1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with private access
 106      */
 107     @CallerSensitive
 108     @ForceInline // to ensure Reflection.getCallerClass optimization
 109     public static Lookup lookup() {
 110         return new Lookup(Reflection.getCallerClass());
 111     }
 112 
 113     /**
 114      * This reflected$lookup method is the alternate implementation of
 115      * the lookup method when being invoked by reflection.
 116      */
 117     @CallerSensitive
 118     private static Lookup reflected$lookup() {
 119         Class<?> caller = Reflection.getCallerClass();
 120         if (caller.getClassLoader() == null) {
 121             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 122         }
 123         return new Lookup(caller);
 124     }
 125 
 126     /**
 127      * Returns a {@link Lookup lookup object} which is trusted minimally.
 128      * The lookup has the {@code UNCONDITIONAL} mode.
 129      * It can only be used to create method handles to public members of
 130      * public classes in packages that are exported unconditionally.
 131      * <p>
 132      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 133      * of this lookup object will be {@link java.lang.Object}.
 134      *
 135      * @apiNote The use of Object is conventional, and because the lookup modes are
 136      * limited, there is no special access provided to the internals of Object, its package
 137      * or its module.  This public lookup object or other lookup object with
 138      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 139      * is not used to determine the lookup context.
 140      *
 141      * <p style="font-size:smaller;">
 142      * <em>Discussion:</em>
 143      * The lookup class can be changed to any other class {@code C} using an expression of the form
 144      * {@link Lookup#in publicLookup().in(C.class)}.
 145      * A public lookup object is always subject to
 146      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 147      * Also, it cannot access
 148      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 149      * @return a lookup object which is trusted minimally
 150      *
 151      * @revised 9
 152      * @spec JPMS
 153      */
 154     public static Lookup publicLookup() {
 155         return Lookup.PUBLIC_LOOKUP;
 156     }
 157 
 158     /**
 159      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 160      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> private access</a>.
 161      * The returned lookup object can provide access to classes in modules and packages,
 162      * and members of those classes, outside the normal rules of Java access control,
 163      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 164      * <p>
 165      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 166      * allowed to do deep reflection on module {@code M2} and package of the target class
 167      * if and only if all of the following conditions are {@code true}:
 168      * <ul>
 169      * <li>If there is a security manager, its {@code checkPermission} method is
 170      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 171      * that must return normally.
 172      * <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 173      * (This is because otherwise there would be no way to ensure the original lookup
 174      * creator was a member of any particular module, and so any subsequent checks
 175      * for readability and qualified exports would become ineffective.)
 176      * <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 177      * (This is because an application intending to share intra-module access
 178      * using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 179      * deep reflection to its own module.)
 180      * <li>The target class must be a proper class, not a primitive or array class.
 181      * (Thus, {@code M2} is well-defined.)
 182      * <li>If the caller module {@code M1} differs from
 183      * the target module {@code M2} then both of the following must be true:
 184      *   <ul>
 185      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 186      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 187      *         containing the target class to at least {@code M1}.</li>
 188      *   </ul>
 189      * </ul>
 190      * <p>
 191      * If any of the above checks is violated, this method fails with an
 192      * exception.
 193      * <p>
 194      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 195      * returns a {@code Lookup} on {@code targetClass} with full capabilities and
 196      * {@code null} previous lookup class.
 197      * <p>
 198      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 199      * returns a {@code Lookup} on {@code targetClass} that records
 200      * the lookup class of the caller as the new previous lookup class and
 201      * drops {@code MODULE} access from the full capabilities mode.
 202      *
 203      * @param targetClass the target class
 204      * @param caller the caller lookup object
 205      * @return a lookup object for the target class, with private access
 206      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 207      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 208      * @throws SecurityException if denied by the security manager
 209      * @throws IllegalAccessException if any of the other access checks specified above fails
 210      * @since 9
 211      * @spec JPMS
 212      * @see Lookup#dropLookupMode
 213      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 214      */
 215     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 216         SecurityManager sm = System.getSecurityManager();
 217         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 218         if (targetClass.isPrimitive())
 219             throw new IllegalArgumentException(targetClass + " is a primitive class");
 220         if (targetClass.isArray())
 221             throw new IllegalArgumentException(targetClass + " is an array class");
 222         // Ensure that we can reason accurately about private and module access.
 223         if ((caller.lookupModes() & Lookup.PRIVATE) == 0)
 224             throw new IllegalAccessException("caller does not have PRIVATE lookup mode");
 225         if ((caller.lookupModes() & Lookup.MODULE) == 0)
 226             throw new IllegalAccessException("caller does not have MODULE lookup mode");
 227 
 228         // previous lookup class is never set if it has MODULE access
 229         assert caller.previousLookupClass() == null;
 230 
 231         Class<?> callerClass = caller.lookupClass();
 232         Module callerModule = callerClass.getModule();  // M1
 233         Module targetModule = targetClass.getModule();  // M2
 234         Class<?> newPreviousClass = null;
 235         int newModes = Lookup.FULL_POWER_MODES;
 236 
 237         if (targetModule != callerModule) {
 238             if (!callerModule.canRead(targetModule))
 239                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 240             if (targetModule.isNamed()) {
 241                 String pn = targetClass.getPackageName();
 242                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 243                 if (!targetModule.isOpen(pn, callerModule))
 244                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 245             }
 246 
 247             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 248             newPreviousClass = callerClass;
 249             newModes &= ~Lookup.MODULE;
 250         }
 251 
 252         if (!callerModule.isNamed() && targetModule.isNamed()) {
 253             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 254             if (logger != null) {
 255                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 256             }
 257         }
 258         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 259     }
 260 
 261     /**
 262      * Performs an unchecked "crack" of a
 263      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 264      * The result is as if the user had obtained a lookup object capable enough
 265      * to crack the target method handle, called
 266      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 267      * on the target to obtain its symbolic reference, and then called
 268      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 269      * to resolve the symbolic reference to a member.
 270      * <p>
 271      * If there is a security manager, its {@code checkPermission} method
 272      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 273      * @param <T> the desired type of the result, either {@link Member} or a subtype
 274      * @param target a direct method handle to crack into symbolic reference components
 275      * @param expected a class object representing the desired result type {@code T}
 276      * @return a reference to the method, constructor, or field object
 277      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 278      * @throws    NullPointerException if either argument is {@code null}
 279      * @throws    IllegalArgumentException if the target is not a direct method handle
 280      * @throws    ClassCastException if the member is not of the expected type
 281      * @since 1.8
 282      */
 283     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 284         SecurityManager smgr = System.getSecurityManager();
 285         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 286         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 287         return lookup.revealDirect(target).reflectAs(expected, lookup);
 288     }
 289     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 290     private static final java.security.Permission ACCESS_PERMISSION =
 291         new ReflectPermission("suppressAccessChecks");
 292 
 293     /**
 294      * A <em>lookup object</em> is a factory for creating method handles,
 295      * when the creation requires access checking.
 296      * Method handles do not perform
 297      * access checks when they are called, but rather when they are created.
 298      * Therefore, method handle access
 299      * restrictions must be enforced when a method handle is created.
 300      * The caller class against which those restrictions are enforced
 301      * is known as the {@linkplain #lookupClass() lookup class}.
 302      * <p>
 303      * A lookup class which needs to create method handles will call
 304      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 305      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 306      * determined, and securely stored in the {@code Lookup} object.
 307      * The lookup class (or its delegates) may then use factory methods
 308      * on the {@code Lookup} object to create method handles for access-checked members.
 309      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 310      * even private ones.
 311      *
 312      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 313      * The factory methods on a {@code Lookup} object correspond to all major
 314      * use cases for methods, constructors, and fields.
 315      * Each method handle created by a factory method is the functional
 316      * equivalent of a particular <em>bytecode behavior</em>.
 317      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 318      * Here is a summary of the correspondence between these factory methods and
 319      * the behavior of the resulting method handles:
 320      * <table class="striped">
 321      * <caption style="display:none">lookup method behaviors</caption>
 322      * <thead>
 323      * <tr>
 324      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 325      *     <th scope="col">member</th>
 326      *     <th scope="col">bytecode behavior</th>
 327      * </tr>
 328      * </thead>
 329      * <tbody>
 330      * <tr>
 331      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 332      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 333      * </tr>
 334      * <tr>
 335      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 336      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 337      * </tr>
 338      * <tr>
 339      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 340      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 341      * </tr>
 342      * <tr>
 343      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 344      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 345      * </tr>
 346      * <tr>
 347      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 348      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 349      * </tr>
 350      * <tr>
 351      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 352      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 353      * </tr>
 354      * <tr>
 355      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 356      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 357      * </tr>
 358      * <tr>
 359      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 360      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 361      * </tr>
 362      * <tr>
 363      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 364      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 365      * </tr>
 366      * <tr>
 367      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 368      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 369      * </tr>
 370      * <tr>
 371      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 372      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 373      * </tr>
 374      * <tr>
 375      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 376      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 377      * </tr>
 378      * <tr>
 379      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 380      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 381      * </tr>
 382      * <tr>
 383      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 384      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 385      * </tr>
 386      * </tbody>
 387      * </table>
 388      *
 389      * Here, the type {@code C} is the class or interface being searched for a member,
 390      * documented as a parameter named {@code refc} in the lookup methods.
 391      * The method type {@code MT} is composed from the return type {@code T}
 392      * and the sequence of argument types {@code A*}.
 393      * The constructor also has a sequence of argument types {@code A*} and
 394      * is deemed to return the newly-created object of type {@code C}.
 395      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 396      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 397      * if it is present, it is always the leading argument to the method handle invocation.
 398      * (In the case of some {@code protected} members, {@code this} may be
 399      * restricted in type to the lookup class; see below.)
 400      * The name {@code arg} stands for all the other method handle arguments.
 401      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 402      * stands for a null reference if the accessed method or field is static,
 403      * and {@code this} otherwise.
 404      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 405      * for reflective objects corresponding to the given members declared in type {@code C}.
 406      * <p>
 407      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 408      * as if by {@code ldc CONSTANT_Class}.
 409      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 410      * <p>
 411      * In cases where the given member is of variable arity (i.e., a method or constructor)
 412      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 413      * In all other cases, the returned method handle will be of fixed arity.
 414      * <p style="font-size:smaller;">
 415      * <em>Discussion:</em>
 416      * The equivalence between looked-up method handles and underlying
 417      * class members and bytecode behaviors
 418      * can break down in a few ways:
 419      * <ul style="font-size:smaller;">
 420      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 421      * the lookup can still succeed, even when there is no equivalent
 422      * Java expression or bytecoded constant.
 423      * <li>Likewise, if {@code T} or {@code MT}
 424      * is not symbolically accessible from the lookup class's loader,
 425      * the lookup can still succeed.
 426      * For example, lookups for {@code MethodHandle.invokeExact} and
 427      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 428      * <li>If there is a security manager installed, it can forbid the lookup
 429      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 430      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 431      * constant is not subject to security manager checks.
 432      * <li>If the looked-up method has a
 433      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 434      * the method handle creation may fail with an
 435      * {@code IllegalArgumentException}, due to the method handle type having
 436      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 437      * </ul>
 438      *
 439      * <h2><a id="access"></a>Access checking</h2>
 440      * Access checks are applied in the factory methods of {@code Lookup},
 441      * when a method handle is created.
 442      * This is a key difference from the Core Reflection API, since
 443      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 444      * performs access checking against every caller, on every call.
 445      * <p>
 446      * All access checks start from a {@code Lookup} object, which
 447      * compares its recorded lookup class against all requests to
 448      * create method handles.
 449      * A single {@code Lookup} object can be used to create any number
 450      * of access-checked method handles, all checked against a single
 451      * lookup class.
 452      * <p>
 453      * A {@code Lookup} object can be shared with other trusted code,
 454      * such as a metaobject protocol.
 455      * A shared {@code Lookup} object delegates the capability
 456      * to create method handles on private members of the lookup class.
 457      * Even if privileged code uses the {@code Lookup} object,
 458      * the access checking is confined to the privileges of the
 459      * original lookup class.
 460      * <p>
 461      * A lookup can fail, because
 462      * the containing class is not accessible to the lookup class, or
 463      * because the desired class member is missing, or because the
 464      * desired class member is not accessible to the lookup class, or
 465      * because the lookup object is not trusted enough to access the member.
 466      * In the case of a field setter function on a {@code final} field,
 467      * finality enforcement is treated as a kind of access control,
 468      * and the lookup will fail, except in special cases of
 469      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 470      * In any of these cases, a {@code ReflectiveOperationException} will be
 471      * thrown from the attempted lookup.  The exact class will be one of
 472      * the following:
 473      * <ul>
 474      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 475      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 476      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 477      * </ul>
 478      * <p>
 479      * In general, the conditions under which a method handle may be
 480      * looked up for a method {@code M} are no more restrictive than the conditions
 481      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 482      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 483      * a method handle lookup will generally raise a corresponding
 484      * checked exception, such as {@code NoSuchMethodException}.
 485      * And the effect of invoking the method handle resulting from the lookup
 486      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 487      * to executing the compiled, verified, and resolved call to {@code M}.
 488      * The same point is true of fields and constructors.
 489      * <p style="font-size:smaller;">
 490      * <em>Discussion:</em>
 491      * Access checks only apply to named and reflected methods,
 492      * constructors, and fields.
 493      * Other method handle creation methods, such as
 494      * {@link MethodHandle#asType MethodHandle.asType},
 495      * do not require any access checks, and are used
 496      * independently of any {@code Lookup} object.
 497      * <p>
 498      * If the desired member is {@code protected}, the usual JVM rules apply,
 499      * including the requirement that the lookup class must either be in the
 500      * same package as the desired member, or must inherit that member.
 501      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 502      * In addition, if the desired member is a non-static field or method
 503      * in a different package, the resulting method handle may only be applied
 504      * to objects of the lookup class or one of its subclasses.
 505      * This requirement is enforced by narrowing the type of the leading
 506      * {@code this} parameter from {@code C}
 507      * (which will necessarily be a superclass of the lookup class)
 508      * to the lookup class itself.
 509      * <p>
 510      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 511      * that the receiver argument must match both the resolved method <em>and</em>
 512      * the current class.  Again, this requirement is enforced by narrowing the
 513      * type of the leading parameter to the resulting method handle.
 514      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 515      * <p>
 516      * The JVM represents constructors and static initializer blocks as internal methods
 517      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 518      * The internal syntax of invocation instructions allows them to refer to such internal
 519      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 520      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 521      * <p>
 522      * If the relationship between nested types is expressed directly through the
 523      * {@code NestHost} and {@code NestMembers} attributes
 524      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 525      * then the associated {@code Lookup} object provides direct access to
 526      * the lookup class and all of its nestmates
 527      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 528      * Otherwise, access between nested classes is obtained by the Java compiler creating
 529      * a wrapper method to access a private method of another class in the same nest.
 530      * For example, a nested class {@code C.D}
 531      * can access private members within other related classes such as
 532      * {@code C}, {@code C.D.E}, or {@code C.B},
 533      * but the Java compiler may need to generate wrapper methods in
 534      * those related classes.  In such cases, a {@code Lookup} object on
 535      * {@code C.E} would be unable to access those private members.
 536      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 537      * which can transform a lookup on {@code C.E} into one on any of those other
 538      * classes, without special elevation of privilege.
 539      * <p>
 540      * The accesses permitted to a given lookup object may be limited,
 541      * according to its set of {@link #lookupModes lookupModes},
 542      * to a subset of members normally accessible to the lookup class.
 543      * For example, the {@link MethodHandles#publicLookup publicLookup}
 544      * method produces a lookup object which is only allowed to access
 545      * public members in public classes of exported packages.
 546      * The caller sensitive method {@link MethodHandles#lookup lookup}
 547      * produces a lookup object with full capabilities relative to
 548      * its caller class, to emulate all supported bytecode behaviors.
 549      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 550      * with fewer access modes than the original lookup object.
 551      *
 552      * <p style="font-size:smaller;">
 553      * <a id="privacc"></a>
 554      * <em>Discussion of private access:</em>
 555      * We say that a lookup has <em>private access</em>
 556      * if its {@linkplain #lookupModes lookup modes}
 557      * include the possibility of accessing {@code private} members
 558      * (which includes the private members of nestmates).
 559      * As documented in the relevant methods elsewhere,
 560      * only lookups with private access possess the following capabilities:
 561      * <ul style="font-size:smaller;">
 562      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 563      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 564      *     such as {@code Class.forName}
 565      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 566      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 567      *     for classes accessible to the lookup class
 568      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 569      *     within the same package member
 570      * </ul>
 571      * <p style="font-size:smaller;">
 572      * Each of these permissions is a consequence of the fact that a lookup object
 573      * with private access can be securely traced back to an originating class,
 574      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 575      * can be reliably determined and emulated by method handles.
 576      *
 577      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 578      * When a lookup class in one module {@code M1} accesses a class in another module
 579      * {@code M2}, extra access checking is performed beyond the access mode bits.
 580      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 581      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 582      * and when the type is in a package of {@code M2} that is exported to
 583      * at least {@code M1}.
 584      * <p>
 585      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 586      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 587      * MethodHandles.privateLookupIn} methods.
 588      * Teleporting across modules will always record the original lookup class as
 589      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 590      * and drops {@link Lookup#MODULE MODULE} access.
 591      * If the target class is in the same module as the lookup class {@code C},
 592      * then the target class becomes the new lookup class
 593      * and there is no change to the previous lookup class.
 594      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 595      * {@code C} becomes the new previous lookup class
 596      * and the target class becomes the new lookup class.
 597      * In that case, if there was already a previous lookup class in {@code M0},
 598      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 599      * drops all privileges.
 600      * For example,
 601      * <blockquote><pre>
 602      * {@code
 603      * Lookup lookup = MethodHandles.lookup();   // in class C
 604      * Lookup lookup2 = lookup.in(D.class);
 605      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 606      * }</pre></blockquote>
 607      * <p>
 608      * The {@link #lookup()} factory method produces a {@code Lookup} object
 609      * with {@code null} previous lookup class.
 610      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 611      * to class {@code D} without elevation of privileges.
 612      * If {@code C} and {@code D} are in the same module,
 613      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 614      * same previous lookup class as the original {@code lookup}, or
 615      * {@code null} if not present.
 616      * <p>
 617      * When a {@code Lookup} teleports from a class
 618      * in one nest to another nest, {@code PRIVATE} access is dropped.
 619      * When a {@code Lookup} teleports from a class in one package to
 620      * another package, {@code PACKAGE} access is dropped.
 621      * When a {@code Lookup} teleports from a class in one module to another module,
 622      * {@code MODULE} access is dropped.
 623      * Teleporting across modules drops the ability to access non-exported classes
 624      * in both the module of the new lookup class and the module of the old lookup class
 625      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 626      * A {@code Lookup} can teleport back and forth to a class in the module of
 627      * the lookup class and the module of the previous class lookup.
 628      * Teleporting across modules can only decrease access but cannot increase it.
 629      * Teleporting to some third module drops all accesses.
 630      * <p>
 631      * In the above example, if {@code C} and {@code D} are in different modules,
 632      * {@code lookup2} records {@code D} as its lookup class and
 633      * {@code C} as its previous lookup class and {@code lookup2} has only
 634      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 635      * {@code C}'s module and {@code D}'s module.
 636      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 637      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 638      * class {@code D} is recorded as its previous lookup class.
 639      * <p>
 640      * Teleporting across modules restricts access to the public types that
 641      * both the lookup class and the previous lookup class can equally access
 642      * (see below).
 643      * <p>
 644      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 645      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 646      * and create a new {@code Lookup} with <a href="#privcc">private access</a>
 647      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 648      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 649      * to call {@code privateLookupIn}.
 650      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 651      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 652      * produces a new {@code Lookup} on {@code T} with full capabilities.
 653      * A {@code lookup} on {@code C} is also allowed
 654      * to do deep reflection on {@code T} in another module {@code M2} if
 655      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 656      * the package containing {@code T} to at least {@code M1}.
 657      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 658      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 659      * The resulting {@code Lookup} can be used to do member lookup or teleport
 660      * to another lookup class by calling {@link #in Lookup::in}.  But
 661      * it cannot be used to obtain another private {@code Lookup} by calling
 662      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 663      * because it has no {@code MODULE} access.
 664      *
 665      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 666      *
 667      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 668      * allows cross-module access. The access checking is performed with respect
 669      * to both the lookup class and the previous lookup class if present.
 670      * <p>
 671      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 672      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 673      * exported unconditionally}.
 674      * <p>
 675      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 676      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 677      * that are readable to {@code M1} and the type is in a package that is exported
 678      * at least to {@code M1}.
 679      * <p>
 680      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 681      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 682      * the intersection of all public types that are accessible to {@code M1}
 683      * with all public types that are accessible to {@code M0}. {@code M0}
 684      * reads {@code M1} and hence the set of accessible types includes:
 685      *
 686      * <table class="striped">
 687      * <caption style="display:none">
 688      * Public types in the following packages are accessible to the
 689      * lookup class and the previous lookup class.
 690      * </caption>
 691      * <thead>
 692      * <tr>
 693      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 694      * </tr>
 695      * </thead>
 696      * <tbody>
 697      * <tr>
 698      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 699      * </tr>
 700      * <tr>
 701      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 702      * </tr>
 703      * <tr>
 704      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 705      * if both {@code M0} and {@code M1} read {@code M2}</th>
 706      * </tr>
 707      * <tr>
 708      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 709      * </tr>
 710      * <tr>
 711      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 712      * if {@code M1} reads {@code M0}</th>
 713      * </tr>
 714      * <tr>
 715      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 716      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 717      * </tr>
 718      * </tbody>
 719      * </table>
 720      *
 721      * <h2><a id="access-modes"></a>Access modes</h2>
 722      *
 723      * The table below shows the access modes of a {@code Lookup} produced by
 724      * any of the following factory or transformation methods:
 725      * <ul>
 726      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 727      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 728      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 729      * <li>{@link Lookup#in}</li>
 730      * <li>{@link Lookup#dropLookupMode(int)}</li>
 731      * </ul>
 732      *
 733      * <table class="striped">
 734      * <caption style="display:none">
 735      * Access mode summary
 736      * </caption>
 737      * <thead>
 738      * <tr>
 739      * <th scope="col">Lookup object</th>
 740      * <th style="text-align:center">protected</th>
 741      * <th style="text-align:center">private</th>
 742      * <th style="text-align:center">package</th>
 743      * <th style="text-align:center">module</th>
 744      * <th style="text-align:center">public</th>
 745      * </tr>
 746      * </thead>
 747      * <tbody>
 748      * <tr>
 749      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 750      * <td style="text-align:center">PRO</td>
 751      * <td style="text-align:center">PRI</td>
 752      * <td style="text-align:center">PAC</td>
 753      * <td style="text-align:center">MOD</td>
 754      * <td style="text-align:center">1R</td>
 755      * </tr>
 756      * <tr>
 757      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 758      * <td></td>
 759      * <td></td>
 760      * <td style="text-align:center">PAC</td>
 761      * <td style="text-align:center">MOD</td>
 762      * <td style="text-align:center">1R</td>
 763      * </tr>
 764      * <tr>
 765      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 766      * <td></td>
 767      * <td></td>
 768      * <td></td>
 769      * <td style="text-align:center">MOD</td>
 770      * <td style="text-align:center">1R</td>
 771      * </tr>
 772      * <tr>
 773      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 774      * <td></td>
 775      * <td></td>
 776      * <td></td>
 777      * <td></td>
 778      * <td style="text-align:center">2R</td>
 779      * </tr>
 780      * <tr>
 781      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 782      * <td></td>
 783      * <td></td>
 784      * <td></td>
 785      * <td></td>
 786      * <td style="text-align:center">2R</td>
 787      * </tr>
 788      * <tr>
 789      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 790      * <td style="text-align:center">PRO</td>
 791      * <td style="text-align:center">PRI</td>
 792      * <td style="text-align:center">PAC</td>
 793      * <td style="text-align:center">MOD</td>
 794      * <td style="text-align:center">1R</td>
 795      * </tr>
 796      * <tr>
 797      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 798      * <td style="text-align:center">PRO</td>
 799      * <td style="text-align:center">PRI</td>
 800      * <td style="text-align:center">PAC</td>
 801      * <td style="text-align:center">MOD</td>
 802      * <td style="text-align:center">1R</td>
 803      * </tr>
 804      * <tr>
 805      * <td>{@code PRI1.in(C1)} same package</td>
 806      * <td></td>
 807      * <td></td>
 808      * <td style="text-align:center">PAC</td>
 809      * <td style="text-align:center">MOD</td>
 810      * <td style="text-align:center">1R</td>
 811      * </tr>
 812      * <tr>
 813      * <td>{@code PRI1.in(C1)} different package</td>
 814      * <td></td>
 815      * <td></td>
 816      * <td></td>
 817      * <td style="text-align:center">MOD</td>
 818      * <td style="text-align:center">1R</td>
 819      * </tr>
 820      * <tr>
 821      * <td>{@code PRI1.in(D)} different module</td>
 822      * <td></td>
 823      * <td></td>
 824      * <td></td>
 825      * <td></td>
 826      * <td style="text-align:center">2R</td>
 827      * </tr>
 828      * <tr>
 829      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 830      * <td></td>
 831      * <td style="text-align:center">PRI</td>
 832      * <td style="text-align:center">PAC</td>
 833      * <td style="text-align:center">MOD</td>
 834      * <td style="text-align:center">1R</td>
 835      * </tr>
 836      * <tr>
 837      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 838      * <td></td>
 839      * <td></td>
 840      * <td style="text-align:center">PAC</td>
 841      * <td style="text-align:center">MOD</td>
 842      * <td style="text-align:center">1R</td>
 843      * </tr>
 844      * <tr>
 845      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 846      * <td></td>
 847      * <td></td>
 848      * <td></td>
 849      * <td style="text-align:center">MOD</td>
 850      * <td style="text-align:center">1R</td>
 851      * </tr>
 852      * <tr>
 853      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 854      * <td></td>
 855      * <td></td>
 856      * <td></td>
 857      * <td></td>
 858      * <td style="text-align:center">1R</td>
 859      * </tr>
 860      * <tr>
 861      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 862      * <td></td>
 863      * <td></td>
 864      * <td></td>
 865      * <td></td>
 866      * <td style="text-align:center">none</td>
 867      * <tr>
 868      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 869      * <td style="text-align:center">PRO</td>
 870      * <td style="text-align:center">PRI</td>
 871      * <td style="text-align:center">PAC</td>
 872      * <td></td>
 873      * <td style="text-align:center">2R</td>
 874      * </tr>
 875      * <tr>
 876      * <td>{@code privateLookupIn(D,PRI1)}</td>
 877      * <td style="text-align:center">PRO</td>
 878      * <td style="text-align:center">PRI</td>
 879      * <td style="text-align:center">PAC</td>
 880      * <td></td>
 881      * <td style="text-align:center">2R</td>
 882      * </tr>
 883      * <tr>
 884      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 885      * <td></td>
 886      * <td></td>
 887      * <td></td>
 888      * <td></td>
 889      * <td style="text-align:center">IAE</td>
 890      * </tr>
 891      * <tr>
 892      * <td>{@code PRI2.in(D2)} same package</td>
 893      * <td></td>
 894      * <td></td>
 895      * <td style="text-align:center">PAC</td>
 896      * <td></td>
 897      * <td style="text-align:center">2R</td>
 898      * </tr>
 899      * <tr>
 900      * <td>{@code PRI2.in(D2)} different package</td>
 901      * <td></td>
 902      * <td></td>
 903      * <td></td>
 904      * <td></td>
 905      * <td style="text-align:center">2R</td>
 906      * </tr>
 907      * <tr>
 908      * <td>{@code PRI2.in(C1)} hop back to module</td>
 909      * <td></td>
 910      * <td></td>
 911      * <td></td>
 912      * <td></td>
 913      * <td style="text-align:center">2R</td>
 914      * </tr>
 915      * <tr>
 916      * <td>{@code PRI2.in(E)} hop to third module</td>
 917      * <td></td>
 918      * <td></td>
 919      * <td></td>
 920      * <td></td>
 921      * <td style="text-align:center">none</td>
 922      * </tr>
 923      * <tr>
 924      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 925      * <td></td>
 926      * <td style="text-align:center">PRI</td>
 927      * <td style="text-align:center">PAC</td>
 928      * <td></td>
 929      * <td style="text-align:center">2R</td>
 930      * </tr>
 931      * <tr>
 932      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 933      * <td></td>
 934      * <td></td>
 935      * <td style="text-align:center">PAC</td>
 936      * <td></td>
 937      * <td style="text-align:center">2R</td>
 938      * </tr>
 939      * <tr>
 940      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 941      * <td></td>
 942      * <td></td>
 943      * <td></td>
 944      * <td></td>
 945      * <td style="text-align:center">2R</td>
 946      * </tr>
 947      * <tr>
 948      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 949      * <td></td>
 950      * <td></td>
 951      * <td></td>
 952      * <td></td>
 953      * <td style="text-align:center">2R</td>
 954      * </tr>
 955      * <tr>
 956      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 957      * <td></td>
 958      * <td></td>
 959      * <td></td>
 960      * <td></td>
 961      * <td style="text-align:center">none</td>
 962      * </tr>
 963      * <tr>
 964      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 965      * <td></td>
 966      * <td style="text-align:center">PRI</td>
 967      * <td style="text-align:center">PAC</td>
 968      * <td style="text-align:center">MOD</td>
 969      * <td style="text-align:center">1R</td>
 970      * </tr>
 971      * <tr>
 972      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 973      * <td></td>
 974      * <td></td>
 975      * <td style="text-align:center">PAC</td>
 976      * <td style="text-align:center">MOD</td>
 977      * <td style="text-align:center">1R</td>
 978      * </tr>
 979      * <tr>
 980      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 981      * <td></td>
 982      * <td></td>
 983      * <td></td>
 984      * <td style="text-align:center">MOD</td>
 985      * <td style="text-align:center">1R</td>
 986      * </tr>
 987      * <tr>
 988      * <td>{@code CL.dropLookupMode(MODULE)}</td>
 989      * <td></td>
 990      * <td></td>
 991      * <td></td>
 992      * <td></td>
 993      * <td style="text-align:center">1R</td>
 994      * </tr>
 995      * <tr>
 996      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
 997      * <td></td>
 998      * <td></td>
 999      * <td></td>
1000      * <td></td>
1001      * <td style="text-align:center">none</td>
1002      * </tr>
1003      * <tr>
1004      * <td>{@code PUB = publicLookup()}</td>
1005      * <td></td>
1006      * <td></td>
1007      * <td></td>
1008      * <td></td>
1009      * <td style="text-align:center">U</td>
1010      * </tr>
1011      * <tr>
1012      * <td>{@code PUB.in(D)} different module</td>
1013      * <td></td>
1014      * <td></td>
1015      * <td></td>
1016      * <td></td>
1017      * <td style="text-align:center">U</td>
1018      * </tr>
1019      * <tr>
1020      * <td>{@code PUB.in(D).in(E)} third module</td>
1021      * <td></td>
1022      * <td></td>
1023      * <td></td>
1024      * <td></td>
1025      * <td style="text-align:center">U</td>
1026      * </tr>
1027      * <tr>
1028      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1029      * <td></td>
1030      * <td></td>
1031      * <td></td>
1032      * <td></td>
1033      * <td style="text-align:center">none</td>
1034      * </tr>
1035      * <tr>
1036      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1037      * <td></td>
1038      * <td></td>
1039      * <td></td>
1040      * <td></td>
1041      * <td style="text-align:center">IAE</td>
1042      * </tr>
1043      * <tr>
1044      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1045      * <td></td>
1046      * <td></td>
1047      * <td></td>
1048      * <td></td>
1049      * <td style="text-align:center">none</td>
1050      * </tr>
1051      * </tbody>
1052      * </table>
1053      *
1054      * <p>
1055      * Notes:
1056      * <ul>
1057      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1058      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1059      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1060      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1061      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1062      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1063      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1064      *     {@code MOD} indicates {@link #MODULE} bit set,
1065      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1066      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1067      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1068      * <li>Public access comes in three kinds:
1069      * <ul>
1070      * <li>unconditional ({@code U}): the lookup assumes readability.
1071      *     The lookup has {@code null} previous lookup class.
1072      * <li>one-module-reads ({@code 1R}): the module access checking is
1073      *     performed with respect to the lookup class.  The lookup has {@code null}
1074      *     previous lookup class.
1075      * <li>two-module-reads ({@code 2R}): the module access checking is
1076      *     performed with respect to the lookup class and the previous lookup class.
1077      *     The lookup has a non-null previous lookup class which is in a
1078      *     different module from the current lookup class.
1079      * </ul>
1080      * <li>Any attempt to reach a third module loses all access.</li>
1081      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1082      * all access modes are dropped.</li>
1083      * </ul>
1084      *
1085      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1086      * Although bytecode instructions can only refer to classes in
1087      * a related class loader, this API can search for methods in any
1088      * class, as long as a reference to its {@code Class} object is
1089      * available.  Such cross-loader references are also possible with the
1090      * Core Reflection API, and are impossible to bytecode instructions
1091      * such as {@code invokestatic} or {@code getfield}.
1092      * There is a {@linkplain java.lang.SecurityManager security manager API}
1093      * to allow applications to check such cross-loader references.
1094      * These checks apply to both the {@code MethodHandles.Lookup} API
1095      * and the Core Reflection API
1096      * (as found on {@link java.lang.Class Class}).
1097      * <p>
1098      * If a security manager is present, member and class lookups are subject to
1099      * additional checks.
1100      * From one to three calls are made to the security manager.
1101      * Any of these calls can refuse access by throwing a
1102      * {@link java.lang.SecurityException SecurityException}.
1103      * Define {@code smgr} as the security manager,
1104      * {@code lookc} as the lookup class of the current lookup object,
1105      * {@code refc} as the containing class in which the member
1106      * is being sought, and {@code defc} as the class in which the
1107      * member is actually defined.
1108      * (If a class or other type is being accessed,
1109      * the {@code refc} and {@code defc} values are the class itself.)
1110      * The value {@code lookc} is defined as <em>not present</em>
1111      * if the current lookup object does not have
1112      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1113      * The calls are made according to the following rules:
1114      * <ul>
1115      * <li><b>Step 1:</b>
1116      *     If {@code lookc} is not present, or if its class loader is not
1117      *     the same as or an ancestor of the class loader of {@code refc},
1118      *     then {@link SecurityManager#checkPackageAccess
1119      *     smgr.checkPackageAccess(refcPkg)} is called,
1120      *     where {@code refcPkg} is the package of {@code refc}.
1121      * <li><b>Step 2a:</b>
1122      *     If the retrieved member is not public and
1123      *     {@code lookc} is not present, then
1124      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1125      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1126      * <li><b>Step 2b:</b>
1127      *     If the retrieved class has a {@code null} class loader,
1128      *     and {@code lookc} is not present, then
1129      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1130      *     with {@code RuntimePermission("getClassLoader")} is called.
1131      * <li><b>Step 3:</b>
1132      *     If the retrieved member is not public,
1133      *     and if {@code lookc} is not present,
1134      *     and if {@code defc} and {@code refc} are different,
1135      *     then {@link SecurityManager#checkPackageAccess
1136      *     smgr.checkPackageAccess(defcPkg)} is called,
1137      *     where {@code defcPkg} is the package of {@code defc}.
1138      * </ul>
1139      * Security checks are performed after other access checks have passed.
1140      * Therefore, the above rules presuppose a member or class that is public,
1141      * or else that is being accessed from a lookup class that has
1142      * rights to access the member or class.
1143      *
1144      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1145      * A small number of Java methods have a special property called caller sensitivity.
1146      * A <em>caller-sensitive</em> method can behave differently depending on the
1147      * identity of its immediate caller.
1148      * <p>
1149      * If a method handle for a caller-sensitive method is requested,
1150      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1151      * but they take account of the lookup class in a special way.
1152      * The resulting method handle behaves as if it were called
1153      * from an instruction contained in the lookup class,
1154      * so that the caller-sensitive method detects the lookup class.
1155      * (By contrast, the invoker of the method handle is disregarded.)
1156      * Thus, in the case of caller-sensitive methods,
1157      * different lookup classes may give rise to
1158      * differently behaving method handles.
1159      * <p>
1160      * In cases where the lookup object is
1161      * {@link MethodHandles#publicLookup() publicLookup()},
1162      * or some other lookup object without
1163      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
1164      * the lookup class is disregarded.
1165      * In such cases, no caller-sensitive method handle can be created,
1166      * access is forbidden, and the lookup fails with an
1167      * {@code IllegalAccessException}.
1168      * <p style="font-size:smaller;">
1169      * <em>Discussion:</em>
1170      * For example, the caller-sensitive method
1171      * {@link java.lang.Class#forName(String) Class.forName(x)}
1172      * can return varying classes or throw varying exceptions,
1173      * depending on the class loader of the class that calls it.
1174      * A public lookup of {@code Class.forName} will fail, because
1175      * there is no reasonable way to determine its bytecode behavior.
1176      * <p style="font-size:smaller;">
1177      * If an application caches method handles for broad sharing,
1178      * it should use {@code publicLookup()} to create them.
1179      * If there is a lookup of {@code Class.forName}, it will fail,
1180      * and the application must take appropriate action in that case.
1181      * It may be that a later lookup, perhaps during the invocation of a
1182      * bootstrap method, can incorporate the specific identity
1183      * of the caller, making the method accessible.
1184      * <p style="font-size:smaller;">
1185      * The function {@code MethodHandles.lookup} is caller sensitive
1186      * so that there can be a secure foundation for lookups.
1187      * Nearly all other methods in the JSR 292 API rely on lookup
1188      * objects to check access requests.
1189      *
1190      * @revised 9
1191      */
1192     public static final
1193     class Lookup {
1194         /** The class on behalf of whom the lookup is being performed. */
1195         private final Class<?> lookupClass;
1196 
1197         /** previous lookup class */
1198         private final Class<?> prevLookupClass;
1199 
1200         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1201         private final int allowedModes;
1202 
1203         static {
1204             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1205         }
1206 
1207         /** A single-bit mask representing {@code public} access,
1208          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1209          *  The value, {@code 0x01}, happens to be the same as the value of the
1210          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1211          *  <p>
1212          *  A {@code Lookup} with this lookup mode performs cross-module access check
1213          *  with respect to the {@linkplain #lookupClass() lookup class} and
1214          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1215          */
1216         public static final int PUBLIC = Modifier.PUBLIC;
1217 
1218         /** A single-bit mask representing {@code private} access,
1219          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1220          *  The value, {@code 0x02}, happens to be the same as the value of the
1221          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1222          */
1223         public static final int PRIVATE = Modifier.PRIVATE;
1224 
1225         /** A single-bit mask representing {@code protected} access,
1226          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1227          *  The value, {@code 0x04}, happens to be the same as the value of the
1228          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1229          */
1230         public static final int PROTECTED = Modifier.PROTECTED;
1231 
1232         /** A single-bit mask representing {@code package} access (default access),
1233          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1234          *  The value is {@code 0x08}, which does not correspond meaningfully to
1235          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1236          */
1237         public static final int PACKAGE = Modifier.STATIC;
1238 
1239         /** A single-bit mask representing {@code module} access,
1240          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1241          *  The value is {@code 0x10}, which does not correspond meaningfully to
1242          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1243          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1244          *  with this lookup mode can access all public types in the module of the
1245          *  lookup class and public types in packages exported by other modules
1246          *  to the module of the lookup class.
1247          *  <p>
1248          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1249          *  previous lookup class} is always {@code null}.
1250          *
1251          *  @since 9
1252          *  @spec JPMS
1253          */
1254         public static final int MODULE = PACKAGE << 1;
1255 
1256         /** A single-bit mask representing {@code unconditional} access
1257          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1258          *  The value is {@code 0x20}, which does not correspond meaningfully to
1259          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1260          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1261          *  java.lang.Module#canRead(java.lang.Module) readability}.
1262          *  This lookup mode can access all public members of public types
1263          *  of all modules when the type is in a package that is {@link
1264          *  java.lang.Module#isExported(String) exported unconditionally}.
1265          *
1266          *  <p>
1267          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1268          *  previous lookup class} is always {@code null}.
1269          *
1270          *  @since 9
1271          *  @spec JPMS
1272          *  @see #publicLookup()
1273          */
1274         public static final int UNCONDITIONAL = PACKAGE << 2;
1275 
1276         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1277         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1278         private static final int TRUSTED   = -1;
1279 
1280         /*
1281          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1282          * Adjust 0 => PACKAGE
1283          */
1284         private static int fixmods(int mods) {
1285             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1286             if (Modifier.isPublic(mods))
1287                 mods |= UNCONDITIONAL;
1288             return (mods != 0) ? mods : PACKAGE;
1289         }
1290 
1291         /** Tells which class is performing the lookup.  It is this class against
1292          *  which checks are performed for visibility and access permissions.
1293          *  <p>
1294          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1295          *  access checks are performed against both the lookup class and the previous lookup class.
1296          *  <p>
1297          *  The class implies a maximum level of access permission,
1298          *  but the permissions may be additionally limited by the bitmask
1299          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1300          *  can be accessed.
1301          *  @return the lookup class, on behalf of which this lookup object finds members
1302          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1303          */
1304         public Class<?> lookupClass() {
1305             return lookupClass;
1306         }
1307 
1308         /** Reports a lookup class in another module that this lookup object
1309          * was previously teleported from, or {@code null}.
1310          * <p>
1311          * A {@code Lookup} object produced by the factory methods, such as the
1312          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1313          * has {@code null} previous lookup class.
1314          * A {@code Lookup} object has a non-null previous lookup class
1315          * when this lookup was teleported from an old lookup class
1316          * in one module to a new lookup class in another module.
1317          *
1318          * @return the lookup class in another module that this lookup object was
1319          *         previously teleported from, or {@code null}
1320          * @since 14
1321          * @see #in(Class)
1322          * @see MethodHandles#privateLookupIn(Class, Lookup)
1323          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1324          */
1325         public Class<?> previousLookupClass() {
1326             return prevLookupClass;
1327         }
1328 
1329         // This is just for calling out to MethodHandleImpl.
1330         private Class<?> lookupClassOrNull() {
1331             if (allowedModes == TRUSTED) {
1332                 return null;
1333             }
1334             if (allowedModes == UNCONDITIONAL) {
1335                 // use Object as the caller to pass to VM doing resolution
1336                 return Object.class;
1337             }
1338             return lookupClass;
1339         }
1340 
1341         /** Tells which access-protection classes of members this lookup object can produce.
1342          *  The result is a bit-mask of the bits
1343          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1344          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1345          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1346          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1347          *  {@linkplain #MODULE MODULE (0x10)},
1348          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1349          *  <p>
1350          *  A freshly-created lookup object
1351          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1352          *  all possible bits set, except {@code UNCONDITIONAL}.
1353          *  A lookup object on a new lookup class
1354          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1355          *  may have some mode bits set to zero.
1356          *  Mode bits can also be
1357          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1358          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1359          *  The purpose of this is to restrict access via the new lookup object,
1360          *  so that it can access only names which can be reached by the original
1361          *  lookup object, and also by the new lookup class.
1362          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1363          *  @see #in
1364          *  @see #dropLookupMode
1365          *
1366          *  @revised 9
1367          *  @spec JPMS
1368          */
1369         public int lookupModes() {
1370             return allowedModes & ALL_MODES;
1371         }
1372 
1373         /** Embody the current class (the lookupClass) as a lookup class
1374          * for method handle creation.
1375          * Must be called by from a method in this package,
1376          * which in turn is called by a method not in this package.
1377          */
1378         Lookup(Class<?> lookupClass) {
1379             this(lookupClass, null, FULL_POWER_MODES);
1380             // make sure we haven't accidentally picked up a privileged class:
1381             checkUnprivilegedlookupClass(lookupClass);
1382         }
1383 
1384         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1385             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1386                     && prevLookupClass.getModule() != lookupClass.getModule());
1387             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1388             this.lookupClass = lookupClass;
1389             this.prevLookupClass = prevLookupClass;
1390             this.allowedModes = allowedModes;
1391         }
1392 
1393         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1394             // make sure we haven't accidentally picked up a privileged class:
1395             checkUnprivilegedlookupClass(lookupClass);
1396             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1397         }
1398 
1399         /**
1400          * Creates a lookup on the specified new lookup class.
1401          * The resulting object will report the specified
1402          * class as its own {@link #lookupClass() lookupClass}.
1403          *
1404          * <p>
1405          * However, the resulting {@code Lookup} object is guaranteed
1406          * to have no more access capabilities than the original.
1407          * In particular, access capabilities can be lost as follows:<ul>
1408          * <li>If the new lookup class is in a different module from the old one,
1409          * i.e. {@link #MODULE MODULE} access is lost.
1410          * <li>If the new lookup class is in a different package
1411          * than the old one, protected and default (package) members will not be accessible,
1412          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1413          * <li>If the new lookup class is not within the same package member
1414          * as the old one, private members will not be accessible, and protected members
1415          * will not be accessible by virtue of inheritance,
1416          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1417          * (Protected members may continue to be accessible because of package sharing.)
1418          * <li>If the new lookup class is not
1419          * {@linkplain #accessClass(Class) accessible} to this lookup,
1420          * then no members, not even public members, will be accessible
1421          * i.e. all access modes are lost.
1422          * <li>If the new lookup class, the old lookup class and the previous lookup class
1423          * are all in different modules i.e. teleporting to a third module,
1424          * all access modes are lost.
1425          * </ul>
1426          * <p>
1427          * The new previous lookup class is chosen as follows:
1428          * <ul>
1429          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1430          * the new previous lookup class is {@code null}.
1431          * <li>If the new lookup class is in the same module as the old lookup class,
1432          * the new previous lookup class is the old previous lookup class.
1433          * <li>If the new lookup class is in a different module from the old lookup class,
1434          * the new previous lookup class is the the old lookup class.
1435          *</ul>
1436          * <p>
1437          * The resulting lookup's capabilities for loading classes
1438          * (used during {@link #findClass} invocations)
1439          * are determined by the lookup class' loader,
1440          * which may change due to this operation.
1441          * <p>
1442          * @param requestedLookupClass the desired lookup class for the new lookup object
1443          * @return a lookup object which reports the desired lookup class, or the same object
1444          * if there is no change
1445          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1446          * @throws NullPointerException if the argument is null
1447          *
1448          * @revised 9
1449          * @spec JPMS
1450          * @see #accessClass(Class)
1451          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1452          */
1453         public Lookup in(Class<?> requestedLookupClass) {
1454             Objects.requireNonNull(requestedLookupClass);
1455             if (requestedLookupClass.isPrimitive())
1456                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1457             if (requestedLookupClass.isArray())
1458                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1459 
1460             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1461                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1462             if (requestedLookupClass == this.lookupClass)
1463                 return this;  // keep same capabilities
1464             int newModes = (allowedModes & FULL_POWER_MODES);
1465             Module fromModule = this.lookupClass.getModule();
1466             Module targetModule = requestedLookupClass.getModule();
1467             Class<?> plc = this.previousLookupClass();
1468             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1469                 assert plc == null;
1470                 newModes = UNCONDITIONAL;
1471             } else if (fromModule != targetModule) {
1472                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1473                     // allow hopping back and forth between fromModule and plc's module
1474                     // but not the third module
1475                     newModes = 0;
1476                 }
1477                 // drop MODULE access
1478                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1479                 // teleport from this lookup class
1480                 plc = this.lookupClass;
1481             }
1482             if ((newModes & PACKAGE) != 0
1483                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1484                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1485             }
1486             // Allow nestmate lookups to be created without special privilege:
1487             if ((newModes & PRIVATE) != 0
1488                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1489                 newModes &= ~(PRIVATE|PROTECTED);
1490             }
1491             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1492                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1493                 // The requested class it not accessible from the lookup class.
1494                 // No permissions.
1495                 newModes = 0;
1496             }
1497             return newLookup(requestedLookupClass, plc, newModes);
1498         }
1499 
1500         /**
1501          * Creates a lookup on the same lookup class which this lookup object
1502          * finds members, but with a lookup mode that has lost the given lookup mode.
1503          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1504          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1505          * {@link #PROTECTED PROTECTED} is always
1506          * dropped and so the resulting lookup mode will never have this access capability.
1507          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1508          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1509          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1510          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1511          * is dropped then the resulting lookup has no access.
1512          *
1513          * @apiNote
1514          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1515          * delegate non-public access within the package of the lookup class without
1516          * conferring private access.  A lookup with {@code MODULE} but not
1517          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1518          * the module of the lookup class without conferring package access.
1519          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1520          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1521          * to public classes accessible to both the module of the lookup class
1522          * and the module of the previous lookup class.
1523          *
1524          * @param modeToDrop the lookup mode to drop
1525          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1526          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1527          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1528          * @see MethodHandles#privateLookupIn
1529          * @since 9
1530          */
1531         public Lookup dropLookupMode(int modeToDrop) {
1532             int oldModes = lookupModes();
1533             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1534             switch (modeToDrop) {
1535                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1536                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1537                 case PACKAGE: newModes &= ~(PRIVATE); break;
1538                 case PROTECTED:
1539                 case PRIVATE:
1540                 case UNCONDITIONAL: break;
1541                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1542             }
1543             if (newModes == oldModes) return this;  // return self if no change
1544             return newLookup(lookupClass(), previousLookupClass(), newModes);
1545         }
1546 
1547         /**
1548          * Defines a class to the same class loader and in the same runtime package and
1549          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1550          * {@linkplain #lookupClass() lookup class}.
1551          *
1552          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1553          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1554          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1555          * that the lookup object was created by a caller in the runtime package (or derived
1556          * from a lookup originally created by suitably privileged code to a target class in
1557          * the runtime package). </p>
1558          *
1559          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1560          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1561          * same package as the lookup class. </p>
1562          *
1563          * <p> This method does not run the class initializer. The class initializer may
1564          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1565          * Specification</em>. </p>
1566          *
1567          * <p> If there is a security manager, its {@code checkPermission} method is first called
1568          * to check {@code RuntimePermission("defineClass")}. </p>
1569          *
1570          * @param bytes the class bytes
1571          * @return the {@code Class} object for the class
1572          * @throws IllegalArgumentException the bytes are for a class in a different package
1573          * to the lookup class
1574          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1575          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1576          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1577          * @throws SecurityException if denied by the security manager
1578          * @throws NullPointerException if {@code bytes} is {@code null}
1579          * @since 9
1580          * @spec JPMS
1581          * @see Lookup#privateLookupIn
1582          * @see Lookup#dropLookupMode
1583          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1584          */
1585         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1586             SecurityManager sm = System.getSecurityManager();
1587             if (sm != null)
1588                 sm.checkPermission(new RuntimePermission("defineClass"));
1589             if ((lookupModes() & PACKAGE) == 0)
1590                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1591             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
1592 
1593             // parse class bytes to get class name (in internal form)
1594             bytes = bytes.clone();
1595             String name;
1596             try {
1597                 ClassReader reader = new ClassReader(bytes);
1598                 name = reader.getClassName();
1599             } catch (RuntimeException e) {
1600                 // ASM exceptions are poorly specified
1601                 ClassFormatError cfe = new ClassFormatError();
1602                 cfe.initCause(e);
1603                 throw cfe;
1604             }
1605 
1606             // get package and class name in binary form
1607             String cn, pn;
1608             int index = name.lastIndexOf('/');
1609             if (index == -1) {
1610                 cn = name;
1611                 pn = "";
1612             } else {
1613                 cn = name.replace('/', '.');
1614                 pn = cn.substring(0, index);
1615             }
1616             if (!pn.equals(lookupClass.getPackageName())) {
1617                 throw new IllegalArgumentException("Class not in same package as lookup class");
1618             }
1619 
1620             // invoke the class loader's defineClass method
1621             ClassLoader loader = lookupClass.getClassLoader();
1622             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1623             String source = "__Lookup_defineClass__";
1624             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
1625             return clazz;
1626         }
1627 
1628         private ProtectionDomain lookupClassProtectionDomain() {
1629             ProtectionDomain pd = cachedProtectionDomain;
1630             if (pd == null) {
1631                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
1632             }
1633             return pd;
1634         }
1635 
1636         private ProtectionDomain protectionDomain(Class<?> clazz) {
1637             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
1638             return AccessController.doPrivileged(pa);
1639         }
1640 
1641         // cached protection domain
1642         private volatile ProtectionDomain cachedProtectionDomain;
1643 
1644 
1645         // Make sure outer class is initialized first.
1646         static { IMPL_NAMES.getClass(); }
1647 
1648         /** Package-private version of lookup which is trusted. */
1649         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1650 
1651         /** Version of lookup which is trusted minimally.
1652          *  It can only be used to create method handles to publicly accessible
1653          *  members in packages that are exported unconditionally.
1654          */
1655         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1656 
1657         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1658             String name = lookupClass.getName();
1659             if (name.startsWith("java.lang.invoke."))
1660                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1661         }
1662 
1663         /**
1664          * Displays the name of the class from which lookups are to be made.
1665          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1666          * previous lookup class} if present.
1667          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1668          * If there are restrictions on the access permitted to this lookup,
1669          * this is indicated by adding a suffix to the class name, consisting
1670          * of a slash and a keyword.  The keyword represents the strongest
1671          * allowed access, and is chosen as follows:
1672          * <ul>
1673          * <li>If no access is allowed, the suffix is "/noaccess".
1674          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1675          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1676          * <li>If only public and module access are allowed, the suffix is "/module".
1677          * <li>If public and package access are allowed, the suffix is "/package".
1678          * <li>If public, package, and private access are allowed, the suffix is "/private".
1679          * </ul>
1680          * If none of the above cases apply, it is the case that full access
1681          * (public, module, package, private, and protected) is allowed.
1682          * In this case, no suffix is added.
1683          * This is true only of an object obtained originally from
1684          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1685          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1686          * always have restricted access, and will display a suffix.
1687          * <p>
1688          * (It may seem strange that protected access should be
1689          * stronger than private access.  Viewed independently from
1690          * package access, protected access is the first to be lost,
1691          * because it requires a direct subclass relationship between
1692          * caller and callee.)
1693          * @see #in
1694          *
1695          * @revised 9
1696          * @spec JPMS
1697          */
1698         @Override
1699         public String toString() {
1700             String cname = lookupClass.getName();
1701             if (prevLookupClass != null)
1702                 cname += "/" + prevLookupClass.getName();
1703             switch (allowedModes) {
1704             case 0:  // no privileges
1705                 return cname + "/noaccess";
1706             case UNCONDITIONAL:
1707                 return cname + "/publicLookup";
1708             case PUBLIC:
1709                 return cname + "/public";
1710             case PUBLIC|MODULE:
1711                 return cname + "/module";
1712             case PUBLIC|PACKAGE:
1713             case PUBLIC|MODULE|PACKAGE:
1714                 return cname + "/package";
1715             case FULL_POWER_MODES & (~PROTECTED):
1716             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
1717                     return cname + "/private";
1718             case FULL_POWER_MODES:
1719             case FULL_POWER_MODES & (~MODULE):
1720                 return cname;
1721             case TRUSTED:
1722                 return "/trusted";  // internal only; not exported
1723             default:  // Should not happen, but it's a bitfield...
1724                 cname = cname + "/" + Integer.toHexString(allowedModes);
1725                 assert(false) : cname;
1726                 return cname;
1727             }
1728         }
1729 
1730         /**
1731          * Produces a method handle for a static method.
1732          * The type of the method handle will be that of the method.
1733          * (Since static methods do not take receivers, there is no
1734          * additional receiver argument inserted into the method handle type,
1735          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1736          * The method and all its argument types must be accessible to the lookup object.
1737          * <p>
1738          * The returned method handle will have
1739          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1740          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1741          * <p>
1742          * If the returned method handle is invoked, the method's class will
1743          * be initialized, if it has not already been initialized.
1744          * <p><b>Example:</b>
1745          * <blockquote><pre>{@code
1746 import static java.lang.invoke.MethodHandles.*;
1747 import static java.lang.invoke.MethodType.*;
1748 ...
1749 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1750   "asList", methodType(List.class, Object[].class));
1751 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1752          * }</pre></blockquote>
1753          * @param refc the class from which the method is accessed
1754          * @param name the name of the method
1755          * @param type the type of the method
1756          * @return the desired method handle
1757          * @throws NoSuchMethodException if the method does not exist
1758          * @throws IllegalAccessException if access checking fails,
1759          *                                or if the method is not {@code static},
1760          *                                or if the method's variable arity modifier bit
1761          *                                is set and {@code asVarargsCollector} fails
1762          * @throws    SecurityException if a security manager is present and it
1763          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1764          * @throws NullPointerException if any argument is null
1765          */
1766         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1767             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1768             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1769         }
1770 
1771         /**
1772          * Produces a method handle for a virtual method.
1773          * The type of the method handle will be that of the method,
1774          * with the receiver type (usually {@code refc}) prepended.
1775          * The method and all its argument types must be accessible to the lookup object.
1776          * <p>
1777          * When called, the handle will treat the first argument as a receiver
1778          * and, for non-private methods, dispatch on the receiver's type to determine which method
1779          * implementation to enter.
1780          * For private methods the named method in {@code refc} will be invoked on the receiver.
1781          * (The dispatching action is identical with that performed by an
1782          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1783          * <p>
1784          * The first argument will be of type {@code refc} if the lookup
1785          * class has full privileges to access the member.  Otherwise
1786          * the member must be {@code protected} and the first argument
1787          * will be restricted in type to the lookup class.
1788          * <p>
1789          * The returned method handle will have
1790          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1791          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1792          * <p>
1793          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1794          * instructions and method handles produced by {@code findVirtual},
1795          * if the class is {@code MethodHandle} and the name string is
1796          * {@code invokeExact} or {@code invoke}, the resulting
1797          * method handle is equivalent to one produced by
1798          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1799          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1800          * with the same {@code type} argument.
1801          * <p>
1802          * If the class is {@code VarHandle} and the name string corresponds to
1803          * the name of a signature-polymorphic access mode method, the resulting
1804          * method handle is equivalent to one produced by
1805          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1806          * the access mode corresponding to the name string and with the same
1807          * {@code type} arguments.
1808          * <p>
1809          * <b>Example:</b>
1810          * <blockquote><pre>{@code
1811 import static java.lang.invoke.MethodHandles.*;
1812 import static java.lang.invoke.MethodType.*;
1813 ...
1814 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1815   "concat", methodType(String.class, String.class));
1816 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1817   "hashCode", methodType(int.class));
1818 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1819   "hashCode", methodType(int.class));
1820 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1821 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1822 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1823 // interface method:
1824 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1825   "subSequence", methodType(CharSequence.class, int.class, int.class));
1826 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1827 // constructor "internal method" must be accessed differently:
1828 MethodType MT_newString = methodType(void.class); //()V for new String()
1829 try { assertEquals("impossible", lookup()
1830         .findVirtual(String.class, "<init>", MT_newString));
1831  } catch (NoSuchMethodException ex) { } // OK
1832 MethodHandle MH_newString = publicLookup()
1833   .findConstructor(String.class, MT_newString);
1834 assertEquals("", (String) MH_newString.invokeExact());
1835          * }</pre></blockquote>
1836          *
1837          * @param refc the class or interface from which the method is accessed
1838          * @param name the name of the method
1839          * @param type the type of the method, with the receiver argument omitted
1840          * @return the desired method handle
1841          * @throws NoSuchMethodException if the method does not exist
1842          * @throws IllegalAccessException if access checking fails,
1843          *                                or if the method is {@code static},
1844          *                                or if the method's variable arity modifier bit
1845          *                                is set and {@code asVarargsCollector} fails
1846          * @throws    SecurityException if a security manager is present and it
1847          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1848          * @throws NullPointerException if any argument is null
1849          */
1850         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1851             if (refc == MethodHandle.class) {
1852                 MethodHandle mh = findVirtualForMH(name, type);
1853                 if (mh != null)  return mh;
1854             } else if (refc == VarHandle.class) {
1855                 MethodHandle mh = findVirtualForVH(name, type);
1856                 if (mh != null)  return mh;
1857             }
1858             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1859             MemberName method = resolveOrFail(refKind, refc, name, type);
1860             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1861         }
1862         private MethodHandle findVirtualForMH(String name, MethodType type) {
1863             // these names require special lookups because of the implicit MethodType argument
1864             if ("invoke".equals(name))
1865                 return invoker(type);
1866             if ("invokeExact".equals(name))
1867                 return exactInvoker(type);
1868             assert(!MemberName.isMethodHandleInvokeName(name));
1869             return null;
1870         }
1871         private MethodHandle findVirtualForVH(String name, MethodType type) {
1872             try {
1873                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1874             } catch (IllegalArgumentException e) {
1875                 return null;
1876             }
1877         }
1878 
1879         /**
1880          * Produces a method handle which creates an object and initializes it, using
1881          * the constructor of the specified type.
1882          * The parameter types of the method handle will be those of the constructor,
1883          * while the return type will be a reference to the constructor's class.
1884          * The constructor and all its argument types must be accessible to the lookup object.
1885          * <p>
1886          * The requested type must have a return type of {@code void}.
1887          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1888          * <p>
1889          * The returned method handle will have
1890          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1891          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1892          * <p>
1893          * If the returned method handle is invoked, the constructor's class will
1894          * be initialized, if it has not already been initialized.
1895          * <p><b>Example:</b>
1896          * <blockquote><pre>{@code
1897 import static java.lang.invoke.MethodHandles.*;
1898 import static java.lang.invoke.MethodType.*;
1899 ...
1900 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1901   ArrayList.class, methodType(void.class, Collection.class));
1902 Collection orig = Arrays.asList("x", "y");
1903 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1904 assert(orig != copy);
1905 assertEquals(orig, copy);
1906 // a variable-arity constructor:
1907 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1908   ProcessBuilder.class, methodType(void.class, String[].class));
1909 ProcessBuilder pb = (ProcessBuilder)
1910   MH_newProcessBuilder.invoke("x", "y", "z");
1911 assertEquals("[x, y, z]", pb.command().toString());
1912          * }</pre></blockquote>
1913          * @param refc the class or interface from which the method is accessed
1914          * @param type the type of the method, with the receiver argument omitted, and a void return type
1915          * @return the desired method handle
1916          * @throws NoSuchMethodException if the constructor does not exist
1917          * @throws IllegalAccessException if access checking fails
1918          *                                or if the method's variable arity modifier bit
1919          *                                is set and {@code asVarargsCollector} fails
1920          * @throws    SecurityException if a security manager is present and it
1921          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1922          * @throws NullPointerException if any argument is null
1923          */
1924         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1925             if (refc.isArray()) {
1926                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1927             }
1928             String name = "<init>";
1929             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1930             return getDirectConstructor(refc, ctor);
1931         }
1932 
1933         /**
1934          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1935          * initializer of the class is not run.
1936          * <p>
1937          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1938          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1939          * load the requested class, and then determines whether the class is accessible to this lookup object.
1940          *
1941          * @param targetName the fully qualified name of the class to be looked up.
1942          * @return the requested class.
1943          * @throws    SecurityException if a security manager is present and it
1944          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1945          * @throws LinkageError if the linkage fails
1946          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1947          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1948          * modes.
1949          * @throws    SecurityException if a security manager is present and it
1950          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1951          * @since 9
1952          */
1953         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1954             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1955             return accessClass(targetClass);
1956         }
1957 
1958         /**
1959          * Determines if a class can be accessed from the lookup context defined by
1960          * this {@code Lookup} object. The static initializer of the class is not run.
1961          * <p>
1962          * If the {@code targetClass} is in the same module as the lookup class,
1963          * the lookup class is {@code LC} in module {@code M1} and
1964          * the previous lookup class is in module {@code M0} or
1965          * {@code null} if not present,
1966          * {@code targetClass} is accessible if and only if one of the following is true:
1967          * <ul>
1968          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
1969          *     {@code LC} or other class in the same nest of {@code LC}.</li>
1970          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
1971          *     in the same runtime package of {@code LC}.</li>
1972          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
1973          *     a public type in {@code M1}.</li>
1974          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
1975          *     a public type in a package exported by {@code M1} to at least  {@code M0}
1976          *     if the previous lookup class is present; otherwise, {@code targetClass}
1977          *     is a public type in a package exported by {@code M1} unconditionally.</li>
1978          * </ul>
1979          *
1980          * <p>
1981          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
1982          * can access public types in all modules when the type is in a package
1983          * that is exported unconditionally.
1984          * <p>
1985          * Otherwise, the target class is in a different module from {@code lookupClass},
1986          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
1987          * is inaccessible.
1988          * <p>
1989          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
1990          * {@code M1} is the module containing {@code lookupClass} and
1991          * {@code M2} is the module containing {@code targetClass},
1992          * then {@code targetClass} is accessible if and only if
1993          * <ul>
1994          * <li>{@code M1} reads {@code M2}, and
1995          * <li>{@code targetClass} is public and in a package exported by
1996          *     {@code M2} at least to {@code M1}.
1997          * </ul>
1998          * <p>
1999          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2000          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2001          * containing the previous lookup class, then {@code targetClass} is accessible
2002          * if and only if one of the following is true:
2003          * <ul>
2004          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2005          *     {@linkplain Module#reads reads} {@code M0} and the type is
2006          *     in a package that is exported to at least {@code M1}.
2007          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2008          *     {@linkplain Module#reads reads} {@code M1} and the type is
2009          *     in a package that is exported to at least {@code M0}.
2010          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2011          *     and {@code M1} reads {@code M2} and the type is in a package
2012          *     that is exported to at least both {@code M0} and {@code M2}.
2013          * </ul>
2014          * <p>
2015          * Otherwise, {@code targetClass} is not accessible.
2016          *
2017          * @param targetClass the class to be access-checked
2018          * @return the class that has been access-checked
2019          * @throws IllegalAccessException if the class is not accessible from the lookup class
2020          * and previous lookup class, if present, using the allowed access modes.
2021          * @throws    SecurityException if a security manager is present and it
2022          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2023          * @since 9
2024          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2025          */
2026         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2027             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2028                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2029             }
2030             checkSecurityManager(targetClass, null);
2031             return targetClass;
2032         }
2033 
2034         /**
2035          * Produces an early-bound method handle for a virtual method.
2036          * It will bypass checks for overriding methods on the receiver,
2037          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2038          * instruction from within the explicitly specified {@code specialCaller}.
2039          * The type of the method handle will be that of the method,
2040          * with a suitably restricted receiver type prepended.
2041          * (The receiver type will be {@code specialCaller} or a subtype.)
2042          * The method and all its argument types must be accessible
2043          * to the lookup object.
2044          * <p>
2045          * Before method resolution,
2046          * if the explicitly specified caller class is not identical with the
2047          * lookup class, or if this lookup object does not have
2048          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2049          * privileges, the access fails.
2050          * <p>
2051          * The returned method handle will have
2052          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2053          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2054          * <p style="font-size:smaller;">
2055          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2056          * even though the {@code invokespecial} instruction can refer to them
2057          * in special circumstances.  Use {@link #findConstructor findConstructor}
2058          * to access instance initialization methods in a safe manner.)</em>
2059          * <p><b>Example:</b>
2060          * <blockquote><pre>{@code
2061 import static java.lang.invoke.MethodHandles.*;
2062 import static java.lang.invoke.MethodType.*;
2063 ...
2064 static class Listie extends ArrayList {
2065   public String toString() { return "[wee Listie]"; }
2066   static Lookup lookup() { return MethodHandles.lookup(); }
2067 }
2068 ...
2069 // no access to constructor via invokeSpecial:
2070 MethodHandle MH_newListie = Listie.lookup()
2071   .findConstructor(Listie.class, methodType(void.class));
2072 Listie l = (Listie) MH_newListie.invokeExact();
2073 try { assertEquals("impossible", Listie.lookup().findSpecial(
2074         Listie.class, "<init>", methodType(void.class), Listie.class));
2075  } catch (NoSuchMethodException ex) { } // OK
2076 // access to super and self methods via invokeSpecial:
2077 MethodHandle MH_super = Listie.lookup().findSpecial(
2078   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2079 MethodHandle MH_this = Listie.lookup().findSpecial(
2080   Listie.class, "toString" , methodType(String.class), Listie.class);
2081 MethodHandle MH_duper = Listie.lookup().findSpecial(
2082   Object.class, "toString" , methodType(String.class), Listie.class);
2083 assertEquals("[]", (String) MH_super.invokeExact(l));
2084 assertEquals(""+l, (String) MH_this.invokeExact(l));
2085 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2086 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2087         String.class, "toString", methodType(String.class), Listie.class));
2088  } catch (IllegalAccessException ex) { } // OK
2089 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2090 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2091          * }</pre></blockquote>
2092          *
2093          * @param refc the class or interface from which the method is accessed
2094          * @param name the name of the method (which must not be "&lt;init&gt;")
2095          * @param type the type of the method, with the receiver argument omitted
2096          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2097          * @return the desired method handle
2098          * @throws NoSuchMethodException if the method does not exist
2099          * @throws IllegalAccessException if access checking fails,
2100          *                                or if the method is {@code static},
2101          *                                or if the method's variable arity modifier bit
2102          *                                is set and {@code asVarargsCollector} fails
2103          * @throws    SecurityException if a security manager is present and it
2104          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2105          * @throws NullPointerException if any argument is null
2106          */
2107         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2108                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2109             checkSpecialCaller(specialCaller, refc);
2110             Lookup specialLookup = this.in(specialCaller);
2111             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2112             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
2113         }
2114 
2115         /**
2116          * Produces a method handle giving read access to a non-static field.
2117          * The type of the method handle will have a return type of the field's
2118          * value type.
2119          * The method handle's single argument will be the instance containing
2120          * the field.
2121          * Access checking is performed immediately on behalf of the lookup class.
2122          * @param refc the class or interface from which the method is accessed
2123          * @param name the field's name
2124          * @param type the field's type
2125          * @return a method handle which can load values from the field
2126          * @throws NoSuchFieldException if the field does not exist
2127          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2128          * @throws    SecurityException if a security manager is present and it
2129          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2130          * @throws NullPointerException if any argument is null
2131          * @see #findVarHandle(Class, String, Class)
2132          */
2133         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2134             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2135             return getDirectField(REF_getField, refc, field);
2136         }
2137 
2138         /**
2139          * Produces a method handle giving write access to a non-static field.
2140          * The type of the method handle will have a void return type.
2141          * The method handle will take two arguments, the instance containing
2142          * the field, and the value to be stored.
2143          * The second argument will be of the field's value type.
2144          * Access checking is performed immediately on behalf of the lookup class.
2145          * @param refc the class or interface from which the method is accessed
2146          * @param name the field's name
2147          * @param type the field's type
2148          * @return a method handle which can store values into the field
2149          * @throws NoSuchFieldException if the field does not exist
2150          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2151          *                                or {@code final}
2152          * @throws    SecurityException if a security manager is present and it
2153          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2154          * @throws NullPointerException if any argument is null
2155          * @see #findVarHandle(Class, String, Class)
2156          */
2157         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2158             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2159             return getDirectField(REF_putField, refc, field);
2160         }
2161 
2162         /**
2163          * Produces a VarHandle giving access to a non-static field {@code name}
2164          * of type {@code type} declared in a class of type {@code recv}.
2165          * The VarHandle's variable type is {@code type} and it has one
2166          * coordinate type, {@code recv}.
2167          * <p>
2168          * Access checking is performed immediately on behalf of the lookup
2169          * class.
2170          * <p>
2171          * Certain access modes of the returned VarHandle are unsupported under
2172          * the following conditions:
2173          * <ul>
2174          * <li>if the field is declared {@code final}, then the write, atomic
2175          *     update, numeric atomic update, and bitwise atomic update access
2176          *     modes are unsupported.
2177          * <li>if the field type is anything other than {@code byte},
2178          *     {@code short}, {@code char}, {@code int}, {@code long},
2179          *     {@code float}, or {@code double} then numeric atomic update
2180          *     access modes are unsupported.
2181          * <li>if the field type is anything other than {@code boolean},
2182          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2183          *     {@code long} then bitwise atomic update access modes are
2184          *     unsupported.
2185          * </ul>
2186          * <p>
2187          * If the field is declared {@code volatile} then the returned VarHandle
2188          * will override access to the field (effectively ignore the
2189          * {@code volatile} declaration) in accordance to its specified
2190          * access modes.
2191          * <p>
2192          * If the field type is {@code float} or {@code double} then numeric
2193          * and atomic update access modes compare values using their bitwise
2194          * representation (see {@link Float#floatToRawIntBits} and
2195          * {@link Double#doubleToRawLongBits}, respectively).
2196          * @apiNote
2197          * Bitwise comparison of {@code float} values or {@code double} values,
2198          * as performed by the numeric and atomic update access modes, differ
2199          * from the primitive {@code ==} operator and the {@link Float#equals}
2200          * and {@link Double#equals} methods, specifically with respect to
2201          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2202          * Care should be taken when performing a compare and set or a compare
2203          * and exchange operation with such values since the operation may
2204          * unexpectedly fail.
2205          * There are many possible NaN values that are considered to be
2206          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2207          * provided by Java can distinguish between them.  Operation failure can
2208          * occur if the expected or witness value is a NaN value and it is
2209          * transformed (perhaps in a platform specific manner) into another NaN
2210          * value, and thus has a different bitwise representation (see
2211          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2212          * details).
2213          * The values {@code -0.0} and {@code +0.0} have different bitwise
2214          * representations but are considered equal when using the primitive
2215          * {@code ==} operator.  Operation failure can occur if, for example, a
2216          * numeric algorithm computes an expected value to be say {@code -0.0}
2217          * and previously computed the witness value to be say {@code +0.0}.
2218          * @param recv the receiver class, of type {@code R}, that declares the
2219          * non-static field
2220          * @param name the field's name
2221          * @param type the field's type, of type {@code T}
2222          * @return a VarHandle giving access to non-static fields.
2223          * @throws NoSuchFieldException if the field does not exist
2224          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2225          * @throws    SecurityException if a security manager is present and it
2226          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2227          * @throws NullPointerException if any argument is null
2228          * @since 9
2229          */
2230         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2231             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2232             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2233             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2234         }
2235 
2236         /**
2237          * Produces a method handle giving read access to a static field.
2238          * The type of the method handle will have a return type of the field's
2239          * value type.
2240          * The method handle will take no arguments.
2241          * Access checking is performed immediately on behalf of the lookup class.
2242          * <p>
2243          * If the returned method handle is invoked, the field's class will
2244          * be initialized, if it has not already been initialized.
2245          * @param refc the class or interface from which the method is accessed
2246          * @param name the field's name
2247          * @param type the field's type
2248          * @return a method handle which can load values from the field
2249          * @throws NoSuchFieldException if the field does not exist
2250          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2251          * @throws    SecurityException if a security manager is present and it
2252          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2253          * @throws NullPointerException if any argument is null
2254          */
2255         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2256             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2257             return getDirectField(REF_getStatic, refc, field);
2258         }
2259 
2260         /**
2261          * Produces a method handle giving write access to a static field.
2262          * The type of the method handle will have a void return type.
2263          * The method handle will take a single
2264          * argument, of the field's value type, the value to be stored.
2265          * Access checking is performed immediately on behalf of the lookup class.
2266          * <p>
2267          * If the returned method handle is invoked, the field's class will
2268          * be initialized, if it has not already been initialized.
2269          * @param refc the class or interface from which the method is accessed
2270          * @param name the field's name
2271          * @param type the field's type
2272          * @return a method handle which can store values into the field
2273          * @throws NoSuchFieldException if the field does not exist
2274          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2275          *                                or is {@code final}
2276          * @throws    SecurityException if a security manager is present and it
2277          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2278          * @throws NullPointerException if any argument is null
2279          */
2280         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2281             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2282             return getDirectField(REF_putStatic, refc, field);
2283         }
2284 
2285         /**
2286          * Produces a VarHandle giving access to a static field {@code name} of
2287          * type {@code type} declared in a class of type {@code decl}.
2288          * The VarHandle's variable type is {@code type} and it has no
2289          * coordinate types.
2290          * <p>
2291          * Access checking is performed immediately on behalf of the lookup
2292          * class.
2293          * <p>
2294          * If the returned VarHandle is operated on, the declaring class will be
2295          * initialized, if it has not already been initialized.
2296          * <p>
2297          * Certain access modes of the returned VarHandle are unsupported under
2298          * the following conditions:
2299          * <ul>
2300          * <li>if the field is declared {@code final}, then the write, atomic
2301          *     update, numeric atomic update, and bitwise atomic update access
2302          *     modes are unsupported.
2303          * <li>if the field type is anything other than {@code byte},
2304          *     {@code short}, {@code char}, {@code int}, {@code long},
2305          *     {@code float}, or {@code double}, then numeric atomic update
2306          *     access modes are unsupported.
2307          * <li>if the field type is anything other than {@code boolean},
2308          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2309          *     {@code long} then bitwise atomic update access modes are
2310          *     unsupported.
2311          * </ul>
2312          * <p>
2313          * If the field is declared {@code volatile} then the returned VarHandle
2314          * will override access to the field (effectively ignore the
2315          * {@code volatile} declaration) in accordance to its specified
2316          * access modes.
2317          * <p>
2318          * If the field type is {@code float} or {@code double} then numeric
2319          * and atomic update access modes compare values using their bitwise
2320          * representation (see {@link Float#floatToRawIntBits} and
2321          * {@link Double#doubleToRawLongBits}, respectively).
2322          * @apiNote
2323          * Bitwise comparison of {@code float} values or {@code double} values,
2324          * as performed by the numeric and atomic update access modes, differ
2325          * from the primitive {@code ==} operator and the {@link Float#equals}
2326          * and {@link Double#equals} methods, specifically with respect to
2327          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2328          * Care should be taken when performing a compare and set or a compare
2329          * and exchange operation with such values since the operation may
2330          * unexpectedly fail.
2331          * There are many possible NaN values that are considered to be
2332          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2333          * provided by Java can distinguish between them.  Operation failure can
2334          * occur if the expected or witness value is a NaN value and it is
2335          * transformed (perhaps in a platform specific manner) into another NaN
2336          * value, and thus has a different bitwise representation (see
2337          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2338          * details).
2339          * The values {@code -0.0} and {@code +0.0} have different bitwise
2340          * representations but are considered equal when using the primitive
2341          * {@code ==} operator.  Operation failure can occur if, for example, a
2342          * numeric algorithm computes an expected value to be say {@code -0.0}
2343          * and previously computed the witness value to be say {@code +0.0}.
2344          * @param decl the class that declares the static field
2345          * @param name the field's name
2346          * @param type the field's type, of type {@code T}
2347          * @return a VarHandle giving access to a static field
2348          * @throws NoSuchFieldException if the field does not exist
2349          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2350          * @throws    SecurityException if a security manager is present and it
2351          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2352          * @throws NullPointerException if any argument is null
2353          * @since 9
2354          */
2355         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2356             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2357             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2358             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2359         }
2360 
2361         /**
2362          * Produces an early-bound method handle for a non-static method.
2363          * The receiver must have a supertype {@code defc} in which a method
2364          * of the given name and type is accessible to the lookup class.
2365          * The method and all its argument types must be accessible to the lookup object.
2366          * The type of the method handle will be that of the method,
2367          * without any insertion of an additional receiver parameter.
2368          * The given receiver will be bound into the method handle,
2369          * so that every call to the method handle will invoke the
2370          * requested method on the given receiver.
2371          * <p>
2372          * The returned method handle will have
2373          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2374          * the method's variable arity modifier bit ({@code 0x0080}) is set
2375          * <em>and</em> the trailing array argument is not the only argument.
2376          * (If the trailing array argument is the only argument,
2377          * the given receiver value will be bound to it.)
2378          * <p>
2379          * This is almost equivalent to the following code, with some differences noted below:
2380          * <blockquote><pre>{@code
2381 import static java.lang.invoke.MethodHandles.*;
2382 import static java.lang.invoke.MethodType.*;
2383 ...
2384 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2385 MethodHandle mh1 = mh0.bindTo(receiver);
2386 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2387 return mh1;
2388          * }</pre></blockquote>
2389          * where {@code defc} is either {@code receiver.getClass()} or a super
2390          * type of that class, in which the requested method is accessible
2391          * to the lookup class.
2392          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2393          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2394          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2395          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2396          * @param receiver the object from which the method is accessed
2397          * @param name the name of the method
2398          * @param type the type of the method, with the receiver argument omitted
2399          * @return the desired method handle
2400          * @throws NoSuchMethodException if the method does not exist
2401          * @throws IllegalAccessException if access checking fails
2402          *                                or if the method's variable arity modifier bit
2403          *                                is set and {@code asVarargsCollector} fails
2404          * @throws    SecurityException if a security manager is present and it
2405          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2406          * @throws NullPointerException if any argument is null
2407          * @see MethodHandle#bindTo
2408          * @see #findVirtual
2409          */
2410         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2411             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2412             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2413             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
2414             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2415                 throw new IllegalAccessException("The restricted defining class " +
2416                                                  mh.type().leadingReferenceParameter().getName() +
2417                                                  " is not assignable from receiver class " +
2418                                                  receiver.getClass().getName());
2419             }
2420             return mh.bindArgumentL(0, receiver).setVarargs(method);
2421         }
2422 
2423         /**
2424          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2425          * to <i>m</i>, if the lookup class has permission.
2426          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2427          * If <i>m</i> is virtual, overriding is respected on every call.
2428          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2429          * The type of the method handle will be that of the method,
2430          * with the receiver type prepended (but only if it is non-static).
2431          * If the method's {@code accessible} flag is not set,
2432          * access checking is performed immediately on behalf of the lookup class.
2433          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2434          * <p>
2435          * The returned method handle will have
2436          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2437          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2438          * <p>
2439          * If <i>m</i> is static, and
2440          * if the returned method handle is invoked, the method's class will
2441          * be initialized, if it has not already been initialized.
2442          * @param m the reflected method
2443          * @return a method handle which can invoke the reflected method
2444          * @throws IllegalAccessException if access checking fails
2445          *                                or if the method's variable arity modifier bit
2446          *                                is set and {@code asVarargsCollector} fails
2447          * @throws NullPointerException if the argument is null
2448          */
2449         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2450             if (m.getDeclaringClass() == MethodHandle.class) {
2451                 MethodHandle mh = unreflectForMH(m);
2452                 if (mh != null)  return mh;
2453             }
2454             if (m.getDeclaringClass() == VarHandle.class) {
2455                 MethodHandle mh = unreflectForVH(m);
2456                 if (mh != null)  return mh;
2457             }
2458             MemberName method = new MemberName(m);
2459             byte refKind = method.getReferenceKind();
2460             if (refKind == REF_invokeSpecial)
2461                 refKind = REF_invokeVirtual;
2462             assert(method.isMethod());
2463             @SuppressWarnings("deprecation")
2464             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2465             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
2466         }
2467         private MethodHandle unreflectForMH(Method m) {
2468             // these names require special lookups because they throw UnsupportedOperationException
2469             if (MemberName.isMethodHandleInvokeName(m.getName()))
2470                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2471             return null;
2472         }
2473         private MethodHandle unreflectForVH(Method m) {
2474             // these names require special lookups because they throw UnsupportedOperationException
2475             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2476                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2477             return null;
2478         }
2479 
2480         /**
2481          * Produces a method handle for a reflected method.
2482          * It will bypass checks for overriding methods on the receiver,
2483          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2484          * instruction from within the explicitly specified {@code specialCaller}.
2485          * The type of the method handle will be that of the method,
2486          * with a suitably restricted receiver type prepended.
2487          * (The receiver type will be {@code specialCaller} or a subtype.)
2488          * If the method's {@code accessible} flag is not set,
2489          * access checking is performed immediately on behalf of the lookup class,
2490          * as if {@code invokespecial} instruction were being linked.
2491          * <p>
2492          * Before method resolution,
2493          * if the explicitly specified caller class is not identical with the
2494          * lookup class, or if this lookup object does not have
2495          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2496          * privileges, the access fails.
2497          * <p>
2498          * The returned method handle will have
2499          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2500          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2501          * @param m the reflected method
2502          * @param specialCaller the class nominally calling the method
2503          * @return a method handle which can invoke the reflected method
2504          * @throws IllegalAccessException if access checking fails,
2505          *                                or if the method is {@code static},
2506          *                                or if the method's variable arity modifier bit
2507          *                                is set and {@code asVarargsCollector} fails
2508          * @throws NullPointerException if any argument is null
2509          */
2510         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2511             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2512             Lookup specialLookup = this.in(specialCaller);
2513             MemberName method = new MemberName(m, true);
2514             assert(method.isMethod());
2515             // ignore m.isAccessible:  this is a new kind of access
2516             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
2517         }
2518 
2519         /**
2520          * Produces a method handle for a reflected constructor.
2521          * The type of the method handle will be that of the constructor,
2522          * with the return type changed to the declaring class.
2523          * The method handle will perform a {@code newInstance} operation,
2524          * creating a new instance of the constructor's class on the
2525          * arguments passed to the method handle.
2526          * <p>
2527          * If the constructor's {@code accessible} flag is not set,
2528          * access checking is performed immediately on behalf of the lookup class.
2529          * <p>
2530          * The returned method handle will have
2531          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2532          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2533          * <p>
2534          * If the returned method handle is invoked, the constructor's class will
2535          * be initialized, if it has not already been initialized.
2536          * @param c the reflected constructor
2537          * @return a method handle which can invoke the reflected constructor
2538          * @throws IllegalAccessException if access checking fails
2539          *                                or if the method's variable arity modifier bit
2540          *                                is set and {@code asVarargsCollector} fails
2541          * @throws NullPointerException if the argument is null
2542          */
2543         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2544             MemberName ctor = new MemberName(c);
2545             assert(ctor.isConstructor());
2546             @SuppressWarnings("deprecation")
2547             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2548             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2549         }
2550 
2551         /**
2552          * Produces a method handle giving read access to a reflected field.
2553          * The type of the method handle will have a return type of the field's
2554          * value type.
2555          * If the field is {@code static}, the method handle will take no arguments.
2556          * Otherwise, its single argument will be the instance containing
2557          * the field.
2558          * If the {@code Field} object's {@code accessible} flag is not set,
2559          * access checking is performed immediately on behalf of the lookup class.
2560          * <p>
2561          * If the field is static, and
2562          * if the returned method handle is invoked, the field's class will
2563          * be initialized, if it has not already been initialized.
2564          * @param f the reflected field
2565          * @return a method handle which can load values from the reflected field
2566          * @throws IllegalAccessException if access checking fails
2567          * @throws NullPointerException if the argument is null
2568          */
2569         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2570             return unreflectField(f, false);
2571         }
2572 
2573         /**
2574          * Produces a method handle giving write access to a reflected field.
2575          * The type of the method handle will have a void return type.
2576          * If the field is {@code static}, the method handle will take a single
2577          * argument, of the field's value type, the value to be stored.
2578          * Otherwise, the two arguments will be the instance containing
2579          * the field, and the value to be stored.
2580          * If the {@code Field} object's {@code accessible} flag is not set,
2581          * access checking is performed immediately on behalf of the lookup class.
2582          * <p>
2583          * If the field is {@code final}, write access will not be
2584          * allowed and access checking will fail, except under certain
2585          * narrow circumstances documented for {@link Field#set Field.set}.
2586          * A method handle is returned only if a corresponding call to
2587          * the {@code Field} object's {@code set} method could return
2588          * normally.  In particular, fields which are both {@code static}
2589          * and {@code final} may never be set.
2590          * <p>
2591          * If the field is {@code static}, and
2592          * if the returned method handle is invoked, the field's class will
2593          * be initialized, if it has not already been initialized.
2594          * @param f the reflected field
2595          * @return a method handle which can store values into the reflected field
2596          * @throws IllegalAccessException if access checking fails,
2597          *         or if the field is {@code final} and write access
2598          *         is not enabled on the {@code Field} object
2599          * @throws NullPointerException if the argument is null
2600          */
2601         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2602             return unreflectField(f, true);
2603         }
2604 
2605         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2606             MemberName field = new MemberName(f, isSetter);
2607             if (isSetter && field.isStatic() && field.isFinal())
2608                 throw field.makeAccessException("static final field has no write access", this);
2609             assert(isSetter
2610                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2611                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2612             @SuppressWarnings("deprecation")
2613             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2614             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2615         }
2616 
2617         /**
2618          * Produces a VarHandle giving access to a reflected field {@code f}
2619          * of type {@code T} declared in a class of type {@code R}.
2620          * The VarHandle's variable type is {@code T}.
2621          * If the field is non-static the VarHandle has one coordinate type,
2622          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2623          * coordinate types.
2624          * <p>
2625          * Access checking is performed immediately on behalf of the lookup
2626          * class, regardless of the value of the field's {@code accessible}
2627          * flag.
2628          * <p>
2629          * If the field is static, and if the returned VarHandle is operated
2630          * on, the field's declaring class will be initialized, if it has not
2631          * already been initialized.
2632          * <p>
2633          * Certain access modes of the returned VarHandle are unsupported under
2634          * the following conditions:
2635          * <ul>
2636          * <li>if the field is declared {@code final}, then the write, atomic
2637          *     update, numeric atomic update, and bitwise atomic update access
2638          *     modes are unsupported.
2639          * <li>if the field type is anything other than {@code byte},
2640          *     {@code short}, {@code char}, {@code int}, {@code long},
2641          *     {@code float}, or {@code double} then numeric atomic update
2642          *     access modes are unsupported.
2643          * <li>if the field type is anything other than {@code boolean},
2644          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2645          *     {@code long} then bitwise atomic update access modes are
2646          *     unsupported.
2647          * </ul>
2648          * <p>
2649          * If the field is declared {@code volatile} then the returned VarHandle
2650          * will override access to the field (effectively ignore the
2651          * {@code volatile} declaration) in accordance to its specified
2652          * access modes.
2653          * <p>
2654          * If the field type is {@code float} or {@code double} then numeric
2655          * and atomic update access modes compare values using their bitwise
2656          * representation (see {@link Float#floatToRawIntBits} and
2657          * {@link Double#doubleToRawLongBits}, respectively).
2658          * @apiNote
2659          * Bitwise comparison of {@code float} values or {@code double} values,
2660          * as performed by the numeric and atomic update access modes, differ
2661          * from the primitive {@code ==} operator and the {@link Float#equals}
2662          * and {@link Double#equals} methods, specifically with respect to
2663          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2664          * Care should be taken when performing a compare and set or a compare
2665          * and exchange operation with such values since the operation may
2666          * unexpectedly fail.
2667          * There are many possible NaN values that are considered to be
2668          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2669          * provided by Java can distinguish between them.  Operation failure can
2670          * occur if the expected or witness value is a NaN value and it is
2671          * transformed (perhaps in a platform specific manner) into another NaN
2672          * value, and thus has a different bitwise representation (see
2673          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2674          * details).
2675          * The values {@code -0.0} and {@code +0.0} have different bitwise
2676          * representations but are considered equal when using the primitive
2677          * {@code ==} operator.  Operation failure can occur if, for example, a
2678          * numeric algorithm computes an expected value to be say {@code -0.0}
2679          * and previously computed the witness value to be say {@code +0.0}.
2680          * @param f the reflected field, with a field of type {@code T}, and
2681          * a declaring class of type {@code R}
2682          * @return a VarHandle giving access to non-static fields or a static
2683          * field
2684          * @throws IllegalAccessException if access checking fails
2685          * @throws NullPointerException if the argument is null
2686          * @since 9
2687          */
2688         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2689             MemberName getField = new MemberName(f, false);
2690             MemberName putField = new MemberName(f, true);
2691             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2692                                                       f.getDeclaringClass(), getField, putField);
2693         }
2694 
2695         /**
2696          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2697          * created by this lookup object or a similar one.
2698          * Security and access checks are performed to ensure that this lookup object
2699          * is capable of reproducing the target method handle.
2700          * This means that the cracking may fail if target is a direct method handle
2701          * but was created by an unrelated lookup object.
2702          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2703          * and was created by a lookup object for a different class.
2704          * @param target a direct method handle to crack into symbolic reference components
2705          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2706          * @throws    SecurityException if a security manager is present and it
2707          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2708          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2709          * @throws    NullPointerException if the target is {@code null}
2710          * @see MethodHandleInfo
2711          * @since 1.8
2712          */
2713         public MethodHandleInfo revealDirect(MethodHandle target) {
2714             MemberName member = target.internalMemberName();
2715             if (member == null || (!member.isResolved() &&
2716                                    !member.isMethodHandleInvoke() &&
2717                                    !member.isVarHandleMethodInvoke()))
2718                 throw newIllegalArgumentException("not a direct method handle");
2719             Class<?> defc = member.getDeclaringClass();
2720             byte refKind = member.getReferenceKind();
2721             assert(MethodHandleNatives.refKindIsValid(refKind));
2722             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2723                 // Devirtualized method invocation is usually formally virtual.
2724                 // To avoid creating extra MemberName objects for this common case,
2725                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2726                 refKind = REF_invokeVirtual;
2727             if (refKind == REF_invokeVirtual && defc.isInterface())
2728                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2729                 refKind = REF_invokeInterface;
2730             // Check SM permissions and member access before cracking.
2731             try {
2732                 checkAccess(refKind, defc, member);
2733                 checkSecurityManager(defc, member);
2734             } catch (IllegalAccessException ex) {
2735                 throw new IllegalArgumentException(ex);
2736             }
2737             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2738                 Class<?> callerClass = target.internalCallerClass();
2739                 if (!hasPrivateAccess() || callerClass != lookupClass())
2740                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2741             }
2742             // Produce the handle to the results.
2743             return new InfoFromMemberName(this, member, refKind);
2744         }
2745 
2746         /// Helper methods, all package-private.
2747 
2748         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2749             checkSymbolicClass(refc);  // do this before attempting to resolve
2750             Objects.requireNonNull(name);
2751             Objects.requireNonNull(type);
2752             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2753                                             NoSuchFieldException.class);
2754         }
2755 
2756         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2757             checkSymbolicClass(refc);  // do this before attempting to resolve
2758             Objects.requireNonNull(name);
2759             Objects.requireNonNull(type);
2760             checkMethodName(refKind, name);  // NPE check on name
2761             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2762                                             NoSuchMethodException.class);
2763         }
2764 
2765         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2766             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2767             Objects.requireNonNull(member.getName());
2768             Objects.requireNonNull(member.getType());
2769             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2770                                             ReflectiveOperationException.class);
2771         }
2772 
2773         MemberName resolveOrNull(byte refKind, MemberName member) {
2774             // do this before attempting to resolve
2775             if (!isClassAccessible(member.getDeclaringClass())) {
2776                 return null;
2777             }
2778             Objects.requireNonNull(member.getName());
2779             Objects.requireNonNull(member.getType());
2780             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2781         }
2782 
2783         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2784             if (!isClassAccessible(refc)) {
2785                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2786             }
2787         }
2788 
2789         boolean isClassAccessible(Class<?> refc) {
2790             Objects.requireNonNull(refc);
2791             Class<?> caller = lookupClassOrNull();
2792             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
2793         }
2794 
2795         /** Check name for an illegal leading "&lt;" character. */
2796         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2797             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2798                 throw new NoSuchMethodException("illegal method name: "+name);
2799         }
2800 
2801 
2802         /**
2803          * Find my trustable caller class if m is a caller sensitive method.
2804          * If this lookup object has private access, then the caller class is the lookupClass.
2805          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2806          */
2807         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2808             Class<?> callerClass = null;
2809             if (MethodHandleNatives.isCallerSensitive(m)) {
2810                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2811                 if (hasPrivateAccess()) {
2812                     callerClass = lookupClass;
2813                 } else {
2814                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2815                 }
2816             }
2817             return callerClass;
2818         }
2819 
2820         /**
2821          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2822          * @return {@code true} if this lookup has {@code PRIVATE} access.
2823          * @since 9
2824          */
2825         public boolean hasPrivateAccess() {
2826             return (allowedModes & PRIVATE) != 0;
2827         }
2828 
2829         /**
2830          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2831          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2832          * If this lookup object has private access, then the caller class is the lookupClass.
2833          */
2834         void checkSecurityManager(Class<?> refc, MemberName m) {
2835             SecurityManager smgr = System.getSecurityManager();
2836             if (smgr == null)  return;
2837             if (allowedModes == TRUSTED)  return;
2838 
2839             // Step 1:
2840             boolean fullPowerLookup = hasPrivateAccess();
2841             if (!fullPowerLookup ||
2842                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2843                 ReflectUtil.checkPackageAccess(refc);
2844             }
2845 
2846             if (m == null) {  // findClass or accessClass
2847                 // Step 2b:
2848                 if (!fullPowerLookup) {
2849                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2850                 }
2851                 return;
2852             }
2853 
2854             // Step 2a:
2855             if (m.isPublic()) return;
2856             if (!fullPowerLookup) {
2857                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2858             }
2859 
2860             // Step 3:
2861             Class<?> defc = m.getDeclaringClass();
2862             if (!fullPowerLookup && defc != refc) {
2863                 ReflectUtil.checkPackageAccess(defc);
2864             }
2865         }
2866 
2867         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2868             boolean wantStatic = (refKind == REF_invokeStatic);
2869             String message;
2870             if (m.isConstructor())
2871                 message = "expected a method, not a constructor";
2872             else if (!m.isMethod())
2873                 message = "expected a method";
2874             else if (wantStatic != m.isStatic())
2875                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2876             else
2877                 { checkAccess(refKind, refc, m); return; }
2878             throw m.makeAccessException(message, this);
2879         }
2880 
2881         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2882             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2883             String message;
2884             if (wantStatic != m.isStatic())
2885                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2886             else
2887                 { checkAccess(refKind, refc, m); return; }
2888             throw m.makeAccessException(message, this);
2889         }
2890 
2891         /** Check public/protected/private bits on the symbolic reference class and its member. */
2892         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2893             assert(m.referenceKindIsConsistentWith(refKind) &&
2894                    MethodHandleNatives.refKindIsValid(refKind) &&
2895                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2896             int allowedModes = this.allowedModes;
2897             if (allowedModes == TRUSTED)  return;
2898             int mods = m.getModifiers();
2899             if (Modifier.isProtected(mods) &&
2900                     refKind == REF_invokeVirtual &&
2901                     m.getDeclaringClass() == Object.class &&
2902                     m.getName().equals("clone") &&
2903                     refc.isArray()) {
2904                 // The JVM does this hack also.
2905                 // (See ClassVerifier::verify_invoke_instructions
2906                 // and LinkResolver::check_method_accessability.)
2907                 // Because the JVM does not allow separate methods on array types,
2908                 // there is no separate method for int[].clone.
2909                 // All arrays simply inherit Object.clone.
2910                 // But for access checking logic, we make Object.clone
2911                 // (normally protected) appear to be public.
2912                 // Later on, when the DirectMethodHandle is created,
2913                 // its leading argument will be restricted to the
2914                 // requested array type.
2915                 // N.B. The return type is not adjusted, because
2916                 // that is *not* the bytecode behavior.
2917                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2918             }
2919             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2920                 // cannot "new" a protected ctor in a different package
2921                 mods ^= Modifier.PROTECTED;
2922             }
2923             if (Modifier.isFinal(mods) &&
2924                     MethodHandleNatives.refKindIsSetter(refKind))
2925                 throw m.makeAccessException("unexpected set of a final field", this);
2926             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2927             if ((requestedModes & allowedModes) != 0) {
2928                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2929                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
2930                     return;
2931             } else {
2932                 // Protected members can also be checked as if they were package-private.
2933                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2934                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2935                     return;
2936             }
2937             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2938         }
2939 
2940         String accessFailedMessage(Class<?> refc, MemberName m) {
2941             Class<?> defc = m.getDeclaringClass();
2942             int mods = m.getModifiers();
2943             // check the class first:
2944             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2945                                (defc == refc ||
2946                                 Modifier.isPublic(refc.getModifiers())));
2947             if (!classOK && (allowedModes & PACKAGE) != 0) {
2948                 // ignore previous lookup class to check if default package access
2949                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
2950                            (defc == refc ||
2951                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
2952             }
2953             if (!classOK)
2954                 return "class is not public";
2955             if (Modifier.isPublic(mods))
2956                 return "access to public member failed";  // (how?, module not readable?)
2957             if (Modifier.isPrivate(mods))
2958                 return "member is private";
2959             if (Modifier.isProtected(mods))
2960                 return "member is protected";
2961             return "member is private to package";
2962         }
2963 
2964         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2965             int allowedModes = this.allowedModes;
2966             if (allowedModes == TRUSTED)  return;
2967             if (!hasPrivateAccess()
2968                 || (specialCaller != lookupClass()
2969                        // ensure non-abstract methods in superinterfaces can be special-invoked
2970                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2971                 throw new MemberName(specialCaller).
2972                     makeAccessException("no private access for invokespecial", this);
2973         }
2974 
2975         private boolean restrictProtectedReceiver(MemberName method) {
2976             // The accessing class only has the right to use a protected member
2977             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2978             if (!method.isProtected() || method.isStatic()
2979                 || allowedModes == TRUSTED
2980                 || method.getDeclaringClass() == lookupClass()
2981                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2982                 return false;
2983             return true;
2984         }
2985         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2986             assert(!method.isStatic());
2987             // receiver type of mh is too wide; narrow to caller
2988             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2989                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2990             }
2991             MethodType rawType = mh.type();
2992             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2993             MethodType narrowType = rawType.changeParameterType(0, caller);
2994             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2995             assert(mh.viewAsTypeChecks(narrowType, true));
2996             return mh.copyWith(narrowType, mh.form);
2997         }
2998 
2999         /** Check access and get the requested method. */
3000         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3001             final boolean doRestrict    = true;
3002             final boolean checkSecurity = true;
3003             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3004         }
3005         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3006         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3007             final boolean doRestrict    = false;
3008             final boolean checkSecurity = true;
3009             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
3010         }
3011         /** Check access and get the requested method, eliding security manager checks. */
3012         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3013             final boolean doRestrict    = true;
3014             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3015             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3016         }
3017         /** Common code for all methods; do not call directly except from immediately above. */
3018         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3019                                                    boolean checkSecurity,
3020                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
3021 
3022             checkMethod(refKind, refc, method);
3023             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3024             if (checkSecurity)
3025                 checkSecurityManager(refc, method);
3026             assert(!method.isMethodHandleInvoke());
3027 
3028             if (refKind == REF_invokeSpecial &&
3029                 refc != lookupClass() &&
3030                 !refc.isInterface() &&
3031                 refc != lookupClass().getSuperclass() &&
3032                 refc.isAssignableFrom(lookupClass())) {
3033                 assert(!method.getName().equals("<init>"));  // not this code path
3034 
3035                 // Per JVMS 6.5, desc. of invokespecial instruction:
3036                 // If the method is in a superclass of the LC,
3037                 // and if our original search was above LC.super,
3038                 // repeat the search (symbolic lookup) from LC.super
3039                 // and continue with the direct superclass of that class,
3040                 // and so forth, until a match is found or no further superclasses exist.
3041                 // FIXME: MemberName.resolve should handle this instead.
3042                 Class<?> refcAsSuper = lookupClass();
3043                 MemberName m2;
3044                 do {
3045                     refcAsSuper = refcAsSuper.getSuperclass();
3046                     m2 = new MemberName(refcAsSuper,
3047                                         method.getName(),
3048                                         method.getMethodType(),
3049                                         REF_invokeSpecial);
3050                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3051                 } while (m2 == null &&         // no method is found yet
3052                          refc != refcAsSuper); // search up to refc
3053                 if (m2 == null)  throw new InternalError(method.toString());
3054                 method = m2;
3055                 refc = refcAsSuper;
3056                 // redo basic checks
3057                 checkMethod(refKind, refc, method);
3058             }
3059 
3060             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3061             MethodHandle mh = dmh;
3062             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3063             if ((doRestrict && refKind == REF_invokeSpecial) ||
3064                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3065                 mh = restrictReceiver(method, dmh, lookupClass());
3066             }
3067             mh = maybeBindCaller(method, mh, boundCallerClass);
3068             mh = mh.setVarargs(method);
3069             return mh;
3070         }
3071         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
3072                                              Class<?> boundCallerClass)
3073                                              throws IllegalAccessException {
3074             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3075                 return mh;
3076             Class<?> hostClass = lookupClass;
3077             if (!hasPrivateAccess())  // caller must have private access
3078                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
3079             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
3080             // Note: caller will apply varargs after this step happens.
3081             return cbmh;
3082         }
3083         /** Check access and get the requested field. */
3084         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3085             final boolean checkSecurity = true;
3086             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3087         }
3088         /** Check access and get the requested field, eliding security manager checks. */
3089         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3090             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3091             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3092         }
3093         /** Common code for all fields; do not call directly except from immediately above. */
3094         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3095                                                   boolean checkSecurity) throws IllegalAccessException {
3096             checkField(refKind, refc, field);
3097             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3098             if (checkSecurity)
3099                 checkSecurityManager(refc, field);
3100             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3101             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3102                                     restrictProtectedReceiver(field));
3103             if (doRestrict)
3104                 return restrictReceiver(field, dmh, lookupClass());
3105             return dmh;
3106         }
3107         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3108                                             Class<?> refc, MemberName getField, MemberName putField)
3109                 throws IllegalAccessException {
3110             final boolean checkSecurity = true;
3111             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3112         }
3113         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3114                                                              Class<?> refc, MemberName getField, MemberName putField)
3115                 throws IllegalAccessException {
3116             final boolean checkSecurity = false;
3117             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3118         }
3119         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3120                                                   Class<?> refc, MemberName getField, MemberName putField,
3121                                                   boolean checkSecurity) throws IllegalAccessException {
3122             assert getField.isStatic() == putField.isStatic();
3123             assert getField.isGetter() && putField.isSetter();
3124             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3125             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3126 
3127             checkField(getRefKind, refc, getField);
3128             if (checkSecurity)
3129                 checkSecurityManager(refc, getField);
3130 
3131             if (!putField.isFinal()) {
3132                 // A VarHandle does not support updates to final fields, any
3133                 // such VarHandle to a final field will be read-only and
3134                 // therefore the following write-based accessibility checks are
3135                 // only required for non-final fields
3136                 checkField(putRefKind, refc, putField);
3137                 if (checkSecurity)
3138                     checkSecurityManager(refc, putField);
3139             }
3140 
3141             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3142                                   restrictProtectedReceiver(getField));
3143             if (doRestrict) {
3144                 assert !getField.isStatic();
3145                 // receiver type of VarHandle is too wide; narrow to caller
3146                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3147                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3148                 }
3149                 refc = lookupClass();
3150             }
3151             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3152         }
3153         /** Check access and get the requested constructor. */
3154         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3155             final boolean checkSecurity = true;
3156             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3157         }
3158         /** Check access and get the requested constructor, eliding security manager checks. */
3159         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3160             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3161             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3162         }
3163         /** Common code for all constructors; do not call directly except from immediately above. */
3164         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3165                                                   boolean checkSecurity) throws IllegalAccessException {
3166             assert(ctor.isConstructor());
3167             checkAccess(REF_newInvokeSpecial, refc, ctor);
3168             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3169             if (checkSecurity)
3170                 checkSecurityManager(refc, ctor);
3171             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3172             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3173         }
3174 
3175         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3176          */
3177         /*non-public*/
3178         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3179                 throws ReflectiveOperationException {
3180             if (!(type instanceof Class || type instanceof MethodType))
3181                 throw new InternalError("unresolved MemberName");
3182             MemberName member = new MemberName(refKind, defc, name, type);
3183             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3184             if (mh != null) {
3185                 checkSymbolicClass(defc);
3186                 return mh;
3187             }
3188             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3189                 // Treat MethodHandle.invoke and invokeExact specially.
3190                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3191                 if (mh != null) {
3192                     return mh;
3193                 }
3194             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3195                 // Treat signature-polymorphic methods on VarHandle specially.
3196                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3197                 if (mh != null) {
3198                     return mh;
3199                 }
3200             }
3201             MemberName resolved = resolveOrFail(refKind, member);
3202             mh = getDirectMethodForConstant(refKind, defc, resolved);
3203             if (mh instanceof DirectMethodHandle
3204                     && canBeCached(refKind, defc, resolved)) {
3205                 MemberName key = mh.internalMemberName();
3206                 if (key != null) {
3207                     key = key.asNormalOriginal();
3208                 }
3209                 if (member.equals(key)) {  // better safe than sorry
3210                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3211                 }
3212             }
3213             return mh;
3214         }
3215         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3216             if (refKind == REF_invokeSpecial) {
3217                 return false;
3218             }
3219             if (!Modifier.isPublic(defc.getModifiers()) ||
3220                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3221                     !member.isPublic() ||
3222                     member.isCallerSensitive()) {
3223                 return false;
3224             }
3225             ClassLoader loader = defc.getClassLoader();
3226             if (loader != null) {
3227                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3228                 boolean found = false;
3229                 while (sysl != null) {
3230                     if (loader == sysl) { found = true; break; }
3231                     sysl = sysl.getParent();
3232                 }
3233                 if (!found) {
3234                     return false;
3235                 }
3236             }
3237             try {
3238                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3239                     new MemberName(refKind, defc, member.getName(), member.getType()));
3240                 if (resolved2 == null) {
3241                     return false;
3242                 }
3243                 checkSecurityManager(defc, resolved2);
3244             } catch (SecurityException ex) {
3245                 return false;
3246             }
3247             return true;
3248         }
3249         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3250                 throws ReflectiveOperationException {
3251             if (MethodHandleNatives.refKindIsField(refKind)) {
3252                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3253             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3254                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
3255             } else if (refKind == REF_newInvokeSpecial) {
3256                 return getDirectConstructorNoSecurityManager(defc, member);
3257             }
3258             // oops
3259             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3260         }
3261 
3262         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3263     }
3264 
3265     /**
3266      * Produces a method handle constructing arrays of a desired type,
3267      * as if by the {@code anewarray} bytecode.
3268      * The return type of the method handle will be the array type.
3269      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3270      *
3271      * <p> If the returned method handle is invoked with a negative
3272      * array size, a {@code NegativeArraySizeException} will be thrown.
3273      *
3274      * @param arrayClass an array type
3275      * @return a method handle which can create arrays of the given type
3276      * @throws NullPointerException if the argument is {@code null}
3277      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3278      * @see java.lang.reflect.Array#newInstance(Class, int)
3279      * @jvms 6.5 {@code anewarray} Instruction
3280      * @since 9
3281      */
3282     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3283         if (!arrayClass.isArray()) {
3284             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3285         }
3286         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3287                 bindTo(arrayClass.getComponentType());
3288         return ani.asType(ani.type().changeReturnType(arrayClass));
3289     }
3290 
3291     /**
3292      * Produces a method handle returning the length of an array,
3293      * as if by the {@code arraylength} bytecode.
3294      * The type of the method handle will have {@code int} as return type,
3295      * and its sole argument will be the array type.
3296      *
3297      * <p> If the returned method handle is invoked with a {@code null}
3298      * array reference, a {@code NullPointerException} will be thrown.
3299      *
3300      * @param arrayClass an array type
3301      * @return a method handle which can retrieve the length of an array of the given array type
3302      * @throws NullPointerException if the argument is {@code null}
3303      * @throws IllegalArgumentException if arrayClass is not an array type
3304      * @jvms 6.5 {@code arraylength} Instruction
3305      * @since 9
3306      */
3307     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3308         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3309     }
3310 
3311     /**
3312      * Produces a method handle giving read access to elements of an array,
3313      * as if by the {@code aaload} bytecode.
3314      * The type of the method handle will have a return type of the array's
3315      * element type.  Its first argument will be the array type,
3316      * and the second will be {@code int}.
3317      *
3318      * <p> When the returned method handle is invoked,
3319      * the array reference and array index are checked.
3320      * A {@code NullPointerException} will be thrown if the array reference
3321      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3322      * thrown if the index is negative or if it is greater than or equal to
3323      * the length of the array.
3324      *
3325      * @param arrayClass an array type
3326      * @return a method handle which can load values from the given array type
3327      * @throws NullPointerException if the argument is null
3328      * @throws  IllegalArgumentException if arrayClass is not an array type
3329      * @jvms 6.5 {@code aaload} Instruction
3330      */
3331     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3332         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3333     }
3334 
3335     /**
3336      * Produces a method handle giving write access to elements of an array,
3337      * as if by the {@code astore} bytecode.
3338      * The type of the method handle will have a void return type.
3339      * Its last argument will be the array's element type.
3340      * The first and second arguments will be the array type and int.
3341      *
3342      * <p> When the returned method handle is invoked,
3343      * the array reference and array index are checked.
3344      * A {@code NullPointerException} will be thrown if the array reference
3345      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3346      * thrown if the index is negative or if it is greater than or equal to
3347      * the length of the array.
3348      *
3349      * @param arrayClass the class of an array
3350      * @return a method handle which can store values into the array type
3351      * @throws NullPointerException if the argument is null
3352      * @throws IllegalArgumentException if arrayClass is not an array type
3353      * @jvms 6.5 {@code aastore} Instruction
3354      */
3355     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3356         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3357     }
3358 
3359     /**
3360      * Produces a VarHandle giving access to elements of an array of type
3361      * {@code arrayClass}.  The VarHandle's variable type is the component type
3362      * of {@code arrayClass} and the list of coordinate types is
3363      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3364      * corresponds to an argument that is an index into an array.
3365      * <p>
3366      * Certain access modes of the returned VarHandle are unsupported under
3367      * the following conditions:
3368      * <ul>
3369      * <li>if the component type is anything other than {@code byte},
3370      *     {@code short}, {@code char}, {@code int}, {@code long},
3371      *     {@code float}, or {@code double} then numeric atomic update access
3372      *     modes are unsupported.
3373      * <li>if the field type is anything other than {@code boolean},
3374      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3375      *     {@code long} then bitwise atomic update access modes are
3376      *     unsupported.
3377      * </ul>
3378      * <p>
3379      * If the component type is {@code float} or {@code double} then numeric
3380      * and atomic update access modes compare values using their bitwise
3381      * representation (see {@link Float#floatToRawIntBits} and
3382      * {@link Double#doubleToRawLongBits}, respectively).
3383      *
3384      * <p> When the returned {@code VarHandle} is invoked,
3385      * the array reference and array index are checked.
3386      * A {@code NullPointerException} will be thrown if the array reference
3387      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3388      * thrown if the index is negative or if it is greater than or equal to
3389      * the length of the array.
3390      *
3391      * @apiNote
3392      * Bitwise comparison of {@code float} values or {@code double} values,
3393      * as performed by the numeric and atomic update access modes, differ
3394      * from the primitive {@code ==} operator and the {@link Float#equals}
3395      * and {@link Double#equals} methods, specifically with respect to
3396      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3397      * Care should be taken when performing a compare and set or a compare
3398      * and exchange operation with such values since the operation may
3399      * unexpectedly fail.
3400      * There are many possible NaN values that are considered to be
3401      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3402      * provided by Java can distinguish between them.  Operation failure can
3403      * occur if the expected or witness value is a NaN value and it is
3404      * transformed (perhaps in a platform specific manner) into another NaN
3405      * value, and thus has a different bitwise representation (see
3406      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3407      * details).
3408      * The values {@code -0.0} and {@code +0.0} have different bitwise
3409      * representations but are considered equal when using the primitive
3410      * {@code ==} operator.  Operation failure can occur if, for example, a
3411      * numeric algorithm computes an expected value to be say {@code -0.0}
3412      * and previously computed the witness value to be say {@code +0.0}.
3413      * @param arrayClass the class of an array, of type {@code T[]}
3414      * @return a VarHandle giving access to elements of an array
3415      * @throws NullPointerException if the arrayClass is null
3416      * @throws IllegalArgumentException if arrayClass is not an array type
3417      * @since 9
3418      */
3419     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3420         return VarHandles.makeArrayElementHandle(arrayClass);
3421     }
3422 
3423     /**
3424      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3425      * viewed as if it were a different primitive array type, such as
3426      * {@code int[]} or {@code long[]}.
3427      * The VarHandle's variable type is the component type of
3428      * {@code viewArrayClass} and the list of coordinate types is
3429      * {@code (byte[], int)}, where the {@code int} coordinate type
3430      * corresponds to an argument that is an index into a {@code byte[]} array.
3431      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3432      * array, composing bytes to or from a value of the component type of
3433      * {@code viewArrayClass} according to the given endianness.
3434      * <p>
3435      * The supported component types (variables types) are {@code short},
3436      * {@code char}, {@code int}, {@code long}, {@code float} and
3437      * {@code double}.
3438      * <p>
3439      * Access of bytes at a given index will result in an
3440      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3441      * or greater than the {@code byte[]} array length minus the size (in bytes)
3442      * of {@code T}.
3443      * <p>
3444      * Access of bytes at an index may be aligned or misaligned for {@code T},
3445      * with respect to the underlying memory address, {@code A} say, associated
3446      * with the array and index.
3447      * If access is misaligned then access for anything other than the
3448      * {@code get} and {@code set} access modes will result in an
3449      * {@code IllegalStateException}.  In such cases atomic access is only
3450      * guaranteed with respect to the largest power of two that divides the GCD
3451      * of {@code A} and the size (in bytes) of {@code T}.
3452      * If access is aligned then following access modes are supported and are
3453      * guaranteed to support atomic access:
3454      * <ul>
3455      * <li>read write access modes for all {@code T}, with the exception of
3456      *     access modes {@code get} and {@code set} for {@code long} and
3457      *     {@code double} on 32-bit platforms.
3458      * <li>atomic update access modes for {@code int}, {@code long},
3459      *     {@code float} or {@code double}.
3460      *     (Future major platform releases of the JDK may support additional
3461      *     types for certain currently unsupported access modes.)
3462      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3463      *     (Future major platform releases of the JDK may support additional
3464      *     numeric types for certain currently unsupported access modes.)
3465      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3466      *     (Future major platform releases of the JDK may support additional
3467      *     numeric types for certain currently unsupported access modes.)
3468      * </ul>
3469      * <p>
3470      * Misaligned access, and therefore atomicity guarantees, may be determined
3471      * for {@code byte[]} arrays without operating on a specific array.  Given
3472      * an {@code index}, {@code T} and it's corresponding boxed type,
3473      * {@code T_BOX}, misalignment may be determined as follows:
3474      * <pre>{@code
3475      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3476      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3477      *     alignmentOffset(0, sizeOfT);
3478      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3479      * boolean isMisaligned = misalignedAtIndex != 0;
3480      * }</pre>
3481      * <p>
3482      * If the variable type is {@code float} or {@code double} then atomic
3483      * update access modes compare values using their bitwise representation
3484      * (see {@link Float#floatToRawIntBits} and
3485      * {@link Double#doubleToRawLongBits}, respectively).
3486      * @param viewArrayClass the view array class, with a component type of
3487      * type {@code T}
3488      * @param byteOrder the endianness of the view array elements, as
3489      * stored in the underlying {@code byte} array
3490      * @return a VarHandle giving access to elements of a {@code byte[]} array
3491      * viewed as if elements corresponding to the components type of the view
3492      * array class
3493      * @throws NullPointerException if viewArrayClass or byteOrder is null
3494      * @throws IllegalArgumentException if viewArrayClass is not an array type
3495      * @throws UnsupportedOperationException if the component type of
3496      * viewArrayClass is not supported as a variable type
3497      * @since 9
3498      */
3499     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3500                                      ByteOrder byteOrder) throws IllegalArgumentException {
3501         Objects.requireNonNull(byteOrder);
3502         return VarHandles.byteArrayViewHandle(viewArrayClass,
3503                                               byteOrder == ByteOrder.BIG_ENDIAN);
3504     }
3505 
3506     /**
3507      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3508      * viewed as if it were an array of elements of a different primitive
3509      * component type to that of {@code byte}, such as {@code int[]} or
3510      * {@code long[]}.
3511      * The VarHandle's variable type is the component type of
3512      * {@code viewArrayClass} and the list of coordinate types is
3513      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3514      * corresponds to an argument that is an index into a {@code byte[]} array.
3515      * The returned VarHandle accesses bytes at an index in a
3516      * {@code ByteBuffer}, composing bytes to or from a value of the component
3517      * type of {@code viewArrayClass} according to the given endianness.
3518      * <p>
3519      * The supported component types (variables types) are {@code short},
3520      * {@code char}, {@code int}, {@code long}, {@code float} and
3521      * {@code double}.
3522      * <p>
3523      * Access will result in a {@code ReadOnlyBufferException} for anything
3524      * other than the read access modes if the {@code ByteBuffer} is read-only.
3525      * <p>
3526      * Access of bytes at a given index will result in an
3527      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3528      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3529      * {@code T}.
3530      * <p>
3531      * Access of bytes at an index may be aligned or misaligned for {@code T},
3532      * with respect to the underlying memory address, {@code A} say, associated
3533      * with the {@code ByteBuffer} and index.
3534      * If access is misaligned then access for anything other than the
3535      * {@code get} and {@code set} access modes will result in an
3536      * {@code IllegalStateException}.  In such cases atomic access is only
3537      * guaranteed with respect to the largest power of two that divides the GCD
3538      * of {@code A} and the size (in bytes) of {@code T}.
3539      * If access is aligned then following access modes are supported and are
3540      * guaranteed to support atomic access:
3541      * <ul>
3542      * <li>read write access modes for all {@code T}, with the exception of
3543      *     access modes {@code get} and {@code set} for {@code long} and
3544      *     {@code double} on 32-bit platforms.
3545      * <li>atomic update access modes for {@code int}, {@code long},
3546      *     {@code float} or {@code double}.
3547      *     (Future major platform releases of the JDK may support additional
3548      *     types for certain currently unsupported access modes.)
3549      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3550      *     (Future major platform releases of the JDK may support additional
3551      *     numeric types for certain currently unsupported access modes.)
3552      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3553      *     (Future major platform releases of the JDK may support additional
3554      *     numeric types for certain currently unsupported access modes.)
3555      * </ul>
3556      * <p>
3557      * Misaligned access, and therefore atomicity guarantees, may be determined
3558      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3559      * {@code index}, {@code T} and it's corresponding boxed type,
3560      * {@code T_BOX}, as follows:
3561      * <pre>{@code
3562      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3563      * ByteBuffer bb = ...
3564      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3565      * boolean isMisaligned = misalignedAtIndex != 0;
3566      * }</pre>
3567      * <p>
3568      * If the variable type is {@code float} or {@code double} then atomic
3569      * update access modes compare values using their bitwise representation
3570      * (see {@link Float#floatToRawIntBits} and
3571      * {@link Double#doubleToRawLongBits}, respectively).
3572      * @param viewArrayClass the view array class, with a component type of
3573      * type {@code T}
3574      * @param byteOrder the endianness of the view array elements, as
3575      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3576      * endianness of a {@code ByteBuffer})
3577      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3578      * viewed as if elements corresponding to the components type of the view
3579      * array class
3580      * @throws NullPointerException if viewArrayClass or byteOrder is null
3581      * @throws IllegalArgumentException if viewArrayClass is not an array type
3582      * @throws UnsupportedOperationException if the component type of
3583      * viewArrayClass is not supported as a variable type
3584      * @since 9
3585      */
3586     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3587                                       ByteOrder byteOrder) throws IllegalArgumentException {
3588         Objects.requireNonNull(byteOrder);
3589         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3590                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3591     }
3592 
3593 
3594     /// method handle invocation (reflective style)
3595 
3596     /**
3597      * Produces a method handle which will invoke any method handle of the
3598      * given {@code type}, with a given number of trailing arguments replaced by
3599      * a single trailing {@code Object[]} array.
3600      * The resulting invoker will be a method handle with the following
3601      * arguments:
3602      * <ul>
3603      * <li>a single {@code MethodHandle} target
3604      * <li>zero or more leading values (counted by {@code leadingArgCount})
3605      * <li>an {@code Object[]} array containing trailing arguments
3606      * </ul>
3607      * <p>
3608      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3609      * the indicated {@code type}.
3610      * That is, if the target is exactly of the given {@code type}, it will behave
3611      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3612      * is used to convert the target to the required {@code type}.
3613      * <p>
3614      * The type of the returned invoker will not be the given {@code type}, but rather
3615      * will have all parameters except the first {@code leadingArgCount}
3616      * replaced by a single array of type {@code Object[]}, which will be
3617      * the final parameter.
3618      * <p>
3619      * Before invoking its target, the invoker will spread the final array, apply
3620      * reference casts as necessary, and unbox and widen primitive arguments.
3621      * If, when the invoker is called, the supplied array argument does
3622      * not have the correct number of elements, the invoker will throw
3623      * an {@link IllegalArgumentException} instead of invoking the target.
3624      * <p>
3625      * This method is equivalent to the following code (though it may be more efficient):
3626      * <blockquote><pre>{@code
3627 MethodHandle invoker = MethodHandles.invoker(type);
3628 int spreadArgCount = type.parameterCount() - leadingArgCount;
3629 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3630 return invoker;
3631      * }</pre></blockquote>
3632      * This method throws no reflective or security exceptions.
3633      * @param type the desired target type
3634      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3635      * @return a method handle suitable for invoking any method handle of the given type
3636      * @throws NullPointerException if {@code type} is null
3637      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3638      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3639      *                  or if the resulting method handle's type would have
3640      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3641      */
3642     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3643         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3644             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3645         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3646         return type.invokers().spreadInvoker(leadingArgCount);
3647     }
3648 
3649     /**
3650      * Produces a special <em>invoker method handle</em> which can be used to
3651      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3652      * The resulting invoker will have a type which is
3653      * exactly equal to the desired type, except that it will accept
3654      * an additional leading argument of type {@code MethodHandle}.
3655      * <p>
3656      * This method is equivalent to the following code (though it may be more efficient):
3657      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3658      *
3659      * <p style="font-size:smaller;">
3660      * <em>Discussion:</em>
3661      * Invoker method handles can be useful when working with variable method handles
3662      * of unknown types.
3663      * For example, to emulate an {@code invokeExact} call to a variable method
3664      * handle {@code M}, extract its type {@code T},
3665      * look up the invoker method {@code X} for {@code T},
3666      * and call the invoker method, as {@code X.invoke(T, A...)}.
3667      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3668      * is unknown.)
3669      * If spreading, collecting, or other argument transformations are required,
3670      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3671      * method handle values, as long as they are compatible with the type of {@code X}.
3672      * <p style="font-size:smaller;">
3673      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3674      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3675      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3676      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3677      * <p>
3678      * This method throws no reflective or security exceptions.
3679      * @param type the desired target type
3680      * @return a method handle suitable for invoking any method handle of the given type
3681      * @throws IllegalArgumentException if the resulting method handle's type would have
3682      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3683      */
3684     public static MethodHandle exactInvoker(MethodType type) {
3685         return type.invokers().exactInvoker();
3686     }
3687 
3688     /**
3689      * Produces a special <em>invoker method handle</em> which can be used to
3690      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3691      * The resulting invoker will have a type which is
3692      * exactly equal to the desired type, except that it will accept
3693      * an additional leading argument of type {@code MethodHandle}.
3694      * <p>
3695      * Before invoking its target, if the target differs from the expected type,
3696      * the invoker will apply reference casts as
3697      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3698      * Similarly, the return value will be converted as necessary.
3699      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3700      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3701      * <p>
3702      * This method is equivalent to the following code (though it may be more efficient):
3703      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3704      * <p style="font-size:smaller;">
3705      * <em>Discussion:</em>
3706      * A {@linkplain MethodType#genericMethodType general method type} is one which
3707      * mentions only {@code Object} arguments and return values.
3708      * An invoker for such a type is capable of calling any method handle
3709      * of the same arity as the general type.
3710      * <p style="font-size:smaller;">
3711      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3712      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3713      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3714      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3715      * <p>
3716      * This method throws no reflective or security exceptions.
3717      * @param type the desired target type
3718      * @return a method handle suitable for invoking any method handle convertible to the given type
3719      * @throws IllegalArgumentException if the resulting method handle's type would have
3720      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3721      */
3722     public static MethodHandle invoker(MethodType type) {
3723         return type.invokers().genericInvoker();
3724     }
3725 
3726     /**
3727      * Produces a special <em>invoker method handle</em> which can be used to
3728      * invoke a signature-polymorphic access mode method on any VarHandle whose
3729      * associated access mode type is compatible with the given type.
3730      * The resulting invoker will have a type which is exactly equal to the
3731      * desired given type, except that it will accept an additional leading
3732      * argument of type {@code VarHandle}.
3733      *
3734      * @param accessMode the VarHandle access mode
3735      * @param type the desired target type
3736      * @return a method handle suitable for invoking an access mode method of
3737      *         any VarHandle whose access mode type is of the given type.
3738      * @since 9
3739      */
3740     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3741         return type.invokers().varHandleMethodExactInvoker(accessMode);
3742     }
3743 
3744     /**
3745      * Produces a special <em>invoker method handle</em> which can be used to
3746      * invoke a signature-polymorphic access mode method on any VarHandle whose
3747      * associated access mode type is compatible with the given type.
3748      * The resulting invoker will have a type which is exactly equal to the
3749      * desired given type, except that it will accept an additional leading
3750      * argument of type {@code VarHandle}.
3751      * <p>
3752      * Before invoking its target, if the access mode type differs from the
3753      * desired given type, the invoker will apply reference casts as necessary
3754      * and box, unbox, or widen primitive values, as if by
3755      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3756      * converted as necessary.
3757      * <p>
3758      * This method is equivalent to the following code (though it may be more
3759      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3760      *
3761      * @param accessMode the VarHandle access mode
3762      * @param type the desired target type
3763      * @return a method handle suitable for invoking an access mode method of
3764      *         any VarHandle whose access mode type is convertible to the given
3765      *         type.
3766      * @since 9
3767      */
3768     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3769         return type.invokers().varHandleMethodInvoker(accessMode);
3770     }
3771 
3772     /*non-public*/
3773     static MethodHandle basicInvoker(MethodType type) {
3774         return type.invokers().basicInvoker();
3775     }
3776 
3777      /// method handle modification (creation from other method handles)
3778 
3779     /**
3780      * Produces a method handle which adapts the type of the
3781      * given method handle to a new type by pairwise argument and return type conversion.
3782      * The original type and new type must have the same number of arguments.
3783      * The resulting method handle is guaranteed to report a type
3784      * which is equal to the desired new type.
3785      * <p>
3786      * If the original type and new type are equal, returns target.
3787      * <p>
3788      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3789      * and some additional conversions are also applied if those conversions fail.
3790      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3791      * if possible, before or instead of any conversions done by {@code asType}:
3792      * <ul>
3793      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3794      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3795      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3796      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3797      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3798      *     (This treatment follows the usage of the bytecode verifier.)
3799      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3800      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3801      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3802      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3803      *     then a Java casting conversion (JLS 5.5) is applied.
3804      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3805      *     widening and/or narrowing.)
3806      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3807      *     conversion will be applied at runtime, possibly followed
3808      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3809      *     possibly followed by a conversion from byte to boolean by testing
3810      *     the low-order bit.
3811      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3812      *     and if the reference is null at runtime, a zero value is introduced.
3813      * </ul>
3814      * @param target the method handle to invoke after arguments are retyped
3815      * @param newType the expected type of the new method handle
3816      * @return a method handle which delegates to the target after performing
3817      *           any necessary argument conversions, and arranges for any
3818      *           necessary return value conversions
3819      * @throws NullPointerException if either argument is null
3820      * @throws WrongMethodTypeException if the conversion cannot be made
3821      * @see MethodHandle#asType
3822      */
3823     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3824         explicitCastArgumentsChecks(target, newType);
3825         // use the asTypeCache when possible:
3826         MethodType oldType = target.type();
3827         if (oldType == newType)  return target;
3828         if (oldType.explicitCastEquivalentToAsType(newType)) {
3829             return target.asFixedArity().asType(newType);
3830         }
3831         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3832     }
3833 
3834     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3835         if (target.type().parameterCount() != newType.parameterCount()) {
3836             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3837         }
3838     }
3839 
3840     /**
3841      * Produces a method handle which adapts the calling sequence of the
3842      * given method handle to a new type, by reordering the arguments.
3843      * The resulting method handle is guaranteed to report a type
3844      * which is equal to the desired new type.
3845      * <p>
3846      * The given array controls the reordering.
3847      * Call {@code #I} the number of incoming parameters (the value
3848      * {@code newType.parameterCount()}, and call {@code #O} the number
3849      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3850      * Then the length of the reordering array must be {@code #O},
3851      * and each element must be a non-negative number less than {@code #I}.
3852      * For every {@code N} less than {@code #O}, the {@code N}-th
3853      * outgoing argument will be taken from the {@code I}-th incoming
3854      * argument, where {@code I} is {@code reorder[N]}.
3855      * <p>
3856      * No argument or return value conversions are applied.
3857      * The type of each incoming argument, as determined by {@code newType},
3858      * must be identical to the type of the corresponding outgoing parameter
3859      * or parameters in the target method handle.
3860      * The return type of {@code newType} must be identical to the return
3861      * type of the original target.
3862      * <p>
3863      * The reordering array need not specify an actual permutation.
3864      * An incoming argument will be duplicated if its index appears
3865      * more than once in the array, and an incoming argument will be dropped
3866      * if its index does not appear in the array.
3867      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3868      * incoming arguments which are not mentioned in the reordering array
3869      * may be of any type, as determined only by {@code newType}.
3870      * <blockquote><pre>{@code
3871 import static java.lang.invoke.MethodHandles.*;
3872 import static java.lang.invoke.MethodType.*;
3873 ...
3874 MethodType intfn1 = methodType(int.class, int.class);
3875 MethodType intfn2 = methodType(int.class, int.class, int.class);
3876 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3877 assert(sub.type().equals(intfn2));
3878 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3879 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3880 assert((int)rsub.invokeExact(1, 100) == 99);
3881 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3882 assert(add.type().equals(intfn2));
3883 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3884 assert(twice.type().equals(intfn1));
3885 assert((int)twice.invokeExact(21) == 42);
3886      * }</pre></blockquote>
3887      * <p>
3888      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3889      * variable-arity method handle}, even if the original target method handle was.
3890      * @param target the method handle to invoke after arguments are reordered
3891      * @param newType the expected type of the new method handle
3892      * @param reorder an index array which controls the reordering
3893      * @return a method handle which delegates to the target after it
3894      *           drops unused arguments and moves and/or duplicates the other arguments
3895      * @throws NullPointerException if any argument is null
3896      * @throws IllegalArgumentException if the index array length is not equal to
3897      *                  the arity of the target, or if any index array element
3898      *                  not a valid index for a parameter of {@code newType},
3899      *                  or if two corresponding parameter types in
3900      *                  {@code target.type()} and {@code newType} are not identical,
3901      */
3902     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3903         reorder = reorder.clone();  // get a private copy
3904         MethodType oldType = target.type();
3905         permuteArgumentChecks(reorder, newType, oldType);
3906         // first detect dropped arguments and handle them separately
3907         int[] originalReorder = reorder;
3908         BoundMethodHandle result = target.rebind();
3909         LambdaForm form = result.form;
3910         int newArity = newType.parameterCount();
3911         // Normalize the reordering into a real permutation,
3912         // by removing duplicates and adding dropped elements.
3913         // This somewhat improves lambda form caching, as well
3914         // as simplifying the transform by breaking it up into steps.
3915         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3916             if (ddIdx > 0) {
3917                 // We found a duplicated entry at reorder[ddIdx].
3918                 // Example:  (x,y,z)->asList(x,y,z)
3919                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3920                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3921                 // The starred element corresponds to the argument
3922                 // deleted by the dupArgumentForm transform.
3923                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3924                 boolean killFirst = false;
3925                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3926                     // Set killFirst if the dup is larger than an intervening position.
3927                     // This will remove at least one inversion from the permutation.
3928                     if (dupVal > val) killFirst = true;
3929                 }
3930                 if (!killFirst) {
3931                     srcPos = dstPos;
3932                     dstPos = ddIdx;
3933                 }
3934                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3935                 assert (reorder[srcPos] == reorder[dstPos]);
3936                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3937                 // contract the reordering by removing the element at dstPos
3938                 int tailPos = dstPos + 1;
3939                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3940                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3941             } else {
3942                 int dropVal = ~ddIdx, insPos = 0;
3943                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3944                     // Find first element of reorder larger than dropVal.
3945                     // This is where we will insert the dropVal.
3946                     insPos += 1;
3947                 }
3948                 Class<?> ptype = newType.parameterType(dropVal);
3949                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3950                 oldType = oldType.insertParameterTypes(insPos, ptype);
3951                 // expand the reordering by inserting an element at insPos
3952                 int tailPos = insPos + 1;
3953                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3954                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3955                 reorder[insPos] = dropVal;
3956             }
3957             assert (permuteArgumentChecks(reorder, newType, oldType));
3958         }
3959         assert (reorder.length == newArity);  // a perfect permutation
3960         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3961         form = form.editor().permuteArgumentsForm(1, reorder);
3962         if (newType == result.type() && form == result.internalForm())
3963             return result;
3964         return result.copyWith(newType, form);
3965     }
3966 
3967     /**
3968      * Return an indication of any duplicate or omission in reorder.
3969      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3970      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3971      * Otherwise, return zero.
3972      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3973      */
3974     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3975         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3976         if (newArity < BIT_LIMIT) {
3977             long mask = 0;
3978             for (int i = 0; i < reorder.length; i++) {
3979                 int arg = reorder[i];
3980                 if (arg >= newArity) {
3981                     return reorder.length;
3982                 }
3983                 long bit = 1L << arg;
3984                 if ((mask & bit) != 0) {
3985                     return i;  // >0 indicates a dup
3986                 }
3987                 mask |= bit;
3988             }
3989             if (mask == (1L << newArity) - 1) {
3990                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3991                 return 0;
3992             }
3993             // find first zero
3994             long zeroBit = Long.lowestOneBit(~mask);
3995             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3996             assert(zeroPos <= newArity);
3997             if (zeroPos == newArity) {
3998                 return 0;
3999             }
4000             return ~zeroPos;
4001         } else {
4002             // same algorithm, different bit set
4003             BitSet mask = new BitSet(newArity);
4004             for (int i = 0; i < reorder.length; i++) {
4005                 int arg = reorder[i];
4006                 if (arg >= newArity) {
4007                     return reorder.length;
4008                 }
4009                 if (mask.get(arg)) {
4010                     return i;  // >0 indicates a dup
4011                 }
4012                 mask.set(arg);
4013             }
4014             int zeroPos = mask.nextClearBit(0);
4015             assert(zeroPos <= newArity);
4016             if (zeroPos == newArity) {
4017                 return 0;
4018             }
4019             return ~zeroPos;
4020         }
4021     }
4022 
4023     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4024         if (newType.returnType() != oldType.returnType())
4025             throw newIllegalArgumentException("return types do not match",
4026                     oldType, newType);
4027         if (reorder.length == oldType.parameterCount()) {
4028             int limit = newType.parameterCount();
4029             boolean bad = false;
4030             for (int j = 0; j < reorder.length; j++) {
4031                 int i = reorder[j];
4032                 if (i < 0 || i >= limit) {
4033                     bad = true; break;
4034                 }
4035                 Class<?> src = newType.parameterType(i);
4036                 Class<?> dst = oldType.parameterType(j);
4037                 if (src != dst)
4038                     throw newIllegalArgumentException("parameter types do not match after reorder",
4039                             oldType, newType);
4040             }
4041             if (!bad)  return true;
4042         }
4043         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4044     }
4045 
4046     /**
4047      * Produces a method handle of the requested return type which returns the given
4048      * constant value every time it is invoked.
4049      * <p>
4050      * Before the method handle is returned, the passed-in value is converted to the requested type.
4051      * If the requested type is primitive, widening primitive conversions are attempted,
4052      * else reference conversions are attempted.
4053      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4054      * @param type the return type of the desired method handle
4055      * @param value the value to return
4056      * @return a method handle of the given return type and no arguments, which always returns the given value
4057      * @throws NullPointerException if the {@code type} argument is null
4058      * @throws ClassCastException if the value cannot be converted to the required return type
4059      * @throws IllegalArgumentException if the given type is {@code void.class}
4060      */
4061     public static MethodHandle constant(Class<?> type, Object value) {
4062         if (type.isPrimitive()) {
4063             if (type == void.class)
4064                 throw newIllegalArgumentException("void type");
4065             Wrapper w = Wrapper.forPrimitiveType(type);
4066             value = w.convert(value, type);
4067             if (w.zero().equals(value))
4068                 return zero(w, type);
4069             return insertArguments(identity(type), 0, value);
4070         } else {
4071             if (value == null)
4072                 return zero(Wrapper.OBJECT, type);
4073             return identity(type).bindTo(value);
4074         }
4075     }
4076 
4077     /**
4078      * Produces a method handle which returns its sole argument when invoked.
4079      * @param type the type of the sole parameter and return value of the desired method handle
4080      * @return a unary method handle which accepts and returns the given type
4081      * @throws NullPointerException if the argument is null
4082      * @throws IllegalArgumentException if the given type is {@code void.class}
4083      */
4084     public static MethodHandle identity(Class<?> type) {
4085         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4086         int pos = btw.ordinal();
4087         MethodHandle ident = IDENTITY_MHS[pos];
4088         if (ident == null) {
4089             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4090         }
4091         if (ident.type().returnType() == type)
4092             return ident;
4093         // something like identity(Foo.class); do not bother to intern these
4094         assert (btw == Wrapper.OBJECT);
4095         return makeIdentity(type);
4096     }
4097 
4098     /**
4099      * Produces a constant method handle of the requested return type which
4100      * returns the default value for that type every time it is invoked.
4101      * The resulting constant method handle will have no side effects.
4102      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4103      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4104      * since {@code explicitCastArguments} converts {@code null} to default values.
4105      * @param type the expected return type of the desired method handle
4106      * @return a constant method handle that takes no arguments
4107      *         and returns the default value of the given type (or void, if the type is void)
4108      * @throws NullPointerException if the argument is null
4109      * @see MethodHandles#constant
4110      * @see MethodHandles#empty
4111      * @see MethodHandles#explicitCastArguments
4112      * @since 9
4113      */
4114     public static MethodHandle zero(Class<?> type) {
4115         Objects.requireNonNull(type);
4116         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4117     }
4118 
4119     private static MethodHandle identityOrVoid(Class<?> type) {
4120         return type == void.class ? zero(type) : identity(type);
4121     }
4122 
4123     /**
4124      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4125      * and returns a suitable default depending on the return type.
4126      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4127      * <p>The returned method handle is equivalent to
4128      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4129      *
4130      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4131      * {@code guardWithTest(pred, target, empty(target.type())}.
4132      * @param type the type of the desired method handle
4133      * @return a constant method handle of the given type, which returns a default value of the given return type
4134      * @throws NullPointerException if the argument is null
4135      * @see MethodHandles#zero
4136      * @see MethodHandles#constant
4137      * @since 9
4138      */
4139     public static  MethodHandle empty(MethodType type) {
4140         Objects.requireNonNull(type);
4141         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4142     }
4143 
4144     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4145     private static MethodHandle makeIdentity(Class<?> ptype) {
4146         MethodType mtype = methodType(ptype, ptype);
4147         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4148         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4149     }
4150 
4151     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4152         int pos = btw.ordinal();
4153         MethodHandle zero = ZERO_MHS[pos];
4154         if (zero == null) {
4155             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4156         }
4157         if (zero.type().returnType() == rtype)
4158             return zero;
4159         assert(btw == Wrapper.OBJECT);
4160         return makeZero(rtype);
4161     }
4162     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4163     private static MethodHandle makeZero(Class<?> rtype) {
4164         MethodType mtype = methodType(rtype);
4165         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4166         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4167     }
4168 
4169     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4170         // Simulate a CAS, to avoid racy duplication of results.
4171         MethodHandle prev = cache[pos];
4172         if (prev != null) return prev;
4173         return cache[pos] = value;
4174     }
4175 
4176     /**
4177      * Provides a target method handle with one or more <em>bound arguments</em>
4178      * in advance of the method handle's invocation.
4179      * The formal parameters to the target corresponding to the bound
4180      * arguments are called <em>bound parameters</em>.
4181      * Returns a new method handle which saves away the bound arguments.
4182      * When it is invoked, it receives arguments for any non-bound parameters,
4183      * binds the saved arguments to their corresponding parameters,
4184      * and calls the original target.
4185      * <p>
4186      * The type of the new method handle will drop the types for the bound
4187      * parameters from the original target type, since the new method handle
4188      * will no longer require those arguments to be supplied by its callers.
4189      * <p>
4190      * Each given argument object must match the corresponding bound parameter type.
4191      * If a bound parameter type is a primitive, the argument object
4192      * must be a wrapper, and will be unboxed to produce the primitive value.
4193      * <p>
4194      * The {@code pos} argument selects which parameters are to be bound.
4195      * It may range between zero and <i>N-L</i> (inclusively),
4196      * where <i>N</i> is the arity of the target method handle
4197      * and <i>L</i> is the length of the values array.
4198      * <p>
4199      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4200      * variable-arity method handle}, even if the original target method handle was.
4201      * @param target the method handle to invoke after the argument is inserted
4202      * @param pos where to insert the argument (zero for the first)
4203      * @param values the series of arguments to insert
4204      * @return a method handle which inserts an additional argument,
4205      *         before calling the original method handle
4206      * @throws NullPointerException if the target or the {@code values} array is null
4207      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4208      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4209      *         is the length of the values array.
4210      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4211      *         type.
4212      * @see MethodHandle#bindTo
4213      */
4214     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4215         int insCount = values.length;
4216         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4217         if (insCount == 0)  return target;
4218         BoundMethodHandle result = target.rebind();
4219         for (int i = 0; i < insCount; i++) {
4220             Object value = values[i];
4221             Class<?> ptype = ptypes[pos+i];
4222             if (ptype.isPrimitive()) {
4223                 result = insertArgumentPrimitive(result, pos, ptype, value);
4224             } else {
4225                 value = ptype.cast(value);  // throw CCE if needed
4226                 result = result.bindArgumentL(pos, value);
4227             }
4228         }
4229         return result;
4230     }
4231 
4232     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4233                                                              Class<?> ptype, Object value) {
4234         Wrapper w = Wrapper.forPrimitiveType(ptype);
4235         // perform unboxing and/or primitive conversion
4236         value = w.convert(value, ptype);
4237         switch (w) {
4238         case INT:     return result.bindArgumentI(pos, (int)value);
4239         case LONG:    return result.bindArgumentJ(pos, (long)value);
4240         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4241         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4242         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4243         }
4244     }
4245 
4246     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4247         MethodType oldType = target.type();
4248         int outargs = oldType.parameterCount();
4249         int inargs  = outargs - insCount;
4250         if (inargs < 0)
4251             throw newIllegalArgumentException("too many values to insert");
4252         if (pos < 0 || pos > inargs)
4253             throw newIllegalArgumentException("no argument type to append");
4254         return oldType.ptypes();
4255     }
4256 
4257     /**
4258      * Produces a method handle which will discard some dummy arguments
4259      * before calling some other specified <i>target</i> method handle.
4260      * The type of the new method handle will be the same as the target's type,
4261      * except it will also include the dummy argument types,
4262      * at some given position.
4263      * <p>
4264      * The {@code pos} argument may range between zero and <i>N</i>,
4265      * where <i>N</i> is the arity of the target.
4266      * If {@code pos} is zero, the dummy arguments will precede
4267      * the target's real arguments; if {@code pos} is <i>N</i>
4268      * they will come after.
4269      * <p>
4270      * <b>Example:</b>
4271      * <blockquote><pre>{@code
4272 import static java.lang.invoke.MethodHandles.*;
4273 import static java.lang.invoke.MethodType.*;
4274 ...
4275 MethodHandle cat = lookup().findVirtual(String.class,
4276   "concat", methodType(String.class, String.class));
4277 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4278 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4279 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4280 assertEquals(bigType, d0.type());
4281 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4282      * }</pre></blockquote>
4283      * <p>
4284      * This method is also equivalent to the following code:
4285      * <blockquote><pre>
4286      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4287      * </pre></blockquote>
4288      * @param target the method handle to invoke after the arguments are dropped
4289      * @param pos position of first argument to drop (zero for the leftmost)
4290      * @param valueTypes the type(s) of the argument(s) to drop
4291      * @return a method handle which drops arguments of the given types,
4292      *         before calling the original method handle
4293      * @throws NullPointerException if the target is null,
4294      *                              or if the {@code valueTypes} list or any of its elements is null
4295      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4296      *                  or if {@code pos} is negative or greater than the arity of the target,
4297      *                  or if the new method handle's type would have too many parameters
4298      */
4299     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4300         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4301     }
4302 
4303     private static List<Class<?>> copyTypes(Object[] array) {
4304         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4305     }
4306 
4307     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4308         MethodType oldType = target.type();  // get NPE
4309         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4310         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4311         if (dropped == 0)  return target;
4312         BoundMethodHandle result = target.rebind();
4313         LambdaForm lform = result.form;
4314         int insertFormArg = 1 + pos;
4315         for (Class<?> ptype : valueTypes) {
4316             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4317         }
4318         result = result.copyWith(newType, lform);
4319         return result;
4320     }
4321 
4322     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4323         int dropped = valueTypes.size();
4324         MethodType.checkSlotCount(dropped);
4325         int outargs = oldType.parameterCount();
4326         int inargs  = outargs + dropped;
4327         if (pos < 0 || pos > outargs)
4328             throw newIllegalArgumentException("no argument type to remove"
4329                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4330                     );
4331         return dropped;
4332     }
4333 
4334     /**
4335      * Produces a method handle which will discard some dummy arguments
4336      * before calling some other specified <i>target</i> method handle.
4337      * The type of the new method handle will be the same as the target's type,
4338      * except it will also include the dummy argument types,
4339      * at some given position.
4340      * <p>
4341      * The {@code pos} argument may range between zero and <i>N</i>,
4342      * where <i>N</i> is the arity of the target.
4343      * If {@code pos} is zero, the dummy arguments will precede
4344      * the target's real arguments; if {@code pos} is <i>N</i>
4345      * they will come after.
4346      * @apiNote
4347      * <blockquote><pre>{@code
4348 import static java.lang.invoke.MethodHandles.*;
4349 import static java.lang.invoke.MethodType.*;
4350 ...
4351 MethodHandle cat = lookup().findVirtual(String.class,
4352   "concat", methodType(String.class, String.class));
4353 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4354 MethodHandle d0 = dropArguments(cat, 0, String.class);
4355 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4356 MethodHandle d1 = dropArguments(cat, 1, String.class);
4357 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4358 MethodHandle d2 = dropArguments(cat, 2, String.class);
4359 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4360 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4361 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4362      * }</pre></blockquote>
4363      * <p>
4364      * This method is also equivalent to the following code:
4365      * <blockquote><pre>
4366      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4367      * </pre></blockquote>
4368      * @param target the method handle to invoke after the arguments are dropped
4369      * @param pos position of first argument to drop (zero for the leftmost)
4370      * @param valueTypes the type(s) of the argument(s) to drop
4371      * @return a method handle which drops arguments of the given types,
4372      *         before calling the original method handle
4373      * @throws NullPointerException if the target is null,
4374      *                              or if the {@code valueTypes} array or any of its elements is null
4375      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4376      *                  or if {@code pos} is negative or greater than the arity of the target,
4377      *                  or if the new method handle's type would have
4378      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4379      */
4380     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4381         return dropArguments0(target, pos, copyTypes(valueTypes));
4382     }
4383 
4384     // private version which allows caller some freedom with error handling
4385     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4386                                       boolean nullOnFailure) {
4387         newTypes = copyTypes(newTypes.toArray());
4388         List<Class<?>> oldTypes = target.type().parameterList();
4389         int match = oldTypes.size();
4390         if (skip != 0) {
4391             if (skip < 0 || skip > match) {
4392                 throw newIllegalArgumentException("illegal skip", skip, target);
4393             }
4394             oldTypes = oldTypes.subList(skip, match);
4395             match -= skip;
4396         }
4397         List<Class<?>> addTypes = newTypes;
4398         int add = addTypes.size();
4399         if (pos != 0) {
4400             if (pos < 0 || pos > add) {
4401                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4402             }
4403             addTypes = addTypes.subList(pos, add);
4404             add -= pos;
4405             assert(addTypes.size() == add);
4406         }
4407         // Do not add types which already match the existing arguments.
4408         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4409             if (nullOnFailure) {
4410                 return null;
4411             }
4412             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4413         }
4414         addTypes = addTypes.subList(match, add);
4415         add -= match;
4416         assert(addTypes.size() == add);
4417         // newTypes:     (   P*[pos], M*[match], A*[add] )
4418         // target: ( S*[skip],        M*[match]  )
4419         MethodHandle adapter = target;
4420         if (add > 0) {
4421             adapter = dropArguments0(adapter, skip+ match, addTypes);
4422         }
4423         // adapter: (S*[skip],        M*[match], A*[add] )
4424         if (pos > 0) {
4425             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4426         }
4427         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4428         return adapter;
4429     }
4430 
4431     /**
4432      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4433      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4434      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4435      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4436      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4437      * {@link #dropArguments(MethodHandle, int, Class[])}.
4438      * <p>
4439      * The resulting handle will have the same return type as the target handle.
4440      * <p>
4441      * In more formal terms, assume these two type lists:<ul>
4442      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4443      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4444      * {@code newTypes}.
4445      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4446      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4447      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4448      * sub-list.
4449      * </ul>
4450      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4451      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4452      * {@link #dropArguments(MethodHandle, int, Class[])}.
4453      *
4454      * @apiNote
4455      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4456      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4457      * <blockquote><pre>{@code
4458 import static java.lang.invoke.MethodHandles.*;
4459 import static java.lang.invoke.MethodType.*;
4460 ...
4461 ...
4462 MethodHandle h0 = constant(boolean.class, true);
4463 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4464 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4465 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4466 if (h1.type().parameterCount() < h2.type().parameterCount())
4467     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4468 else
4469     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4470 MethodHandle h3 = guardWithTest(h0, h1, h2);
4471 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4472      * }</pre></blockquote>
4473      * @param target the method handle to adapt
4474      * @param skip number of targets parameters to disregard (they will be unchanged)
4475      * @param newTypes the list of types to match {@code target}'s parameter type list to
4476      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4477      * @return a possibly adapted method handle
4478      * @throws NullPointerException if either argument is null
4479      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4480      *         or if {@code skip} is negative or greater than the arity of the target,
4481      *         or if {@code pos} is negative or greater than the newTypes list size,
4482      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4483      *         {@code pos}.
4484      * @since 9
4485      */
4486     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4487         Objects.requireNonNull(target);
4488         Objects.requireNonNull(newTypes);
4489         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4490     }
4491 
4492     /**
4493      * Adapts a target method handle by pre-processing
4494      * one or more of its arguments, each with its own unary filter function,
4495      * and then calling the target with each pre-processed argument
4496      * replaced by the result of its corresponding filter function.
4497      * <p>
4498      * The pre-processing is performed by one or more method handles,
4499      * specified in the elements of the {@code filters} array.
4500      * The first element of the filter array corresponds to the {@code pos}
4501      * argument of the target, and so on in sequence.
4502      * The filter functions are invoked in left to right order.
4503      * <p>
4504      * Null arguments in the array are treated as identity functions,
4505      * and the corresponding arguments left unchanged.
4506      * (If there are no non-null elements in the array, the original target is returned.)
4507      * Each filter is applied to the corresponding argument of the adapter.
4508      * <p>
4509      * If a filter {@code F} applies to the {@code N}th argument of
4510      * the target, then {@code F} must be a method handle which
4511      * takes exactly one argument.  The type of {@code F}'s sole argument
4512      * replaces the corresponding argument type of the target
4513      * in the resulting adapted method handle.
4514      * The return type of {@code F} must be identical to the corresponding
4515      * parameter type of the target.
4516      * <p>
4517      * It is an error if there are elements of {@code filters}
4518      * (null or not)
4519      * which do not correspond to argument positions in the target.
4520      * <p><b>Example:</b>
4521      * <blockquote><pre>{@code
4522 import static java.lang.invoke.MethodHandles.*;
4523 import static java.lang.invoke.MethodType.*;
4524 ...
4525 MethodHandle cat = lookup().findVirtual(String.class,
4526   "concat", methodType(String.class, String.class));
4527 MethodHandle upcase = lookup().findVirtual(String.class,
4528   "toUpperCase", methodType(String.class));
4529 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4530 MethodHandle f0 = filterArguments(cat, 0, upcase);
4531 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4532 MethodHandle f1 = filterArguments(cat, 1, upcase);
4533 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4534 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4535 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4536      * }</pre></blockquote>
4537      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4538      * denotes the return type of both the {@code target} and resulting adapter.
4539      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4540      * of the parameters and arguments that precede and follow the filter position
4541      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4542      * values of the filtered parameters and arguments; they also represent the
4543      * return types of the {@code filter[i]} handles. The latter accept arguments
4544      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4545      * the resulting adapter.
4546      * <blockquote><pre>{@code
4547      * T target(P... p, A[i]... a[i], B... b);
4548      * A[i] filter[i](V[i]);
4549      * T adapter(P... p, V[i]... v[i], B... b) {
4550      *   return target(p..., filter[i](v[i])..., b...);
4551      * }
4552      * }</pre></blockquote>
4553      * <p>
4554      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4555      * variable-arity method handle}, even if the original target method handle was.
4556      *
4557      * @param target the method handle to invoke after arguments are filtered
4558      * @param pos the position of the first argument to filter
4559      * @param filters method handles to call initially on filtered arguments
4560      * @return method handle which incorporates the specified argument filtering logic
4561      * @throws NullPointerException if the target is null
4562      *                              or if the {@code filters} array is null
4563      * @throws IllegalArgumentException if a non-null element of {@code filters}
4564      *          does not match a corresponding argument type of target as described above,
4565      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4566      *          or if the resulting method handle's type would have
4567      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4568      */
4569     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4570         // In method types arguments start at index 0, while the LF
4571         // editor have the MH receiver at position 0 - adjust appropriately.
4572         final int MH_RECEIVER_OFFSET = 1;
4573         filterArgumentsCheckArity(target, pos, filters);
4574         MethodHandle adapter = target;
4575 
4576         // keep track of currently matched filters, as to optimize repeated filters
4577         int index = 0;
4578         int[] positions = new int[filters.length];
4579         MethodHandle filter = null;
4580 
4581         // process filters in reverse order so that the invocation of
4582         // the resulting adapter will invoke the filters in left-to-right order
4583         for (int i = filters.length - 1; i >= 0; --i) {
4584             MethodHandle newFilter = filters[i];
4585             if (newFilter == null) continue;  // ignore null elements of filters
4586 
4587             // flush changes on update
4588             if (filter != newFilter) {
4589                 if (filter != null) {
4590                     if (index > 1) {
4591                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4592                     } else {
4593                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4594                     }
4595                 }
4596                 filter = newFilter;
4597                 index = 0;
4598             }
4599 
4600             filterArgumentChecks(target, pos + i, newFilter);
4601             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4602         }
4603         if (index > 1) {
4604             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4605         } else if (index == 1) {
4606             adapter = filterArgument(adapter, positions[0] - 1, filter);
4607         }
4608         return adapter;
4609     }
4610 
4611     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4612         MethodType targetType = adapter.type();
4613         MethodType filterType = filter.type();
4614         BoundMethodHandle result = adapter.rebind();
4615         Class<?> newParamType = filterType.parameterType(0);
4616 
4617         Class<?>[] ptypes = targetType.ptypes().clone();
4618         for (int pos : positions) {
4619             ptypes[pos - 1] = newParamType;
4620         }
4621         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4622 
4623         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4624         return result.copyWithExtendL(newType, lform, filter);
4625     }
4626 
4627     /*non-public*/
4628     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4629         filterArgumentChecks(target, pos, filter);
4630         MethodType targetType = target.type();
4631         MethodType filterType = filter.type();
4632         BoundMethodHandle result = target.rebind();
4633         Class<?> newParamType = filterType.parameterType(0);
4634         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4635         MethodType newType = targetType.changeParameterType(pos, newParamType);
4636         result = result.copyWithExtendL(newType, lform, filter);
4637         return result;
4638     }
4639 
4640     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4641         MethodType targetType = target.type();
4642         int maxPos = targetType.parameterCount();
4643         if (pos + filters.length > maxPos)
4644             throw newIllegalArgumentException("too many filters");
4645     }
4646 
4647     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4648         MethodType targetType = target.type();
4649         MethodType filterType = filter.type();
4650         if (filterType.parameterCount() != 1
4651             || filterType.returnType() != targetType.parameterType(pos))
4652             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4653     }
4654 
4655     /**
4656      * Adapts a target method handle by pre-processing
4657      * a sub-sequence of its arguments with a filter (another method handle).
4658      * The pre-processed arguments are replaced by the result (if any) of the
4659      * filter function.
4660      * The target is then called on the modified (usually shortened) argument list.
4661      * <p>
4662      * If the filter returns a value, the target must accept that value as
4663      * its argument in position {@code pos}, preceded and/or followed by
4664      * any arguments not passed to the filter.
4665      * If the filter returns void, the target must accept all arguments
4666      * not passed to the filter.
4667      * No arguments are reordered, and a result returned from the filter
4668      * replaces (in order) the whole subsequence of arguments originally
4669      * passed to the adapter.
4670      * <p>
4671      * The argument types (if any) of the filter
4672      * replace zero or one argument types of the target, at position {@code pos},
4673      * in the resulting adapted method handle.
4674      * The return type of the filter (if any) must be identical to the
4675      * argument type of the target at position {@code pos}, and that target argument
4676      * is supplied by the return value of the filter.
4677      * <p>
4678      * In all cases, {@code pos} must be greater than or equal to zero, and
4679      * {@code pos} must also be less than or equal to the target's arity.
4680      * <p><b>Example:</b>
4681      * <blockquote><pre>{@code
4682 import static java.lang.invoke.MethodHandles.*;
4683 import static java.lang.invoke.MethodType.*;
4684 ...
4685 MethodHandle deepToString = publicLookup()
4686   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4687 
4688 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4689 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4690 
4691 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4692 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4693 
4694 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4695 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4696 assertEquals("[top, [up, down], strange]",
4697              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4698 
4699 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4700 assertEquals("[top, [up, down], [strange]]",
4701              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4702 
4703 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4704 assertEquals("[top, [[up, down, strange], charm], bottom]",
4705              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4706      * }</pre></blockquote>
4707      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4708      * represents the return type of the {@code target} and resulting adapter.
4709      * {@code V}/{@code v} stand for the return type and value of the
4710      * {@code filter}, which are also found in the signature and arguments of
4711      * the {@code target}, respectively, unless {@code V} is {@code void}.
4712      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4713      * and values preceding and following the collection position, {@code pos},
4714      * in the {@code target}'s signature. They also turn up in the resulting
4715      * adapter's signature and arguments, where they surround
4716      * {@code B}/{@code b}, which represent the parameter types and arguments
4717      * to the {@code filter} (if any).
4718      * <blockquote><pre>{@code
4719      * T target(A...,V,C...);
4720      * V filter(B...);
4721      * T adapter(A... a,B... b,C... c) {
4722      *   V v = filter(b...);
4723      *   return target(a...,v,c...);
4724      * }
4725      * // and if the filter has no arguments:
4726      * T target2(A...,V,C...);
4727      * V filter2();
4728      * T adapter2(A... a,C... c) {
4729      *   V v = filter2();
4730      *   return target2(a...,v,c...);
4731      * }
4732      * // and if the filter has a void return:
4733      * T target3(A...,C...);
4734      * void filter3(B...);
4735      * T adapter3(A... a,B... b,C... c) {
4736      *   filter3(b...);
4737      *   return target3(a...,c...);
4738      * }
4739      * }</pre></blockquote>
4740      * <p>
4741      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4742      * one which first "folds" the affected arguments, and then drops them, in separate
4743      * steps as follows:
4744      * <blockquote><pre>{@code
4745      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4746      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4747      * }</pre></blockquote>
4748      * If the target method handle consumes no arguments besides than the result
4749      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4750      * is equivalent to {@code filterReturnValue(coll, mh)}.
4751      * If the filter method handle {@code coll} consumes one argument and produces
4752      * a non-void result, then {@code collectArguments(mh, N, coll)}
4753      * is equivalent to {@code filterArguments(mh, N, coll)}.
4754      * Other equivalences are possible but would require argument permutation.
4755      * <p>
4756      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4757      * variable-arity method handle}, even if the original target method handle was.
4758      *
4759      * @param target the method handle to invoke after filtering the subsequence of arguments
4760      * @param pos the position of the first adapter argument to pass to the filter,
4761      *            and/or the target argument which receives the result of the filter
4762      * @param filter method handle to call on the subsequence of arguments
4763      * @return method handle which incorporates the specified argument subsequence filtering logic
4764      * @throws NullPointerException if either argument is null
4765      * @throws IllegalArgumentException if the return type of {@code filter}
4766      *          is non-void and is not the same as the {@code pos} argument of the target,
4767      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4768      *          or if the resulting method handle's type would have
4769      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4770      * @see MethodHandles#foldArguments
4771      * @see MethodHandles#filterArguments
4772      * @see MethodHandles#filterReturnValue
4773      */
4774     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4775         MethodType newType = collectArgumentsChecks(target, pos, filter);
4776         MethodType collectorType = filter.type();
4777         BoundMethodHandle result = target.rebind();
4778         LambdaForm lform;
4779         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4780             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4781             if (lform != null) {
4782                 return result.copyWith(newType, lform);
4783             }
4784         }
4785         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4786         return result.copyWithExtendL(newType, lform, filter);
4787     }
4788 
4789     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4790         MethodType targetType = target.type();
4791         MethodType filterType = filter.type();
4792         Class<?> rtype = filterType.returnType();
4793         List<Class<?>> filterArgs = filterType.parameterList();
4794         if (rtype == void.class) {
4795             return targetType.insertParameterTypes(pos, filterArgs);
4796         }
4797         if (rtype != targetType.parameterType(pos)) {
4798             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4799         }
4800         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4801     }
4802 
4803     /**
4804      * Adapts a target method handle by post-processing
4805      * its return value (if any) with a filter (another method handle).
4806      * The result of the filter is returned from the adapter.
4807      * <p>
4808      * If the target returns a value, the filter must accept that value as
4809      * its only argument.
4810      * If the target returns void, the filter must accept no arguments.
4811      * <p>
4812      * The return type of the filter
4813      * replaces the return type of the target
4814      * in the resulting adapted method handle.
4815      * The argument type of the filter (if any) must be identical to the
4816      * return type of the target.
4817      * <p><b>Example:</b>
4818      * <blockquote><pre>{@code
4819 import static java.lang.invoke.MethodHandles.*;
4820 import static java.lang.invoke.MethodType.*;
4821 ...
4822 MethodHandle cat = lookup().findVirtual(String.class,
4823   "concat", methodType(String.class, String.class));
4824 MethodHandle length = lookup().findVirtual(String.class,
4825   "length", methodType(int.class));
4826 System.out.println((String) cat.invokeExact("x", "y")); // xy
4827 MethodHandle f0 = filterReturnValue(cat, length);
4828 System.out.println((int) f0.invokeExact("x", "y")); // 2
4829      * }</pre></blockquote>
4830      * <p>Here is pseudocode for the resulting adapter. In the code,
4831      * {@code T}/{@code t} represent the result type and value of the
4832      * {@code target}; {@code V}, the result type of the {@code filter}; and
4833      * {@code A}/{@code a}, the types and values of the parameters and arguments
4834      * of the {@code target} as well as the resulting adapter.
4835      * <blockquote><pre>{@code
4836      * T target(A...);
4837      * V filter(T);
4838      * V adapter(A... a) {
4839      *   T t = target(a...);
4840      *   return filter(t);
4841      * }
4842      * // and if the target has a void return:
4843      * void target2(A...);
4844      * V filter2();
4845      * V adapter2(A... a) {
4846      *   target2(a...);
4847      *   return filter2();
4848      * }
4849      * // and if the filter has a void return:
4850      * T target3(A...);
4851      * void filter3(V);
4852      * void adapter3(A... a) {
4853      *   T t = target3(a...);
4854      *   filter3(t);
4855      * }
4856      * }</pre></blockquote>
4857      * <p>
4858      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4859      * variable-arity method handle}, even if the original target method handle was.
4860      * @param target the method handle to invoke before filtering the return value
4861      * @param filter method handle to call on the return value
4862      * @return method handle which incorporates the specified return value filtering logic
4863      * @throws NullPointerException if either argument is null
4864      * @throws IllegalArgumentException if the argument list of {@code filter}
4865      *          does not match the return type of target as described above
4866      */
4867     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4868         MethodType targetType = target.type();
4869         MethodType filterType = filter.type();
4870         filterReturnValueChecks(targetType, filterType);
4871         BoundMethodHandle result = target.rebind();
4872         BasicType rtype = BasicType.basicType(filterType.returnType());
4873         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4874         MethodType newType = targetType.changeReturnType(filterType.returnType());
4875         result = result.copyWithExtendL(newType, lform, filter);
4876         return result;
4877     }
4878 
4879     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4880         Class<?> rtype = targetType.returnType();
4881         int filterValues = filterType.parameterCount();
4882         if (filterValues == 0
4883                 ? (rtype != void.class)
4884                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4885             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4886     }
4887 
4888     /**
4889      * Adapts a target method handle by pre-processing
4890      * some of its arguments, and then calling the target with
4891      * the result of the pre-processing, inserted into the original
4892      * sequence of arguments.
4893      * <p>
4894      * The pre-processing is performed by {@code combiner}, a second method handle.
4895      * Of the arguments passed to the adapter, the first {@code N} arguments
4896      * are copied to the combiner, which is then called.
4897      * (Here, {@code N} is defined as the parameter count of the combiner.)
4898      * After this, control passes to the target, with any result
4899      * from the combiner inserted before the original {@code N} incoming
4900      * arguments.
4901      * <p>
4902      * If the combiner returns a value, the first parameter type of the target
4903      * must be identical with the return type of the combiner, and the next
4904      * {@code N} parameter types of the target must exactly match the parameters
4905      * of the combiner.
4906      * <p>
4907      * If the combiner has a void return, no result will be inserted,
4908      * and the first {@code N} parameter types of the target
4909      * must exactly match the parameters of the combiner.
4910      * <p>
4911      * The resulting adapter is the same type as the target, except that the
4912      * first parameter type is dropped,
4913      * if it corresponds to the result of the combiner.
4914      * <p>
4915      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4916      * that either the combiner or the target does not wish to receive.
4917      * If some of the incoming arguments are destined only for the combiner,
4918      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4919      * arguments will not need to be live on the stack on entry to the
4920      * target.)
4921      * <p><b>Example:</b>
4922      * <blockquote><pre>{@code
4923 import static java.lang.invoke.MethodHandles.*;
4924 import static java.lang.invoke.MethodType.*;
4925 ...
4926 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4927   "println", methodType(void.class, String.class))
4928     .bindTo(System.out);
4929 MethodHandle cat = lookup().findVirtual(String.class,
4930   "concat", methodType(String.class, String.class));
4931 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4932 MethodHandle catTrace = foldArguments(cat, trace);
4933 // also prints "boo":
4934 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4935      * }</pre></blockquote>
4936      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4937      * represents the result type of the {@code target} and resulting adapter.
4938      * {@code V}/{@code v} represent the type and value of the parameter and argument
4939      * of {@code target} that precedes the folding position; {@code V} also is
4940      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4941      * types and values of the {@code N} parameters and arguments at the folding
4942      * position. {@code B}/{@code b} represent the types and values of the
4943      * {@code target} parameters and arguments that follow the folded parameters
4944      * and arguments.
4945      * <blockquote><pre>{@code
4946      * // there are N arguments in A...
4947      * T target(V, A[N]..., B...);
4948      * V combiner(A...);
4949      * T adapter(A... a, B... b) {
4950      *   V v = combiner(a...);
4951      *   return target(v, a..., b...);
4952      * }
4953      * // and if the combiner has a void return:
4954      * T target2(A[N]..., B...);
4955      * void combiner2(A...);
4956      * T adapter2(A... a, B... b) {
4957      *   combiner2(a...);
4958      *   return target2(a..., b...);
4959      * }
4960      * }</pre></blockquote>
4961      * <p>
4962      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4963      * variable-arity method handle}, even if the original target method handle was.
4964      * @param target the method handle to invoke after arguments are combined
4965      * @param combiner method handle to call initially on the incoming arguments
4966      * @return method handle which incorporates the specified argument folding logic
4967      * @throws NullPointerException if either argument is null
4968      * @throws IllegalArgumentException if {@code combiner}'s return type
4969      *          is non-void and not the same as the first argument type of
4970      *          the target, or if the initial {@code N} argument types
4971      *          of the target
4972      *          (skipping one matching the {@code combiner}'s return type)
4973      *          are not identical with the argument types of {@code combiner}
4974      */
4975     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4976         return foldArguments(target, 0, combiner);
4977     }
4978 
4979     /**
4980      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4981      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4982      * before the folded arguments.
4983      * <p>
4984      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4985      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4986      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4987      * 0.
4988      *
4989      * @apiNote Example:
4990      * <blockquote><pre>{@code
4991     import static java.lang.invoke.MethodHandles.*;
4992     import static java.lang.invoke.MethodType.*;
4993     ...
4994     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4995     "println", methodType(void.class, String.class))
4996     .bindTo(System.out);
4997     MethodHandle cat = lookup().findVirtual(String.class,
4998     "concat", methodType(String.class, String.class));
4999     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5000     MethodHandle catTrace = foldArguments(cat, 1, trace);
5001     // also prints "jum":
5002     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5003      * }</pre></blockquote>
5004      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5005      * represents the result type of the {@code target} and resulting adapter.
5006      * {@code V}/{@code v} represent the type and value of the parameter and argument
5007      * of {@code target} that precedes the folding position; {@code V} also is
5008      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5009      * types and values of the {@code N} parameters and arguments at the folding
5010      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5011      * and values of the {@code target} parameters and arguments that precede and
5012      * follow the folded parameters and arguments starting at {@code pos},
5013      * respectively.
5014      * <blockquote><pre>{@code
5015      * // there are N arguments in A...
5016      * T target(Z..., V, A[N]..., B...);
5017      * V combiner(A...);
5018      * T adapter(Z... z, A... a, B... b) {
5019      *   V v = combiner(a...);
5020      *   return target(z..., v, a..., b...);
5021      * }
5022      * // and if the combiner has a void return:
5023      * T target2(Z..., A[N]..., B...);
5024      * void combiner2(A...);
5025      * T adapter2(Z... z, A... a, B... b) {
5026      *   combiner2(a...);
5027      *   return target2(z..., a..., b...);
5028      * }
5029      * }</pre></blockquote>
5030      * <p>
5031      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5032      * variable-arity method handle}, even if the original target method handle was.
5033      *
5034      * @param target the method handle to invoke after arguments are combined
5035      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5036      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5037      * @param combiner method handle to call initially on the incoming arguments
5038      * @return method handle which incorporates the specified argument folding logic
5039      * @throws NullPointerException if either argument is null
5040      * @throws IllegalArgumentException if either of the following two conditions holds:
5041      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5042      *              {@code pos} of the target signature;
5043      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5044      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5045      *
5046      * @see #foldArguments(MethodHandle, MethodHandle)
5047      * @since 9
5048      */
5049     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5050         MethodType targetType = target.type();
5051         MethodType combinerType = combiner.type();
5052         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5053         BoundMethodHandle result = target.rebind();
5054         boolean dropResult = rtype == void.class;
5055         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5056         MethodType newType = targetType;
5057         if (!dropResult) {
5058             newType = newType.dropParameterTypes(pos, pos + 1);
5059         }
5060         result = result.copyWithExtendL(newType, lform, combiner);
5061         return result;
5062     }
5063 
5064     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5065         int foldArgs   = combinerType.parameterCount();
5066         Class<?> rtype = combinerType.returnType();
5067         int foldVals = rtype == void.class ? 0 : 1;
5068         int afterInsertPos = foldPos + foldVals;
5069         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5070         if (ok) {
5071             for (int i = 0; i < foldArgs; i++) {
5072                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5073                     ok = false;
5074                     break;
5075                 }
5076             }
5077         }
5078         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5079             ok = false;
5080         if (!ok)
5081             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5082         return rtype;
5083     }
5084 
5085     /**
5086      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5087      * of the pre-processing replacing the argument at the given position.
5088      *
5089      * @param target the method handle to invoke after arguments are combined
5090      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5091      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5092      * @param combiner method handle to call initially on the incoming arguments
5093      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5094      * @return method handle which incorporates the specified argument folding logic
5095      * @throws NullPointerException if either argument is null
5096      * @throws IllegalArgumentException if either of the following two conditions holds:
5097      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5098      *              {@code pos} of the target signature;
5099      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5100      *              not identical with the argument types of {@code combiner}.
5101      */
5102     /*non-public*/
5103     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5104         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5105     }
5106 
5107     /**
5108      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5109      * the pre-processing inserted into the original sequence of arguments at the given position.
5110      *
5111      * @param target the method handle to invoke after arguments are combined
5112      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5113      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5114      * @param combiner method handle to call initially on the incoming arguments
5115      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5116      * @return method handle which incorporates the specified argument folding logic
5117      * @throws NullPointerException if either argument is null
5118      * @throws IllegalArgumentException if either of the following two conditions holds:
5119      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5120      *              {@code pos} of the target signature;
5121      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5122      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5123      *              with the argument types of {@code combiner}.
5124      */
5125     /*non-public*/
5126     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5127         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5128     }
5129 
5130     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5131         MethodType targetType = target.type();
5132         MethodType combinerType = combiner.type();
5133         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5134         BoundMethodHandle result = target.rebind();
5135 
5136         MethodType newType = targetType;
5137         LambdaForm lform;
5138         if (filter) {
5139             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5140         } else {
5141             boolean dropResult = rtype == void.class;
5142             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5143             if (!dropResult) {
5144                 newType = newType.dropParameterTypes(position, position + 1);
5145             }
5146         }
5147         result = result.copyWithExtendL(newType, lform, combiner);
5148         return result;
5149     }
5150 
5151     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5152         int combinerArgs = combinerType.parameterCount();
5153         if (argPos.length != combinerArgs) {
5154             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5155         }
5156         Class<?> rtype = combinerType.returnType();
5157 
5158         for (int i = 0; i < combinerArgs; i++) {
5159             int arg = argPos[i];
5160             if (arg < 0 || arg > targetType.parameterCount()) {
5161                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5162             }
5163             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5164                 throw newIllegalArgumentException("target argument type at position " + arg
5165                         + " must match combiner argument type at index " + i + ": " + targetType
5166                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5167             }
5168         }
5169         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5170             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5171         }
5172         return rtype;
5173     }
5174 
5175     /**
5176      * Makes a method handle which adapts a target method handle,
5177      * by guarding it with a test, a boolean-valued method handle.
5178      * If the guard fails, a fallback handle is called instead.
5179      * All three method handles must have the same corresponding
5180      * argument and return types, except that the return type
5181      * of the test must be boolean, and the test is allowed
5182      * to have fewer arguments than the other two method handles.
5183      * <p>
5184      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5185      * represents the uniform result type of the three involved handles;
5186      * {@code A}/{@code a}, the types and values of the {@code target}
5187      * parameters and arguments that are consumed by the {@code test}; and
5188      * {@code B}/{@code b}, those types and values of the {@code target}
5189      * parameters and arguments that are not consumed by the {@code test}.
5190      * <blockquote><pre>{@code
5191      * boolean test(A...);
5192      * T target(A...,B...);
5193      * T fallback(A...,B...);
5194      * T adapter(A... a,B... b) {
5195      *   if (test(a...))
5196      *     return target(a..., b...);
5197      *   else
5198      *     return fallback(a..., b...);
5199      * }
5200      * }</pre></blockquote>
5201      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5202      * be modified by execution of the test, and so are passed unchanged
5203      * from the caller to the target or fallback as appropriate.
5204      * @param test method handle used for test, must return boolean
5205      * @param target method handle to call if test passes
5206      * @param fallback method handle to call if test fails
5207      * @return method handle which incorporates the specified if/then/else logic
5208      * @throws NullPointerException if any argument is null
5209      * @throws IllegalArgumentException if {@code test} does not return boolean,
5210      *          or if all three method types do not match (with the return
5211      *          type of {@code test} changed to match that of the target).
5212      */
5213     public static MethodHandle guardWithTest(MethodHandle test,
5214                                MethodHandle target,
5215                                MethodHandle fallback) {
5216         MethodType gtype = test.type();
5217         MethodType ttype = target.type();
5218         MethodType ftype = fallback.type();
5219         if (!ttype.equals(ftype))
5220             throw misMatchedTypes("target and fallback types", ttype, ftype);
5221         if (gtype.returnType() != boolean.class)
5222             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5223         List<Class<?>> targs = ttype.parameterList();
5224         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5225         if (test == null) {
5226             throw misMatchedTypes("target and test types", ttype, gtype);
5227         }
5228         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5229     }
5230 
5231     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5232         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5233     }
5234 
5235     /**
5236      * Makes a method handle which adapts a target method handle,
5237      * by running it inside an exception handler.
5238      * If the target returns normally, the adapter returns that value.
5239      * If an exception matching the specified type is thrown, the fallback
5240      * handle is called instead on the exception, plus the original arguments.
5241      * <p>
5242      * The target and handler must have the same corresponding
5243      * argument and return types, except that handler may omit trailing arguments
5244      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5245      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5246      * <p>
5247      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5248      * represents the return type of the {@code target} and {@code handler},
5249      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5250      * the types and values of arguments to the resulting handle consumed by
5251      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5252      * resulting handle discarded by {@code handler}.
5253      * <blockquote><pre>{@code
5254      * T target(A..., B...);
5255      * T handler(ExType, A...);
5256      * T adapter(A... a, B... b) {
5257      *   try {
5258      *     return target(a..., b...);
5259      *   } catch (ExType ex) {
5260      *     return handler(ex, a...);
5261      *   }
5262      * }
5263      * }</pre></blockquote>
5264      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5265      * be modified by execution of the target, and so are passed unchanged
5266      * from the caller to the handler, if the handler is invoked.
5267      * <p>
5268      * The target and handler must return the same type, even if the handler
5269      * always throws.  (This might happen, for instance, because the handler
5270      * is simulating a {@code finally} clause).
5271      * To create such a throwing handler, compose the handler creation logic
5272      * with {@link #throwException throwException},
5273      * in order to create a method handle of the correct return type.
5274      * @param target method handle to call
5275      * @param exType the type of exception which the handler will catch
5276      * @param handler method handle to call if a matching exception is thrown
5277      * @return method handle which incorporates the specified try/catch logic
5278      * @throws NullPointerException if any argument is null
5279      * @throws IllegalArgumentException if {@code handler} does not accept
5280      *          the given exception type, or if the method handle types do
5281      *          not match in their return types and their
5282      *          corresponding parameters
5283      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5284      */
5285     public static MethodHandle catchException(MethodHandle target,
5286                                 Class<? extends Throwable> exType,
5287                                 MethodHandle handler) {
5288         MethodType ttype = target.type();
5289         MethodType htype = handler.type();
5290         if (!Throwable.class.isAssignableFrom(exType))
5291             throw new ClassCastException(exType.getName());
5292         if (htype.parameterCount() < 1 ||
5293             !htype.parameterType(0).isAssignableFrom(exType))
5294             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5295         if (htype.returnType() != ttype.returnType())
5296             throw misMatchedTypes("target and handler return types", ttype, htype);
5297         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5298         if (handler == null) {
5299             throw misMatchedTypes("target and handler types", ttype, htype);
5300         }
5301         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5302     }
5303 
5304     /**
5305      * Produces a method handle which will throw exceptions of the given {@code exType}.
5306      * The method handle will accept a single argument of {@code exType},
5307      * and immediately throw it as an exception.
5308      * The method type will nominally specify a return of {@code returnType}.
5309      * The return type may be anything convenient:  It doesn't matter to the
5310      * method handle's behavior, since it will never return normally.
5311      * @param returnType the return type of the desired method handle
5312      * @param exType the parameter type of the desired method handle
5313      * @return method handle which can throw the given exceptions
5314      * @throws NullPointerException if either argument is null
5315      */
5316     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5317         if (!Throwable.class.isAssignableFrom(exType))
5318             throw new ClassCastException(exType.getName());
5319         return MethodHandleImpl.throwException(methodType(returnType, exType));
5320     }
5321 
5322     /**
5323      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5324      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5325      * delivers the loop's result, which is the return value of the resulting handle.
5326      * <p>
5327      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5328      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5329      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5330      * terms of method handles, each clause will specify up to four independent actions:<ul>
5331      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5332      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5333      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5334      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5335      * </ul>
5336      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5337      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5338      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5339      * <p>
5340      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5341      * this case. See below for a detailed description.
5342      * <p>
5343      * <em>Parameters optional everywhere:</em>
5344      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5345      * As an exception, the init functions cannot take any {@code v} parameters,
5346      * because those values are not yet computed when the init functions are executed.
5347      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5348      * In fact, any clause function may take no arguments at all.
5349      * <p>
5350      * <em>Loop parameters:</em>
5351      * A clause function may take all the iteration variable values it is entitled to, in which case
5352      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5353      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5354      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5355      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5356      * init function is automatically a loop parameter {@code a}.)
5357      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5358      * These loop parameters act as loop-invariant values visible across the whole loop.
5359      * <p>
5360      * <em>Parameters visible everywhere:</em>
5361      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5362      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5363      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5364      * Most clause functions will not need all of this information, but they will be formally connected to it
5365      * as if by {@link #dropArguments}.
5366      * <a id="astar"></a>
5367      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5368      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5369      * In that notation, the general form of an init function parameter list
5370      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5371      * <p>
5372      * <em>Checking clause structure:</em>
5373      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5374      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5375      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5376      * met by the inputs to the loop combinator.
5377      * <p>
5378      * <em>Effectively identical sequences:</em>
5379      * <a id="effid"></a>
5380      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5381      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5382      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5383      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5384      * that longest list.
5385      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5386      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5387      * <p>
5388      * <em>Step 0: Determine clause structure.</em><ol type="a">
5389      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5390      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5391      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5392      * four. Padding takes place by appending elements to the array.
5393      * <li>Clauses with all {@code null}s are disregarded.
5394      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5395      * </ol>
5396      * <p>
5397      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5398      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5399      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5400      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5401      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5402      * iteration variable type.
5403      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5404      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5405      * </ol>
5406      * <p>
5407      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5408      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5409      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5410      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5411      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5412      * (These types will be checked in step 2, along with all the clause function types.)
5413      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5414      * <li>All of the collected parameter lists must be effectively identical.
5415      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5416      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5417      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5418      * the "internal parameter list".
5419      * </ul>
5420      * <p>
5421      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5422      * <li>Examine fini function return types, disregarding omitted fini functions.
5423      * <li>If there are no fini functions, the loop return type is {@code void}.
5424      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5425      * type.
5426      * </ol>
5427      * <p>
5428      * <em>Step 1D: Check other types.</em><ol type="a">
5429      * <li>There must be at least one non-omitted pred function.
5430      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5431      * </ol>
5432      * <p>
5433      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5434      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5435      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5436      * (Note that their parameter lists are already effectively identical to this list.)
5437      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5438      * effectively identical to the internal parameter list {@code (V... A...)}.
5439      * </ol>
5440      * <p>
5441      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5442      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5443      * type.
5444      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5445      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5446      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5447      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5448      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5449      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5450      * loop return type.
5451      * </ol>
5452      * <p>
5453      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5454      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5455      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5456      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5457      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5458      * pad out the end of the list.
5459      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5460      * </ol>
5461      * <p>
5462      * <em>Final observations.</em><ol type="a">
5463      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5464      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5465      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5466      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5467      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5468      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5469      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5470      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5471      * </ol>
5472      * <p>
5473      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5474      * <ul>
5475      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5476      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5477      * (Only one {@code Pn} has to be non-{@code null}.)
5478      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5479      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5480      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5481      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5482      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5483      * the resulting loop handle's parameter types {@code (A...)}.
5484      * </ul>
5485      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5486      * which is natural if most of the loop computation happens in the steps.  For some loops,
5487      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5488      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5489      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5490      * where the init functions will need the extra parameters.  For such reasons, the rules for
5491      * determining these parameters are as symmetric as possible, across all clause parts.
5492      * In general, the loop parameters function as common invariant values across the whole
5493      * loop, while the iteration variables function as common variant values, or (if there is
5494      * no step function) as internal loop invariant temporaries.
5495      * <p>
5496      * <em>Loop execution.</em><ol type="a">
5497      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5498      * every clause function. These locals are loop invariant.
5499      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5500      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5501      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5502      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5503      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5504      * (in argument order).
5505      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5506      * returns {@code false}.
5507      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5508      * sequence {@code (v...)} of loop variables.
5509      * The updated value is immediately visible to all subsequent function calls.
5510      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5511      * (of type {@code R}) is returned from the loop as a whole.
5512      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5513      * except by throwing an exception.
5514      * </ol>
5515      * <p>
5516      * <em>Usage tips.</em>
5517      * <ul>
5518      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5519      * sometimes a step function only needs to observe the current value of its own variable.
5520      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5521      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5522      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5523      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5524      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5525      * <li>If some of the clause functions are virtual methods on an instance, the instance
5526      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5527      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5528      * will be the first iteration variable value, and it will be easy to use virtual
5529      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5530      * </ul>
5531      * <p>
5532      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5533      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5534      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5535      * <blockquote><pre>{@code
5536      * V... init...(A...);
5537      * boolean pred...(V..., A...);
5538      * V... step...(V..., A...);
5539      * R fini...(V..., A...);
5540      * R loop(A... a) {
5541      *   V... v... = init...(a...);
5542      *   for (;;) {
5543      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5544      *       v = s(v..., a...);
5545      *       if (!p(v..., a...)) {
5546      *         return f(v..., a...);
5547      *       }
5548      *     }
5549      *   }
5550      * }
5551      * }</pre></blockquote>
5552      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5553      * to their full length, even though individual clause functions may neglect to take them all.
5554      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5555      *
5556      * @apiNote Example:
5557      * <blockquote><pre>{@code
5558      * // iterative implementation of the factorial function as a loop handle
5559      * static int one(int k) { return 1; }
5560      * static int inc(int i, int acc, int k) { return i + 1; }
5561      * static int mult(int i, int acc, int k) { return i * acc; }
5562      * static boolean pred(int i, int acc, int k) { return i < k; }
5563      * static int fin(int i, int acc, int k) { return acc; }
5564      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5565      * // null initializer for counter, should initialize to 0
5566      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5567      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5568      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5569      * assertEquals(120, loop.invoke(5));
5570      * }</pre></blockquote>
5571      * The same example, dropping arguments and using combinators:
5572      * <blockquote><pre>{@code
5573      * // simplified implementation of the factorial function as a loop handle
5574      * static int inc(int i) { return i + 1; } // drop acc, k
5575      * static int mult(int i, int acc) { return i * acc; } //drop k
5576      * static boolean cmp(int i, int k) { return i < k; }
5577      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5578      * // null initializer for counter, should initialize to 0
5579      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5580      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5581      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5582      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5583      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5584      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5585      * assertEquals(720, loop.invoke(6));
5586      * }</pre></blockquote>
5587      * A similar example, using a helper object to hold a loop parameter:
5588      * <blockquote><pre>{@code
5589      * // instance-based implementation of the factorial function as a loop handle
5590      * static class FacLoop {
5591      *   final int k;
5592      *   FacLoop(int k) { this.k = k; }
5593      *   int inc(int i) { return i + 1; }
5594      *   int mult(int i, int acc) { return i * acc; }
5595      *   boolean pred(int i) { return i < k; }
5596      *   int fin(int i, int acc) { return acc; }
5597      * }
5598      * // assume MH_FacLoop is a handle to the constructor
5599      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5600      * // null initializer for counter, should initialize to 0
5601      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5602      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5603      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5604      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5605      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5606      * assertEquals(5040, loop.invoke(7));
5607      * }</pre></blockquote>
5608      *
5609      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5610      *
5611      * @return a method handle embodying the looping behavior as defined by the arguments.
5612      *
5613      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5614      *
5615      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5616      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5617      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5618      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5619      * @since 9
5620      */
5621     public static MethodHandle loop(MethodHandle[]... clauses) {
5622         // Step 0: determine clause structure.
5623         loopChecks0(clauses);
5624 
5625         List<MethodHandle> init = new ArrayList<>();
5626         List<MethodHandle> step = new ArrayList<>();
5627         List<MethodHandle> pred = new ArrayList<>();
5628         List<MethodHandle> fini = new ArrayList<>();
5629 
5630         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5631             init.add(clause[0]); // all clauses have at least length 1
5632             step.add(clause.length <= 1 ? null : clause[1]);
5633             pred.add(clause.length <= 2 ? null : clause[2]);
5634             fini.add(clause.length <= 3 ? null : clause[3]);
5635         });
5636 
5637         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5638         final int nclauses = init.size();
5639 
5640         // Step 1A: determine iteration variables (V...).
5641         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5642         for (int i = 0; i < nclauses; ++i) {
5643             MethodHandle in = init.get(i);
5644             MethodHandle st = step.get(i);
5645             if (in == null && st == null) {
5646                 iterationVariableTypes.add(void.class);
5647             } else if (in != null && st != null) {
5648                 loopChecks1a(i, in, st);
5649                 iterationVariableTypes.add(in.type().returnType());
5650             } else {
5651                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5652             }
5653         }
5654         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5655                 collect(Collectors.toList());
5656 
5657         // Step 1B: determine loop parameters (A...).
5658         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5659         loopChecks1b(init, commonSuffix);
5660 
5661         // Step 1C: determine loop return type.
5662         // Step 1D: check other types.
5663         // local variable required here; see JDK-8223553
5664         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5665                 .map(MethodType::returnType);
5666         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5667         loopChecks1cd(pred, fini, loopReturnType);
5668 
5669         // Step 2: determine parameter lists.
5670         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5671         commonParameterSequence.addAll(commonSuffix);
5672         loopChecks2(step, pred, fini, commonParameterSequence);
5673 
5674         // Step 3: fill in omitted functions.
5675         for (int i = 0; i < nclauses; ++i) {
5676             Class<?> t = iterationVariableTypes.get(i);
5677             if (init.get(i) == null) {
5678                 init.set(i, empty(methodType(t, commonSuffix)));
5679             }
5680             if (step.get(i) == null) {
5681                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5682             }
5683             if (pred.get(i) == null) {
5684                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5685             }
5686             if (fini.get(i) == null) {
5687                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5688             }
5689         }
5690 
5691         // Step 4: fill in missing parameter types.
5692         // Also convert all handles to fixed-arity handles.
5693         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5694         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5695         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5696         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5697 
5698         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5699                 allMatch(pl -> pl.equals(commonSuffix));
5700         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5701                 allMatch(pl -> pl.equals(commonParameterSequence));
5702 
5703         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5704     }
5705 
5706     private static void loopChecks0(MethodHandle[][] clauses) {
5707         if (clauses == null || clauses.length == 0) {
5708             throw newIllegalArgumentException("null or no clauses passed");
5709         }
5710         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5711             throw newIllegalArgumentException("null clauses are not allowed");
5712         }
5713         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5714             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5715         }
5716     }
5717 
5718     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5719         if (in.type().returnType() != st.type().returnType()) {
5720             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5721                     st.type().returnType());
5722         }
5723     }
5724 
5725     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5726         final List<Class<?>> empty = List.of();
5727         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5728                 // take only those that can contribute to a common suffix because they are longer than the prefix
5729                         map(MethodHandle::type).
5730                         filter(t -> t.parameterCount() > skipSize).
5731                         map(MethodType::parameterList).
5732                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5733         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5734     }
5735 
5736     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5737         final List<Class<?>> empty = List.of();
5738         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5739     }
5740 
5741     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5742         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5743         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5744         return longestParameterList(Arrays.asList(longest1, longest2));
5745     }
5746 
5747     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5748         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5749                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5750             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5751                     " (common suffix: " + commonSuffix + ")");
5752         }
5753     }
5754 
5755     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5756         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5757                 anyMatch(t -> t != loopReturnType)) {
5758             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5759                     loopReturnType + ")");
5760         }
5761 
5762         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5763             throw newIllegalArgumentException("no predicate found", pred);
5764         }
5765         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5766                 anyMatch(t -> t != boolean.class)) {
5767             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5768         }
5769     }
5770 
5771     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5772         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5773                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5774             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5775                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5776         }
5777     }
5778 
5779     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5780         return hs.stream().map(h -> {
5781             int pc = h.type().parameterCount();
5782             int tpsize = targetParams.size();
5783             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5784         }).collect(Collectors.toList());
5785     }
5786 
5787     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5788         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5789     }
5790 
5791     /**
5792      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5793      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5794      * <p>
5795      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5796      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5797      * evaluates to {@code true}).
5798      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5799      * <p>
5800      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5801      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5802      * and updated with the value returned from its invocation. The result of loop execution will be
5803      * the final value of the additional loop-local variable (if present).
5804      * <p>
5805      * The following rules hold for these argument handles:<ul>
5806      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5807      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5808      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5809      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5810      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5811      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5812      * It will constrain the parameter lists of the other loop parts.
5813      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5814      * list {@code (A...)} is called the <em>external parameter list</em>.
5815      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5816      * additional state variable of the loop.
5817      * The body must both accept and return a value of this type {@code V}.
5818      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5819      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5820      * <a href="MethodHandles.html#effid">effectively identical</a>
5821      * to the external parameter list {@code (A...)}.
5822      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5823      * {@linkplain #empty default value}.
5824      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5825      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5826      * effectively identical to the internal parameter list.
5827      * </ul>
5828      * <p>
5829      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5830      * <li>The loop handle's result type is the result type {@code V} of the body.
5831      * <li>The loop handle's parameter types are the types {@code (A...)},
5832      * from the external parameter list.
5833      * </ul>
5834      * <p>
5835      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5836      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5837      * passed to the loop.
5838      * <blockquote><pre>{@code
5839      * V init(A...);
5840      * boolean pred(V, A...);
5841      * V body(V, A...);
5842      * V whileLoop(A... a...) {
5843      *   V v = init(a...);
5844      *   while (pred(v, a...)) {
5845      *     v = body(v, a...);
5846      *   }
5847      *   return v;
5848      * }
5849      * }</pre></blockquote>
5850      *
5851      * @apiNote Example:
5852      * <blockquote><pre>{@code
5853      * // implement the zip function for lists as a loop handle
5854      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5855      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5856      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5857      *   zip.add(a.next());
5858      *   zip.add(b.next());
5859      *   return zip;
5860      * }
5861      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5862      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5863      * List<String> a = Arrays.asList("a", "b", "c", "d");
5864      * List<String> b = Arrays.asList("e", "f", "g", "h");
5865      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5866      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5867      * }</pre></blockquote>
5868      *
5869      *
5870      * @apiNote The implementation of this method can be expressed as follows:
5871      * <blockquote><pre>{@code
5872      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5873      *     MethodHandle fini = (body.type().returnType() == void.class
5874      *                         ? null : identity(body.type().returnType()));
5875      *     MethodHandle[]
5876      *         checkExit = { null, null, pred, fini },
5877      *         varBody   = { init, body };
5878      *     return loop(checkExit, varBody);
5879      * }
5880      * }</pre></blockquote>
5881      *
5882      * @param init optional initializer, providing the initial value of the loop variable.
5883      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5884      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5885      *             above for other constraints.
5886      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5887      *             See above for other constraints.
5888      *
5889      * @return a method handle implementing the {@code while} loop as described by the arguments.
5890      * @throws IllegalArgumentException if the rules for the arguments are violated.
5891      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5892      *
5893      * @see #loop(MethodHandle[][])
5894      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5895      * @since 9
5896      */
5897     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5898         whileLoopChecks(init, pred, body);
5899         MethodHandle fini = identityOrVoid(body.type().returnType());
5900         MethodHandle[] checkExit = { null, null, pred, fini };
5901         MethodHandle[] varBody = { init, body };
5902         return loop(checkExit, varBody);
5903     }
5904 
5905     /**
5906      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5907      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5908      * <p>
5909      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5910      * method will, in each iteration, first execute its body and then evaluate the predicate.
5911      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5912      * <p>
5913      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5914      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5915      * and updated with the value returned from its invocation. The result of loop execution will be
5916      * the final value of the additional loop-local variable (if present).
5917      * <p>
5918      * The following rules hold for these argument handles:<ul>
5919      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5920      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5921      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5922      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5923      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5924      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5925      * It will constrain the parameter lists of the other loop parts.
5926      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5927      * list {@code (A...)} is called the <em>external parameter list</em>.
5928      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5929      * additional state variable of the loop.
5930      * The body must both accept and return a value of this type {@code V}.
5931      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5932      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5933      * <a href="MethodHandles.html#effid">effectively identical</a>
5934      * to the external parameter list {@code (A...)}.
5935      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5936      * {@linkplain #empty default value}.
5937      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5938      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5939      * effectively identical to the internal parameter list.
5940      * </ul>
5941      * <p>
5942      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5943      * <li>The loop handle's result type is the result type {@code V} of the body.
5944      * <li>The loop handle's parameter types are the types {@code (A...)},
5945      * from the external parameter list.
5946      * </ul>
5947      * <p>
5948      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5949      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5950      * passed to the loop.
5951      * <blockquote><pre>{@code
5952      * V init(A...);
5953      * boolean pred(V, A...);
5954      * V body(V, A...);
5955      * V doWhileLoop(A... a...) {
5956      *   V v = init(a...);
5957      *   do {
5958      *     v = body(v, a...);
5959      *   } while (pred(v, a...));
5960      *   return v;
5961      * }
5962      * }</pre></blockquote>
5963      *
5964      * @apiNote Example:
5965      * <blockquote><pre>{@code
5966      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5967      * static int zero(int limit) { return 0; }
5968      * static int step(int i, int limit) { return i + 1; }
5969      * static boolean pred(int i, int limit) { return i < limit; }
5970      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5971      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5972      * assertEquals(23, loop.invoke(23));
5973      * }</pre></blockquote>
5974      *
5975      *
5976      * @apiNote The implementation of this method can be expressed as follows:
5977      * <blockquote><pre>{@code
5978      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5979      *     MethodHandle fini = (body.type().returnType() == void.class
5980      *                         ? null : identity(body.type().returnType()));
5981      *     MethodHandle[] clause = { init, body, pred, fini };
5982      *     return loop(clause);
5983      * }
5984      * }</pre></blockquote>
5985      *
5986      * @param init optional initializer, providing the initial value of the loop variable.
5987      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5988      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5989      *             See above for other constraints.
5990      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5991      *             above for other constraints.
5992      *
5993      * @return a method handle implementing the {@code while} loop as described by the arguments.
5994      * @throws IllegalArgumentException if the rules for the arguments are violated.
5995      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5996      *
5997      * @see #loop(MethodHandle[][])
5998      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5999      * @since 9
6000      */
6001     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6002         whileLoopChecks(init, pred, body);
6003         MethodHandle fini = identityOrVoid(body.type().returnType());
6004         MethodHandle[] clause = {init, body, pred, fini };
6005         return loop(clause);
6006     }
6007 
6008     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6009         Objects.requireNonNull(pred);
6010         Objects.requireNonNull(body);
6011         MethodType bodyType = body.type();
6012         Class<?> returnType = bodyType.returnType();
6013         List<Class<?>> innerList = bodyType.parameterList();
6014         List<Class<?>> outerList = innerList;
6015         if (returnType == void.class) {
6016             // OK
6017         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6018             // leading V argument missing => error
6019             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6020             throw misMatchedTypes("body function", bodyType, expected);
6021         } else {
6022             outerList = innerList.subList(1, innerList.size());
6023         }
6024         MethodType predType = pred.type();
6025         if (predType.returnType() != boolean.class ||
6026                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6027             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6028         }
6029         if (init != null) {
6030             MethodType initType = init.type();
6031             if (initType.returnType() != returnType ||
6032                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6033                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6034             }
6035         }
6036     }
6037 
6038     /**
6039      * Constructs a loop that runs a given number of iterations.
6040      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6041      * <p>
6042      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6043      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6044      * It will be initialized to 0 and incremented by 1 in each iteration.
6045      * <p>
6046      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6047      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6048      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6049      * <p>
6050      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6051      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6052      * iteration variable.
6053      * The result of the loop handle execution will be the final {@code V} value of that variable
6054      * (or {@code void} if there is no {@code V} variable).
6055      * <p>
6056      * The following rules hold for the argument handles:<ul>
6057      * <li>The {@code iterations} handle must not be {@code null}, and must return
6058      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6059      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6060      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6061      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6062      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6063      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6064      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6065      * of types called the <em>internal parameter list</em>.
6066      * It will constrain the parameter lists of the other loop parts.
6067      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6068      * with no additional {@code A} types, then the internal parameter list is extended by
6069      * the argument types {@code A...} of the {@code iterations} handle.
6070      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6071      * list {@code (A...)} is called the <em>external parameter list</em>.
6072      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6073      * additional state variable of the loop.
6074      * The body must both accept a leading parameter and return a value of this type {@code V}.
6075      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6076      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6077      * <a href="MethodHandles.html#effid">effectively identical</a>
6078      * to the external parameter list {@code (A...)}.
6079      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6080      * {@linkplain #empty default value}.
6081      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6082      * effectively identical to the external parameter list {@code (A...)}.
6083      * </ul>
6084      * <p>
6085      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6086      * <li>The loop handle's result type is the result type {@code V} of the body.
6087      * <li>The loop handle's parameter types are the types {@code (A...)},
6088      * from the external parameter list.
6089      * </ul>
6090      * <p>
6091      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6092      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6093      * arguments passed to the loop.
6094      * <blockquote><pre>{@code
6095      * int iterations(A...);
6096      * V init(A...);
6097      * V body(V, int, A...);
6098      * V countedLoop(A... a...) {
6099      *   int end = iterations(a...);
6100      *   V v = init(a...);
6101      *   for (int i = 0; i < end; ++i) {
6102      *     v = body(v, i, a...);
6103      *   }
6104      *   return v;
6105      * }
6106      * }</pre></blockquote>
6107      *
6108      * @apiNote Example with a fully conformant body method:
6109      * <blockquote><pre>{@code
6110      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6111      * // => a variation on a well known theme
6112      * static String step(String v, int counter, String init) { return "na " + v; }
6113      * // assume MH_step is a handle to the method above
6114      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6115      * MethodHandle start = MethodHandles.identity(String.class);
6116      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6117      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6118      * }</pre></blockquote>
6119      *
6120      * @apiNote Example with the simplest possible body method type,
6121      * and passing the number of iterations to the loop invocation:
6122      * <blockquote><pre>{@code
6123      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6124      * // => a variation on a well known theme
6125      * static String step(String v, int counter ) { return "na " + v; }
6126      * // assume MH_step is a handle to the method above
6127      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6128      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6129      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6130      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6131      * }</pre></blockquote>
6132      *
6133      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6134      * as loop parameters:
6135      * <blockquote><pre>{@code
6136      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6137      * // => a variation on a well known theme
6138      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6139      * // assume MH_step is a handle to the method above
6140      * MethodHandle count = MethodHandles.identity(int.class);
6141      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6142      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6143      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6144      * }</pre></blockquote>
6145      *
6146      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6147      * to enforce a loop type:
6148      * <blockquote><pre>{@code
6149      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6150      * // => a variation on a well known theme
6151      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6152      * // assume MH_step is a handle to the method above
6153      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6154      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6155      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6156      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6157      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6158      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6159      * }</pre></blockquote>
6160      *
6161      * @apiNote The implementation of this method can be expressed as follows:
6162      * <blockquote><pre>{@code
6163      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6164      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6165      * }
6166      * }</pre></blockquote>
6167      *
6168      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6169      *                   result type must be {@code int}. See above for other constraints.
6170      * @param init optional initializer, providing the initial value of the loop variable.
6171      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6172      * @param body body of the loop, which may not be {@code null}.
6173      *             It controls the loop parameters and result type in the standard case (see above for details).
6174      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6175      *             and may accept any number of additional types.
6176      *             See above for other constraints.
6177      *
6178      * @return a method handle representing the loop.
6179      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6180      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6181      *
6182      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6183      * @since 9
6184      */
6185     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6186         return countedLoop(empty(iterations.type()), iterations, init, body);
6187     }
6188 
6189     /**
6190      * Constructs a loop that counts over a range of numbers.
6191      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6192      * <p>
6193      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6194      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6195      * values of the loop counter.
6196      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6197      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6198      * <p>
6199      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6200      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6201      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6202      * <p>
6203      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6204      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6205      * iteration variable.
6206      * The result of the loop handle execution will be the final {@code V} value of that variable
6207      * (or {@code void} if there is no {@code V} variable).
6208      * <p>
6209      * The following rules hold for the argument handles:<ul>
6210      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6211      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6212      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6213      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6214      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6215      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6216      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6217      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6218      * of types called the <em>internal parameter list</em>.
6219      * It will constrain the parameter lists of the other loop parts.
6220      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6221      * with no additional {@code A} types, then the internal parameter list is extended by
6222      * the argument types {@code A...} of the {@code end} handle.
6223      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6224      * list {@code (A...)} is called the <em>external parameter list</em>.
6225      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6226      * additional state variable of the loop.
6227      * The body must both accept a leading parameter and return a value of this type {@code V}.
6228      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6229      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6230      * <a href="MethodHandles.html#effid">effectively identical</a>
6231      * to the external parameter list {@code (A...)}.
6232      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6233      * {@linkplain #empty default value}.
6234      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6235      * effectively identical to the external parameter list {@code (A...)}.
6236      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6237      * to the external parameter list.
6238      * </ul>
6239      * <p>
6240      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6241      * <li>The loop handle's result type is the result type {@code V} of the body.
6242      * <li>The loop handle's parameter types are the types {@code (A...)},
6243      * from the external parameter list.
6244      * </ul>
6245      * <p>
6246      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6247      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6248      * arguments passed to the loop.
6249      * <blockquote><pre>{@code
6250      * int start(A...);
6251      * int end(A...);
6252      * V init(A...);
6253      * V body(V, int, A...);
6254      * V countedLoop(A... a...) {
6255      *   int e = end(a...);
6256      *   int s = start(a...);
6257      *   V v = init(a...);
6258      *   for (int i = s; i < e; ++i) {
6259      *     v = body(v, i, a...);
6260      *   }
6261      *   return v;
6262      * }
6263      * }</pre></blockquote>
6264      *
6265      * @apiNote The implementation of this method can be expressed as follows:
6266      * <blockquote><pre>{@code
6267      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6268      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6269      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6270      *     // the following semantics:
6271      *     // MH_increment: (int limit, int counter) -> counter + 1
6272      *     // MH_predicate: (int limit, int counter) -> counter < limit
6273      *     Class<?> counterType = start.type().returnType();  // int
6274      *     Class<?> returnType = body.type().returnType();
6275      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6276      *     if (returnType != void.class) {  // ignore the V variable
6277      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6278      *         pred = dropArguments(pred, 1, returnType);  // ditto
6279      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6280      *     }
6281      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6282      *     MethodHandle[]
6283      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6284      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6285      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6286      *     return loop(loopLimit, bodyClause, indexVar);
6287      * }
6288      * }</pre></blockquote>
6289      *
6290      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6291      *              See above for other constraints.
6292      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6293      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6294      * @param init optional initializer, providing the initial value of the loop variable.
6295      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6296      * @param body body of the loop, which may not be {@code null}.
6297      *             It controls the loop parameters and result type in the standard case (see above for details).
6298      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6299      *             and may accept any number of additional types.
6300      *             See above for other constraints.
6301      *
6302      * @return a method handle representing the loop.
6303      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6304      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6305      *
6306      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6307      * @since 9
6308      */
6309     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6310         countedLoopChecks(start, end, init, body);
6311         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6312         Class<?> limitType   = end.type().returnType();    // yes, int again
6313         Class<?> returnType  = body.type().returnType();
6314         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6315         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6316         MethodHandle retv = null;
6317         if (returnType != void.class) {
6318             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6319             pred = dropArguments(pred, 1, returnType);  // ditto
6320             retv = dropArguments(identity(returnType), 0, counterType);
6321         }
6322         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6323         MethodHandle[]
6324             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6325             bodyClause = { init, body },            // v = init(); v = body(v, i)
6326             indexVar   = { start, incr };           // i = start(); i = i + 1
6327         return loop(loopLimit, bodyClause, indexVar);
6328     }
6329 
6330     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6331         Objects.requireNonNull(start);
6332         Objects.requireNonNull(end);
6333         Objects.requireNonNull(body);
6334         Class<?> counterType = start.type().returnType();
6335         if (counterType != int.class) {
6336             MethodType expected = start.type().changeReturnType(int.class);
6337             throw misMatchedTypes("start function", start.type(), expected);
6338         } else if (end.type().returnType() != counterType) {
6339             MethodType expected = end.type().changeReturnType(counterType);
6340             throw misMatchedTypes("end function", end.type(), expected);
6341         }
6342         MethodType bodyType = body.type();
6343         Class<?> returnType = bodyType.returnType();
6344         List<Class<?>> innerList = bodyType.parameterList();
6345         // strip leading V value if present
6346         int vsize = (returnType == void.class ? 0 : 1);
6347         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6348             // argument list has no "V" => error
6349             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6350             throw misMatchedTypes("body function", bodyType, expected);
6351         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6352             // missing I type => error
6353             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6354             throw misMatchedTypes("body function", bodyType, expected);
6355         }
6356         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6357         if (outerList.isEmpty()) {
6358             // special case; take lists from end handle
6359             outerList = end.type().parameterList();
6360             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6361         }
6362         MethodType expected = methodType(counterType, outerList);
6363         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6364             throw misMatchedTypes("start parameter types", start.type(), expected);
6365         }
6366         if (end.type() != start.type() &&
6367             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6368             throw misMatchedTypes("end parameter types", end.type(), expected);
6369         }
6370         if (init != null) {
6371             MethodType initType = init.type();
6372             if (initType.returnType() != returnType ||
6373                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6374                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6375             }
6376         }
6377     }
6378 
6379     /**
6380      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6381      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6382      * <p>
6383      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6384      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6385      * <p>
6386      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6387      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6388      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6389      * <p>
6390      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6391      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6392      * iteration variable.
6393      * The result of the loop handle execution will be the final {@code V} value of that variable
6394      * (or {@code void} if there is no {@code V} variable).
6395      * <p>
6396      * The following rules hold for the argument handles:<ul>
6397      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6398      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6399      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6400      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6401      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6402      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6403      * of types called the <em>internal parameter list</em>.
6404      * It will constrain the parameter lists of the other loop parts.
6405      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6406      * with no additional {@code A} types, then the internal parameter list is extended by
6407      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6408      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6409      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6410      * list {@code (A...)} is called the <em>external parameter list</em>.
6411      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6412      * additional state variable of the loop.
6413      * The body must both accept a leading parameter and return a value of this type {@code V}.
6414      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6415      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6416      * <a href="MethodHandles.html#effid">effectively identical</a>
6417      * to the external parameter list {@code (A...)}.
6418      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6419      * {@linkplain #empty default value}.
6420      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6421      * type {@code java.util.Iterator} or a subtype thereof.
6422      * The iterator it produces when the loop is executed will be assumed
6423      * to yield values which can be converted to type {@code T}.
6424      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6425      * effectively identical to the external parameter list {@code (A...)}.
6426      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6427      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6428      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6429      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6430      * the {@link MethodHandle#asType asType} conversion method.
6431      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6432      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6433      * </ul>
6434      * <p>
6435      * The type {@code T} may be either a primitive or reference.
6436      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6437      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6438      * as if by the {@link MethodHandle#asType asType} conversion method.
6439      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6440      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6441      * <p>
6442      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6443      * <li>The loop handle's result type is the result type {@code V} of the body.
6444      * <li>The loop handle's parameter types are the types {@code (A...)},
6445      * from the external parameter list.
6446      * </ul>
6447      * <p>
6448      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6449      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6450      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6451      * <blockquote><pre>{@code
6452      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6453      * V init(A...);
6454      * V body(V,T,A...);
6455      * V iteratedLoop(A... a...) {
6456      *   Iterator<T> it = iterator(a...);
6457      *   V v = init(a...);
6458      *   while (it.hasNext()) {
6459      *     T t = it.next();
6460      *     v = body(v, t, a...);
6461      *   }
6462      *   return v;
6463      * }
6464      * }</pre></blockquote>
6465      *
6466      * @apiNote Example:
6467      * <blockquote><pre>{@code
6468      * // get an iterator from a list
6469      * static List<String> reverseStep(List<String> r, String e) {
6470      *   r.add(0, e);
6471      *   return r;
6472      * }
6473      * static List<String> newArrayList() { return new ArrayList<>(); }
6474      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6475      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6476      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6477      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6478      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6479      * }</pre></blockquote>
6480      *
6481      * @apiNote The implementation of this method can be expressed approximately as follows:
6482      * <blockquote><pre>{@code
6483      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6484      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6485      *     Class<?> returnType = body.type().returnType();
6486      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6487      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6488      *     MethodHandle retv = null, step = body, startIter = iterator;
6489      *     if (returnType != void.class) {
6490      *         // the simple thing first:  in (I V A...), drop the I to get V
6491      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6492      *         // body type signature (V T A...), internal loop types (I V A...)
6493      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6494      *     }
6495      *     if (startIter == null)  startIter = MH_getIter;
6496      *     MethodHandle[]
6497      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6498      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6499      *     return loop(iterVar, bodyClause);
6500      * }
6501      * }</pre></blockquote>
6502      *
6503      * @param iterator an optional handle to return the iterator to start the loop.
6504      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6505      *                 See above for other constraints.
6506      * @param init optional initializer, providing the initial value of the loop variable.
6507      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6508      * @param body body of the loop, which may not be {@code null}.
6509      *             It controls the loop parameters and result type in the standard case (see above for details).
6510      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6511      *             and may accept any number of additional types.
6512      *             See above for other constraints.
6513      *
6514      * @return a method handle embodying the iteration loop functionality.
6515      * @throws NullPointerException if the {@code body} handle is {@code null}.
6516      * @throws IllegalArgumentException if any argument violates the above requirements.
6517      *
6518      * @since 9
6519      */
6520     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6521         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6522         Class<?> returnType = body.type().returnType();
6523         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6524         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6525         MethodHandle startIter;
6526         MethodHandle nextVal;
6527         {
6528             MethodType iteratorType;
6529             if (iterator == null) {
6530                 // derive argument type from body, if available, else use Iterable
6531                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6532                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6533             } else {
6534                 // force return type to the internal iterator class
6535                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6536                 startIter = iterator;
6537             }
6538             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6539             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6540 
6541             // perform the asType transforms under an exception transformer, as per spec.:
6542             try {
6543                 startIter = startIter.asType(iteratorType);
6544                 nextVal = nextRaw.asType(nextValType);
6545             } catch (WrongMethodTypeException ex) {
6546                 throw new IllegalArgumentException(ex);
6547             }
6548         }
6549 
6550         MethodHandle retv = null, step = body;
6551         if (returnType != void.class) {
6552             // the simple thing first:  in (I V A...), drop the I to get V
6553             retv = dropArguments(identity(returnType), 0, Iterator.class);
6554             // body type signature (V T A...), internal loop types (I V A...)
6555             step = swapArguments(body, 0, 1);  // swap V <-> T
6556         }
6557 
6558         MethodHandle[]
6559             iterVar    = { startIter, null, hasNext, retv },
6560             bodyClause = { init, filterArgument(step, 0, nextVal) };
6561         return loop(iterVar, bodyClause);
6562     }
6563 
6564     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6565         Objects.requireNonNull(body);
6566         MethodType bodyType = body.type();
6567         Class<?> returnType = bodyType.returnType();
6568         List<Class<?>> internalParamList = bodyType.parameterList();
6569         // strip leading V value if present
6570         int vsize = (returnType == void.class ? 0 : 1);
6571         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6572             // argument list has no "V" => error
6573             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6574             throw misMatchedTypes("body function", bodyType, expected);
6575         } else if (internalParamList.size() <= vsize) {
6576             // missing T type => error
6577             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6578             throw misMatchedTypes("body function", bodyType, expected);
6579         }
6580         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6581         Class<?> iterableType = null;
6582         if (iterator != null) {
6583             // special case; if the body handle only declares V and T then
6584             // the external parameter list is obtained from iterator handle
6585             if (externalParamList.isEmpty()) {
6586                 externalParamList = iterator.type().parameterList();
6587             }
6588             MethodType itype = iterator.type();
6589             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6590                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6591             }
6592             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6593                 MethodType expected = methodType(itype.returnType(), externalParamList);
6594                 throw misMatchedTypes("iterator parameters", itype, expected);
6595             }
6596         } else {
6597             if (externalParamList.isEmpty()) {
6598                 // special case; if the iterator handle is null and the body handle
6599                 // only declares V and T then the external parameter list consists
6600                 // of Iterable
6601                 externalParamList = Arrays.asList(Iterable.class);
6602                 iterableType = Iterable.class;
6603             } else {
6604                 // special case; if the iterator handle is null and the external
6605                 // parameter list is not empty then the first parameter must be
6606                 // assignable to Iterable
6607                 iterableType = externalParamList.get(0);
6608                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6609                     throw newIllegalArgumentException(
6610                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6611                 }
6612             }
6613         }
6614         if (init != null) {
6615             MethodType initType = init.type();
6616             if (initType.returnType() != returnType ||
6617                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6618                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6619             }
6620         }
6621         return iterableType;  // help the caller a bit
6622     }
6623 
6624     /*non-public*/
6625     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6626         // there should be a better way to uncross my wires
6627         int arity = mh.type().parameterCount();
6628         int[] order = new int[arity];
6629         for (int k = 0; k < arity; k++)  order[k] = k;
6630         order[i] = j; order[j] = i;
6631         Class<?>[] types = mh.type().parameterArray();
6632         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6633         MethodType swapType = methodType(mh.type().returnType(), types);
6634         return permuteArguments(mh, swapType, order);
6635     }
6636 
6637     /**
6638      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6639      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6640      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6641      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6642      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6643      * {@code try-finally} handle.
6644      * <p>
6645      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6646      * The first is the exception thrown during the
6647      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6648      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6649      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6650      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6651      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6652      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6653      * <p>
6654      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6655      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6656      * two extra leading parameters:<ul>
6657      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6658      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6659      * the result from the execution of the {@code target} handle.
6660      * This parameter is not present if the {@code target} returns {@code void}.
6661      * </ul>
6662      * <p>
6663      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6664      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6665      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6666      * the cleanup.
6667      * <blockquote><pre>{@code
6668      * V target(A..., B...);
6669      * V cleanup(Throwable, V, A...);
6670      * V adapter(A... a, B... b) {
6671      *   V result = (zero value for V);
6672      *   Throwable throwable = null;
6673      *   try {
6674      *     result = target(a..., b...);
6675      *   } catch (Throwable t) {
6676      *     throwable = t;
6677      *     throw t;
6678      *   } finally {
6679      *     result = cleanup(throwable, result, a...);
6680      *   }
6681      *   return result;
6682      * }
6683      * }</pre></blockquote>
6684      * <p>
6685      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6686      * be modified by execution of the target, and so are passed unchanged
6687      * from the caller to the cleanup, if it is invoked.
6688      * <p>
6689      * The target and cleanup must return the same type, even if the cleanup
6690      * always throws.
6691      * To create such a throwing cleanup, compose the cleanup logic
6692      * with {@link #throwException throwException},
6693      * in order to create a method handle of the correct return type.
6694      * <p>
6695      * Note that {@code tryFinally} never converts exceptions into normal returns.
6696      * In rare cases where exceptions must be converted in that way, first wrap
6697      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6698      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6699      * <p>
6700      * It is recommended that the first parameter type of {@code cleanup} be
6701      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6702      * {@code cleanup} will always be invoked with whatever exception that
6703      * {@code target} throws.  Declaring a narrower type may result in a
6704      * {@code ClassCastException} being thrown by the {@code try-finally}
6705      * handle if the type of the exception thrown by {@code target} is not
6706      * assignable to the first parameter type of {@code cleanup}.  Note that
6707      * various exception types of {@code VirtualMachineError},
6708      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6709      * thrown by almost any kind of Java code, and a finally clause that
6710      * catches (say) only {@code IOException} would mask any of the others
6711      * behind a {@code ClassCastException}.
6712      *
6713      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6714      * @param cleanup the handle that is invoked in the finally block.
6715      *
6716      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6717      * @throws NullPointerException if any argument is null
6718      * @throws IllegalArgumentException if {@code cleanup} does not accept
6719      *          the required leading arguments, or if the method handle types do
6720      *          not match in their return types and their
6721      *          corresponding trailing parameters
6722      *
6723      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6724      * @since 9
6725      */
6726     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6727         List<Class<?>> targetParamTypes = target.type().parameterList();
6728         Class<?> rtype = target.type().returnType();
6729 
6730         tryFinallyChecks(target, cleanup);
6731 
6732         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6733         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6734         // target parameter list.
6735         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6736 
6737         // Ensure that the intrinsic type checks the instance thrown by the
6738         // target against the first parameter of cleanup
6739         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6740 
6741         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6742         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6743     }
6744 
6745     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6746         Class<?> rtype = target.type().returnType();
6747         if (rtype != cleanup.type().returnType()) {
6748             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6749         }
6750         MethodType cleanupType = cleanup.type();
6751         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6752             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6753         }
6754         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6755             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6756         }
6757         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6758         // target parameter list.
6759         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6760         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6761             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6762                     cleanup.type(), target.type());
6763         }
6764     }
6765 
6766 }