137          * and previously computed the witness value to be say {@code +0.0}.
3138          * @param f the reflected field, with a field of type {@code T}, and
3139          * a declaring class of type {@code R}
3140          * @return a VarHandle giving access to non-static fields or a static
3141          * field
3142          * @throws IllegalAccessException if access checking fails
3143          * @throws NullPointerException if the argument is null
3144          * @since 9
3145          */
3146         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
3147             MemberName getField = new MemberName(f, false);
3148             MemberName putField = new MemberName(f, true);
3149             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
3150                                                       f.getDeclaringClass(), getField, putField);
3151         }
3152 
3153         /**
3154          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
3155          * created by this lookup object or a similar one.
3156          * Security and access checks are performed to ensure that this lookup object
3157          * is capable of reproducing the target method handle.
3158          * This means that the cracking may fail if target is a direct method handle
3159          * but was created by an unrelated lookup object.
3160          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
3161          * and was created by a lookup object for a different class.
3162          * @param target a direct method handle to crack into symbolic reference components
3163          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
3164          * @throws    SecurityException if a security manager is present and it
3165          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
3166          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
3167          * @throws    NullPointerException if the target is {@code null}
3168          * @see MethodHandleInfo
3169          * @since 1.8
3170          */
3171         public MethodHandleInfo revealDirect(MethodHandle target) {
3172             MemberName member = target.internalMemberName();
3173             if (member == null || (!member.isResolved() &&
3174                                    !member.isMethodHandleInvoke() &&
3175                                    !member.isVarHandleMethodInvoke()))
3176                 throw newIllegalArgumentException("not a direct method handle");
3177             Class<?> defc = member.getDeclaringClass();
3178             byte refKind = member.getReferenceKind();
3179             assert(MethodHandleNatives.refKindIsValid(refKind));
3180             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
3181                 // Devirtualized method invocation is usually formally virtual.
3182                 // To avoid creating extra MemberName objects for this common case,
3183                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
3184                 refKind = REF_invokeVirtual;
3185             if (refKind == REF_invokeVirtual && defc.isInterface())
3186                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
3187                 refKind = REF_invokeInterface;
3188             // Check SM permissions and member access before cracking.
3189             try {
3190                 checkAccess(refKind, defc, member);
3191                 checkSecurityManager(defc, member);
3192             } catch (IllegalAccessException ex) {
3193                 throw new IllegalArgumentException(ex);
3194             }
3195             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
3196                 Class<?> callerClass = target.internalCallerClass();
3197                 if (!hasFullPrivilegeAccess() || callerClass != lookupClass())
3198                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
3199             }
3200             // Produce the handle to the results.
3201             return new InfoFromMemberName(this, member, refKind);
3202         }
3203 
3204         /// Helper methods, all package-private.
3205 
3206         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
3207             checkSymbolicClass(refc);  // do this before attempting to resolve
3208             Objects.requireNonNull(name);
3209             Objects.requireNonNull(type);
3210             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
3211                                             NoSuchFieldException.class);
3212         }
3213 
3214         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
3215             checkSymbolicClass(refc);  // do this before attempting to resolve
3216             Objects.requireNonNull(name);
3217             Objects.requireNonNull(type);
3218             checkMethodName(refKind, name);  // NPE check on name
3219             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
3220                                             NoSuchMethodException.class);
3221         }
3222 
3223         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
3224             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
3225             Objects.requireNonNull(member.getName());
3226             Objects.requireNonNull(member.getType());
3227             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
3228                                             ReflectiveOperationException.class);
3229         }
3230 
3231         MemberName resolveOrNull(byte refKind, MemberName member) {
3232             // do this before attempting to resolve
3233             if (!isClassAccessible(member.getDeclaringClass())) {
3234                 return null;
3235             }
3236             Objects.requireNonNull(member.getName());
3237             Objects.requireNonNull(member.getType());
3238             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
3239         }
3240 
3241         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3242             if (!isClassAccessible(refc)) {
3243                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3244             }
3245         }
3246 
3247         boolean isClassAccessible(Class<?> refc) {
3248             Objects.requireNonNull(refc);
3249             Class<?> caller = lookupClassOrNull();
3250             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
3251         }
3252 
3253         /** Check name for an illegal leading "&lt;" character. */
3254         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3255             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3256                 throw new NoSuchMethodException("illegal method name: "+name);
3257         }
3258 
3259 
3260         /**
3261          * Find my trustable caller class if m is a caller sensitive method.
3262          * If this lookup object has full privilege access, then the caller class is the lookupClass.
3263          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3264          */
3265         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
3266             if (MethodHandleNatives.isCallerSensitive(m) && !hasFullPrivilegeAccess()) {
3267                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
3268                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3269             }
3270             return this;
3271         }
3272 
3273         /**
3274          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3275          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
3276          *
3277          * @deprecated This method was originally designed to test {@code PRIVATE} access
3278          * that implies full privilege access but {@code MODULE} access has since become
3279          * independent of {@code PRIVATE} access.  It is recommended to call
3280          * {@link #hasFullPrivilegeAccess()} instead.
3281          * @since 9
3282          */
3283         @Deprecated(since="14")
3284         public boolean hasPrivateAccess() {
3285             return hasFullPrivilegeAccess();
3286         }
3287 
3288         /**
3289          * Returns {@code true} if this lookup has <em>full privilege access</em>,
3290          * i.e. {@code PRIVATE} and {@code MODULE} access.
3291          * A {@code Lookup} object must have full privilege access in order to
3292          * access all members that are allowed to the {@linkplain #lookupClass() lookup class}.
3293          *
3294          * @return {@code true} if this lookup has full privilege access.
3295          * @since 14
3296          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
3297          */
3298         public boolean hasFullPrivilegeAccess() {
3299             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
3300         }
3301 
3302         /**
3303          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
3304          * Determines a trustable caller class to compare with refc, the symbolic reference class.
3305          * If this lookup object has full privilege access, then the caller class is the lookupClass.
3306          */
3307         void checkSecurityManager(Class<?> refc, MemberName m) {
3308             if (allowedModes == TRUSTED)  return;
3309 
3310             SecurityManager smgr = System.getSecurityManager();
3311             if (smgr == null)  return;
3312 
3313             // Step 1:
3314             boolean fullPowerLookup = hasFullPrivilegeAccess();
3315             if (!fullPowerLookup ||
3316                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3317                 ReflectUtil.checkPackageAccess(refc);
3318             }
3319 
3320             if (m == null) {  // findClass or accessClass
3321                 // Step 2b:
3322                 if (!fullPowerLookup) {
3323                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
3324                 }
3325                 return;
3326             }
3327 
3328             // Step 2a:
3329             if (m.isPublic()) return;
3330             if (!fullPowerLookup) {
3331                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
3332             }
3333 
3334             // Step 3:
3335             Class<?> defc = m.getDeclaringClass();
3336             if (!fullPowerLookup && defc != refc) {
3337                 ReflectUtil.checkPackageAccess(defc);
3338             }
3339         }
3340 
3341         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3342             boolean wantStatic = (refKind == REF_invokeStatic);
3343             String message;
3344             if (m.isConstructor())
3345                 message = "expected a method, not a constructor";
3346             else if (!m.isMethod())
3347                 message = "expected a method";
3348             else if (wantStatic != m.isStatic())
3349                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3350             else
3351                 { checkAccess(refKind, refc, m); return; }
3352             throw m.makeAccessException(message, this);
3353         }
3354 
3355         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3356             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3357             String message;
3358             if (wantStatic != m.isStatic())
3359                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3360             else
3361                 { checkAccess(refKind, refc, m); return; }
3362             throw m.makeAccessException(message, this);
3363         }
3364 
3365         /** Check public/protected/private bits on the symbolic reference class and its member. */
3366         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3367             assert(m.referenceKindIsConsistentWith(refKind) &&
3368                    MethodHandleNatives.refKindIsValid(refKind) &&
3369                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3370             int allowedModes = this.allowedModes;
3371             if (allowedModes == TRUSTED)  return;
3372             int mods = m.getModifiers();
3373             if (Modifier.isProtected(mods) &&
3374                     refKind == REF_invokeVirtual &&
3375                     m.getDeclaringClass() == Object.class &&
3376                     m.getName().equals("clone") &&
3377                     refc.isArray()) {
3378                 // The JVM does this hack also.
3379                 // (See ClassVerifier::verify_invoke_instructions
3380                 // and LinkResolver::check_method_accessability.)
3381                 // Because the JVM does not allow separate methods on array types,
3382                 // there is no separate method for int[].clone.
3383                 // All arrays simply inherit Object.clone.
3384                 // But for access checking logic, we make Object.clone
3385                 // (normally protected) appear to be public.
3386                 // Later on, when the DirectMethodHandle is created,
3387                 // its leading argument will be restricted to the
3388                 // requested array type.
3389                 // N.B. The return type is not adjusted, because
3390                 // that is *not* the bytecode behavior.
3391                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3392             }
3393             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3394                 // cannot "new" a protected ctor in a different package
3395                 mods ^= Modifier.PROTECTED;
3396             }
3397             if (Modifier.isFinal(mods) &&
3398                     MethodHandleNatives.refKindIsSetter(refKind))
3399                 throw m.makeAccessException("unexpected set of a final field", this);
3400             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3401             if ((requestedModes & allowedModes) != 0) {
3402                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3403                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3404                     return;
3405             } else {
3406                 // Protected members can also be checked as if they were package-private.
3407                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3408                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3409                     return;
3410             }
3411             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3412         }
3413 
3414         String accessFailedMessage(Class<?> refc, MemberName m) {
3415             Class<?> defc = m.getDeclaringClass();
3416             int mods = m.getModifiers();
3417             // check the class first:
3418             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
3419                                (defc == refc ||
3420                                 Modifier.isPublic(refc.getModifiers())));
3421             if (!classOK && (allowedModes & PACKAGE) != 0) {
3422                 // ignore previous lookup class to check if default package access
3423                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
3424                            (defc == refc ||
3425                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
3426             }
3427             if (!classOK)
3428                 return "class is not public";
3429             if (Modifier.isPublic(mods))
3430                 return "access to public member failed";  // (how?, module not readable?)
3431             if (Modifier.isPrivate(mods))
3432                 return "member is private";
3433             if (Modifier.isProtected(mods))
3434                 return "member is protected";
3435             return "member is private to package";
3436         }
3437 
3438         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3439             int allowedModes = this.allowedModes;
3440             if (allowedModes == TRUSTED)  return;
3441             if ((lookupModes() & PRIVATE) == 0
3442                 || (specialCaller != lookupClass()
3443                        // ensure non-abstract methods in superinterfaces can be special-invoked
3444                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3445                 throw new MemberName(specialCaller).
3446                     makeAccessException("no private access for invokespecial", this);
3447         }
3448 
3449         private boolean restrictProtectedReceiver(MemberName method) {
3450             // The accessing class only has the right to use a protected member
3451             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3452             if (!method.isProtected() || method.isStatic()
3453                 || allowedModes == TRUSTED
3454                 || method.getDeclaringClass() == lookupClass()
3455                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3456                 return false;
3457             return true;
3458         }
3459         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3460             assert(!method.isStatic());
3461             // receiver type of mh is too wide; narrow to caller
3462             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3463                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3464             }
3465             MethodType rawType = mh.type();
3466             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3467             MethodType narrowType = rawType.changeParameterType(0, caller);
3468             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3469             assert(mh.viewAsTypeChecks(narrowType, true));
3470             return mh.copyWith(narrowType, mh.form);
3471         }
3472 
3473         /** Check access and get the requested method. */
3474         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3475             final boolean doRestrict    = true;
3476             final boolean checkSecurity = true;
3477             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3478         }
3479         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3480         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3481             final boolean doRestrict    = false;
3482             final boolean checkSecurity = true;
3483             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
3484         }
3485         /** Check access and get the requested method, eliding security manager checks. */
3486         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3487             final boolean doRestrict    = true;
3488             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3489             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3490         }
3491         /** Common code for all methods; do not call directly except from immediately above. */
3492         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3493                                                    boolean checkSecurity,
3494                                                    boolean doRestrict,
3495                                                    Lookup boundCaller) throws IllegalAccessException {
3496             checkMethod(refKind, refc, method);
3497             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3498             if (checkSecurity)
3499                 checkSecurityManager(refc, method);
3500             assert(!method.isMethodHandleInvoke());
3501 
3502             if (refKind == REF_invokeSpecial &&
3503                 refc != lookupClass() &&
3504                 !refc.isInterface() &&
3505                 refc != lookupClass().getSuperclass() &&
3506                 refc.isAssignableFrom(lookupClass())) {
3507                 assert(!method.getName().equals("<init>"));  // not this code path
3508 
3509                 // Per JVMS 6.5, desc. of invokespecial instruction:
3510                 // If the method is in a superclass of the LC,
3511                 // and if our original search was above LC.super,
3512                 // repeat the search (symbolic lookup) from LC.super
3513                 // and continue with the direct superclass of that class,
3514                 // and so forth, until a match is found or no further superclasses exist.
3515                 // FIXME: MemberName.resolve should handle this instead.
3516                 Class<?> refcAsSuper = lookupClass();
3517                 MemberName m2;
3518                 do {
3519                     refcAsSuper = refcAsSuper.getSuperclass();
3520                     m2 = new MemberName(refcAsSuper,
3521                                         method.getName(),
3522                                         method.getMethodType(),
3523                                         REF_invokeSpecial);
3524                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3525                 } while (m2 == null &&         // no method is found yet
3526                          refc != refcAsSuper); // search up to refc
3527                 if (m2 == null)  throw new InternalError(method.toString());
3528                 method = m2;
3529                 refc = refcAsSuper;
3530                 // redo basic checks
3531                 checkMethod(refKind, refc, method);
3532             }
3533             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3534             MethodHandle mh = dmh;
3535             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3536             if ((doRestrict && refKind == REF_invokeSpecial) ||
3537                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3538                 mh = restrictReceiver(method, dmh, lookupClass());
3539             }
3540             mh = maybeBindCaller(method, mh, boundCaller);
3541             mh = mh.setVarargs(method);
3542             return mh;
3543         }
3544         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
3545                                              throws IllegalAccessException {
3546             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3547                 return mh;
3548 
3549             // boundCaller must have full privilege access.
3550             // It should have been checked by findBoundCallerLookup. Safe to check this again.
3551             if (!boundCaller.hasFullPrivilegeAccess())
3552                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3553 
3554             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
3555             // Note: caller will apply varargs after this step happens.
3556             return cbmh;
3557         }
3558 
3559         /** Check access and get the requested field. */
3560         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3561             final boolean checkSecurity = true;
3562             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3563         }
3564         /** Check access and get the requested field, eliding security manager checks. */
3565         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3566             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3567             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3568         }
3569         /** Common code for all fields; do not call directly except from immediately above. */
3570         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3571                                                   boolean checkSecurity) throws IllegalAccessException {
3572             checkField(refKind, refc, field);
3573             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3574             if (checkSecurity)
3575                 checkSecurityManager(refc, field);
3576             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3577             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3578                                     restrictProtectedReceiver(field));
3579             if (doRestrict)
3580                 return restrictReceiver(field, dmh, lookupClass());
3581             return dmh;
3582         }
3583         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3584                                             Class<?> refc, MemberName getField, MemberName putField)
3585                 throws IllegalAccessException {
3586             final boolean checkSecurity = true;
3587             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3588         }
3589         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3590                                                              Class<?> refc, MemberName getField, MemberName putField)
3591                 throws IllegalAccessException {
3592             final boolean checkSecurity = false;
3593             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3594         }
3595         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3596                                                   Class<?> refc, MemberName getField, MemberName putField,
3597                                                   boolean checkSecurity) throws IllegalAccessException {
3598             assert getField.isStatic() == putField.isStatic();
3599             assert getField.isGetter() && putField.isSetter();
3600             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3601             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3602 
3603             checkField(getRefKind, refc, getField);
3604             if (checkSecurity)
3605                 checkSecurityManager(refc, getField);
3606 
3607             if (!putField.isFinal()) {
3608                 // A VarHandle does not support updates to final fields, any
3609                 // such VarHandle to a final field will be read-only and
3610                 // therefore the following write-based accessibility checks are
3611                 // only required for non-final fields
3612                 checkField(putRefKind, refc, putField);
3613                 if (checkSecurity)
3614                     checkSecurityManager(refc, putField);
3615             }
3616 
3617             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3618                                   restrictProtectedReceiver(getField));
3619             if (doRestrict) {
3620                 assert !getField.isStatic();
3621                 // receiver type of VarHandle is too wide; narrow to caller
3622                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3623                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3624                 }
3625                 refc = lookupClass();
3626             }
3627             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(),
3628                                              this.allowedModes == TRUSTED && !getField.getDeclaringClass().isHiddenClass());
3629         }
3630         /** Check access and get the requested constructor. */
3631         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3632             final boolean checkSecurity = true;
3633             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3634         }
3635         /** Check access and get the requested constructor, eliding security manager checks. */
3636         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3637             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3638             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3639         }
3640         /** Common code for all constructors; do not call directly except from immediately above. */
3641         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3642                                                   boolean checkSecurity) throws IllegalAccessException {
3643             assert(ctor.isConstructor());
3644             checkAccess(REF_newInvokeSpecial, refc, ctor);
3645             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3646             if (checkSecurity)
3647                 checkSecurityManager(refc, ctor);
3648             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3649             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3650         }
3651 
3652         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3653          */
3654         /*non-public*/
3655         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3656                 throws ReflectiveOperationException {
3657             if (!(type instanceof Class || type instanceof MethodType))
3658                 throw new InternalError("unresolved MemberName");
3659             MemberName member = new MemberName(refKind, defc, name, type);
3660             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3661             if (mh != null) {
3662                 checkSymbolicClass(defc);
3663                 return mh;
3664             }
3665             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3666                 // Treat MethodHandle.invoke and invokeExact specially.
3667                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3668                 if (mh != null) {
3669                     return mh;
3670                 }
3671             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3672                 // Treat signature-polymorphic methods on VarHandle specially.
3673                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3674                 if (mh != null) {
3675                     return mh;
3676                 }
3677             }
3678             MemberName resolved = resolveOrFail(refKind, member);
3679             mh = getDirectMethodForConstant(refKind, defc, resolved);
3680             if (mh instanceof DirectMethodHandle
3681                     && canBeCached(refKind, defc, resolved)) {
3682                 MemberName key = mh.internalMemberName();
3683                 if (key != null) {
3684                     key = key.asNormalOriginal();
3685                 }
3686                 if (member.equals(key)) {  // better safe than sorry
3687                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3688                 }
3689             }
3690             return mh;
3691         }
3692         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3693             if (refKind == REF_invokeSpecial) {
3694                 return false;
3695             }
3696             if (!Modifier.isPublic(defc.getModifiers()) ||
3697                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3698                     !member.isPublic() ||
3699                     member.isCallerSensitive()) {
3700                 return false;
3701             }
3702             ClassLoader loader = defc.getClassLoader();
3703             if (loader != null) {
3704                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3705                 boolean found = false;
3706                 while (sysl != null) {
3707                     if (loader == sysl) { found = true; break; }
3708                     sysl = sysl.getParent();
3709                 }
3710                 if (!found) {
3711                     return false;
3712                 }
3713             }
3714             try {
3715                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3716                     new MemberName(refKind, defc, member.getName(), member.getType()));
3717                 if (resolved2 == null) {
3718                     return false;
3719                 }
3720                 checkSecurityManager(defc, resolved2);
3721             } catch (SecurityException ex) {
3722                 return false;
3723             }
3724             return true;
3725         }
3726         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3727                 throws ReflectiveOperationException {
3728             if (MethodHandleNatives.refKindIsField(refKind)) {
3729                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3730             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3731                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
3732             } else if (refKind == REF_newInvokeSpecial) {
3733                 return getDirectConstructorNoSecurityManager(defc, member);
3734             }
3735             // oops
3736             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3737         }
3738 
3739         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3740 
3741         /**
3742          * The set of class options that specify whether a hidden class created by
3743          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
3744          * Lookup::defineHiddenMethod} method is dynamically added as
3745          * a new member to the nest of a lookup class and whether a hidden class
3746          * is weak such that it may be unloaded while its defining class loader
3747          * is <a href="../ref/package.html#reachability">strongly reachable</a>.
3748          *
3749          * @since 15
3750          */
3751         public enum ClassOption {
3752             /**
3753              * This class option specifies the hidden class be added to
3754              * {@linkplain Class#getNestHost nest} of a lookup class as
3755              * a nestmate.
3756              *
3757              * <p> A hidden nestmate class has access to the private members of all
3758              * classes and interfaces in the same nest.
3759              *
3760              * @see Class#getNestHost()
3761              */
3762             NESTMATE(NESTMATE_CLASS),
3763 
3764             /**
3765              * This class option specifies the hidden class be weak so that
3766              * the class is not strongly referenced by its defining class loader.
3767              * A weak class may be unloaded while its defining class loader is
3768              * <a href="../ref/package.html#reachability">strongly reachable</a>.
3769              *
3770              * @jls 12.7 Unloading of Classes and Interfaces
3771              */
3772             WEAK(WEAK_CLASS);
3773 
3774             /* the flag value is used by VM at define class time */
3775             private final int flag;
3776             ClassOption(int flag) {
3777                 this.flag = flag;
3778             }
3779 
3780             static int optionsToFlag(Set<ClassOption> options) {
3781                 int flags = 0;
3782                 for (ClassOption cp : options) {
3783                     flags |= cp.flag;
3784                 }
3785                 return flags;
3786             }
3787         }
3788     }
3789 
3790     /**
3791      * Produces a method handle constructing arrays of a desired type,
3792      * as if by the {@code anewarray} bytecode.
3793      * The return type of the method handle will be the array type.
3794      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3795      *
3796      * <p> If the returned method handle is invoked with a negative
3797      * array size, a {@code NegativeArraySizeException} will be thrown.
3798      *
3799      * @param arrayClass an array type
3800      * @return a method handle which can create arrays of the given type
3801      * @throws NullPointerException if the argument is {@code null}
3802      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3803      * @see java.lang.reflect.Array#newInstance(Class, int)
3804      * @jvms 6.5 {@code anewarray} Instruction
3805      * @since 9
3806      */
3807     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3808         if (!arrayClass.isArray()) {
3809             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3810         }
3811         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3812                 bindTo(arrayClass.getComponentType());
3813         return ani.asType(ani.type().changeReturnType(arrayClass));
3814     }
3815 
3816     /**
3817      * Produces a method handle returning the length of an array,
3818      * as if by the {@code arraylength} bytecode.
3819      * The type of the method handle will have {@code int} as return type,
3820      * and its sole argument will be the array type.
3821      *
3822      * <p> If the returned method handle is invoked with a {@code null}
3823      * array reference, a {@code NullPointerException} will be thrown.
3824      *
3825      * @param arrayClass an array type
3826      * @return a method handle which can retrieve the length of an array of the given array type
3827      * @throws NullPointerException if the argument is {@code null}
3828      * @throws IllegalArgumentException if arrayClass is not an array type
3829      * @jvms 6.5 {@code arraylength} Instruction
3830      * @since 9
3831      */
3832     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3833         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3834     }
3835 
3836     /**
3837      * Produces a method handle giving read access to elements of an array,
3838      * as if by the {@code aaload} bytecode.
3839      * The type of the method handle will have a return type of the array's
3840      * element type.  Its first argument will be the array type,
3841      * and the second will be {@code int}.
3842      *
3843      * <p> When the returned method handle is invoked,
3844      * the array reference and array index are checked.
3845      * A {@code NullPointerException} will be thrown if the array reference
3846      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3847      * thrown if the index is negative or if it is greater than or equal to
3848      * the length of the array.
3849      *
3850      * @param arrayClass an array type
3851      * @return a method handle which can load values from the given array type
3852      * @throws NullPointerException if the argument is null
3853      * @throws  IllegalArgumentException if arrayClass is not an array type
3854      * @jvms 6.5 {@code aaload} Instruction
3855      */
3856     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3857         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3858     }
3859 
3860     /**
3861      * Produces a method handle giving write access to elements of an array,
3862      * as if by the {@code astore} bytecode.
3863      * The type of the method handle will have a void return type.
3864      * Its last argument will be the array's element type.
3865      * The first and second arguments will be the array type and int.
3866      *
3867      * <p> When the returned method handle is invoked,
3868      * the array reference and array index are checked.
3869      * A {@code NullPointerException} will be thrown if the array reference
3870      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3871      * thrown if the index is negative or if it is greater than or equal to
3872      * the length of the array.
3873      *
3874      * @param arrayClass the class of an array
3875      * @return a method handle which can store values into the array type
3876      * @throws NullPointerException if the argument is null
3877      * @throws IllegalArgumentException if arrayClass is not an array type
3878      * @jvms 6.5 {@code aastore} Instruction
3879      */
3880     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3881         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3882     }
3883 
3884     /**
3885      * Produces a VarHandle giving access to elements of an array of type
3886      * {@code arrayClass}.  The VarHandle's variable type is the component type
3887      * of {@code arrayClass} and the list of coordinate types is
3888      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3889      * corresponds to an argument that is an index into an array.
3890      * <p>
3891      * Certain access modes of the returned VarHandle are unsupported under
3892      * the following conditions:
3893      * <ul>
3894      * <li>if the component type is anything other than {@code byte},
3895      *     {@code short}, {@code char}, {@code int}, {@code long},
3896      *     {@code float}, or {@code double} then numeric atomic update access
3897      *     modes are unsupported.
3898      * <li>if the field type is anything other than {@code boolean},
3899      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3900      *     {@code long} then bitwise atomic update access modes are
3901      *     unsupported.
3902      * </ul>
3903      * <p>
3904      * If the component type is {@code float} or {@code double} then numeric
3905      * and atomic update access modes compare values using their bitwise
3906      * representation (see {@link Float#floatToRawIntBits} and
3907      * {@link Double#doubleToRawLongBits}, respectively).
3908      *
3909      * <p> When the returned {@code VarHandle} is invoked,
3910      * the array reference and array index are checked.
3911      * A {@code NullPointerException} will be thrown if the array reference
3912      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3913      * thrown if the index is negative or if it is greater than or equal to
3914      * the length of the array.
3915      *
3916      * @apiNote
3917      * Bitwise comparison of {@code float} values or {@code double} values,
3918      * as performed by the numeric and atomic update access modes, differ
3919      * from the primitive {@code ==} operator and the {@link Float#equals}
3920      * and {@link Double#equals} methods, specifically with respect to
3921      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3922      * Care should be taken when performing a compare and set or a compare
3923      * and exchange operation with such values since the operation may
3924      * unexpectedly fail.
3925      * There are many possible NaN values that are considered to be
3926      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3927      * provided by Java can distinguish between them.  Operation failure can
3928      * occur if the expected or witness value is a NaN value and it is
3929      * transformed (perhaps in a platform specific manner) into another NaN
3930      * value, and thus has a different bitwise representation (see
3931      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3932      * details).
3933      * The values {@code -0.0} and {@code +0.0} have different bitwise
3934      * representations but are considered equal when using the primitive
3935      * {@code ==} operator.  Operation failure can occur if, for example, a
3936      * numeric algorithm computes an expected value to be say {@code -0.0}
3937      * and previously computed the witness value to be say {@code +0.0}.
3938      * @param arrayClass the class of an array, of type {@code T[]}
3939      * @return a VarHandle giving access to elements of an array
3940      * @throws NullPointerException if the arrayClass is null
3941      * @throws IllegalArgumentException if arrayClass is not an array type
3942      * @since 9
3943      */
3944     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3945         return VarHandles.makeArrayElementHandle(arrayClass);
3946     }
3947 
3948     /**
3949      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3950      * viewed as if it were a different primitive array type, such as
3951      * {@code int[]} or {@code long[]}.
3952      * The VarHandle's variable type is the component type of
3953      * {@code viewArrayClass} and the list of coordinate types is
3954      * {@code (byte[], int)}, where the {@code int} coordinate type
3955      * corresponds to an argument that is an index into a {@code byte[]} array.
3956      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3957      * array, composing bytes to or from a value of the component type of
3958      * {@code viewArrayClass} according to the given endianness.
3959      * <p>
3960      * The supported component types (variables types) are {@code short},
3961      * {@code char}, {@code int}, {@code long}, {@code float} and
3962      * {@code double}.
3963      * <p>
3964      * Access of bytes at a given index will result in an
3965      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3966      * or greater than the {@code byte[]} array length minus the size (in bytes)
3967      * of {@code T}.
3968      * <p>
3969      * Access of bytes at an index may be aligned or misaligned for {@code T},
3970      * with respect to the underlying memory address, {@code A} say, associated
3971      * with the array and index.
3972      * If access is misaligned then access for anything other than the
3973      * {@code get} and {@code set} access modes will result in an
3974      * {@code IllegalStateException}.  In such cases atomic access is only
3975      * guaranteed with respect to the largest power of two that divides the GCD
3976      * of {@code A} and the size (in bytes) of {@code T}.
3977      * If access is aligned then following access modes are supported and are
3978      * guaranteed to support atomic access:
3979      * <ul>
3980      * <li>read write access modes for all {@code T}, with the exception of
3981      *     access modes {@code get} and {@code set} for {@code long} and
3982      *     {@code double} on 32-bit platforms.
3983      * <li>atomic update access modes for {@code int}, {@code long},
3984      *     {@code float} or {@code double}.
3985      *     (Future major platform releases of the JDK may support additional
3986      *     types for certain currently unsupported access modes.)
3987      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3988      *     (Future major platform releases of the JDK may support additional
3989      *     numeric types for certain currently unsupported access modes.)
3990      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3991      *     (Future major platform releases of the JDK may support additional
3992      *     numeric types for certain currently unsupported access modes.)
3993      * </ul>
3994      * <p>
3995      * Misaligned access, and therefore atomicity guarantees, may be determined
3996      * for {@code byte[]} arrays without operating on a specific array.  Given
3997      * an {@code index}, {@code T} and it's corresponding boxed type,
3998      * {@code T_BOX}, misalignment may be determined as follows:
3999      * <pre>{@code
4000      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4001      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
4002      *     alignmentOffset(0, sizeOfT);
4003      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
4004      * boolean isMisaligned = misalignedAtIndex != 0;
4005      * }</pre>
4006      * <p>
4007      * If the variable type is {@code float} or {@code double} then atomic
4008      * update access modes compare values using their bitwise representation
4009      * (see {@link Float#floatToRawIntBits} and
4010      * {@link Double#doubleToRawLongBits}, respectively).
4011      * @param viewArrayClass the view array class, with a component type of
4012      * type {@code T}
4013      * @param byteOrder the endianness of the view array elements, as
4014      * stored in the underlying {@code byte} array
4015      * @return a VarHandle giving access to elements of a {@code byte[]} array
4016      * viewed as if elements corresponding to the components type of the view
4017      * array class
4018      * @throws NullPointerException if viewArrayClass or byteOrder is null
4019      * @throws IllegalArgumentException if viewArrayClass is not an array type
4020      * @throws UnsupportedOperationException if the component type of
4021      * viewArrayClass is not supported as a variable type
4022      * @since 9
4023      */
4024     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
4025                                      ByteOrder byteOrder) throws IllegalArgumentException {
4026         Objects.requireNonNull(byteOrder);
4027         return VarHandles.byteArrayViewHandle(viewArrayClass,
4028                                               byteOrder == ByteOrder.BIG_ENDIAN);
4029     }
4030 
4031     /**
4032      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
4033      * viewed as if it were an array of elements of a different primitive
4034      * component type to that of {@code byte}, such as {@code int[]} or
4035      * {@code long[]}.
4036      * The VarHandle's variable type is the component type of
4037      * {@code viewArrayClass} and the list of coordinate types is
4038      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
4039      * corresponds to an argument that is an index into a {@code byte[]} array.
4040      * The returned VarHandle accesses bytes at an index in a
4041      * {@code ByteBuffer}, composing bytes to or from a value of the component
4042      * type of {@code viewArrayClass} according to the given endianness.
4043      * <p>
4044      * The supported component types (variables types) are {@code short},
4045      * {@code char}, {@code int}, {@code long}, {@code float} and
4046      * {@code double}.
4047      * <p>
4048      * Access will result in a {@code ReadOnlyBufferException} for anything
4049      * other than the read access modes if the {@code ByteBuffer} is read-only.
4050      * <p>
4051      * Access of bytes at a given index will result in an
4052      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
4053      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
4054      * {@code T}.
4055      * <p>
4056      * Access of bytes at an index may be aligned or misaligned for {@code T},
4057      * with respect to the underlying memory address, {@code A} say, associated
4058      * with the {@code ByteBuffer} and index.
4059      * If access is misaligned then access for anything other than the
4060      * {@code get} and {@code set} access modes will result in an
4061      * {@code IllegalStateException}.  In such cases atomic access is only
4062      * guaranteed with respect to the largest power of two that divides the GCD
4063      * of {@code A} and the size (in bytes) of {@code T}.
4064      * If access is aligned then following access modes are supported and are
4065      * guaranteed to support atomic access:
4066      * <ul>
4067      * <li>read write access modes for all {@code T}, with the exception of
4068      *     access modes {@code get} and {@code set} for {@code long} and
4069      *     {@code double} on 32-bit platforms.
4070      * <li>atomic update access modes for {@code int}, {@code long},
4071      *     {@code float} or {@code double}.
4072      *     (Future major platform releases of the JDK may support additional
4073      *     types for certain currently unsupported access modes.)
4074      * <li>numeric atomic update access modes for {@code int} and {@code long}.
4075      *     (Future major platform releases of the JDK may support additional
4076      *     numeric types for certain currently unsupported access modes.)
4077      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
4078      *     (Future major platform releases of the JDK may support additional
4079      *     numeric types for certain currently unsupported access modes.)
4080      * </ul>
4081      * <p>
4082      * Misaligned access, and therefore atomicity guarantees, may be determined
4083      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
4084      * {@code index}, {@code T} and it's corresponding boxed type,
4085      * {@code T_BOX}, as follows:
4086      * <pre>{@code
4087      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
4088      * ByteBuffer bb = ...
4089      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
4090      * boolean isMisaligned = misalignedAtIndex != 0;
4091      * }</pre>
4092      * <p>
4093      * If the variable type is {@code float} or {@code double} then atomic
4094      * update access modes compare values using their bitwise representation
4095      * (see {@link Float#floatToRawIntBits} and
4096      * {@link Double#doubleToRawLongBits}, respectively).
4097      * @param viewArrayClass the view array class, with a component type of
4098      * type {@code T}
4099      * @param byteOrder the endianness of the view array elements, as
4100      * stored in the underlying {@code ByteBuffer} (Note this overrides the
4101      * endianness of a {@code ByteBuffer})
4102      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
4103      * viewed as if elements corresponding to the components type of the view
4104      * array class
4105      * @throws NullPointerException if viewArrayClass or byteOrder is null
4106      * @throws IllegalArgumentException if viewArrayClass is not an array type
4107      * @throws UnsupportedOperationException if the component type of
4108      * viewArrayClass is not supported as a variable type
4109      * @since 9
4110      */
4111     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
4112                                       ByteOrder byteOrder) throws IllegalArgumentException {
4113         Objects.requireNonNull(byteOrder);
4114         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
4115                                                    byteOrder == ByteOrder.BIG_ENDIAN);
4116     }
4117 
4118 
4119     /// method handle invocation (reflective style)
4120 
4121     /**
4122      * Produces a method handle which will invoke any method handle of the
4123      * given {@code type}, with a given number of trailing arguments replaced by
4124      * a single trailing {@code Object[]} array.
4125      * The resulting invoker will be a method handle with the following
4126      * arguments:
4127      * <ul>
4128      * <li>a single {@code MethodHandle} target
4129      * <li>zero or more leading values (counted by {@code leadingArgCount})
4130      * <li>an {@code Object[]} array containing trailing arguments
4131      * </ul>
4132      * <p>
4133      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
4134      * the indicated {@code type}.
4135      * That is, if the target is exactly of the given {@code type}, it will behave
4136      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
4137      * is used to convert the target to the required {@code type}.
4138      * <p>
4139      * The type of the returned invoker will not be the given {@code type}, but rather
4140      * will have all parameters except the first {@code leadingArgCount}
4141      * replaced by a single array of type {@code Object[]}, which will be
4142      * the final parameter.
4143      * <p>
4144      * Before invoking its target, the invoker will spread the final array, apply
4145      * reference casts as necessary, and unbox and widen primitive arguments.
4146      * If, when the invoker is called, the supplied array argument does
4147      * not have the correct number of elements, the invoker will throw
4148      * an {@link IllegalArgumentException} instead of invoking the target.
4149      * <p>
4150      * This method is equivalent to the following code (though it may be more efficient):
4151      * <blockquote><pre>{@code
4152 MethodHandle invoker = MethodHandles.invoker(type);
4153 int spreadArgCount = type.parameterCount() - leadingArgCount;
4154 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
4155 return invoker;
4156      * }</pre></blockquote>
4157      * This method throws no reflective or security exceptions.
4158      * @param type the desired target type
4159      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
4160      * @return a method handle suitable for invoking any method handle of the given type
4161      * @throws NullPointerException if {@code type} is null
4162      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
4163      *                  the range from 0 to {@code type.parameterCount()} inclusive,
4164      *                  or if the resulting method handle's type would have
4165      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4166      */
4167     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
4168         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
4169             throw newIllegalArgumentException("bad argument count", leadingArgCount);
4170         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
4171         return type.invokers().spreadInvoker(leadingArgCount);
4172     }
4173 
4174     /**
4175      * Produces a special <em>invoker method handle</em> which can be used to
4176      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
4177      * The resulting invoker will have a type which is
4178      * exactly equal to the desired type, except that it will accept
4179      * an additional leading argument of type {@code MethodHandle}.
4180      * <p>
4181      * This method is equivalent to the following code (though it may be more efficient):
4182      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
4183      *
4184      * <p style="font-size:smaller;">
4185      * <em>Discussion:</em>
4186      * Invoker method handles can be useful when working with variable method handles
4187      * of unknown types.
4188      * For example, to emulate an {@code invokeExact} call to a variable method
4189      * handle {@code M}, extract its type {@code T},
4190      * look up the invoker method {@code X} for {@code T},
4191      * and call the invoker method, as {@code X.invoke(T, A...)}.
4192      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
4193      * is unknown.)
4194      * If spreading, collecting, or other argument transformations are required,
4195      * they can be applied once to the invoker {@code X} and reused on many {@code M}
4196      * method handle values, as long as they are compatible with the type of {@code X}.
4197      * <p style="font-size:smaller;">
4198      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4199      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4200      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4201      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4202      * <p>
4203      * This method throws no reflective or security exceptions.
4204      * @param type the desired target type
4205      * @return a method handle suitable for invoking any method handle of the given type
4206      * @throws IllegalArgumentException if the resulting method handle's type would have
4207      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4208      */
4209     public static MethodHandle exactInvoker(MethodType type) {
4210         return type.invokers().exactInvoker();
4211     }
4212 
4213     /**
4214      * Produces a special <em>invoker method handle</em> which can be used to
4215      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
4216      * The resulting invoker will have a type which is
4217      * exactly equal to the desired type, except that it will accept
4218      * an additional leading argument of type {@code MethodHandle}.
4219      * <p>
4220      * Before invoking its target, if the target differs from the expected type,
4221      * the invoker will apply reference casts as
4222      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
4223      * Similarly, the return value will be converted as necessary.
4224      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
4225      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
4226      * <p>
4227      * This method is equivalent to the following code (though it may be more efficient):
4228      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
4229      * <p style="font-size:smaller;">
4230      * <em>Discussion:</em>
4231      * A {@linkplain MethodType#genericMethodType general method type} is one which
4232      * mentions only {@code Object} arguments and return values.
4233      * An invoker for such a type is capable of calling any method handle
4234      * of the same arity as the general type.
4235      * <p style="font-size:smaller;">
4236      * <em>(Note:  The invoker method is not available via the Core Reflection API.
4237      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
4238      * on the declared {@code invokeExact} or {@code invoke} method will raise an
4239      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
4240      * <p>
4241      * This method throws no reflective or security exceptions.
4242      * @param type the desired target type
4243      * @return a method handle suitable for invoking any method handle convertible to the given type
4244      * @throws IllegalArgumentException if the resulting method handle's type would have
4245      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4246      */
4247     public static MethodHandle invoker(MethodType type) {
4248         return type.invokers().genericInvoker();
4249     }
4250 
4251     /**
4252      * Produces a special <em>invoker method handle</em> which can be used to
4253      * invoke a signature-polymorphic access mode method on any VarHandle whose
4254      * associated access mode type is compatible with the given type.
4255      * The resulting invoker will have a type which is exactly equal to the
4256      * desired given type, except that it will accept an additional leading
4257      * argument of type {@code VarHandle}.
4258      *
4259      * @param accessMode the VarHandle access mode
4260      * @param type the desired target type
4261      * @return a method handle suitable for invoking an access mode method of
4262      *         any VarHandle whose access mode type is of the given type.
4263      * @since 9
4264      */
4265     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4266         return type.invokers().varHandleMethodExactInvoker(accessMode);
4267     }
4268 
4269     /**
4270      * Produces a special <em>invoker method handle</em> which can be used to
4271      * invoke a signature-polymorphic access mode method on any VarHandle whose
4272      * associated access mode type is compatible with the given type.
4273      * The resulting invoker will have a type which is exactly equal to the
4274      * desired given type, except that it will accept an additional leading
4275      * argument of type {@code VarHandle}.
4276      * <p>
4277      * Before invoking its target, if the access mode type differs from the
4278      * desired given type, the invoker will apply reference casts as necessary
4279      * and box, unbox, or widen primitive values, as if by
4280      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4281      * converted as necessary.
4282      * <p>
4283      * This method is equivalent to the following code (though it may be more
4284      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4285      *
4286      * @param accessMode the VarHandle access mode
4287      * @param type the desired target type
4288      * @return a method handle suitable for invoking an access mode method of
4289      *         any VarHandle whose access mode type is convertible to the given
4290      *         type.
4291      * @since 9
4292      */
4293     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4294         return type.invokers().varHandleMethodInvoker(accessMode);
4295     }
4296 
4297     /*non-public*/
4298     static MethodHandle basicInvoker(MethodType type) {
4299         return type.invokers().basicInvoker();
4300     }
4301 
4302      /// method handle modification (creation from other method handles)
4303 
4304     /**
4305      * Produces a method handle which adapts the type of the
4306      * given method handle to a new type by pairwise argument and return type conversion.
4307      * The original type and new type must have the same number of arguments.
4308      * The resulting method handle is guaranteed to report a type
4309      * which is equal to the desired new type.
4310      * <p>
4311      * If the original type and new type are equal, returns target.
4312      * <p>
4313      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4314      * and some additional conversions are also applied if those conversions fail.
4315      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4316      * if possible, before or instead of any conversions done by {@code asType}:
4317      * <ul>
4318      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4319      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4320      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4321      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4322      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4323      *     (This treatment follows the usage of the bytecode verifier.)
4324      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4325      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
4326      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4327      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4328      *     then a Java casting conversion (JLS 5.5) is applied.
4329      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4330      *     widening and/or narrowing.)
4331      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4332      *     conversion will be applied at runtime, possibly followed
4333      *     by a Java casting conversion (JLS 5.5) on the primitive value,
4334      *     possibly followed by a conversion from byte to boolean by testing
4335      *     the low-order bit.
4336      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4337      *     and if the reference is null at runtime, a zero value is introduced.
4338      * </ul>
4339      * @param target the method handle to invoke after arguments are retyped
4340      * @param newType the expected type of the new method handle
4341      * @return a method handle which delegates to the target after performing
4342      *           any necessary argument conversions, and arranges for any
4343      *           necessary return value conversions
4344      * @throws NullPointerException if either argument is null
4345      * @throws WrongMethodTypeException if the conversion cannot be made
4346      * @see MethodHandle#asType
4347      */
4348     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4349         explicitCastArgumentsChecks(target, newType);
4350         // use the asTypeCache when possible:
4351         MethodType oldType = target.type();
4352         if (oldType == newType)  return target;
4353         if (oldType.explicitCastEquivalentToAsType(newType)) {
4354             return target.asFixedArity().asType(newType);
4355         }
4356         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4357     }
4358 
4359     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4360         if (target.type().parameterCount() != newType.parameterCount()) {
4361             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4362         }
4363     }
4364 
4365     /**
4366      * Produces a method handle which adapts the calling sequence of the
4367      * given method handle to a new type, by reordering the arguments.
4368      * The resulting method handle is guaranteed to report a type
4369      * which is equal to the desired new type.
4370      * <p>
4371      * The given array controls the reordering.
4372      * Call {@code #I} the number of incoming parameters (the value
4373      * {@code newType.parameterCount()}, and call {@code #O} the number
4374      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4375      * Then the length of the reordering array must be {@code #O},
4376      * and each element must be a non-negative number less than {@code #I}.
4377      * For every {@code N} less than {@code #O}, the {@code N}-th
4378      * outgoing argument will be taken from the {@code I}-th incoming
4379      * argument, where {@code I} is {@code reorder[N]}.
4380      * <p>
4381      * No argument or return value conversions are applied.
4382      * The type of each incoming argument, as determined by {@code newType},
4383      * must be identical to the type of the corresponding outgoing parameter
4384      * or parameters in the target method handle.
4385      * The return type of {@code newType} must be identical to the return
4386      * type of the original target.
4387      * <p>
4388      * The reordering array need not specify an actual permutation.
4389      * An incoming argument will be duplicated if its index appears
4390      * more than once in the array, and an incoming argument will be dropped
4391      * if its index does not appear in the array.
4392      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4393      * incoming arguments which are not mentioned in the reordering array
4394      * may be of any type, as determined only by {@code newType}.
4395      * <blockquote><pre>{@code
4396 import static java.lang.invoke.MethodHandles.*;
4397 import static java.lang.invoke.MethodType.*;
4398 ...
4399 MethodType intfn1 = methodType(int.class, int.class);
4400 MethodType intfn2 = methodType(int.class, int.class, int.class);
4401 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4402 assert(sub.type().equals(intfn2));
4403 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4404 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4405 assert((int)rsub.invokeExact(1, 100) == 99);
4406 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4407 assert(add.type().equals(intfn2));
4408 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4409 assert(twice.type().equals(intfn1));
4410 assert((int)twice.invokeExact(21) == 42);
4411      * }</pre></blockquote>
4412      * <p>
4413      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4414      * variable-arity method handle}, even if the original target method handle was.
4415      * @param target the method handle to invoke after arguments are reordered
4416      * @param newType the expected type of the new method handle
4417      * @param reorder an index array which controls the reordering
4418      * @return a method handle which delegates to the target after it
4419      *           drops unused arguments and moves and/or duplicates the other arguments
4420      * @throws NullPointerException if any argument is null
4421      * @throws IllegalArgumentException if the index array length is not equal to
4422      *                  the arity of the target, or if any index array element
4423      *                  not a valid index for a parameter of {@code newType},
4424      *                  or if two corresponding parameter types in
4425      *                  {@code target.type()} and {@code newType} are not identical,
4426      */
4427     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4428         reorder = reorder.clone();  // get a private copy
4429         MethodType oldType = target.type();
4430         permuteArgumentChecks(reorder, newType, oldType);
4431         // first detect dropped arguments and handle them separately
4432         int[] originalReorder = reorder;
4433         BoundMethodHandle result = target.rebind();
4434         LambdaForm form = result.form;
4435         int newArity = newType.parameterCount();
4436         // Normalize the reordering into a real permutation,
4437         // by removing duplicates and adding dropped elements.
4438         // This somewhat improves lambda form caching, as well
4439         // as simplifying the transform by breaking it up into steps.
4440         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4441             if (ddIdx > 0) {
4442                 // We found a duplicated entry at reorder[ddIdx].
4443                 // Example:  (x,y,z)->asList(x,y,z)
4444                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4445                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4446                 // The starred element corresponds to the argument
4447                 // deleted by the dupArgumentForm transform.
4448                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4449                 boolean killFirst = false;
4450                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4451                     // Set killFirst if the dup is larger than an intervening position.
4452                     // This will remove at least one inversion from the permutation.
4453                     if (dupVal > val) killFirst = true;
4454                 }
4455                 if (!killFirst) {
4456                     srcPos = dstPos;
4457                     dstPos = ddIdx;
4458                 }
4459                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4460                 assert (reorder[srcPos] == reorder[dstPos]);
4461                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4462                 // contract the reordering by removing the element at dstPos
4463                 int tailPos = dstPos + 1;
4464                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4465                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4466             } else {
4467                 int dropVal = ~ddIdx, insPos = 0;
4468                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4469                     // Find first element of reorder larger than dropVal.
4470                     // This is where we will insert the dropVal.
4471                     insPos += 1;
4472                 }
4473                 Class<?> ptype = newType.parameterType(dropVal);
4474                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4475                 oldType = oldType.insertParameterTypes(insPos, ptype);
4476                 // expand the reordering by inserting an element at insPos
4477                 int tailPos = insPos + 1;
4478                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4479                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4480                 reorder[insPos] = dropVal;
4481             }
4482             assert (permuteArgumentChecks(reorder, newType, oldType));
4483         }
4484         assert (reorder.length == newArity);  // a perfect permutation
4485         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4486         form = form.editor().permuteArgumentsForm(1, reorder);
4487         if (newType == result.type() && form == result.internalForm())
4488             return result;
4489         return result.copyWith(newType, form);
4490     }
4491 
4492     /**
4493      * Return an indication of any duplicate or omission in reorder.
4494      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4495      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4496      * Otherwise, return zero.
4497      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4498      */
4499     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4500         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4501         if (newArity < BIT_LIMIT) {
4502             long mask = 0;
4503             for (int i = 0; i < reorder.length; i++) {
4504                 int arg = reorder[i];
4505                 if (arg >= newArity) {
4506                     return reorder.length;
4507                 }
4508                 long bit = 1L << arg;
4509                 if ((mask & bit) != 0) {
4510                     return i;  // >0 indicates a dup
4511                 }
4512                 mask |= bit;
4513             }
4514             if (mask == (1L << newArity) - 1) {
4515                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4516                 return 0;
4517             }
4518             // find first zero
4519             long zeroBit = Long.lowestOneBit(~mask);
4520             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4521             assert(zeroPos <= newArity);
4522             if (zeroPos == newArity) {
4523                 return 0;
4524             }
4525             return ~zeroPos;
4526         } else {
4527             // same algorithm, different bit set
4528             BitSet mask = new BitSet(newArity);
4529             for (int i = 0; i < reorder.length; i++) {
4530                 int arg = reorder[i];
4531                 if (arg >= newArity) {
4532                     return reorder.length;
4533                 }
4534                 if (mask.get(arg)) {
4535                     return i;  // >0 indicates a dup
4536                 }
4537                 mask.set(arg);
4538             }
4539             int zeroPos = mask.nextClearBit(0);
4540             assert(zeroPos <= newArity);
4541             if (zeroPos == newArity) {
4542                 return 0;
4543             }
4544             return ~zeroPos;
4545         }
4546     }
4547 
4548     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4549         if (newType.returnType() != oldType.returnType())
4550             throw newIllegalArgumentException("return types do not match",
4551                     oldType, newType);
4552         if (reorder.length == oldType.parameterCount()) {
4553             int limit = newType.parameterCount();
4554             boolean bad = false;
4555             for (int j = 0; j < reorder.length; j++) {
4556                 int i = reorder[j];
4557                 if (i < 0 || i >= limit) {
4558                     bad = true; break;
4559                 }
4560                 Class<?> src = newType.parameterType(i);
4561                 Class<?> dst = oldType.parameterType(j);
4562                 if (src != dst)
4563                     throw newIllegalArgumentException("parameter types do not match after reorder",
4564                             oldType, newType);
4565             }
4566             if (!bad)  return true;
4567         }
4568         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4569     }
4570 
4571     /**
4572      * Produces a method handle of the requested return type which returns the given
4573      * constant value every time it is invoked.
4574      * <p>
4575      * Before the method handle is returned, the passed-in value is converted to the requested type.
4576      * If the requested type is primitive, widening primitive conversions are attempted,
4577      * else reference conversions are attempted.
4578      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4579      * @param type the return type of the desired method handle
4580      * @param value the value to return
4581      * @return a method handle of the given return type and no arguments, which always returns the given value
4582      * @throws NullPointerException if the {@code type} argument is null
4583      * @throws ClassCastException if the value cannot be converted to the required return type
4584      * @throws IllegalArgumentException if the given type is {@code void.class}
4585      */
4586     public static MethodHandle constant(Class<?> type, Object value) {
4587         if (type.isPrimitive()) {
4588             if (type == void.class)
4589                 throw newIllegalArgumentException("void type");
4590             Wrapper w = Wrapper.forPrimitiveType(type);
4591             value = w.convert(value, type);
4592             if (w.zero().equals(value))
4593                 return zero(w, type);
4594             return insertArguments(identity(type), 0, value);
4595         } else {
4596             if (value == null)
4597                 return zero(Wrapper.OBJECT, type);
4598             return identity(type).bindTo(value);
4599         }
4600     }
4601 
4602     /**
4603      * Produces a method handle which returns its sole argument when invoked.
4604      * @param type the type of the sole parameter and return value of the desired method handle
4605      * @return a unary method handle which accepts and returns the given type
4606      * @throws NullPointerException if the argument is null
4607      * @throws IllegalArgumentException if the given type is {@code void.class}
4608      */
4609     public static MethodHandle identity(Class<?> type) {
4610         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4611         int pos = btw.ordinal();
4612         MethodHandle ident = IDENTITY_MHS[pos];
4613         if (ident == null) {
4614             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4615         }
4616         if (ident.type().returnType() == type)
4617             return ident;
4618         // something like identity(Foo.class); do not bother to intern these
4619         assert (btw == Wrapper.OBJECT);
4620         return makeIdentity(type);
4621     }
4622 
4623     /**
4624      * Produces a constant method handle of the requested return type which
4625      * returns the default value for that type every time it is invoked.
4626      * The resulting constant method handle will have no side effects.
4627      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4628      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4629      * since {@code explicitCastArguments} converts {@code null} to default values.
4630      * @param type the expected return type of the desired method handle
4631      * @return a constant method handle that takes no arguments
4632      *         and returns the default value of the given type (or void, if the type is void)
4633      * @throws NullPointerException if the argument is null
4634      * @see MethodHandles#constant
4635      * @see MethodHandles#empty
4636      * @see MethodHandles#explicitCastArguments
4637      * @since 9
4638      */
4639     public static MethodHandle zero(Class<?> type) {
4640         Objects.requireNonNull(type);
4641         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4642     }
4643 
4644     private static MethodHandle identityOrVoid(Class<?> type) {
4645         return type == void.class ? zero(type) : identity(type);
4646     }
4647 
4648     /**
4649      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4650      * and returns a suitable default depending on the return type.
4651      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4652      * <p>The returned method handle is equivalent to
4653      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4654      *
4655      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4656      * {@code guardWithTest(pred, target, empty(target.type())}.
4657      * @param type the type of the desired method handle
4658      * @return a constant method handle of the given type, which returns a default value of the given return type
4659      * @throws NullPointerException if the argument is null
4660      * @see MethodHandles#zero
4661      * @see MethodHandles#constant
4662      * @since 9
4663      */
4664     public static  MethodHandle empty(MethodType type) {
4665         Objects.requireNonNull(type);
4666         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4667     }
4668 
4669     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4670     private static MethodHandle makeIdentity(Class<?> ptype) {
4671         MethodType mtype = methodType(ptype, ptype);
4672         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4673         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4674     }
4675 
4676     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4677         int pos = btw.ordinal();
4678         MethodHandle zero = ZERO_MHS[pos];
4679         if (zero == null) {
4680             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4681         }
4682         if (zero.type().returnType() == rtype)
4683             return zero;
4684         assert(btw == Wrapper.OBJECT);
4685         return makeZero(rtype);
4686     }
4687     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4688     private static MethodHandle makeZero(Class<?> rtype) {
4689         MethodType mtype = methodType(rtype);
4690         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4691         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4692     }
4693 
4694     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4695         // Simulate a CAS, to avoid racy duplication of results.
4696         MethodHandle prev = cache[pos];
4697         if (prev != null) return prev;
4698         return cache[pos] = value;
4699     }
4700 
4701     /**
4702      * Provides a target method handle with one or more <em>bound arguments</em>
4703      * in advance of the method handle's invocation.
4704      * The formal parameters to the target corresponding to the bound
4705      * arguments are called <em>bound parameters</em>.
4706      * Returns a new method handle which saves away the bound arguments.
4707      * When it is invoked, it receives arguments for any non-bound parameters,
4708      * binds the saved arguments to their corresponding parameters,
4709      * and calls the original target.
4710      * <p>
4711      * The type of the new method handle will drop the types for the bound
4712      * parameters from the original target type, since the new method handle
4713      * will no longer require those arguments to be supplied by its callers.
4714      * <p>
4715      * Each given argument object must match the corresponding bound parameter type.
4716      * If a bound parameter type is a primitive, the argument object
4717      * must be a wrapper, and will be unboxed to produce the primitive value.
4718      * <p>
4719      * The {@code pos} argument selects which parameters are to be bound.
4720      * It may range between zero and <i>N-L</i> (inclusively),
4721      * where <i>N</i> is the arity of the target method handle
4722      * and <i>L</i> is the length of the values array.
4723      * <p>
4724      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4725      * variable-arity method handle}, even if the original target method handle was.
4726      * @param target the method handle to invoke after the argument is inserted
4727      * @param pos where to insert the argument (zero for the first)
4728      * @param values the series of arguments to insert
4729      * @return a method handle which inserts an additional argument,
4730      *         before calling the original method handle
4731      * @throws NullPointerException if the target or the {@code values} array is null
4732      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4733      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4734      *         is the length of the values array.
4735      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4736      *         type.
4737      * @see MethodHandle#bindTo
4738      */
4739     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4740         int insCount = values.length;
4741         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4742         if (insCount == 0)  return target;
4743         BoundMethodHandle result = target.rebind();
4744         for (int i = 0; i < insCount; i++) {
4745             Object value = values[i];
4746             Class<?> ptype = ptypes[pos+i];
4747             if (ptype.isPrimitive()) {
4748                 result = insertArgumentPrimitive(result, pos, ptype, value);
4749             } else {
4750                 value = ptype.cast(value);  // throw CCE if needed
4751                 result = result.bindArgumentL(pos, value);
4752             }
4753         }
4754         return result;
4755     }
4756 
4757     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4758                                                              Class<?> ptype, Object value) {
4759         Wrapper w = Wrapper.forPrimitiveType(ptype);
4760         // perform unboxing and/or primitive conversion
4761         value = w.convert(value, ptype);
4762         switch (w) {
4763         case INT:     return result.bindArgumentI(pos, (int)value);
4764         case LONG:    return result.bindArgumentJ(pos, (long)value);
4765         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4766         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4767         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4768         }
4769     }
4770 
4771     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4772         MethodType oldType = target.type();
4773         int outargs = oldType.parameterCount();
4774         int inargs  = outargs - insCount;
4775         if (inargs < 0)
4776             throw newIllegalArgumentException("too many values to insert");
4777         if (pos < 0 || pos > inargs)
4778             throw newIllegalArgumentException("no argument type to append");
4779         return oldType.ptypes();
4780     }
4781 
4782     /**
4783      * Produces a method handle which will discard some dummy arguments
4784      * before calling some other specified <i>target</i> method handle.
4785      * The type of the new method handle will be the same as the target's type,
4786      * except it will also include the dummy argument types,
4787      * at some given position.
4788      * <p>
4789      * The {@code pos} argument may range between zero and <i>N</i>,
4790      * where <i>N</i> is the arity of the target.
4791      * If {@code pos} is zero, the dummy arguments will precede
4792      * the target's real arguments; if {@code pos} is <i>N</i>
4793      * they will come after.
4794      * <p>
4795      * <b>Example:</b>
4796      * <blockquote><pre>{@code
4797 import static java.lang.invoke.MethodHandles.*;
4798 import static java.lang.invoke.MethodType.*;
4799 ...
4800 MethodHandle cat = lookup().findVirtual(String.class,
4801   "concat", methodType(String.class, String.class));
4802 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4803 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4804 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4805 assertEquals(bigType, d0.type());
4806 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4807      * }</pre></blockquote>
4808      * <p>
4809      * This method is also equivalent to the following code:
4810      * <blockquote><pre>
4811      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4812      * </pre></blockquote>
4813      * @param target the method handle to invoke after the arguments are dropped
4814      * @param pos position of first argument to drop (zero for the leftmost)
4815      * @param valueTypes the type(s) of the argument(s) to drop
4816      * @return a method handle which drops arguments of the given types,
4817      *         before calling the original method handle
4818      * @throws NullPointerException if the target is null,
4819      *                              or if the {@code valueTypes} list or any of its elements is null
4820      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4821      *                  or if {@code pos} is negative or greater than the arity of the target,
4822      *                  or if the new method handle's type would have too many parameters
4823      */
4824     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4825         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4826     }
4827 
4828     private static List<Class<?>> copyTypes(Object[] array) {
4829         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4830     }
4831 
4832     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4833         MethodType oldType = target.type();  // get NPE
4834         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4835         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4836         if (dropped == 0)  return target;
4837         BoundMethodHandle result = target.rebind();
4838         LambdaForm lform = result.form;
4839         int insertFormArg = 1 + pos;
4840         for (Class<?> ptype : valueTypes) {
4841             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4842         }
4843         result = result.copyWith(newType, lform);
4844         return result;
4845     }
4846 
4847     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4848         int dropped = valueTypes.size();
4849         MethodType.checkSlotCount(dropped);
4850         int outargs = oldType.parameterCount();
4851         int inargs  = outargs + dropped;
4852         if (pos < 0 || pos > outargs)
4853             throw newIllegalArgumentException("no argument type to remove"
4854                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4855                     );
4856         return dropped;
4857     }
4858 
4859     /**
4860      * Produces a method handle which will discard some dummy arguments
4861      * before calling some other specified <i>target</i> method handle.
4862      * The type of the new method handle will be the same as the target's type,
4863      * except it will also include the dummy argument types,
4864      * at some given position.
4865      * <p>
4866      * The {@code pos} argument may range between zero and <i>N</i>,
4867      * where <i>N</i> is the arity of the target.
4868      * If {@code pos} is zero, the dummy arguments will precede
4869      * the target's real arguments; if {@code pos} is <i>N</i>
4870      * they will come after.
4871      * @apiNote
4872      * <blockquote><pre>{@code
4873 import static java.lang.invoke.MethodHandles.*;
4874 import static java.lang.invoke.MethodType.*;
4875 ...
4876 MethodHandle cat = lookup().findVirtual(String.class,
4877   "concat", methodType(String.class, String.class));
4878 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4879 MethodHandle d0 = dropArguments(cat, 0, String.class);
4880 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4881 MethodHandle d1 = dropArguments(cat, 1, String.class);
4882 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4883 MethodHandle d2 = dropArguments(cat, 2, String.class);
4884 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4885 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4886 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4887      * }</pre></blockquote>
4888      * <p>
4889      * This method is also equivalent to the following code:
4890      * <blockquote><pre>
4891      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4892      * </pre></blockquote>
4893      * @param target the method handle to invoke after the arguments are dropped
4894      * @param pos position of first argument to drop (zero for the leftmost)
4895      * @param valueTypes the type(s) of the argument(s) to drop
4896      * @return a method handle which drops arguments of the given types,
4897      *         before calling the original method handle
4898      * @throws NullPointerException if the target is null,
4899      *                              or if the {@code valueTypes} array or any of its elements is null
4900      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4901      *                  or if {@code pos} is negative or greater than the arity of the target,
4902      *                  or if the new method handle's type would have
4903      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4904      */
4905     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4906         return dropArguments0(target, pos, copyTypes(valueTypes));
4907     }
4908 
4909     // private version which allows caller some freedom with error handling
4910     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4911                                       boolean nullOnFailure) {
4912         newTypes = copyTypes(newTypes.toArray());
4913         List<Class<?>> oldTypes = target.type().parameterList();
4914         int match = oldTypes.size();
4915         if (skip != 0) {
4916             if (skip < 0 || skip > match) {
4917                 throw newIllegalArgumentException("illegal skip", skip, target);
4918             }
4919             oldTypes = oldTypes.subList(skip, match);
4920             match -= skip;
4921         }
4922         List<Class<?>> addTypes = newTypes;
4923         int add = addTypes.size();
4924         if (pos != 0) {
4925             if (pos < 0 || pos > add) {
4926                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4927             }
4928             addTypes = addTypes.subList(pos, add);
4929             add -= pos;
4930             assert(addTypes.size() == add);
4931         }
4932         // Do not add types which already match the existing arguments.
4933         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4934             if (nullOnFailure) {
4935                 return null;
4936             }
4937             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4938         }
4939         addTypes = addTypes.subList(match, add);
4940         add -= match;
4941         assert(addTypes.size() == add);
4942         // newTypes:     (   P*[pos], M*[match], A*[add] )
4943         // target: ( S*[skip],        M*[match]  )
4944         MethodHandle adapter = target;
4945         if (add > 0) {
4946             adapter = dropArguments0(adapter, skip+ match, addTypes);
4947         }
4948         // adapter: (S*[skip],        M*[match], A*[add] )
4949         if (pos > 0) {
4950             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4951         }
4952         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4953         return adapter;
4954     }
4955 
4956     /**
4957      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4958      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4959      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4960      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4961      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4962      * {@link #dropArguments(MethodHandle, int, Class[])}.
4963      * <p>
4964      * The resulting handle will have the same return type as the target handle.
4965      * <p>
4966      * In more formal terms, assume these two type lists:<ul>
4967      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4968      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4969      * {@code newTypes}.
4970      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4971      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4972      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4973      * sub-list.
4974      * </ul>
4975      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4976      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4977      * {@link #dropArguments(MethodHandle, int, Class[])}.
4978      *
4979      * @apiNote
4980      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4981      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4982      * <blockquote><pre>{@code
4983 import static java.lang.invoke.MethodHandles.*;
4984 import static java.lang.invoke.MethodType.*;
4985 ...
4986 ...
4987 MethodHandle h0 = constant(boolean.class, true);
4988 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4989 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4990 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4991 if (h1.type().parameterCount() < h2.type().parameterCount())
4992     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4993 else
4994     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4995 MethodHandle h3 = guardWithTest(h0, h1, h2);
4996 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4997      * }</pre></blockquote>
4998      * @param target the method handle to adapt
4999      * @param skip number of targets parameters to disregard (they will be unchanged)
5000      * @param newTypes the list of types to match {@code target}'s parameter type list to
5001      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
5002      * @return a possibly adapted method handle
5003      * @throws NullPointerException if either argument is null
5004      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
5005      *         or if {@code skip} is negative or greater than the arity of the target,
5006      *         or if {@code pos} is negative or greater than the newTypes list size,
5007      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
5008      *         {@code pos}.
5009      * @since 9
5010      */
5011     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
5012         Objects.requireNonNull(target);
5013         Objects.requireNonNull(newTypes);
5014         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
5015     }
5016 
5017     /**
5018      * Adapts a target method handle by pre-processing
5019      * one or more of its arguments, each with its own unary filter function,
5020      * and then calling the target with each pre-processed argument
5021      * replaced by the result of its corresponding filter function.
5022      * <p>
5023      * The pre-processing is performed by one or more method handles,
5024      * specified in the elements of the {@code filters} array.
5025      * The first element of the filter array corresponds to the {@code pos}
5026      * argument of the target, and so on in sequence.
5027      * The filter functions are invoked in left to right order.
5028      * <p>
5029      * Null arguments in the array are treated as identity functions,
5030      * and the corresponding arguments left unchanged.
5031      * (If there are no non-null elements in the array, the original target is returned.)
5032      * Each filter is applied to the corresponding argument of the adapter.
5033      * <p>
5034      * If a filter {@code F} applies to the {@code N}th argument of
5035      * the target, then {@code F} must be a method handle which
5036      * takes exactly one argument.  The type of {@code F}'s sole argument
5037      * replaces the corresponding argument type of the target
5038      * in the resulting adapted method handle.
5039      * The return type of {@code F} must be identical to the corresponding
5040      * parameter type of the target.
5041      * <p>
5042      * It is an error if there are elements of {@code filters}
5043      * (null or not)
5044      * which do not correspond to argument positions in the target.
5045      * <p><b>Example:</b>
5046      * <blockquote><pre>{@code
5047 import static java.lang.invoke.MethodHandles.*;
5048 import static java.lang.invoke.MethodType.*;
5049 ...
5050 MethodHandle cat = lookup().findVirtual(String.class,
5051   "concat", methodType(String.class, String.class));
5052 MethodHandle upcase = lookup().findVirtual(String.class,
5053   "toUpperCase", methodType(String.class));
5054 assertEquals("xy", (String) cat.invokeExact("x", "y"));
5055 MethodHandle f0 = filterArguments(cat, 0, upcase);
5056 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
5057 MethodHandle f1 = filterArguments(cat, 1, upcase);
5058 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
5059 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
5060 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
5061      * }</pre></blockquote>
5062      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5063      * denotes the return type of both the {@code target} and resulting adapter.
5064      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
5065      * of the parameters and arguments that precede and follow the filter position
5066      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
5067      * values of the filtered parameters and arguments; they also represent the
5068      * return types of the {@code filter[i]} handles. The latter accept arguments
5069      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
5070      * the resulting adapter.
5071      * <blockquote><pre>{@code
5072      * T target(P... p, A[i]... a[i], B... b);
5073      * A[i] filter[i](V[i]);
5074      * T adapter(P... p, V[i]... v[i], B... b) {
5075      *   return target(p..., filter[i](v[i])..., b...);
5076      * }
5077      * }</pre></blockquote>
5078      * <p>
5079      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5080      * variable-arity method handle}, even if the original target method handle was.
5081      *
5082      * @param target the method handle to invoke after arguments are filtered
5083      * @param pos the position of the first argument to filter
5084      * @param filters method handles to call initially on filtered arguments
5085      * @return method handle which incorporates the specified argument filtering logic
5086      * @throws NullPointerException if the target is null
5087      *                              or if the {@code filters} array is null
5088      * @throws IllegalArgumentException if a non-null element of {@code filters}
5089      *          does not match a corresponding argument type of target as described above,
5090      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
5091      *          or if the resulting method handle's type would have
5092      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5093      */
5094     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
5095         // In method types arguments start at index 0, while the LF
5096         // editor have the MH receiver at position 0 - adjust appropriately.
5097         final int MH_RECEIVER_OFFSET = 1;
5098         filterArgumentsCheckArity(target, pos, filters);
5099         MethodHandle adapter = target;
5100 
5101         // keep track of currently matched filters, as to optimize repeated filters
5102         int index = 0;
5103         int[] positions = new int[filters.length];
5104         MethodHandle filter = null;
5105 
5106         // process filters in reverse order so that the invocation of
5107         // the resulting adapter will invoke the filters in left-to-right order
5108         for (int i = filters.length - 1; i >= 0; --i) {
5109             MethodHandle newFilter = filters[i];
5110             if (newFilter == null) continue;  // ignore null elements of filters
5111 
5112             // flush changes on update
5113             if (filter != newFilter) {
5114                 if (filter != null) {
5115                     if (index > 1) {
5116                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5117                     } else {
5118                         adapter = filterArgument(adapter, positions[0] - 1, filter);
5119                     }
5120                 }
5121                 filter = newFilter;
5122                 index = 0;
5123             }
5124 
5125             filterArgumentChecks(target, pos + i, newFilter);
5126             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
5127         }
5128         if (index > 1) {
5129             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
5130         } else if (index == 1) {
5131             adapter = filterArgument(adapter, positions[0] - 1, filter);
5132         }
5133         return adapter;
5134     }
5135 
5136     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
5137         MethodType targetType = adapter.type();
5138         MethodType filterType = filter.type();
5139         BoundMethodHandle result = adapter.rebind();
5140         Class<?> newParamType = filterType.parameterType(0);
5141 
5142         Class<?>[] ptypes = targetType.ptypes().clone();
5143         for (int pos : positions) {
5144             ptypes[pos - 1] = newParamType;
5145         }
5146         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
5147 
5148         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
5149         return result.copyWithExtendL(newType, lform, filter);
5150     }
5151 
5152     /*non-public*/
5153     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
5154         filterArgumentChecks(target, pos, filter);
5155         MethodType targetType = target.type();
5156         MethodType filterType = filter.type();
5157         BoundMethodHandle result = target.rebind();
5158         Class<?> newParamType = filterType.parameterType(0);
5159         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
5160         MethodType newType = targetType.changeParameterType(pos, newParamType);
5161         result = result.copyWithExtendL(newType, lform, filter);
5162         return result;
5163     }
5164 
5165     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
5166         MethodType targetType = target.type();
5167         int maxPos = targetType.parameterCount();
5168         if (pos + filters.length > maxPos)
5169             throw newIllegalArgumentException("too many filters");
5170     }
5171 
5172     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5173         MethodType targetType = target.type();
5174         MethodType filterType = filter.type();
5175         if (filterType.parameterCount() != 1
5176             || filterType.returnType() != targetType.parameterType(pos))
5177             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5178     }
5179 
5180     /**
5181      * Adapts a target method handle by pre-processing
5182      * a sub-sequence of its arguments with a filter (another method handle).
5183      * The pre-processed arguments are replaced by the result (if any) of the
5184      * filter function.
5185      * The target is then called on the modified (usually shortened) argument list.
5186      * <p>
5187      * If the filter returns a value, the target must accept that value as
5188      * its argument in position {@code pos}, preceded and/or followed by
5189      * any arguments not passed to the filter.
5190      * If the filter returns void, the target must accept all arguments
5191      * not passed to the filter.
5192      * No arguments are reordered, and a result returned from the filter
5193      * replaces (in order) the whole subsequence of arguments originally
5194      * passed to the adapter.
5195      * <p>
5196      * The argument types (if any) of the filter
5197      * replace zero or one argument types of the target, at position {@code pos},
5198      * in the resulting adapted method handle.
5199      * The return type of the filter (if any) must be identical to the
5200      * argument type of the target at position {@code pos}, and that target argument
5201      * is supplied by the return value of the filter.
5202      * <p>
5203      * In all cases, {@code pos} must be greater than or equal to zero, and
5204      * {@code pos} must also be less than or equal to the target's arity.
5205      * <p><b>Example:</b>
5206      * <blockquote><pre>{@code
5207 import static java.lang.invoke.MethodHandles.*;
5208 import static java.lang.invoke.MethodType.*;
5209 ...
5210 MethodHandle deepToString = publicLookup()
5211   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
5212 
5213 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
5214 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
5215 
5216 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
5217 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
5218 
5219 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
5220 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
5221 assertEquals("[top, [up, down], strange]",
5222              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
5223 
5224 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
5225 assertEquals("[top, [up, down], [strange]]",
5226              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
5227 
5228 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
5229 assertEquals("[top, [[up, down, strange], charm], bottom]",
5230              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
5231      * }</pre></blockquote>
5232      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5233      * represents the return type of the {@code target} and resulting adapter.
5234      * {@code V}/{@code v} stand for the return type and value of the
5235      * {@code filter}, which are also found in the signature and arguments of
5236      * the {@code target}, respectively, unless {@code V} is {@code void}.
5237      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
5238      * and values preceding and following the collection position, {@code pos},
5239      * in the {@code target}'s signature. They also turn up in the resulting
5240      * adapter's signature and arguments, where they surround
5241      * {@code B}/{@code b}, which represent the parameter types and arguments
5242      * to the {@code filter} (if any).
5243      * <blockquote><pre>{@code
5244      * T target(A...,V,C...);
5245      * V filter(B...);
5246      * T adapter(A... a,B... b,C... c) {
5247      *   V v = filter(b...);
5248      *   return target(a...,v,c...);
5249      * }
5250      * // and if the filter has no arguments:
5251      * T target2(A...,V,C...);
5252      * V filter2();
5253      * T adapter2(A... a,C... c) {
5254      *   V v = filter2();
5255      *   return target2(a...,v,c...);
5256      * }
5257      * // and if the filter has a void return:
5258      * T target3(A...,C...);
5259      * void filter3(B...);
5260      * T adapter3(A... a,B... b,C... c) {
5261      *   filter3(b...);
5262      *   return target3(a...,c...);
5263      * }
5264      * }</pre></blockquote>
5265      * <p>
5266      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5267      * one which first "folds" the affected arguments, and then drops them, in separate
5268      * steps as follows:
5269      * <blockquote><pre>{@code
5270      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5271      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5272      * }</pre></blockquote>
5273      * If the target method handle consumes no arguments besides than the result
5274      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5275      * is equivalent to {@code filterReturnValue(coll, mh)}.
5276      * If the filter method handle {@code coll} consumes one argument and produces
5277      * a non-void result, then {@code collectArguments(mh, N, coll)}
5278      * is equivalent to {@code filterArguments(mh, N, coll)}.
5279      * Other equivalences are possible but would require argument permutation.
5280      * <p>
5281      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5282      * variable-arity method handle}, even if the original target method handle was.
5283      *
5284      * @param target the method handle to invoke after filtering the subsequence of arguments
5285      * @param pos the position of the first adapter argument to pass to the filter,
5286      *            and/or the target argument which receives the result of the filter
5287      * @param filter method handle to call on the subsequence of arguments
5288      * @return method handle which incorporates the specified argument subsequence filtering logic
5289      * @throws NullPointerException if either argument is null
5290      * @throws IllegalArgumentException if the return type of {@code filter}
5291      *          is non-void and is not the same as the {@code pos} argument of the target,
5292      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5293      *          or if the resulting method handle's type would have
5294      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5295      * @see MethodHandles#foldArguments
5296      * @see MethodHandles#filterArguments
5297      * @see MethodHandles#filterReturnValue
5298      */
5299     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5300         MethodType newType = collectArgumentsChecks(target, pos, filter);
5301         MethodType collectorType = filter.type();
5302         BoundMethodHandle result = target.rebind();
5303         LambdaForm lform;
5304         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
5305             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
5306             if (lform != null) {
5307                 return result.copyWith(newType, lform);
5308             }
5309         }
5310         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5311         return result.copyWithExtendL(newType, lform, filter);
5312     }
5313 
5314     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5315         MethodType targetType = target.type();
5316         MethodType filterType = filter.type();
5317         Class<?> rtype = filterType.returnType();
5318         List<Class<?>> filterArgs = filterType.parameterList();
5319         if (rtype == void.class) {
5320             return targetType.insertParameterTypes(pos, filterArgs);
5321         }
5322         if (rtype != targetType.parameterType(pos)) {
5323             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5324         }
5325         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
5326     }
5327 
5328     /**
5329      * Adapts a target method handle by post-processing
5330      * its return value (if any) with a filter (another method handle).
5331      * The result of the filter is returned from the adapter.
5332      * <p>
5333      * If the target returns a value, the filter must accept that value as
5334      * its only argument.
5335      * If the target returns void, the filter must accept no arguments.
5336      * <p>
5337      * The return type of the filter
5338      * replaces the return type of the target
5339      * in the resulting adapted method handle.
5340      * The argument type of the filter (if any) must be identical to the
5341      * return type of the target.
5342      * <p><b>Example:</b>
5343      * <blockquote><pre>{@code
5344 import static java.lang.invoke.MethodHandles.*;
5345 import static java.lang.invoke.MethodType.*;
5346 ...
5347 MethodHandle cat = lookup().findVirtual(String.class,
5348   "concat", methodType(String.class, String.class));
5349 MethodHandle length = lookup().findVirtual(String.class,
5350   "length", methodType(int.class));
5351 System.out.println((String) cat.invokeExact("x", "y")); // xy
5352 MethodHandle f0 = filterReturnValue(cat, length);
5353 System.out.println((int) f0.invokeExact("x", "y")); // 2
5354      * }</pre></blockquote>
5355      * <p>Here is pseudocode for the resulting adapter. In the code,
5356      * {@code T}/{@code t} represent the result type and value of the
5357      * {@code target}; {@code V}, the result type of the {@code filter}; and
5358      * {@code A}/{@code a}, the types and values of the parameters and arguments
5359      * of the {@code target} as well as the resulting adapter.
5360      * <blockquote><pre>{@code
5361      * T target(A...);
5362      * V filter(T);
5363      * V adapter(A... a) {
5364      *   T t = target(a...);
5365      *   return filter(t);
5366      * }
5367      * // and if the target has a void return:
5368      * void target2(A...);
5369      * V filter2();
5370      * V adapter2(A... a) {
5371      *   target2(a...);
5372      *   return filter2();
5373      * }
5374      * // and if the filter has a void return:
5375      * T target3(A...);
5376      * void filter3(V);
5377      * void adapter3(A... a) {
5378      *   T t = target3(a...);
5379      *   filter3(t);
5380      * }
5381      * }</pre></blockquote>
5382      * <p>
5383      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5384      * variable-arity method handle}, even if the original target method handle was.
5385      * @param target the method handle to invoke before filtering the return value
5386      * @param filter method handle to call on the return value
5387      * @return method handle which incorporates the specified return value filtering logic
5388      * @throws NullPointerException if either argument is null
5389      * @throws IllegalArgumentException if the argument list of {@code filter}
5390      *          does not match the return type of target as described above
5391      */
5392     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5393         MethodType targetType = target.type();
5394         MethodType filterType = filter.type();
5395         filterReturnValueChecks(targetType, filterType);
5396         BoundMethodHandle result = target.rebind();
5397         BasicType rtype = BasicType.basicType(filterType.returnType());
5398         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5399         MethodType newType = targetType.changeReturnType(filterType.returnType());
5400         result = result.copyWithExtendL(newType, lform, filter);
5401         return result;
5402     }
5403 
5404     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5405         Class<?> rtype = targetType.returnType();
5406         int filterValues = filterType.parameterCount();
5407         if (filterValues == 0
5408                 ? (rtype != void.class)
5409                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5410             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5411     }
5412 
5413     /**
5414      * Adapts a target method handle by pre-processing
5415      * some of its arguments, and then calling the target with
5416      * the result of the pre-processing, inserted into the original
5417      * sequence of arguments.
5418      * <p>
5419      * The pre-processing is performed by {@code combiner}, a second method handle.
5420      * Of the arguments passed to the adapter, the first {@code N} arguments
5421      * are copied to the combiner, which is then called.
5422      * (Here, {@code N} is defined as the parameter count of the combiner.)
5423      * After this, control passes to the target, with any result
5424      * from the combiner inserted before the original {@code N} incoming
5425      * arguments.
5426      * <p>
5427      * If the combiner returns a value, the first parameter type of the target
5428      * must be identical with the return type of the combiner, and the next
5429      * {@code N} parameter types of the target must exactly match the parameters
5430      * of the combiner.
5431      * <p>
5432      * If the combiner has a void return, no result will be inserted,
5433      * and the first {@code N} parameter types of the target
5434      * must exactly match the parameters of the combiner.
5435      * <p>
5436      * The resulting adapter is the same type as the target, except that the
5437      * first parameter type is dropped,
5438      * if it corresponds to the result of the combiner.
5439      * <p>
5440      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
5441      * that either the combiner or the target does not wish to receive.
5442      * If some of the incoming arguments are destined only for the combiner,
5443      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
5444      * arguments will not need to be live on the stack on entry to the
5445      * target.)
5446      * <p><b>Example:</b>
5447      * <blockquote><pre>{@code
5448 import static java.lang.invoke.MethodHandles.*;
5449 import static java.lang.invoke.MethodType.*;
5450 ...
5451 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5452   "println", methodType(void.class, String.class))
5453     .bindTo(System.out);
5454 MethodHandle cat = lookup().findVirtual(String.class,
5455   "concat", methodType(String.class, String.class));
5456 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5457 MethodHandle catTrace = foldArguments(cat, trace);
5458 // also prints "boo":
5459 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5460      * }</pre></blockquote>
5461      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5462      * represents the result type of the {@code target} and resulting adapter.
5463      * {@code V}/{@code v} represent the type and value of the parameter and argument
5464      * of {@code target} that precedes the folding position; {@code V} also is
5465      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5466      * types and values of the {@code N} parameters and arguments at the folding
5467      * position. {@code B}/{@code b} represent the types and values of the
5468      * {@code target} parameters and arguments that follow the folded parameters
5469      * and arguments.
5470      * <blockquote><pre>{@code
5471      * // there are N arguments in A...
5472      * T target(V, A[N]..., B...);
5473      * V combiner(A...);
5474      * T adapter(A... a, B... b) {
5475      *   V v = combiner(a...);
5476      *   return target(v, a..., b...);
5477      * }
5478      * // and if the combiner has a void return:
5479      * T target2(A[N]..., B...);
5480      * void combiner2(A...);
5481      * T adapter2(A... a, B... b) {
5482      *   combiner2(a...);
5483      *   return target2(a..., b...);
5484      * }
5485      * }</pre></blockquote>
5486      * <p>
5487      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5488      * variable-arity method handle}, even if the original target method handle was.
5489      * @param target the method handle to invoke after arguments are combined
5490      * @param combiner method handle to call initially on the incoming arguments
5491      * @return method handle which incorporates the specified argument folding logic
5492      * @throws NullPointerException if either argument is null
5493      * @throws IllegalArgumentException if {@code combiner}'s return type
5494      *          is non-void and not the same as the first argument type of
5495      *          the target, or if the initial {@code N} argument types
5496      *          of the target
5497      *          (skipping one matching the {@code combiner}'s return type)
5498      *          are not identical with the argument types of {@code combiner}
5499      */
5500     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5501         return foldArguments(target, 0, combiner);
5502     }
5503 
5504     /**
5505      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5506      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5507      * before the folded arguments.
5508      * <p>
5509      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5510      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5511      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5512      * 0.
5513      *
5514      * @apiNote Example:
5515      * <blockquote><pre>{@code
5516     import static java.lang.invoke.MethodHandles.*;
5517     import static java.lang.invoke.MethodType.*;
5518     ...
5519     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5520     "println", methodType(void.class, String.class))
5521     .bindTo(System.out);
5522     MethodHandle cat = lookup().findVirtual(String.class,
5523     "concat", methodType(String.class, String.class));
5524     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5525     MethodHandle catTrace = foldArguments(cat, 1, trace);
5526     // also prints "jum":
5527     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5528      * }</pre></blockquote>
5529      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5530      * represents the result type of the {@code target} and resulting adapter.
5531      * {@code V}/{@code v} represent the type and value of the parameter and argument
5532      * of {@code target} that precedes the folding position; {@code V} also is
5533      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5534      * types and values of the {@code N} parameters and arguments at the folding
5535      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5536      * and values of the {@code target} parameters and arguments that precede and
5537      * follow the folded parameters and arguments starting at {@code pos},
5538      * respectively.
5539      * <blockquote><pre>{@code
5540      * // there are N arguments in A...
5541      * T target(Z..., V, A[N]..., B...);
5542      * V combiner(A...);
5543      * T adapter(Z... z, A... a, B... b) {
5544      *   V v = combiner(a...);
5545      *   return target(z..., v, a..., b...);
5546      * }
5547      * // and if the combiner has a void return:
5548      * T target2(Z..., A[N]..., B...);
5549      * void combiner2(A...);
5550      * T adapter2(Z... z, A... a, B... b) {
5551      *   combiner2(a...);
5552      *   return target2(z..., a..., b...);
5553      * }
5554      * }</pre></blockquote>
5555      * <p>
5556      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5557      * variable-arity method handle}, even if the original target method handle was.
5558      *
5559      * @param target the method handle to invoke after arguments are combined
5560      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5561      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5562      * @param combiner method handle to call initially on the incoming arguments
5563      * @return method handle which incorporates the specified argument folding logic
5564      * @throws NullPointerException if either argument is null
5565      * @throws IllegalArgumentException if either of the following two conditions holds:
5566      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5567      *              {@code pos} of the target signature;
5568      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5569      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5570      *
5571      * @see #foldArguments(MethodHandle, MethodHandle)
5572      * @since 9
5573      */
5574     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5575         MethodType targetType = target.type();
5576         MethodType combinerType = combiner.type();
5577         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5578         BoundMethodHandle result = target.rebind();
5579         boolean dropResult = rtype == void.class;
5580         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5581         MethodType newType = targetType;
5582         if (!dropResult) {
5583             newType = newType.dropParameterTypes(pos, pos + 1);
5584         }
5585         result = result.copyWithExtendL(newType, lform, combiner);
5586         return result;
5587     }
5588 
5589     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5590         int foldArgs   = combinerType.parameterCount();
5591         Class<?> rtype = combinerType.returnType();
5592         int foldVals = rtype == void.class ? 0 : 1;
5593         int afterInsertPos = foldPos + foldVals;
5594         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5595         if (ok) {
5596             for (int i = 0; i < foldArgs; i++) {
5597                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5598                     ok = false;
5599                     break;
5600                 }
5601             }
5602         }
5603         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5604             ok = false;
5605         if (!ok)
5606             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5607         return rtype;
5608     }
5609 
5610     /**
5611      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5612      * of the pre-processing replacing the argument at the given position.
5613      *
5614      * @param target the method handle to invoke after arguments are combined
5615      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5616      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5617      * @param combiner method handle to call initially on the incoming arguments
5618      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5619      * @return method handle which incorporates the specified argument folding logic
5620      * @throws NullPointerException if either argument is null
5621      * @throws IllegalArgumentException if either of the following two conditions holds:
5622      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5623      *              {@code pos} of the target signature;
5624      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5625      *              not identical with the argument types of {@code combiner}.
5626      */
5627     /*non-public*/
5628     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5629         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5630     }
5631 
5632     /**
5633      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5634      * the pre-processing inserted into the original sequence of arguments at the given position.
5635      *
5636      * @param target the method handle to invoke after arguments are combined
5637      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5638      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5639      * @param combiner method handle to call initially on the incoming arguments
5640      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5641      * @return method handle which incorporates the specified argument folding logic
5642      * @throws NullPointerException if either argument is null
5643      * @throws IllegalArgumentException if either of the following two conditions holds:
5644      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5645      *              {@code pos} of the target signature;
5646      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5647      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5648      *              with the argument types of {@code combiner}.
5649      */
5650     /*non-public*/
5651     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5652         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5653     }
5654 
5655     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5656         MethodType targetType = target.type();
5657         MethodType combinerType = combiner.type();
5658         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5659         BoundMethodHandle result = target.rebind();
5660 
5661         MethodType newType = targetType;
5662         LambdaForm lform;
5663         if (filter) {
5664             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5665         } else {
5666             boolean dropResult = rtype == void.class;
5667             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5668             if (!dropResult) {
5669                 newType = newType.dropParameterTypes(position, position + 1);
5670             }
5671         }
5672         result = result.copyWithExtendL(newType, lform, combiner);
5673         return result;
5674     }
5675 
5676     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5677         int combinerArgs = combinerType.parameterCount();
5678         if (argPos.length != combinerArgs) {
5679             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5680         }
5681         Class<?> rtype = combinerType.returnType();
5682 
5683         for (int i = 0; i < combinerArgs; i++) {
5684             int arg = argPos[i];
5685             if (arg < 0 || arg > targetType.parameterCount()) {
5686                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5687             }
5688             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5689                 throw newIllegalArgumentException("target argument type at position " + arg
5690                         + " must match combiner argument type at index " + i + ": " + targetType
5691                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5692             }
5693         }
5694         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5695             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5696         }
5697         return rtype;
5698     }
5699 
5700     /**
5701      * Makes a method handle which adapts a target method handle,
5702      * by guarding it with a test, a boolean-valued method handle.
5703      * If the guard fails, a fallback handle is called instead.
5704      * All three method handles must have the same corresponding
5705      * argument and return types, except that the return type
5706      * of the test must be boolean, and the test is allowed
5707      * to have fewer arguments than the other two method handles.
5708      * <p>
5709      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5710      * represents the uniform result type of the three involved handles;
5711      * {@code A}/{@code a}, the types and values of the {@code target}
5712      * parameters and arguments that are consumed by the {@code test}; and
5713      * {@code B}/{@code b}, those types and values of the {@code target}
5714      * parameters and arguments that are not consumed by the {@code test}.
5715      * <blockquote><pre>{@code
5716      * boolean test(A...);
5717      * T target(A...,B...);
5718      * T fallback(A...,B...);
5719      * T adapter(A... a,B... b) {
5720      *   if (test(a...))
5721      *     return target(a..., b...);
5722      *   else
5723      *     return fallback(a..., b...);
5724      * }
5725      * }</pre></blockquote>
5726      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5727      * be modified by execution of the test, and so are passed unchanged
5728      * from the caller to the target or fallback as appropriate.
5729      * @param test method handle used for test, must return boolean
5730      * @param target method handle to call if test passes
5731      * @param fallback method handle to call if test fails
5732      * @return method handle which incorporates the specified if/then/else logic
5733      * @throws NullPointerException if any argument is null
5734      * @throws IllegalArgumentException if {@code test} does not return boolean,
5735      *          or if all three method types do not match (with the return
5736      *          type of {@code test} changed to match that of the target).
5737      */
5738     public static MethodHandle guardWithTest(MethodHandle test,
5739                                MethodHandle target,
5740                                MethodHandle fallback) {
5741         MethodType gtype = test.type();
5742         MethodType ttype = target.type();
5743         MethodType ftype = fallback.type();
5744         if (!ttype.equals(ftype))
5745             throw misMatchedTypes("target and fallback types", ttype, ftype);
5746         if (gtype.returnType() != boolean.class)
5747             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5748         List<Class<?>> targs = ttype.parameterList();
5749         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5750         if (test == null) {
5751             throw misMatchedTypes("target and test types", ttype, gtype);
5752         }
5753         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5754     }
5755 
5756     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5757         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5758     }
5759 
5760     /**
5761      * Makes a method handle which adapts a target method handle,
5762      * by running it inside an exception handler.
5763      * If the target returns normally, the adapter returns that value.
5764      * If an exception matching the specified type is thrown, the fallback
5765      * handle is called instead on the exception, plus the original arguments.
5766      * <p>
5767      * The target and handler must have the same corresponding
5768      * argument and return types, except that handler may omit trailing arguments
5769      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5770      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5771      * <p>
5772      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5773      * represents the return type of the {@code target} and {@code handler},
5774      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5775      * the types and values of arguments to the resulting handle consumed by
5776      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5777      * resulting handle discarded by {@code handler}.
5778      * <blockquote><pre>{@code
5779      * T target(A..., B...);
5780      * T handler(ExType, A...);
5781      * T adapter(A... a, B... b) {
5782      *   try {
5783      *     return target(a..., b...);
5784      *   } catch (ExType ex) {
5785      *     return handler(ex, a...);
5786      *   }
5787      * }
5788      * }</pre></blockquote>
5789      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5790      * be modified by execution of the target, and so are passed unchanged
5791      * from the caller to the handler, if the handler is invoked.
5792      * <p>
5793      * The target and handler must return the same type, even if the handler
5794      * always throws.  (This might happen, for instance, because the handler
5795      * is simulating a {@code finally} clause).
5796      * To create such a throwing handler, compose the handler creation logic
5797      * with {@link #throwException throwException},
5798      * in order to create a method handle of the correct return type.
5799      * @param target method handle to call
5800      * @param exType the type of exception which the handler will catch
5801      * @param handler method handle to call if a matching exception is thrown
5802      * @return method handle which incorporates the specified try/catch logic
5803      * @throws NullPointerException if any argument is null
5804      * @throws IllegalArgumentException if {@code handler} does not accept
5805      *          the given exception type, or if the method handle types do
5806      *          not match in their return types and their
5807      *          corresponding parameters
5808      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5809      */
5810     public static MethodHandle catchException(MethodHandle target,
5811                                 Class<? extends Throwable> exType,
5812                                 MethodHandle handler) {
5813         MethodType ttype = target.type();
5814         MethodType htype = handler.type();
5815         if (!Throwable.class.isAssignableFrom(exType))
5816             throw new ClassCastException(exType.getName());
5817         if (htype.parameterCount() < 1 ||
5818             !htype.parameterType(0).isAssignableFrom(exType))
5819             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5820         if (htype.returnType() != ttype.returnType())
5821             throw misMatchedTypes("target and handler return types", ttype, htype);
5822         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5823         if (handler == null) {
5824             throw misMatchedTypes("target and handler types", ttype, htype);
5825         }
5826         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5827     }
5828 
5829     /**
5830      * Produces a method handle which will throw exceptions of the given {@code exType}.
5831      * The method handle will accept a single argument of {@code exType},
5832      * and immediately throw it as an exception.
5833      * The method type will nominally specify a return of {@code returnType}.
5834      * The return type may be anything convenient:  It doesn't matter to the
5835      * method handle's behavior, since it will never return normally.
5836      * @param returnType the return type of the desired method handle
5837      * @param exType the parameter type of the desired method handle
5838      * @return method handle which can throw the given exceptions
5839      * @throws NullPointerException if either argument is null
5840      */
5841     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5842         if (!Throwable.class.isAssignableFrom(exType))
5843             throw new ClassCastException(exType.getName());
5844         return MethodHandleImpl.throwException(methodType(returnType, exType));
5845     }
5846 
5847     /**
5848      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5849      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5850      * delivers the loop's result, which is the return value of the resulting handle.
5851      * <p>
5852      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5853      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5854      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5855      * terms of method handles, each clause will specify up to four independent actions:<ul>
5856      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5857      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5858      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5859      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5860      * </ul>
5861      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5862      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5863      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5864      * <p>
5865      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5866      * this case. See below for a detailed description.
5867      * <p>
5868      * <em>Parameters optional everywhere:</em>
5869      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5870      * As an exception, the init functions cannot take any {@code v} parameters,
5871      * because those values are not yet computed when the init functions are executed.
5872      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5873      * In fact, any clause function may take no arguments at all.
5874      * <p>
5875      * <em>Loop parameters:</em>
5876      * A clause function may take all the iteration variable values it is entitled to, in which case
5877      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5878      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5879      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5880      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5881      * init function is automatically a loop parameter {@code a}.)
5882      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5883      * These loop parameters act as loop-invariant values visible across the whole loop.
5884      * <p>
5885      * <em>Parameters visible everywhere:</em>
5886      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5887      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5888      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5889      * Most clause functions will not need all of this information, but they will be formally connected to it
5890      * as if by {@link #dropArguments}.
5891      * <a id="astar"></a>
5892      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5893      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5894      * In that notation, the general form of an init function parameter list
5895      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5896      * <p>
5897      * <em>Checking clause structure:</em>
5898      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5899      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5900      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5901      * met by the inputs to the loop combinator.
5902      * <p>
5903      * <em>Effectively identical sequences:</em>
5904      * <a id="effid"></a>
5905      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5906      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5907      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5908      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5909      * that longest list.
5910      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5911      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5912      * <p>
5913      * <em>Step 0: Determine clause structure.</em><ol type="a">
5914      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5915      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5916      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5917      * four. Padding takes place by appending elements to the array.
5918      * <li>Clauses with all {@code null}s are disregarded.
5919      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5920      * </ol>
5921      * <p>
5922      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5923      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5924      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5925      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5926      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5927      * iteration variable type.
5928      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5929      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5930      * </ol>
5931      * <p>
5932      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5933      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5934      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5935      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5936      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5937      * (These types will be checked in step 2, along with all the clause function types.)
5938      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5939      * <li>All of the collected parameter lists must be effectively identical.
5940      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5941      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5942      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5943      * the "internal parameter list".
5944      * </ul>
5945      * <p>
5946      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5947      * <li>Examine fini function return types, disregarding omitted fini functions.
5948      * <li>If there are no fini functions, the loop return type is {@code void}.
5949      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5950      * type.
5951      * </ol>
5952      * <p>
5953      * <em>Step 1D: Check other types.</em><ol type="a">
5954      * <li>There must be at least one non-omitted pred function.
5955      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5956      * </ol>
5957      * <p>
5958      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5959      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5960      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5961      * (Note that their parameter lists are already effectively identical to this list.)
5962      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5963      * effectively identical to the internal parameter list {@code (V... A...)}.
5964      * </ol>
5965      * <p>
5966      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5967      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5968      * type.
5969      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5970      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5971      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5972      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5973      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5974      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5975      * loop return type.
5976      * </ol>
5977      * <p>
5978      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5979      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5980      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5981      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5982      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5983      * pad out the end of the list.
5984      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5985      * </ol>
5986      * <p>
5987      * <em>Final observations.</em><ol type="a">
5988      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5989      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5990      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5991      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5992      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5993      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5994      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5995      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5996      * </ol>
5997      * <p>
5998      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5999      * <ul>
6000      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
6001      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
6002      * (Only one {@code Pn} has to be non-{@code null}.)
6003      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
6004      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
6005      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
6006      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
6007      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
6008      * the resulting loop handle's parameter types {@code (A...)}.
6009      * </ul>
6010      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
6011      * which is natural if most of the loop computation happens in the steps.  For some loops,
6012      * the burden of computation might be heaviest in the pred functions, and so the pred functions
6013      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
6014      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
6015      * where the init functions will need the extra parameters.  For such reasons, the rules for
6016      * determining these parameters are as symmetric as possible, across all clause parts.
6017      * In general, the loop parameters function as common invariant values across the whole
6018      * loop, while the iteration variables function as common variant values, or (if there is
6019      * no step function) as internal loop invariant temporaries.
6020      * <p>
6021      * <em>Loop execution.</em><ol type="a">
6022      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
6023      * every clause function. These locals are loop invariant.
6024      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
6025      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
6026      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
6027      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
6028      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
6029      * (in argument order).
6030      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
6031      * returns {@code false}.
6032      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
6033      * sequence {@code (v...)} of loop variables.
6034      * The updated value is immediately visible to all subsequent function calls.
6035      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
6036      * (of type {@code R}) is returned from the loop as a whole.
6037      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
6038      * except by throwing an exception.
6039      * </ol>
6040      * <p>
6041      * <em>Usage tips.</em>
6042      * <ul>
6043      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
6044      * sometimes a step function only needs to observe the current value of its own variable.
6045      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
6046      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
6047      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
6048      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
6049      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
6050      * <li>If some of the clause functions are virtual methods on an instance, the instance
6051      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
6052      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
6053      * will be the first iteration variable value, and it will be easy to use virtual
6054      * methods as clause parts, since all of them will take a leading instance reference matching that value.
6055      * </ul>
6056      * <p>
6057      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
6058      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
6059      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
6060      * <blockquote><pre>{@code
6061      * V... init...(A...);
6062      * boolean pred...(V..., A...);
6063      * V... step...(V..., A...);
6064      * R fini...(V..., A...);
6065      * R loop(A... a) {
6066      *   V... v... = init...(a...);
6067      *   for (;;) {
6068      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
6069      *       v = s(v..., a...);
6070      *       if (!p(v..., a...)) {
6071      *         return f(v..., a...);
6072      *       }
6073      *     }
6074      *   }
6075      * }
6076      * }</pre></blockquote>
6077      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
6078      * to their full length, even though individual clause functions may neglect to take them all.
6079      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
6080      *
6081      * @apiNote Example:
6082      * <blockquote><pre>{@code
6083      * // iterative implementation of the factorial function as a loop handle
6084      * static int one(int k) { return 1; }
6085      * static int inc(int i, int acc, int k) { return i + 1; }
6086      * static int mult(int i, int acc, int k) { return i * acc; }
6087      * static boolean pred(int i, int acc, int k) { return i < k; }
6088      * static int fin(int i, int acc, int k) { return acc; }
6089      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6090      * // null initializer for counter, should initialize to 0
6091      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6092      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6093      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6094      * assertEquals(120, loop.invoke(5));
6095      * }</pre></blockquote>
6096      * The same example, dropping arguments and using combinators:
6097      * <blockquote><pre>{@code
6098      * // simplified implementation of the factorial function as a loop handle
6099      * static int inc(int i) { return i + 1; } // drop acc, k
6100      * static int mult(int i, int acc) { return i * acc; } //drop k
6101      * static boolean cmp(int i, int k) { return i < k; }
6102      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
6103      * // null initializer for counter, should initialize to 0
6104      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6105      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
6106      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
6107      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6108      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6109      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
6110      * assertEquals(720, loop.invoke(6));
6111      * }</pre></blockquote>
6112      * A similar example, using a helper object to hold a loop parameter:
6113      * <blockquote><pre>{@code
6114      * // instance-based implementation of the factorial function as a loop handle
6115      * static class FacLoop {
6116      *   final int k;
6117      *   FacLoop(int k) { this.k = k; }
6118      *   int inc(int i) { return i + 1; }
6119      *   int mult(int i, int acc) { return i * acc; }
6120      *   boolean pred(int i) { return i < k; }
6121      *   int fin(int i, int acc) { return acc; }
6122      * }
6123      * // assume MH_FacLoop is a handle to the constructor
6124      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
6125      * // null initializer for counter, should initialize to 0
6126      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
6127      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
6128      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
6129      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
6130      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
6131      * assertEquals(5040, loop.invoke(7));
6132      * }</pre></blockquote>
6133      *
6134      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
6135      *
6136      * @return a method handle embodying the looping behavior as defined by the arguments.
6137      *
6138      * @throws IllegalArgumentException in case any of the constraints described above is violated.
6139      *
6140      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
6141      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6142      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
6143      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
6144      * @since 9
6145      */
6146     public static MethodHandle loop(MethodHandle[]... clauses) {
6147         // Step 0: determine clause structure.
6148         loopChecks0(clauses);
6149 
6150         List<MethodHandle> init = new ArrayList<>();
6151         List<MethodHandle> step = new ArrayList<>();
6152         List<MethodHandle> pred = new ArrayList<>();
6153         List<MethodHandle> fini = new ArrayList<>();
6154 
6155         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
6156             init.add(clause[0]); // all clauses have at least length 1
6157             step.add(clause.length <= 1 ? null : clause[1]);
6158             pred.add(clause.length <= 2 ? null : clause[2]);
6159             fini.add(clause.length <= 3 ? null : clause[3]);
6160         });
6161 
6162         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
6163         final int nclauses = init.size();
6164 
6165         // Step 1A: determine iteration variables (V...).
6166         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
6167         for (int i = 0; i < nclauses; ++i) {
6168             MethodHandle in = init.get(i);
6169             MethodHandle st = step.get(i);
6170             if (in == null && st == null) {
6171                 iterationVariableTypes.add(void.class);
6172             } else if (in != null && st != null) {
6173                 loopChecks1a(i, in, st);
6174                 iterationVariableTypes.add(in.type().returnType());
6175             } else {
6176                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
6177             }
6178         }
6179         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
6180                 collect(Collectors.toList());
6181 
6182         // Step 1B: determine loop parameters (A...).
6183         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
6184         loopChecks1b(init, commonSuffix);
6185 
6186         // Step 1C: determine loop return type.
6187         // Step 1D: check other types.
6188         // local variable required here; see JDK-8223553
6189         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
6190                 .map(MethodType::returnType);
6191         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
6192         loopChecks1cd(pred, fini, loopReturnType);
6193 
6194         // Step 2: determine parameter lists.
6195         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
6196         commonParameterSequence.addAll(commonSuffix);
6197         loopChecks2(step, pred, fini, commonParameterSequence);
6198 
6199         // Step 3: fill in omitted functions.
6200         for (int i = 0; i < nclauses; ++i) {
6201             Class<?> t = iterationVariableTypes.get(i);
6202             if (init.get(i) == null) {
6203                 init.set(i, empty(methodType(t, commonSuffix)));
6204             }
6205             if (step.get(i) == null) {
6206                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
6207             }
6208             if (pred.get(i) == null) {
6209                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
6210             }
6211             if (fini.get(i) == null) {
6212                 fini.set(i, empty(methodType(t, commonParameterSequence)));
6213             }
6214         }
6215 
6216         // Step 4: fill in missing parameter types.
6217         // Also convert all handles to fixed-arity handles.
6218         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
6219         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
6220         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
6221         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
6222 
6223         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
6224                 allMatch(pl -> pl.equals(commonSuffix));
6225         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
6226                 allMatch(pl -> pl.equals(commonParameterSequence));
6227 
6228         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
6229     }
6230 
6231     private static void loopChecks0(MethodHandle[][] clauses) {
6232         if (clauses == null || clauses.length == 0) {
6233             throw newIllegalArgumentException("null or no clauses passed");
6234         }
6235         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
6236             throw newIllegalArgumentException("null clauses are not allowed");
6237         }
6238         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
6239             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
6240         }
6241     }
6242 
6243     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
6244         if (in.type().returnType() != st.type().returnType()) {
6245             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
6246                     st.type().returnType());
6247         }
6248     }
6249 
6250     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6251         final List<Class<?>> empty = List.of();
6252         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
6253                 // take only those that can contribute to a common suffix because they are longer than the prefix
6254                         map(MethodHandle::type).
6255                         filter(t -> t.parameterCount() > skipSize).
6256                         map(MethodType::parameterList).
6257                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6258         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
6259     }
6260 
6261     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
6262         final List<Class<?>> empty = List.of();
6263         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6264     }
6265 
6266     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6267         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6268         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6269         return longestParameterList(Arrays.asList(longest1, longest2));
6270     }
6271 
6272     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6273         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6274                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6275             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6276                     " (common suffix: " + commonSuffix + ")");
6277         }
6278     }
6279 
6280     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6281         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6282                 anyMatch(t -> t != loopReturnType)) {
6283             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6284                     loopReturnType + ")");
6285         }
6286 
6287         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
6288             throw newIllegalArgumentException("no predicate found", pred);
6289         }
6290         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6291                 anyMatch(t -> t != boolean.class)) {
6292             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6293         }
6294     }
6295 
6296     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6297         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6298                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6299             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6300                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6301         }
6302     }
6303 
6304     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6305         return hs.stream().map(h -> {
6306             int pc = h.type().parameterCount();
6307             int tpsize = targetParams.size();
6308             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
6309         }).collect(Collectors.toList());
6310     }
6311 
6312     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6313         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
6314     }
6315 
6316     /**
6317      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6318      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6319      * <p>
6320      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6321      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6322      * evaluates to {@code true}).
6323      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6324      * <p>
6325      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6326      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6327      * and updated with the value returned from its invocation. The result of loop execution will be
6328      * the final value of the additional loop-local variable (if present).
6329      * <p>
6330      * The following rules hold for these argument handles:<ul>
6331      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6332      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6333      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6334      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6335      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6336      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6337      * It will constrain the parameter lists of the other loop parts.
6338      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6339      * list {@code (A...)} is called the <em>external parameter list</em>.
6340      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6341      * additional state variable of the loop.
6342      * The body must both accept and return a value of this type {@code V}.
6343      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6344      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6345      * <a href="MethodHandles.html#effid">effectively identical</a>
6346      * to the external parameter list {@code (A...)}.
6347      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6348      * {@linkplain #empty default value}.
6349      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6350      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6351      * effectively identical to the internal parameter list.
6352      * </ul>
6353      * <p>
6354      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6355      * <li>The loop handle's result type is the result type {@code V} of the body.
6356      * <li>The loop handle's parameter types are the types {@code (A...)},
6357      * from the external parameter list.
6358      * </ul>
6359      * <p>
6360      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6361      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6362      * passed to the loop.
6363      * <blockquote><pre>{@code
6364      * V init(A...);
6365      * boolean pred(V, A...);
6366      * V body(V, A...);
6367      * V whileLoop(A... a...) {
6368      *   V v = init(a...);
6369      *   while (pred(v, a...)) {
6370      *     v = body(v, a...);
6371      *   }
6372      *   return v;
6373      * }
6374      * }</pre></blockquote>
6375      *
6376      * @apiNote Example:
6377      * <blockquote><pre>{@code
6378      * // implement the zip function for lists as a loop handle
6379      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6380      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6381      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6382      *   zip.add(a.next());
6383      *   zip.add(b.next());
6384      *   return zip;
6385      * }
6386      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6387      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6388      * List<String> a = Arrays.asList("a", "b", "c", "d");
6389      * List<String> b = Arrays.asList("e", "f", "g", "h");
6390      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6391      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6392      * }</pre></blockquote>
6393      *
6394      *
6395      * @apiNote The implementation of this method can be expressed as follows:
6396      * <blockquote><pre>{@code
6397      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6398      *     MethodHandle fini = (body.type().returnType() == void.class
6399      *                         ? null : identity(body.type().returnType()));
6400      *     MethodHandle[]
6401      *         checkExit = { null, null, pred, fini },
6402      *         varBody   = { init, body };
6403      *     return loop(checkExit, varBody);
6404      * }
6405      * }</pre></blockquote>
6406      *
6407      * @param init optional initializer, providing the initial value of the loop variable.
6408      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6409      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6410      *             above for other constraints.
6411      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6412      *             See above for other constraints.
6413      *
6414      * @return a method handle implementing the {@code while} loop as described by the arguments.
6415      * @throws IllegalArgumentException if the rules for the arguments are violated.
6416      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6417      *
6418      * @see #loop(MethodHandle[][])
6419      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6420      * @since 9
6421      */
6422     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6423         whileLoopChecks(init, pred, body);
6424         MethodHandle fini = identityOrVoid(body.type().returnType());
6425         MethodHandle[] checkExit = { null, null, pred, fini };
6426         MethodHandle[] varBody = { init, body };
6427         return loop(checkExit, varBody);
6428     }
6429 
6430     /**
6431      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6432      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6433      * <p>
6434      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6435      * method will, in each iteration, first execute its body and then evaluate the predicate.
6436      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
6437      * <p>
6438      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6439      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6440      * and updated with the value returned from its invocation. The result of loop execution will be
6441      * the final value of the additional loop-local variable (if present).
6442      * <p>
6443      * The following rules hold for these argument handles:<ul>
6444      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6445      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6446      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6447      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6448      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6449      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6450      * It will constrain the parameter lists of the other loop parts.
6451      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6452      * list {@code (A...)} is called the <em>external parameter list</em>.
6453      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6454      * additional state variable of the loop.
6455      * The body must both accept and return a value of this type {@code V}.
6456      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6457      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6458      * <a href="MethodHandles.html#effid">effectively identical</a>
6459      * to the external parameter list {@code (A...)}.
6460      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6461      * {@linkplain #empty default value}.
6462      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6463      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6464      * effectively identical to the internal parameter list.
6465      * </ul>
6466      * <p>
6467      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6468      * <li>The loop handle's result type is the result type {@code V} of the body.
6469      * <li>The loop handle's parameter types are the types {@code (A...)},
6470      * from the external parameter list.
6471      * </ul>
6472      * <p>
6473      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6474      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6475      * passed to the loop.
6476      * <blockquote><pre>{@code
6477      * V init(A...);
6478      * boolean pred(V, A...);
6479      * V body(V, A...);
6480      * V doWhileLoop(A... a...) {
6481      *   V v = init(a...);
6482      *   do {
6483      *     v = body(v, a...);
6484      *   } while (pred(v, a...));
6485      *   return v;
6486      * }
6487      * }</pre></blockquote>
6488      *
6489      * @apiNote Example:
6490      * <blockquote><pre>{@code
6491      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6492      * static int zero(int limit) { return 0; }
6493      * static int step(int i, int limit) { return i + 1; }
6494      * static boolean pred(int i, int limit) { return i < limit; }
6495      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6496      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6497      * assertEquals(23, loop.invoke(23));
6498      * }</pre></blockquote>
6499      *
6500      *
6501      * @apiNote The implementation of this method can be expressed as follows:
6502      * <blockquote><pre>{@code
6503      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6504      *     MethodHandle fini = (body.type().returnType() == void.class
6505      *                         ? null : identity(body.type().returnType()));
6506      *     MethodHandle[] clause = { init, body, pred, fini };
6507      *     return loop(clause);
6508      * }
6509      * }</pre></blockquote>
6510      *
6511      * @param init optional initializer, providing the initial value of the loop variable.
6512      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6513      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6514      *             See above for other constraints.
6515      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6516      *             above for other constraints.
6517      *
6518      * @return a method handle implementing the {@code while} loop as described by the arguments.
6519      * @throws IllegalArgumentException if the rules for the arguments are violated.
6520      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6521      *
6522      * @see #loop(MethodHandle[][])
6523      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6524      * @since 9
6525      */
6526     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6527         whileLoopChecks(init, pred, body);
6528         MethodHandle fini = identityOrVoid(body.type().returnType());
6529         MethodHandle[] clause = {init, body, pred, fini };
6530         return loop(clause);
6531     }
6532 
6533     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6534         Objects.requireNonNull(pred);
6535         Objects.requireNonNull(body);
6536         MethodType bodyType = body.type();
6537         Class<?> returnType = bodyType.returnType();
6538         List<Class<?>> innerList = bodyType.parameterList();
6539         List<Class<?>> outerList = innerList;
6540         if (returnType == void.class) {
6541             // OK
6542         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6543             // leading V argument missing => error
6544             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6545             throw misMatchedTypes("body function", bodyType, expected);
6546         } else {
6547             outerList = innerList.subList(1, innerList.size());
6548         }
6549         MethodType predType = pred.type();
6550         if (predType.returnType() != boolean.class ||
6551                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6552             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6553         }
6554         if (init != null) {
6555             MethodType initType = init.type();
6556             if (initType.returnType() != returnType ||
6557                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6558                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6559             }
6560         }
6561     }
6562 
6563     /**
6564      * Constructs a loop that runs a given number of iterations.
6565      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6566      * <p>
6567      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6568      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6569      * It will be initialized to 0 and incremented by 1 in each iteration.
6570      * <p>
6571      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6572      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6573      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6574      * <p>
6575      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6576      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6577      * iteration variable.
6578      * The result of the loop handle execution will be the final {@code V} value of that variable
6579      * (or {@code void} if there is no {@code V} variable).
6580      * <p>
6581      * The following rules hold for the argument handles:<ul>
6582      * <li>The {@code iterations} handle must not be {@code null}, and must return
6583      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6584      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6585      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6586      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6587      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6588      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6589      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6590      * of types called the <em>internal parameter list</em>.
6591      * It will constrain the parameter lists of the other loop parts.
6592      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6593      * with no additional {@code A} types, then the internal parameter list is extended by
6594      * the argument types {@code A...} of the {@code iterations} handle.
6595      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6596      * list {@code (A...)} is called the <em>external parameter list</em>.
6597      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6598      * additional state variable of the loop.
6599      * The body must both accept a leading parameter and return a value of this type {@code V}.
6600      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6601      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6602      * <a href="MethodHandles.html#effid">effectively identical</a>
6603      * to the external parameter list {@code (A...)}.
6604      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6605      * {@linkplain #empty default value}.
6606      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6607      * effectively identical to the external parameter list {@code (A...)}.
6608      * </ul>
6609      * <p>
6610      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6611      * <li>The loop handle's result type is the result type {@code V} of the body.
6612      * <li>The loop handle's parameter types are the types {@code (A...)},
6613      * from the external parameter list.
6614      * </ul>
6615      * <p>
6616      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6617      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6618      * arguments passed to the loop.
6619      * <blockquote><pre>{@code
6620      * int iterations(A...);
6621      * V init(A...);
6622      * V body(V, int, A...);
6623      * V countedLoop(A... a...) {
6624      *   int end = iterations(a...);
6625      *   V v = init(a...);
6626      *   for (int i = 0; i < end; ++i) {
6627      *     v = body(v, i, a...);
6628      *   }
6629      *   return v;
6630      * }
6631      * }</pre></blockquote>
6632      *
6633      * @apiNote Example with a fully conformant body method:
6634      * <blockquote><pre>{@code
6635      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6636      * // => a variation on a well known theme
6637      * static String step(String v, int counter, String init) { return "na " + v; }
6638      * // assume MH_step is a handle to the method above
6639      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6640      * MethodHandle start = MethodHandles.identity(String.class);
6641      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6642      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6643      * }</pre></blockquote>
6644      *
6645      * @apiNote Example with the simplest possible body method type,
6646      * and passing the number of iterations to the loop invocation:
6647      * <blockquote><pre>{@code
6648      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6649      * // => a variation on a well known theme
6650      * static String step(String v, int counter ) { return "na " + v; }
6651      * // assume MH_step is a handle to the method above
6652      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6653      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6654      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6655      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6656      * }</pre></blockquote>
6657      *
6658      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6659      * as loop parameters:
6660      * <blockquote><pre>{@code
6661      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6662      * // => a variation on a well known theme
6663      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6664      * // assume MH_step is a handle to the method above
6665      * MethodHandle count = MethodHandles.identity(int.class);
6666      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6667      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6668      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6669      * }</pre></blockquote>
6670      *
6671      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6672      * to enforce a loop type:
6673      * <blockquote><pre>{@code
6674      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6675      * // => a variation on a well known theme
6676      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6677      * // assume MH_step is a handle to the method above
6678      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6679      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6680      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6681      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6682      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6683      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6684      * }</pre></blockquote>
6685      *
6686      * @apiNote The implementation of this method can be expressed as follows:
6687      * <blockquote><pre>{@code
6688      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6689      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6690      * }
6691      * }</pre></blockquote>
6692      *
6693      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6694      *                   result type must be {@code int}. See above for other constraints.
6695      * @param init optional initializer, providing the initial value of the loop variable.
6696      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6697      * @param body body of the loop, which may not be {@code null}.
6698      *             It controls the loop parameters and result type in the standard case (see above for details).
6699      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6700      *             and may accept any number of additional types.
6701      *             See above for other constraints.
6702      *
6703      * @return a method handle representing the loop.
6704      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6705      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6706      *
6707      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6708      * @since 9
6709      */
6710     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6711         return countedLoop(empty(iterations.type()), iterations, init, body);
6712     }
6713 
6714     /**
6715      * Constructs a loop that counts over a range of numbers.
6716      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6717      * <p>
6718      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6719      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6720      * values of the loop counter.
6721      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6722      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6723      * <p>
6724      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6725      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6726      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6727      * <p>
6728      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6729      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6730      * iteration variable.
6731      * The result of the loop handle execution will be the final {@code V} value of that variable
6732      * (or {@code void} if there is no {@code V} variable).
6733      * <p>
6734      * The following rules hold for the argument handles:<ul>
6735      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6736      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6737      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6738      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6739      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6740      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6741      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6742      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6743      * of types called the <em>internal parameter list</em>.
6744      * It will constrain the parameter lists of the other loop parts.
6745      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6746      * with no additional {@code A} types, then the internal parameter list is extended by
6747      * the argument types {@code A...} of the {@code end} handle.
6748      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6749      * list {@code (A...)} is called the <em>external parameter list</em>.
6750      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6751      * additional state variable of the loop.
6752      * The body must both accept a leading parameter and return a value of this type {@code V}.
6753      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6754      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6755      * <a href="MethodHandles.html#effid">effectively identical</a>
6756      * to the external parameter list {@code (A...)}.
6757      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6758      * {@linkplain #empty default value}.
6759      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6760      * effectively identical to the external parameter list {@code (A...)}.
6761      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6762      * to the external parameter list.
6763      * </ul>
6764      * <p>
6765      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6766      * <li>The loop handle's result type is the result type {@code V} of the body.
6767      * <li>The loop handle's parameter types are the types {@code (A...)},
6768      * from the external parameter list.
6769      * </ul>
6770      * <p>
6771      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6772      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6773      * arguments passed to the loop.
6774      * <blockquote><pre>{@code
6775      * int start(A...);
6776      * int end(A...);
6777      * V init(A...);
6778      * V body(V, int, A...);
6779      * V countedLoop(A... a...) {
6780      *   int e = end(a...);
6781      *   int s = start(a...);
6782      *   V v = init(a...);
6783      *   for (int i = s; i < e; ++i) {
6784      *     v = body(v, i, a...);
6785      *   }
6786      *   return v;
6787      * }
6788      * }</pre></blockquote>
6789      *
6790      * @apiNote The implementation of this method can be expressed as follows:
6791      * <blockquote><pre>{@code
6792      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6793      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6794      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6795      *     // the following semantics:
6796      *     // MH_increment: (int limit, int counter) -> counter + 1
6797      *     // MH_predicate: (int limit, int counter) -> counter < limit
6798      *     Class<?> counterType = start.type().returnType();  // int
6799      *     Class<?> returnType = body.type().returnType();
6800      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6801      *     if (returnType != void.class) {  // ignore the V variable
6802      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6803      *         pred = dropArguments(pred, 1, returnType);  // ditto
6804      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6805      *     }
6806      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6807      *     MethodHandle[]
6808      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6809      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6810      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6811      *     return loop(loopLimit, bodyClause, indexVar);
6812      * }
6813      * }</pre></blockquote>
6814      *
6815      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6816      *              See above for other constraints.
6817      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6818      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6819      * @param init optional initializer, providing the initial value of the loop variable.
6820      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6821      * @param body body of the loop, which may not be {@code null}.
6822      *             It controls the loop parameters and result type in the standard case (see above for details).
6823      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6824      *             and may accept any number of additional types.
6825      *             See above for other constraints.
6826      *
6827      * @return a method handle representing the loop.
6828      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6829      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6830      *
6831      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6832      * @since 9
6833      */
6834     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6835         countedLoopChecks(start, end, init, body);
6836         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6837         Class<?> limitType   = end.type().returnType();    // yes, int again
6838         Class<?> returnType  = body.type().returnType();
6839         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6840         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6841         MethodHandle retv = null;
6842         if (returnType != void.class) {
6843             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6844             pred = dropArguments(pred, 1, returnType);  // ditto
6845             retv = dropArguments(identity(returnType), 0, counterType);
6846         }
6847         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6848         MethodHandle[]
6849             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6850             bodyClause = { init, body },            // v = init(); v = body(v, i)
6851             indexVar   = { start, incr };           // i = start(); i = i + 1
6852         return loop(loopLimit, bodyClause, indexVar);
6853     }
6854 
6855     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6856         Objects.requireNonNull(start);
6857         Objects.requireNonNull(end);
6858         Objects.requireNonNull(body);
6859         Class<?> counterType = start.type().returnType();
6860         if (counterType != int.class) {
6861             MethodType expected = start.type().changeReturnType(int.class);
6862             throw misMatchedTypes("start function", start.type(), expected);
6863         } else if (end.type().returnType() != counterType) {
6864             MethodType expected = end.type().changeReturnType(counterType);
6865             throw misMatchedTypes("end function", end.type(), expected);
6866         }
6867         MethodType bodyType = body.type();
6868         Class<?> returnType = bodyType.returnType();
6869         List<Class<?>> innerList = bodyType.parameterList();
6870         // strip leading V value if present
6871         int vsize = (returnType == void.class ? 0 : 1);
6872         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6873             // argument list has no "V" => error
6874             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6875             throw misMatchedTypes("body function", bodyType, expected);
6876         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6877             // missing I type => error
6878             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6879             throw misMatchedTypes("body function", bodyType, expected);
6880         }
6881         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6882         if (outerList.isEmpty()) {
6883             // special case; take lists from end handle
6884             outerList = end.type().parameterList();
6885             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6886         }
6887         MethodType expected = methodType(counterType, outerList);
6888         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6889             throw misMatchedTypes("start parameter types", start.type(), expected);
6890         }
6891         if (end.type() != start.type() &&
6892             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6893             throw misMatchedTypes("end parameter types", end.type(), expected);
6894         }
6895         if (init != null) {
6896             MethodType initType = init.type();
6897             if (initType.returnType() != returnType ||
6898                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6899                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6900             }
6901         }
6902     }
6903 
6904     /**
6905      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6906      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6907      * <p>
6908      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6909      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6910      * <p>
6911      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6912      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6913      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6914      * <p>
6915      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6916      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6917      * iteration variable.
6918      * The result of the loop handle execution will be the final {@code V} value of that variable
6919      * (or {@code void} if there is no {@code V} variable).
6920      * <p>
6921      * The following rules hold for the argument handles:<ul>
6922      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6923      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6924      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6925      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6926      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6927      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6928      * of types called the <em>internal parameter list</em>.
6929      * It will constrain the parameter lists of the other loop parts.
6930      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6931      * with no additional {@code A} types, then the internal parameter list is extended by
6932      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6933      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6934      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6935      * list {@code (A...)} is called the <em>external parameter list</em>.
6936      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6937      * additional state variable of the loop.
6938      * The body must both accept a leading parameter and return a value of this type {@code V}.
6939      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6940      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6941      * <a href="MethodHandles.html#effid">effectively identical</a>
6942      * to the external parameter list {@code (A...)}.
6943      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6944      * {@linkplain #empty default value}.
6945      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6946      * type {@code java.util.Iterator} or a subtype thereof.
6947      * The iterator it produces when the loop is executed will be assumed
6948      * to yield values which can be converted to type {@code T}.
6949      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6950      * effectively identical to the external parameter list {@code (A...)}.
6951      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6952      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6953      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6954      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6955      * the {@link MethodHandle#asType asType} conversion method.
6956      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6957      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6958      * </ul>
6959      * <p>
6960      * The type {@code T} may be either a primitive or reference.
6961      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6962      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6963      * as if by the {@link MethodHandle#asType asType} conversion method.
6964      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6965      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6966      * <p>
6967      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6968      * <li>The loop handle's result type is the result type {@code V} of the body.
6969      * <li>The loop handle's parameter types are the types {@code (A...)},
6970      * from the external parameter list.
6971      * </ul>
6972      * <p>
6973      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6974      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6975      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6976      * <blockquote><pre>{@code
6977      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6978      * V init(A...);
6979      * V body(V,T,A...);
6980      * V iteratedLoop(A... a...) {
6981      *   Iterator<T> it = iterator(a...);
6982      *   V v = init(a...);
6983      *   while (it.hasNext()) {
6984      *     T t = it.next();
6985      *     v = body(v, t, a...);
6986      *   }
6987      *   return v;
6988      * }
6989      * }</pre></blockquote>
6990      *
6991      * @apiNote Example:
6992      * <blockquote><pre>{@code
6993      * // get an iterator from a list
6994      * static List<String> reverseStep(List<String> r, String e) {
6995      *   r.add(0, e);
6996      *   return r;
6997      * }
6998      * static List<String> newArrayList() { return new ArrayList<>(); }
6999      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
7000      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
7001      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
7002      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
7003      * assertEquals(reversedList, (List<String>) loop.invoke(list));
7004      * }</pre></blockquote>
7005      *
7006      * @apiNote The implementation of this method can be expressed approximately as follows:
7007      * <blockquote><pre>{@code
7008      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7009      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
7010      *     Class<?> returnType = body.type().returnType();
7011      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7012      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
7013      *     MethodHandle retv = null, step = body, startIter = iterator;
7014      *     if (returnType != void.class) {
7015      *         // the simple thing first:  in (I V A...), drop the I to get V
7016      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
7017      *         // body type signature (V T A...), internal loop types (I V A...)
7018      *         step = swapArguments(body, 0, 1);  // swap V <-> T
7019      *     }
7020      *     if (startIter == null)  startIter = MH_getIter;
7021      *     MethodHandle[]
7022      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
7023      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
7024      *     return loop(iterVar, bodyClause);
7025      * }
7026      * }</pre></blockquote>
7027      *
7028      * @param iterator an optional handle to return the iterator to start the loop.
7029      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
7030      *                 See above for other constraints.
7031      * @param init optional initializer, providing the initial value of the loop variable.
7032      *             May be {@code null}, implying a default initial value.  See above for other constraints.
7033      * @param body body of the loop, which may not be {@code null}.
7034      *             It controls the loop parameters and result type in the standard case (see above for details).
7035      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
7036      *             and may accept any number of additional types.
7037      *             See above for other constraints.
7038      *
7039      * @return a method handle embodying the iteration loop functionality.
7040      * @throws NullPointerException if the {@code body} handle is {@code null}.
7041      * @throws IllegalArgumentException if any argument violates the above requirements.
7042      *
7043      * @since 9
7044      */
7045     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7046         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
7047         Class<?> returnType = body.type().returnType();
7048         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
7049         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
7050         MethodHandle startIter;
7051         MethodHandle nextVal;
7052         {
7053             MethodType iteratorType;
7054             if (iterator == null) {
7055                 // derive argument type from body, if available, else use Iterable
7056                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
7057                 iteratorType = startIter.type().changeParameterType(0, iterableType);
7058             } else {
7059                 // force return type to the internal iterator class
7060                 iteratorType = iterator.type().changeReturnType(Iterator.class);
7061                 startIter = iterator;
7062             }
7063             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
7064             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
7065 
7066             // perform the asType transforms under an exception transformer, as per spec.:
7067             try {
7068                 startIter = startIter.asType(iteratorType);
7069                 nextVal = nextRaw.asType(nextValType);
7070             } catch (WrongMethodTypeException ex) {
7071                 throw new IllegalArgumentException(ex);
7072             }
7073         }
7074 
7075         MethodHandle retv = null, step = body;
7076         if (returnType != void.class) {
7077             // the simple thing first:  in (I V A...), drop the I to get V
7078             retv = dropArguments(identity(returnType), 0, Iterator.class);
7079             // body type signature (V T A...), internal loop types (I V A...)
7080             step = swapArguments(body, 0, 1);  // swap V <-> T
7081         }
7082 
7083         MethodHandle[]
7084             iterVar    = { startIter, null, hasNext, retv },
7085             bodyClause = { init, filterArgument(step, 0, nextVal) };
7086         return loop(iterVar, bodyClause);
7087     }
7088 
7089     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
7090         Objects.requireNonNull(body);
7091         MethodType bodyType = body.type();
7092         Class<?> returnType = bodyType.returnType();
7093         List<Class<?>> internalParamList = bodyType.parameterList();
7094         // strip leading V value if present
7095         int vsize = (returnType == void.class ? 0 : 1);
7096         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
7097             // argument list has no "V" => error
7098             MethodType expected = bodyType.insertParameterTypes(0, returnType);
7099             throw misMatchedTypes("body function", bodyType, expected);
7100         } else if (internalParamList.size() <= vsize) {
7101             // missing T type => error
7102             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
7103             throw misMatchedTypes("body function", bodyType, expected);
7104         }
7105         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
7106         Class<?> iterableType = null;
7107         if (iterator != null) {
7108             // special case; if the body handle only declares V and T then
7109             // the external parameter list is obtained from iterator handle
7110             if (externalParamList.isEmpty()) {
7111                 externalParamList = iterator.type().parameterList();
7112             }
7113             MethodType itype = iterator.type();
7114             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
7115                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
7116             }
7117             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
7118                 MethodType expected = methodType(itype.returnType(), externalParamList);
7119                 throw misMatchedTypes("iterator parameters", itype, expected);
7120             }
7121         } else {
7122             if (externalParamList.isEmpty()) {
7123                 // special case; if the iterator handle is null and the body handle
7124                 // only declares V and T then the external parameter list consists
7125                 // of Iterable
7126                 externalParamList = Arrays.asList(Iterable.class);
7127                 iterableType = Iterable.class;
7128             } else {
7129                 // special case; if the iterator handle is null and the external
7130                 // parameter list is not empty then the first parameter must be
7131                 // assignable to Iterable
7132                 iterableType = externalParamList.get(0);
7133                 if (!Iterable.class.isAssignableFrom(iterableType)) {
7134                     throw newIllegalArgumentException(
7135                             "inferred first loop argument must inherit from Iterable: " + iterableType);
7136                 }
7137             }
7138         }
7139         if (init != null) {
7140             MethodType initType = init.type();
7141             if (initType.returnType() != returnType ||
7142                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
7143                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
7144             }
7145         }
7146         return iterableType;  // help the caller a bit
7147     }
7148 
7149     /*non-public*/
7150     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
7151         // there should be a better way to uncross my wires
7152         int arity = mh.type().parameterCount();
7153         int[] order = new int[arity];
7154         for (int k = 0; k < arity; k++)  order[k] = k;
7155         order[i] = j; order[j] = i;
7156         Class<?>[] types = mh.type().parameterArray();
7157         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
7158         MethodType swapType = methodType(mh.type().returnType(), types);
7159         return permuteArguments(mh, swapType, order);
7160     }
7161 
7162     /**
7163      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
7164      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
7165      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
7166      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
7167      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
7168      * {@code try-finally} handle.
7169      * <p>
7170      * The {@code cleanup} handle will be passed one or two additional leading arguments.
7171      * The first is the exception thrown during the
7172      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
7173      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
7174      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
7175      * The second argument is not present if the {@code target} handle has a {@code void} return type.
7176      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
7177      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
7178      * <p>
7179      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
7180      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
7181      * two extra leading parameters:<ul>
7182      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
7183      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
7184      * the result from the execution of the {@code target} handle.
7185      * This parameter is not present if the {@code target} returns {@code void}.
7186      * </ul>
7187      * <p>
7188      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
7189      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
7190      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
7191      * the cleanup.
7192      * <blockquote><pre>{@code
7193      * V target(A..., B...);
7194      * V cleanup(Throwable, V, A...);
7195      * V adapter(A... a, B... b) {
7196      *   V result = (zero value for V);
7197      *   Throwable throwable = null;
7198      *   try {
7199      *     result = target(a..., b...);
7200      *   } catch (Throwable t) {
7201      *     throwable = t;
7202      *     throw t;
7203      *   } finally {
7204      *     result = cleanup(throwable, result, a...);
7205      *   }
7206      *   return result;
7207      * }
7208      * }</pre></blockquote>
7209      * <p>
7210      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
7211      * be modified by execution of the target, and so are passed unchanged
7212      * from the caller to the cleanup, if it is invoked.
7213      * <p>
7214      * The target and cleanup must return the same type, even if the cleanup
7215      * always throws.
7216      * To create such a throwing cleanup, compose the cleanup logic
7217      * with {@link #throwException throwException},
7218      * in order to create a method handle of the correct return type.
7219      * <p>
7220      * Note that {@code tryFinally} never converts exceptions into normal returns.
7221      * In rare cases where exceptions must be converted in that way, first wrap
7222      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
7223      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
7224      * <p>
7225      * It is recommended that the first parameter type of {@code cleanup} be
7226      * declared {@code Throwable} rather than a narrower subtype.  This ensures
7227      * {@code cleanup} will always be invoked with whatever exception that
7228      * {@code target} throws.  Declaring a narrower type may result in a
7229      * {@code ClassCastException} being thrown by the {@code try-finally}
7230      * handle if the type of the exception thrown by {@code target} is not
7231      * assignable to the first parameter type of {@code cleanup}.  Note that
7232      * various exception types of {@code VirtualMachineError},
7233      * {@code LinkageError}, and {@code RuntimeException} can in principle be
7234      * thrown by almost any kind of Java code, and a finally clause that
7235      * catches (say) only {@code IOException} would mask any of the others
7236      * behind a {@code ClassCastException}.
7237      *
7238      * @param target the handle whose execution is to be wrapped in a {@code try} block.
7239      * @param cleanup the handle that is invoked in the finally block.
7240      *
7241      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
7242      * @throws NullPointerException if any argument is null
7243      * @throws IllegalArgumentException if {@code cleanup} does not accept
7244      *          the required leading arguments, or if the method handle types do
7245      *          not match in their return types and their
7246      *          corresponding trailing parameters
7247      *
7248      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7249      * @since 9
7250      */
7251     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7252         List<Class<?>> targetParamTypes = target.type().parameterList();
7253         Class<?> rtype = target.type().returnType();
7254 
7255         tryFinallyChecks(target, cleanup);
7256 
7257         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7258         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7259         // target parameter list.
7260         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
7261 
7262         // Ensure that the intrinsic type checks the instance thrown by the
7263         // target against the first parameter of cleanup
7264         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7265 
7266         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7267         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7268     }
7269 
7270     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7271         Class<?> rtype = target.type().returnType();
7272         if (rtype != cleanup.type().returnType()) {
7273             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7274         }
7275         MethodType cleanupType = cleanup.type();
7276         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7277             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7278         }
7279         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7280             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7281         }
7282         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7283         // target parameter list.
7284         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7285         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7286             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7287                     cleanup.type(), target.type());
7288         }
7289     }
7290 
7291 }