1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.lang.invoke;
  26 
  27 import sun.invoke.util.Wrapper;
  28 
  29 import static java.lang.invoke.MethodHandleInfo.*;
  30 import static sun.invoke.util.Wrapper.forPrimitiveType;
  31 import static sun.invoke.util.Wrapper.forWrapperType;
  32 import static sun.invoke.util.Wrapper.isWrapperType;
  33 
  34 /**
  35  * Abstract implementation of a lambda metafactory which provides parameter
  36  * unrolling and input validation.
  37  *
  38  * @see LambdaMetafactory
  39  */
  40 /* package */ abstract class AbstractValidatingLambdaMetafactory {
  41 
  42     /*
  43      * For context, the comments for the following fields are marked in quotes
  44      * with their values, given this program:
  45      * interface II<T> {  Object foo(T x); }
  46      * interface JJ<R extends Number> extends II<R> { }
  47      * class CC {  String impl(int i) { return "impl:"+i; }}
  48      * class X {
  49      *     public static void main(String[] args) {
  50      *         JJ<Integer> iii = (new CC())::impl;
  51      *         System.out.printf(">>> %s\n", iii.foo(44));
  52      * }}
  53      */
  54     final Class<?> targetClass;               // The class calling the meta-factory via invokedynamic "class X"
  55     final MethodType invokedType;             // The type of the invoked method "(CC)II"
  56     final Class<?> samBase;                   // The type of the returned instance "interface JJ"
  57     final String samMethodName;               // Name of the SAM method "foo"
  58     final MethodType samMethodType;           // Type of the SAM method "(Object)Object"
  59     final MethodHandle implMethod;            // Raw method handle for the implementation method
  60     final MethodType implMethodType;          // Type of the implMethod MethodHandle "(CC,int)String"
  61     final MethodHandleInfo implInfo;          // Info about the implementation method handle "MethodHandleInfo[5 CC.impl(int)String]"
  62     final int implKind;                       // Invocation kind for implementation "5"=invokevirtual
  63     final boolean implIsInstanceMethod;       // Is the implementation an instance method "true"
  64     final Class<?> implClass;                 // Class for referencing the implementation method "class CC"
  65     final MethodType instantiatedMethodType;  // Instantiated erased functional interface method type "(Integer)Object"
  66     final boolean isSerializable;             // Should the returned instance be serializable
  67     final Class<?>[] markerInterfaces;        // Additional marker interfaces to be implemented
  68     final MethodType[] additionalBridges;     // Signatures of additional methods to bridge
  69 
  70 
  71     /**
  72      * Meta-factory constructor.
  73      *
  74      * @param caller Stacked automatically by VM; represents a lookup context
  75      *               with the accessibility privileges of the caller.
  76      * @param invokedType Stacked automatically by VM; the signature of the
  77      *                    invoked method, which includes the expected static
  78      *                    type of the returned lambda object, and the static
  79      *                    types of the captured arguments for the lambda.  In
  80      *                    the event that the implementation method is an
  81      *                    instance method, the first argument in the invocation
  82      *                    signature will correspond to the receiver.
  83      * @param samMethodName Name of the method in the functional interface to
  84      *                      which the lambda or method reference is being
  85      *                      converted, represented as a String.
  86      * @param samMethodType Type of the method in the functional interface to
  87      *                      which the lambda or method reference is being
  88      *                      converted, represented as a MethodType.
  89      * @param implMethod The implementation method which should be called
  90      *                   (with suitable adaptation of argument types, return
  91      *                   types, and adjustment for captured arguments) when
  92      *                   methods of the resulting functional interface instance
  93      *                   are invoked.
  94      * @param instantiatedMethodType The signature of the primary functional
  95      *                               interface method after type variables are
  96      *                               substituted with their instantiation from
  97      *                               the capture site
  98      * @param isSerializable Should the lambda be made serializable?  If set,
  99      *                       either the target type or one of the additional SAM
 100      *                       types must extend {@code Serializable}.
 101      * @param markerInterfaces Additional interfaces which the lambda object
 102      *                       should implement.
 103      * @param additionalBridges Method types for additional signatures to be
 104      *                          bridged to the implementation method
 105      * @throws LambdaConversionException If any of the meta-factory protocol
 106      * invariants are violated
 107      */
 108     AbstractValidatingLambdaMetafactory(MethodHandles.Lookup caller,
 109                                        MethodType invokedType,
 110                                        String samMethodName,
 111                                        MethodType samMethodType,
 112                                        MethodHandle implMethod,
 113                                        MethodType instantiatedMethodType,
 114                                        boolean isSerializable,
 115                                        Class<?>[] markerInterfaces,
 116                                        MethodType[] additionalBridges)
 117             throws LambdaConversionException {
 118         if ((caller.lookupModes() & MethodHandles.Lookup.PRIVATE) == 0) {
 119             throw new LambdaConversionException(String.format(
 120                     "Invalid caller: %s",
 121                     caller.lookupClass().getName()));
 122         }
 123         this.targetClass = caller.lookupClass();
 124         this.invokedType = invokedType;
 125 
 126         this.samBase = invokedType.returnType();
 127 
 128         this.samMethodName = samMethodName;
 129         this.samMethodType  = samMethodType;
 130 
 131         this.implMethod = implMethod;
 132         this.implMethodType = implMethod.type();
 133         this.implInfo = caller.revealDirect(implMethod);
 134         switch (implInfo.getReferenceKind()) {
 135             case REF_invokeVirtual:
 136             case REF_invokeInterface:
 137                 this.implClass = implMethodType.parameterType(0);
 138                 // reference kind reported by implInfo may not match implMethodType's first param
 139                 // Example: implMethodType is (Cloneable)String, implInfo is for Object.toString
 140                 this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
 141                 this.implIsInstanceMethod = true;
 142                 break;
 143             case REF_invokeSpecial:
 144                 // JDK-8172817: should use referenced class here, but we don't know what it was
 145                 this.implClass = implInfo.getDeclaringClass();
 146                 this.implIsInstanceMethod = true;
 147 
 148                 // Classes compiled prior to dynamic nestmate support invokes a private instance
 149                 // method with REF_invokeSpecial.
 150                 //
 151                 // invokespecial should only be used to invoke private nestmate constructors.
 152                 // The lambda proxy class will be defined as a nestmate of targetClass.
 153                 // If the method to be invoked is an instance method of targetClass, then
 154                 // convert to use invokevirtual or invokeinterface.
 155                 if (targetClass == implClass && !implInfo.getName().equals("<init>")) { 
 156                     this.implKind = implClass.isInterface() ? REF_invokeInterface : REF_invokeVirtual;
 157                 } else {
 158                     this.implKind = REF_invokeSpecial;
 159                 }
 160                 break;
 161             case REF_invokeStatic:
 162             case REF_newInvokeSpecial:
 163                 // JDK-8172817: should use referenced class here for invokestatic, but we don't know what it was
 164                 this.implClass = implInfo.getDeclaringClass();
 165                 this.implKind = implInfo.getReferenceKind();
 166                 this.implIsInstanceMethod = false;
 167                 break;
 168             default:
 169                 throw new LambdaConversionException(String.format("Unsupported MethodHandle kind: %s", implInfo));
 170         }
 171 
 172         this.instantiatedMethodType = instantiatedMethodType;
 173         this.isSerializable = isSerializable;
 174         this.markerInterfaces = markerInterfaces;
 175         this.additionalBridges = additionalBridges;
 176 
 177         if (samMethodName.isEmpty() ||
 178                 samMethodName.indexOf('.') >= 0 ||
 179                 samMethodName.indexOf(';') >= 0 ||
 180                 samMethodName.indexOf('[') >= 0 ||
 181                 samMethodName.indexOf('/') >= 0 ||
 182                 samMethodName.indexOf('<') >= 0 ||
 183                 samMethodName.indexOf('>') >= 0) {
 184             throw new LambdaConversionException(String.format(
 185                     "Method name '%s' is not legal",
 186                     samMethodName));
 187         }
 188 
 189         if (!samBase.isInterface()) {
 190             throw new LambdaConversionException(String.format(
 191                     "Functional interface %s is not an interface",
 192                     samBase.getName()));
 193         }
 194 
 195         for (Class<?> c : markerInterfaces) {
 196             if (!c.isInterface()) {
 197                 throw new LambdaConversionException(String.format(
 198                         "Marker interface %s is not an interface",
 199                         c.getName()));
 200             }
 201         }
 202     }
 203 
 204     /**
 205      * Build the CallSite.
 206      *
 207      * @return a CallSite, which, when invoked, will return an instance of the
 208      * functional interface
 209      * @throws ReflectiveOperationException
 210      */
 211     abstract CallSite buildCallSite()
 212             throws LambdaConversionException;
 213 
 214     /**
 215      * Check the meta-factory arguments for errors
 216      * @throws LambdaConversionException if there are improper conversions
 217      */
 218     void validateMetafactoryArgs() throws LambdaConversionException {
 219         // Check arity: captured + SAM == impl
 220         final int implArity = implMethodType.parameterCount();
 221         final int capturedArity = invokedType.parameterCount();
 222         final int samArity = samMethodType.parameterCount();
 223         final int instantiatedArity = instantiatedMethodType.parameterCount();
 224         if (implArity != capturedArity + samArity) {
 225             throw new LambdaConversionException(
 226                     String.format("Incorrect number of parameters for %s method %s; %d captured parameters, %d functional interface method parameters, %d implementation parameters",
 227                                   implIsInstanceMethod ? "instance" : "static", implInfo,
 228                                   capturedArity, samArity, implArity));
 229         }
 230         if (instantiatedArity != samArity) {
 231             throw new LambdaConversionException(
 232                     String.format("Incorrect number of parameters for %s method %s; %d instantiated parameters, %d functional interface method parameters",
 233                                   implIsInstanceMethod ? "instance" : "static", implInfo,
 234                                   instantiatedArity, samArity));
 235         }
 236         for (MethodType bridgeMT : additionalBridges) {
 237             if (bridgeMT.parameterCount() != samArity) {
 238                 throw new LambdaConversionException(
 239                         String.format("Incorrect number of parameters for bridge signature %s; incompatible with %s",
 240                                       bridgeMT, samMethodType));
 241             }
 242         }
 243 
 244         // If instance: first captured arg (receiver) must be subtype of class where impl method is defined
 245         final int capturedStart; // index of first non-receiver capture parameter in implMethodType
 246         final int samStart; // index of first non-receiver sam parameter in implMethodType
 247         if (implIsInstanceMethod) {
 248             final Class<?> receiverClass;
 249 
 250             // implementation is an instance method, adjust for receiver in captured variables / SAM arguments
 251             if (capturedArity == 0) {
 252                 // receiver is function parameter
 253                 capturedStart = 0;
 254                 samStart = 1;
 255                 receiverClass = instantiatedMethodType.parameterType(0);
 256             } else {
 257                 // receiver is a captured variable
 258                 capturedStart = 1;
 259                 samStart = capturedArity;
 260                 receiverClass = invokedType.parameterType(0);
 261             }
 262 
 263             // check receiver type
 264             if (!implClass.isAssignableFrom(receiverClass)) {
 265                 throw new LambdaConversionException(
 266                         String.format("Invalid receiver type %s; not a subtype of implementation type %s",
 267                                       receiverClass, implClass));
 268             }
 269         } else {
 270             // no receiver
 271             capturedStart = 0;
 272             samStart = capturedArity;
 273         }
 274 
 275         // Check for exact match on non-receiver captured arguments
 276         for (int i=capturedStart; i<capturedArity; i++) {
 277             Class<?> implParamType = implMethodType.parameterType(i);
 278             Class<?> capturedParamType = invokedType.parameterType(i);
 279             if (!capturedParamType.equals(implParamType)) {
 280                 throw new LambdaConversionException(
 281                         String.format("Type mismatch in captured lambda parameter %d: expecting %s, found %s",
 282                                       i, capturedParamType, implParamType));
 283             }
 284         }
 285         // Check for adaptation match on non-receiver SAM arguments
 286         for (int i=samStart; i<implArity; i++) {
 287             Class<?> implParamType = implMethodType.parameterType(i);
 288             Class<?> instantiatedParamType = instantiatedMethodType.parameterType(i - capturedArity);
 289             if (!isAdaptableTo(instantiatedParamType, implParamType, true)) {
 290                 throw new LambdaConversionException(
 291                         String.format("Type mismatch for lambda argument %d: %s is not convertible to %s",
 292                                       i, instantiatedParamType, implParamType));
 293             }
 294         }
 295 
 296         // Adaptation match: return type
 297         Class<?> expectedType = instantiatedMethodType.returnType();
 298         Class<?> actualReturnType = implMethodType.returnType();
 299         if (!isAdaptableToAsReturn(actualReturnType, expectedType)) {
 300             throw new LambdaConversionException(
 301                     String.format("Type mismatch for lambda return: %s is not convertible to %s",
 302                                   actualReturnType, expectedType));
 303         }
 304 
 305         // Check descriptors of generated methods
 306         checkDescriptor(samMethodType);
 307         for (MethodType bridgeMT : additionalBridges) {
 308             checkDescriptor(bridgeMT);
 309         }
 310     }
 311 
 312     /** Validate that the given descriptor's types are compatible with {@code instantiatedMethodType} **/
 313     private void checkDescriptor(MethodType descriptor) throws LambdaConversionException {
 314         for (int i = 0; i < instantiatedMethodType.parameterCount(); i++) {
 315             Class<?> instantiatedParamType = instantiatedMethodType.parameterType(i);
 316             Class<?> descriptorParamType = descriptor.parameterType(i);
 317             if (!descriptorParamType.isAssignableFrom(instantiatedParamType)) {
 318                 String msg = String.format("Type mismatch for instantiated parameter %d: %s is not a subtype of %s",
 319                                            i, instantiatedParamType, descriptorParamType);
 320                 throw new LambdaConversionException(msg);
 321             }
 322         }
 323 
 324         Class<?> instantiatedReturnType = instantiatedMethodType.returnType();
 325         Class<?> descriptorReturnType = descriptor.returnType();
 326         if (!isAdaptableToAsReturnStrict(instantiatedReturnType, descriptorReturnType)) {
 327             String msg = String.format("Type mismatch for lambda expected return: %s is not convertible to %s",
 328                                        instantiatedReturnType, descriptorReturnType);
 329             throw new LambdaConversionException(msg);
 330         }
 331     }
 332 
 333     /**
 334      * Check type adaptability for parameter types.
 335      * @param fromType Type to convert from
 336      * @param toType Type to convert to
 337      * @param strict If true, do strict checks, else allow that fromType may be parameterized
 338      * @return True if 'fromType' can be passed to an argument of 'toType'
 339      */
 340     private boolean isAdaptableTo(Class<?> fromType, Class<?> toType, boolean strict) {
 341         if (fromType.equals(toType)) {
 342             return true;
 343         }
 344         if (fromType.isPrimitive()) {
 345             Wrapper wfrom = forPrimitiveType(fromType);
 346             if (toType.isPrimitive()) {
 347                 // both are primitive: widening
 348                 Wrapper wto = forPrimitiveType(toType);
 349                 return wto.isConvertibleFrom(wfrom);
 350             } else {
 351                 // from primitive to reference: boxing
 352                 return toType.isAssignableFrom(wfrom.wrapperType());
 353             }
 354         } else {
 355             if (toType.isPrimitive()) {
 356                 // from reference to primitive: unboxing
 357                 Wrapper wfrom;
 358                 if (isWrapperType(fromType) && (wfrom = forWrapperType(fromType)).primitiveType().isPrimitive()) {
 359                     // fromType is a primitive wrapper; unbox+widen
 360                     Wrapper wto = forPrimitiveType(toType);
 361                     return wto.isConvertibleFrom(wfrom);
 362                 } else {
 363                     // must be convertible to primitive
 364                     return !strict;
 365                 }
 366             } else {
 367                 // both are reference types: fromType should be a superclass of toType.
 368                 return !strict || toType.isAssignableFrom(fromType);
 369             }
 370         }
 371     }
 372 
 373     /**
 374      * Check type adaptability for return types --
 375      * special handling of void type) and parameterized fromType
 376      * @return True if 'fromType' can be converted to 'toType'
 377      */
 378     private boolean isAdaptableToAsReturn(Class<?> fromType, Class<?> toType) {
 379         return toType.equals(void.class)
 380                || !fromType.equals(void.class) && isAdaptableTo(fromType, toType, false);
 381     }
 382     private boolean isAdaptableToAsReturnStrict(Class<?> fromType, Class<?> toType) {
 383         if (fromType.equals(void.class) || toType.equals(void.class)) return fromType.equals(toType);
 384         else return isAdaptableTo(fromType, toType, true);
 385     }
 386 
 387 
 388     /*********** Logging support -- for debugging only, uncomment as needed
 389     static final Executor logPool = Executors.newSingleThreadExecutor();
 390     protected static void log(final String s) {
 391         MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
 392             @Override
 393             public void run() {
 394                 System.out.println(s);
 395             }
 396         });
 397     }
 398 
 399     protected static void log(final String s, final Throwable e) {
 400         MethodHandleProxyLambdaMetafactory.logPool.execute(new Runnable() {
 401             @Override
 402             public void run() {
 403                 System.out.println(s);
 404                 e.printStackTrace(System.out);
 405             }
 406         });
 407     }
 408     ***********************/
 409 
 410 }