1 /*
   2  * Copyright (c) 2008, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with
 106      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 107      */
 108     @CallerSensitive
 109     @ForceInline // to ensure Reflection.getCallerClass optimization
 110     public static Lookup lookup() {
 111         return new Lookup(Reflection.getCallerClass());
 112     }
 113 
 114     /**
 115      * This reflected$lookup method is the alternate implementation of
 116      * the lookup method when being invoked by reflection.
 117      */
 118     @CallerSensitive
 119     private static Lookup reflected$lookup() {
 120         Class<?> caller = Reflection.getCallerClass();
 121         if (caller.getClassLoader() == null) {
 122             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 123         }
 124         return new Lookup(caller);
 125     }
 126 
 127     /**
 128      * Returns a {@link Lookup lookup object} which is trusted minimally.
 129      * The lookup has the {@code UNCONDITIONAL} mode.
 130      * It can only be used to create method handles to public members of
 131      * public classes in packages that are exported unconditionally.
 132      * <p>
 133      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 134      * of this lookup object will be {@link java.lang.Object}.
 135      *
 136      * @apiNote The use of Object is conventional, and because the lookup modes are
 137      * limited, there is no special access provided to the internals of Object, its package
 138      * or its module.  This public lookup object or other lookup object with
 139      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 140      * is not used to determine the lookup context.
 141      *
 142      * <p style="font-size:smaller;">
 143      * <em>Discussion:</em>
 144      * The lookup class can be changed to any other class {@code C} using an expression of the form
 145      * {@link Lookup#in publicLookup().in(C.class)}.
 146      * A public lookup object is always subject to
 147      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 148      * Also, it cannot access
 149      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 150      * @return a lookup object which is trusted minimally
 151      *
 152      * @revised 9
 153      * @spec JPMS
 154      */
 155     public static Lookup publicLookup() {
 156         return Lookup.PUBLIC_LOOKUP;
 157     }
 158 
 159     /**
 160      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 161      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 162      * The returned lookup object can provide access to classes in modules and packages,
 163      * and members of those classes, outside the normal rules of Java access control,
 164      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 165      * <p>
 166      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 167      * allowed to do deep reflection on module {@code M2} and package of the target class
 168      * if and only if all of the following conditions are {@code true}:
 169      * <ul>
 170      * <li>If there is a security manager, its {@code checkPermission} method is
 171      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 172      * that must return normally.
 173      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 174      * full privilege access}.  Specifically:
 175      *   <ul>
 176      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 177      *         (This is because otherwise there would be no way to ensure the original lookup
 178      *         creator was a member of any particular module, and so any subsequent checks
 179      *         for readability and qualified exports would become ineffective.)
 180      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 181      *         (This is because an application intending to share intra-module access
 182      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 183      *         deep reflection to its own module.)
 184      *   </ul>
 185      * <li>The target class must be a proper class, not a primitive or array class.
 186      * (Thus, {@code M2} is well-defined.)
 187      * <li>If the caller module {@code M1} differs from
 188      * the target module {@code M2} then both of the following must be true:
 189      *   <ul>
 190      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 191      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 192      *         containing the target class to at least {@code M1}.</li>
 193      *   </ul>
 194      * </ul>
 195      * <p>
 196      * If any of the above checks is violated, this method fails with an
 197      * exception.
 198      * <p>
 199      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 200      * returns a {@code Lookup} on {@code targetClass} with
 201      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} and
 202      * {@code null} previous lookup class.
 203      * <p>
 204      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 205      * returns a {@code Lookup} on {@code targetClass} that records
 206      * the lookup class of the caller as the new previous lookup class and
 207      * drops {@code MODULE} access from the full privilege access.
 208      *
 209      * @param targetClass the target class
 210      * @param caller the caller lookup object
 211      * @return a lookup object for the target class, with private access
 212      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 213      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 214      * @throws SecurityException if denied by the security manager
 215      * @throws IllegalAccessException if any of the other access checks specified above fails
 216      * @since 9
 217      * @spec JPMS
 218      * @see Lookup#dropLookupMode
 219      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 220      */
 221     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 222         SecurityManager sm = System.getSecurityManager();
 223         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 224         if (targetClass.isPrimitive())
 225             throw new IllegalArgumentException(targetClass + " is a primitive class");
 226         if (targetClass.isArray())
 227             throw new IllegalArgumentException(targetClass + " is an array class");
 228         // Ensure that we can reason accurately about private and module access.
 229         if (!caller.hasFullPrivilegeAccess())
 230             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 231 
 232         // previous lookup class is never set if it has MODULE access
 233         assert caller.previousLookupClass() == null;
 234 
 235         Class<?> callerClass = caller.lookupClass();
 236         Module callerModule = callerClass.getModule();  // M1
 237         Module targetModule = targetClass.getModule();  // M2
 238         Class<?> newPreviousClass = null;
 239         int newModes = Lookup.FULL_POWER_MODES;
 240 
 241         if (targetModule != callerModule) {
 242             if (!callerModule.canRead(targetModule))
 243                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 244             if (targetModule.isNamed()) {
 245                 String pn = targetClass.getPackageName();
 246                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 247                 if (!targetModule.isOpen(pn, callerModule))
 248                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 249             }
 250 
 251             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 252             newPreviousClass = callerClass;
 253             newModes &= ~Lookup.MODULE;
 254         }
 255 
 256         if (!callerModule.isNamed() && targetModule.isNamed()) {
 257             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 258             if (logger != null) {
 259                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 260             }
 261         }
 262         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 263     }
 264 
 265     /**
 266      * Performs an unchecked "crack" of a
 267      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 268      * The result is as if the user had obtained a lookup object capable enough
 269      * to crack the target method handle, called
 270      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 271      * on the target to obtain its symbolic reference, and then called
 272      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 273      * to resolve the symbolic reference to a member.
 274      * <p>
 275      * If there is a security manager, its {@code checkPermission} method
 276      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 277      * @param <T> the desired type of the result, either {@link Member} or a subtype
 278      * @param target a direct method handle to crack into symbolic reference components
 279      * @param expected a class object representing the desired result type {@code T}
 280      * @return a reference to the method, constructor, or field object
 281      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 282      * @throws    NullPointerException if either argument is {@code null}
 283      * @throws    IllegalArgumentException if the target is not a direct method handle
 284      * @throws    ClassCastException if the member is not of the expected type
 285      * @since 1.8
 286      */
 287     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 288         SecurityManager smgr = System.getSecurityManager();
 289         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 290         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 291         return lookup.revealDirect(target).reflectAs(expected, lookup);
 292     }
 293     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 294     private static final java.security.Permission ACCESS_PERMISSION =
 295         new ReflectPermission("suppressAccessChecks");
 296 
 297     /**
 298      * A <em>lookup object</em> is a factory for creating method handles,
 299      * when the creation requires access checking.
 300      * Method handles do not perform
 301      * access checks when they are called, but rather when they are created.
 302      * Therefore, method handle access
 303      * restrictions must be enforced when a method handle is created.
 304      * The caller class against which those restrictions are enforced
 305      * is known as the {@linkplain #lookupClass() lookup class}.
 306      * <p>
 307      * A lookup class which needs to create method handles will call
 308      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 309      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 310      * determined, and securely stored in the {@code Lookup} object.
 311      * The lookup class (or its delegates) may then use factory methods
 312      * on the {@code Lookup} object to create method handles for access-checked members.
 313      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 314      * even private ones.
 315      *
 316      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 317      * The factory methods on a {@code Lookup} object correspond to all major
 318      * use cases for methods, constructors, and fields.
 319      * Each method handle created by a factory method is the functional
 320      * equivalent of a particular <em>bytecode behavior</em>.
 321      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of
 322      * the Java Virtual Machine Specification.)
 323      * Here is a summary of the correspondence between these factory methods and
 324      * the behavior of the resulting method handles:
 325      * <table class="striped">
 326      * <caption style="display:none">lookup method behaviors</caption>
 327      * <thead>
 328      * <tr>
 329      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 330      *     <th scope="col">member</th>
 331      *     <th scope="col">bytecode behavior</th>
 332      * </tr>
 333      * </thead>
 334      * <tbody>
 335      * <tr>
 336      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 337      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 338      * </tr>
 339      * <tr>
 340      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 341      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 342      * </tr>
 343      * <tr>
 344      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 345      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 346      * </tr>
 347      * <tr>
 348      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 349      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 350      * </tr>
 351      * <tr>
 352      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 353      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 354      * </tr>
 355      * <tr>
 356      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 357      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 358      * </tr>
 359      * <tr>
 360      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 361      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 362      * </tr>
 363      * <tr>
 364      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 365      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 366      * </tr>
 367      * <tr>
 368      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 369      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 370      * </tr>
 371      * <tr>
 372      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 373      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 374      * </tr>
 375      * <tr>
 376      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 377      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 378      * </tr>
 379      * <tr>
 380      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 381      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 382      * </tr>
 383      * <tr>
 384      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 385      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 386      * </tr>
 387      * <tr>
 388      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 389      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 390      * </tr>
 391      * </tbody>
 392      * </table>
 393      *
 394      * Here, the type {@code C} is the class or interface being searched for a member,
 395      * documented as a parameter named {@code refc} in the lookup methods.
 396      * The method type {@code MT} is composed from the return type {@code T}
 397      * and the sequence of argument types {@code A*}.
 398      * The constructor also has a sequence of argument types {@code A*} and
 399      * is deemed to return the newly-created object of type {@code C}.
 400      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 401      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 402      * if it is present, it is always the leading argument to the method handle invocation.
 403      * (In the case of some {@code protected} members, {@code this} may be
 404      * restricted in type to the lookup class; see below.)
 405      * The name {@code arg} stands for all the other method handle arguments.
 406      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 407      * stands for a null reference if the accessed method or field is static,
 408      * and {@code this} otherwise.
 409      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 410      * for reflective objects corresponding to the given members declared in type {@code C}.
 411      * <p>
 412      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 413      * as if by {@code ldc CONSTANT_Class}.
 414      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 415      * <p>
 416      * In cases where the given member is of variable arity (i.e., a method or constructor)
 417      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 418      * In all other cases, the returned method handle will be of fixed arity.
 419      * <p style="font-size:smaller;">
 420      * <em>Discussion:</em>
 421      * The equivalence between looked-up method handles and underlying
 422      * class members and bytecode behaviors
 423      * can break down in a few ways:
 424      * <ul style="font-size:smaller;">
 425      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 426      * the lookup can still succeed, even when there is no equivalent
 427      * Java expression or bytecoded constant.
 428      * <li>Likewise, if {@code T} or {@code MT}
 429      * is not symbolically accessible from the lookup class's loader,
 430      * the lookup can still succeed.
 431      * For example, lookups for {@code MethodHandle.invokeExact} and
 432      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 433      * <li>If there is a security manager installed, it can forbid the lookup
 434      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 435      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 436      * constant is not subject to security manager checks.
 437      * <li>If the looked-up method has a
 438      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 439      * the method handle creation may fail with an
 440      * {@code IllegalArgumentException}, due to the method handle type having
 441      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 442      * </ul>
 443      *
 444      * <h2><a id="access"></a>Access checking</h2>
 445      * Access checks are applied in the factory methods of {@code Lookup},
 446      * when a method handle is created.
 447      * This is a key difference from the Core Reflection API, since
 448      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 449      * performs access checking against every caller, on every call.
 450      * <p>
 451      * All access checks start from a {@code Lookup} object, which
 452      * compares its recorded lookup class against all requests to
 453      * create method handles.
 454      * A single {@code Lookup} object can be used to create any number
 455      * of access-checked method handles, all checked against a single
 456      * lookup class.
 457      * <p>
 458      * A {@code Lookup} object can be shared with other trusted code,
 459      * such as a metaobject protocol.
 460      * A shared {@code Lookup} object delegates the capability
 461      * to create method handles on private members of the lookup class.
 462      * Even if privileged code uses the {@code Lookup} object,
 463      * the access checking is confined to the privileges of the
 464      * original lookup class.
 465      * <p>
 466      * A lookup can fail, because
 467      * the containing class is not accessible to the lookup class, or
 468      * because the desired class member is missing, or because the
 469      * desired class member is not accessible to the lookup class, or
 470      * because the lookup object is not trusted enough to access the member.
 471      * In the case of a field setter function on a {@code final} field,
 472      * finality enforcement is treated as a kind of access control,
 473      * and the lookup will fail, except in special cases of
 474      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 475      * In any of these cases, a {@code ReflectiveOperationException} will be
 476      * thrown from the attempted lookup.  The exact class will be one of
 477      * the following:
 478      * <ul>
 479      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 480      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 481      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 482      * </ul>
 483      * <p>
 484      * In general, the conditions under which a method handle may be
 485      * looked up for a method {@code M} are no more restrictive than the conditions
 486      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 487      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 488      * a method handle lookup will generally raise a corresponding
 489      * checked exception, such as {@code NoSuchMethodException}.
 490      * And the effect of invoking the method handle resulting from the lookup
 491      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 492      * to executing the compiled, verified, and resolved call to {@code M}.
 493      * The same point is true of fields and constructors.
 494      * <p style="font-size:smaller;">
 495      * <em>Discussion:</em>
 496      * Access checks only apply to named and reflected methods,
 497      * constructors, and fields.
 498      * Other method handle creation methods, such as
 499      * {@link MethodHandle#asType MethodHandle.asType},
 500      * do not require any access checks, and are used
 501      * independently of any {@code Lookup} object.
 502      * <p>
 503      * If the desired member is {@code protected}, the usual JVM rules apply,
 504      * including the requirement that the lookup class must either be in the
 505      * same package as the desired member, or must inherit that member.
 506      * (See the Java Virtual Machine Specification, sections {@jvms
 507      * 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 508      * In addition, if the desired member is a non-static field or method
 509      * in a different package, the resulting method handle may only be applied
 510      * to objects of the lookup class or one of its subclasses.
 511      * This requirement is enforced by narrowing the type of the leading
 512      * {@code this} parameter from {@code C}
 513      * (which will necessarily be a superclass of the lookup class)
 514      * to the lookup class itself.
 515      * <p>
 516      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 517      * that the receiver argument must match both the resolved method <em>and</em>
 518      * the current class.  Again, this requirement is enforced by narrowing the
 519      * type of the leading parameter to the resulting method handle.
 520      * (See the Java Virtual Machine Specification, section {@jmvs 4.10.1.9}.)
 521      * <p>
 522      * The JVM represents constructors and static initializer blocks as internal methods
 523      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 524      * The internal syntax of invocation instructions allows them to refer to such internal
 525      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 526      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 527      * <p>
 528      * If the relationship between nested types is expressed directly through the
 529      * {@code NestHost} and {@code NestMembers} attributes
 530      * (see the Java Virtual Machine Specification, sections {@jvms
 531      * 4.7.28} and {@jvms 4.7.29}),
 532      * then the associated {@code Lookup} object provides direct access to
 533      * the lookup class and all of its nestmates
 534      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 535      * Otherwise, access between nested classes is obtained by the Java compiler creating
 536      * a wrapper method to access a private method of another class in the same nest.
 537      * For example, a nested class {@code C.D}
 538      * can access private members within other related classes such as
 539      * {@code C}, {@code C.D.E}, or {@code C.B},
 540      * but the Java compiler may need to generate wrapper methods in
 541      * those related classes.  In such cases, a {@code Lookup} object on
 542      * {@code C.E} would be unable to access those private members.
 543      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 544      * which can transform a lookup on {@code C.E} into one on any of those other
 545      * classes, without special elevation of privilege.
 546      * <p>
 547      * The accesses permitted to a given lookup object may be limited,
 548      * according to its set of {@link #lookupModes lookupModes},
 549      * to a subset of members normally accessible to the lookup class.
 550      * For example, the {@link MethodHandles#publicLookup publicLookup}
 551      * method produces a lookup object which is only allowed to access
 552      * public members in public classes of exported packages.
 553      * The caller sensitive method {@link MethodHandles#lookup lookup}
 554      * produces a lookup object with full capabilities relative to
 555      * its caller class, to emulate all supported bytecode behaviors.
 556      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 557      * with fewer access modes than the original lookup object.
 558      *
 559      * <p style="font-size:smaller;">
 560      * <a id="privacc"></a>
 561      * <em>Discussion of private and module access:</em>
 562      * We say that a lookup has <em>private access</em>
 563      * if its {@linkplain #lookupModes lookup modes}
 564      * include the possibility of accessing {@code private} members
 565      * (which includes the private members of nestmates).
 566      * As documented in the relevant methods elsewhere,
 567      * only lookups with private access possess the following capabilities:
 568      * <ul style="font-size:smaller;">
 569      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 570      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 571      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 572      *     for classes accessible to the lookup class
 573      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 574      *     within the same package member
 575      * </ul>
 576      * <p style="font-size:smaller;">
 577      * Similarly, a lookup with module access ensures that the original lookup creator was
 578      * a member in the same module as the lookup class.
 579      * <p style="font-size:smaller;">
 580      * Private and module access are independently determined modes; a lookup may have
 581      * either or both or neither.  A lookup which possesses both access modes is said to
 582      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.  Such a lookup has
 583      * the following additional capability:
 584      * <ul style="font-size:smaller;">
 585      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 586      *     such as {@code Class.forName}
 587      * </ul>
 588      * <p style="font-size:smaller;">
 589      * Each of these permissions is a consequence of the fact that a lookup object
 590      * with private access can be securely traced back to an originating class,
 591      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 592      * can be reliably determined and emulated by method handles.
 593      *
 594      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 595      * When a lookup class in one module {@code M1} accesses a class in another module
 596      * {@code M2}, extra access checking is performed beyond the access mode bits.
 597      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 598      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 599      * and when the type is in a package of {@code M2} that is exported to
 600      * at least {@code M1}.
 601      * <p>
 602      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 603      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 604      * MethodHandles.privateLookupIn} methods.
 605      * Teleporting across modules will always record the original lookup class as
 606      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 607      * and drops {@link Lookup#MODULE MODULE} access.
 608      * If the target class is in the same module as the lookup class {@code C},
 609      * then the target class becomes the new lookup class
 610      * and there is no change to the previous lookup class.
 611      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 612      * {@code C} becomes the new previous lookup class
 613      * and the target class becomes the new lookup class.
 614      * In that case, if there was already a previous lookup class in {@code M0},
 615      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 616      * drops all privileges.
 617      * For example,
 618      * <blockquote><pre>
 619      * {@code
 620      * Lookup lookup = MethodHandles.lookup();   // in class C
 621      * Lookup lookup2 = lookup.in(D.class);
 622      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 623      * }</pre></blockquote>
 624      * <p>
 625      * The {@link #lookup()} factory method produces a {@code Lookup} object
 626      * with {@code null} previous lookup class.
 627      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 628      * to class {@code D} without elevation of privileges.
 629      * If {@code C} and {@code D} are in the same module,
 630      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 631      * same previous lookup class as the original {@code lookup}, or
 632      * {@code null} if not present.
 633      * <p>
 634      * When a {@code Lookup} teleports from a class
 635      * in one nest to another nest, {@code PRIVATE} access is dropped.
 636      * When a {@code Lookup} teleports from a class in one package to
 637      * another package, {@code PACKAGE} access is dropped.
 638      * When a {@code Lookup} teleports from a class in one module to another module,
 639      * {@code MODULE} access is dropped.
 640      * Teleporting across modules drops the ability to access non-exported classes
 641      * in both the module of the new lookup class and the module of the old lookup class
 642      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 643      * A {@code Lookup} can teleport back and forth to a class in the module of
 644      * the lookup class and the module of the previous class lookup.
 645      * Teleporting across modules can only decrease access but cannot increase it.
 646      * Teleporting to some third module drops all accesses.
 647      * <p>
 648      * In the above example, if {@code C} and {@code D} are in different modules,
 649      * {@code lookup2} records {@code D} as its lookup class and
 650      * {@code C} as its previous lookup class and {@code lookup2} has only
 651      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 652      * {@code C}'s module and {@code D}'s module.
 653      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 654      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 655      * class {@code D} is recorded as its previous lookup class.
 656      * <p>
 657      * Teleporting across modules restricts access to the public types that
 658      * both the lookup class and the previous lookup class can equally access
 659      * (see below).
 660      * <p>
 661      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 662      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 663      * and create a new {@code Lookup} with <a href="#privacc">private access</a>
 664      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 665      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 666      * to call {@code privateLookupIn}.
 667      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 668      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 669      * produces a new {@code Lookup} on {@code T} with full capabilities.
 670      * A {@code lookup} on {@code C} is also allowed
 671      * to do deep reflection on {@code T} in another module {@code M2} if
 672      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 673      * the package containing {@code T} to at least {@code M1}.
 674      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 675      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 676      * The resulting {@code Lookup} can be used to do member lookup or teleport
 677      * to another lookup class by calling {@link #in Lookup::in}.  But
 678      * it cannot be used to obtain another private {@code Lookup} by calling
 679      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 680      * because it has no {@code MODULE} access.
 681      *
 682      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 683      *
 684      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 685      * allows cross-module access. The access checking is performed with respect
 686      * to both the lookup class and the previous lookup class if present.
 687      * <p>
 688      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 689      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 690      * exported unconditionally}.
 691      * <p>
 692      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 693      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 694      * that are readable to {@code M1} and the type is in a package that is exported
 695      * at least to {@code M1}.
 696      * <p>
 697      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 698      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 699      * the intersection of all public types that are accessible to {@code M1}
 700      * with all public types that are accessible to {@code M0}. {@code M0}
 701      * reads {@code M1} and hence the set of accessible types includes:
 702      *
 703      * <table class="striped">
 704      * <caption style="display:none">
 705      * Public types in the following packages are accessible to the
 706      * lookup class and the previous lookup class.
 707      * </caption>
 708      * <thead>
 709      * <tr>
 710      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 711      * </tr>
 712      * </thead>
 713      * <tbody>
 714      * <tr>
 715      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 716      * </tr>
 717      * <tr>
 718      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 719      * </tr>
 720      * <tr>
 721      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 722      * if both {@code M0} and {@code M1} read {@code M2}</th>
 723      * </tr>
 724      * <tr>
 725      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 726      * </tr>
 727      * <tr>
 728      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 729      * if {@code M1} reads {@code M0}</th>
 730      * </tr>
 731      * <tr>
 732      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 733      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 734      * </tr>
 735      * </tbody>
 736      * </table>
 737      *
 738      * <h2><a id="access-modes"></a>Access modes</h2>
 739      *
 740      * The table below shows the access modes of a {@code Lookup} produced by
 741      * any of the following factory or transformation methods:
 742      * <ul>
 743      * <li>{@link #lookup() MethodHandles::lookup}</li>
 744      * <li>{@link #publicLookup() MethodHandles::publicLookup}</li>
 745      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles::privateLookupIn}</li>
 746      * <li>{@link Lookup#in Lookup::in}</li>
 747      * <li>{@link Lookup#dropLookupMode(int) Lookup::dropLookupMode}</li>
 748      * </ul>
 749      *
 750      * <table class="striped">
 751      * <caption style="display:none">
 752      * Access mode summary
 753      * </caption>
 754      * <thead>
 755      * <tr>
 756      * <th scope="col">Lookup object</th>
 757      * <th style="text-align:center">protected</th>
 758      * <th style="text-align:center">private</th>
 759      * <th style="text-align:center">package</th>
 760      * <th style="text-align:center">module</th>
 761      * <th style="text-align:center">public</th>
 762      * </tr>
 763      * </thead>
 764      * <tbody>
 765      * <tr>
 766      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 767      * <td style="text-align:center">PRO</td>
 768      * <td style="text-align:center">PRI</td>
 769      * <td style="text-align:center">PAC</td>
 770      * <td style="text-align:center">MOD</td>
 771      * <td style="text-align:center">1R</td>
 772      * </tr>
 773      * <tr>
 774      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 775      * <td></td>
 776      * <td></td>
 777      * <td style="text-align:center">PAC</td>
 778      * <td style="text-align:center">MOD</td>
 779      * <td style="text-align:center">1R</td>
 780      * </tr>
 781      * <tr>
 782      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 783      * <td></td>
 784      * <td></td>
 785      * <td></td>
 786      * <td style="text-align:center">MOD</td>
 787      * <td style="text-align:center">1R</td>
 788      * </tr>
 789      * <tr>
 790      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 791      * <td></td>
 792      * <td></td>
 793      * <td></td>
 794      * <td></td>
 795      * <td style="text-align:center">2R</td>
 796      * </tr>
 797      * <tr>
 798      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 799      * <td></td>
 800      * <td></td>
 801      * <td></td>
 802      * <td></td>
 803      * <td style="text-align:center">2R</td>
 804      * </tr>
 805      * <tr>
 806      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 807      * <td style="text-align:center">PRO</td>
 808      * <td style="text-align:center">PRI</td>
 809      * <td style="text-align:center">PAC</td>
 810      * <td style="text-align:center">MOD</td>
 811      * <td style="text-align:center">1R</td>
 812      * </tr>
 813      * <tr>
 814      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 815      * <td style="text-align:center">PRO</td>
 816      * <td style="text-align:center">PRI</td>
 817      * <td style="text-align:center">PAC</td>
 818      * <td style="text-align:center">MOD</td>
 819      * <td style="text-align:center">1R</td>
 820      * </tr>
 821      * <tr>
 822      * <td>{@code PRI1.in(C1)} same package</td>
 823      * <td></td>
 824      * <td></td>
 825      * <td style="text-align:center">PAC</td>
 826      * <td style="text-align:center">MOD</td>
 827      * <td style="text-align:center">1R</td>
 828      * </tr>
 829      * <tr>
 830      * <td>{@code PRI1.in(C1)} different package</td>
 831      * <td></td>
 832      * <td></td>
 833      * <td></td>
 834      * <td style="text-align:center">MOD</td>
 835      * <td style="text-align:center">1R</td>
 836      * </tr>
 837      * <tr>
 838      * <td>{@code PRI1.in(D)} different module</td>
 839      * <td></td>
 840      * <td></td>
 841      * <td></td>
 842      * <td></td>
 843      * <td style="text-align:center">2R</td>
 844      * </tr>
 845      * <tr>
 846      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 847      * <td></td>
 848      * <td style="text-align:center">PRI</td>
 849      * <td style="text-align:center">PAC</td>
 850      * <td style="text-align:center">MOD</td>
 851      * <td style="text-align:center">1R</td>
 852      * </tr>
 853      * <tr>
 854      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 855      * <td></td>
 856      * <td></td>
 857      * <td style="text-align:center">PAC</td>
 858      * <td style="text-align:center">MOD</td>
 859      * <td style="text-align:center">1R</td>
 860      * </tr>
 861      * <tr>
 862      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 863      * <td></td>
 864      * <td></td>
 865      * <td></td>
 866      * <td style="text-align:center">MOD</td>
 867      * <td style="text-align:center">1R</td>
 868      * </tr>
 869      * <tr>
 870      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 871      * <td></td>
 872      * <td></td>
 873      * <td></td>
 874      * <td></td>
 875      * <td style="text-align:center">1R</td>
 876      * </tr>
 877      * <tr>
 878      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 879      * <td></td>
 880      * <td></td>
 881      * <td></td>
 882      * <td></td>
 883      * <td style="text-align:center">none</td>
 884      * <tr>
 885      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 886      * <td style="text-align:center">PRO</td>
 887      * <td style="text-align:center">PRI</td>
 888      * <td style="text-align:center">PAC</td>
 889      * <td></td>
 890      * <td style="text-align:center">2R</td>
 891      * </tr>
 892      * <tr>
 893      * <td>{@code privateLookupIn(D,PRI1)}</td>
 894      * <td style="text-align:center">PRO</td>
 895      * <td style="text-align:center">PRI</td>
 896      * <td style="text-align:center">PAC</td>
 897      * <td></td>
 898      * <td style="text-align:center">2R</td>
 899      * </tr>
 900      * <tr>
 901      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 902      * <td></td>
 903      * <td></td>
 904      * <td></td>
 905      * <td></td>
 906      * <td style="text-align:center">IAE</td>
 907      * </tr>
 908      * <tr>
 909      * <td>{@code PRI2.in(D2)} same package</td>
 910      * <td></td>
 911      * <td></td>
 912      * <td style="text-align:center">PAC</td>
 913      * <td></td>
 914      * <td style="text-align:center">2R</td>
 915      * </tr>
 916      * <tr>
 917      * <td>{@code PRI2.in(D2)} different package</td>
 918      * <td></td>
 919      * <td></td>
 920      * <td></td>
 921      * <td></td>
 922      * <td style="text-align:center">2R</td>
 923      * </tr>
 924      * <tr>
 925      * <td>{@code PRI2.in(C1)} hop back to module</td>
 926      * <td></td>
 927      * <td></td>
 928      * <td></td>
 929      * <td></td>
 930      * <td style="text-align:center">2R</td>
 931      * </tr>
 932      * <tr>
 933      * <td>{@code PRI2.in(E)} hop to third module</td>
 934      * <td></td>
 935      * <td></td>
 936      * <td></td>
 937      * <td></td>
 938      * <td style="text-align:center">none</td>
 939      * </tr>
 940      * <tr>
 941      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 942      * <td></td>
 943      * <td style="text-align:center">PRI</td>
 944      * <td style="text-align:center">PAC</td>
 945      * <td></td>
 946      * <td style="text-align:center">2R</td>
 947      * </tr>
 948      * <tr>
 949      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 950      * <td></td>
 951      * <td></td>
 952      * <td style="text-align:center">PAC</td>
 953      * <td></td>
 954      * <td style="text-align:center">2R</td>
 955      * </tr>
 956      * <tr>
 957      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 958      * <td></td>
 959      * <td></td>
 960      * <td></td>
 961      * <td></td>
 962      * <td style="text-align:center">2R</td>
 963      * </tr>
 964      * <tr>
 965      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 966      * <td></td>
 967      * <td></td>
 968      * <td></td>
 969      * <td></td>
 970      * <td style="text-align:center">2R</td>
 971      * </tr>
 972      * <tr>
 973      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 974      * <td></td>
 975      * <td></td>
 976      * <td></td>
 977      * <td></td>
 978      * <td style="text-align:center">none</td>
 979      * </tr>
 980      * <tr>
 981      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 982      * <td></td>
 983      * <td style="text-align:center">PRI</td>
 984      * <td style="text-align:center">PAC</td>
 985      * <td style="text-align:center">MOD</td>
 986      * <td style="text-align:center">1R</td>
 987      * </tr>
 988      * <tr>
 989      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 990      * <td></td>
 991      * <td></td>
 992      * <td style="text-align:center">PAC</td>
 993      * <td style="text-align:center">MOD</td>
 994      * <td style="text-align:center">1R</td>
 995      * </tr>
 996      * <tr>
 997      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 998      * <td></td>
 999      * <td></td>
1000      * <td></td>
1001      * <td style="text-align:center">MOD</td>
1002      * <td style="text-align:center">1R</td>
1003      * </tr>
1004      * <tr>
1005      * <td>{@code CL.dropLookupMode(MODULE)}</td>
1006      * <td></td>
1007      * <td></td>
1008      * <td></td>
1009      * <td></td>
1010      * <td style="text-align:center">1R</td>
1011      * </tr>
1012      * <tr>
1013      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
1014      * <td></td>
1015      * <td></td>
1016      * <td></td>
1017      * <td></td>
1018      * <td style="text-align:center">none</td>
1019      * </tr>
1020      * <tr>
1021      * <td>{@code PUB = publicLookup()}</td>
1022      * <td></td>
1023      * <td></td>
1024      * <td></td>
1025      * <td></td>
1026      * <td style="text-align:center">U</td>
1027      * </tr>
1028      * <tr>
1029      * <td>{@code PUB.in(D)} different module</td>
1030      * <td></td>
1031      * <td></td>
1032      * <td></td>
1033      * <td></td>
1034      * <td style="text-align:center">U</td>
1035      * </tr>
1036      * <tr>
1037      * <td>{@code PUB.in(D).in(E)} third module</td>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td></td>
1042      * <td style="text-align:center">U</td>
1043      * </tr>
1044      * <tr>
1045      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1046      * <td></td>
1047      * <td></td>
1048      * <td></td>
1049      * <td></td>
1050      * <td style="text-align:center">none</td>
1051      * </tr>
1052      * <tr>
1053      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1054      * <td></td>
1055      * <td></td>
1056      * <td></td>
1057      * <td></td>
1058      * <td style="text-align:center">IAE</td>
1059      * </tr>
1060      * <tr>
1061      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1062      * <td></td>
1063      * <td></td>
1064      * <td></td>
1065      * <td></td>
1066      * <td style="text-align:center">none</td>
1067      * </tr>
1068      * </tbody>
1069      * </table>
1070      *
1071      * <p>
1072      * Notes:
1073      * <ul>
1074      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1075      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1076      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1077      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1078      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1079      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1080      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1081      *     {@code MOD} indicates {@link #MODULE} bit set,
1082      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1083      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1084      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1085      * <li>Public access comes in three kinds:
1086      * <ul>
1087      * <li>unconditional ({@code U}): the lookup assumes readability.
1088      *     The lookup has {@code null} previous lookup class.
1089      * <li>one-module-reads ({@code 1R}): the module access checking is
1090      *     performed with respect to the lookup class.  The lookup has {@code null}
1091      *     previous lookup class.
1092      * <li>two-module-reads ({@code 2R}): the module access checking is
1093      *     performed with respect to the lookup class and the previous lookup class.
1094      *     The lookup has a non-null previous lookup class which is in a
1095      *     different module from the current lookup class.
1096      * </ul>
1097      * <li>Any attempt to reach a third module loses all access.</li>
1098      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1099      * all access modes are dropped.</li>
1100      * </ul>
1101      *
1102      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1103      * Although bytecode instructions can only refer to classes in
1104      * a related class loader, this API can search for methods in any
1105      * class, as long as a reference to its {@code Class} object is
1106      * available.  Such cross-loader references are also possible with the
1107      * Core Reflection API, and are impossible to bytecode instructions
1108      * such as {@code invokestatic} or {@code getfield}.
1109      * There is a {@linkplain java.lang.SecurityManager security manager API}
1110      * to allow applications to check such cross-loader references.
1111      * These checks apply to both the {@code MethodHandles.Lookup} API
1112      * and the Core Reflection API
1113      * (as found on {@link java.lang.Class Class}).
1114      * <p>
1115      * If a security manager is present, member and class lookups are subject to
1116      * additional checks.
1117      * From one to three calls are made to the security manager.
1118      * Any of these calls can refuse access by throwing a
1119      * {@link java.lang.SecurityException SecurityException}.
1120      * Define {@code smgr} as the security manager,
1121      * {@code lookc} as the lookup class of the current lookup object,
1122      * {@code refc} as the containing class in which the member
1123      * is being sought, and {@code defc} as the class in which the
1124      * member is actually defined.
1125      * (If a class or other type is being accessed,
1126      * the {@code refc} and {@code defc} values are the class itself.)
1127      * The value {@code lookc} is defined as <em>not present</em>
1128      * if the current lookup object does not have
1129      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1130      * The calls are made according to the following rules:
1131      * <ul>
1132      * <li><b>Step 1:</b>
1133      *     If {@code lookc} is not present, or if its class loader is not
1134      *     the same as or an ancestor of the class loader of {@code refc},
1135      *     then {@link SecurityManager#checkPackageAccess
1136      *     smgr.checkPackageAccess(refcPkg)} is called,
1137      *     where {@code refcPkg} is the package of {@code refc}.
1138      * <li><b>Step 2a:</b>
1139      *     If the retrieved member is not public and
1140      *     {@code lookc} is not present, then
1141      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1142      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1143      * <li><b>Step 2b:</b>
1144      *     If the retrieved class has a {@code null} class loader,
1145      *     and {@code lookc} is not present, then
1146      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1147      *     with {@code RuntimePermission("getClassLoader")} is called.
1148      * <li><b>Step 3:</b>
1149      *     If the retrieved member is not public,
1150      *     and if {@code lookc} is not present,
1151      *     and if {@code defc} and {@code refc} are different,
1152      *     then {@link SecurityManager#checkPackageAccess
1153      *     smgr.checkPackageAccess(defcPkg)} is called,
1154      *     where {@code defcPkg} is the package of {@code defc}.
1155      * </ul>
1156      * Security checks are performed after other access checks have passed.
1157      * Therefore, the above rules presuppose a member or class that is public,
1158      * or else that is being accessed from a lookup class that has
1159      * rights to access the member or class.
1160      * <p>
1161      * If a security manager is present and the current lookup object does not have
1162      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1163      * {@link #defineClass(byte[]) defineClass}
1164      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1165      * with {@code RuntimePermission("defineClass")}.
1166      *
1167      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1168      * A small number of Java methods have a special property called caller sensitivity.
1169      * A <em>caller-sensitive</em> method can behave differently depending on the
1170      * identity of its immediate caller.
1171      * <p>
1172      * If a method handle for a caller-sensitive method is requested,
1173      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1174      * but they take account of the lookup class in a special way.
1175      * The resulting method handle behaves as if it were called
1176      * from an instruction contained in the lookup class,
1177      * so that the caller-sensitive method detects the lookup class.
1178      * (By contrast, the invoker of the method handle is disregarded.)
1179      * Thus, in the case of caller-sensitive methods,
1180      * different lookup classes may give rise to
1181      * differently behaving method handles.
1182      * <p>
1183      * In cases where the lookup object is
1184      * {@link MethodHandles#publicLookup() publicLookup()},
1185      * or some other lookup object without the
1186      * {@linkplain #hasFullPrivilegeAccess() full privilege access},
1187      * the lookup class is disregarded.
1188      * In such cases, no caller-sensitive method handle can be created,
1189      * access is forbidden, and the lookup fails with an
1190      * {@code IllegalAccessException}.
1191      * <p style="font-size:smaller;">
1192      * <em>Discussion:</em>
1193      * For example, the caller-sensitive method
1194      * {@link java.lang.Class#forName(String) Class.forName(x)}
1195      * can return varying classes or throw varying exceptions,
1196      * depending on the class loader of the class that calls it.
1197      * A public lookup of {@code Class.forName} will fail, because
1198      * there is no reasonable way to determine its bytecode behavior.
1199      * <p style="font-size:smaller;">
1200      * If an application caches method handles for broad sharing,
1201      * it should use {@code publicLookup()} to create them.
1202      * If there is a lookup of {@code Class.forName}, it will fail,
1203      * and the application must take appropriate action in that case.
1204      * It may be that a later lookup, perhaps during the invocation of a
1205      * bootstrap method, can incorporate the specific identity
1206      * of the caller, making the method accessible.
1207      * <p style="font-size:smaller;">
1208      * The function {@code MethodHandles.lookup} is caller sensitive
1209      * so that there can be a secure foundation for lookups.
1210      * Nearly all other methods in the JSR 292 API rely on lookup
1211      * objects to check access requests.
1212      *
1213      * @revised 9
1214      */
1215     public static final
1216     class Lookup {
1217         /** The class on behalf of whom the lookup is being performed. */
1218         private final Class<?> lookupClass;
1219 
1220         /** previous lookup class */
1221         private final Class<?> prevLookupClass;
1222 
1223         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1224         private final int allowedModes;
1225 
1226         static {
1227             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1228         }
1229 
1230         /** A single-bit mask representing {@code public} access,
1231          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1232          *  The value, {@code 0x01}, happens to be the same as the value of the
1233          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1234          *  <p>
1235          *  A {@code Lookup} with this lookup mode performs cross-module access check
1236          *  with respect to the {@linkplain #lookupClass() lookup class} and
1237          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1238          */
1239         public static final int PUBLIC = Modifier.PUBLIC;
1240 
1241         /** A single-bit mask representing {@code private} access,
1242          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1243          *  The value, {@code 0x02}, happens to be the same as the value of the
1244          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1245          */
1246         public static final int PRIVATE = Modifier.PRIVATE;
1247 
1248         /** A single-bit mask representing {@code protected} access,
1249          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1250          *  The value, {@code 0x04}, happens to be the same as the value of the
1251          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1252          */
1253         public static final int PROTECTED = Modifier.PROTECTED;
1254 
1255         /** A single-bit mask representing {@code package} access (default access),
1256          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1257          *  The value is {@code 0x08}, which does not correspond meaningfully to
1258          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1259          */
1260         public static final int PACKAGE = Modifier.STATIC;
1261 
1262         /** A single-bit mask representing {@code module} access,
1263          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1264          *  The value is {@code 0x10}, which does not correspond meaningfully to
1265          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1266          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1267          *  with this lookup mode can access all public types in the module of the
1268          *  lookup class and public types in packages exported by other modules
1269          *  to the module of the lookup class.
1270          *  <p>
1271          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1272          *  previous lookup class} is always {@code null}.
1273          *
1274          *  @since 9
1275          *  @spec JPMS
1276          */
1277         public static final int MODULE = PACKAGE << 1;
1278 
1279         /** A single-bit mask representing {@code unconditional} access
1280          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1281          *  The value is {@code 0x20}, which does not correspond meaningfully to
1282          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1283          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1284          *  java.lang.Module#canRead(java.lang.Module) readability}.
1285          *  This lookup mode can access all public members of public types
1286          *  of all modules when the type is in a package that is {@link
1287          *  java.lang.Module#isExported(String) exported unconditionally}.
1288          *
1289          *  <p>
1290          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1291          *  previous lookup class} is always {@code null}.
1292          *
1293          *  @since 9
1294          *  @spec JPMS
1295          *  @see #publicLookup()
1296          */
1297         public static final int UNCONDITIONAL = PACKAGE << 2;
1298 
1299         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1300         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1301         private static final int TRUSTED   = -1;
1302 
1303         /*
1304          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1305          * Adjust 0 => PACKAGE
1306          */
1307         private static int fixmods(int mods) {
1308             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1309             if (Modifier.isPublic(mods))
1310                 mods |= UNCONDITIONAL;
1311             return (mods != 0) ? mods : PACKAGE;
1312         }
1313 
1314         /** Tells which class is performing the lookup.  It is this class against
1315          *  which checks are performed for visibility and access permissions.
1316          *  <p>
1317          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1318          *  access checks are performed against both the lookup class and the previous lookup class.
1319          *  <p>
1320          *  The class implies a maximum level of access permission,
1321          *  but the permissions may be additionally limited by the bitmask
1322          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1323          *  can be accessed.
1324          *  @return the lookup class, on behalf of which this lookup object finds members
1325          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1326          */
1327         public Class<?> lookupClass() {
1328             return lookupClass;
1329         }
1330 
1331         /** Reports a lookup class in another module that this lookup object
1332          * was previously teleported from, or {@code null}.
1333          * <p>
1334          * A {@code Lookup} object produced by the factory methods, such as the
1335          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1336          * has {@code null} previous lookup class.
1337          * A {@code Lookup} object has a non-null previous lookup class
1338          * when this lookup was teleported from an old lookup class
1339          * in one module to a new lookup class in another module.
1340          *
1341          * @return the lookup class in another module that this lookup object was
1342          *         previously teleported from, or {@code null}
1343          * @since 14
1344          * @see #in(Class)
1345          * @see MethodHandles#privateLookupIn(Class, Lookup)
1346          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1347          */
1348         public Class<?> previousLookupClass() {
1349             return prevLookupClass;
1350         }
1351 
1352         // This is just for calling out to MethodHandleImpl.
1353         private Class<?> lookupClassOrNull() {
1354             if (allowedModes == TRUSTED) {
1355                 return null;
1356             }
1357             if (allowedModes == UNCONDITIONAL) {
1358                 // use Object as the caller to pass to VM doing resolution
1359                 return Object.class;
1360             }
1361             return lookupClass;
1362         }
1363 
1364         /** Tells which access-protection classes of members this lookup object can produce.
1365          *  The result is a bit-mask of the bits
1366          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1367          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1368          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1369          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1370          *  {@linkplain #MODULE MODULE (0x10)},
1371          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1372          *  <p>
1373          *  A freshly-created lookup object
1374          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1375          *  all possible bits set, except {@code UNCONDITIONAL}.
1376          *  A lookup object on a new lookup class
1377          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1378          *  may have some mode bits set to zero.
1379          *  Mode bits can also be
1380          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1381          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1382          *  The purpose of this is to restrict access via the new lookup object,
1383          *  so that it can access only names which can be reached by the original
1384          *  lookup object, and also by the new lookup class.
1385          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1386          *  @see #in
1387          *  @see #dropLookupMode
1388          *
1389          *  @revised 9
1390          *  @spec JPMS
1391          */
1392         public int lookupModes() {
1393             return allowedModes & ALL_MODES;
1394         }
1395 
1396         /** Embody the current class (the lookupClass) as a lookup class
1397          * for method handle creation.
1398          * Must be called by from a method in this package,
1399          * which in turn is called by a method not in this package.
1400          */
1401         Lookup(Class<?> lookupClass) {
1402             this(lookupClass, null, FULL_POWER_MODES);
1403             // make sure we haven't accidentally picked up a privileged class:
1404             checkUnprivilegedlookupClass(lookupClass);
1405         }
1406 
1407         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1408             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1409                     && prevLookupClass.getModule() != lookupClass.getModule());
1410             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1411             this.lookupClass = lookupClass;
1412             this.prevLookupClass = prevLookupClass;
1413             this.allowedModes = allowedModes;
1414         }
1415 
1416         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1417             // make sure we haven't accidentally picked up a privileged class:
1418             checkUnprivilegedlookupClass(lookupClass);
1419             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1420         }
1421 
1422         /**
1423          * Creates a lookup on the specified new lookup class.
1424          * The resulting object will report the specified
1425          * class as its own {@link #lookupClass() lookupClass}.
1426          *
1427          * <p>
1428          * However, the resulting {@code Lookup} object is guaranteed
1429          * to have no more access capabilities than the original.
1430          * In particular, access capabilities can be lost as follows:<ul>
1431          * <li>If the new lookup class is in a different module from the old one,
1432          * i.e. {@link #MODULE MODULE} access is lost.
1433          * <li>If the new lookup class is in a different package
1434          * than the old one, protected and default (package) members will not be accessible,
1435          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1436          * <li>If the new lookup class is not within the same package member
1437          * as the old one, private members will not be accessible, and protected members
1438          * will not be accessible by virtue of inheritance,
1439          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1440          * (Protected members may continue to be accessible because of package sharing.)
1441          * <li>If the new lookup class is not
1442          * {@linkplain #accessClass(Class) accessible} to this lookup,
1443          * then no members, not even public members, will be accessible
1444          * i.e. all access modes are lost.
1445          * <li>If the new lookup class, the old lookup class and the previous lookup class
1446          * are all in different modules i.e. teleporting to a third module,
1447          * all access modes are lost.
1448          * </ul>
1449          * <p>
1450          * The new previous lookup class is chosen as follows:
1451          * <ul>
1452          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1453          * the new previous lookup class is {@code null}.
1454          * <li>If the new lookup class is in the same module as the old lookup class,
1455          * the new previous lookup class is the old previous lookup class.
1456          * <li>If the new lookup class is in a different module from the old lookup class,
1457          * the new previous lookup class is the old lookup class.
1458          *</ul>
1459          * <p>
1460          * The resulting lookup's capabilities for loading classes
1461          * (used during {@link #findClass} invocations)
1462          * are determined by the lookup class' loader,
1463          * which may change due to this operation.
1464          * <p>
1465          * @param requestedLookupClass the desired lookup class for the new lookup object
1466          * @return a lookup object which reports the desired lookup class, or the same object
1467          * if there is no change
1468          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1469          * @throws NullPointerException if the argument is null
1470          *
1471          * @revised 9
1472          * @spec JPMS
1473          * @see #accessClass(Class)
1474          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1475          */
1476         public Lookup in(Class<?> requestedLookupClass) {
1477             Objects.requireNonNull(requestedLookupClass);
1478             if (requestedLookupClass.isPrimitive())
1479                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1480             if (requestedLookupClass.isArray())
1481                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1482 
1483             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1484                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1485             if (requestedLookupClass == this.lookupClass)
1486                 return this;  // keep same capabilities
1487             int newModes = (allowedModes & FULL_POWER_MODES);
1488             Module fromModule = this.lookupClass.getModule();
1489             Module targetModule = requestedLookupClass.getModule();
1490             Class<?> plc = this.previousLookupClass();
1491             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1492                 assert plc == null;
1493                 newModes = UNCONDITIONAL;
1494             } else if (fromModule != targetModule) {
1495                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1496                     // allow hopping back and forth between fromModule and plc's module
1497                     // but not the third module
1498                     newModes = 0;
1499                 }
1500                 // drop MODULE access
1501                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1502                 // teleport from this lookup class
1503                 plc = this.lookupClass;
1504             }
1505             if ((newModes & PACKAGE) != 0
1506                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1507                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1508             }
1509             // Allow nestmate lookups to be created without special privilege:
1510             if ((newModes & PRIVATE) != 0
1511                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1512                 newModes &= ~(PRIVATE|PROTECTED);
1513             }
1514             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1515                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1516                 // The requested class it not accessible from the lookup class.
1517                 // No permissions.
1518                 newModes = 0;
1519             }
1520             return newLookup(requestedLookupClass, plc, newModes);
1521         }
1522 
1523         /**
1524          * Creates a lookup on the same lookup class which this lookup object
1525          * finds members, but with a lookup mode that has lost the given lookup mode.
1526          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1527          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED},
1528          * {@link #PRIVATE PRIVATE}, or {@link #UNCONDITIONAL UNCONDITIONAL}.
1529          *
1530          * <p> If this lookup is a {@linkplain MethodHandles#publicLookup() public lookup},
1531          * this lookup has {@code UNCONDITIONAL} mode set and it has no other mode set.
1532          * When dropping {@code UNCONDITIONAL} on a public lookup then the resulting
1533          * lookup has no access.
1534          *
1535          * <p> If this lookup is not a public lookup, then the following applies
1536          * regardless of its {@linkplain #lookupModes() lookup modes}.
1537          * {@link #PROTECTED PROTECTED} is always dropped and so the resulting lookup
1538          * mode will never have this access capability. When dropping {@code PACKAGE}
1539          * then the resulting lookup will not have {@code PACKAGE} or {@code PRIVATE}
1540          * access. When dropping {@code MODULE} then the resulting lookup will not
1541          * have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access.
1542          * When dropping {@code PUBLIC} then the resulting lookup has no access.
1543          *
1544          * @apiNote
1545          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1546          * delegate non-public access within the package of the lookup class without
1547          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1548          * A lookup with {@code MODULE} but not
1549          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1550          * the module of the lookup class without conferring package access.
1551          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1552          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1553          * to public classes accessible to both the module of the lookup class
1554          * and the module of the previous lookup class.
1555          *
1556          * @param modeToDrop the lookup mode to drop
1557          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1558          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1559          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1560          * @see MethodHandles#privateLookupIn
1561          * @since 9
1562          */
1563         public Lookup dropLookupMode(int modeToDrop) {
1564             int oldModes = lookupModes();
1565             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1566             switch (modeToDrop) {
1567                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1568                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1569                 case PACKAGE: newModes &= ~(PRIVATE); break;
1570                 case PROTECTED:
1571                 case PRIVATE:
1572                 case UNCONDITIONAL: break;
1573                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1574             }
1575             if (newModes == oldModes) return this;  // return self if no change
1576             return newLookup(lookupClass(), previousLookupClass(), newModes);
1577         }
1578 
1579         /**
1580          * Defines a class to the same class loader and in the same runtime package and
1581          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1582          * {@linkplain #lookupClass() lookup class}.
1583          *
1584          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1585          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1586          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1587          * that the lookup object was created by a caller in the runtime package (or derived
1588          * from a lookup originally created by suitably privileged code to a target class in
1589          * the runtime package). </p>
1590          *
1591          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1592          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1593          * same package as the lookup class. </p>
1594          *
1595          * <p> This method does not run the class initializer. The class initializer may
1596          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1597          * Specification</em>. </p>
1598          *
1599          * <p> If there is a security manager and this lookup does not have {@linkplain
1600          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1601          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1602          *
1603          * @param bytes the class bytes
1604          * @return the {@code Class} object for the class
1605          * @throws IllegalArgumentException the bytes are for a class in a different package
1606          * to the lookup class
1607          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1608          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1609          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1610          * @throws SecurityException if a security manager is present and it
1611          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1612          * @throws NullPointerException if {@code bytes} is {@code null}
1613          * @since 9
1614          * @spec JPMS
1615          * @see Lookup#privateLookupIn
1616          * @see Lookup#dropLookupMode
1617          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1618          */
1619         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1620             if (!hasFullPrivilegeAccess()) {
1621                 SecurityManager sm = System.getSecurityManager();
1622                 if (sm != null)
1623                     sm.checkPermission(new RuntimePermission("defineClass"));
1624             }
1625             if ((lookupModes() & PACKAGE) == 0)
1626                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1627 
1628             // parse class bytes to get class name (in internal form)
1629             bytes = bytes.clone();
1630             String name;
1631             try {
1632                 ClassReader reader = new ClassReader(bytes);
1633                 name = reader.getClassName();
1634             } catch (RuntimeException e) {
1635                 // ASM exceptions are poorly specified
1636                 ClassFormatError cfe = new ClassFormatError();
1637                 cfe.initCause(e);
1638                 throw cfe;
1639             }
1640 
1641             // get package and class name in binary form
1642             String cn, pn;
1643             int index = name.lastIndexOf('/');
1644             if (index == -1) {
1645                 cn = name;
1646                 pn = "";
1647             } else {
1648                 cn = name.replace('/', '.');
1649                 pn = cn.substring(0, index);
1650             }
1651             if (!pn.equals(lookupClass.getPackageName())) {
1652                 throw new IllegalArgumentException("Class not in same package as lookup class");
1653             }
1654 
1655             // invoke the class loader's defineClass method
1656             ClassLoader loader = lookupClass.getClassLoader();
1657             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1658             String source = "__Lookup_defineClass__";
1659             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
1660             return clazz;
1661         }
1662 
1663         private ProtectionDomain lookupClassProtectionDomain() {
1664             ProtectionDomain pd = cachedProtectionDomain;
1665             if (pd == null) {
1666                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
1667             }
1668             return pd;
1669         }
1670 
1671         private ProtectionDomain protectionDomain(Class<?> clazz) {
1672             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
1673             return AccessController.doPrivileged(pa);
1674         }
1675 
1676         // cached protection domain
1677         private volatile ProtectionDomain cachedProtectionDomain;
1678 
1679 
1680         // Make sure outer class is initialized first.
1681         static { IMPL_NAMES.getClass(); }
1682 
1683         /** Package-private version of lookup which is trusted. */
1684         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1685 
1686         /** Version of lookup which is trusted minimally.
1687          *  It can only be used to create method handles to publicly accessible
1688          *  members in packages that are exported unconditionally.
1689          */
1690         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1691 
1692         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1693             String name = lookupClass.getName();
1694             if (name.startsWith("java.lang.invoke."))
1695                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1696         }
1697 
1698         /**
1699          * Displays the name of the class from which lookups are to be made.
1700          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1701          * previous lookup class} if present.
1702          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1703          * If there are restrictions on the access permitted to this lookup,
1704          * this is indicated by adding a suffix to the class name, consisting
1705          * of a slash and a keyword.  The keyword represents the strongest
1706          * allowed access, and is chosen as follows:
1707          * <ul>
1708          * <li>If no access is allowed, the suffix is "/noaccess".
1709          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1710          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1711          * <li>If only public and module access are allowed, the suffix is "/module".
1712          * <li>If public and package access are allowed, the suffix is "/package".
1713          * <li>If public, package, and private access are allowed, the suffix is "/private".
1714          * </ul>
1715          * If none of the above cases apply, it is the case that full access
1716          * (public, module, package, private, and protected) is allowed.
1717          * In this case, no suffix is added.
1718          * This is true only of an object obtained originally from
1719          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1720          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1721          * always have restricted access, and will display a suffix.
1722          * <p>
1723          * (It may seem strange that protected access should be
1724          * stronger than private access.  Viewed independently from
1725          * package access, protected access is the first to be lost,
1726          * because it requires a direct subclass relationship between
1727          * caller and callee.)
1728          * @see #in
1729          *
1730          * @revised 9
1731          * @spec JPMS
1732          */
1733         @Override
1734         public String toString() {
1735             String cname = lookupClass.getName();
1736             if (prevLookupClass != null)
1737                 cname += "/" + prevLookupClass.getName();
1738             switch (allowedModes) {
1739             case 0:  // no privileges
1740                 return cname + "/noaccess";
1741             case UNCONDITIONAL:
1742                 return cname + "/publicLookup";
1743             case PUBLIC:
1744                 return cname + "/public";
1745             case PUBLIC|MODULE:
1746                 return cname + "/module";
1747             case PUBLIC|PACKAGE:
1748             case PUBLIC|MODULE|PACKAGE:
1749                 return cname + "/package";
1750             case FULL_POWER_MODES & (~PROTECTED):
1751             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
1752                     return cname + "/private";
1753             case FULL_POWER_MODES:
1754             case FULL_POWER_MODES & (~MODULE):
1755                 return cname;
1756             case TRUSTED:
1757                 return "/trusted";  // internal only; not exported
1758             default:  // Should not happen, but it's a bitfield...
1759                 cname = cname + "/" + Integer.toHexString(allowedModes);
1760                 assert(false) : cname;
1761                 return cname;
1762             }
1763         }
1764 
1765         /**
1766          * Produces a method handle for a static method.
1767          * The type of the method handle will be that of the method.
1768          * (Since static methods do not take receivers, there is no
1769          * additional receiver argument inserted into the method handle type,
1770          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1771          * The method and all its argument types must be accessible to the lookup object.
1772          * <p>
1773          * The returned method handle will have
1774          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1775          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1776          * <p>
1777          * If the returned method handle is invoked, the method's class will
1778          * be initialized, if it has not already been initialized.
1779          * <p><b>Example:</b>
1780          * <blockquote><pre>{@code
1781 import static java.lang.invoke.MethodHandles.*;
1782 import static java.lang.invoke.MethodType.*;
1783 ...
1784 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1785   "asList", methodType(List.class, Object[].class));
1786 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1787          * }</pre></blockquote>
1788          * @param refc the class from which the method is accessed
1789          * @param name the name of the method
1790          * @param type the type of the method
1791          * @return the desired method handle
1792          * @throws NoSuchMethodException if the method does not exist
1793          * @throws IllegalAccessException if access checking fails,
1794          *                                or if the method is not {@code static},
1795          *                                or if the method's variable arity modifier bit
1796          *                                is set and {@code asVarargsCollector} fails
1797          * @throws    SecurityException if a security manager is present and it
1798          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1799          * @throws NullPointerException if any argument is null
1800          */
1801         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1802             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1803             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
1804         }
1805 
1806         /**
1807          * Produces a method handle for a virtual method.
1808          * The type of the method handle will be that of the method,
1809          * with the receiver type (usually {@code refc}) prepended.
1810          * The method and all its argument types must be accessible to the lookup object.
1811          * <p>
1812          * When called, the handle will treat the first argument as a receiver
1813          * and, for non-private methods, dispatch on the receiver's type to determine which method
1814          * implementation to enter.
1815          * For private methods the named method in {@code refc} will be invoked on the receiver.
1816          * (The dispatching action is identical with that performed by an
1817          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1818          * <p>
1819          * The first argument will be of type {@code refc} if the lookup
1820          * class has full privileges to access the member.  Otherwise
1821          * the member must be {@code protected} and the first argument
1822          * will be restricted in type to the lookup class.
1823          * <p>
1824          * The returned method handle will have
1825          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1826          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1827          * <p>
1828          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1829          * instructions and method handles produced by {@code findVirtual},
1830          * if the class is {@code MethodHandle} and the name string is
1831          * {@code invokeExact} or {@code invoke}, the resulting
1832          * method handle is equivalent to one produced by
1833          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1834          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1835          * with the same {@code type} argument.
1836          * <p>
1837          * If the class is {@code VarHandle} and the name string corresponds to
1838          * the name of a signature-polymorphic access mode method, the resulting
1839          * method handle is equivalent to one produced by
1840          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1841          * the access mode corresponding to the name string and with the same
1842          * {@code type} arguments.
1843          * <p>
1844          * <b>Example:</b>
1845          * <blockquote><pre>{@code
1846 import static java.lang.invoke.MethodHandles.*;
1847 import static java.lang.invoke.MethodType.*;
1848 ...
1849 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1850   "concat", methodType(String.class, String.class));
1851 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1852   "hashCode", methodType(int.class));
1853 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1854   "hashCode", methodType(int.class));
1855 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1856 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1857 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1858 // interface method:
1859 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1860   "subSequence", methodType(CharSequence.class, int.class, int.class));
1861 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1862 // constructor "internal method" must be accessed differently:
1863 MethodType MT_newString = methodType(void.class); //()V for new String()
1864 try { assertEquals("impossible", lookup()
1865         .findVirtual(String.class, "<init>", MT_newString));
1866  } catch (NoSuchMethodException ex) { } // OK
1867 MethodHandle MH_newString = publicLookup()
1868   .findConstructor(String.class, MT_newString);
1869 assertEquals("", (String) MH_newString.invokeExact());
1870          * }</pre></blockquote>
1871          *
1872          * @param refc the class or interface from which the method is accessed
1873          * @param name the name of the method
1874          * @param type the type of the method, with the receiver argument omitted
1875          * @return the desired method handle
1876          * @throws NoSuchMethodException if the method does not exist
1877          * @throws IllegalAccessException if access checking fails,
1878          *                                or if the method is {@code static},
1879          *                                or if the method's variable arity modifier bit
1880          *                                is set and {@code asVarargsCollector} fails
1881          * @throws    SecurityException if a security manager is present and it
1882          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1883          * @throws NullPointerException if any argument is null
1884          */
1885         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1886             if (refc == MethodHandle.class) {
1887                 MethodHandle mh = findVirtualForMH(name, type);
1888                 if (mh != null)  return mh;
1889             } else if (refc == VarHandle.class) {
1890                 MethodHandle mh = findVirtualForVH(name, type);
1891                 if (mh != null)  return mh;
1892             }
1893             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1894             MemberName method = resolveOrFail(refKind, refc, name, type);
1895             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
1896         }
1897         private MethodHandle findVirtualForMH(String name, MethodType type) {
1898             // these names require special lookups because of the implicit MethodType argument
1899             if ("invoke".equals(name))
1900                 return invoker(type);
1901             if ("invokeExact".equals(name))
1902                 return exactInvoker(type);
1903             assert(!MemberName.isMethodHandleInvokeName(name));
1904             return null;
1905         }
1906         private MethodHandle findVirtualForVH(String name, MethodType type) {
1907             try {
1908                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1909             } catch (IllegalArgumentException e) {
1910                 return null;
1911             }
1912         }
1913 
1914         /**
1915          * Produces a method handle which creates an object and initializes it, using
1916          * the constructor of the specified type.
1917          * The parameter types of the method handle will be those of the constructor,
1918          * while the return type will be a reference to the constructor's class.
1919          * The constructor and all its argument types must be accessible to the lookup object.
1920          * <p>
1921          * The requested type must have a return type of {@code void}.
1922          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1923          * <p>
1924          * The returned method handle will have
1925          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1926          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1927          * <p>
1928          * If the returned method handle is invoked, the constructor's class will
1929          * be initialized, if it has not already been initialized.
1930          * <p><b>Example:</b>
1931          * <blockquote><pre>{@code
1932 import static java.lang.invoke.MethodHandles.*;
1933 import static java.lang.invoke.MethodType.*;
1934 ...
1935 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1936   ArrayList.class, methodType(void.class, Collection.class));
1937 Collection orig = Arrays.asList("x", "y");
1938 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1939 assert(orig != copy);
1940 assertEquals(orig, copy);
1941 // a variable-arity constructor:
1942 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1943   ProcessBuilder.class, methodType(void.class, String[].class));
1944 ProcessBuilder pb = (ProcessBuilder)
1945   MH_newProcessBuilder.invoke("x", "y", "z");
1946 assertEquals("[x, y, z]", pb.command().toString());
1947          * }</pre></blockquote>
1948          * @param refc the class or interface from which the method is accessed
1949          * @param type the type of the method, with the receiver argument omitted, and a void return type
1950          * @return the desired method handle
1951          * @throws NoSuchMethodException if the constructor does not exist
1952          * @throws IllegalAccessException if access checking fails
1953          *                                or if the method's variable arity modifier bit
1954          *                                is set and {@code asVarargsCollector} fails
1955          * @throws    SecurityException if a security manager is present and it
1956          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1957          * @throws NullPointerException if any argument is null
1958          */
1959         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1960             if (refc.isArray()) {
1961                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1962             }
1963             String name = "<init>";
1964             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1965             return getDirectConstructor(refc, ctor);
1966         }
1967 
1968         /**
1969          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
1970          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
1971          * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class,
1972          * and then determines whether the class is accessible to this lookup object.
1973          * <p>
1974          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
1975          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
1976          *
1977          * @param targetName the fully qualified name of the class to be looked up.
1978          * @return the requested class.
1979          * @throws SecurityException if a security manager is present and it
1980          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1981          * @throws LinkageError if the linkage fails
1982          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1983          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1984          * modes.
1985          * @since 9
1986          * @jvms 5.4.3.1 Class and Interface Resolution
1987          */
1988         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1989             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1990             return accessClass(targetClass);
1991         }
1992 
1993         /**
1994          * Determines if a class can be accessed from the lookup context defined by
1995          * this {@code Lookup} object. The static initializer of the class is not run.
1996          * <p>
1997          * If the {@code targetClass} is in the same module as the lookup class,
1998          * the lookup class is {@code LC} in module {@code M1} and
1999          * the previous lookup class is in module {@code M0} or
2000          * {@code null} if not present,
2001          * {@code targetClass} is accessible if and only if one of the following is true:
2002          * <ul>
2003          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2004          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2005          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2006          *     in the same runtime package of {@code LC}.</li>
2007          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2008          *     a public type in {@code M1}.</li>
2009          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2010          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2011          *     if the previous lookup class is present; otherwise, {@code targetClass}
2012          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2013          * </ul>
2014          *
2015          * <p>
2016          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2017          * can access public types in all modules when the type is in a package
2018          * that is exported unconditionally.
2019          * <p>
2020          * Otherwise, the target class is in a different module from {@code lookupClass},
2021          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2022          * is inaccessible.
2023          * <p>
2024          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2025          * {@code M1} is the module containing {@code lookupClass} and
2026          * {@code M2} is the module containing {@code targetClass},
2027          * then {@code targetClass} is accessible if and only if
2028          * <ul>
2029          * <li>{@code M1} reads {@code M2}, and
2030          * <li>{@code targetClass} is public and in a package exported by
2031          *     {@code M2} at least to {@code M1}.
2032          * </ul>
2033          * <p>
2034          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2035          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2036          * containing the previous lookup class, then {@code targetClass} is accessible
2037          * if and only if one of the following is true:
2038          * <ul>
2039          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2040          *     {@linkplain Module#reads reads} {@code M0} and the type is
2041          *     in a package that is exported to at least {@code M1}.
2042          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2043          *     {@linkplain Module#reads reads} {@code M1} and the type is
2044          *     in a package that is exported to at least {@code M0}.
2045          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2046          *     and {@code M1} reads {@code M2} and the type is in a package
2047          *     that is exported to at least both {@code M0} and {@code M2}.
2048          * </ul>
2049          * <p>
2050          * Otherwise, {@code targetClass} is not accessible.
2051          *
2052          * @param targetClass the class to be access-checked
2053          * @return the class that has been access-checked
2054          * @throws IllegalAccessException if the class is not accessible from the lookup class
2055          * and previous lookup class, if present, using the allowed access modes.
2056          * @throws    SecurityException if a security manager is present and it
2057          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2058          * @since 9
2059          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2060          */
2061         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2062             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2063                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2064             }
2065             checkSecurityManager(targetClass, null);
2066             return targetClass;
2067         }
2068 
2069         /**
2070          * Produces an early-bound method handle for a virtual method.
2071          * It will bypass checks for overriding methods on the receiver,
2072          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2073          * instruction from within the explicitly specified {@code specialCaller}.
2074          * The type of the method handle will be that of the method,
2075          * with a suitably restricted receiver type prepended.
2076          * (The receiver type will be {@code specialCaller} or a subtype.)
2077          * The method and all its argument types must be accessible
2078          * to the lookup object.
2079          * <p>
2080          * Before method resolution,
2081          * if the explicitly specified caller class is not identical with the
2082          * lookup class, or if this lookup object does not have
2083          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2084          * privileges, the access fails.
2085          * <p>
2086          * The returned method handle will have
2087          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2088          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2089          * <p style="font-size:smaller;">
2090          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2091          * even though the {@code invokespecial} instruction can refer to them
2092          * in special circumstances.  Use {@link #findConstructor findConstructor}
2093          * to access instance initialization methods in a safe manner.)</em>
2094          * <p><b>Example:</b>
2095          * <blockquote><pre>{@code
2096 import static java.lang.invoke.MethodHandles.*;
2097 import static java.lang.invoke.MethodType.*;
2098 ...
2099 static class Listie extends ArrayList {
2100   public String toString() { return "[wee Listie]"; }
2101   static Lookup lookup() { return MethodHandles.lookup(); }
2102 }
2103 ...
2104 // no access to constructor via invokeSpecial:
2105 MethodHandle MH_newListie = Listie.lookup()
2106   .findConstructor(Listie.class, methodType(void.class));
2107 Listie l = (Listie) MH_newListie.invokeExact();
2108 try { assertEquals("impossible", Listie.lookup().findSpecial(
2109         Listie.class, "<init>", methodType(void.class), Listie.class));
2110  } catch (NoSuchMethodException ex) { } // OK
2111 // access to super and self methods via invokeSpecial:
2112 MethodHandle MH_super = Listie.lookup().findSpecial(
2113   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2114 MethodHandle MH_this = Listie.lookup().findSpecial(
2115   Listie.class, "toString" , methodType(String.class), Listie.class);
2116 MethodHandle MH_duper = Listie.lookup().findSpecial(
2117   Object.class, "toString" , methodType(String.class), Listie.class);
2118 assertEquals("[]", (String) MH_super.invokeExact(l));
2119 assertEquals(""+l, (String) MH_this.invokeExact(l));
2120 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2121 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2122         String.class, "toString", methodType(String.class), Listie.class));
2123  } catch (IllegalAccessException ex) { } // OK
2124 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2125 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2126          * }</pre></blockquote>
2127          *
2128          * @param refc the class or interface from which the method is accessed
2129          * @param name the name of the method (which must not be "&lt;init&gt;")
2130          * @param type the type of the method, with the receiver argument omitted
2131          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2132          * @return the desired method handle
2133          * @throws NoSuchMethodException if the method does not exist
2134          * @throws IllegalAccessException if access checking fails,
2135          *                                or if the method is {@code static},
2136          *                                or if the method's variable arity modifier bit
2137          *                                is set and {@code asVarargsCollector} fails
2138          * @throws    SecurityException if a security manager is present and it
2139          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2140          * @throws NullPointerException if any argument is null
2141          */
2142         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2143                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2144             checkSpecialCaller(specialCaller, refc);
2145             Lookup specialLookup = this.in(specialCaller);
2146             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2147             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
2148         }
2149 
2150         /**
2151          * Produces a method handle giving read access to a non-static field.
2152          * The type of the method handle will have a return type of the field's
2153          * value type.
2154          * The method handle's single argument will be the instance containing
2155          * the field.
2156          * Access checking is performed immediately on behalf of the lookup class.
2157          * @param refc the class or interface from which the method is accessed
2158          * @param name the field's name
2159          * @param type the field's type
2160          * @return a method handle which can load values from the field
2161          * @throws NoSuchFieldException if the field does not exist
2162          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2163          * @throws    SecurityException if a security manager is present and it
2164          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2165          * @throws NullPointerException if any argument is null
2166          * @see #findVarHandle(Class, String, Class)
2167          */
2168         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2169             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2170             return getDirectField(REF_getField, refc, field);
2171         }
2172 
2173         /**
2174          * Produces a method handle giving write access to a non-static field.
2175          * The type of the method handle will have a void return type.
2176          * The method handle will take two arguments, the instance containing
2177          * the field, and the value to be stored.
2178          * The second argument will be of the field's value type.
2179          * Access checking is performed immediately on behalf of the lookup class.
2180          * @param refc the class or interface from which the method is accessed
2181          * @param name the field's name
2182          * @param type the field's type
2183          * @return a method handle which can store values into the field
2184          * @throws NoSuchFieldException if the field does not exist
2185          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2186          *                                or {@code final}
2187          * @throws    SecurityException if a security manager is present and it
2188          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2189          * @throws NullPointerException if any argument is null
2190          * @see #findVarHandle(Class, String, Class)
2191          */
2192         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2193             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2194             return getDirectField(REF_putField, refc, field);
2195         }
2196 
2197         /**
2198          * Produces a VarHandle giving access to a non-static field {@code name}
2199          * of type {@code type} declared in a class of type {@code recv}.
2200          * The VarHandle's variable type is {@code type} and it has one
2201          * coordinate type, {@code recv}.
2202          * <p>
2203          * Access checking is performed immediately on behalf of the lookup
2204          * class.
2205          * <p>
2206          * Certain access modes of the returned VarHandle are unsupported under
2207          * the following conditions:
2208          * <ul>
2209          * <li>if the field is declared {@code final}, then the write, atomic
2210          *     update, numeric atomic update, and bitwise atomic update access
2211          *     modes are unsupported.
2212          * <li>if the field type is anything other than {@code byte},
2213          *     {@code short}, {@code char}, {@code int}, {@code long},
2214          *     {@code float}, or {@code double} then numeric atomic update
2215          *     access modes are unsupported.
2216          * <li>if the field type is anything other than {@code boolean},
2217          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2218          *     {@code long} then bitwise atomic update access modes are
2219          *     unsupported.
2220          * </ul>
2221          * <p>
2222          * If the field is declared {@code volatile} then the returned VarHandle
2223          * will override access to the field (effectively ignore the
2224          * {@code volatile} declaration) in accordance to its specified
2225          * access modes.
2226          * <p>
2227          * If the field type is {@code float} or {@code double} then numeric
2228          * and atomic update access modes compare values using their bitwise
2229          * representation (see {@link Float#floatToRawIntBits} and
2230          * {@link Double#doubleToRawLongBits}, respectively).
2231          * @apiNote
2232          * Bitwise comparison of {@code float} values or {@code double} values,
2233          * as performed by the numeric and atomic update access modes, differ
2234          * from the primitive {@code ==} operator and the {@link Float#equals}
2235          * and {@link Double#equals} methods, specifically with respect to
2236          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2237          * Care should be taken when performing a compare and set or a compare
2238          * and exchange operation with such values since the operation may
2239          * unexpectedly fail.
2240          * There are many possible NaN values that are considered to be
2241          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2242          * provided by Java can distinguish between them.  Operation failure can
2243          * occur if the expected or witness value is a NaN value and it is
2244          * transformed (perhaps in a platform specific manner) into another NaN
2245          * value, and thus has a different bitwise representation (see
2246          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2247          * details).
2248          * The values {@code -0.0} and {@code +0.0} have different bitwise
2249          * representations but are considered equal when using the primitive
2250          * {@code ==} operator.  Operation failure can occur if, for example, a
2251          * numeric algorithm computes an expected value to be say {@code -0.0}
2252          * and previously computed the witness value to be say {@code +0.0}.
2253          * @param recv the receiver class, of type {@code R}, that declares the
2254          * non-static field
2255          * @param name the field's name
2256          * @param type the field's type, of type {@code T}
2257          * @return a VarHandle giving access to non-static fields.
2258          * @throws NoSuchFieldException if the field does not exist
2259          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2260          * @throws    SecurityException if a security manager is present and it
2261          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2262          * @throws NullPointerException if any argument is null
2263          * @since 9
2264          */
2265         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2266             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2267             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2268             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2269         }
2270 
2271         /**
2272          * Produces a method handle giving read access to a static field.
2273          * The type of the method handle will have a return type of the field's
2274          * value type.
2275          * The method handle will take no arguments.
2276          * Access checking is performed immediately on behalf of the lookup class.
2277          * <p>
2278          * If the returned method handle is invoked, the field's class will
2279          * be initialized, if it has not already been initialized.
2280          * @param refc the class or interface from which the method is accessed
2281          * @param name the field's name
2282          * @param type the field's type
2283          * @return a method handle which can load values from the field
2284          * @throws NoSuchFieldException if the field does not exist
2285          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2286          * @throws    SecurityException if a security manager is present and it
2287          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2288          * @throws NullPointerException if any argument is null
2289          */
2290         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2291             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2292             return getDirectField(REF_getStatic, refc, field);
2293         }
2294 
2295         /**
2296          * Produces a method handle giving write access to a static field.
2297          * The type of the method handle will have a void return type.
2298          * The method handle will take a single
2299          * argument, of the field's value type, the value to be stored.
2300          * Access checking is performed immediately on behalf of the lookup class.
2301          * <p>
2302          * If the returned method handle is invoked, the field's class will
2303          * be initialized, if it has not already been initialized.
2304          * @param refc the class or interface from which the method is accessed
2305          * @param name the field's name
2306          * @param type the field's type
2307          * @return a method handle which can store values into the field
2308          * @throws NoSuchFieldException if the field does not exist
2309          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2310          *                                or is {@code final}
2311          * @throws    SecurityException if a security manager is present and it
2312          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2313          * @throws NullPointerException if any argument is null
2314          */
2315         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2316             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2317             return getDirectField(REF_putStatic, refc, field);
2318         }
2319 
2320         /**
2321          * Produces a VarHandle giving access to a static field {@code name} of
2322          * type {@code type} declared in a class of type {@code decl}.
2323          * The VarHandle's variable type is {@code type} and it has no
2324          * coordinate types.
2325          * <p>
2326          * Access checking is performed immediately on behalf of the lookup
2327          * class.
2328          * <p>
2329          * If the returned VarHandle is operated on, the declaring class will be
2330          * initialized, if it has not already been initialized.
2331          * <p>
2332          * Certain access modes of the returned VarHandle are unsupported under
2333          * the following conditions:
2334          * <ul>
2335          * <li>if the field is declared {@code final}, then the write, atomic
2336          *     update, numeric atomic update, and bitwise atomic update access
2337          *     modes are unsupported.
2338          * <li>if the field type is anything other than {@code byte},
2339          *     {@code short}, {@code char}, {@code int}, {@code long},
2340          *     {@code float}, or {@code double}, then numeric atomic update
2341          *     access modes are unsupported.
2342          * <li>if the field type is anything other than {@code boolean},
2343          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2344          *     {@code long} then bitwise atomic update access modes are
2345          *     unsupported.
2346          * </ul>
2347          * <p>
2348          * If the field is declared {@code volatile} then the returned VarHandle
2349          * will override access to the field (effectively ignore the
2350          * {@code volatile} declaration) in accordance to its specified
2351          * access modes.
2352          * <p>
2353          * If the field type is {@code float} or {@code double} then numeric
2354          * and atomic update access modes compare values using their bitwise
2355          * representation (see {@link Float#floatToRawIntBits} and
2356          * {@link Double#doubleToRawLongBits}, respectively).
2357          * @apiNote
2358          * Bitwise comparison of {@code float} values or {@code double} values,
2359          * as performed by the numeric and atomic update access modes, differ
2360          * from the primitive {@code ==} operator and the {@link Float#equals}
2361          * and {@link Double#equals} methods, specifically with respect to
2362          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2363          * Care should be taken when performing a compare and set or a compare
2364          * and exchange operation with such values since the operation may
2365          * unexpectedly fail.
2366          * There are many possible NaN values that are considered to be
2367          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2368          * provided by Java can distinguish between them.  Operation failure can
2369          * occur if the expected or witness value is a NaN value and it is
2370          * transformed (perhaps in a platform specific manner) into another NaN
2371          * value, and thus has a different bitwise representation (see
2372          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2373          * details).
2374          * The values {@code -0.0} and {@code +0.0} have different bitwise
2375          * representations but are considered equal when using the primitive
2376          * {@code ==} operator.  Operation failure can occur if, for example, a
2377          * numeric algorithm computes an expected value to be say {@code -0.0}
2378          * and previously computed the witness value to be say {@code +0.0}.
2379          * @param decl the class that declares the static field
2380          * @param name the field's name
2381          * @param type the field's type, of type {@code T}
2382          * @return a VarHandle giving access to a static field
2383          * @throws NoSuchFieldException if the field does not exist
2384          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2385          * @throws    SecurityException if a security manager is present and it
2386          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2387          * @throws NullPointerException if any argument is null
2388          * @since 9
2389          */
2390         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2391             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2392             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2393             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2394         }
2395 
2396         /**
2397          * Produces an early-bound method handle for a non-static method.
2398          * The receiver must have a supertype {@code defc} in which a method
2399          * of the given name and type is accessible to the lookup class.
2400          * The method and all its argument types must be accessible to the lookup object.
2401          * The type of the method handle will be that of the method,
2402          * without any insertion of an additional receiver parameter.
2403          * The given receiver will be bound into the method handle,
2404          * so that every call to the method handle will invoke the
2405          * requested method on the given receiver.
2406          * <p>
2407          * The returned method handle will have
2408          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2409          * the method's variable arity modifier bit ({@code 0x0080}) is set
2410          * <em>and</em> the trailing array argument is not the only argument.
2411          * (If the trailing array argument is the only argument,
2412          * the given receiver value will be bound to it.)
2413          * <p>
2414          * This is almost equivalent to the following code, with some differences noted below:
2415          * <blockquote><pre>{@code
2416 import static java.lang.invoke.MethodHandles.*;
2417 import static java.lang.invoke.MethodType.*;
2418 ...
2419 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2420 MethodHandle mh1 = mh0.bindTo(receiver);
2421 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2422 return mh1;
2423          * }</pre></blockquote>
2424          * where {@code defc} is either {@code receiver.getClass()} or a super
2425          * type of that class, in which the requested method is accessible
2426          * to the lookup class.
2427          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2428          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2429          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2430          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2431          * @param receiver the object from which the method is accessed
2432          * @param name the name of the method
2433          * @param type the type of the method, with the receiver argument omitted
2434          * @return the desired method handle
2435          * @throws NoSuchMethodException if the method does not exist
2436          * @throws IllegalAccessException if access checking fails
2437          *                                or if the method's variable arity modifier bit
2438          *                                is set and {@code asVarargsCollector} fails
2439          * @throws    SecurityException if a security manager is present and it
2440          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2441          * @throws NullPointerException if any argument is null
2442          * @see MethodHandle#bindTo
2443          * @see #findVirtual
2444          */
2445         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2446             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2447             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2448             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
2449             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2450                 throw new IllegalAccessException("The restricted defining class " +
2451                                                  mh.type().leadingReferenceParameter().getName() +
2452                                                  " is not assignable from receiver class " +
2453                                                  receiver.getClass().getName());
2454             }
2455             return mh.bindArgumentL(0, receiver).setVarargs(method);
2456         }
2457 
2458         /**
2459          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2460          * to <i>m</i>, if the lookup class has permission.
2461          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2462          * If <i>m</i> is virtual, overriding is respected on every call.
2463          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2464          * The type of the method handle will be that of the method,
2465          * with the receiver type prepended (but only if it is non-static).
2466          * If the method's {@code accessible} flag is not set,
2467          * access checking is performed immediately on behalf of the lookup class.
2468          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2469          * <p>
2470          * The returned method handle will have
2471          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2472          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2473          * <p>
2474          * If <i>m</i> is static, and
2475          * if the returned method handle is invoked, the method's class will
2476          * be initialized, if it has not already been initialized.
2477          * @param m the reflected method
2478          * @return a method handle which can invoke the reflected method
2479          * @throws IllegalAccessException if access checking fails
2480          *                                or if the method's variable arity modifier bit
2481          *                                is set and {@code asVarargsCollector} fails
2482          * @throws NullPointerException if the argument is null
2483          */
2484         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2485             if (m.getDeclaringClass() == MethodHandle.class) {
2486                 MethodHandle mh = unreflectForMH(m);
2487                 if (mh != null)  return mh;
2488             }
2489             if (m.getDeclaringClass() == VarHandle.class) {
2490                 MethodHandle mh = unreflectForVH(m);
2491                 if (mh != null)  return mh;
2492             }
2493             MemberName method = new MemberName(m);
2494             byte refKind = method.getReferenceKind();
2495             if (refKind == REF_invokeSpecial)
2496                 refKind = REF_invokeVirtual;
2497             assert(method.isMethod());
2498             @SuppressWarnings("deprecation")
2499             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2500             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2501         }
2502         private MethodHandle unreflectForMH(Method m) {
2503             // these names require special lookups because they throw UnsupportedOperationException
2504             if (MemberName.isMethodHandleInvokeName(m.getName()))
2505                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2506             return null;
2507         }
2508         private MethodHandle unreflectForVH(Method m) {
2509             // these names require special lookups because they throw UnsupportedOperationException
2510             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2511                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2512             return null;
2513         }
2514 
2515         /**
2516          * Produces a method handle for a reflected method.
2517          * It will bypass checks for overriding methods on the receiver,
2518          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2519          * instruction from within the explicitly specified {@code specialCaller}.
2520          * The type of the method handle will be that of the method,
2521          * with a suitably restricted receiver type prepended.
2522          * (The receiver type will be {@code specialCaller} or a subtype.)
2523          * If the method's {@code accessible} flag is not set,
2524          * access checking is performed immediately on behalf of the lookup class,
2525          * as if {@code invokespecial} instruction were being linked.
2526          * <p>
2527          * Before method resolution,
2528          * if the explicitly specified caller class is not identical with the
2529          * lookup class, or if this lookup object does not have
2530          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2531          * privileges, the access fails.
2532          * <p>
2533          * The returned method handle will have
2534          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2535          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2536          * @param m the reflected method
2537          * @param specialCaller the class nominally calling the method
2538          * @return a method handle which can invoke the reflected method
2539          * @throws IllegalAccessException if access checking fails,
2540          *                                or if the method is {@code static},
2541          *                                or if the method's variable arity modifier bit
2542          *                                is set and {@code asVarargsCollector} fails
2543          * @throws NullPointerException if any argument is null
2544          */
2545         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2546             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2547             Lookup specialLookup = this.in(specialCaller);
2548             MemberName method = new MemberName(m, true);
2549             assert(method.isMethod());
2550             // ignore m.isAccessible:  this is a new kind of access
2551             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2552         }
2553 
2554         /**
2555          * Produces a method handle for a reflected constructor.
2556          * The type of the method handle will be that of the constructor,
2557          * with the return type changed to the declaring class.
2558          * The method handle will perform a {@code newInstance} operation,
2559          * creating a new instance of the constructor's class on the
2560          * arguments passed to the method handle.
2561          * <p>
2562          * If the constructor's {@code accessible} flag is not set,
2563          * access checking is performed immediately on behalf of the lookup class.
2564          * <p>
2565          * The returned method handle will have
2566          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2567          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2568          * <p>
2569          * If the returned method handle is invoked, the constructor's class will
2570          * be initialized, if it has not already been initialized.
2571          * @param c the reflected constructor
2572          * @return a method handle which can invoke the reflected constructor
2573          * @throws IllegalAccessException if access checking fails
2574          *                                or if the method's variable arity modifier bit
2575          *                                is set and {@code asVarargsCollector} fails
2576          * @throws NullPointerException if the argument is null
2577          */
2578         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2579             MemberName ctor = new MemberName(c);
2580             assert(ctor.isConstructor());
2581             @SuppressWarnings("deprecation")
2582             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2583             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2584         }
2585 
2586         /**
2587          * Produces a method handle giving read access to a reflected field.
2588          * The type of the method handle will have a return type of the field's
2589          * value type.
2590          * If the field is {@code static}, the method handle will take no arguments.
2591          * Otherwise, its single argument will be the instance containing
2592          * the field.
2593          * If the {@code Field} object's {@code accessible} flag is not set,
2594          * access checking is performed immediately on behalf of the lookup class.
2595          * <p>
2596          * If the field is static, and
2597          * if the returned method handle is invoked, the field's class will
2598          * be initialized, if it has not already been initialized.
2599          * @param f the reflected field
2600          * @return a method handle which can load values from the reflected field
2601          * @throws IllegalAccessException if access checking fails
2602          * @throws NullPointerException if the argument is null
2603          */
2604         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2605             return unreflectField(f, false);
2606         }
2607 
2608         /**
2609          * Produces a method handle giving write access to a reflected field.
2610          * The type of the method handle will have a void return type.
2611          * If the field is {@code static}, the method handle will take a single
2612          * argument, of the field's value type, the value to be stored.
2613          * Otherwise, the two arguments will be the instance containing
2614          * the field, and the value to be stored.
2615          * If the {@code Field} object's {@code accessible} flag is not set,
2616          * access checking is performed immediately on behalf of the lookup class.
2617          * <p>
2618          * If the field is {@code final}, write access will not be
2619          * allowed and access checking will fail, except under certain
2620          * narrow circumstances documented for {@link Field#set Field.set}.
2621          * A method handle is returned only if a corresponding call to
2622          * the {@code Field} object's {@code set} method could return
2623          * normally.  In particular, fields which are both {@code static}
2624          * and {@code final} may never be set.
2625          * <p>
2626          * If the field is {@code static}, and
2627          * if the returned method handle is invoked, the field's class will
2628          * be initialized, if it has not already been initialized.
2629          * @param f the reflected field
2630          * @return a method handle which can store values into the reflected field
2631          * @throws IllegalAccessException if access checking fails,
2632          *         or if the field is {@code final} and write access
2633          *         is not enabled on the {@code Field} object
2634          * @throws NullPointerException if the argument is null
2635          */
2636         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2637             return unreflectField(f, true);
2638         }
2639 
2640         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2641             MemberName field = new MemberName(f, isSetter);
2642             if (isSetter && field.isStatic() && field.isFinal())
2643                 throw field.makeAccessException("static final field has no write access", this);
2644             assert(isSetter
2645                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2646                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2647             @SuppressWarnings("deprecation")
2648             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2649             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2650         }
2651 
2652         /**
2653          * Produces a VarHandle giving access to a reflected field {@code f}
2654          * of type {@code T} declared in a class of type {@code R}.
2655          * The VarHandle's variable type is {@code T}.
2656          * If the field is non-static the VarHandle has one coordinate type,
2657          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2658          * coordinate types.
2659          * <p>
2660          * Access checking is performed immediately on behalf of the lookup
2661          * class, regardless of the value of the field's {@code accessible}
2662          * flag.
2663          * <p>
2664          * If the field is static, and if the returned VarHandle is operated
2665          * on, the field's declaring class will be initialized, if it has not
2666          * already been initialized.
2667          * <p>
2668          * Certain access modes of the returned VarHandle are unsupported under
2669          * the following conditions:
2670          * <ul>
2671          * <li>if the field is declared {@code final}, then the write, atomic
2672          *     update, numeric atomic update, and bitwise atomic update access
2673          *     modes are unsupported.
2674          * <li>if the field type is anything other than {@code byte},
2675          *     {@code short}, {@code char}, {@code int}, {@code long},
2676          *     {@code float}, or {@code double} then numeric atomic update
2677          *     access modes are unsupported.
2678          * <li>if the field type is anything other than {@code boolean},
2679          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2680          *     {@code long} then bitwise atomic update access modes are
2681          *     unsupported.
2682          * </ul>
2683          * <p>
2684          * If the field is declared {@code volatile} then the returned VarHandle
2685          * will override access to the field (effectively ignore the
2686          * {@code volatile} declaration) in accordance to its specified
2687          * access modes.
2688          * <p>
2689          * If the field type is {@code float} or {@code double} then numeric
2690          * and atomic update access modes compare values using their bitwise
2691          * representation (see {@link Float#floatToRawIntBits} and
2692          * {@link Double#doubleToRawLongBits}, respectively).
2693          * @apiNote
2694          * Bitwise comparison of {@code float} values or {@code double} values,
2695          * as performed by the numeric and atomic update access modes, differ
2696          * from the primitive {@code ==} operator and the {@link Float#equals}
2697          * and {@link Double#equals} methods, specifically with respect to
2698          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2699          * Care should be taken when performing a compare and set or a compare
2700          * and exchange operation with such values since the operation may
2701          * unexpectedly fail.
2702          * There are many possible NaN values that are considered to be
2703          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2704          * provided by Java can distinguish between them.  Operation failure can
2705          * occur if the expected or witness value is a NaN value and it is
2706          * transformed (perhaps in a platform specific manner) into another NaN
2707          * value, and thus has a different bitwise representation (see
2708          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2709          * details).
2710          * The values {@code -0.0} and {@code +0.0} have different bitwise
2711          * representations but are considered equal when using the primitive
2712          * {@code ==} operator.  Operation failure can occur if, for example, a
2713          * numeric algorithm computes an expected value to be say {@code -0.0}
2714          * and previously computed the witness value to be say {@code +0.0}.
2715          * @param f the reflected field, with a field of type {@code T}, and
2716          * a declaring class of type {@code R}
2717          * @return a VarHandle giving access to non-static fields or a static
2718          * field
2719          * @throws IllegalAccessException if access checking fails
2720          * @throws NullPointerException if the argument is null
2721          * @since 9
2722          */
2723         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2724             MemberName getField = new MemberName(f, false);
2725             MemberName putField = new MemberName(f, true);
2726             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2727                                                       f.getDeclaringClass(), getField, putField);
2728         }
2729 
2730         /**
2731          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2732          * created by this lookup object or a similar one.
2733          * Security and access checks are performed to ensure that this lookup object
2734          * is capable of reproducing the target method handle.
2735          * This means that the cracking may fail if target is a direct method handle
2736          * but was created by an unrelated lookup object.
2737          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2738          * and was created by a lookup object for a different class.
2739          * @param target a direct method handle to crack into symbolic reference components
2740          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2741          * @throws    SecurityException if a security manager is present and it
2742          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2743          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2744          * @throws    NullPointerException if the target is {@code null}
2745          * @see MethodHandleInfo
2746          * @since 1.8
2747          */
2748         public MethodHandleInfo revealDirect(MethodHandle target) {
2749             MemberName member = target.internalMemberName();
2750             if (member == null || (!member.isResolved() &&
2751                                    !member.isMethodHandleInvoke() &&
2752                                    !member.isVarHandleMethodInvoke()))
2753                 throw newIllegalArgumentException("not a direct method handle");
2754             Class<?> defc = member.getDeclaringClass();
2755             byte refKind = member.getReferenceKind();
2756             assert(MethodHandleNatives.refKindIsValid(refKind));
2757             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2758                 // Devirtualized method invocation is usually formally virtual.
2759                 // To avoid creating extra MemberName objects for this common case,
2760                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2761                 refKind = REF_invokeVirtual;
2762             if (refKind == REF_invokeVirtual && defc.isInterface())
2763                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2764                 refKind = REF_invokeInterface;
2765             // Check SM permissions and member access before cracking.
2766             try {
2767                 checkAccess(refKind, defc, member);
2768                 checkSecurityManager(defc, member);
2769             } catch (IllegalAccessException ex) {
2770                 throw new IllegalArgumentException(ex);
2771             }
2772             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2773                 Class<?> callerClass = target.internalCallerClass();
2774                 if (!hasFullPrivilegeAccess() || callerClass != lookupClass())
2775                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2776             }
2777             // Produce the handle to the results.
2778             return new InfoFromMemberName(this, member, refKind);
2779         }
2780 
2781         /// Helper methods, all package-private.
2782 
2783         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2784             checkSymbolicClass(refc);  // do this before attempting to resolve
2785             Objects.requireNonNull(name);
2786             Objects.requireNonNull(type);
2787             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2788                                             NoSuchFieldException.class);
2789         }
2790 
2791         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2792             checkSymbolicClass(refc);  // do this before attempting to resolve
2793             Objects.requireNonNull(name);
2794             Objects.requireNonNull(type);
2795             checkMethodName(refKind, name);  // NPE check on name
2796             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2797                                             NoSuchMethodException.class);
2798         }
2799 
2800         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2801             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2802             Objects.requireNonNull(member.getName());
2803             Objects.requireNonNull(member.getType());
2804             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2805                                             ReflectiveOperationException.class);
2806         }
2807 
2808         MemberName resolveOrNull(byte refKind, MemberName member) {
2809             // do this before attempting to resolve
2810             if (!isClassAccessible(member.getDeclaringClass())) {
2811                 return null;
2812             }
2813             Objects.requireNonNull(member.getName());
2814             Objects.requireNonNull(member.getType());
2815             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2816         }
2817 
2818         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2819             if (!isClassAccessible(refc)) {
2820                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2821             }
2822         }
2823 
2824         boolean isClassAccessible(Class<?> refc) {
2825             Objects.requireNonNull(refc);
2826             Class<?> caller = lookupClassOrNull();
2827             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
2828         }
2829 
2830         /** Check name for an illegal leading "&lt;" character. */
2831         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2832             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2833                 throw new NoSuchMethodException("illegal method name: "+name);
2834         }
2835 
2836 
2837         /**
2838          * Find my trustable caller class if m is a caller sensitive method.
2839          * If this lookup object has full privilege access, then the caller class is the lookupClass.
2840          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2841          */
2842         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
2843             if (MethodHandleNatives.isCallerSensitive(m) && !hasFullPrivilegeAccess()) {
2844                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
2845                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2846             }
2847             return this;
2848         }
2849 
2850         /**
2851          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
2852          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
2853          *
2854          * @deprecated This method was originally designed to test {@code PRIVATE} access
2855          * that implies full privilege access but {@code MODULE} access has since become
2856          * independent of {@code PRIVATE} access.  It is recommended to call
2857          * {@link #hasFullPrivilegeAccess()} instead.
2858          * @since 9
2859          */
2860         @Deprecated(since="14")
2861         public boolean hasPrivateAccess() {
2862             return hasFullPrivilegeAccess();
2863         }
2864 
2865         /**
2866          * Returns {@code true} if this lookup has <em>full privilege access</em>,
2867          * i.e. {@code PRIVATE} and {@code MODULE} access.
2868          * A {@code Lookup} object must have full privilege access in order to
2869          * access all members that are allowed to the {@linkplain #lookupClass() lookup class}.
2870          *
2871          * @return {@code true} if this lookup has full privilege access.
2872          * @since 14
2873          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
2874          */
2875         public boolean hasFullPrivilegeAccess() {
2876             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
2877         }
2878 
2879         /**
2880          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2881          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2882          * If this lookup object has full privilege access, then the caller class is the lookupClass.
2883          */
2884         void checkSecurityManager(Class<?> refc, MemberName m) {
2885             if (allowedModes == TRUSTED)  return;
2886 
2887             SecurityManager smgr = System.getSecurityManager();
2888             if (smgr == null)  return;
2889 
2890             // Step 1:
2891             boolean fullPowerLookup = hasFullPrivilegeAccess();
2892             if (!fullPowerLookup ||
2893                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2894                 ReflectUtil.checkPackageAccess(refc);
2895             }
2896 
2897             if (m == null) {  // findClass or accessClass
2898                 // Step 2b:
2899                 if (!fullPowerLookup) {
2900                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2901                 }
2902                 return;
2903             }
2904 
2905             // Step 2a:
2906             if (m.isPublic()) return;
2907             if (!fullPowerLookup) {
2908                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2909             }
2910 
2911             // Step 3:
2912             Class<?> defc = m.getDeclaringClass();
2913             if (!fullPowerLookup && defc != refc) {
2914                 ReflectUtil.checkPackageAccess(defc);
2915             }
2916         }
2917 
2918         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2919             boolean wantStatic = (refKind == REF_invokeStatic);
2920             String message;
2921             if (m.isConstructor())
2922                 message = "expected a method, not a constructor";
2923             else if (!m.isMethod())
2924                 message = "expected a method";
2925             else if (wantStatic != m.isStatic())
2926                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2927             else
2928                 { checkAccess(refKind, refc, m); return; }
2929             throw m.makeAccessException(message, this);
2930         }
2931 
2932         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2933             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2934             String message;
2935             if (wantStatic != m.isStatic())
2936                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2937             else
2938                 { checkAccess(refKind, refc, m); return; }
2939             throw m.makeAccessException(message, this);
2940         }
2941 
2942         /** Check public/protected/private bits on the symbolic reference class and its member. */
2943         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2944             assert(m.referenceKindIsConsistentWith(refKind) &&
2945                    MethodHandleNatives.refKindIsValid(refKind) &&
2946                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2947             int allowedModes = this.allowedModes;
2948             if (allowedModes == TRUSTED)  return;
2949             int mods = m.getModifiers();
2950             if (Modifier.isProtected(mods) &&
2951                     refKind == REF_invokeVirtual &&
2952                     m.getDeclaringClass() == Object.class &&
2953                     m.getName().equals("clone") &&
2954                     refc.isArray()) {
2955                 // The JVM does this hack also.
2956                 // (See ClassVerifier::verify_invoke_instructions
2957                 // and LinkResolver::check_method_accessability.)
2958                 // Because the JVM does not allow separate methods on array types,
2959                 // there is no separate method for int[].clone.
2960                 // All arrays simply inherit Object.clone.
2961                 // But for access checking logic, we make Object.clone
2962                 // (normally protected) appear to be public.
2963                 // Later on, when the DirectMethodHandle is created,
2964                 // its leading argument will be restricted to the
2965                 // requested array type.
2966                 // N.B. The return type is not adjusted, because
2967                 // that is *not* the bytecode behavior.
2968                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2969             }
2970             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2971                 // cannot "new" a protected ctor in a different package
2972                 mods ^= Modifier.PROTECTED;
2973             }
2974             if (Modifier.isFinal(mods) &&
2975                     MethodHandleNatives.refKindIsSetter(refKind))
2976                 throw m.makeAccessException("unexpected set of a final field", this);
2977             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2978             if ((requestedModes & allowedModes) != 0) {
2979                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2980                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
2981                     return;
2982             } else {
2983                 // Protected members can also be checked as if they were package-private.
2984                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2985                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2986                     return;
2987             }
2988             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2989         }
2990 
2991         String accessFailedMessage(Class<?> refc, MemberName m) {
2992             Class<?> defc = m.getDeclaringClass();
2993             int mods = m.getModifiers();
2994             // check the class first:
2995             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2996                                (defc == refc ||
2997                                 Modifier.isPublic(refc.getModifiers())));
2998             if (!classOK && (allowedModes & PACKAGE) != 0) {
2999                 // ignore previous lookup class to check if default package access
3000                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
3001                            (defc == refc ||
3002                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
3003             }
3004             if (!classOK)
3005                 return "class is not public";
3006             if (Modifier.isPublic(mods))
3007                 return "access to public member failed";  // (how?, module not readable?)
3008             if (Modifier.isPrivate(mods))
3009                 return "member is private";
3010             if (Modifier.isProtected(mods))
3011                 return "member is protected";
3012             return "member is private to package";
3013         }
3014 
3015         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3016             int allowedModes = this.allowedModes;
3017             if (allowedModes == TRUSTED)  return;
3018             if ((lookupModes() & PRIVATE) == 0
3019                 || (specialCaller != lookupClass()
3020                        // ensure non-abstract methods in superinterfaces can be special-invoked
3021                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3022                 throw new MemberName(specialCaller).
3023                     makeAccessException("no private access for invokespecial", this);
3024         }
3025 
3026         private boolean restrictProtectedReceiver(MemberName method) {
3027             // The accessing class only has the right to use a protected member
3028             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3029             if (!method.isProtected() || method.isStatic()
3030                 || allowedModes == TRUSTED
3031                 || method.getDeclaringClass() == lookupClass()
3032                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3033                 return false;
3034             return true;
3035         }
3036         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3037             assert(!method.isStatic());
3038             // receiver type of mh is too wide; narrow to caller
3039             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3040                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3041             }
3042             MethodType rawType = mh.type();
3043             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3044             MethodType narrowType = rawType.changeParameterType(0, caller);
3045             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3046             assert(mh.viewAsTypeChecks(narrowType, true));
3047             return mh.copyWith(narrowType, mh.form);
3048         }
3049 
3050         /** Check access and get the requested method. */
3051         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3052             final boolean doRestrict    = true;
3053             final boolean checkSecurity = true;
3054             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3055         }
3056         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3057         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3058             final boolean doRestrict    = false;
3059             final boolean checkSecurity = true;
3060             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
3061         }
3062         /** Check access and get the requested method, eliding security manager checks. */
3063         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3064             final boolean doRestrict    = true;
3065             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3066             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3067         }
3068         /** Common code for all methods; do not call directly except from immediately above. */
3069         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3070                                                    boolean checkSecurity,
3071                                                    boolean doRestrict,
3072                                                    Lookup boundCaller) throws IllegalAccessException {
3073             checkMethod(refKind, refc, method);
3074             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3075             if (checkSecurity)
3076                 checkSecurityManager(refc, method);
3077             assert(!method.isMethodHandleInvoke());
3078 
3079             if (refKind == REF_invokeSpecial &&
3080                 refc != lookupClass() &&
3081                 !refc.isInterface() &&
3082                 refc != lookupClass().getSuperclass() &&
3083                 refc.isAssignableFrom(lookupClass())) {
3084                 assert(!method.getName().equals("<init>"));  // not this code path
3085 
3086                 // Per JVMS 6.5, desc. of invokespecial instruction:
3087                 // If the method is in a superclass of the LC,
3088                 // and if our original search was above LC.super,
3089                 // repeat the search (symbolic lookup) from LC.super
3090                 // and continue with the direct superclass of that class,
3091                 // and so forth, until a match is found or no further superclasses exist.
3092                 // FIXME: MemberName.resolve should handle this instead.
3093                 Class<?> refcAsSuper = lookupClass();
3094                 MemberName m2;
3095                 do {
3096                     refcAsSuper = refcAsSuper.getSuperclass();
3097                     m2 = new MemberName(refcAsSuper,
3098                                         method.getName(),
3099                                         method.getMethodType(),
3100                                         REF_invokeSpecial);
3101                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3102                 } while (m2 == null &&         // no method is found yet
3103                          refc != refcAsSuper); // search up to refc
3104                 if (m2 == null)  throw new InternalError(method.toString());
3105                 method = m2;
3106                 refc = refcAsSuper;
3107                 // redo basic checks
3108                 checkMethod(refKind, refc, method);
3109             }
3110             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3111             MethodHandle mh = dmh;
3112             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3113             if ((doRestrict && refKind == REF_invokeSpecial) ||
3114                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3115                 mh = restrictReceiver(method, dmh, lookupClass());
3116             }
3117             mh = maybeBindCaller(method, mh, boundCaller);
3118             mh = mh.setVarargs(method);
3119             return mh;
3120         }
3121         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
3122                                              throws IllegalAccessException {
3123             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3124                 return mh;
3125 
3126             // boundCaller must have full privilege access.
3127             // It should have been checked by findBoundCallerLookup. Safe to check this again.
3128             if (!boundCaller.hasFullPrivilegeAccess())
3129                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3130 
3131             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
3132             // Note: caller will apply varargs after this step happens.
3133             return cbmh;
3134         }
3135 
3136         /** Check access and get the requested field. */
3137         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3138             final boolean checkSecurity = true;
3139             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3140         }
3141         /** Check access and get the requested field, eliding security manager checks. */
3142         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3143             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3144             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3145         }
3146         /** Common code for all fields; do not call directly except from immediately above. */
3147         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3148                                                   boolean checkSecurity) throws IllegalAccessException {
3149             checkField(refKind, refc, field);
3150             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3151             if (checkSecurity)
3152                 checkSecurityManager(refc, field);
3153             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3154             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3155                                     restrictProtectedReceiver(field));
3156             if (doRestrict)
3157                 return restrictReceiver(field, dmh, lookupClass());
3158             return dmh;
3159         }
3160         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3161                                             Class<?> refc, MemberName getField, MemberName putField)
3162                 throws IllegalAccessException {
3163             final boolean checkSecurity = true;
3164             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3165         }
3166         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3167                                                              Class<?> refc, MemberName getField, MemberName putField)
3168                 throws IllegalAccessException {
3169             final boolean checkSecurity = false;
3170             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3171         }
3172         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3173                                                   Class<?> refc, MemberName getField, MemberName putField,
3174                                                   boolean checkSecurity) throws IllegalAccessException {
3175             assert getField.isStatic() == putField.isStatic();
3176             assert getField.isGetter() && putField.isSetter();
3177             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3178             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3179 
3180             checkField(getRefKind, refc, getField);
3181             if (checkSecurity)
3182                 checkSecurityManager(refc, getField);
3183 
3184             if (!putField.isFinal()) {
3185                 // A VarHandle does not support updates to final fields, any
3186                 // such VarHandle to a final field will be read-only and
3187                 // therefore the following write-based accessibility checks are
3188                 // only required for non-final fields
3189                 checkField(putRefKind, refc, putField);
3190                 if (checkSecurity)
3191                     checkSecurityManager(refc, putField);
3192             }
3193 
3194             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3195                                   restrictProtectedReceiver(getField));
3196             if (doRestrict) {
3197                 assert !getField.isStatic();
3198                 // receiver type of VarHandle is too wide; narrow to caller
3199                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3200                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3201                 }
3202                 refc = lookupClass();
3203             }
3204             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3205         }
3206         /** Check access and get the requested constructor. */
3207         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3208             final boolean checkSecurity = true;
3209             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3210         }
3211         /** Check access and get the requested constructor, eliding security manager checks. */
3212         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3213             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3214             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3215         }
3216         /** Common code for all constructors; do not call directly except from immediately above. */
3217         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3218                                                   boolean checkSecurity) throws IllegalAccessException {
3219             assert(ctor.isConstructor());
3220             checkAccess(REF_newInvokeSpecial, refc, ctor);
3221             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3222             if (checkSecurity)
3223                 checkSecurityManager(refc, ctor);
3224             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3225             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3226         }
3227 
3228         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3229          */
3230         /*non-public*/
3231         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3232                 throws ReflectiveOperationException {
3233             if (!(type instanceof Class || type instanceof MethodType))
3234                 throw new InternalError("unresolved MemberName");
3235             MemberName member = new MemberName(refKind, defc, name, type);
3236             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3237             if (mh != null) {
3238                 checkSymbolicClass(defc);
3239                 return mh;
3240             }
3241             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3242                 // Treat MethodHandle.invoke and invokeExact specially.
3243                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3244                 if (mh != null) {
3245                     return mh;
3246                 }
3247             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3248                 // Treat signature-polymorphic methods on VarHandle specially.
3249                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3250                 if (mh != null) {
3251                     return mh;
3252                 }
3253             }
3254             MemberName resolved = resolveOrFail(refKind, member);
3255             mh = getDirectMethodForConstant(refKind, defc, resolved);
3256             if (mh instanceof DirectMethodHandle
3257                     && canBeCached(refKind, defc, resolved)) {
3258                 MemberName key = mh.internalMemberName();
3259                 if (key != null) {
3260                     key = key.asNormalOriginal();
3261                 }
3262                 if (member.equals(key)) {  // better safe than sorry
3263                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3264                 }
3265             }
3266             return mh;
3267         }
3268         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3269             if (refKind == REF_invokeSpecial) {
3270                 return false;
3271             }
3272             if (!Modifier.isPublic(defc.getModifiers()) ||
3273                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3274                     !member.isPublic() ||
3275                     member.isCallerSensitive()) {
3276                 return false;
3277             }
3278             ClassLoader loader = defc.getClassLoader();
3279             if (loader != null) {
3280                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3281                 boolean found = false;
3282                 while (sysl != null) {
3283                     if (loader == sysl) { found = true; break; }
3284                     sysl = sysl.getParent();
3285                 }
3286                 if (!found) {
3287                     return false;
3288                 }
3289             }
3290             try {
3291                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3292                     new MemberName(refKind, defc, member.getName(), member.getType()));
3293                 if (resolved2 == null) {
3294                     return false;
3295                 }
3296                 checkSecurityManager(defc, resolved2);
3297             } catch (SecurityException ex) {
3298                 return false;
3299             }
3300             return true;
3301         }
3302         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3303                 throws ReflectiveOperationException {
3304             if (MethodHandleNatives.refKindIsField(refKind)) {
3305                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3306             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3307                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
3308             } else if (refKind == REF_newInvokeSpecial) {
3309                 return getDirectConstructorNoSecurityManager(defc, member);
3310             }
3311             // oops
3312             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3313         }
3314 
3315         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3316     }
3317 
3318     /**
3319      * Produces a method handle constructing arrays of a desired type,
3320      * as if by the {@code anewarray} bytecode.
3321      * The return type of the method handle will be the array type.
3322      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3323      *
3324      * <p> If the returned method handle is invoked with a negative
3325      * array size, a {@code NegativeArraySizeException} will be thrown.
3326      *
3327      * @param arrayClass an array type
3328      * @return a method handle which can create arrays of the given type
3329      * @throws NullPointerException if the argument is {@code null}
3330      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3331      * @see java.lang.reflect.Array#newInstance(Class, int)
3332      * @jvms 6.5 {@code anewarray} Instruction
3333      * @since 9
3334      */
3335     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3336         if (!arrayClass.isArray()) {
3337             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3338         }
3339         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3340                 bindTo(arrayClass.getComponentType());
3341         return ani.asType(ani.type().changeReturnType(arrayClass));
3342     }
3343 
3344     /**
3345      * Produces a method handle returning the length of an array,
3346      * as if by the {@code arraylength} bytecode.
3347      * The type of the method handle will have {@code int} as return type,
3348      * and its sole argument will be the array type.
3349      *
3350      * <p> If the returned method handle is invoked with a {@code null}
3351      * array reference, a {@code NullPointerException} will be thrown.
3352      *
3353      * @param arrayClass an array type
3354      * @return a method handle which can retrieve the length of an array of the given array type
3355      * @throws NullPointerException if the argument is {@code null}
3356      * @throws IllegalArgumentException if arrayClass is not an array type
3357      * @jvms 6.5 {@code arraylength} Instruction
3358      * @since 9
3359      */
3360     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3361         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3362     }
3363 
3364     /**
3365      * Produces a method handle giving read access to elements of an array,
3366      * as if by the {@code aaload} bytecode.
3367      * The type of the method handle will have a return type of the array's
3368      * element type.  Its first argument will be the array type,
3369      * and the second will be {@code int}.
3370      *
3371      * <p> When the returned method handle is invoked,
3372      * the array reference and array index are checked.
3373      * A {@code NullPointerException} will be thrown if the array reference
3374      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3375      * thrown if the index is negative or if it is greater than or equal to
3376      * the length of the array.
3377      *
3378      * @param arrayClass an array type
3379      * @return a method handle which can load values from the given array type
3380      * @throws NullPointerException if the argument is null
3381      * @throws  IllegalArgumentException if arrayClass is not an array type
3382      * @jvms 6.5 {@code aaload} Instruction
3383      */
3384     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3385         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3386     }
3387 
3388     /**
3389      * Produces a method handle giving write access to elements of an array,
3390      * as if by the {@code astore} bytecode.
3391      * The type of the method handle will have a void return type.
3392      * Its last argument will be the array's element type.
3393      * The first and second arguments will be the array type and int.
3394      *
3395      * <p> When the returned method handle is invoked,
3396      * the array reference and array index are checked.
3397      * A {@code NullPointerException} will be thrown if the array reference
3398      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3399      * thrown if the index is negative or if it is greater than or equal to
3400      * the length of the array.
3401      *
3402      * @param arrayClass the class of an array
3403      * @return a method handle which can store values into the array type
3404      * @throws NullPointerException if the argument is null
3405      * @throws IllegalArgumentException if arrayClass is not an array type
3406      * @jvms 6.5 {@code aastore} Instruction
3407      */
3408     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3409         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3410     }
3411 
3412     /**
3413      * Produces a VarHandle giving access to elements of an array of type
3414      * {@code arrayClass}.  The VarHandle's variable type is the component type
3415      * of {@code arrayClass} and the list of coordinate types is
3416      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3417      * corresponds to an argument that is an index into an array.
3418      * <p>
3419      * Certain access modes of the returned VarHandle are unsupported under
3420      * the following conditions:
3421      * <ul>
3422      * <li>if the component type is anything other than {@code byte},
3423      *     {@code short}, {@code char}, {@code int}, {@code long},
3424      *     {@code float}, or {@code double} then numeric atomic update access
3425      *     modes are unsupported.
3426      * <li>if the field type is anything other than {@code boolean},
3427      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3428      *     {@code long} then bitwise atomic update access modes are
3429      *     unsupported.
3430      * </ul>
3431      * <p>
3432      * If the component type is {@code float} or {@code double} then numeric
3433      * and atomic update access modes compare values using their bitwise
3434      * representation (see {@link Float#floatToRawIntBits} and
3435      * {@link Double#doubleToRawLongBits}, respectively).
3436      *
3437      * <p> When the returned {@code VarHandle} is invoked,
3438      * the array reference and array index are checked.
3439      * A {@code NullPointerException} will be thrown if the array reference
3440      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3441      * thrown if the index is negative or if it is greater than or equal to
3442      * the length of the array.
3443      *
3444      * @apiNote
3445      * Bitwise comparison of {@code float} values or {@code double} values,
3446      * as performed by the numeric and atomic update access modes, differ
3447      * from the primitive {@code ==} operator and the {@link Float#equals}
3448      * and {@link Double#equals} methods, specifically with respect to
3449      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3450      * Care should be taken when performing a compare and set or a compare
3451      * and exchange operation with such values since the operation may
3452      * unexpectedly fail.
3453      * There are many possible NaN values that are considered to be
3454      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3455      * provided by Java can distinguish between them.  Operation failure can
3456      * occur if the expected or witness value is a NaN value and it is
3457      * transformed (perhaps in a platform specific manner) into another NaN
3458      * value, and thus has a different bitwise representation (see
3459      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3460      * details).
3461      * The values {@code -0.0} and {@code +0.0} have different bitwise
3462      * representations but are considered equal when using the primitive
3463      * {@code ==} operator.  Operation failure can occur if, for example, a
3464      * numeric algorithm computes an expected value to be say {@code -0.0}
3465      * and previously computed the witness value to be say {@code +0.0}.
3466      * @param arrayClass the class of an array, of type {@code T[]}
3467      * @return a VarHandle giving access to elements of an array
3468      * @throws NullPointerException if the arrayClass is null
3469      * @throws IllegalArgumentException if arrayClass is not an array type
3470      * @since 9
3471      */
3472     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3473         return VarHandles.makeArrayElementHandle(arrayClass);
3474     }
3475 
3476     /**
3477      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3478      * viewed as if it were a different primitive array type, such as
3479      * {@code int[]} or {@code long[]}.
3480      * The VarHandle's variable type is the component type of
3481      * {@code viewArrayClass} and the list of coordinate types is
3482      * {@code (byte[], int)}, where the {@code int} coordinate type
3483      * corresponds to an argument that is an index into a {@code byte[]} array.
3484      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3485      * array, composing bytes to or from a value of the component type of
3486      * {@code viewArrayClass} according to the given endianness.
3487      * <p>
3488      * The supported component types (variables types) are {@code short},
3489      * {@code char}, {@code int}, {@code long}, {@code float} and
3490      * {@code double}.
3491      * <p>
3492      * Access of bytes at a given index will result in an
3493      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3494      * or greater than the {@code byte[]} array length minus the size (in bytes)
3495      * of {@code T}.
3496      * <p>
3497      * Access of bytes at an index may be aligned or misaligned for {@code T},
3498      * with respect to the underlying memory address, {@code A} say, associated
3499      * with the array and index.
3500      * If access is misaligned then access for anything other than the
3501      * {@code get} and {@code set} access modes will result in an
3502      * {@code IllegalStateException}.  In such cases atomic access is only
3503      * guaranteed with respect to the largest power of two that divides the GCD
3504      * of {@code A} and the size (in bytes) of {@code T}.
3505      * If access is aligned then following access modes are supported and are
3506      * guaranteed to support atomic access:
3507      * <ul>
3508      * <li>read write access modes for all {@code T}, with the exception of
3509      *     access modes {@code get} and {@code set} for {@code long} and
3510      *     {@code double} on 32-bit platforms.
3511      * <li>atomic update access modes for {@code int}, {@code long},
3512      *     {@code float} or {@code double}.
3513      *     (Future major platform releases of the JDK may support additional
3514      *     types for certain currently unsupported access modes.)
3515      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3516      *     (Future major platform releases of the JDK may support additional
3517      *     numeric types for certain currently unsupported access modes.)
3518      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3519      *     (Future major platform releases of the JDK may support additional
3520      *     numeric types for certain currently unsupported access modes.)
3521      * </ul>
3522      * <p>
3523      * Misaligned access, and therefore atomicity guarantees, may be determined
3524      * for {@code byte[]} arrays without operating on a specific array.  Given
3525      * an {@code index}, {@code T} and it's corresponding boxed type,
3526      * {@code T_BOX}, misalignment may be determined as follows:
3527      * <pre>{@code
3528      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3529      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3530      *     alignmentOffset(0, sizeOfT);
3531      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3532      * boolean isMisaligned = misalignedAtIndex != 0;
3533      * }</pre>
3534      * <p>
3535      * If the variable type is {@code float} or {@code double} then atomic
3536      * update access modes compare values using their bitwise representation
3537      * (see {@link Float#floatToRawIntBits} and
3538      * {@link Double#doubleToRawLongBits}, respectively).
3539      * @param viewArrayClass the view array class, with a component type of
3540      * type {@code T}
3541      * @param byteOrder the endianness of the view array elements, as
3542      * stored in the underlying {@code byte} array
3543      * @return a VarHandle giving access to elements of a {@code byte[]} array
3544      * viewed as if elements corresponding to the components type of the view
3545      * array class
3546      * @throws NullPointerException if viewArrayClass or byteOrder is null
3547      * @throws IllegalArgumentException if viewArrayClass is not an array type
3548      * @throws UnsupportedOperationException if the component type of
3549      * viewArrayClass is not supported as a variable type
3550      * @since 9
3551      */
3552     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3553                                      ByteOrder byteOrder) throws IllegalArgumentException {
3554         Objects.requireNonNull(byteOrder);
3555         return VarHandles.byteArrayViewHandle(viewArrayClass,
3556                                               byteOrder == ByteOrder.BIG_ENDIAN);
3557     }
3558 
3559     /**
3560      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3561      * viewed as if it were an array of elements of a different primitive
3562      * component type to that of {@code byte}, such as {@code int[]} or
3563      * {@code long[]}.
3564      * The VarHandle's variable type is the component type of
3565      * {@code viewArrayClass} and the list of coordinate types is
3566      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3567      * corresponds to an argument that is an index into a {@code byte[]} array.
3568      * The returned VarHandle accesses bytes at an index in a
3569      * {@code ByteBuffer}, composing bytes to or from a value of the component
3570      * type of {@code viewArrayClass} according to the given endianness.
3571      * <p>
3572      * The supported component types (variables types) are {@code short},
3573      * {@code char}, {@code int}, {@code long}, {@code float} and
3574      * {@code double}.
3575      * <p>
3576      * Access will result in a {@code ReadOnlyBufferException} for anything
3577      * other than the read access modes if the {@code ByteBuffer} is read-only.
3578      * <p>
3579      * Access of bytes at a given index will result in an
3580      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3581      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3582      * {@code T}.
3583      * <p>
3584      * Access of bytes at an index may be aligned or misaligned for {@code T},
3585      * with respect to the underlying memory address, {@code A} say, associated
3586      * with the {@code ByteBuffer} and index.
3587      * If access is misaligned then access for anything other than the
3588      * {@code get} and {@code set} access modes will result in an
3589      * {@code IllegalStateException}.  In such cases atomic access is only
3590      * guaranteed with respect to the largest power of two that divides the GCD
3591      * of {@code A} and the size (in bytes) of {@code T}.
3592      * If access is aligned then following access modes are supported and are
3593      * guaranteed to support atomic access:
3594      * <ul>
3595      * <li>read write access modes for all {@code T}, with the exception of
3596      *     access modes {@code get} and {@code set} for {@code long} and
3597      *     {@code double} on 32-bit platforms.
3598      * <li>atomic update access modes for {@code int}, {@code long},
3599      *     {@code float} or {@code double}.
3600      *     (Future major platform releases of the JDK may support additional
3601      *     types for certain currently unsupported access modes.)
3602      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3603      *     (Future major platform releases of the JDK may support additional
3604      *     numeric types for certain currently unsupported access modes.)
3605      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3606      *     (Future major platform releases of the JDK may support additional
3607      *     numeric types for certain currently unsupported access modes.)
3608      * </ul>
3609      * <p>
3610      * Misaligned access, and therefore atomicity guarantees, may be determined
3611      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3612      * {@code index}, {@code T} and it's corresponding boxed type,
3613      * {@code T_BOX}, as follows:
3614      * <pre>{@code
3615      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3616      * ByteBuffer bb = ...
3617      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3618      * boolean isMisaligned = misalignedAtIndex != 0;
3619      * }</pre>
3620      * <p>
3621      * If the variable type is {@code float} or {@code double} then atomic
3622      * update access modes compare values using their bitwise representation
3623      * (see {@link Float#floatToRawIntBits} and
3624      * {@link Double#doubleToRawLongBits}, respectively).
3625      * @param viewArrayClass the view array class, with a component type of
3626      * type {@code T}
3627      * @param byteOrder the endianness of the view array elements, as
3628      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3629      * endianness of a {@code ByteBuffer})
3630      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3631      * viewed as if elements corresponding to the components type of the view
3632      * array class
3633      * @throws NullPointerException if viewArrayClass or byteOrder is null
3634      * @throws IllegalArgumentException if viewArrayClass is not an array type
3635      * @throws UnsupportedOperationException if the component type of
3636      * viewArrayClass is not supported as a variable type
3637      * @since 9
3638      */
3639     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3640                                       ByteOrder byteOrder) throws IllegalArgumentException {
3641         Objects.requireNonNull(byteOrder);
3642         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3643                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3644     }
3645 
3646 
3647     /// method handle invocation (reflective style)
3648 
3649     /**
3650      * Produces a method handle which will invoke any method handle of the
3651      * given {@code type}, with a given number of trailing arguments replaced by
3652      * a single trailing {@code Object[]} array.
3653      * The resulting invoker will be a method handle with the following
3654      * arguments:
3655      * <ul>
3656      * <li>a single {@code MethodHandle} target
3657      * <li>zero or more leading values (counted by {@code leadingArgCount})
3658      * <li>an {@code Object[]} array containing trailing arguments
3659      * </ul>
3660      * <p>
3661      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3662      * the indicated {@code type}.
3663      * That is, if the target is exactly of the given {@code type}, it will behave
3664      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3665      * is used to convert the target to the required {@code type}.
3666      * <p>
3667      * The type of the returned invoker will not be the given {@code type}, but rather
3668      * will have all parameters except the first {@code leadingArgCount}
3669      * replaced by a single array of type {@code Object[]}, which will be
3670      * the final parameter.
3671      * <p>
3672      * Before invoking its target, the invoker will spread the final array, apply
3673      * reference casts as necessary, and unbox and widen primitive arguments.
3674      * If, when the invoker is called, the supplied array argument does
3675      * not have the correct number of elements, the invoker will throw
3676      * an {@link IllegalArgumentException} instead of invoking the target.
3677      * <p>
3678      * This method is equivalent to the following code (though it may be more efficient):
3679      * <blockquote><pre>{@code
3680 MethodHandle invoker = MethodHandles.invoker(type);
3681 int spreadArgCount = type.parameterCount() - leadingArgCount;
3682 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3683 return invoker;
3684      * }</pre></blockquote>
3685      * This method throws no reflective or security exceptions.
3686      * @param type the desired target type
3687      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3688      * @return a method handle suitable for invoking any method handle of the given type
3689      * @throws NullPointerException if {@code type} is null
3690      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3691      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3692      *                  or if the resulting method handle's type would have
3693      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3694      */
3695     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3696         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3697             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3698         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3699         return type.invokers().spreadInvoker(leadingArgCount);
3700     }
3701 
3702     /**
3703      * Produces a special <em>invoker method handle</em> which can be used to
3704      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3705      * The resulting invoker will have a type which is
3706      * exactly equal to the desired type, except that it will accept
3707      * an additional leading argument of type {@code MethodHandle}.
3708      * <p>
3709      * This method is equivalent to the following code (though it may be more efficient):
3710      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3711      *
3712      * <p style="font-size:smaller;">
3713      * <em>Discussion:</em>
3714      * Invoker method handles can be useful when working with variable method handles
3715      * of unknown types.
3716      * For example, to emulate an {@code invokeExact} call to a variable method
3717      * handle {@code M}, extract its type {@code T},
3718      * look up the invoker method {@code X} for {@code T},
3719      * and call the invoker method, as {@code X.invoke(T, A...)}.
3720      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3721      * is unknown.)
3722      * If spreading, collecting, or other argument transformations are required,
3723      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3724      * method handle values, as long as they are compatible with the type of {@code X}.
3725      * <p style="font-size:smaller;">
3726      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3727      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3728      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3729      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3730      * <p>
3731      * This method throws no reflective or security exceptions.
3732      * @param type the desired target type
3733      * @return a method handle suitable for invoking any method handle of the given type
3734      * @throws IllegalArgumentException if the resulting method handle's type would have
3735      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3736      */
3737     public static MethodHandle exactInvoker(MethodType type) {
3738         return type.invokers().exactInvoker();
3739     }
3740 
3741     /**
3742      * Produces a special <em>invoker method handle</em> which can be used to
3743      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3744      * The resulting invoker will have a type which is
3745      * exactly equal to the desired type, except that it will accept
3746      * an additional leading argument of type {@code MethodHandle}.
3747      * <p>
3748      * Before invoking its target, if the target differs from the expected type,
3749      * the invoker will apply reference casts as
3750      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3751      * Similarly, the return value will be converted as necessary.
3752      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3753      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3754      * <p>
3755      * This method is equivalent to the following code (though it may be more efficient):
3756      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3757      * <p style="font-size:smaller;">
3758      * <em>Discussion:</em>
3759      * A {@linkplain MethodType#genericMethodType general method type} is one which
3760      * mentions only {@code Object} arguments and return values.
3761      * An invoker for such a type is capable of calling any method handle
3762      * of the same arity as the general type.
3763      * <p style="font-size:smaller;">
3764      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3765      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3766      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3767      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3768      * <p>
3769      * This method throws no reflective or security exceptions.
3770      * @param type the desired target type
3771      * @return a method handle suitable for invoking any method handle convertible to the given type
3772      * @throws IllegalArgumentException if the resulting method handle's type would have
3773      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3774      */
3775     public static MethodHandle invoker(MethodType type) {
3776         return type.invokers().genericInvoker();
3777     }
3778 
3779     /**
3780      * Produces a special <em>invoker method handle</em> which can be used to
3781      * invoke a signature-polymorphic access mode method on any VarHandle whose
3782      * associated access mode type is compatible with the given type.
3783      * The resulting invoker will have a type which is exactly equal to the
3784      * desired given type, except that it will accept an additional leading
3785      * argument of type {@code VarHandle}.
3786      *
3787      * @param accessMode the VarHandle access mode
3788      * @param type the desired target type
3789      * @return a method handle suitable for invoking an access mode method of
3790      *         any VarHandle whose access mode type is of the given type.
3791      * @since 9
3792      */
3793     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3794         return type.invokers().varHandleMethodExactInvoker(accessMode);
3795     }
3796 
3797     /**
3798      * Produces a special <em>invoker method handle</em> which can be used to
3799      * invoke a signature-polymorphic access mode method on any VarHandle whose
3800      * associated access mode type is compatible with the given type.
3801      * The resulting invoker will have a type which is exactly equal to the
3802      * desired given type, except that it will accept an additional leading
3803      * argument of type {@code VarHandle}.
3804      * <p>
3805      * Before invoking its target, if the access mode type differs from the
3806      * desired given type, the invoker will apply reference casts as necessary
3807      * and box, unbox, or widen primitive values, as if by
3808      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3809      * converted as necessary.
3810      * <p>
3811      * This method is equivalent to the following code (though it may be more
3812      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3813      *
3814      * @param accessMode the VarHandle access mode
3815      * @param type the desired target type
3816      * @return a method handle suitable for invoking an access mode method of
3817      *         any VarHandle whose access mode type is convertible to the given
3818      *         type.
3819      * @since 9
3820      */
3821     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3822         return type.invokers().varHandleMethodInvoker(accessMode);
3823     }
3824 
3825     /*non-public*/
3826     static MethodHandle basicInvoker(MethodType type) {
3827         return type.invokers().basicInvoker();
3828     }
3829 
3830      /// method handle modification (creation from other method handles)
3831 
3832     /**
3833      * Produces a method handle which adapts the type of the
3834      * given method handle to a new type by pairwise argument and return type conversion.
3835      * The original type and new type must have the same number of arguments.
3836      * The resulting method handle is guaranteed to report a type
3837      * which is equal to the desired new type.
3838      * <p>
3839      * If the original type and new type are equal, returns target.
3840      * <p>
3841      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3842      * and some additional conversions are also applied if those conversions fail.
3843      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3844      * if possible, before or instead of any conversions done by {@code asType}:
3845      * <ul>
3846      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3847      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3848      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3849      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3850      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3851      *     (This treatment follows the usage of the bytecode verifier.)
3852      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3853      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3854      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3855      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3856      *     then a Java casting conversion (JLS 5.5) is applied.
3857      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3858      *     widening and/or narrowing.)
3859      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3860      *     conversion will be applied at runtime, possibly followed
3861      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3862      *     possibly followed by a conversion from byte to boolean by testing
3863      *     the low-order bit.
3864      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3865      *     and if the reference is null at runtime, a zero value is introduced.
3866      * </ul>
3867      * @param target the method handle to invoke after arguments are retyped
3868      * @param newType the expected type of the new method handle
3869      * @return a method handle which delegates to the target after performing
3870      *           any necessary argument conversions, and arranges for any
3871      *           necessary return value conversions
3872      * @throws NullPointerException if either argument is null
3873      * @throws WrongMethodTypeException if the conversion cannot be made
3874      * @see MethodHandle#asType
3875      */
3876     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3877         explicitCastArgumentsChecks(target, newType);
3878         // use the asTypeCache when possible:
3879         MethodType oldType = target.type();
3880         if (oldType == newType)  return target;
3881         if (oldType.explicitCastEquivalentToAsType(newType)) {
3882             return target.asFixedArity().asType(newType);
3883         }
3884         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3885     }
3886 
3887     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3888         if (target.type().parameterCount() != newType.parameterCount()) {
3889             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3890         }
3891     }
3892 
3893     /**
3894      * Produces a method handle which adapts the calling sequence of the
3895      * given method handle to a new type, by reordering the arguments.
3896      * The resulting method handle is guaranteed to report a type
3897      * which is equal to the desired new type.
3898      * <p>
3899      * The given array controls the reordering.
3900      * Call {@code #I} the number of incoming parameters (the value
3901      * {@code newType.parameterCount()}, and call {@code #O} the number
3902      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3903      * Then the length of the reordering array must be {@code #O},
3904      * and each element must be a non-negative number less than {@code #I}.
3905      * For every {@code N} less than {@code #O}, the {@code N}-th
3906      * outgoing argument will be taken from the {@code I}-th incoming
3907      * argument, where {@code I} is {@code reorder[N]}.
3908      * <p>
3909      * No argument or return value conversions are applied.
3910      * The type of each incoming argument, as determined by {@code newType},
3911      * must be identical to the type of the corresponding outgoing parameter
3912      * or parameters in the target method handle.
3913      * The return type of {@code newType} must be identical to the return
3914      * type of the original target.
3915      * <p>
3916      * The reordering array need not specify an actual permutation.
3917      * An incoming argument will be duplicated if its index appears
3918      * more than once in the array, and an incoming argument will be dropped
3919      * if its index does not appear in the array.
3920      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3921      * incoming arguments which are not mentioned in the reordering array
3922      * may be of any type, as determined only by {@code newType}.
3923      * <blockquote><pre>{@code
3924 import static java.lang.invoke.MethodHandles.*;
3925 import static java.lang.invoke.MethodType.*;
3926 ...
3927 MethodType intfn1 = methodType(int.class, int.class);
3928 MethodType intfn2 = methodType(int.class, int.class, int.class);
3929 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3930 assert(sub.type().equals(intfn2));
3931 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3932 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3933 assert((int)rsub.invokeExact(1, 100) == 99);
3934 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3935 assert(add.type().equals(intfn2));
3936 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3937 assert(twice.type().equals(intfn1));
3938 assert((int)twice.invokeExact(21) == 42);
3939      * }</pre></blockquote>
3940      * <p>
3941      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3942      * variable-arity method handle}, even if the original target method handle was.
3943      * @param target the method handle to invoke after arguments are reordered
3944      * @param newType the expected type of the new method handle
3945      * @param reorder an index array which controls the reordering
3946      * @return a method handle which delegates to the target after it
3947      *           drops unused arguments and moves and/or duplicates the other arguments
3948      * @throws NullPointerException if any argument is null
3949      * @throws IllegalArgumentException if the index array length is not equal to
3950      *                  the arity of the target, or if any index array element
3951      *                  not a valid index for a parameter of {@code newType},
3952      *                  or if two corresponding parameter types in
3953      *                  {@code target.type()} and {@code newType} are not identical,
3954      */
3955     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3956         reorder = reorder.clone();  // get a private copy
3957         MethodType oldType = target.type();
3958         permuteArgumentChecks(reorder, newType, oldType);
3959         // first detect dropped arguments and handle them separately
3960         int[] originalReorder = reorder;
3961         BoundMethodHandle result = target.rebind();
3962         LambdaForm form = result.form;
3963         int newArity = newType.parameterCount();
3964         // Normalize the reordering into a real permutation,
3965         // by removing duplicates and adding dropped elements.
3966         // This somewhat improves lambda form caching, as well
3967         // as simplifying the transform by breaking it up into steps.
3968         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3969             if (ddIdx > 0) {
3970                 // We found a duplicated entry at reorder[ddIdx].
3971                 // Example:  (x,y,z)->asList(x,y,z)
3972                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3973                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3974                 // The starred element corresponds to the argument
3975                 // deleted by the dupArgumentForm transform.
3976                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3977                 boolean killFirst = false;
3978                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3979                     // Set killFirst if the dup is larger than an intervening position.
3980                     // This will remove at least one inversion from the permutation.
3981                     if (dupVal > val) killFirst = true;
3982                 }
3983                 if (!killFirst) {
3984                     srcPos = dstPos;
3985                     dstPos = ddIdx;
3986                 }
3987                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3988                 assert (reorder[srcPos] == reorder[dstPos]);
3989                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3990                 // contract the reordering by removing the element at dstPos
3991                 int tailPos = dstPos + 1;
3992                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3993                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3994             } else {
3995                 int dropVal = ~ddIdx, insPos = 0;
3996                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3997                     // Find first element of reorder larger than dropVal.
3998                     // This is where we will insert the dropVal.
3999                     insPos += 1;
4000                 }
4001                 Class<?> ptype = newType.parameterType(dropVal);
4002                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4003                 oldType = oldType.insertParameterTypes(insPos, ptype);
4004                 // expand the reordering by inserting an element at insPos
4005                 int tailPos = insPos + 1;
4006                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4007                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4008                 reorder[insPos] = dropVal;
4009             }
4010             assert (permuteArgumentChecks(reorder, newType, oldType));
4011         }
4012         assert (reorder.length == newArity);  // a perfect permutation
4013         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4014         form = form.editor().permuteArgumentsForm(1, reorder);
4015         if (newType == result.type() && form == result.internalForm())
4016             return result;
4017         return result.copyWith(newType, form);
4018     }
4019 
4020     /**
4021      * Return an indication of any duplicate or omission in reorder.
4022      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4023      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4024      * Otherwise, return zero.
4025      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4026      */
4027     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4028         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4029         if (newArity < BIT_LIMIT) {
4030             long mask = 0;
4031             for (int i = 0; i < reorder.length; i++) {
4032                 int arg = reorder[i];
4033                 if (arg >= newArity) {
4034                     return reorder.length;
4035                 }
4036                 long bit = 1L << arg;
4037                 if ((mask & bit) != 0) {
4038                     return i;  // >0 indicates a dup
4039                 }
4040                 mask |= bit;
4041             }
4042             if (mask == (1L << newArity) - 1) {
4043                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4044                 return 0;
4045             }
4046             // find first zero
4047             long zeroBit = Long.lowestOneBit(~mask);
4048             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4049             assert(zeroPos <= newArity);
4050             if (zeroPos == newArity) {
4051                 return 0;
4052             }
4053             return ~zeroPos;
4054         } else {
4055             // same algorithm, different bit set
4056             BitSet mask = new BitSet(newArity);
4057             for (int i = 0; i < reorder.length; i++) {
4058                 int arg = reorder[i];
4059                 if (arg >= newArity) {
4060                     return reorder.length;
4061                 }
4062                 if (mask.get(arg)) {
4063                     return i;  // >0 indicates a dup
4064                 }
4065                 mask.set(arg);
4066             }
4067             int zeroPos = mask.nextClearBit(0);
4068             assert(zeroPos <= newArity);
4069             if (zeroPos == newArity) {
4070                 return 0;
4071             }
4072             return ~zeroPos;
4073         }
4074     }
4075 
4076     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4077         if (newType.returnType() != oldType.returnType())
4078             throw newIllegalArgumentException("return types do not match",
4079                     oldType, newType);
4080         if (reorder.length == oldType.parameterCount()) {
4081             int limit = newType.parameterCount();
4082             boolean bad = false;
4083             for (int j = 0; j < reorder.length; j++) {
4084                 int i = reorder[j];
4085                 if (i < 0 || i >= limit) {
4086                     bad = true; break;
4087                 }
4088                 Class<?> src = newType.parameterType(i);
4089                 Class<?> dst = oldType.parameterType(j);
4090                 if (src != dst)
4091                     throw newIllegalArgumentException("parameter types do not match after reorder",
4092                             oldType, newType);
4093             }
4094             if (!bad)  return true;
4095         }
4096         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4097     }
4098 
4099     /**
4100      * Produces a method handle of the requested return type which returns the given
4101      * constant value every time it is invoked.
4102      * <p>
4103      * Before the method handle is returned, the passed-in value is converted to the requested type.
4104      * If the requested type is primitive, widening primitive conversions are attempted,
4105      * else reference conversions are attempted.
4106      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4107      * @param type the return type of the desired method handle
4108      * @param value the value to return
4109      * @return a method handle of the given return type and no arguments, which always returns the given value
4110      * @throws NullPointerException if the {@code type} argument is null
4111      * @throws ClassCastException if the value cannot be converted to the required return type
4112      * @throws IllegalArgumentException if the given type is {@code void.class}
4113      */
4114     public static MethodHandle constant(Class<?> type, Object value) {
4115         if (type.isPrimitive()) {
4116             if (type == void.class)
4117                 throw newIllegalArgumentException("void type");
4118             Wrapper w = Wrapper.forPrimitiveType(type);
4119             value = w.convert(value, type);
4120             if (w.zero().equals(value))
4121                 return zero(w, type);
4122             return insertArguments(identity(type), 0, value);
4123         } else {
4124             if (value == null)
4125                 return zero(Wrapper.OBJECT, type);
4126             return identity(type).bindTo(value);
4127         }
4128     }
4129 
4130     /**
4131      * Produces a method handle which returns its sole argument when invoked.
4132      * @param type the type of the sole parameter and return value of the desired method handle
4133      * @return a unary method handle which accepts and returns the given type
4134      * @throws NullPointerException if the argument is null
4135      * @throws IllegalArgumentException if the given type is {@code void.class}
4136      */
4137     public static MethodHandle identity(Class<?> type) {
4138         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4139         int pos = btw.ordinal();
4140         MethodHandle ident = IDENTITY_MHS[pos];
4141         if (ident == null) {
4142             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4143         }
4144         if (ident.type().returnType() == type)
4145             return ident;
4146         // something like identity(Foo.class); do not bother to intern these
4147         assert (btw == Wrapper.OBJECT);
4148         return makeIdentity(type);
4149     }
4150 
4151     /**
4152      * Produces a constant method handle of the requested return type which
4153      * returns the default value for that type every time it is invoked.
4154      * The resulting constant method handle will have no side effects.
4155      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4156      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4157      * since {@code explicitCastArguments} converts {@code null} to default values.
4158      * @param type the expected return type of the desired method handle
4159      * @return a constant method handle that takes no arguments
4160      *         and returns the default value of the given type (or void, if the type is void)
4161      * @throws NullPointerException if the argument is null
4162      * @see MethodHandles#constant
4163      * @see MethodHandles#empty
4164      * @see MethodHandles#explicitCastArguments
4165      * @since 9
4166      */
4167     public static MethodHandle zero(Class<?> type) {
4168         Objects.requireNonNull(type);
4169         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4170     }
4171 
4172     private static MethodHandle identityOrVoid(Class<?> type) {
4173         return type == void.class ? zero(type) : identity(type);
4174     }
4175 
4176     /**
4177      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4178      * and returns a suitable default depending on the return type.
4179      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4180      * <p>The returned method handle is equivalent to
4181      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4182      *
4183      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4184      * {@code guardWithTest(pred, target, empty(target.type())}.
4185      * @param type the type of the desired method handle
4186      * @return a constant method handle of the given type, which returns a default value of the given return type
4187      * @throws NullPointerException if the argument is null
4188      * @see MethodHandles#zero
4189      * @see MethodHandles#constant
4190      * @since 9
4191      */
4192     public static  MethodHandle empty(MethodType type) {
4193         Objects.requireNonNull(type);
4194         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4195     }
4196 
4197     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4198     private static MethodHandle makeIdentity(Class<?> ptype) {
4199         MethodType mtype = methodType(ptype, ptype);
4200         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4201         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4202     }
4203 
4204     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4205         int pos = btw.ordinal();
4206         MethodHandle zero = ZERO_MHS[pos];
4207         if (zero == null) {
4208             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4209         }
4210         if (zero.type().returnType() == rtype)
4211             return zero;
4212         assert(btw == Wrapper.OBJECT);
4213         return makeZero(rtype);
4214     }
4215     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4216     private static MethodHandle makeZero(Class<?> rtype) {
4217         MethodType mtype = methodType(rtype);
4218         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4219         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4220     }
4221 
4222     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4223         // Simulate a CAS, to avoid racy duplication of results.
4224         MethodHandle prev = cache[pos];
4225         if (prev != null) return prev;
4226         return cache[pos] = value;
4227     }
4228 
4229     /**
4230      * Provides a target method handle with one or more <em>bound arguments</em>
4231      * in advance of the method handle's invocation.
4232      * The formal parameters to the target corresponding to the bound
4233      * arguments are called <em>bound parameters</em>.
4234      * Returns a new method handle which saves away the bound arguments.
4235      * When it is invoked, it receives arguments for any non-bound parameters,
4236      * binds the saved arguments to their corresponding parameters,
4237      * and calls the original target.
4238      * <p>
4239      * The type of the new method handle will drop the types for the bound
4240      * parameters from the original target type, since the new method handle
4241      * will no longer require those arguments to be supplied by its callers.
4242      * <p>
4243      * Each given argument object must match the corresponding bound parameter type.
4244      * If a bound parameter type is a primitive, the argument object
4245      * must be a wrapper, and will be unboxed to produce the primitive value.
4246      * <p>
4247      * The {@code pos} argument selects which parameters are to be bound.
4248      * It may range between zero and <i>N-L</i> (inclusively),
4249      * where <i>N</i> is the arity of the target method handle
4250      * and <i>L</i> is the length of the values array.
4251      * <p>
4252      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4253      * variable-arity method handle}, even if the original target method handle was.
4254      * @param target the method handle to invoke after the argument is inserted
4255      * @param pos where to insert the argument (zero for the first)
4256      * @param values the series of arguments to insert
4257      * @return a method handle which inserts an additional argument,
4258      *         before calling the original method handle
4259      * @throws NullPointerException if the target or the {@code values} array is null
4260      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4261      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4262      *         is the length of the values array.
4263      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4264      *         type.
4265      * @see MethodHandle#bindTo
4266      */
4267     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4268         int insCount = values.length;
4269         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4270         if (insCount == 0)  return target;
4271         BoundMethodHandle result = target.rebind();
4272         for (int i = 0; i < insCount; i++) {
4273             Object value = values[i];
4274             Class<?> ptype = ptypes[pos+i];
4275             if (ptype.isPrimitive()) {
4276                 result = insertArgumentPrimitive(result, pos, ptype, value);
4277             } else {
4278                 value = ptype.cast(value);  // throw CCE if needed
4279                 result = result.bindArgumentL(pos, value);
4280             }
4281         }
4282         return result;
4283     }
4284 
4285     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4286                                                              Class<?> ptype, Object value) {
4287         Wrapper w = Wrapper.forPrimitiveType(ptype);
4288         // perform unboxing and/or primitive conversion
4289         value = w.convert(value, ptype);
4290         switch (w) {
4291         case INT:     return result.bindArgumentI(pos, (int)value);
4292         case LONG:    return result.bindArgumentJ(pos, (long)value);
4293         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4294         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4295         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4296         }
4297     }
4298 
4299     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4300         MethodType oldType = target.type();
4301         int outargs = oldType.parameterCount();
4302         int inargs  = outargs - insCount;
4303         if (inargs < 0)
4304             throw newIllegalArgumentException("too many values to insert");
4305         if (pos < 0 || pos > inargs)
4306             throw newIllegalArgumentException("no argument type to append");
4307         return oldType.ptypes();
4308     }
4309 
4310     /**
4311      * Produces a method handle which will discard some dummy arguments
4312      * before calling some other specified <i>target</i> method handle.
4313      * The type of the new method handle will be the same as the target's type,
4314      * except it will also include the dummy argument types,
4315      * at some given position.
4316      * <p>
4317      * The {@code pos} argument may range between zero and <i>N</i>,
4318      * where <i>N</i> is the arity of the target.
4319      * If {@code pos} is zero, the dummy arguments will precede
4320      * the target's real arguments; if {@code pos} is <i>N</i>
4321      * they will come after.
4322      * <p>
4323      * <b>Example:</b>
4324      * <blockquote><pre>{@code
4325 import static java.lang.invoke.MethodHandles.*;
4326 import static java.lang.invoke.MethodType.*;
4327 ...
4328 MethodHandle cat = lookup().findVirtual(String.class,
4329   "concat", methodType(String.class, String.class));
4330 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4331 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4332 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4333 assertEquals(bigType, d0.type());
4334 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4335      * }</pre></blockquote>
4336      * <p>
4337      * This method is also equivalent to the following code:
4338      * <blockquote><pre>
4339      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4340      * </pre></blockquote>
4341      * @param target the method handle to invoke after the arguments are dropped
4342      * @param pos position of first argument to drop (zero for the leftmost)
4343      * @param valueTypes the type(s) of the argument(s) to drop
4344      * @return a method handle which drops arguments of the given types,
4345      *         before calling the original method handle
4346      * @throws NullPointerException if the target is null,
4347      *                              or if the {@code valueTypes} list or any of its elements is null
4348      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4349      *                  or if {@code pos} is negative or greater than the arity of the target,
4350      *                  or if the new method handle's type would have too many parameters
4351      */
4352     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4353         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4354     }
4355 
4356     private static List<Class<?>> copyTypes(Object[] array) {
4357         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4358     }
4359 
4360     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4361         MethodType oldType = target.type();  // get NPE
4362         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4363         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4364         if (dropped == 0)  return target;
4365         BoundMethodHandle result = target.rebind();
4366         LambdaForm lform = result.form;
4367         int insertFormArg = 1 + pos;
4368         for (Class<?> ptype : valueTypes) {
4369             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4370         }
4371         result = result.copyWith(newType, lform);
4372         return result;
4373     }
4374 
4375     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4376         int dropped = valueTypes.size();
4377         MethodType.checkSlotCount(dropped);
4378         int outargs = oldType.parameterCount();
4379         int inargs  = outargs + dropped;
4380         if (pos < 0 || pos > outargs)
4381             throw newIllegalArgumentException("no argument type to remove"
4382                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4383                     );
4384         return dropped;
4385     }
4386 
4387     /**
4388      * Produces a method handle which will discard some dummy arguments
4389      * before calling some other specified <i>target</i> method handle.
4390      * The type of the new method handle will be the same as the target's type,
4391      * except it will also include the dummy argument types,
4392      * at some given position.
4393      * <p>
4394      * The {@code pos} argument may range between zero and <i>N</i>,
4395      * where <i>N</i> is the arity of the target.
4396      * If {@code pos} is zero, the dummy arguments will precede
4397      * the target's real arguments; if {@code pos} is <i>N</i>
4398      * they will come after.
4399      * @apiNote
4400      * <blockquote><pre>{@code
4401 import static java.lang.invoke.MethodHandles.*;
4402 import static java.lang.invoke.MethodType.*;
4403 ...
4404 MethodHandle cat = lookup().findVirtual(String.class,
4405   "concat", methodType(String.class, String.class));
4406 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4407 MethodHandle d0 = dropArguments(cat, 0, String.class);
4408 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4409 MethodHandle d1 = dropArguments(cat, 1, String.class);
4410 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4411 MethodHandle d2 = dropArguments(cat, 2, String.class);
4412 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4413 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4414 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4415      * }</pre></blockquote>
4416      * <p>
4417      * This method is also equivalent to the following code:
4418      * <blockquote><pre>
4419      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4420      * </pre></blockquote>
4421      * @param target the method handle to invoke after the arguments are dropped
4422      * @param pos position of first argument to drop (zero for the leftmost)
4423      * @param valueTypes the type(s) of the argument(s) to drop
4424      * @return a method handle which drops arguments of the given types,
4425      *         before calling the original method handle
4426      * @throws NullPointerException if the target is null,
4427      *                              or if the {@code valueTypes} array or any of its elements is null
4428      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4429      *                  or if {@code pos} is negative or greater than the arity of the target,
4430      *                  or if the new method handle's type would have
4431      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4432      */
4433     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4434         return dropArguments0(target, pos, copyTypes(valueTypes));
4435     }
4436 
4437     // private version which allows caller some freedom with error handling
4438     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4439                                       boolean nullOnFailure) {
4440         newTypes = copyTypes(newTypes.toArray());
4441         List<Class<?>> oldTypes = target.type().parameterList();
4442         int match = oldTypes.size();
4443         if (skip != 0) {
4444             if (skip < 0 || skip > match) {
4445                 throw newIllegalArgumentException("illegal skip", skip, target);
4446             }
4447             oldTypes = oldTypes.subList(skip, match);
4448             match -= skip;
4449         }
4450         List<Class<?>> addTypes = newTypes;
4451         int add = addTypes.size();
4452         if (pos != 0) {
4453             if (pos < 0 || pos > add) {
4454                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4455             }
4456             addTypes = addTypes.subList(pos, add);
4457             add -= pos;
4458             assert(addTypes.size() == add);
4459         }
4460         // Do not add types which already match the existing arguments.
4461         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4462             if (nullOnFailure) {
4463                 return null;
4464             }
4465             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4466         }
4467         addTypes = addTypes.subList(match, add);
4468         add -= match;
4469         assert(addTypes.size() == add);
4470         // newTypes:     (   P*[pos], M*[match], A*[add] )
4471         // target: ( S*[skip],        M*[match]  )
4472         MethodHandle adapter = target;
4473         if (add > 0) {
4474             adapter = dropArguments0(adapter, skip+ match, addTypes);
4475         }
4476         // adapter: (S*[skip],        M*[match], A*[add] )
4477         if (pos > 0) {
4478             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4479         }
4480         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4481         return adapter;
4482     }
4483 
4484     /**
4485      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4486      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4487      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4488      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4489      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4490      * {@link #dropArguments(MethodHandle, int, Class[])}.
4491      * <p>
4492      * The resulting handle will have the same return type as the target handle.
4493      * <p>
4494      * In more formal terms, assume these two type lists:<ul>
4495      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4496      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4497      * {@code newTypes}.
4498      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4499      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4500      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4501      * sub-list.
4502      * </ul>
4503      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4504      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4505      * {@link #dropArguments(MethodHandle, int, Class[])}.
4506      *
4507      * @apiNote
4508      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4509      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4510      * <blockquote><pre>{@code
4511 import static java.lang.invoke.MethodHandles.*;
4512 import static java.lang.invoke.MethodType.*;
4513 ...
4514 ...
4515 MethodHandle h0 = constant(boolean.class, true);
4516 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4517 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4518 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4519 if (h1.type().parameterCount() < h2.type().parameterCount())
4520     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4521 else
4522     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4523 MethodHandle h3 = guardWithTest(h0, h1, h2);
4524 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4525      * }</pre></blockquote>
4526      * @param target the method handle to adapt
4527      * @param skip number of targets parameters to disregard (they will be unchanged)
4528      * @param newTypes the list of types to match {@code target}'s parameter type list to
4529      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4530      * @return a possibly adapted method handle
4531      * @throws NullPointerException if either argument is null
4532      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4533      *         or if {@code skip} is negative or greater than the arity of the target,
4534      *         or if {@code pos} is negative or greater than the newTypes list size,
4535      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4536      *         {@code pos}.
4537      * @since 9
4538      */
4539     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4540         Objects.requireNonNull(target);
4541         Objects.requireNonNull(newTypes);
4542         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4543     }
4544 
4545     /**
4546      * Adapts a target method handle by pre-processing
4547      * one or more of its arguments, each with its own unary filter function,
4548      * and then calling the target with each pre-processed argument
4549      * replaced by the result of its corresponding filter function.
4550      * <p>
4551      * The pre-processing is performed by one or more method handles,
4552      * specified in the elements of the {@code filters} array.
4553      * The first element of the filter array corresponds to the {@code pos}
4554      * argument of the target, and so on in sequence.
4555      * The filter functions are invoked in left to right order.
4556      * <p>
4557      * Null arguments in the array are treated as identity functions,
4558      * and the corresponding arguments left unchanged.
4559      * (If there are no non-null elements in the array, the original target is returned.)
4560      * Each filter is applied to the corresponding argument of the adapter.
4561      * <p>
4562      * If a filter {@code F} applies to the {@code N}th argument of
4563      * the target, then {@code F} must be a method handle which
4564      * takes exactly one argument.  The type of {@code F}'s sole argument
4565      * replaces the corresponding argument type of the target
4566      * in the resulting adapted method handle.
4567      * The return type of {@code F} must be identical to the corresponding
4568      * parameter type of the target.
4569      * <p>
4570      * It is an error if there are elements of {@code filters}
4571      * (null or not)
4572      * which do not correspond to argument positions in the target.
4573      * <p><b>Example:</b>
4574      * <blockquote><pre>{@code
4575 import static java.lang.invoke.MethodHandles.*;
4576 import static java.lang.invoke.MethodType.*;
4577 ...
4578 MethodHandle cat = lookup().findVirtual(String.class,
4579   "concat", methodType(String.class, String.class));
4580 MethodHandle upcase = lookup().findVirtual(String.class,
4581   "toUpperCase", methodType(String.class));
4582 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4583 MethodHandle f0 = filterArguments(cat, 0, upcase);
4584 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4585 MethodHandle f1 = filterArguments(cat, 1, upcase);
4586 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4587 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4588 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4589      * }</pre></blockquote>
4590      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4591      * denotes the return type of both the {@code target} and resulting adapter.
4592      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4593      * of the parameters and arguments that precede and follow the filter position
4594      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4595      * values of the filtered parameters and arguments; they also represent the
4596      * return types of the {@code filter[i]} handles. The latter accept arguments
4597      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4598      * the resulting adapter.
4599      * <blockquote><pre>{@code
4600      * T target(P... p, A[i]... a[i], B... b);
4601      * A[i] filter[i](V[i]);
4602      * T adapter(P... p, V[i]... v[i], B... b) {
4603      *   return target(p..., filter[i](v[i])..., b...);
4604      * }
4605      * }</pre></blockquote>
4606      * <p>
4607      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4608      * variable-arity method handle}, even if the original target method handle was.
4609      *
4610      * @param target the method handle to invoke after arguments are filtered
4611      * @param pos the position of the first argument to filter
4612      * @param filters method handles to call initially on filtered arguments
4613      * @return method handle which incorporates the specified argument filtering logic
4614      * @throws NullPointerException if the target is null
4615      *                              or if the {@code filters} array is null
4616      * @throws IllegalArgumentException if a non-null element of {@code filters}
4617      *          does not match a corresponding argument type of target as described above,
4618      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4619      *          or if the resulting method handle's type would have
4620      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4621      */
4622     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4623         // In method types arguments start at index 0, while the LF
4624         // editor have the MH receiver at position 0 - adjust appropriately.
4625         final int MH_RECEIVER_OFFSET = 1;
4626         filterArgumentsCheckArity(target, pos, filters);
4627         MethodHandle adapter = target;
4628 
4629         // keep track of currently matched filters, as to optimize repeated filters
4630         int index = 0;
4631         int[] positions = new int[filters.length];
4632         MethodHandle filter = null;
4633 
4634         // process filters in reverse order so that the invocation of
4635         // the resulting adapter will invoke the filters in left-to-right order
4636         for (int i = filters.length - 1; i >= 0; --i) {
4637             MethodHandle newFilter = filters[i];
4638             if (newFilter == null) continue;  // ignore null elements of filters
4639 
4640             // flush changes on update
4641             if (filter != newFilter) {
4642                 if (filter != null) {
4643                     if (index > 1) {
4644                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4645                     } else {
4646                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4647                     }
4648                 }
4649                 filter = newFilter;
4650                 index = 0;
4651             }
4652 
4653             filterArgumentChecks(target, pos + i, newFilter);
4654             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4655         }
4656         if (index > 1) {
4657             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4658         } else if (index == 1) {
4659             adapter = filterArgument(adapter, positions[0] - 1, filter);
4660         }
4661         return adapter;
4662     }
4663 
4664     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4665         MethodType targetType = adapter.type();
4666         MethodType filterType = filter.type();
4667         BoundMethodHandle result = adapter.rebind();
4668         Class<?> newParamType = filterType.parameterType(0);
4669 
4670         Class<?>[] ptypes = targetType.ptypes().clone();
4671         for (int pos : positions) {
4672             ptypes[pos - 1] = newParamType;
4673         }
4674         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4675 
4676         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4677         return result.copyWithExtendL(newType, lform, filter);
4678     }
4679 
4680     /*non-public*/
4681     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4682         filterArgumentChecks(target, pos, filter);
4683         MethodType targetType = target.type();
4684         MethodType filterType = filter.type();
4685         BoundMethodHandle result = target.rebind();
4686         Class<?> newParamType = filterType.parameterType(0);
4687         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4688         MethodType newType = targetType.changeParameterType(pos, newParamType);
4689         result = result.copyWithExtendL(newType, lform, filter);
4690         return result;
4691     }
4692 
4693     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4694         MethodType targetType = target.type();
4695         int maxPos = targetType.parameterCount();
4696         if (pos + filters.length > maxPos)
4697             throw newIllegalArgumentException("too many filters");
4698     }
4699 
4700     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4701         MethodType targetType = target.type();
4702         MethodType filterType = filter.type();
4703         if (filterType.parameterCount() != 1
4704             || filterType.returnType() != targetType.parameterType(pos))
4705             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4706     }
4707 
4708     /**
4709      * Adapts a target method handle by pre-processing
4710      * a sub-sequence of its arguments with a filter (another method handle).
4711      * The pre-processed arguments are replaced by the result (if any) of the
4712      * filter function.
4713      * The target is then called on the modified (usually shortened) argument list.
4714      * <p>
4715      * If the filter returns a value, the target must accept that value as
4716      * its argument in position {@code pos}, preceded and/or followed by
4717      * any arguments not passed to the filter.
4718      * If the filter returns void, the target must accept all arguments
4719      * not passed to the filter.
4720      * No arguments are reordered, and a result returned from the filter
4721      * replaces (in order) the whole subsequence of arguments originally
4722      * passed to the adapter.
4723      * <p>
4724      * The argument types (if any) of the filter
4725      * replace zero or one argument types of the target, at position {@code pos},
4726      * in the resulting adapted method handle.
4727      * The return type of the filter (if any) must be identical to the
4728      * argument type of the target at position {@code pos}, and that target argument
4729      * is supplied by the return value of the filter.
4730      * <p>
4731      * In all cases, {@code pos} must be greater than or equal to zero, and
4732      * {@code pos} must also be less than or equal to the target's arity.
4733      * <p><b>Example:</b>
4734      * <blockquote><pre>{@code
4735 import static java.lang.invoke.MethodHandles.*;
4736 import static java.lang.invoke.MethodType.*;
4737 ...
4738 MethodHandle deepToString = publicLookup()
4739   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4740 
4741 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4742 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4743 
4744 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4745 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4746 
4747 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4748 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4749 assertEquals("[top, [up, down], strange]",
4750              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4751 
4752 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4753 assertEquals("[top, [up, down], [strange]]",
4754              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4755 
4756 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4757 assertEquals("[top, [[up, down, strange], charm], bottom]",
4758              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4759      * }</pre></blockquote>
4760      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4761      * represents the return type of the {@code target} and resulting adapter.
4762      * {@code V}/{@code v} stand for the return type and value of the
4763      * {@code filter}, which are also found in the signature and arguments of
4764      * the {@code target}, respectively, unless {@code V} is {@code void}.
4765      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4766      * and values preceding and following the collection position, {@code pos},
4767      * in the {@code target}'s signature. They also turn up in the resulting
4768      * adapter's signature and arguments, where they surround
4769      * {@code B}/{@code b}, which represent the parameter types and arguments
4770      * to the {@code filter} (if any).
4771      * <blockquote><pre>{@code
4772      * T target(A...,V,C...);
4773      * V filter(B...);
4774      * T adapter(A... a,B... b,C... c) {
4775      *   V v = filter(b...);
4776      *   return target(a...,v,c...);
4777      * }
4778      * // and if the filter has no arguments:
4779      * T target2(A...,V,C...);
4780      * V filter2();
4781      * T adapter2(A... a,C... c) {
4782      *   V v = filter2();
4783      *   return target2(a...,v,c...);
4784      * }
4785      * // and if the filter has a void return:
4786      * T target3(A...,C...);
4787      * void filter3(B...);
4788      * T adapter3(A... a,B... b,C... c) {
4789      *   filter3(b...);
4790      *   return target3(a...,c...);
4791      * }
4792      * }</pre></blockquote>
4793      * <p>
4794      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4795      * one which first "folds" the affected arguments, and then drops them, in separate
4796      * steps as follows:
4797      * <blockquote><pre>{@code
4798      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4799      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4800      * }</pre></blockquote>
4801      * If the target method handle consumes no arguments besides than the result
4802      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4803      * is equivalent to {@code filterReturnValue(coll, mh)}.
4804      * If the filter method handle {@code coll} consumes one argument and produces
4805      * a non-void result, then {@code collectArguments(mh, N, coll)}
4806      * is equivalent to {@code filterArguments(mh, N, coll)}.
4807      * Other equivalences are possible but would require argument permutation.
4808      * <p>
4809      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4810      * variable-arity method handle}, even if the original target method handle was.
4811      *
4812      * @param target the method handle to invoke after filtering the subsequence of arguments
4813      * @param pos the position of the first adapter argument to pass to the filter,
4814      *            and/or the target argument which receives the result of the filter
4815      * @param filter method handle to call on the subsequence of arguments
4816      * @return method handle which incorporates the specified argument subsequence filtering logic
4817      * @throws NullPointerException if either argument is null
4818      * @throws IllegalArgumentException if the return type of {@code filter}
4819      *          is non-void and is not the same as the {@code pos} argument of the target,
4820      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4821      *          or if the resulting method handle's type would have
4822      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4823      * @see MethodHandles#foldArguments
4824      * @see MethodHandles#filterArguments
4825      * @see MethodHandles#filterReturnValue
4826      */
4827     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4828         MethodType newType = collectArgumentsChecks(target, pos, filter);
4829         MethodType collectorType = filter.type();
4830         BoundMethodHandle result = target.rebind();
4831         LambdaForm lform;
4832         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4833             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4834             if (lform != null) {
4835                 return result.copyWith(newType, lform);
4836             }
4837         }
4838         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4839         return result.copyWithExtendL(newType, lform, filter);
4840     }
4841 
4842     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4843         MethodType targetType = target.type();
4844         MethodType filterType = filter.type();
4845         Class<?> rtype = filterType.returnType();
4846         List<Class<?>> filterArgs = filterType.parameterList();
4847         if (rtype == void.class) {
4848             return targetType.insertParameterTypes(pos, filterArgs);
4849         }
4850         if (rtype != targetType.parameterType(pos)) {
4851             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4852         }
4853         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4854     }
4855 
4856     /**
4857      * Adapts a target method handle by post-processing
4858      * its return value (if any) with a filter (another method handle).
4859      * The result of the filter is returned from the adapter.
4860      * <p>
4861      * If the target returns a value, the filter must accept that value as
4862      * its only argument.
4863      * If the target returns void, the filter must accept no arguments.
4864      * <p>
4865      * The return type of the filter
4866      * replaces the return type of the target
4867      * in the resulting adapted method handle.
4868      * The argument type of the filter (if any) must be identical to the
4869      * return type of the target.
4870      * <p><b>Example:</b>
4871      * <blockquote><pre>{@code
4872 import static java.lang.invoke.MethodHandles.*;
4873 import static java.lang.invoke.MethodType.*;
4874 ...
4875 MethodHandle cat = lookup().findVirtual(String.class,
4876   "concat", methodType(String.class, String.class));
4877 MethodHandle length = lookup().findVirtual(String.class,
4878   "length", methodType(int.class));
4879 System.out.println((String) cat.invokeExact("x", "y")); // xy
4880 MethodHandle f0 = filterReturnValue(cat, length);
4881 System.out.println((int) f0.invokeExact("x", "y")); // 2
4882      * }</pre></blockquote>
4883      * <p>Here is pseudocode for the resulting adapter. In the code,
4884      * {@code T}/{@code t} represent the result type and value of the
4885      * {@code target}; {@code V}, the result type of the {@code filter}; and
4886      * {@code A}/{@code a}, the types and values of the parameters and arguments
4887      * of the {@code target} as well as the resulting adapter.
4888      * <blockquote><pre>{@code
4889      * T target(A...);
4890      * V filter(T);
4891      * V adapter(A... a) {
4892      *   T t = target(a...);
4893      *   return filter(t);
4894      * }
4895      * // and if the target has a void return:
4896      * void target2(A...);
4897      * V filter2();
4898      * V adapter2(A... a) {
4899      *   target2(a...);
4900      *   return filter2();
4901      * }
4902      * // and if the filter has a void return:
4903      * T target3(A...);
4904      * void filter3(V);
4905      * void adapter3(A... a) {
4906      *   T t = target3(a...);
4907      *   filter3(t);
4908      * }
4909      * }</pre></blockquote>
4910      * <p>
4911      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4912      * variable-arity method handle}, even if the original target method handle was.
4913      * @param target the method handle to invoke before filtering the return value
4914      * @param filter method handle to call on the return value
4915      * @return method handle which incorporates the specified return value filtering logic
4916      * @throws NullPointerException if either argument is null
4917      * @throws IllegalArgumentException if the argument list of {@code filter}
4918      *          does not match the return type of target as described above
4919      */
4920     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4921         MethodType targetType = target.type();
4922         MethodType filterType = filter.type();
4923         filterReturnValueChecks(targetType, filterType);
4924         BoundMethodHandle result = target.rebind();
4925         BasicType rtype = BasicType.basicType(filterType.returnType());
4926         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4927         MethodType newType = targetType.changeReturnType(filterType.returnType());
4928         result = result.copyWithExtendL(newType, lform, filter);
4929         return result;
4930     }
4931 
4932     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4933         Class<?> rtype = targetType.returnType();
4934         int filterValues = filterType.parameterCount();
4935         if (filterValues == 0
4936                 ? (rtype != void.class)
4937                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4938             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4939     }
4940 
4941     /**
4942      * Adapts a target method handle by pre-processing
4943      * some of its arguments, and then calling the target with
4944      * the result of the pre-processing, inserted into the original
4945      * sequence of arguments.
4946      * <p>
4947      * The pre-processing is performed by {@code combiner}, a second method handle.
4948      * Of the arguments passed to the adapter, the first {@code N} arguments
4949      * are copied to the combiner, which is then called.
4950      * (Here, {@code N} is defined as the parameter count of the combiner.)
4951      * After this, control passes to the target, with any result
4952      * from the combiner inserted before the original {@code N} incoming
4953      * arguments.
4954      * <p>
4955      * If the combiner returns a value, the first parameter type of the target
4956      * must be identical with the return type of the combiner, and the next
4957      * {@code N} parameter types of the target must exactly match the parameters
4958      * of the combiner.
4959      * <p>
4960      * If the combiner has a void return, no result will be inserted,
4961      * and the first {@code N} parameter types of the target
4962      * must exactly match the parameters of the combiner.
4963      * <p>
4964      * The resulting adapter is the same type as the target, except that the
4965      * first parameter type is dropped,
4966      * if it corresponds to the result of the combiner.
4967      * <p>
4968      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4969      * that either the combiner or the target does not wish to receive.
4970      * If some of the incoming arguments are destined only for the combiner,
4971      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4972      * arguments will not need to be live on the stack on entry to the
4973      * target.)
4974      * <p><b>Example:</b>
4975      * <blockquote><pre>{@code
4976 import static java.lang.invoke.MethodHandles.*;
4977 import static java.lang.invoke.MethodType.*;
4978 ...
4979 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4980   "println", methodType(void.class, String.class))
4981     .bindTo(System.out);
4982 MethodHandle cat = lookup().findVirtual(String.class,
4983   "concat", methodType(String.class, String.class));
4984 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4985 MethodHandle catTrace = foldArguments(cat, trace);
4986 // also prints "boo":
4987 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4988      * }</pre></blockquote>
4989      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4990      * represents the result type of the {@code target} and resulting adapter.
4991      * {@code V}/{@code v} represent the type and value of the parameter and argument
4992      * of {@code target} that precedes the folding position; {@code V} also is
4993      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4994      * types and values of the {@code N} parameters and arguments at the folding
4995      * position. {@code B}/{@code b} represent the types and values of the
4996      * {@code target} parameters and arguments that follow the folded parameters
4997      * and arguments.
4998      * <blockquote><pre>{@code
4999      * // there are N arguments in A...
5000      * T target(V, A[N]..., B...);
5001      * V combiner(A...);
5002      * T adapter(A... a, B... b) {
5003      *   V v = combiner(a...);
5004      *   return target(v, a..., b...);
5005      * }
5006      * // and if the combiner has a void return:
5007      * T target2(A[N]..., B...);
5008      * void combiner2(A...);
5009      * T adapter2(A... a, B... b) {
5010      *   combiner2(a...);
5011      *   return target2(a..., b...);
5012      * }
5013      * }</pre></blockquote>
5014      * <p>
5015      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5016      * variable-arity method handle}, even if the original target method handle was.
5017      * @param target the method handle to invoke after arguments are combined
5018      * @param combiner method handle to call initially on the incoming arguments
5019      * @return method handle which incorporates the specified argument folding logic
5020      * @throws NullPointerException if either argument is null
5021      * @throws IllegalArgumentException if {@code combiner}'s return type
5022      *          is non-void and not the same as the first argument type of
5023      *          the target, or if the initial {@code N} argument types
5024      *          of the target
5025      *          (skipping one matching the {@code combiner}'s return type)
5026      *          are not identical with the argument types of {@code combiner}
5027      */
5028     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5029         return foldArguments(target, 0, combiner);
5030     }
5031 
5032     /**
5033      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5034      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5035      * before the folded arguments.
5036      * <p>
5037      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5038      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5039      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5040      * 0.
5041      *
5042      * @apiNote Example:
5043      * <blockquote><pre>{@code
5044     import static java.lang.invoke.MethodHandles.*;
5045     import static java.lang.invoke.MethodType.*;
5046     ...
5047     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5048     "println", methodType(void.class, String.class))
5049     .bindTo(System.out);
5050     MethodHandle cat = lookup().findVirtual(String.class,
5051     "concat", methodType(String.class, String.class));
5052     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5053     MethodHandle catTrace = foldArguments(cat, 1, trace);
5054     // also prints "jum":
5055     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5056      * }</pre></blockquote>
5057      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5058      * represents the result type of the {@code target} and resulting adapter.
5059      * {@code V}/{@code v} represent the type and value of the parameter and argument
5060      * of {@code target} that precedes the folding position; {@code V} also is
5061      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5062      * types and values of the {@code N} parameters and arguments at the folding
5063      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5064      * and values of the {@code target} parameters and arguments that precede and
5065      * follow the folded parameters and arguments starting at {@code pos},
5066      * respectively.
5067      * <blockquote><pre>{@code
5068      * // there are N arguments in A...
5069      * T target(Z..., V, A[N]..., B...);
5070      * V combiner(A...);
5071      * T adapter(Z... z, A... a, B... b) {
5072      *   V v = combiner(a...);
5073      *   return target(z..., v, a..., b...);
5074      * }
5075      * // and if the combiner has a void return:
5076      * T target2(Z..., A[N]..., B...);
5077      * void combiner2(A...);
5078      * T adapter2(Z... z, A... a, B... b) {
5079      *   combiner2(a...);
5080      *   return target2(z..., a..., b...);
5081      * }
5082      * }</pre></blockquote>
5083      * <p>
5084      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5085      * variable-arity method handle}, even if the original target method handle was.
5086      *
5087      * @param target the method handle to invoke after arguments are combined
5088      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5089      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5090      * @param combiner method handle to call initially on the incoming arguments
5091      * @return method handle which incorporates the specified argument folding logic
5092      * @throws NullPointerException if either argument is null
5093      * @throws IllegalArgumentException if either of the following two conditions holds:
5094      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5095      *              {@code pos} of the target signature;
5096      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5097      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5098      *
5099      * @see #foldArguments(MethodHandle, MethodHandle)
5100      * @since 9
5101      */
5102     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5103         MethodType targetType = target.type();
5104         MethodType combinerType = combiner.type();
5105         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5106         BoundMethodHandle result = target.rebind();
5107         boolean dropResult = rtype == void.class;
5108         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5109         MethodType newType = targetType;
5110         if (!dropResult) {
5111             newType = newType.dropParameterTypes(pos, pos + 1);
5112         }
5113         result = result.copyWithExtendL(newType, lform, combiner);
5114         return result;
5115     }
5116 
5117     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5118         int foldArgs   = combinerType.parameterCount();
5119         Class<?> rtype = combinerType.returnType();
5120         int foldVals = rtype == void.class ? 0 : 1;
5121         int afterInsertPos = foldPos + foldVals;
5122         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5123         if (ok) {
5124             for (int i = 0; i < foldArgs; i++) {
5125                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5126                     ok = false;
5127                     break;
5128                 }
5129             }
5130         }
5131         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5132             ok = false;
5133         if (!ok)
5134             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5135         return rtype;
5136     }
5137 
5138     /**
5139      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5140      * of the pre-processing replacing the argument at the given position.
5141      *
5142      * @param target the method handle to invoke after arguments are combined
5143      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5144      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5145      * @param combiner method handle to call initially on the incoming arguments
5146      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5147      * @return method handle which incorporates the specified argument folding logic
5148      * @throws NullPointerException if either argument is null
5149      * @throws IllegalArgumentException if either of the following two conditions holds:
5150      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5151      *              {@code pos} of the target signature;
5152      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5153      *              not identical with the argument types of {@code combiner}.
5154      */
5155     /*non-public*/
5156     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5157         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5158     }
5159 
5160     /**
5161      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5162      * the pre-processing inserted into the original sequence of arguments at the given position.
5163      *
5164      * @param target the method handle to invoke after arguments are combined
5165      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5166      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5167      * @param combiner method handle to call initially on the incoming arguments
5168      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5169      * @return method handle which incorporates the specified argument folding logic
5170      * @throws NullPointerException if either argument is null
5171      * @throws IllegalArgumentException if either of the following two conditions holds:
5172      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5173      *              {@code pos} of the target signature;
5174      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5175      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5176      *              with the argument types of {@code combiner}.
5177      */
5178     /*non-public*/
5179     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5180         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5181     }
5182 
5183     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5184         MethodType targetType = target.type();
5185         MethodType combinerType = combiner.type();
5186         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5187         BoundMethodHandle result = target.rebind();
5188 
5189         MethodType newType = targetType;
5190         LambdaForm lform;
5191         if (filter) {
5192             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5193         } else {
5194             boolean dropResult = rtype == void.class;
5195             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5196             if (!dropResult) {
5197                 newType = newType.dropParameterTypes(position, position + 1);
5198             }
5199         }
5200         result = result.copyWithExtendL(newType, lform, combiner);
5201         return result;
5202     }
5203 
5204     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5205         int combinerArgs = combinerType.parameterCount();
5206         if (argPos.length != combinerArgs) {
5207             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5208         }
5209         Class<?> rtype = combinerType.returnType();
5210 
5211         for (int i = 0; i < combinerArgs; i++) {
5212             int arg = argPos[i];
5213             if (arg < 0 || arg > targetType.parameterCount()) {
5214                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5215             }
5216             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5217                 throw newIllegalArgumentException("target argument type at position " + arg
5218                         + " must match combiner argument type at index " + i + ": " + targetType
5219                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5220             }
5221         }
5222         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5223             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5224         }
5225         return rtype;
5226     }
5227 
5228     /**
5229      * Makes a method handle which adapts a target method handle,
5230      * by guarding it with a test, a boolean-valued method handle.
5231      * If the guard fails, a fallback handle is called instead.
5232      * All three method handles must have the same corresponding
5233      * argument and return types, except that the return type
5234      * of the test must be boolean, and the test is allowed
5235      * to have fewer arguments than the other two method handles.
5236      * <p>
5237      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5238      * represents the uniform result type of the three involved handles;
5239      * {@code A}/{@code a}, the types and values of the {@code target}
5240      * parameters and arguments that are consumed by the {@code test}; and
5241      * {@code B}/{@code b}, those types and values of the {@code target}
5242      * parameters and arguments that are not consumed by the {@code test}.
5243      * <blockquote><pre>{@code
5244      * boolean test(A...);
5245      * T target(A...,B...);
5246      * T fallback(A...,B...);
5247      * T adapter(A... a,B... b) {
5248      *   if (test(a...))
5249      *     return target(a..., b...);
5250      *   else
5251      *     return fallback(a..., b...);
5252      * }
5253      * }</pre></blockquote>
5254      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5255      * be modified by execution of the test, and so are passed unchanged
5256      * from the caller to the target or fallback as appropriate.
5257      * @param test method handle used for test, must return boolean
5258      * @param target method handle to call if test passes
5259      * @param fallback method handle to call if test fails
5260      * @return method handle which incorporates the specified if/then/else logic
5261      * @throws NullPointerException if any argument is null
5262      * @throws IllegalArgumentException if {@code test} does not return boolean,
5263      *          or if all three method types do not match (with the return
5264      *          type of {@code test} changed to match that of the target).
5265      */
5266     public static MethodHandle guardWithTest(MethodHandle test,
5267                                MethodHandle target,
5268                                MethodHandle fallback) {
5269         MethodType gtype = test.type();
5270         MethodType ttype = target.type();
5271         MethodType ftype = fallback.type();
5272         if (!ttype.equals(ftype))
5273             throw misMatchedTypes("target and fallback types", ttype, ftype);
5274         if (gtype.returnType() != boolean.class)
5275             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5276         List<Class<?>> targs = ttype.parameterList();
5277         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5278         if (test == null) {
5279             throw misMatchedTypes("target and test types", ttype, gtype);
5280         }
5281         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5282     }
5283 
5284     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5285         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5286     }
5287 
5288     /**
5289      * Makes a method handle which adapts a target method handle,
5290      * by running it inside an exception handler.
5291      * If the target returns normally, the adapter returns that value.
5292      * If an exception matching the specified type is thrown, the fallback
5293      * handle is called instead on the exception, plus the original arguments.
5294      * <p>
5295      * The target and handler must have the same corresponding
5296      * argument and return types, except that handler may omit trailing arguments
5297      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5298      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5299      * <p>
5300      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5301      * represents the return type of the {@code target} and {@code handler},
5302      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5303      * the types and values of arguments to the resulting handle consumed by
5304      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5305      * resulting handle discarded by {@code handler}.
5306      * <blockquote><pre>{@code
5307      * T target(A..., B...);
5308      * T handler(ExType, A...);
5309      * T adapter(A... a, B... b) {
5310      *   try {
5311      *     return target(a..., b...);
5312      *   } catch (ExType ex) {
5313      *     return handler(ex, a...);
5314      *   }
5315      * }
5316      * }</pre></blockquote>
5317      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5318      * be modified by execution of the target, and so are passed unchanged
5319      * from the caller to the handler, if the handler is invoked.
5320      * <p>
5321      * The target and handler must return the same type, even if the handler
5322      * always throws.  (This might happen, for instance, because the handler
5323      * is simulating a {@code finally} clause).
5324      * To create such a throwing handler, compose the handler creation logic
5325      * with {@link #throwException throwException},
5326      * in order to create a method handle of the correct return type.
5327      * @param target method handle to call
5328      * @param exType the type of exception which the handler will catch
5329      * @param handler method handle to call if a matching exception is thrown
5330      * @return method handle which incorporates the specified try/catch logic
5331      * @throws NullPointerException if any argument is null
5332      * @throws IllegalArgumentException if {@code handler} does not accept
5333      *          the given exception type, or if the method handle types do
5334      *          not match in their return types and their
5335      *          corresponding parameters
5336      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5337      */
5338     public static MethodHandle catchException(MethodHandle target,
5339                                 Class<? extends Throwable> exType,
5340                                 MethodHandle handler) {
5341         MethodType ttype = target.type();
5342         MethodType htype = handler.type();
5343         if (!Throwable.class.isAssignableFrom(exType))
5344             throw new ClassCastException(exType.getName());
5345         if (htype.parameterCount() < 1 ||
5346             !htype.parameterType(0).isAssignableFrom(exType))
5347             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5348         if (htype.returnType() != ttype.returnType())
5349             throw misMatchedTypes("target and handler return types", ttype, htype);
5350         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5351         if (handler == null) {
5352             throw misMatchedTypes("target and handler types", ttype, htype);
5353         }
5354         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5355     }
5356 
5357     /**
5358      * Produces a method handle which will throw exceptions of the given {@code exType}.
5359      * The method handle will accept a single argument of {@code exType},
5360      * and immediately throw it as an exception.
5361      * The method type will nominally specify a return of {@code returnType}.
5362      * The return type may be anything convenient:  It doesn't matter to the
5363      * method handle's behavior, since it will never return normally.
5364      * @param returnType the return type of the desired method handle
5365      * @param exType the parameter type of the desired method handle
5366      * @return method handle which can throw the given exceptions
5367      * @throws NullPointerException if either argument is null
5368      */
5369     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5370         if (!Throwable.class.isAssignableFrom(exType))
5371             throw new ClassCastException(exType.getName());
5372         return MethodHandleImpl.throwException(methodType(returnType, exType));
5373     }
5374 
5375     /**
5376      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5377      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5378      * delivers the loop's result, which is the return value of the resulting handle.
5379      * <p>
5380      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5381      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5382      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5383      * terms of method handles, each clause will specify up to four independent actions:<ul>
5384      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5385      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5386      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5387      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5388      * </ul>
5389      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5390      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5391      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5392      * <p>
5393      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5394      * this case. See below for a detailed description.
5395      * <p>
5396      * <em>Parameters optional everywhere:</em>
5397      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5398      * As an exception, the init functions cannot take any {@code v} parameters,
5399      * because those values are not yet computed when the init functions are executed.
5400      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5401      * In fact, any clause function may take no arguments at all.
5402      * <p>
5403      * <em>Loop parameters:</em>
5404      * A clause function may take all the iteration variable values it is entitled to, in which case
5405      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5406      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5407      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5408      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5409      * init function is automatically a loop parameter {@code a}.)
5410      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5411      * These loop parameters act as loop-invariant values visible across the whole loop.
5412      * <p>
5413      * <em>Parameters visible everywhere:</em>
5414      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5415      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5416      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5417      * Most clause functions will not need all of this information, but they will be formally connected to it
5418      * as if by {@link #dropArguments}.
5419      * <a id="astar"></a>
5420      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5421      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5422      * In that notation, the general form of an init function parameter list
5423      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5424      * <p>
5425      * <em>Checking clause structure:</em>
5426      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5427      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5428      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5429      * met by the inputs to the loop combinator.
5430      * <p>
5431      * <em>Effectively identical sequences:</em>
5432      * <a id="effid"></a>
5433      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5434      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5435      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5436      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5437      * that longest list.
5438      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5439      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5440      * <p>
5441      * <em>Step 0: Determine clause structure.</em><ol type="a">
5442      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5443      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5444      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5445      * four. Padding takes place by appending elements to the array.
5446      * <li>Clauses with all {@code null}s are disregarded.
5447      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5448      * </ol>
5449      * <p>
5450      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5451      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5452      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5453      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5454      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5455      * iteration variable type.
5456      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5457      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5458      * </ol>
5459      * <p>
5460      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5461      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5462      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5463      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5464      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5465      * (These types will be checked in step 2, along with all the clause function types.)
5466      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5467      * <li>All of the collected parameter lists must be effectively identical.
5468      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5469      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5470      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5471      * the "internal parameter list".
5472      * </ul>
5473      * <p>
5474      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5475      * <li>Examine fini function return types, disregarding omitted fini functions.
5476      * <li>If there are no fini functions, the loop return type is {@code void}.
5477      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5478      * type.
5479      * </ol>
5480      * <p>
5481      * <em>Step 1D: Check other types.</em><ol type="a">
5482      * <li>There must be at least one non-omitted pred function.
5483      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5484      * </ol>
5485      * <p>
5486      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5487      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5488      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5489      * (Note that their parameter lists are already effectively identical to this list.)
5490      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5491      * effectively identical to the internal parameter list {@code (V... A...)}.
5492      * </ol>
5493      * <p>
5494      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5495      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5496      * type.
5497      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5498      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5499      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5500      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5501      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5502      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5503      * loop return type.
5504      * </ol>
5505      * <p>
5506      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5507      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5508      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5509      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5510      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5511      * pad out the end of the list.
5512      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5513      * </ol>
5514      * <p>
5515      * <em>Final observations.</em><ol type="a">
5516      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5517      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5518      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5519      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5520      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5521      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5522      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5523      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5524      * </ol>
5525      * <p>
5526      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5527      * <ul>
5528      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5529      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5530      * (Only one {@code Pn} has to be non-{@code null}.)
5531      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5532      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5533      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5534      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5535      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5536      * the resulting loop handle's parameter types {@code (A...)}.
5537      * </ul>
5538      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5539      * which is natural if most of the loop computation happens in the steps.  For some loops,
5540      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5541      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5542      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5543      * where the init functions will need the extra parameters.  For such reasons, the rules for
5544      * determining these parameters are as symmetric as possible, across all clause parts.
5545      * In general, the loop parameters function as common invariant values across the whole
5546      * loop, while the iteration variables function as common variant values, or (if there is
5547      * no step function) as internal loop invariant temporaries.
5548      * <p>
5549      * <em>Loop execution.</em><ol type="a">
5550      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5551      * every clause function. These locals are loop invariant.
5552      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5553      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5554      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5555      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5556      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5557      * (in argument order).
5558      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5559      * returns {@code false}.
5560      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5561      * sequence {@code (v...)} of loop variables.
5562      * The updated value is immediately visible to all subsequent function calls.
5563      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5564      * (of type {@code R}) is returned from the loop as a whole.
5565      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5566      * except by throwing an exception.
5567      * </ol>
5568      * <p>
5569      * <em>Usage tips.</em>
5570      * <ul>
5571      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5572      * sometimes a step function only needs to observe the current value of its own variable.
5573      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5574      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5575      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5576      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5577      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5578      * <li>If some of the clause functions are virtual methods on an instance, the instance
5579      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5580      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5581      * will be the first iteration variable value, and it will be easy to use virtual
5582      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5583      * </ul>
5584      * <p>
5585      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5586      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5587      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5588      * <blockquote><pre>{@code
5589      * V... init...(A...);
5590      * boolean pred...(V..., A...);
5591      * V... step...(V..., A...);
5592      * R fini...(V..., A...);
5593      * R loop(A... a) {
5594      *   V... v... = init...(a...);
5595      *   for (;;) {
5596      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5597      *       v = s(v..., a...);
5598      *       if (!p(v..., a...)) {
5599      *         return f(v..., a...);
5600      *       }
5601      *     }
5602      *   }
5603      * }
5604      * }</pre></blockquote>
5605      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5606      * to their full length, even though individual clause functions may neglect to take them all.
5607      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5608      *
5609      * @apiNote Example:
5610      * <blockquote><pre>{@code
5611      * // iterative implementation of the factorial function as a loop handle
5612      * static int one(int k) { return 1; }
5613      * static int inc(int i, int acc, int k) { return i + 1; }
5614      * static int mult(int i, int acc, int k) { return i * acc; }
5615      * static boolean pred(int i, int acc, int k) { return i < k; }
5616      * static int fin(int i, int acc, int k) { return acc; }
5617      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5618      * // null initializer for counter, should initialize to 0
5619      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5620      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5621      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5622      * assertEquals(120, loop.invoke(5));
5623      * }</pre></blockquote>
5624      * The same example, dropping arguments and using combinators:
5625      * <blockquote><pre>{@code
5626      * // simplified implementation of the factorial function as a loop handle
5627      * static int inc(int i) { return i + 1; } // drop acc, k
5628      * static int mult(int i, int acc) { return i * acc; } //drop k
5629      * static boolean cmp(int i, int k) { return i < k; }
5630      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5631      * // null initializer for counter, should initialize to 0
5632      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5633      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5634      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5635      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5636      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5637      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5638      * assertEquals(720, loop.invoke(6));
5639      * }</pre></blockquote>
5640      * A similar example, using a helper object to hold a loop parameter:
5641      * <blockquote><pre>{@code
5642      * // instance-based implementation of the factorial function as a loop handle
5643      * static class FacLoop {
5644      *   final int k;
5645      *   FacLoop(int k) { this.k = k; }
5646      *   int inc(int i) { return i + 1; }
5647      *   int mult(int i, int acc) { return i * acc; }
5648      *   boolean pred(int i) { return i < k; }
5649      *   int fin(int i, int acc) { return acc; }
5650      * }
5651      * // assume MH_FacLoop is a handle to the constructor
5652      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5653      * // null initializer for counter, should initialize to 0
5654      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5655      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5656      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5657      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5658      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5659      * assertEquals(5040, loop.invoke(7));
5660      * }</pre></blockquote>
5661      *
5662      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5663      *
5664      * @return a method handle embodying the looping behavior as defined by the arguments.
5665      *
5666      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5667      *
5668      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5669      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5670      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5671      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5672      * @since 9
5673      */
5674     public static MethodHandle loop(MethodHandle[]... clauses) {
5675         // Step 0: determine clause structure.
5676         loopChecks0(clauses);
5677 
5678         List<MethodHandle> init = new ArrayList<>();
5679         List<MethodHandle> step = new ArrayList<>();
5680         List<MethodHandle> pred = new ArrayList<>();
5681         List<MethodHandle> fini = new ArrayList<>();
5682 
5683         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5684             init.add(clause[0]); // all clauses have at least length 1
5685             step.add(clause.length <= 1 ? null : clause[1]);
5686             pred.add(clause.length <= 2 ? null : clause[2]);
5687             fini.add(clause.length <= 3 ? null : clause[3]);
5688         });
5689 
5690         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5691         final int nclauses = init.size();
5692 
5693         // Step 1A: determine iteration variables (V...).
5694         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5695         for (int i = 0; i < nclauses; ++i) {
5696             MethodHandle in = init.get(i);
5697             MethodHandle st = step.get(i);
5698             if (in == null && st == null) {
5699                 iterationVariableTypes.add(void.class);
5700             } else if (in != null && st != null) {
5701                 loopChecks1a(i, in, st);
5702                 iterationVariableTypes.add(in.type().returnType());
5703             } else {
5704                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5705             }
5706         }
5707         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5708                 collect(Collectors.toList());
5709 
5710         // Step 1B: determine loop parameters (A...).
5711         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5712         loopChecks1b(init, commonSuffix);
5713 
5714         // Step 1C: determine loop return type.
5715         // Step 1D: check other types.
5716         // local variable required here; see JDK-8223553
5717         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5718                 .map(MethodType::returnType);
5719         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5720         loopChecks1cd(pred, fini, loopReturnType);
5721 
5722         // Step 2: determine parameter lists.
5723         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5724         commonParameterSequence.addAll(commonSuffix);
5725         loopChecks2(step, pred, fini, commonParameterSequence);
5726 
5727         // Step 3: fill in omitted functions.
5728         for (int i = 0; i < nclauses; ++i) {
5729             Class<?> t = iterationVariableTypes.get(i);
5730             if (init.get(i) == null) {
5731                 init.set(i, empty(methodType(t, commonSuffix)));
5732             }
5733             if (step.get(i) == null) {
5734                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5735             }
5736             if (pred.get(i) == null) {
5737                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5738             }
5739             if (fini.get(i) == null) {
5740                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5741             }
5742         }
5743 
5744         // Step 4: fill in missing parameter types.
5745         // Also convert all handles to fixed-arity handles.
5746         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5747         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5748         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5749         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5750 
5751         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5752                 allMatch(pl -> pl.equals(commonSuffix));
5753         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5754                 allMatch(pl -> pl.equals(commonParameterSequence));
5755 
5756         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5757     }
5758 
5759     private static void loopChecks0(MethodHandle[][] clauses) {
5760         if (clauses == null || clauses.length == 0) {
5761             throw newIllegalArgumentException("null or no clauses passed");
5762         }
5763         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5764             throw newIllegalArgumentException("null clauses are not allowed");
5765         }
5766         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5767             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5768         }
5769     }
5770 
5771     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5772         if (in.type().returnType() != st.type().returnType()) {
5773             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5774                     st.type().returnType());
5775         }
5776     }
5777 
5778     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5779         final List<Class<?>> empty = List.of();
5780         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5781                 // take only those that can contribute to a common suffix because they are longer than the prefix
5782                         map(MethodHandle::type).
5783                         filter(t -> t.parameterCount() > skipSize).
5784                         map(MethodType::parameterList).
5785                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5786         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5787     }
5788 
5789     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5790         final List<Class<?>> empty = List.of();
5791         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5792     }
5793 
5794     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5795         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5796         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5797         return longestParameterList(Arrays.asList(longest1, longest2));
5798     }
5799 
5800     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5801         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5802                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5803             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5804                     " (common suffix: " + commonSuffix + ")");
5805         }
5806     }
5807 
5808     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5809         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5810                 anyMatch(t -> t != loopReturnType)) {
5811             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5812                     loopReturnType + ")");
5813         }
5814 
5815         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5816             throw newIllegalArgumentException("no predicate found", pred);
5817         }
5818         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5819                 anyMatch(t -> t != boolean.class)) {
5820             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5821         }
5822     }
5823 
5824     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5825         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5826                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5827             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5828                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5829         }
5830     }
5831 
5832     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5833         return hs.stream().map(h -> {
5834             int pc = h.type().parameterCount();
5835             int tpsize = targetParams.size();
5836             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5837         }).collect(Collectors.toList());
5838     }
5839 
5840     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5841         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5842     }
5843 
5844     /**
5845      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5846      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5847      * <p>
5848      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5849      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5850      * evaluates to {@code true}).
5851      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5852      * <p>
5853      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5854      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5855      * and updated with the value returned from its invocation. The result of loop execution will be
5856      * the final value of the additional loop-local variable (if present).
5857      * <p>
5858      * The following rules hold for these argument handles:<ul>
5859      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5860      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5861      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5862      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5863      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5864      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5865      * It will constrain the parameter lists of the other loop parts.
5866      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5867      * list {@code (A...)} is called the <em>external parameter list</em>.
5868      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5869      * additional state variable of the loop.
5870      * The body must both accept and return a value of this type {@code V}.
5871      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5872      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5873      * <a href="MethodHandles.html#effid">effectively identical</a>
5874      * to the external parameter list {@code (A...)}.
5875      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5876      * {@linkplain #empty default value}.
5877      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5878      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5879      * effectively identical to the internal parameter list.
5880      * </ul>
5881      * <p>
5882      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5883      * <li>The loop handle's result type is the result type {@code V} of the body.
5884      * <li>The loop handle's parameter types are the types {@code (A...)},
5885      * from the external parameter list.
5886      * </ul>
5887      * <p>
5888      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5889      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5890      * passed to the loop.
5891      * <blockquote><pre>{@code
5892      * V init(A...);
5893      * boolean pred(V, A...);
5894      * V body(V, A...);
5895      * V whileLoop(A... a...) {
5896      *   V v = init(a...);
5897      *   while (pred(v, a...)) {
5898      *     v = body(v, a...);
5899      *   }
5900      *   return v;
5901      * }
5902      * }</pre></blockquote>
5903      *
5904      * @apiNote Example:
5905      * <blockquote><pre>{@code
5906      * // implement the zip function for lists as a loop handle
5907      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5908      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5909      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5910      *   zip.add(a.next());
5911      *   zip.add(b.next());
5912      *   return zip;
5913      * }
5914      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5915      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5916      * List<String> a = Arrays.asList("a", "b", "c", "d");
5917      * List<String> b = Arrays.asList("e", "f", "g", "h");
5918      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5919      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5920      * }</pre></blockquote>
5921      *
5922      *
5923      * @apiNote The implementation of this method can be expressed as follows:
5924      * <blockquote><pre>{@code
5925      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5926      *     MethodHandle fini = (body.type().returnType() == void.class
5927      *                         ? null : identity(body.type().returnType()));
5928      *     MethodHandle[]
5929      *         checkExit = { null, null, pred, fini },
5930      *         varBody   = { init, body };
5931      *     return loop(checkExit, varBody);
5932      * }
5933      * }</pre></blockquote>
5934      *
5935      * @param init optional initializer, providing the initial value of the loop variable.
5936      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5937      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5938      *             above for other constraints.
5939      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5940      *             See above for other constraints.
5941      *
5942      * @return a method handle implementing the {@code while} loop as described by the arguments.
5943      * @throws IllegalArgumentException if the rules for the arguments are violated.
5944      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5945      *
5946      * @see #loop(MethodHandle[][])
5947      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5948      * @since 9
5949      */
5950     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5951         whileLoopChecks(init, pred, body);
5952         MethodHandle fini = identityOrVoid(body.type().returnType());
5953         MethodHandle[] checkExit = { null, null, pred, fini };
5954         MethodHandle[] varBody = { init, body };
5955         return loop(checkExit, varBody);
5956     }
5957 
5958     /**
5959      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5960      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5961      * <p>
5962      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5963      * method will, in each iteration, first execute its body and then evaluate the predicate.
5964      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5965      * <p>
5966      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5967      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5968      * and updated with the value returned from its invocation. The result of loop execution will be
5969      * the final value of the additional loop-local variable (if present).
5970      * <p>
5971      * The following rules hold for these argument handles:<ul>
5972      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5973      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5974      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5975      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5976      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5977      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5978      * It will constrain the parameter lists of the other loop parts.
5979      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5980      * list {@code (A...)} is called the <em>external parameter list</em>.
5981      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5982      * additional state variable of the loop.
5983      * The body must both accept and return a value of this type {@code V}.
5984      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5985      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5986      * <a href="MethodHandles.html#effid">effectively identical</a>
5987      * to the external parameter list {@code (A...)}.
5988      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5989      * {@linkplain #empty default value}.
5990      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5991      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5992      * effectively identical to the internal parameter list.
5993      * </ul>
5994      * <p>
5995      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5996      * <li>The loop handle's result type is the result type {@code V} of the body.
5997      * <li>The loop handle's parameter types are the types {@code (A...)},
5998      * from the external parameter list.
5999      * </ul>
6000      * <p>
6001      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6002      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6003      * passed to the loop.
6004      * <blockquote><pre>{@code
6005      * V init(A...);
6006      * boolean pred(V, A...);
6007      * V body(V, A...);
6008      * V doWhileLoop(A... a...) {
6009      *   V v = init(a...);
6010      *   do {
6011      *     v = body(v, a...);
6012      *   } while (pred(v, a...));
6013      *   return v;
6014      * }
6015      * }</pre></blockquote>
6016      *
6017      * @apiNote Example:
6018      * <blockquote><pre>{@code
6019      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6020      * static int zero(int limit) { return 0; }
6021      * static int step(int i, int limit) { return i + 1; }
6022      * static boolean pred(int i, int limit) { return i < limit; }
6023      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6024      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6025      * assertEquals(23, loop.invoke(23));
6026      * }</pre></blockquote>
6027      *
6028      *
6029      * @apiNote The implementation of this method can be expressed as follows:
6030      * <blockquote><pre>{@code
6031      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6032      *     MethodHandle fini = (body.type().returnType() == void.class
6033      *                         ? null : identity(body.type().returnType()));
6034      *     MethodHandle[] clause = { init, body, pred, fini };
6035      *     return loop(clause);
6036      * }
6037      * }</pre></blockquote>
6038      *
6039      * @param init optional initializer, providing the initial value of the loop variable.
6040      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6041      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6042      *             See above for other constraints.
6043      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6044      *             above for other constraints.
6045      *
6046      * @return a method handle implementing the {@code while} loop as described by the arguments.
6047      * @throws IllegalArgumentException if the rules for the arguments are violated.
6048      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6049      *
6050      * @see #loop(MethodHandle[][])
6051      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6052      * @since 9
6053      */
6054     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6055         whileLoopChecks(init, pred, body);
6056         MethodHandle fini = identityOrVoid(body.type().returnType());
6057         MethodHandle[] clause = {init, body, pred, fini };
6058         return loop(clause);
6059     }
6060 
6061     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6062         Objects.requireNonNull(pred);
6063         Objects.requireNonNull(body);
6064         MethodType bodyType = body.type();
6065         Class<?> returnType = bodyType.returnType();
6066         List<Class<?>> innerList = bodyType.parameterList();
6067         List<Class<?>> outerList = innerList;
6068         if (returnType == void.class) {
6069             // OK
6070         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6071             // leading V argument missing => error
6072             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6073             throw misMatchedTypes("body function", bodyType, expected);
6074         } else {
6075             outerList = innerList.subList(1, innerList.size());
6076         }
6077         MethodType predType = pred.type();
6078         if (predType.returnType() != boolean.class ||
6079                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6080             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6081         }
6082         if (init != null) {
6083             MethodType initType = init.type();
6084             if (initType.returnType() != returnType ||
6085                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6086                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6087             }
6088         }
6089     }
6090 
6091     /**
6092      * Constructs a loop that runs a given number of iterations.
6093      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6094      * <p>
6095      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6096      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6097      * It will be initialized to 0 and incremented by 1 in each iteration.
6098      * <p>
6099      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6100      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6101      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6102      * <p>
6103      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6104      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6105      * iteration variable.
6106      * The result of the loop handle execution will be the final {@code V} value of that variable
6107      * (or {@code void} if there is no {@code V} variable).
6108      * <p>
6109      * The following rules hold for the argument handles:<ul>
6110      * <li>The {@code iterations} handle must not be {@code null}, and must return
6111      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6112      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6113      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6114      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6115      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6116      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6117      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6118      * of types called the <em>internal parameter list</em>.
6119      * It will constrain the parameter lists of the other loop parts.
6120      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6121      * with no additional {@code A} types, then the internal parameter list is extended by
6122      * the argument types {@code A...} of the {@code iterations} handle.
6123      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6124      * list {@code (A...)} is called the <em>external parameter list</em>.
6125      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6126      * additional state variable of the loop.
6127      * The body must both accept a leading parameter and return a value of this type {@code V}.
6128      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6129      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6130      * <a href="MethodHandles.html#effid">effectively identical</a>
6131      * to the external parameter list {@code (A...)}.
6132      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6133      * {@linkplain #empty default value}.
6134      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6135      * effectively identical to the external parameter list {@code (A...)}.
6136      * </ul>
6137      * <p>
6138      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6139      * <li>The loop handle's result type is the result type {@code V} of the body.
6140      * <li>The loop handle's parameter types are the types {@code (A...)},
6141      * from the external parameter list.
6142      * </ul>
6143      * <p>
6144      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6145      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6146      * arguments passed to the loop.
6147      * <blockquote><pre>{@code
6148      * int iterations(A...);
6149      * V init(A...);
6150      * V body(V, int, A...);
6151      * V countedLoop(A... a...) {
6152      *   int end = iterations(a...);
6153      *   V v = init(a...);
6154      *   for (int i = 0; i < end; ++i) {
6155      *     v = body(v, i, a...);
6156      *   }
6157      *   return v;
6158      * }
6159      * }</pre></blockquote>
6160      *
6161      * @apiNote Example with a fully conformant body method:
6162      * <blockquote><pre>{@code
6163      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6164      * // => a variation on a well known theme
6165      * static String step(String v, int counter, String init) { return "na " + v; }
6166      * // assume MH_step is a handle to the method above
6167      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6168      * MethodHandle start = MethodHandles.identity(String.class);
6169      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6170      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6171      * }</pre></blockquote>
6172      *
6173      * @apiNote Example with the simplest possible body method type,
6174      * and passing the number of iterations to the loop invocation:
6175      * <blockquote><pre>{@code
6176      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6177      * // => a variation on a well known theme
6178      * static String step(String v, int counter ) { return "na " + v; }
6179      * // assume MH_step is a handle to the method above
6180      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6181      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6182      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6183      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6184      * }</pre></blockquote>
6185      *
6186      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6187      * as loop parameters:
6188      * <blockquote><pre>{@code
6189      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6190      * // => a variation on a well known theme
6191      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6192      * // assume MH_step is a handle to the method above
6193      * MethodHandle count = MethodHandles.identity(int.class);
6194      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6195      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6196      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6197      * }</pre></blockquote>
6198      *
6199      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6200      * to enforce a loop type:
6201      * <blockquote><pre>{@code
6202      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6203      * // => a variation on a well known theme
6204      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6205      * // assume MH_step is a handle to the method above
6206      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6207      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6208      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6209      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6210      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6211      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6212      * }</pre></blockquote>
6213      *
6214      * @apiNote The implementation of this method can be expressed as follows:
6215      * <blockquote><pre>{@code
6216      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6217      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6218      * }
6219      * }</pre></blockquote>
6220      *
6221      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6222      *                   result type must be {@code int}. See above for other constraints.
6223      * @param init optional initializer, providing the initial value of the loop variable.
6224      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6225      * @param body body of the loop, which may not be {@code null}.
6226      *             It controls the loop parameters and result type in the standard case (see above for details).
6227      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6228      *             and may accept any number of additional types.
6229      *             See above for other constraints.
6230      *
6231      * @return a method handle representing the loop.
6232      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6233      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6234      *
6235      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6236      * @since 9
6237      */
6238     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6239         return countedLoop(empty(iterations.type()), iterations, init, body);
6240     }
6241 
6242     /**
6243      * Constructs a loop that counts over a range of numbers.
6244      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6245      * <p>
6246      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6247      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6248      * values of the loop counter.
6249      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6250      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6251      * <p>
6252      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6253      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6254      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6255      * <p>
6256      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6257      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6258      * iteration variable.
6259      * The result of the loop handle execution will be the final {@code V} value of that variable
6260      * (or {@code void} if there is no {@code V} variable).
6261      * <p>
6262      * The following rules hold for the argument handles:<ul>
6263      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6264      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6265      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6266      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6267      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6268      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6269      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6270      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6271      * of types called the <em>internal parameter list</em>.
6272      * It will constrain the parameter lists of the other loop parts.
6273      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6274      * with no additional {@code A} types, then the internal parameter list is extended by
6275      * the argument types {@code A...} of the {@code end} handle.
6276      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6277      * list {@code (A...)} is called the <em>external parameter list</em>.
6278      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6279      * additional state variable of the loop.
6280      * The body must both accept a leading parameter and return a value of this type {@code V}.
6281      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6282      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6283      * <a href="MethodHandles.html#effid">effectively identical</a>
6284      * to the external parameter list {@code (A...)}.
6285      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6286      * {@linkplain #empty default value}.
6287      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6288      * effectively identical to the external parameter list {@code (A...)}.
6289      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6290      * to the external parameter list.
6291      * </ul>
6292      * <p>
6293      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6294      * <li>The loop handle's result type is the result type {@code V} of the body.
6295      * <li>The loop handle's parameter types are the types {@code (A...)},
6296      * from the external parameter list.
6297      * </ul>
6298      * <p>
6299      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6300      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6301      * arguments passed to the loop.
6302      * <blockquote><pre>{@code
6303      * int start(A...);
6304      * int end(A...);
6305      * V init(A...);
6306      * V body(V, int, A...);
6307      * V countedLoop(A... a...) {
6308      *   int e = end(a...);
6309      *   int s = start(a...);
6310      *   V v = init(a...);
6311      *   for (int i = s; i < e; ++i) {
6312      *     v = body(v, i, a...);
6313      *   }
6314      *   return v;
6315      * }
6316      * }</pre></blockquote>
6317      *
6318      * @apiNote The implementation of this method can be expressed as follows:
6319      * <blockquote><pre>{@code
6320      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6321      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6322      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6323      *     // the following semantics:
6324      *     // MH_increment: (int limit, int counter) -> counter + 1
6325      *     // MH_predicate: (int limit, int counter) -> counter < limit
6326      *     Class<?> counterType = start.type().returnType();  // int
6327      *     Class<?> returnType = body.type().returnType();
6328      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6329      *     if (returnType != void.class) {  // ignore the V variable
6330      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6331      *         pred = dropArguments(pred, 1, returnType);  // ditto
6332      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6333      *     }
6334      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6335      *     MethodHandle[]
6336      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6337      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6338      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6339      *     return loop(loopLimit, bodyClause, indexVar);
6340      * }
6341      * }</pre></blockquote>
6342      *
6343      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6344      *              See above for other constraints.
6345      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6346      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6347      * @param init optional initializer, providing the initial value of the loop variable.
6348      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6349      * @param body body of the loop, which may not be {@code null}.
6350      *             It controls the loop parameters and result type in the standard case (see above for details).
6351      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6352      *             and may accept any number of additional types.
6353      *             See above for other constraints.
6354      *
6355      * @return a method handle representing the loop.
6356      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6357      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6358      *
6359      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6360      * @since 9
6361      */
6362     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6363         countedLoopChecks(start, end, init, body);
6364         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6365         Class<?> limitType   = end.type().returnType();    // yes, int again
6366         Class<?> returnType  = body.type().returnType();
6367         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6368         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6369         MethodHandle retv = null;
6370         if (returnType != void.class) {
6371             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6372             pred = dropArguments(pred, 1, returnType);  // ditto
6373             retv = dropArguments(identity(returnType), 0, counterType);
6374         }
6375         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6376         MethodHandle[]
6377             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6378             bodyClause = { init, body },            // v = init(); v = body(v, i)
6379             indexVar   = { start, incr };           // i = start(); i = i + 1
6380         return loop(loopLimit, bodyClause, indexVar);
6381     }
6382 
6383     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6384         Objects.requireNonNull(start);
6385         Objects.requireNonNull(end);
6386         Objects.requireNonNull(body);
6387         Class<?> counterType = start.type().returnType();
6388         if (counterType != int.class) {
6389             MethodType expected = start.type().changeReturnType(int.class);
6390             throw misMatchedTypes("start function", start.type(), expected);
6391         } else if (end.type().returnType() != counterType) {
6392             MethodType expected = end.type().changeReturnType(counterType);
6393             throw misMatchedTypes("end function", end.type(), expected);
6394         }
6395         MethodType bodyType = body.type();
6396         Class<?> returnType = bodyType.returnType();
6397         List<Class<?>> innerList = bodyType.parameterList();
6398         // strip leading V value if present
6399         int vsize = (returnType == void.class ? 0 : 1);
6400         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6401             // argument list has no "V" => error
6402             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6403             throw misMatchedTypes("body function", bodyType, expected);
6404         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6405             // missing I type => error
6406             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6407             throw misMatchedTypes("body function", bodyType, expected);
6408         }
6409         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6410         if (outerList.isEmpty()) {
6411             // special case; take lists from end handle
6412             outerList = end.type().parameterList();
6413             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6414         }
6415         MethodType expected = methodType(counterType, outerList);
6416         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6417             throw misMatchedTypes("start parameter types", start.type(), expected);
6418         }
6419         if (end.type() != start.type() &&
6420             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6421             throw misMatchedTypes("end parameter types", end.type(), expected);
6422         }
6423         if (init != null) {
6424             MethodType initType = init.type();
6425             if (initType.returnType() != returnType ||
6426                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6427                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6428             }
6429         }
6430     }
6431 
6432     /**
6433      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6434      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6435      * <p>
6436      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6437      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6438      * <p>
6439      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6440      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6441      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6442      * <p>
6443      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6444      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6445      * iteration variable.
6446      * The result of the loop handle execution will be the final {@code V} value of that variable
6447      * (or {@code void} if there is no {@code V} variable).
6448      * <p>
6449      * The following rules hold for the argument handles:<ul>
6450      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6451      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6452      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6453      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6454      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6455      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6456      * of types called the <em>internal parameter list</em>.
6457      * It will constrain the parameter lists of the other loop parts.
6458      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6459      * with no additional {@code A} types, then the internal parameter list is extended by
6460      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6461      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6462      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6463      * list {@code (A...)} is called the <em>external parameter list</em>.
6464      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6465      * additional state variable of the loop.
6466      * The body must both accept a leading parameter and return a value of this type {@code V}.
6467      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6468      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6469      * <a href="MethodHandles.html#effid">effectively identical</a>
6470      * to the external parameter list {@code (A...)}.
6471      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6472      * {@linkplain #empty default value}.
6473      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6474      * type {@code java.util.Iterator} or a subtype thereof.
6475      * The iterator it produces when the loop is executed will be assumed
6476      * to yield values which can be converted to type {@code T}.
6477      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6478      * effectively identical to the external parameter list {@code (A...)}.
6479      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6480      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6481      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6482      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6483      * the {@link MethodHandle#asType asType} conversion method.
6484      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6485      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6486      * </ul>
6487      * <p>
6488      * The type {@code T} may be either a primitive or reference.
6489      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6490      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6491      * as if by the {@link MethodHandle#asType asType} conversion method.
6492      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6493      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6494      * <p>
6495      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6496      * <li>The loop handle's result type is the result type {@code V} of the body.
6497      * <li>The loop handle's parameter types are the types {@code (A...)},
6498      * from the external parameter list.
6499      * </ul>
6500      * <p>
6501      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6502      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6503      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6504      * <blockquote><pre>{@code
6505      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6506      * V init(A...);
6507      * V body(V,T,A...);
6508      * V iteratedLoop(A... a...) {
6509      *   Iterator<T> it = iterator(a...);
6510      *   V v = init(a...);
6511      *   while (it.hasNext()) {
6512      *     T t = it.next();
6513      *     v = body(v, t, a...);
6514      *   }
6515      *   return v;
6516      * }
6517      * }</pre></blockquote>
6518      *
6519      * @apiNote Example:
6520      * <blockquote><pre>{@code
6521      * // get an iterator from a list
6522      * static List<String> reverseStep(List<String> r, String e) {
6523      *   r.add(0, e);
6524      *   return r;
6525      * }
6526      * static List<String> newArrayList() { return new ArrayList<>(); }
6527      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6528      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6529      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6530      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6531      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6532      * }</pre></blockquote>
6533      *
6534      * @apiNote The implementation of this method can be expressed approximately as follows:
6535      * <blockquote><pre>{@code
6536      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6537      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6538      *     Class<?> returnType = body.type().returnType();
6539      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6540      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6541      *     MethodHandle retv = null, step = body, startIter = iterator;
6542      *     if (returnType != void.class) {
6543      *         // the simple thing first:  in (I V A...), drop the I to get V
6544      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6545      *         // body type signature (V T A...), internal loop types (I V A...)
6546      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6547      *     }
6548      *     if (startIter == null)  startIter = MH_getIter;
6549      *     MethodHandle[]
6550      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6551      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6552      *     return loop(iterVar, bodyClause);
6553      * }
6554      * }</pre></blockquote>
6555      *
6556      * @param iterator an optional handle to return the iterator to start the loop.
6557      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6558      *                 See above for other constraints.
6559      * @param init optional initializer, providing the initial value of the loop variable.
6560      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6561      * @param body body of the loop, which may not be {@code null}.
6562      *             It controls the loop parameters and result type in the standard case (see above for details).
6563      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6564      *             and may accept any number of additional types.
6565      *             See above for other constraints.
6566      *
6567      * @return a method handle embodying the iteration loop functionality.
6568      * @throws NullPointerException if the {@code body} handle is {@code null}.
6569      * @throws IllegalArgumentException if any argument violates the above requirements.
6570      *
6571      * @since 9
6572      */
6573     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6574         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6575         Class<?> returnType = body.type().returnType();
6576         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6577         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6578         MethodHandle startIter;
6579         MethodHandle nextVal;
6580         {
6581             MethodType iteratorType;
6582             if (iterator == null) {
6583                 // derive argument type from body, if available, else use Iterable
6584                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6585                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6586             } else {
6587                 // force return type to the internal iterator class
6588                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6589                 startIter = iterator;
6590             }
6591             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6592             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6593 
6594             // perform the asType transforms under an exception transformer, as per spec.:
6595             try {
6596                 startIter = startIter.asType(iteratorType);
6597                 nextVal = nextRaw.asType(nextValType);
6598             } catch (WrongMethodTypeException ex) {
6599                 throw new IllegalArgumentException(ex);
6600             }
6601         }
6602 
6603         MethodHandle retv = null, step = body;
6604         if (returnType != void.class) {
6605             // the simple thing first:  in (I V A...), drop the I to get V
6606             retv = dropArguments(identity(returnType), 0, Iterator.class);
6607             // body type signature (V T A...), internal loop types (I V A...)
6608             step = swapArguments(body, 0, 1);  // swap V <-> T
6609         }
6610 
6611         MethodHandle[]
6612             iterVar    = { startIter, null, hasNext, retv },
6613             bodyClause = { init, filterArgument(step, 0, nextVal) };
6614         return loop(iterVar, bodyClause);
6615     }
6616 
6617     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6618         Objects.requireNonNull(body);
6619         MethodType bodyType = body.type();
6620         Class<?> returnType = bodyType.returnType();
6621         List<Class<?>> internalParamList = bodyType.parameterList();
6622         // strip leading V value if present
6623         int vsize = (returnType == void.class ? 0 : 1);
6624         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6625             // argument list has no "V" => error
6626             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6627             throw misMatchedTypes("body function", bodyType, expected);
6628         } else if (internalParamList.size() <= vsize) {
6629             // missing T type => error
6630             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6631             throw misMatchedTypes("body function", bodyType, expected);
6632         }
6633         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6634         Class<?> iterableType = null;
6635         if (iterator != null) {
6636             // special case; if the body handle only declares V and T then
6637             // the external parameter list is obtained from iterator handle
6638             if (externalParamList.isEmpty()) {
6639                 externalParamList = iterator.type().parameterList();
6640             }
6641             MethodType itype = iterator.type();
6642             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6643                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6644             }
6645             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6646                 MethodType expected = methodType(itype.returnType(), externalParamList);
6647                 throw misMatchedTypes("iterator parameters", itype, expected);
6648             }
6649         } else {
6650             if (externalParamList.isEmpty()) {
6651                 // special case; if the iterator handle is null and the body handle
6652                 // only declares V and T then the external parameter list consists
6653                 // of Iterable
6654                 externalParamList = Arrays.asList(Iterable.class);
6655                 iterableType = Iterable.class;
6656             } else {
6657                 // special case; if the iterator handle is null and the external
6658                 // parameter list is not empty then the first parameter must be
6659                 // assignable to Iterable
6660                 iterableType = externalParamList.get(0);
6661                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6662                     throw newIllegalArgumentException(
6663                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6664                 }
6665             }
6666         }
6667         if (init != null) {
6668             MethodType initType = init.type();
6669             if (initType.returnType() != returnType ||
6670                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6671                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6672             }
6673         }
6674         return iterableType;  // help the caller a bit
6675     }
6676 
6677     /*non-public*/
6678     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6679         // there should be a better way to uncross my wires
6680         int arity = mh.type().parameterCount();
6681         int[] order = new int[arity];
6682         for (int k = 0; k < arity; k++)  order[k] = k;
6683         order[i] = j; order[j] = i;
6684         Class<?>[] types = mh.type().parameterArray();
6685         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6686         MethodType swapType = methodType(mh.type().returnType(), types);
6687         return permuteArguments(mh, swapType, order);
6688     }
6689 
6690     /**
6691      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6692      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6693      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6694      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6695      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6696      * {@code try-finally} handle.
6697      * <p>
6698      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6699      * The first is the exception thrown during the
6700      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6701      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6702      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6703      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6704      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6705      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6706      * <p>
6707      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6708      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6709      * two extra leading parameters:<ul>
6710      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6711      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6712      * the result from the execution of the {@code target} handle.
6713      * This parameter is not present if the {@code target} returns {@code void}.
6714      * </ul>
6715      * <p>
6716      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6717      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6718      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6719      * the cleanup.
6720      * <blockquote><pre>{@code
6721      * V target(A..., B...);
6722      * V cleanup(Throwable, V, A...);
6723      * V adapter(A... a, B... b) {
6724      *   V result = (zero value for V);
6725      *   Throwable throwable = null;
6726      *   try {
6727      *     result = target(a..., b...);
6728      *   } catch (Throwable t) {
6729      *     throwable = t;
6730      *     throw t;
6731      *   } finally {
6732      *     result = cleanup(throwable, result, a...);
6733      *   }
6734      *   return result;
6735      * }
6736      * }</pre></blockquote>
6737      * <p>
6738      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6739      * be modified by execution of the target, and so are passed unchanged
6740      * from the caller to the cleanup, if it is invoked.
6741      * <p>
6742      * The target and cleanup must return the same type, even if the cleanup
6743      * always throws.
6744      * To create such a throwing cleanup, compose the cleanup logic
6745      * with {@link #throwException throwException},
6746      * in order to create a method handle of the correct return type.
6747      * <p>
6748      * Note that {@code tryFinally} never converts exceptions into normal returns.
6749      * In rare cases where exceptions must be converted in that way, first wrap
6750      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6751      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6752      * <p>
6753      * It is recommended that the first parameter type of {@code cleanup} be
6754      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6755      * {@code cleanup} will always be invoked with whatever exception that
6756      * {@code target} throws.  Declaring a narrower type may result in a
6757      * {@code ClassCastException} being thrown by the {@code try-finally}
6758      * handle if the type of the exception thrown by {@code target} is not
6759      * assignable to the first parameter type of {@code cleanup}.  Note that
6760      * various exception types of {@code VirtualMachineError},
6761      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6762      * thrown by almost any kind of Java code, and a finally clause that
6763      * catches (say) only {@code IOException} would mask any of the others
6764      * behind a {@code ClassCastException}.
6765      *
6766      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6767      * @param cleanup the handle that is invoked in the finally block.
6768      *
6769      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6770      * @throws NullPointerException if any argument is null
6771      * @throws IllegalArgumentException if {@code cleanup} does not accept
6772      *          the required leading arguments, or if the method handle types do
6773      *          not match in their return types and their
6774      *          corresponding trailing parameters
6775      *
6776      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6777      * @since 9
6778      */
6779     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6780         List<Class<?>> targetParamTypes = target.type().parameterList();
6781         Class<?> rtype = target.type().returnType();
6782 
6783         tryFinallyChecks(target, cleanup);
6784 
6785         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6786         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6787         // target parameter list.
6788         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6789 
6790         // Ensure that the intrinsic type checks the instance thrown by the
6791         // target against the first parameter of cleanup
6792         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6793 
6794         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6795         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6796     }
6797 
6798     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6799         Class<?> rtype = target.type().returnType();
6800         if (rtype != cleanup.type().returnType()) {
6801             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6802         }
6803         MethodType cleanupType = cleanup.type();
6804         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6805             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6806         }
6807         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6808             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6809         }
6810         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6811         // target parameter list.
6812         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6813         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6814             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6815                     cleanup.type(), target.type());
6816         }
6817     }
6818 
6819 }