1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.JavaLangAccess;
  29 import jdk.internal.access.SharedSecrets;
  30 import jdk.internal.module.IllegalAccessLogger;
  31 import jdk.internal.org.objectweb.asm.ClassReader;
  32 import jdk.internal.reflect.CallerSensitive;
  33 import jdk.internal.reflect.Reflection;
  34 import jdk.internal.vm.annotation.ForceInline;
  35 import sun.invoke.util.ValueConversions;
  36 import sun.invoke.util.VerifyAccess;
  37 import sun.invoke.util.Wrapper;
  38 import sun.reflect.misc.ReflectUtil;
  39 import sun.security.util.SecurityConstants;
  40 
  41 import java.lang.invoke.LambdaForm.BasicType;
  42 import java.lang.reflect.Constructor;
  43 import java.lang.reflect.Field;
  44 import java.lang.reflect.Member;
  45 import java.lang.reflect.Method;
  46 import java.lang.reflect.Modifier;
  47 import java.lang.reflect.ReflectPermission;
  48 import java.nio.ByteOrder;
  49 import java.security.ProtectionDomain;
  50 import java.util.ArrayList;
  51 import java.util.Arrays;
  52 import java.util.BitSet;
  53 import java.util.Iterator;
  54 import java.util.List;
  55 import java.util.Objects;
  56 import java.util.Set;
  57 import java.util.concurrent.ConcurrentHashMap;
  58 import java.util.stream.Collectors;
  59 import java.util.stream.Stream;
  60 
  61 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  62 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  63 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  64 import static java.lang.invoke.MethodType.methodType;
  65 
  66 /**
  67  * This class consists exclusively of static methods that operate on or return
  68  * method handles. They fall into several categories:
  69  * <ul>
  70  * <li>Lookup methods which help create method handles for methods and fields.
  71  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  72  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  73  * </ul>
  74  * A lookup, combinator, or factory method will fail and throw an
  75  * {@code IllegalArgumentException} if the created method handle's type
  76  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  77  *
  78  * @author John Rose, JSR 292 EG
  79  * @since 1.7
  80  */
  81 public class MethodHandles {
  82 
  83     private MethodHandles() { }  // do not instantiate
  84 
  85     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  86 
  87     // See IMPL_LOOKUP below.
  88 
  89     //// Method handle creation from ordinary methods.
  90 
  91     /**
  92      * Returns a {@link Lookup lookup object} with
  93      * full capabilities to emulate all supported bytecode behaviors of the caller.
  94      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  95      * Factory methods on the lookup object can create
  96      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  97      * for any member that the caller has access to via bytecodes,
  98      * including protected and private fields and methods.
  99      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 100      * Do not store it in place where untrusted code can access it.
 101      * <p>
 102      * This method is caller sensitive, which means that it may return different
 103      * values to different callers.
 104      * @return a lookup object for the caller of this method, with private access
 105      */
 106     @CallerSensitive
 107     @ForceInline // to ensure Reflection.getCallerClass optimization
 108     public static Lookup lookup() {
 109         return new Lookup(Reflection.getCallerClass());
 110     }
 111 
 112     /**
 113      * This reflected$lookup method is the alternate implementation of
 114      * the lookup method when being invoked by reflection.
 115      */
 116     @CallerSensitive
 117     private static Lookup reflected$lookup() {
 118         Class<?> caller = Reflection.getCallerClass();
 119         if (caller.getClassLoader() == null) {
 120             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 121         }
 122         return new Lookup(caller);
 123     }
 124 
 125     /**
 126      * Returns a {@link Lookup lookup object} which is trusted minimally.
 127      * The lookup has the {@code UNCONDITIONAL} mode.
 128      * It can only be used to create method handles to public members of
 129      * public classes in packages that are exported unconditionally.
 130      * <p>
 131      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 132      * of this lookup object will be {@link java.lang.Object}.
 133      *
 134      * @apiNote The use of Object is conventional, and because the lookup modes are
 135      * limited, there is no special access provided to the internals of Object, its package
 136      * or its module.  This public lookup object or other lookup object with
 137      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 138      * is not used to determine the lookup context.
 139      *
 140      * <p style="font-size:smaller;">
 141      * <em>Discussion:</em>
 142      * The lookup class can be changed to any other class {@code C} using an expression of the form
 143      * {@link Lookup#in publicLookup().in(C.class)}.
 144      * A public lookup object is always subject to
 145      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 146      * Also, it cannot access
 147      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 148      * @return a lookup object which is trusted minimally
 149      *
 150      * @revised 9
 151      * @spec JPMS
 152      */
 153     public static Lookup publicLookup() {
 154         return Lookup.PUBLIC_LOOKUP;
 155     }
 156 
 157     /**
 158      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 159      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc"> private access</a>.
 160      * The returned lookup object can provide access to classes in modules and packages,
 161      * and members of those classes, outside the normal rules of Java access control,
 162      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 163      * <p>
 164      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 165      * allowed to do deep reflection on module {@code M2} and package of the target class
 166      * if and only if all of the following conditions are {@code true}:
 167      * <ul>
 168      * <li>If there is a security manager, its {@code checkPermission} method is
 169      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 170      * that must return normally.
 171      * <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 172      * (This is because otherwise there would be no way to ensure the original lookup
 173      * creator was a member of any particular module, and so any subsequent checks
 174      * for readability and qualified exports would become ineffective.)
 175      * <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 176      * (This is because an application intending to share intra-module access
 177      * using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 178      * deep reflection to its own module.)
 179      * <li>The target class must be a proper class, not a primitive or array class.
 180      * (Thus, {@code M2} is well-defined.)
 181      * <li>If the caller module {@code M1} differs from
 182      * the target module {@code M2} then both of the following must be true:
 183      *   <ul>
 184      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 185      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 186      *         containing the target class to at least {@code M1}.</li>
 187      *   </ul>
 188      * </ul>
 189      * <p>
 190      * If any of the above checks is violated, this method fails with an
 191      * exception.
 192      * <p>
 193      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 194      * returns a {@code Lookup} on {@code targetClass} with full capabilities and
 195      * {@code null} previous lookup class.
 196      * <p>
 197      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 198      * returns a {@code Lookup} on {@code targetClass} that records
 199      * the lookup class of the caller as the new previous lookup class and
 200      * drops {@code MODULE} access from the full capabilities mode.
 201      *
 202      * @param targetClass the target class
 203      * @param caller the caller lookup object
 204      * @return a lookup object for the target class, with private access
 205      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 206      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 207      * @throws SecurityException if denied by the security manager
 208      * @throws IllegalAccessException if any of the other access checks specified above fails
 209      * @since 9
 210      * @spec JPMS
 211      * @see Lookup#dropLookupMode
 212      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 213      */
 214     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 215         if (caller.allowedModes == Lookup.TRUSTED) {
 216             return new Lookup(targetClass);
 217         }
 218 
 219         SecurityManager sm = System.getSecurityManager();
 220         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 221         if (targetClass.isPrimitive())
 222             throw new IllegalArgumentException(targetClass + " is a primitive class");
 223         if (targetClass.isArray())
 224             throw new IllegalArgumentException(targetClass + " is an array class");
 225         // Ensure that we can reason accurately about private and module access.
 226         if ((caller.lookupModes() & Lookup.PRIVATE) == 0)
 227             throw new IllegalAccessException("caller does not have PRIVATE lookup mode");
 228         if ((caller.lookupModes() & Lookup.MODULE) == 0)
 229             throw new IllegalAccessException("caller does not have MODULE lookup mode");
 230 
 231         // previous lookup class is never set if it has MODULE access
 232         assert caller.previousLookupClass() == null;
 233 
 234         Class<?> callerClass = caller.lookupClass();
 235         Module callerModule = callerClass.getModule();  // M1
 236         Module targetModule = targetClass.getModule();  // M2
 237         Class<?> newPreviousClass = null;
 238         int newModes = Lookup.FULL_POWER_MODES;
 239 
 240         if (targetModule != callerModule) {
 241             if (!callerModule.canRead(targetModule))
 242                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 243             if (targetModule.isNamed()) {
 244                 String pn = targetClass.getPackageName();
 245                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 246                 if (!targetModule.isOpen(pn, callerModule))
 247                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 248             }
 249 
 250             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 251             newPreviousClass = callerClass;
 252             newModes &= ~Lookup.MODULE;
 253         }
 254 
 255         if (!callerModule.isNamed() && targetModule.isNamed()) {
 256             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 257             if (logger != null) {
 258                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 259             }
 260         }
 261         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 262     }
 263 
 264     /**
 265      * Performs an unchecked "crack" of a
 266      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 267      * The result is as if the user had obtained a lookup object capable enough
 268      * to crack the target method handle, called
 269      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 270      * on the target to obtain its symbolic reference, and then called
 271      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 272      * to resolve the symbolic reference to a member.
 273      * <p>
 274      * If there is a security manager, its {@code checkPermission} method
 275      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 276      * @param <T> the desired type of the result, either {@link Member} or a subtype
 277      * @param target a direct method handle to crack into symbolic reference components
 278      * @param expected a class object representing the desired result type {@code T}
 279      * @return a reference to the method, constructor, or field object
 280      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 281      * @throws    NullPointerException if either argument is {@code null}
 282      * @throws    IllegalArgumentException if the target is not a direct method handle
 283      * @throws    ClassCastException if the member is not of the expected type
 284      * @since 1.8
 285      */
 286     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 287         SecurityManager smgr = System.getSecurityManager();
 288         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 289         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 290         return lookup.revealDirect(target).reflectAs(expected, lookup);
 291     }
 292     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 293     private static final java.security.Permission ACCESS_PERMISSION =
 294         new ReflectPermission("suppressAccessChecks");
 295 
 296     /**
 297      * A <em>lookup object</em> is a factory for creating method handles,
 298      * when the creation requires access checking.
 299      * Method handles do not perform
 300      * access checks when they are called, but rather when they are created.
 301      * Therefore, method handle access
 302      * restrictions must be enforced when a method handle is created.
 303      * The caller class against which those restrictions are enforced
 304      * is known as the {@linkplain #lookupClass() lookup class}.
 305      * <p>
 306      * A lookup class which needs to create method handles will call
 307      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 308      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 309      * determined, and securely stored in the {@code Lookup} object.
 310      * The lookup class (or its delegates) may then use factory methods
 311      * on the {@code Lookup} object to create method handles for access-checked members.
 312      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 313      * even private ones.
 314      *
 315      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 316      * The factory methods on a {@code Lookup} object correspond to all major
 317      * use cases for methods, constructors, and fields.
 318      * Each method handle created by a factory method is the functional
 319      * equivalent of a particular <em>bytecode behavior</em>.
 320      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 321      * Here is a summary of the correspondence between these factory methods and
 322      * the behavior of the resulting method handles:
 323      * <table class="striped">
 324      * <caption style="display:none">lookup method behaviors</caption>
 325      * <thead>
 326      * <tr>
 327      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 328      *     <th scope="col">member</th>
 329      *     <th scope="col">bytecode behavior</th>
 330      * </tr>
 331      * </thead>
 332      * <tbody>
 333      * <tr>
 334      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 335      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 336      * </tr>
 337      * <tr>
 338      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 339      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 340      * </tr>
 341      * <tr>
 342      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 343      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 344      * </tr>
 345      * <tr>
 346      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 347      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 348      * </tr>
 349      * <tr>
 350      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 351      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 352      * </tr>
 353      * <tr>
 354      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 355      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 356      * </tr>
 357      * <tr>
 358      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 359      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 360      * </tr>
 361      * <tr>
 362      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 363      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 364      * </tr>
 365      * <tr>
 366      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 367      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 368      * </tr>
 369      * <tr>
 370      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 371      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 372      * </tr>
 373      * <tr>
 374      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 375      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 376      * </tr>
 377      * <tr>
 378      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 379      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 380      * </tr>
 381      * <tr>
 382      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 383      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 384      * </tr>
 385      * <tr>
 386      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 387      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 388      * </tr>
 389      * </tbody>
 390      * </table>
 391      *
 392      * Here, the type {@code C} is the class or interface being searched for a member,
 393      * documented as a parameter named {@code refc} in the lookup methods.
 394      * The method type {@code MT} is composed from the return type {@code T}
 395      * and the sequence of argument types {@code A*}.
 396      * The constructor also has a sequence of argument types {@code A*} and
 397      * is deemed to return the newly-created object of type {@code C}.
 398      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 399      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 400      * if it is present, it is always the leading argument to the method handle invocation.
 401      * (In the case of some {@code protected} members, {@code this} may be
 402      * restricted in type to the lookup class; see below.)
 403      * The name {@code arg} stands for all the other method handle arguments.
 404      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 405      * stands for a null reference if the accessed method or field is static,
 406      * and {@code this} otherwise.
 407      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 408      * for reflective objects corresponding to the given members declared in type {@code C}.
 409      * <p>
 410      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 411      * as if by {@code ldc CONSTANT_Class}.
 412      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 413      * <p>
 414      * In cases where the given member is of variable arity (i.e., a method or constructor)
 415      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 416      * In all other cases, the returned method handle will be of fixed arity.
 417      * <p style="font-size:smaller;">
 418      * <em>Discussion:</em>
 419      * The equivalence between looked-up method handles and underlying
 420      * class members and bytecode behaviors
 421      * can break down in a few ways:
 422      * <ul style="font-size:smaller;">
 423      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 424      * the lookup can still succeed, even when there is no equivalent
 425      * Java expression or bytecoded constant.
 426      * <li>Likewise, if {@code T} or {@code MT}
 427      * is not symbolically accessible from the lookup class's loader,
 428      * the lookup can still succeed.
 429      * For example, lookups for {@code MethodHandle.invokeExact} and
 430      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 431      * <li>If there is a security manager installed, it can forbid the lookup
 432      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 433      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 434      * constant is not subject to security manager checks.
 435      * <li>If the looked-up method has a
 436      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 437      * the method handle creation may fail with an
 438      * {@code IllegalArgumentException}, due to the method handle type having
 439      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 440      * </ul>
 441      *
 442      * <h2><a id="access"></a>Access checking</h2>
 443      * Access checks are applied in the factory methods of {@code Lookup},
 444      * when a method handle is created.
 445      * This is a key difference from the Core Reflection API, since
 446      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 447      * performs access checking against every caller, on every call.
 448      * <p>
 449      * All access checks start from a {@code Lookup} object, which
 450      * compares its recorded lookup class against all requests to
 451      * create method handles.
 452      * A single {@code Lookup} object can be used to create any number
 453      * of access-checked method handles, all checked against a single
 454      * lookup class.
 455      * <p>
 456      * A {@code Lookup} object can be shared with other trusted code,
 457      * such as a metaobject protocol.
 458      * A shared {@code Lookup} object delegates the capability
 459      * to create method handles on private members of the lookup class.
 460      * Even if privileged code uses the {@code Lookup} object,
 461      * the access checking is confined to the privileges of the
 462      * original lookup class.
 463      * <p>
 464      * A lookup can fail, because
 465      * the containing class is not accessible to the lookup class, or
 466      * because the desired class member is missing, or because the
 467      * desired class member is not accessible to the lookup class, or
 468      * because the lookup object is not trusted enough to access the member.
 469      * In the case of a field setter function on a {@code final} field,
 470      * finality enforcement is treated as a kind of access control,
 471      * and the lookup will fail, except in special cases of
 472      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 473      * In any of these cases, a {@code ReflectiveOperationException} will be
 474      * thrown from the attempted lookup.  The exact class will be one of
 475      * the following:
 476      * <ul>
 477      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 478      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 479      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 480      * </ul>
 481      * <p>
 482      * In general, the conditions under which a method handle may be
 483      * looked up for a method {@code M} are no more restrictive than the conditions
 484      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 485      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 486      * a method handle lookup will generally raise a corresponding
 487      * checked exception, such as {@code NoSuchMethodException}.
 488      * And the effect of invoking the method handle resulting from the lookup
 489      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 490      * to executing the compiled, verified, and resolved call to {@code M}.
 491      * The same point is true of fields and constructors.
 492      * <p style="font-size:smaller;">
 493      * <em>Discussion:</em>
 494      * Access checks only apply to named and reflected methods,
 495      * constructors, and fields.
 496      * Other method handle creation methods, such as
 497      * {@link MethodHandle#asType MethodHandle.asType},
 498      * do not require any access checks, and are used
 499      * independently of any {@code Lookup} object.
 500      * <p>
 501      * If the desired member is {@code protected}, the usual JVM rules apply,
 502      * including the requirement that the lookup class must either be in the
 503      * same package as the desired member, or must inherit that member.
 504      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 505      * In addition, if the desired member is a non-static field or method
 506      * in a different package, the resulting method handle may only be applied
 507      * to objects of the lookup class or one of its subclasses.
 508      * This requirement is enforced by narrowing the type of the leading
 509      * {@code this} parameter from {@code C}
 510      * (which will necessarily be a superclass of the lookup class)
 511      * to the lookup class itself.
 512      * <p>
 513      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 514      * that the receiver argument must match both the resolved method <em>and</em>
 515      * the current class.  Again, this requirement is enforced by narrowing the
 516      * type of the leading parameter to the resulting method handle.
 517      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 518      * <p>
 519      * The JVM represents constructors and static initializer blocks as internal methods
 520      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 521      * The internal syntax of invocation instructions allows them to refer to such internal
 522      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 523      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 524      * <p>
 525      * If the relationship between nested types is expressed directly through the
 526      * {@code NestHost} and {@code NestMembers} attributes
 527      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 528      * then the associated {@code Lookup} object provides direct access to
 529      * the lookup class and all of its nestmates
 530      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 531      * Otherwise, access between nested classes is obtained by the Java compiler creating
 532      * a wrapper method to access a private method of another class in the same nest.
 533      * For example, a nested class {@code C.D}
 534      * can access private members within other related classes such as
 535      * {@code C}, {@code C.D.E}, or {@code C.B},
 536      * but the Java compiler may need to generate wrapper methods in
 537      * those related classes.  In such cases, a {@code Lookup} object on
 538      * {@code C.E} would be unable to access those private members.
 539      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 540      * which can transform a lookup on {@code C.E} into one on any of those other
 541      * classes, without special elevation of privilege.
 542      * <p>
 543      * The accesses permitted to a given lookup object may be limited,
 544      * according to its set of {@link #lookupModes lookupModes},
 545      * to a subset of members normally accessible to the lookup class.
 546      * For example, the {@link MethodHandles#publicLookup publicLookup}
 547      * method produces a lookup object which is only allowed to access
 548      * public members in public classes of exported packages.
 549      * The caller sensitive method {@link MethodHandles#lookup lookup}
 550      * produces a lookup object with full capabilities relative to
 551      * its caller class, to emulate all supported bytecode behaviors.
 552      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 553      * with fewer access modes than the original lookup object.
 554      *
 555      * <p style="font-size:smaller;">
 556      * <a id="privacc"></a>
 557      * <em>Discussion of private access:</em>
 558      * We say that a lookup has <em>private access</em>
 559      * if its {@linkplain #lookupModes lookup modes}
 560      * include the possibility of accessing {@code private} members
 561      * (which includes the private members of nestmates).
 562      * As documented in the relevant methods elsewhere,
 563      * only lookups with private access possess the following capabilities:
 564      * <ul style="font-size:smaller;">
 565      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 566      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 567      *     such as {@code Class.forName}
 568      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 569      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 570      *     for classes accessible to the lookup class
 571      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 572      *     within the same package member
 573      * </ul>
 574      * <p style="font-size:smaller;">
 575      * Each of these permissions is a consequence of the fact that a lookup object
 576      * with private access can be securely traced back to an originating class,
 577      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 578      * can be reliably determined and emulated by method handles.
 579      *
 580      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 581      * When a lookup class in one module {@code M1} accesses a class in another module
 582      * {@code M2}, extra access checking is performed beyond the access mode bits.
 583      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 584      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 585      * and when the type is in a package of {@code M2} that is exported to
 586      * at least {@code M1}.
 587      * <p>
 588      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 589      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 590      * MethodHandles.privateLookupIn} methods.
 591      * Teleporting across modules will always record the original lookup class as
 592      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 593      * and drops {@link Lookup#MODULE MODULE} access.
 594      * If the target class is in the same module as the lookup class {@code C},
 595      * then the target class becomes the new lookup class
 596      * and there is no change to the previous lookup class.
 597      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 598      * {@code C} becomes the new previous lookup class
 599      * and the target class becomes the new lookup class.
 600      * In that case, if there was already a previous lookup class in {@code M0},
 601      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 602      * drops all privileges.
 603      * For example,
 604      * <blockquote><pre>
 605      * {@code
 606      * Lookup lookup = MethodHandles.lookup();   // in class C
 607      * Lookup lookup2 = lookup.in(D.class);
 608      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 609      * }</pre></blockquote>
 610      * <p>
 611      * The {@link #lookup()} factory method produces a {@code Lookup} object
 612      * with {@code null} previous lookup class.
 613      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 614      * to class {@code D} without elevation of privileges.
 615      * If {@code C} and {@code D} are in the same module,
 616      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 617      * same previous lookup class as the original {@code lookup}, or
 618      * {@code null} if not present.
 619      * <p>
 620      * When a {@code Lookup} teleports from a class
 621      * in one nest to another nest, {@code PRIVATE} access is dropped.
 622      * When a {@code Lookup} teleports from a class in one package to
 623      * another package, {@code PACKAGE} access is dropped.
 624      * When a {@code Lookup} teleports from a class in one module to another module,
 625      * {@code MODULE} access is dropped.
 626      * Teleporting across modules drops the ability to access non-exported classes
 627      * in both the module of the new lookup class and the module of the old lookup class
 628      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 629      * A {@code Lookup} can teleport back and forth to a class in the module of
 630      * the lookup class and the module of the previous class lookup.
 631      * Teleporting across modules can only decrease access but cannot increase it.
 632      * Teleporting to some third module drops all accesses.
 633      * <p>
 634      * In the above example, if {@code C} and {@code D} are in different modules,
 635      * {@code lookup2} records {@code D} as its lookup class and
 636      * {@code C} as its previous lookup class and {@code lookup2} has only
 637      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 638      * {@code C}'s module and {@code D}'s module.
 639      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 640      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 641      * class {@code D} is recorded as its previous lookup class.
 642      * <p>
 643      * Teleporting across modules restricts access to the public types that
 644      * both the lookup class and the previous lookup class can equally access
 645      * (see below).
 646      * <p>
 647      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 648      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 649      * and create a new {@code Lookup} with <a href="#privcc">private access</a>
 650      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 651      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 652      * to call {@code privateLookupIn}.
 653      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 654      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 655      * produces a new {@code Lookup} on {@code T} with full capabilities.
 656      * A {@code lookup} on {@code C} is also allowed
 657      * to do deep reflection on {@code T} in another module {@code M2} if
 658      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 659      * the package containing {@code T} to at least {@code M1}.
 660      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 661      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 662      * The resulting {@code Lookup} can be used to do member lookup or teleport
 663      * to another lookup class by calling {@link #in Lookup::in}.  But
 664      * it cannot be used to obtain another private {@code Lookup} by calling
 665      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 666      * because it has no {@code MODULE} access.
 667      *
 668      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 669      *
 670      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 671      * allows cross-module access. The access checking is performed with respect
 672      * to both the lookup class and the previous lookup class if present.
 673      * <p>
 674      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 675      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 676      * exported unconditionally}.
 677      * <p>
 678      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 679      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 680      * that are readable to {@code M1} and the type is in a package that is exported
 681      * at least to {@code M1}.
 682      * <p>
 683      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 684      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 685      * the intersection of all public types that are accessible to {@code M1}
 686      * with all public types that are accessible to {@code M0}. {@code M0}
 687      * reads {@code M1} and hence the set of accessible types includes:
 688      *
 689      * <table class="striped">
 690      * <caption style="display:none">
 691      * Public types in the following packages are accessible to the
 692      * lookup class and the previous lookup class.
 693      * </caption>
 694      * <thead>
 695      * <tr>
 696      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 697      * </tr>
 698      * </thead>
 699      * <tbody>
 700      * <tr>
 701      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 702      * </tr>
 703      * <tr>
 704      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 705      * </tr>
 706      * <tr>
 707      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 708      * if both {@code M0} and {@code M1} read {@code M2}</th>
 709      * </tr>
 710      * <tr>
 711      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 712      * </tr>
 713      * <tr>
 714      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 715      * if {@code M1} reads {@code M0}</th>
 716      * </tr>
 717      * <tr>
 718      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 719      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 720      * </tr>
 721      * </tbody>
 722      * </table>
 723      *
 724      * <h2><a id="access-modes"></a>Access modes</h2>
 725      *
 726      * The table below shows the access modes of a {@code Lookup} produced by
 727      * any of the following factory or transformation methods:
 728      * <ul>
 729      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 730      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 731      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 732      * <li>{@link Lookup#in}</li>
 733      * <li>{@link Lookup#dropLookupMode(int)}</li>
 734      * </ul>
 735      *
 736      * <table class="striped">
 737      * <caption style="display:none">
 738      * Access mode summary
 739      * </caption>
 740      * <thead>
 741      * <tr>
 742      * <th scope="col">Lookup object</th>
 743      * <th style="text-align:center">protected</th>
 744      * <th style="text-align:center">private</th>
 745      * <th style="text-align:center">package</th>
 746      * <th style="text-align:center">module</th>
 747      * <th style="text-align:center">public</th>
 748      * </tr>
 749      * </thead>
 750      * <tbody>
 751      * <tr>
 752      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 753      * <td style="text-align:center">PRO</td>
 754      * <td style="text-align:center">PRI</td>
 755      * <td style="text-align:center">PAC</td>
 756      * <td style="text-align:center">MOD</td>
 757      * <td style="text-align:center">1R</td>
 758      * </tr>
 759      * <tr>
 760      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 761      * <td></td>
 762      * <td></td>
 763      * <td style="text-align:center">PAC</td>
 764      * <td style="text-align:center">MOD</td>
 765      * <td style="text-align:center">1R</td>
 766      * </tr>
 767      * <tr>
 768      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 769      * <td></td>
 770      * <td></td>
 771      * <td></td>
 772      * <td style="text-align:center">MOD</td>
 773      * <td style="text-align:center">1R</td>
 774      * </tr>
 775      * <tr>
 776      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 777      * <td></td>
 778      * <td></td>
 779      * <td></td>
 780      * <td></td>
 781      * <td style="text-align:center">2R</td>
 782      * </tr>
 783      * <tr>
 784      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 785      * <td></td>
 786      * <td></td>
 787      * <td></td>
 788      * <td></td>
 789      * <td style="text-align:center">2R</td>
 790      * </tr>
 791      * <tr>
 792      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 793      * <td style="text-align:center">PRO</td>
 794      * <td style="text-align:center">PRI</td>
 795      * <td style="text-align:center">PAC</td>
 796      * <td style="text-align:center">MOD</td>
 797      * <td style="text-align:center">1R</td>
 798      * </tr>
 799      * <tr>
 800      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 801      * <td style="text-align:center">PRO</td>
 802      * <td style="text-align:center">PRI</td>
 803      * <td style="text-align:center">PAC</td>
 804      * <td style="text-align:center">MOD</td>
 805      * <td style="text-align:center">1R</td>
 806      * </tr>
 807      * <tr>
 808      * <td>{@code PRI1.in(C1)} same package</td>
 809      * <td></td>
 810      * <td></td>
 811      * <td style="text-align:center">PAC</td>
 812      * <td style="text-align:center">MOD</td>
 813      * <td style="text-align:center">1R</td>
 814      * </tr>
 815      * <tr>
 816      * <td>{@code PRI1.in(C1)} different package</td>
 817      * <td></td>
 818      * <td></td>
 819      * <td></td>
 820      * <td style="text-align:center">MOD</td>
 821      * <td style="text-align:center">1R</td>
 822      * </tr>
 823      * <tr>
 824      * <td>{@code PRI1.in(D)} different module</td>
 825      * <td></td>
 826      * <td></td>
 827      * <td></td>
 828      * <td></td>
 829      * <td style="text-align:center">2R</td>
 830      * </tr>
 831      * <tr>
 832      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 833      * <td></td>
 834      * <td style="text-align:center">PRI</td>
 835      * <td style="text-align:center">PAC</td>
 836      * <td style="text-align:center">MOD</td>
 837      * <td style="text-align:center">1R</td>
 838      * </tr>
 839      * <tr>
 840      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 841      * <td></td>
 842      * <td></td>
 843      * <td style="text-align:center">PAC</td>
 844      * <td style="text-align:center">MOD</td>
 845      * <td style="text-align:center">1R</td>
 846      * </tr>
 847      * <tr>
 848      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 849      * <td></td>
 850      * <td></td>
 851      * <td></td>
 852      * <td style="text-align:center">MOD</td>
 853      * <td style="text-align:center">1R</td>
 854      * </tr>
 855      * <tr>
 856      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 857      * <td></td>
 858      * <td></td>
 859      * <td></td>
 860      * <td></td>
 861      * <td style="text-align:center">1R</td>
 862      * </tr>
 863      * <tr>
 864      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 865      * <td></td>
 866      * <td></td>
 867      * <td></td>
 868      * <td></td>
 869      * <td style="text-align:center">none</td>
 870      * <tr>
 871      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 872      * <td style="text-align:center">PRO</td>
 873      * <td style="text-align:center">PRI</td>
 874      * <td style="text-align:center">PAC</td>
 875      * <td></td>
 876      * <td style="text-align:center">2R</td>
 877      * </tr>
 878      * <tr>
 879      * <td>{@code privateLookupIn(D,PRI1)}</td>
 880      * <td style="text-align:center">PRO</td>
 881      * <td style="text-align:center">PRI</td>
 882      * <td style="text-align:center">PAC</td>
 883      * <td></td>
 884      * <td style="text-align:center">2R</td>
 885      * </tr>
 886      * <tr>
 887      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 888      * <td></td>
 889      * <td></td>
 890      * <td></td>
 891      * <td></td>
 892      * <td style="text-align:center">IAE</td>
 893      * </tr>
 894      * <tr>
 895      * <td>{@code PRI2.in(D2)} same package</td>
 896      * <td></td>
 897      * <td></td>
 898      * <td style="text-align:center">PAC</td>
 899      * <td></td>
 900      * <td style="text-align:center">2R</td>
 901      * </tr>
 902      * <tr>
 903      * <td>{@code PRI2.in(D2)} different package</td>
 904      * <td></td>
 905      * <td></td>
 906      * <td></td>
 907      * <td></td>
 908      * <td style="text-align:center">2R</td>
 909      * </tr>
 910      * <tr>
 911      * <td>{@code PRI2.in(C1)} hop back to module</td>
 912      * <td></td>
 913      * <td></td>
 914      * <td></td>
 915      * <td></td>
 916      * <td style="text-align:center">2R</td>
 917      * </tr>
 918      * <tr>
 919      * <td>{@code PRI2.in(E)} hop to third module</td>
 920      * <td></td>
 921      * <td></td>
 922      * <td></td>
 923      * <td></td>
 924      * <td style="text-align:center">none</td>
 925      * </tr>
 926      * <tr>
 927      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 928      * <td></td>
 929      * <td style="text-align:center">PRI</td>
 930      * <td style="text-align:center">PAC</td>
 931      * <td></td>
 932      * <td style="text-align:center">2R</td>
 933      * </tr>
 934      * <tr>
 935      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 936      * <td></td>
 937      * <td></td>
 938      * <td style="text-align:center">PAC</td>
 939      * <td></td>
 940      * <td style="text-align:center">2R</td>
 941      * </tr>
 942      * <tr>
 943      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 944      * <td></td>
 945      * <td></td>
 946      * <td></td>
 947      * <td></td>
 948      * <td style="text-align:center">2R</td>
 949      * </tr>
 950      * <tr>
 951      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 952      * <td></td>
 953      * <td></td>
 954      * <td></td>
 955      * <td></td>
 956      * <td style="text-align:center">2R</td>
 957      * </tr>
 958      * <tr>
 959      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 960      * <td></td>
 961      * <td></td>
 962      * <td></td>
 963      * <td></td>
 964      * <td style="text-align:center">none</td>
 965      * </tr>
 966      * <tr>
 967      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 968      * <td></td>
 969      * <td style="text-align:center">PRI</td>
 970      * <td style="text-align:center">PAC</td>
 971      * <td style="text-align:center">MOD</td>
 972      * <td style="text-align:center">1R</td>
 973      * </tr>
 974      * <tr>
 975      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 976      * <td></td>
 977      * <td></td>
 978      * <td style="text-align:center">PAC</td>
 979      * <td style="text-align:center">MOD</td>
 980      * <td style="text-align:center">1R</td>
 981      * </tr>
 982      * <tr>
 983      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 984      * <td></td>
 985      * <td></td>
 986      * <td></td>
 987      * <td style="text-align:center">MOD</td>
 988      * <td style="text-align:center">1R</td>
 989      * </tr>
 990      * <tr>
 991      * <td>{@code CL.dropLookupMode(MODULE)}</td>
 992      * <td></td>
 993      * <td></td>
 994      * <td></td>
 995      * <td></td>
 996      * <td style="text-align:center">1R</td>
 997      * </tr>
 998      * <tr>
 999      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
1000      * <td></td>
1001      * <td></td>
1002      * <td></td>
1003      * <td></td>
1004      * <td style="text-align:center">none</td>
1005      * </tr>
1006      * <tr>
1007      * <td>{@code PUB = publicLookup()}</td>
1008      * <td></td>
1009      * <td></td>
1010      * <td></td>
1011      * <td></td>
1012      * <td style="text-align:center">U</td>
1013      * </tr>
1014      * <tr>
1015      * <td>{@code PUB.in(D)} different module</td>
1016      * <td></td>
1017      * <td></td>
1018      * <td></td>
1019      * <td></td>
1020      * <td style="text-align:center">U</td>
1021      * </tr>
1022      * <tr>
1023      * <td>{@code PUB.in(D).in(E)} third module</td>
1024      * <td></td>
1025      * <td></td>
1026      * <td></td>
1027      * <td></td>
1028      * <td style="text-align:center">U</td>
1029      * </tr>
1030      * <tr>
1031      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1032      * <td></td>
1033      * <td></td>
1034      * <td></td>
1035      * <td></td>
1036      * <td style="text-align:center">none</td>
1037      * </tr>
1038      * <tr>
1039      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1040      * <td></td>
1041      * <td></td>
1042      * <td></td>
1043      * <td></td>
1044      * <td style="text-align:center">IAE</td>
1045      * </tr>
1046      * <tr>
1047      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1048      * <td></td>
1049      * <td></td>
1050      * <td></td>
1051      * <td></td>
1052      * <td style="text-align:center">none</td>
1053      * </tr>
1054      * </tbody>
1055      * </table>
1056      *
1057      * <p>
1058      * Notes:
1059      * <ul>
1060      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1061      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1062      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1063      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1064      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1065      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1066      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1067      *     {@code MOD} indicates {@link #MODULE} bit set,
1068      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1069      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1070      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1071      * <li>Public access comes in three kinds:
1072      * <ul>
1073      * <li>unconditional ({@code U}): the lookup assumes readability.
1074      *     The lookup has {@code null} previous lookup class.
1075      * <li>one-module-reads ({@code 1R}): the module access checking is
1076      *     performed with respect to the lookup class.  The lookup has {@code null}
1077      *     previous lookup class.
1078      * <li>two-module-reads ({@code 2R}): the module access checking is
1079      *     performed with respect to the lookup class and the previous lookup class.
1080      *     The lookup has a non-null previous lookup class which is in a
1081      *     different module from the current lookup class.
1082      * </ul>
1083      * <li>Any attempt to reach a third module loses all access.</li>
1084      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1085      * all access modes are dropped.</li>
1086      * </ul>
1087      *
1088      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1089      * Although bytecode instructions can only refer to classes in
1090      * a related class loader, this API can search for methods in any
1091      * class, as long as a reference to its {@code Class} object is
1092      * available.  Such cross-loader references are also possible with the
1093      * Core Reflection API, and are impossible to bytecode instructions
1094      * such as {@code invokestatic} or {@code getfield}.
1095      * There is a {@linkplain java.lang.SecurityManager security manager API}
1096      * to allow applications to check such cross-loader references.
1097      * These checks apply to both the {@code MethodHandles.Lookup} API
1098      * and the Core Reflection API
1099      * (as found on {@link java.lang.Class Class}).
1100      * <p>
1101      * If a security manager is present, member and class lookups are
1102      * subject to additional checks.
1103      * From one to three calls are made to the security manager.
1104      * Any of these calls can refuse access by throwing a
1105      * {@link java.lang.SecurityException SecurityException}.
1106      * Define {@code smgr} as the security manager,
1107      * {@code lookc} as the lookup class of the current lookup object,
1108      * {@code refc} as the containing class in which the member
1109      * is being sought, and {@code defc} as the class in which the
1110      * member is actually defined.
1111      * (If a class or other type is being accessed,
1112      * the {@code refc} and {@code defc} values are the class itself.)
1113      * The value {@code lookc} is defined as <em>not present</em>
1114      * if the current lookup object does not have
1115      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1116      * The calls are made according to the following rules:
1117      * <ul>
1118      * <li><b>Step 1:</b>
1119      *     If {@code lookc} is not present, or if its class loader is not
1120      *     the same as or an ancestor of the class loader of {@code refc},
1121      *     then {@link SecurityManager#checkPackageAccess
1122      *     smgr.checkPackageAccess(refcPkg)} is called,
1123      *     where {@code refcPkg} is the package of {@code refc}.
1124      * <li><b>Step 2a:</b>
1125      *     If the retrieved member is not public and
1126      *     {@code lookc} is not present, then
1127      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1128      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1129      * <li><b>Step 2b:</b>
1130      *     If the retrieved class has a {@code null} class loader,
1131      *     and {@code lookc} is not present, then
1132      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1133      *     with {@code RuntimePermission("getClassLoader")} is called.
1134      * <li><b>Step 3:</b>
1135      *     If the retrieved member is not public,
1136      *     and if {@code lookc} is not present,
1137      *     and if {@code defc} and {@code refc} are different,
1138      *     then {@link SecurityManager#checkPackageAccess
1139      *     smgr.checkPackageAccess(defcPkg)} is called,
1140      *     where {@code defcPkg} is the package of {@code defc}.
1141      * </ul>
1142      * Security checks are performed after other access checks have passed.
1143      * Therefore, the above rules presuppose a member or class that is public,
1144      * or else that is being accessed from a lookup class that has
1145      * rights to access the member or class.
1146      * <p>
1147      * If a security manager is present and the current lookup object does not have
1148      * <a href="MethodHandles.Lookup.html#privacc">private access</a>, then
1149      * {@link #defineClass(byte[]) defineClass} and
1150      * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass}
1151      * call {@link SecurityManager#checkPermission smgr.checkPermission}
1152      * with {@code RuntimePermission("defineClass")} is called.
1153      *
1154      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1155      * A small number of Java methods have a special property called caller sensitivity.
1156      * A <em>caller-sensitive</em> method can behave differently depending on the
1157      * identity of its immediate caller.
1158      * <p>
1159      * If a method handle for a caller-sensitive method is requested,
1160      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1161      * but they take account of the lookup class in a special way.
1162      * The resulting method handle behaves as if it were called
1163      * from an instruction contained in the lookup class,
1164      * so that the caller-sensitive method detects the lookup class.
1165      * (By contrast, the invoker of the method handle is disregarded.)
1166      * Thus, in the case of caller-sensitive methods,
1167      * different lookup classes may give rise to
1168      * differently behaving method handles.
1169      * <p>
1170      * In cases where the lookup object is
1171      * {@link MethodHandles#publicLookup() publicLookup()},
1172      * or some other lookup object without
1173      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
1174      * the lookup class is disregarded.
1175      * In such cases, no caller-sensitive method handle can be created,
1176      * access is forbidden, and the lookup fails with an
1177      * {@code IllegalAccessException}.
1178      * <p style="font-size:smaller;">
1179      * <em>Discussion:</em>
1180      * For example, the caller-sensitive method
1181      * {@link java.lang.Class#forName(String) Class.forName(x)}
1182      * can return varying classes or throw varying exceptions,
1183      * depending on the class loader of the class that calls it.
1184      * A public lookup of {@code Class.forName} will fail, because
1185      * there is no reasonable way to determine its bytecode behavior.
1186      * <p style="font-size:smaller;">
1187      * If an application caches method handles for broad sharing,
1188      * it should use {@code publicLookup()} to create them.
1189      * If there is a lookup of {@code Class.forName}, it will fail,
1190      * and the application must take appropriate action in that case.
1191      * It may be that a later lookup, perhaps during the invocation of a
1192      * bootstrap method, can incorporate the specific identity
1193      * of the caller, making the method accessible.
1194      * <p style="font-size:smaller;">
1195      * The function {@code MethodHandles.lookup} is caller sensitive
1196      * so that there can be a secure foundation for lookups.
1197      * Nearly all other methods in the JSR 292 API rely on lookup
1198      * objects to check access requests.
1199      *
1200      * @revised 9
1201      */
1202     public static final
1203     class Lookup {
1204         /** The class on behalf of whom the lookup is being performed. */
1205         private final Class<?> lookupClass;
1206 
1207         /** previous lookup class */
1208         private final Class<?> prevLookupClass;
1209 
1210         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1211         private final int allowedModes;
1212 
1213         static {
1214             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1215         }
1216 
1217         /** A single-bit mask representing {@code public} access,
1218          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1219          *  The value, {@code 0x01}, happens to be the same as the value of the
1220          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1221          *  <p>
1222          *  A {@code Lookup} with this lookup mode performs cross-module access check
1223          *  with respect to the {@linkplain #lookupClass() lookup class} and
1224          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1225          */
1226         public static final int PUBLIC = Modifier.PUBLIC;
1227 
1228         /** A single-bit mask representing {@code private} access,
1229          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1230          *  The value, {@code 0x02}, happens to be the same as the value of the
1231          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1232          */
1233         public static final int PRIVATE = Modifier.PRIVATE;
1234 
1235         /** A single-bit mask representing {@code protected} access,
1236          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1237          *  The value, {@code 0x04}, happens to be the same as the value of the
1238          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1239          */
1240         public static final int PROTECTED = Modifier.PROTECTED;
1241 
1242         /** A single-bit mask representing {@code package} access (default access),
1243          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1244          *  The value is {@code 0x08}, which does not correspond meaningfully to
1245          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1246          */
1247         public static final int PACKAGE = Modifier.STATIC;
1248 
1249         /** A single-bit mask representing {@code module} access,
1250          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1251          *  The value is {@code 0x10}, which does not correspond meaningfully to
1252          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1253          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1254          *  with this lookup mode can access all public types in the module of the
1255          *  lookup class and public types in packages exported by other modules
1256          *  to the module of the lookup class.
1257          *  <p>
1258          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1259          *  previous lookup class} is always {@code null}.
1260          *
1261          *  @since 9
1262          *  @spec JPMS
1263          */
1264         public static final int MODULE = PACKAGE << 1;
1265 
1266         /** A single-bit mask representing {@code unconditional} access
1267          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1268          *  The value is {@code 0x20}, which does not correspond meaningfully to
1269          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1270          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1271          *  java.lang.Module#canRead(java.lang.Module) readability}.
1272          *  This lookup mode can access all public members of public types
1273          *  of all modules when the type is in a package that is {@link
1274          *  java.lang.Module#isExported(String) exported unconditionally}.
1275          *
1276          *  <p>
1277          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1278          *  previous lookup class} is always {@code null}.
1279          *
1280          *  @since 9
1281          *  @spec JPMS
1282          *  @see #publicLookup()
1283          */
1284         public static final int UNCONDITIONAL = PACKAGE << 2;
1285 
1286         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1287         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1288         private static final int TRUSTED   = -1;
1289 
1290         /*
1291          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1292          * Adjust 0 => PACKAGE
1293          */
1294         private static int fixmods(int mods) {
1295             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1296             if (Modifier.isPublic(mods))
1297                 mods |= UNCONDITIONAL;
1298             return (mods != 0) ? mods : PACKAGE;
1299         }
1300 
1301         /** Tells which class is performing the lookup.  It is this class against
1302          *  which checks are performed for visibility and access permissions.
1303          *  <p>
1304          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1305          *  access checks are performed against both the lookup class and the previous lookup class.
1306          *  <p>
1307          *  The class implies a maximum level of access permission,
1308          *  but the permissions may be additionally limited by the bitmask
1309          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1310          *  can be accessed.
1311          *  @return the lookup class, on behalf of which this lookup object finds members
1312          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1313          */
1314         public Class<?> lookupClass() {
1315             return lookupClass;
1316         }
1317 
1318         /** Reports a lookup class in another module that this lookup object
1319          * was previously teleported from, or {@code null}.
1320          * <p>
1321          * A {@code Lookup} object produced by the factory methods, such as the
1322          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1323          * has {@code null} previous lookup class.
1324          * A {@code Lookup} object has a non-null previous lookup class
1325          * when this lookup was teleported from an old lookup class
1326          * in one module to a new lookup class in another module.
1327          *
1328          * @return the lookup class in another module that this lookup object was
1329          *         previously teleported from, or {@code null}
1330          * @since 14
1331          * @see #in(Class)
1332          * @see MethodHandles#privateLookupIn(Class, Lookup)
1333          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1334          */
1335         public Class<?> previousLookupClass() {
1336             return prevLookupClass;
1337         }
1338 
1339         // This is just for calling out to MethodHandleImpl.
1340         private Class<?> lookupClassOrNull() {
1341             if (allowedModes == TRUSTED) {
1342                 return null;
1343             }
1344             if (allowedModes == UNCONDITIONAL) {
1345                 // use Object as the caller to pass to VM doing resolution
1346                 return Object.class;
1347             }
1348             return lookupClass;
1349         }
1350 
1351         /** Tells which access-protection classes of members this lookup object can produce.
1352          *  The result is a bit-mask of the bits
1353          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1354          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1355          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1356          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1357          *  {@linkplain #MODULE MODULE (0x10)},
1358          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1359          *  <p>
1360          *  A freshly-created lookup object
1361          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1362          *  all possible bits set, except {@code UNCONDITIONAL}.
1363          *  A lookup object on a new lookup class
1364          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1365          *  may have some mode bits set to zero.
1366          *  Mode bits can also be
1367          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1368          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1369          *  The purpose of this is to restrict access via the new lookup object,
1370          *  so that it can access only names which can be reached by the original
1371          *  lookup object, and also by the new lookup class.
1372          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1373          *  @see #in
1374          *  @see #dropLookupMode
1375          *
1376          *  @revised 9
1377          *  @spec JPMS
1378          */
1379         public int lookupModes() {
1380             return allowedModes & ALL_MODES;
1381         }
1382 
1383         /** Embody the current class (the lookupClass) as a lookup class
1384          * for method handle creation.
1385          * Must be called by from a method in this package,
1386          * which in turn is called by a method not in this package.
1387          */
1388         Lookup(Class<?> lookupClass) {
1389             this(lookupClass, null, FULL_POWER_MODES);
1390         }
1391 
1392         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1393             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1394                     && prevLookupClass.getModule() != lookupClass.getModule());
1395             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1396             this.lookupClass = lookupClass;
1397             this.prevLookupClass = prevLookupClass;
1398             this.allowedModes = allowedModes;
1399             assert !lookupClass.isPrimitive() && !lookupClass.isArray();
1400         }
1401 
1402         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1403             // make sure we haven't accidentally picked up a privileged class:
1404             checkUnprivilegedlookupClass(lookupClass);
1405             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1406         }
1407 
1408         /**
1409          * Creates a lookup on the specified new lookup class.
1410          * The resulting object will report the specified
1411          * class as its own {@link #lookupClass() lookupClass}.
1412          *
1413          * <p>
1414          * However, the resulting {@code Lookup} object is guaranteed
1415          * to have no more access capabilities than the original.
1416          * In particular, access capabilities can be lost as follows:<ul>
1417          * <li>If the new lookup class is in a different module from the old one,
1418          * i.e. {@link #MODULE MODULE} access is lost.
1419          * <li>If the new lookup class is in a different package
1420          * than the old one, protected and default (package) members will not be accessible,
1421          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1422          * <li>If the new lookup class is not within the same package member
1423          * as the old one, private members will not be accessible, and protected members
1424          * will not be accessible by virtue of inheritance,
1425          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1426          * (Protected members may continue to be accessible because of package sharing.)
1427          * <li>If the new lookup class is not
1428          * {@linkplain #accessClass(Class) accessible} to this lookup,
1429          * then no members, not even public members, will be accessible
1430          * i.e. all access modes are lost.
1431          * <li>If the new lookup class, the old lookup class and the previous lookup class
1432          * are all in different modules i.e. teleporting to a third module,
1433          * all access modes are lost.
1434          * </ul>
1435          * <p>
1436          * The new previous lookup class is chosen as follows:
1437          * <ul>
1438          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1439          * the new previous lookup class is {@code null}.
1440          * <li>If the new lookup class is in the same module as the old lookup class,
1441          * the new previous lookup class is the old previous lookup class.
1442          * <li>If the new lookup class is in a different module from the old lookup class,
1443          * the new previous lookup class is the the old lookup class.
1444          *</ul>
1445          * <p>
1446          * The resulting lookup's capabilities for loading classes
1447          * (used during {@link #findClass} invocations)
1448          * are determined by the lookup class' loader,
1449          * which may change due to this operation.
1450          * <p>
1451          * @param requestedLookupClass the desired lookup class for the new lookup object
1452          * @return a lookup object which reports the desired lookup class, or the same object
1453          * if there is no change
1454          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1455          * @throws NullPointerException if the argument is null
1456          *
1457          * @revised 9
1458          * @spec JPMS
1459          * @see #accessClass(Class)
1460          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1461          */
1462         public Lookup in(Class<?> requestedLookupClass) {
1463             Objects.requireNonNull(requestedLookupClass);
1464             if (requestedLookupClass.isPrimitive())
1465                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1466             if (requestedLookupClass.isArray())
1467                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1468 
1469             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1470                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1471             if (requestedLookupClass == this.lookupClass)
1472                 return this;  // keep same capabilities
1473             int newModes = (allowedModes & FULL_POWER_MODES);
1474             Module fromModule = this.lookupClass.getModule();
1475             Module targetModule = requestedLookupClass.getModule();
1476             Class<?> plc = this.previousLookupClass();
1477             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1478                 assert plc == null;
1479                 newModes = UNCONDITIONAL;
1480             } else if (fromModule != targetModule) {
1481                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1482                     // allow hopping back and forth between fromModule and plc's module
1483                     // but not the third module
1484                     newModes = 0;
1485                 }
1486                 // drop MODULE access
1487                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1488                 // teleport from this lookup class
1489                 plc = this.lookupClass;
1490             }
1491             if ((newModes & PACKAGE) != 0
1492                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1493                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1494             }
1495             // Allow nestmate lookups to be created without special privilege:
1496             if ((newModes & PRIVATE) != 0
1497                     && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1498                 newModes &= ~(PRIVATE|PROTECTED);
1499             }
1500             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1501                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1502                 // The requested class it not accessible from the lookup class.
1503                 // No permissions.
1504                 newModes = 0;
1505             }
1506             return newLookup(requestedLookupClass, plc, newModes);
1507         }
1508 
1509         /**
1510          * Creates a lookup on the same lookup class which this lookup object
1511          * finds members, but with a lookup mode that has lost the given lookup mode.
1512          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1513          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1514          * {@link #PROTECTED PROTECTED} is always dropped and
1515          * so the resulting lookup mode will never have this access capability.
1516          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1517          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1518          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1519          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1520          * is dropped then the resulting lookup has no access.
1521          *
1522          * @apiNote
1523          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1524          * delegate non-public access within the package of the lookup class without
1525          * conferring private access.  A lookup with {@code MODULE} but not
1526          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1527          * the module of the lookup class without conferring package access.
1528          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1529          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1530          * to public classes accessible to both the module of the lookup class
1531          * and the module of the previous lookup class.
1532          *
1533          * @param modeToDrop the lookup mode to drop
1534          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1535          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1536          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1537          * @see MethodHandles#privateLookupIn
1538          * @since 9
1539          */
1540         public Lookup dropLookupMode(int modeToDrop) {
1541             int oldModes = lookupModes();
1542             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1543             switch (modeToDrop) {
1544                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1545                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1546                 case PACKAGE: newModes &= ~(PRIVATE); break;
1547                 case PROTECTED:
1548                 case PRIVATE:
1549                 case UNCONDITIONAL: break;
1550                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1551             }
1552             if (newModes == oldModes) return this;  // return self if no change
1553             return newLookup(lookupClass(), previousLookupClass(), newModes);
1554         }
1555 
1556         /**
1557          * Defines a class to the same class loader and in the same runtime package and
1558          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1559          * {@linkplain #lookupClass() lookup class}.
1560          *
1561          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1562          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1563          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1564          * that the lookup object was created by a caller in the runtime package (or derived
1565          * from a lookup originally created by suitably privileged code to a target class in
1566          * the runtime package). </p>
1567          *
1568          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1569          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1570          * same package as the lookup class. </p>
1571          *
1572          * <p> This method does not run the class initializer. The class initializer may
1573          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1574          * Specification</em>. </p>
1575          *
1576          * <p> If there is a security manager, its {@code checkPermission} method is first called
1577          * to check {@code RuntimePermission("defineClass")}. </p>
1578          *
1579          * @param bytes the class bytes
1580          * @return the {@code Class} object for the class
1581          * @throws IllegalArgumentException the bytes are for a class in a different package
1582          * to the lookup class
1583          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1584          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1585          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1586          * @throws SecurityException if denied by the security manager
1587          * @throws NullPointerException if {@code bytes} is {@code null}
1588          * @since 9
1589          * @spec JPMS
1590          * @see Lookup#privateLookupIn
1591          * @see Lookup#dropLookupMode
1592          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1593          */
1594         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1595             SecurityManager sm = System.getSecurityManager();
1596             if (sm != null)
1597                 sm.checkPermission(new RuntimePermission("defineClass"));
1598             if ((lookupModes() & PACKAGE) == 0)
1599                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1600             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
1601             return makeClassDefiner(bytes.clone()).defineClass(false);
1602         }
1603 
1604         private void checkDefineClassPermission() {
1605             SecurityManager sm = System.getSecurityManager();
1606             if (sm == null)  return;
1607             if (allowedModes == TRUSTED)  return;
1608 
1609             if (!hasPrivateAccess()) {
1610                 sm.checkPermission(new RuntimePermission("defineClass"));
1611             }
1612         }
1613 
1614         /**
1615          * Creates a {@code Lookup} on a <em>hidden class</em> defined to
1616          * the same class loader and in the same runtime package and
1617          * {@linkplain java.security.ProtectionDomain protection domain} as this
1618          * lookup's {@linkplain #lookupClass() lookup class}.
1619          *
1620          * If {@code options} has {@link ClassOption#NESTMATE NESTMATE} class
1621          * option, then the hidden class is added as a member into
1622          * {@linkplain Class#getNestHost() the nest} of this lookup's lookup class.
1623          *
1624          * If {@code options} has {@link ClassOption#WEAK WEAK}, then
1625          * the hidden class is weakly referenced from its defining class loader
1626          * and may be unloaded while its defining class loader is strongly reachable.
1627          *
1628          * The hidden class is initialized if the {@code initialize} parameter is
1629          * {@code true}.
1630          *
1631          * <p> A {@link Class#isHiddenClass() <em>hidden</em>} class has the
1632          * following additional properties:
1633          * <ul>
1634          * <li>Naming:
1635          *     The name of a hidden class returned by {@link Class#getName()} is
1636          *     defined by the JVM of this form:
1637          *     {@code <fully-qualified binary name> + '/' + <suffix>}<br>
1638          *     where {@code <fully-qualified binary name>} is the class name
1639          *     from the class bytes and {@code <suffix>} must be an unique unqualified
1640          *     name (see JVMS 4.2.2)
1641          * <li>Class resolution:
1642          *     A hidden class cannot be referenced in other classes and cannot be
1643          *     named as a field type, a method parameter type and a method return type.
1644          *     It is not discoverable by its class loader for example via
1645          *     {@link Class#forName(String, boolean, ClassLoader)},
1646          *     {@link ClassLoader#loadClass(String, boolean)} and also bytecode linkage.
1647          * <li>Class retransformation:
1648          *     A hidden class is not {@linkplain java.lang.instrument.Instrumentation#isModifiableClass(Class)
1649          *     modifiable} by Java agents or tool agents using
1650          *     the <a href="{@docRoot}/../specs/jvmti.html">JVM Tool Interface</a>.
1651          * <li>Serialization:
1652          *     The default serialization mechanism records the name of a class in
1653          *     its serialized form and finds the class by name during deserialization.
1654          *     A <em>serializable</em> hidden class requires a custom serialization
1655          *     mechanism in order to ensure that instances are properly serialized
1656          *     and deserialized.
1657          * </ul>
1658          *
1659          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must
1660          * have {@code PRIVATE} and {@code MODULE} access to create a hidden class
1661          * in the module of this lookup class.
1662          *
1663          * <p> The {@code bytes} parameter is the class bytes of a valid class file
1664          * (as defined by the <em>The Java Virtual Machine Specification</em>)
1665          * with a class name in the same package as the lookup class.
1666          *
1667          * @param bytes the class bytes
1668          * @param initialize if {@code true} the class will be initialized.
1669          * @param options {@linkplain ClassOption class options}
1670          * @return the {@code Lookup} object on the hidden class
1671          *
1672          * @throws IllegalArgumentException the bytes are for a class in a different package
1673          *                                  to the lookup class
1674          * @throws IllegalAccessException   if this lookup does not have {@code PRIVATE} and {@code MODULE} access
1675          * @throws LinkageError             if the class is malformed ({@code ClassFormatError}), cannot be
1676          *                                  verified ({@code VerifyError}), is already defined,
1677          *                                  or another linkage error occurs
1678          * @throws SecurityException        if a security manager is present and it
1679          *                                  <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1680          * @throws NullPointerException     if {@code bytes} is {@code null}
1681          *
1682          * @since 14
1683          * @see Class#isHiddenClass()
1684          * @jvms 4.2.2 Unqualified Names
1685          * @jls 12.3 Linking of Classes and Interfaces
1686          * @jls 12.4 Initialization of Classes and Interfaces
1687          */
1688         public Lookup defineHiddenClass(byte[] bytes, boolean initialize, ClassOption... options)
1689                 throws IllegalAccessException
1690         {
1691             Objects.requireNonNull(bytes);
1692 
1693             checkDefineClassPermission();
1694             if ((lookupModes() & (PRIVATE|MODULE)) != (PRIVATE|MODULE)){
1695                 throw new IllegalAccessException(this + " does not have PRIVATE or MODULE access");
1696             }
1697 
1698             Set<ClassOption> opts = (options != null && options.length > 0) ? Set.of(options) : Set.of();
1699             Class<?> c =  makeHiddenClassDefiner(bytes.clone(), opts).defineClass(initialize, null);
1700             return new Lookup(c, null, FULL_POWER_MODES);
1701         }
1702 
1703         /**
1704          * Creates a {@code Lookup} on a <em>hidden class</em> with {@code classData}
1705          * defined to the same class loader and in the same runtime package
1706          * and {@linkplain java.security.ProtectionDomain protection domain} as
1707          * this lookup's {@linkplain #lookupClass() lookup class} with
1708          * the given class options.
1709          *
1710          * <p> This method is equivalent to calling
1711          * {@link #defineHiddenClass(byte[], boolean, ClassOption...) defineHiddenClass(bytes, initialize, options)}
1712          * as if the hidden class has a private static final unnamed field
1713          * pre-initialized with the given {@code classData}.
1714          * The {@link MethodHandles#classData(Lookup, String, Class) MethodHandles::classData} method
1715          * can be used to retrieve the {@code classData}.
1716          *
1717          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must
1718          * have {@code PRIVATE} and {@code MODULE} access in order to create a
1719          * hidden class in the module of this lookup class.
1720          *
1721          * @param bytes     the class bytes
1722          * @param classData pre-initialized class data
1723          * @param initialize if {@code true} the class will be initialized.
1724          * @param options   {@linkplain ClassOption class options}
1725          * @return the {@code Lookup} object on the hidden class
1726          *
1727          * @throws IllegalArgumentException the bytes are for a class in a different package
1728          *                                  to the lookup class
1729          * @throws IllegalAccessException   if this lookup does not have {@code PRIVATE} and {@code MODULE} access
1730          * @throws LinkageError             if the class is malformed ({@code ClassFormatError}), cannot be
1731          *                                  verified ({@code VerifyError}), is already defined,
1732          *                                  or another linkage error occurs
1733          * @throws SecurityException        if a security manager is present and it
1734          *                                  <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1735          * @throws NullPointerException     if {@code bytes} is {@code null}
1736          *
1737          * @since 14
1738          * @see Lookup#defineHiddenClass(byte[], boolean, ClassOption...)  
1739          * @see Class#isHiddenClass()
1740          */
1741         /* package-private */ Lookup defineHiddenClassWithClassData(byte[] bytes, Object classData, boolean initialize, ClassOption... options)
1742                 throws IllegalAccessException
1743         {
1744             Objects.requireNonNull(bytes);
1745             Objects.requireNonNull(classData);
1746 
1747             checkDefineClassPermission();
1748             if ((lookupModes() & (PRIVATE|MODULE)) != (PRIVATE|MODULE)){
1749                 throw new IllegalAccessException(this + " does not have PRIVATE or MODULE access");
1750             }
1751 
1752             Set<ClassOption> opts = (options != null && options.length > 0) ? Set.of(options) : Set.of();
1753             Class<?> c = makeHiddenClassDefiner(bytes.clone(), opts).defineClass(initialize, classData);
1754             return new Lookup(c, null, FULL_POWER_MODES);
1755         }
1756 
1757         private ClassDefiner makeClassDefiner(byte[] bytes) {
1758             return new ClassDefiner(this, bytes, Set.of(), 0);
1759         }
1760 
1761         /**
1762          * Returns a ClassDefiner that creates a {@code Class} object of a hidden class
1763          * from the given bytes and options.
1764          *
1765          * @param bytes class bytes
1766          * @param options class options
1767          * @return ClassDefiner that defines a hidden class of the given bytes and options
1768          */
1769         ClassDefiner makeHiddenClassDefiner(byte[] bytes, Set<ClassOption> options) {
1770             return new ClassDefiner(this, bytes, options, HIDDEN_CLASS);
1771         }
1772 
1773         /**
1774          * This method is only called by MethodHandleImpl.BindCaller.makeInjectedInvoker.
1775          *
1776          * @param name the name of the class and the name in the class bytes is ignored.
1777          * @param bytes class bytes
1778          * @return ClassDefiner that defines a hidden class of the given bytes
1779          */
1780         ClassDefiner makeHiddenClassDefiner(String name, byte[] bytes) {
1781             return new ClassDefiner(this, name, bytes, HIDDEN_CLASS);
1782         }
1783 
1784         static class ClassDefiner {
1785             private final Lookup lookup;
1786             private final String name;
1787             private final byte[] bytes;
1788             private final int classFlags;
1789 
1790             // caller should make a defensive copy of the arguments if needed
1791             // before calling this constructor
1792             private ClassDefiner(Lookup lookup, byte[] bytes, Set<ClassOption> options, int flags) {
1793                 this.lookup = lookup;
1794                 this.bytes = bytes;
1795                 this.classFlags = flags | ClassOption.optionsToFlag(options);
1796                 this.name = className(bytes);
1797 
1798                 int index = name.lastIndexOf('.');
1799                 String pn = (index == -1) ? "" : name.substring(0, index);
1800                 if (!pn.equals(lookup.lookupClass().getPackageName())) {
1801                     throw newIllegalArgumentException(name + " not in same package as lookup class: " +
1802                             lookup.lookupClass().getName());
1803                 }
1804             }
1805 
1806             // skip package name check
1807             private ClassDefiner(Lookup lookup, String name, byte[] bytes, int flags) {
1808                 this.lookup = lookup;
1809                 this.bytes = bytes;
1810                 this.classFlags = flags;
1811                 this.name = name;
1812             }
1813 
1814             String className() {
1815                 return name;
1816             }
1817 
1818             Class<?> defineClass(boolean initialize) {
1819                 return defineClass(initialize, null);
1820             }
1821 
1822             /**
1823              * Defines the class of the given bytes and the given classData.
1824              * If {@code initialize} parameter is true, then the class will be initialized.
1825              *
1826              * @param initialize true if the class to be initialized
1827              * @param classData classData or null
1828              * @return the class
1829              *
1830              * @throws LinkageError linkage error
1831              */
1832             Class<?> defineClass(boolean initialize, Object classData) {
1833                 Class<?> lookupClass = lookup.lookupClass();
1834                 ClassLoader loader = lookupClass.getClassLoader();
1835                 ProtectionDomain pd = (loader != null) ? lookup.lookupClassProtectionDomain() : null;
1836                 Class<?> c = JLA.defineClass(loader, lookupClass, name, bytes, pd, initialize, classFlags, classData);
1837                 assert !isNestmate() || c.getNestHost() == lookupClass.getNestHost();
1838                 return c;
1839             }
1840 
1841             private boolean isNestmate() {
1842                 return (classFlags & NESTMATE_CLASS) != 0;
1843             }
1844 
1845             private static String className(byte[] bytes) {
1846                 try {
1847                     ClassReader reader = new ClassReader(bytes);
1848                     String name = reader.getClassName();
1849                     return name.replace('/', '.');
1850                 } catch (IllegalArgumentException e) {
1851                     throw e;
1852                 } catch (RuntimeException e) {
1853                     // ASM exceptions are poorly specified
1854                     ClassFormatError cfe = new ClassFormatError();
1855                     cfe.initCause(e);
1856                     throw cfe;
1857                 }
1858             }
1859         }
1860 
1861         private ProtectionDomain lookupClassProtectionDomain() {
1862             ProtectionDomain pd = cachedProtectionDomain;
1863             if (pd == null) {
1864                 cachedProtectionDomain = pd = JLA.protectionDomain(lookupClass);
1865             }
1866             return pd;
1867         }
1868 
1869         // cached protection domain
1870         private volatile ProtectionDomain cachedProtectionDomain;
1871 
1872         // Make sure outer class is initialized first.
1873         static { IMPL_NAMES.getClass(); }
1874 
1875         /** Package-private version of lookup which is trusted. */
1876         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1877 
1878         /** Version of lookup which is trusted minimally.
1879          *  It can only be used to create method handles to publicly accessible
1880          *  members in packages that are exported unconditionally.
1881          */
1882         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1883 
1884         static final JavaLangAccess JLA = SharedSecrets.getJavaLangAccess();
1885 
1886         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1887             String name = lookupClass.getName();
1888             if (name.startsWith("java.lang.invoke."))
1889                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1890         }
1891 
1892         /**
1893          * Displays the name of the class from which lookups are to be made.
1894          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1895          * previous lookup class} if present.
1896          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1897          * If there are restrictions on the access permitted to this lookup,
1898          * this is indicated by adding a suffix to the class name, consisting
1899          * of a slash and a keyword.  The keyword represents the strongest
1900          * allowed access, and is chosen as follows:
1901          * <ul>
1902          * <li>If no access is allowed, the suffix is "/noaccess".
1903          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1904          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1905          * <li>If only public and module access are allowed, the suffix is "/module".
1906          * <li>If public and package access are allowed, the suffix is "/package".
1907          * <li>If public, package, and private access are allowed, the suffix is "/private".
1908          * </ul>
1909          * If none of the above cases apply, it is the case that full access
1910          * (public, module, package, private, and protected) is allowed.
1911          * In this case, no suffix is added.
1912          * This is true only of an object obtained originally from
1913          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1914          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1915          * always have restricted access, and will display a suffix.
1916          * <p>
1917          * (It may seem strange that protected access should be
1918          * stronger than private access.  Viewed independently from
1919          * package access, protected access is the first to be lost,
1920          * because it requires a direct subclass relationship between
1921          * caller and callee.)
1922          * @see #in
1923          *
1924          * @revised 9
1925          * @spec JPMS
1926          */
1927         @Override
1928         public String toString() {
1929             String cname = lookupClass.getName();
1930             if (prevLookupClass != null)
1931                 cname += "/" + prevLookupClass.getName();
1932             switch (allowedModes) {
1933             case 0:  // no privileges
1934                 return cname + "/noaccess";
1935             case UNCONDITIONAL:
1936                 return cname + "/publicLookup";
1937             case PUBLIC:
1938                 return cname + "/public";
1939             case PUBLIC|MODULE:
1940                 return cname + "/module";
1941             case PUBLIC|PACKAGE:
1942             case PUBLIC|MODULE|PACKAGE:
1943                 return cname + "/package";
1944             case PUBLIC|PACKAGE|PRIVATE:
1945             case PUBLIC|MODULE|PACKAGE|PRIVATE:
1946                 return cname + "/private";
1947             case FULL_POWER_MODES:
1948             case FULL_POWER_MODES & ~(MODULE):
1949                 return cname;
1950             case TRUSTED:
1951                 return "/trusted";  // internal only; not exported
1952             default:  // Should not happen, but it's a bitfield...
1953                 cname = cname + "/" + Integer.toHexString(allowedModes);
1954                 assert(false) : cname;
1955                 return cname;
1956             }
1957         }
1958 
1959         /**
1960          * Produces a method handle for a static method.
1961          * The type of the method handle will be that of the method.
1962          * (Since static methods do not take receivers, there is no
1963          * additional receiver argument inserted into the method handle type,
1964          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1965          * The method and all its argument types must be accessible to the lookup object.
1966          * <p>
1967          * The returned method handle will have
1968          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1969          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1970          * <p>
1971          * If the returned method handle is invoked, the method's class will
1972          * be initialized, if it has not already been initialized.
1973          * <p><b>Example:</b>
1974          * <blockquote><pre>{@code
1975 import static java.lang.invoke.MethodHandles.*;
1976 import static java.lang.invoke.MethodType.*;
1977 ...
1978 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1979   "asList", methodType(List.class, Object[].class));
1980 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1981          * }</pre></blockquote>
1982          * @param refc the class from which the method is accessed
1983          * @param name the name of the method
1984          * @param type the type of the method
1985          * @return the desired method handle
1986          * @throws NoSuchMethodException if the method does not exist
1987          * @throws IllegalAccessException if access checking fails,
1988          *                                or if the method is not {@code static},
1989          *                                or if the method's variable arity modifier bit
1990          *                                is set and {@code asVarargsCollector} fails
1991          * @throws    SecurityException if a security manager is present and it
1992          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1993          * @throws NullPointerException if any argument is null
1994          */
1995         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1996             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1997             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1998         }
1999 
2000         /**
2001          * Produces a method handle for a virtual method.
2002          * The type of the method handle will be that of the method,
2003          * with the receiver type (usually {@code refc}) prepended.
2004          * The method and all its argument types must be accessible to the lookup object.
2005          * <p>
2006          * When called, the handle will treat the first argument as a receiver
2007          * and, for non-private methods, dispatch on the receiver's type to determine which method
2008          * implementation to enter.
2009          * For private methods the named method in {@code refc} will be invoked on the receiver.
2010          * (The dispatching action is identical with that performed by an
2011          * {@code invokevirtual} or {@code invokeinterface} instruction.)
2012          * <p>
2013          * The first argument will be of type {@code refc} if the lookup
2014          * class has full privileges to access the member.  Otherwise
2015          * the member must be {@code protected} and the first argument
2016          * will be restricted in type to the lookup class.
2017          * <p>
2018          * The returned method handle will have
2019          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2020          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2021          * <p>
2022          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
2023          * instructions and method handles produced by {@code findVirtual},
2024          * if the class is {@code MethodHandle} and the name string is
2025          * {@code invokeExact} or {@code invoke}, the resulting
2026          * method handle is equivalent to one produced by
2027          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
2028          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
2029          * with the same {@code type} argument.
2030          * <p>
2031          * If the class is {@code VarHandle} and the name string corresponds to
2032          * the name of a signature-polymorphic access mode method, the resulting
2033          * method handle is equivalent to one produced by
2034          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
2035          * the access mode corresponding to the name string and with the same
2036          * {@code type} arguments.
2037          * <p>
2038          * <b>Example:</b>
2039          * <blockquote><pre>{@code
2040 import static java.lang.invoke.MethodHandles.*;
2041 import static java.lang.invoke.MethodType.*;
2042 ...
2043 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
2044   "concat", methodType(String.class, String.class));
2045 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
2046   "hashCode", methodType(int.class));
2047 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
2048   "hashCode", methodType(int.class));
2049 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
2050 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
2051 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
2052 // interface method:
2053 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
2054   "subSequence", methodType(CharSequence.class, int.class, int.class));
2055 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
2056 // constructor "internal method" must be accessed differently:
2057 MethodType MT_newString = methodType(void.class); //()V for new String()
2058 try { assertEquals("impossible", lookup()
2059         .findVirtual(String.class, "<init>", MT_newString));
2060  } catch (NoSuchMethodException ex) { } // OK
2061 MethodHandle MH_newString = publicLookup()
2062   .findConstructor(String.class, MT_newString);
2063 assertEquals("", (String) MH_newString.invokeExact());
2064          * }</pre></blockquote>
2065          *
2066          * @param refc the class or interface from which the method is accessed
2067          * @param name the name of the method
2068          * @param type the type of the method, with the receiver argument omitted
2069          * @return the desired method handle
2070          * @throws NoSuchMethodException if the method does not exist
2071          * @throws IllegalAccessException if access checking fails,
2072          *                                or if the method is {@code static},
2073          *                                or if the method's variable arity modifier bit
2074          *                                is set and {@code asVarargsCollector} fails
2075          * @throws    SecurityException if a security manager is present and it
2076          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2077          * @throws NullPointerException if any argument is null
2078          */
2079         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2080             if (refc == MethodHandle.class) {
2081                 MethodHandle mh = findVirtualForMH(name, type);
2082                 if (mh != null)  return mh;
2083             } else if (refc == VarHandle.class) {
2084                 MethodHandle mh = findVirtualForVH(name, type);
2085                 if (mh != null)  return mh;
2086             }
2087             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
2088             MemberName method = resolveOrFail(refKind, refc, name, type);
2089             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
2090         }
2091         private MethodHandle findVirtualForMH(String name, MethodType type) {
2092             // these names require special lookups because of the implicit MethodType argument
2093             if ("invoke".equals(name))
2094                 return invoker(type);
2095             if ("invokeExact".equals(name))
2096                 return exactInvoker(type);
2097             assert(!MemberName.isMethodHandleInvokeName(name));
2098             return null;
2099         }
2100         private MethodHandle findVirtualForVH(String name, MethodType type) {
2101             try {
2102                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
2103             } catch (IllegalArgumentException e) {
2104                 return null;
2105             }
2106         }
2107 
2108         /**
2109          * Produces a method handle which creates an object and initializes it, using
2110          * the constructor of the specified type.
2111          * The parameter types of the method handle will be those of the constructor,
2112          * while the return type will be a reference to the constructor's class.
2113          * The constructor and all its argument types must be accessible to the lookup object.
2114          * <p>
2115          * The requested type must have a return type of {@code void}.
2116          * (This is consistent with the JVM's treatment of constructor type descriptors.)
2117          * <p>
2118          * The returned method handle will have
2119          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2120          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2121          * <p>
2122          * If the returned method handle is invoked, the constructor's class will
2123          * be initialized, if it has not already been initialized.
2124          * <p><b>Example:</b>
2125          * <blockquote><pre>{@code
2126 import static java.lang.invoke.MethodHandles.*;
2127 import static java.lang.invoke.MethodType.*;
2128 ...
2129 MethodHandle MH_newArrayList = publicLookup().findConstructor(
2130   ArrayList.class, methodType(void.class, Collection.class));
2131 Collection orig = Arrays.asList("x", "y");
2132 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
2133 assert(orig != copy);
2134 assertEquals(orig, copy);
2135 // a variable-arity constructor:
2136 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
2137   ProcessBuilder.class, methodType(void.class, String[].class));
2138 ProcessBuilder pb = (ProcessBuilder)
2139   MH_newProcessBuilder.invoke("x", "y", "z");
2140 assertEquals("[x, y, z]", pb.command().toString());
2141          * }</pre></blockquote>
2142          * @param refc the class or interface from which the method is accessed
2143          * @param type the type of the method, with the receiver argument omitted, and a void return type
2144          * @return the desired method handle
2145          * @throws NoSuchMethodException if the constructor does not exist
2146          * @throws IllegalAccessException if access checking fails
2147          *                                or if the method's variable arity modifier bit
2148          *                                is set and {@code asVarargsCollector} fails
2149          * @throws    SecurityException if a security manager is present and it
2150          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2151          * @throws NullPointerException if any argument is null
2152          */
2153         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2154             if (refc.isArray()) {
2155                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
2156             }
2157             String name = "<init>";
2158             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
2159             return getDirectConstructor(refc, ctor);
2160         }
2161 
2162         /**
2163          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
2164          * initializer of the class is not run.
2165          * <p>
2166          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
2167          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
2168          * load the requested class, and then determines whether the class is accessible to this lookup object.
2169          *
2170          * @param targetName the fully qualified name of the class to be looked up.
2171          * @return the requested class.
2172          * @throws    SecurityException if a security manager is present and it
2173          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2174          * @throws LinkageError if the linkage fails
2175          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
2176          * @throws IllegalAccessException if the class is not accessible, using the allowed access
2177          * modes.
2178          * @throws    SecurityException if a security manager is present and it
2179          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2180          * @since 9
2181          */
2182         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
2183             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
2184             return accessClass(targetClass);
2185         }
2186 
2187         /**
2188          * Determines if a class can be accessed from the lookup context defined by
2189          * this {@code Lookup} object. The static initializer of the class is not run.
2190          * <p>
2191          * If the {@code targetClass} is in the same module as the lookup class,
2192          * the lookup class is {@code LC} in module {@code M1} and
2193          * the previous lookup class is in module {@code M0} or
2194          * {@code null} if not present,
2195          * {@code targetClass} is accessible if and only if one of the following is true:
2196          * <ul>
2197          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
2198          *     {@code LC} or other class in the same nest of {@code LC}.</li>
2199          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
2200          *     in the same runtime package of {@code LC}.</li>
2201          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
2202          *     a public type in {@code M1}.</li>
2203          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
2204          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2205          *     if the previous lookup class is present; otherwise, {@code targetClass}
2206          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2207          * </ul>
2208          *
2209          * <p>
2210          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2211          * can access public types in all modules when the type is in a package
2212          * that is exported unconditionally.
2213          * <p>
2214          * Otherwise, the target class is in a different module from {@code lookupClass},
2215          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2216          * is inaccessible.
2217          * <p>
2218          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2219          * {@code M1} is the module containing {@code lookupClass} and
2220          * {@code M2} is the module containing {@code targetClass},
2221          * then {@code targetClass} is accessible if and only if
2222          * <ul>
2223          * <li>{@code M1} reads {@code M2}, and
2224          * <li>{@code targetClass} is public and in a package exported by
2225          *     {@code M2} at least to {@code M1}.
2226          * </ul>
2227          * <p>
2228          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2229          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2230          * containing the previous lookup class, then {@code targetClass} is accessible
2231          * if and only if one of the following is true:
2232          * <ul>
2233          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2234          *     {@linkplain Module#reads reads} {@code M0} and the type is
2235          *     in a package that is exported to at least {@code M1}.
2236          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2237          *     {@linkplain Module#reads reads} {@code M1} and the type is
2238          *     in a package that is exported to at least {@code M0}.
2239          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2240          *     and {@code M1} reads {@code M2} and the type is in a package
2241          *     that is exported to at least both {@code M0} and {@code M2}.
2242          * </ul>
2243          * <p>
2244          * Otherwise, {@code targetClass} is not accessible.
2245          *
2246          * @param targetClass the class to be access-checked
2247          * @return the class that has been access-checked
2248          * @throws IllegalAccessException if the class is not accessible from the lookup class
2249          * and previous lookup class, if present, using the allowed access modes.
2250          * @throws    SecurityException if a security manager is present and it
2251          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2252          * @since 9
2253          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2254          */
2255         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2256             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2257                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2258             }
2259             checkSecurityManager(targetClass, null);
2260             return targetClass;
2261         }
2262 
2263         /**
2264          * Produces an early-bound method handle for a virtual method.
2265          * It will bypass checks for overriding methods on the receiver,
2266          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2267          * instruction from within the explicitly specified {@code specialCaller}.
2268          * The type of the method handle will be that of the method,
2269          * with a suitably restricted receiver type prepended.
2270          * (The receiver type will be {@code specialCaller} or a subtype.)
2271          * The method and all its argument types must be accessible
2272          * to the lookup object.
2273          * <p>
2274          * Before method resolution,
2275          * if the explicitly specified caller class is not identical with the
2276          * lookup class, or if this lookup object does not have
2277          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2278          * privileges, the access fails.
2279          * <p>
2280          * The returned method handle will have
2281          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2282          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2283          * <p style="font-size:smaller;">
2284          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2285          * even though the {@code invokespecial} instruction can refer to them
2286          * in special circumstances.  Use {@link #findConstructor findConstructor}
2287          * to access instance initialization methods in a safe manner.)</em>
2288          * <p><b>Example:</b>
2289          * <blockquote><pre>{@code
2290 import static java.lang.invoke.MethodHandles.*;
2291 import static java.lang.invoke.MethodType.*;
2292 ...
2293 static class Listie extends ArrayList {
2294   public String toString() { return "[wee Listie]"; }
2295   static Lookup lookup() { return MethodHandles.lookup(); }
2296 }
2297 ...
2298 // no access to constructor via invokeSpecial:
2299 MethodHandle MH_newListie = Listie.lookup()
2300   .findConstructor(Listie.class, methodType(void.class));
2301 Listie l = (Listie) MH_newListie.invokeExact();
2302 try { assertEquals("impossible", Listie.lookup().findSpecial(
2303         Listie.class, "<init>", methodType(void.class), Listie.class));
2304  } catch (NoSuchMethodException ex) { } // OK
2305 // access to super and self methods via invokeSpecial:
2306 MethodHandle MH_super = Listie.lookup().findSpecial(
2307   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2308 MethodHandle MH_this = Listie.lookup().findSpecial(
2309   Listie.class, "toString" , methodType(String.class), Listie.class);
2310 MethodHandle MH_duper = Listie.lookup().findSpecial(
2311   Object.class, "toString" , methodType(String.class), Listie.class);
2312 assertEquals("[]", (String) MH_super.invokeExact(l));
2313 assertEquals(""+l, (String) MH_this.invokeExact(l));
2314 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2315 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2316         String.class, "toString", methodType(String.class), Listie.class));
2317  } catch (IllegalAccessException ex) { } // OK
2318 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2319 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2320          * }</pre></blockquote>
2321          *
2322          * @param refc the class or interface from which the method is accessed
2323          * @param name the name of the method (which must not be "&lt;init&gt;")
2324          * @param type the type of the method, with the receiver argument omitted
2325          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2326          * @return the desired method handle
2327          * @throws NoSuchMethodException if the method does not exist
2328          * @throws IllegalAccessException if access checking fails,
2329          *                                or if the method is {@code static},
2330          *                                or if the method's variable arity modifier bit
2331          *                                is set and {@code asVarargsCollector} fails
2332          * @throws    SecurityException if a security manager is present and it
2333          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2334          * @throws NullPointerException if any argument is null
2335          */
2336         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2337                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2338             checkSpecialCaller(specialCaller, refc);
2339             Lookup specialLookup = this.in(specialCaller);
2340             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2341             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
2342         }
2343 
2344         /**
2345          * Produces a method handle giving read access to a non-static field.
2346          * The type of the method handle will have a return type of the field's
2347          * value type.
2348          * The method handle's single argument will be the instance containing
2349          * the field.
2350          * Access checking is performed immediately on behalf of the lookup class.
2351          * @param refc the class or interface from which the method is accessed
2352          * @param name the field's name
2353          * @param type the field's type
2354          * @return a method handle which can load values from the field
2355          * @throws NoSuchFieldException if the field does not exist
2356          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2357          * @throws    SecurityException if a security manager is present and it
2358          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2359          * @throws NullPointerException if any argument is null
2360          * @see #findVarHandle(Class, String, Class)
2361          */
2362         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2363             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2364             return getDirectField(REF_getField, refc, field);
2365         }
2366 
2367         /**
2368          * Produces a method handle giving write access to a non-static field.
2369          * The type of the method handle will have a void return type.
2370          * The method handle will take two arguments, the instance containing
2371          * the field, and the value to be stored.
2372          * The second argument will be of the field's value type.
2373          * Access checking is performed immediately on behalf of the lookup class.
2374          * @param refc the class or interface from which the method is accessed
2375          * @param name the field's name
2376          * @param type the field's type
2377          * @return a method handle which can store values into the field
2378          * @throws NoSuchFieldException if the field does not exist
2379          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2380          *                                or {@code final}
2381          * @throws    SecurityException if a security manager is present and it
2382          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2383          * @throws NullPointerException if any argument is null
2384          * @see #findVarHandle(Class, String, Class)
2385          */
2386         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2387             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2388             return getDirectField(REF_putField, refc, field);
2389         }
2390 
2391         /**
2392          * Produces a VarHandle giving access to a non-static field {@code name}
2393          * of type {@code type} declared in a class of type {@code recv}.
2394          * The VarHandle's variable type is {@code type} and it has one
2395          * coordinate type, {@code recv}.
2396          * <p>
2397          * Access checking is performed immediately on behalf of the lookup
2398          * class.
2399          * <p>
2400          * Certain access modes of the returned VarHandle are unsupported under
2401          * the following conditions:
2402          * <ul>
2403          * <li>if the field is declared {@code final}, then the write, atomic
2404          *     update, numeric atomic update, and bitwise atomic update access
2405          *     modes are unsupported.
2406          * <li>if the field type is anything other than {@code byte},
2407          *     {@code short}, {@code char}, {@code int}, {@code long},
2408          *     {@code float}, or {@code double} then numeric atomic update
2409          *     access modes are unsupported.
2410          * <li>if the field type is anything other than {@code boolean},
2411          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2412          *     {@code long} then bitwise atomic update access modes are
2413          *     unsupported.
2414          * </ul>
2415          * <p>
2416          * If the field is declared {@code volatile} then the returned VarHandle
2417          * will override access to the field (effectively ignore the
2418          * {@code volatile} declaration) in accordance to its specified
2419          * access modes.
2420          * <p>
2421          * If the field type is {@code float} or {@code double} then numeric
2422          * and atomic update access modes compare values using their bitwise
2423          * representation (see {@link Float#floatToRawIntBits} and
2424          * {@link Double#doubleToRawLongBits}, respectively).
2425          * @apiNote
2426          * Bitwise comparison of {@code float} values or {@code double} values,
2427          * as performed by the numeric and atomic update access modes, differ
2428          * from the primitive {@code ==} operator and the {@link Float#equals}
2429          * and {@link Double#equals} methods, specifically with respect to
2430          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2431          * Care should be taken when performing a compare and set or a compare
2432          * and exchange operation with such values since the operation may
2433          * unexpectedly fail.
2434          * There are many possible NaN values that are considered to be
2435          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2436          * provided by Java can distinguish between them.  Operation failure can
2437          * occur if the expected or witness value is a NaN value and it is
2438          * transformed (perhaps in a platform specific manner) into another NaN
2439          * value, and thus has a different bitwise representation (see
2440          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2441          * details).
2442          * The values {@code -0.0} and {@code +0.0} have different bitwise
2443          * representations but are considered equal when using the primitive
2444          * {@code ==} operator.  Operation failure can occur if, for example, a
2445          * numeric algorithm computes an expected value to be say {@code -0.0}
2446          * and previously computed the witness value to be say {@code +0.0}.
2447          * @param recv the receiver class, of type {@code R}, that declares the
2448          * non-static field
2449          * @param name the field's name
2450          * @param type the field's type, of type {@code T}
2451          * @return a VarHandle giving access to non-static fields.
2452          * @throws NoSuchFieldException if the field does not exist
2453          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2454          * @throws    SecurityException if a security manager is present and it
2455          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2456          * @throws NullPointerException if any argument is null
2457          * @since 9
2458          */
2459         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2460             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2461             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2462             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2463         }
2464 
2465         /**
2466          * Produces a method handle giving read access to a static field.
2467          * The type of the method handle will have a return type of the field's
2468          * value type.
2469          * The method handle will take no arguments.
2470          * Access checking is performed immediately on behalf of the lookup class.
2471          * <p>
2472          * If the returned method handle is invoked, the field's class will
2473          * be initialized, if it has not already been initialized.
2474          * @param refc the class or interface from which the method is accessed
2475          * @param name the field's name
2476          * @param type the field's type
2477          * @return a method handle which can load values from the field
2478          * @throws NoSuchFieldException if the field does not exist
2479          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2480          * @throws    SecurityException if a security manager is present and it
2481          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2482          * @throws NullPointerException if any argument is null
2483          */
2484         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2485             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2486             return getDirectField(REF_getStatic, refc, field);
2487         }
2488 
2489         /**
2490          * Produces a method handle giving write access to a static field.
2491          * The type of the method handle will have a void return type.
2492          * The method handle will take a single
2493          * argument, of the field's value type, the value to be stored.
2494          * Access checking is performed immediately on behalf of the lookup class.
2495          * <p>
2496          * If the returned method handle is invoked, the field's class will
2497          * be initialized, if it has not already been initialized.
2498          * @param refc the class or interface from which the method is accessed
2499          * @param name the field's name
2500          * @param type the field's type
2501          * @return a method handle which can store values into the field
2502          * @throws NoSuchFieldException if the field does not exist
2503          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2504          *                                or is {@code final}
2505          * @throws    SecurityException if a security manager is present and it
2506          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2507          * @throws NullPointerException if any argument is null
2508          */
2509         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2510             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2511             return getDirectField(REF_putStatic, refc, field);
2512         }
2513 
2514         /**
2515          * Produces a VarHandle giving access to a static field {@code name} of
2516          * type {@code type} declared in a class of type {@code decl}.
2517          * The VarHandle's variable type is {@code type} and it has no
2518          * coordinate types.
2519          * <p>
2520          * Access checking is performed immediately on behalf of the lookup
2521          * class.
2522          * <p>
2523          * If the returned VarHandle is operated on, the declaring class will be
2524          * initialized, if it has not already been initialized.
2525          * <p>
2526          * Certain access modes of the returned VarHandle are unsupported under
2527          * the following conditions:
2528          * <ul>
2529          * <li>if the field is declared {@code final}, then the write, atomic
2530          *     update, numeric atomic update, and bitwise atomic update access
2531          *     modes are unsupported.
2532          * <li>if the field type is anything other than {@code byte},
2533          *     {@code short}, {@code char}, {@code int}, {@code long},
2534          *     {@code float}, or {@code double}, then numeric atomic update
2535          *     access modes are unsupported.
2536          * <li>if the field type is anything other than {@code boolean},
2537          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2538          *     {@code long} then bitwise atomic update access modes are
2539          *     unsupported.
2540          * </ul>
2541          * <p>
2542          * If the field is declared {@code volatile} then the returned VarHandle
2543          * will override access to the field (effectively ignore the
2544          * {@code volatile} declaration) in accordance to its specified
2545          * access modes.
2546          * <p>
2547          * If the field type is {@code float} or {@code double} then numeric
2548          * and atomic update access modes compare values using their bitwise
2549          * representation (see {@link Float#floatToRawIntBits} and
2550          * {@link Double#doubleToRawLongBits}, respectively).
2551          * @apiNote
2552          * Bitwise comparison of {@code float} values or {@code double} values,
2553          * as performed by the numeric and atomic update access modes, differ
2554          * from the primitive {@code ==} operator and the {@link Float#equals}
2555          * and {@link Double#equals} methods, specifically with respect to
2556          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2557          * Care should be taken when performing a compare and set or a compare
2558          * and exchange operation with such values since the operation may
2559          * unexpectedly fail.
2560          * There are many possible NaN values that are considered to be
2561          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2562          * provided by Java can distinguish between them.  Operation failure can
2563          * occur if the expected or witness value is a NaN value and it is
2564          * transformed (perhaps in a platform specific manner) into another NaN
2565          * value, and thus has a different bitwise representation (see
2566          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2567          * details).
2568          * The values {@code -0.0} and {@code +0.0} have different bitwise
2569          * representations but are considered equal when using the primitive
2570          * {@code ==} operator.  Operation failure can occur if, for example, a
2571          * numeric algorithm computes an expected value to be say {@code -0.0}
2572          * and previously computed the witness value to be say {@code +0.0}.
2573          * @param decl the class that declares the static field
2574          * @param name the field's name
2575          * @param type the field's type, of type {@code T}
2576          * @return a VarHandle giving access to a static field
2577          * @throws NoSuchFieldException if the field does not exist
2578          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2579          * @throws    SecurityException if a security manager is present and it
2580          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2581          * @throws NullPointerException if any argument is null
2582          * @since 9
2583          */
2584         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2585             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2586             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2587             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2588         }
2589 
2590         /**
2591          * Produces an early-bound method handle for a non-static method.
2592          * The receiver must have a supertype {@code defc} in which a method
2593          * of the given name and type is accessible to the lookup class.
2594          * The method and all its argument types must be accessible to the lookup object.
2595          * The type of the method handle will be that of the method,
2596          * without any insertion of an additional receiver parameter.
2597          * The given receiver will be bound into the method handle,
2598          * so that every call to the method handle will invoke the
2599          * requested method on the given receiver.
2600          * <p>
2601          * The returned method handle will have
2602          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2603          * the method's variable arity modifier bit ({@code 0x0080}) is set
2604          * <em>and</em> the trailing array argument is not the only argument.
2605          * (If the trailing array argument is the only argument,
2606          * the given receiver value will be bound to it.)
2607          * <p>
2608          * This is almost equivalent to the following code, with some differences noted below:
2609          * <blockquote><pre>{@code
2610 import static java.lang.invoke.MethodHandles.*;
2611 import static java.lang.invoke.MethodType.*;
2612 ...
2613 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2614 MethodHandle mh1 = mh0.bindTo(receiver);
2615 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2616 return mh1;
2617          * }</pre></blockquote>
2618          * where {@code defc} is either {@code receiver.getClass()} or a super
2619          * type of that class, in which the requested method is accessible
2620          * to the lookup class.
2621          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2622          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2623          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2624          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2625          * @param receiver the object from which the method is accessed
2626          * @param name the name of the method
2627          * @param type the type of the method, with the receiver argument omitted
2628          * @return the desired method handle
2629          * @throws NoSuchMethodException if the method does not exist
2630          * @throws IllegalAccessException if access checking fails
2631          *                                or if the method's variable arity modifier bit
2632          *                                is set and {@code asVarargsCollector} fails
2633          * @throws    SecurityException if a security manager is present and it
2634          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2635          * @throws NullPointerException if any argument is null
2636          * @see MethodHandle#bindTo
2637          * @see #findVirtual
2638          */
2639         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2640             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2641             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2642             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
2643             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2644                 throw new IllegalAccessException("The restricted defining class " +
2645                                                  mh.type().leadingReferenceParameter().getName() +
2646                                                  " is not assignable from receiver class " +
2647                                                  receiver.getClass().getName());
2648             }
2649             return mh.bindArgumentL(0, receiver).setVarargs(method);
2650         }
2651 
2652         /**
2653          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2654          * to <i>m</i>, if the lookup class has permission.
2655          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2656          * If <i>m</i> is virtual, overriding is respected on every call.
2657          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2658          * The type of the method handle will be that of the method,
2659          * with the receiver type prepended (but only if it is non-static).
2660          * If the method's {@code accessible} flag is not set,
2661          * access checking is performed immediately on behalf of the lookup class.
2662          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2663          * <p>
2664          * The returned method handle will have
2665          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2666          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2667          * <p>
2668          * If <i>m</i> is static, and
2669          * if the returned method handle is invoked, the method's class will
2670          * be initialized, if it has not already been initialized.
2671          * @param m the reflected method
2672          * @return a method handle which can invoke the reflected method
2673          * @throws IllegalAccessException if access checking fails
2674          *                                or if the method's variable arity modifier bit
2675          *                                is set and {@code asVarargsCollector} fails
2676          * @throws NullPointerException if the argument is null
2677          */
2678         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2679             if (m.getDeclaringClass() == MethodHandle.class) {
2680                 MethodHandle mh = unreflectForMH(m);
2681                 if (mh != null)  return mh;
2682             }
2683             if (m.getDeclaringClass() == VarHandle.class) {
2684                 MethodHandle mh = unreflectForVH(m);
2685                 if (mh != null)  return mh;
2686             }
2687             MemberName method = new MemberName(m);
2688             byte refKind = method.getReferenceKind();
2689             if (refKind == REF_invokeSpecial)
2690                 refKind = REF_invokeVirtual;
2691             assert(method.isMethod());
2692             @SuppressWarnings("deprecation")
2693             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2694             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
2695         }
2696         private MethodHandle unreflectForMH(Method m) {
2697             // these names require special lookups because they throw UnsupportedOperationException
2698             if (MemberName.isMethodHandleInvokeName(m.getName()))
2699                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2700             return null;
2701         }
2702         private MethodHandle unreflectForVH(Method m) {
2703             // these names require special lookups because they throw UnsupportedOperationException
2704             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2705                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2706             return null;
2707         }
2708 
2709         /**
2710          * Produces a method handle for a reflected method.
2711          * It will bypass checks for overriding methods on the receiver,
2712          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2713          * instruction from within the explicitly specified {@code specialCaller}.
2714          * The type of the method handle will be that of the method,
2715          * with a suitably restricted receiver type prepended.
2716          * (The receiver type will be {@code specialCaller} or a subtype.)
2717          * If the method's {@code accessible} flag is not set,
2718          * access checking is performed immediately on behalf of the lookup class,
2719          * as if {@code invokespecial} instruction were being linked.
2720          * <p>
2721          * Before method resolution,
2722          * if the explicitly specified caller class is not identical with the
2723          * lookup class, or if this lookup object does not have
2724          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2725          * privileges, the access fails.
2726          * <p>
2727          * The returned method handle will have
2728          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2729          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2730          * @param m the reflected method
2731          * @param specialCaller the class nominally calling the method
2732          * @return a method handle which can invoke the reflected method
2733          * @throws IllegalAccessException if access checking fails,
2734          *                                or if the method is {@code static},
2735          *                                or if the method's variable arity modifier bit
2736          *                                is set and {@code asVarargsCollector} fails
2737          * @throws NullPointerException if any argument is null
2738          */
2739         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2740             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2741             Lookup specialLookup = this.in(specialCaller);
2742             MemberName method = new MemberName(m, true);
2743             assert(method.isMethod());
2744             // ignore m.isAccessible:  this is a new kind of access
2745             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
2746         }
2747 
2748         /**
2749          * Produces a method handle for a reflected constructor.
2750          * The type of the method handle will be that of the constructor,
2751          * with the return type changed to the declaring class.
2752          * The method handle will perform a {@code newInstance} operation,
2753          * creating a new instance of the constructor's class on the
2754          * arguments passed to the method handle.
2755          * <p>
2756          * If the constructor's {@code accessible} flag is not set,
2757          * access checking is performed immediately on behalf of the lookup class.
2758          * <p>
2759          * The returned method handle will have
2760          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2761          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2762          * <p>
2763          * If the returned method handle is invoked, the constructor's class will
2764          * be initialized, if it has not already been initialized.
2765          * @param c the reflected constructor
2766          * @return a method handle which can invoke the reflected constructor
2767          * @throws IllegalAccessException if access checking fails
2768          *                                or if the method's variable arity modifier bit
2769          *                                is set and {@code asVarargsCollector} fails
2770          * @throws NullPointerException if the argument is null
2771          */
2772         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2773             MemberName ctor = new MemberName(c);
2774             assert(ctor.isConstructor());
2775             @SuppressWarnings("deprecation")
2776             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2777             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2778         }
2779 
2780         /**
2781          * Produces a method handle giving read access to a reflected field.
2782          * The type of the method handle will have a return type of the field's
2783          * value type.
2784          * If the field is {@code static}, the method handle will take no arguments.
2785          * Otherwise, its single argument will be the instance containing
2786          * the field.
2787          * If the {@code Field} object's {@code accessible} flag is not set,
2788          * access checking is performed immediately on behalf of the lookup class.
2789          * <p>
2790          * If the field is static, and
2791          * if the returned method handle is invoked, the field's class will
2792          * be initialized, if it has not already been initialized.
2793          * @param f the reflected field
2794          * @return a method handle which can load values from the reflected field
2795          * @throws IllegalAccessException if access checking fails
2796          * @throws NullPointerException if the argument is null
2797          */
2798         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2799             return unreflectField(f, false);
2800         }
2801 
2802         /**
2803          * Produces a method handle giving write access to a reflected field.
2804          * The type of the method handle will have a void return type.
2805          * If the field is {@code static}, the method handle will take a single
2806          * argument, of the field's value type, the value to be stored.
2807          * Otherwise, the two arguments will be the instance containing
2808          * the field, and the value to be stored.
2809          * If the {@code Field} object's {@code accessible} flag is not set,
2810          * access checking is performed immediately on behalf of the lookup class.
2811          * <p>
2812          * If the field is {@code final}, write access will not be
2813          * allowed and access checking will fail, except under certain
2814          * narrow circumstances documented for {@link Field#set Field.set}.
2815          * A method handle is returned only if a corresponding call to
2816          * the {@code Field} object's {@code set} method could return
2817          * normally.  In particular, fields which are both {@code static}
2818          * and {@code final} may never be set.
2819          * <p>
2820          * If the field is {@code static}, and
2821          * if the returned method handle is invoked, the field's class will
2822          * be initialized, if it has not already been initialized.
2823          * @param f the reflected field
2824          * @return a method handle which can store values into the reflected field
2825          * @throws IllegalAccessException if access checking fails,
2826          *         or if the field is {@code final} and write access
2827          *         is not enabled on the {@code Field} object
2828          * @throws NullPointerException if the argument is null
2829          */
2830         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2831             return unreflectField(f, true);
2832         }
2833 
2834         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2835             MemberName field = new MemberName(f, isSetter);
2836             if (isSetter && field.isStatic() && field.isFinal())
2837                 throw field.makeAccessException("static final field has no write access", this);
2838             assert(isSetter
2839                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2840                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2841             @SuppressWarnings("deprecation")
2842             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2843             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2844         }
2845 
2846         /**
2847          * Produces a VarHandle giving access to a reflected field {@code f}
2848          * of type {@code T} declared in a class of type {@code R}.
2849          * The VarHandle's variable type is {@code T}.
2850          * If the field is non-static the VarHandle has one coordinate type,
2851          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2852          * coordinate types.
2853          * <p>
2854          * Access checking is performed immediately on behalf of the lookup
2855          * class, regardless of the value of the field's {@code accessible}
2856          * flag.
2857          * <p>
2858          * If the field is static, and if the returned VarHandle is operated
2859          * on, the field's declaring class will be initialized, if it has not
2860          * already been initialized.
2861          * <p>
2862          * Certain access modes of the returned VarHandle are unsupported under
2863          * the following conditions:
2864          * <ul>
2865          * <li>if the field is declared {@code final}, then the write, atomic
2866          *     update, numeric atomic update, and bitwise atomic update access
2867          *     modes are unsupported.
2868          * <li>if the field type is anything other than {@code byte},
2869          *     {@code short}, {@code char}, {@code int}, {@code long},
2870          *     {@code float}, or {@code double} then numeric atomic update
2871          *     access modes are unsupported.
2872          * <li>if the field type is anything other than {@code boolean},
2873          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2874          *     {@code long} then bitwise atomic update access modes are
2875          *     unsupported.
2876          * </ul>
2877          * <p>
2878          * If the field is declared {@code volatile} then the returned VarHandle
2879          * will override access to the field (effectively ignore the
2880          * {@code volatile} declaration) in accordance to its specified
2881          * access modes.
2882          * <p>
2883          * If the field type is {@code float} or {@code double} then numeric
2884          * and atomic update access modes compare values using their bitwise
2885          * representation (see {@link Float#floatToRawIntBits} and
2886          * {@link Double#doubleToRawLongBits}, respectively).
2887          * @apiNote
2888          * Bitwise comparison of {@code float} values or {@code double} values,
2889          * as performed by the numeric and atomic update access modes, differ
2890          * from the primitive {@code ==} operator and the {@link Float#equals}
2891          * and {@link Double#equals} methods, specifically with respect to
2892          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2893          * Care should be taken when performing a compare and set or a compare
2894          * and exchange operation with such values since the operation may
2895          * unexpectedly fail.
2896          * There are many possible NaN values that are considered to be
2897          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2898          * provided by Java can distinguish between them.  Operation failure can
2899          * occur if the expected or witness value is a NaN value and it is
2900          * transformed (perhaps in a platform specific manner) into another NaN
2901          * value, and thus has a different bitwise representation (see
2902          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2903          * details).
2904          * The values {@code -0.0} and {@code +0.0} have different bitwise
2905          * representations but are considered equal when using the primitive
2906          * {@code ==} operator.  Operation failure can occur if, for example, a
2907          * numeric algorithm computes an expected value to be say {@code -0.0}
2908          * and previously computed the witness value to be say {@code +0.0}.
2909          * @param f the reflected field, with a field of type {@code T}, and
2910          * a declaring class of type {@code R}
2911          * @return a VarHandle giving access to non-static fields or a static
2912          * field
2913          * @throws IllegalAccessException if access checking fails
2914          * @throws NullPointerException if the argument is null
2915          * @since 9
2916          */
2917         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2918             MemberName getField = new MemberName(f, false);
2919             MemberName putField = new MemberName(f, true);
2920             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2921                                                       f.getDeclaringClass(), getField, putField);
2922         }
2923 
2924         /**
2925          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2926          * created by this lookup object or a similar one.
2927          * Security and access checks are performed to ensure that this lookup object
2928          * is capable of reproducing the target method handle.
2929          * This means that the cracking may fail if target is a direct method handle
2930          * but was created by an unrelated lookup object.
2931          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2932          * and was created by a lookup object for a different class.
2933          * @param target a direct method handle to crack into symbolic reference components
2934          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2935          * @throws    SecurityException if a security manager is present and it
2936          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2937          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2938          * @throws    NullPointerException if the target is {@code null}
2939          * @see MethodHandleInfo
2940          * @since 1.8
2941          */
2942         public MethodHandleInfo revealDirect(MethodHandle target) {
2943             MemberName member = target.internalMemberName();
2944             if (member == null || (!member.isResolved() &&
2945                                    !member.isMethodHandleInvoke() &&
2946                                    !member.isVarHandleMethodInvoke()))
2947                 throw newIllegalArgumentException("not a direct method handle");
2948             Class<?> defc = member.getDeclaringClass();
2949             byte refKind = member.getReferenceKind();
2950             assert(MethodHandleNatives.refKindIsValid(refKind));
2951             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2952                 // Devirtualized method invocation is usually formally virtual.
2953                 // To avoid creating extra MemberName objects for this common case,
2954                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2955                 refKind = REF_invokeVirtual;
2956             if (refKind == REF_invokeVirtual && defc.isInterface())
2957                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2958                 refKind = REF_invokeInterface;
2959             // Check SM permissions and member access before cracking.
2960             try {
2961                 checkAccess(refKind, defc, member);
2962                 checkSecurityManager(defc, member);
2963             } catch (IllegalAccessException ex) {
2964                 throw new IllegalArgumentException(ex);
2965             }
2966             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2967                 Class<?> callerClass = target.internalCallerClass();
2968                 if (!hasPrivateAccess() || callerClass != lookupClass())
2969                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2970             }
2971             // Produce the handle to the results.
2972             return new InfoFromMemberName(this, member, refKind);
2973         }
2974 
2975         /// Helper methods, all package-private.
2976 
2977         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2978             checkSymbolicClass(refc);  // do this before attempting to resolve
2979             Objects.requireNonNull(name);
2980             Objects.requireNonNull(type);
2981             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2982                                             NoSuchFieldException.class);
2983         }
2984 
2985         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2986             checkSymbolicClass(refc);  // do this before attempting to resolve
2987             Objects.requireNonNull(name);
2988             Objects.requireNonNull(type);
2989             checkMethodName(refKind, name);  // NPE check on name
2990             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2991                                             NoSuchMethodException.class);
2992         }
2993 
2994         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2995             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2996             Objects.requireNonNull(member.getName());
2997             Objects.requireNonNull(member.getType());
2998             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2999                                             ReflectiveOperationException.class);
3000         }
3001 
3002         MemberName resolveOrNull(byte refKind, MemberName member) {
3003             // do this before attempting to resolve
3004             if (!isClassAccessible(member.getDeclaringClass())) {
3005                 return null;
3006             }
3007             Objects.requireNonNull(member.getName());
3008             Objects.requireNonNull(member.getType());
3009             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
3010         }
3011 
3012         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
3013             if (!isClassAccessible(refc)) {
3014                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
3015             }
3016         }
3017 
3018         boolean isClassAccessible(Class<?> refc) {
3019             Objects.requireNonNull(refc);
3020             Class<?> caller = lookupClassOrNull();
3021             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
3022         }
3023 
3024         /** Check name for an illegal leading "&lt;" character. */
3025         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
3026             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
3027                 throw new NoSuchMethodException("illegal method name: "+name);
3028         }
3029 
3030 
3031         /**
3032          * Find my trustable caller class if m is a caller sensitive method.
3033          * If this lookup object has private access, then the caller class is the lookupClass.
3034          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
3035          */
3036         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
3037             Class<?> callerClass = null;
3038             if (MethodHandleNatives.isCallerSensitive(m)) {
3039                 // Only lookups with private access are allowed to resolve caller-sensitive methods
3040                 if (hasPrivateAccess()) {
3041                     callerClass = lookupClass;
3042                 } else {
3043                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3044                 }
3045             }
3046             return callerClass;
3047         }
3048 
3049         /**
3050          * Returns {@code true} if this lookup has {@code PRIVATE} access.
3051          * @return {@code true} if this lookup has {@code PRIVATE} access.
3052          * @since 9
3053          */
3054         public boolean hasPrivateAccess() {
3055             return (allowedModes & PRIVATE) != 0;
3056         }
3057 
3058         /**
3059          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
3060          * Determines a trustable caller class to compare with refc, the symbolic reference class.
3061          * If this lookup object has private access, then the caller class is the lookupClass.
3062          */
3063         void checkSecurityManager(Class<?> refc, MemberName m) {
3064             SecurityManager smgr = System.getSecurityManager();
3065             if (smgr == null)  return;
3066             if (allowedModes == TRUSTED)  return;
3067 
3068             // Step 1:
3069             boolean fullPowerLookup = hasPrivateAccess();
3070             if (!fullPowerLookup ||
3071                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
3072                 ReflectUtil.checkPackageAccess(refc);
3073             }
3074 
3075             if (m == null) {  // findClass or accessClass
3076                 // Step 2b:
3077                 if (!fullPowerLookup) {
3078                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
3079                 }
3080                 return;
3081             }
3082 
3083             // Step 2a:
3084             if (m.isPublic()) return;
3085             if (!fullPowerLookup) {
3086                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
3087             }
3088 
3089             // Step 3:
3090             Class<?> defc = m.getDeclaringClass();
3091             if (!fullPowerLookup && defc != refc) {
3092                 ReflectUtil.checkPackageAccess(defc);
3093             }
3094         }
3095 
3096         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3097             boolean wantStatic = (refKind == REF_invokeStatic);
3098             String message;
3099             if (m.isConstructor())
3100                 message = "expected a method, not a constructor";
3101             else if (!m.isMethod())
3102                 message = "expected a method";
3103             else if (wantStatic != m.isStatic())
3104                 message = wantStatic ? "expected a static method" : "expected a non-static method";
3105             else
3106                 { checkAccess(refKind, refc, m); return; }
3107             throw m.makeAccessException(message, this);
3108         }
3109 
3110         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3111             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
3112             String message;
3113             if (wantStatic != m.isStatic())
3114                 message = wantStatic ? "expected a static field" : "expected a non-static field";
3115             else
3116                 { checkAccess(refKind, refc, m); return; }
3117             throw m.makeAccessException(message, this);
3118         }
3119 
3120         /** Check public/protected/private bits on the symbolic reference class and its member. */
3121         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
3122             assert(m.referenceKindIsConsistentWith(refKind) &&
3123                    MethodHandleNatives.refKindIsValid(refKind) &&
3124                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
3125             int allowedModes = this.allowedModes;
3126             if (allowedModes == TRUSTED)  return;
3127             int mods = m.getModifiers();
3128             if (Modifier.isProtected(mods) &&
3129                     refKind == REF_invokeVirtual &&
3130                     m.getDeclaringClass() == Object.class &&
3131                     m.getName().equals("clone") &&
3132                     refc.isArray()) {
3133                 // The JVM does this hack also.
3134                 // (See ClassVerifier::verify_invoke_instructions
3135                 // and LinkResolver::check_method_accessability.)
3136                 // Because the JVM does not allow separate methods on array types,
3137                 // there is no separate method for int[].clone.
3138                 // All arrays simply inherit Object.clone.
3139                 // But for access checking logic, we make Object.clone
3140                 // (normally protected) appear to be public.
3141                 // Later on, when the DirectMethodHandle is created,
3142                 // its leading argument will be restricted to the
3143                 // requested array type.
3144                 // N.B. The return type is not adjusted, because
3145                 // that is *not* the bytecode behavior.
3146                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
3147             }
3148             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
3149                 // cannot "new" a protected ctor in a different package
3150                 mods ^= Modifier.PROTECTED;
3151             }
3152             if (Modifier.isFinal(mods) &&
3153                     MethodHandleNatives.refKindIsSetter(refKind))
3154                 throw m.makeAccessException("unexpected set of a final field", this);
3155             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
3156             if ((requestedModes & allowedModes) != 0) {
3157                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
3158                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
3159                     return;
3160             } else {
3161                 // Protected members can also be checked as if they were package-private.
3162                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
3163                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
3164                     return;
3165             }
3166             throw m.makeAccessException(accessFailedMessage(refc, m), this);
3167         }
3168 
3169         String accessFailedMessage(Class<?> refc, MemberName m) {
3170             Class<?> defc = m.getDeclaringClass();
3171             int mods = m.getModifiers();
3172             // check the class first:
3173             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
3174                                (defc == refc ||
3175                                 Modifier.isPublic(refc.getModifiers())));
3176             if (!classOK && (allowedModes & PACKAGE) != 0) {
3177                 // ignore previous lookup class to check if default package access
3178                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
3179                            (defc == refc ||
3180                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
3181             }
3182             if (!classOK)
3183                 return "class is not public";
3184             if (Modifier.isPublic(mods))
3185                 return "access to public member failed";  // (how?, module not readable?)
3186             if (Modifier.isPrivate(mods))
3187                 return "member is private";
3188             if (Modifier.isProtected(mods))
3189                 return "member is protected";
3190             return "member is private to package";
3191         }
3192 
3193         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3194             int allowedModes = this.allowedModes;
3195             if (allowedModes == TRUSTED)  return;
3196             if (!hasPrivateAccess()
3197                 || (specialCaller != lookupClass()
3198                        // ensure non-abstract methods in superinterfaces can be special-invoked
3199                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3200                 throw new MemberName(specialCaller).
3201                     makeAccessException("no private access for invokespecial", this);
3202         }
3203 
3204         private boolean restrictProtectedReceiver(MemberName method) {
3205             // The accessing class only has the right to use a protected member
3206             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3207             if (!method.isProtected() || method.isStatic()
3208                 || allowedModes == TRUSTED
3209                 || method.getDeclaringClass() == lookupClass()
3210                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3211                 return false;
3212             return true;
3213         }
3214         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3215             assert(!method.isStatic());
3216             // receiver type of mh is too wide; narrow to caller
3217             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3218                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3219             }
3220             MethodType rawType = mh.type();
3221             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3222             MethodType narrowType = rawType.changeParameterType(0, caller);
3223             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3224             assert(mh.viewAsTypeChecks(narrowType, true));
3225             return mh.copyWith(narrowType, mh.form);
3226         }
3227 
3228         /** Check access and get the requested method. */
3229         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3230             final boolean doRestrict    = true;
3231             final boolean checkSecurity = true;
3232             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3233         }
3234         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3235         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3236             final boolean doRestrict    = false;
3237             final boolean checkSecurity = true;
3238             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
3239         }
3240         /** Check access and get the requested method, eliding security manager checks. */
3241         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
3242             final boolean doRestrict    = true;
3243             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3244             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
3245         }
3246         /** Common code for all methods; do not call directly except from immediately above. */
3247         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3248                                                    boolean checkSecurity,
3249                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
3250 
3251             checkMethod(refKind, refc, method);
3252             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3253             if (checkSecurity)
3254                 checkSecurityManager(refc, method);
3255             assert(!method.isMethodHandleInvoke());
3256 
3257             if (refKind == REF_invokeSpecial &&
3258                 refc != lookupClass() &&
3259                 !refc.isInterface() &&
3260                 refc != lookupClass().getSuperclass() &&
3261                 refc.isAssignableFrom(lookupClass())) {
3262                 assert(!method.getName().equals("<init>"));  // not this code path
3263 
3264                 // Per JVMS 6.5, desc. of invokespecial instruction:
3265                 // If the method is in a superclass of the LC,
3266                 // and if our original search was above LC.super,
3267                 // repeat the search (symbolic lookup) from LC.super
3268                 // and continue with the direct superclass of that class,
3269                 // and so forth, until a match is found or no further superclasses exist.
3270                 // FIXME: MemberName.resolve should handle this instead.
3271                 Class<?> refcAsSuper = lookupClass();
3272                 MemberName m2;
3273                 do {
3274                     refcAsSuper = refcAsSuper.getSuperclass();
3275                     m2 = new MemberName(refcAsSuper,
3276                                         method.getName(),
3277                                         method.getMethodType(),
3278                                         REF_invokeSpecial);
3279                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3280                 } while (m2 == null &&         // no method is found yet
3281                          refc != refcAsSuper); // search up to refc
3282                 if (m2 == null)  throw new InternalError(method.toString());
3283                 method = m2;
3284                 refc = refcAsSuper;
3285                 // redo basic checks
3286                 checkMethod(refKind, refc, method);
3287             }
3288 
3289             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3290             MethodHandle mh = dmh;
3291             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3292             if ((doRestrict && refKind == REF_invokeSpecial) ||
3293                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3294                 mh = restrictReceiver(method, dmh, lookupClass());
3295             }
3296             mh = maybeBindCaller(method, mh, boundCallerClass);
3297             mh = mh.setVarargs(method);
3298             return mh;
3299         }
3300         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
3301                                              Class<?> boundCallerClass)
3302                                              throws IllegalAccessException {
3303             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3304                 return mh;
3305             Class<?> hostClass = lookupClass;
3306             if (!hasPrivateAccess())  // caller must have private access
3307                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
3308             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
3309             // Note: caller will apply varargs after this step happens.
3310             return cbmh;
3311         }
3312         /** Check access and get the requested field. */
3313         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3314             final boolean checkSecurity = true;
3315             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3316         }
3317         /** Check access and get the requested field, eliding security manager checks. */
3318         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3319             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3320             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3321         }
3322         /** Common code for all fields; do not call directly except from immediately above. */
3323         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3324                                                   boolean checkSecurity) throws IllegalAccessException {
3325             checkField(refKind, refc, field);
3326             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3327             if (checkSecurity)
3328                 checkSecurityManager(refc, field);
3329             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3330             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3331                                     restrictProtectedReceiver(field));
3332             if (doRestrict)
3333                 return restrictReceiver(field, dmh, lookupClass());
3334             return dmh;
3335         }
3336         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3337                                             Class<?> refc, MemberName getField, MemberName putField)
3338                 throws IllegalAccessException {
3339             final boolean checkSecurity = true;
3340             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3341         }
3342         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3343                                                              Class<?> refc, MemberName getField, MemberName putField)
3344                 throws IllegalAccessException {
3345             final boolean checkSecurity = false;
3346             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3347         }
3348         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3349                                                   Class<?> refc, MemberName getField, MemberName putField,
3350                                                   boolean checkSecurity) throws IllegalAccessException {
3351             assert getField.isStatic() == putField.isStatic();
3352             assert getField.isGetter() && putField.isSetter();
3353             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3354             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3355 
3356             checkField(getRefKind, refc, getField);
3357             if (checkSecurity)
3358                 checkSecurityManager(refc, getField);
3359 
3360             if (!putField.isFinal()) {
3361                 // A VarHandle does not support updates to final fields, any
3362                 // such VarHandle to a final field will be read-only and
3363                 // therefore the following write-based accessibility checks are
3364                 // only required for non-final fields
3365                 checkField(putRefKind, refc, putField);
3366                 if (checkSecurity)
3367                     checkSecurityManager(refc, putField);
3368             }
3369 
3370             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3371                                   restrictProtectedReceiver(getField));
3372             if (doRestrict) {
3373                 assert !getField.isStatic();
3374                 // receiver type of VarHandle is too wide; narrow to caller
3375                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3376                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3377                 }
3378                 refc = lookupClass();
3379             }
3380             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3381         }
3382         /** Check access and get the requested constructor. */
3383         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3384             final boolean checkSecurity = true;
3385             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3386         }
3387         /** Check access and get the requested constructor, eliding security manager checks. */
3388         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3389             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3390             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3391         }
3392         /** Common code for all constructors; do not call directly except from immediately above. */
3393         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3394                                                   boolean checkSecurity) throws IllegalAccessException {
3395             assert(ctor.isConstructor());
3396             checkAccess(REF_newInvokeSpecial, refc, ctor);
3397             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3398             if (checkSecurity)
3399                 checkSecurityManager(refc, ctor);
3400             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3401             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3402         }
3403 
3404         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3405          */
3406         /*non-public*/
3407         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3408                 throws ReflectiveOperationException {
3409             if (!(type instanceof Class || type instanceof MethodType))
3410                 throw new InternalError("unresolved MemberName");
3411             MemberName member = new MemberName(refKind, defc, name, type);
3412             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3413             if (mh != null) {
3414                 checkSymbolicClass(defc);
3415                 return mh;
3416             }
3417             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3418                 // Treat MethodHandle.invoke and invokeExact specially.
3419                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3420                 if (mh != null) {
3421                     return mh;
3422                 }
3423             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3424                 // Treat signature-polymorphic methods on VarHandle specially.
3425                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3426                 if (mh != null) {
3427                     return mh;
3428                 }
3429             }
3430             MemberName resolved = resolveOrFail(refKind, member);
3431             mh = getDirectMethodForConstant(refKind, defc, resolved);
3432             if (mh instanceof DirectMethodHandle
3433                     && canBeCached(refKind, defc, resolved)) {
3434                 MemberName key = mh.internalMemberName();
3435                 if (key != null) {
3436                     key = key.asNormalOriginal();
3437                 }
3438                 if (member.equals(key)) {  // better safe than sorry
3439                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3440                 }
3441             }
3442             return mh;
3443         }
3444         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3445             if (refKind == REF_invokeSpecial) {
3446                 return false;
3447             }
3448             if (!Modifier.isPublic(defc.getModifiers()) ||
3449                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3450                     !member.isPublic() ||
3451                     member.isCallerSensitive()) {
3452                 return false;
3453             }
3454             ClassLoader loader = defc.getClassLoader();
3455             if (loader != null) {
3456                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3457                 boolean found = false;
3458                 while (sysl != null) {
3459                     if (loader == sysl) { found = true; break; }
3460                     sysl = sysl.getParent();
3461                 }
3462                 if (!found) {
3463                     return false;
3464                 }
3465             }
3466             try {
3467                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3468                     new MemberName(refKind, defc, member.getName(), member.getType()));
3469                 if (resolved2 == null) {
3470                     return false;
3471                 }
3472                 checkSecurityManager(defc, resolved2);
3473             } catch (SecurityException ex) {
3474                 return false;
3475             }
3476             return true;
3477         }
3478         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3479                 throws ReflectiveOperationException {
3480             if (MethodHandleNatives.refKindIsField(refKind)) {
3481                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3482             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3483                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
3484             } else if (refKind == REF_newInvokeSpecial) {
3485                 return getDirectConstructorNoSecurityManager(defc, member);
3486             }
3487             // oops
3488             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3489         }
3490 
3491         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3492 
3493         /**
3494          * The set of class options that specify whether a hidden class created by
3495          * {@link Lookup#defineHiddenClass(byte[], boolean, ClassOption...)
3496          * Lookup::defineHiddenMethod} method is dynamically added as
3497          * a new member to the nest of a lookup class and whether a hidden class
3498          * is weakly referenced by its defining class loader.
3499          *
3500          * @since 14
3501          */
3502         public enum ClassOption {
3503             /**
3504              * This class option specifies the hidden class be added to
3505              * {@linkplain Class#getNestHost nest} of a lookup class as
3506              * a nestmate.
3507              *
3508              * <p> A hidden nestmate class has access to the private members of all
3509              * classes and interfaces in the same nest.
3510              *
3511              * @see Class#getNestHost()
3512              */
3513             NESTMATE(NESTMATE_CLASS),
3514 
3515             /**
3516              * This class option specifies the hidden class be weakly
3517              * referenced by its defining class loader such that it
3518              * may be unloaded while its defining class loader is
3519              * <a href="../ref/package.html#reachability">strongly reachable</a>.
3520              *
3521              * @jls 12.7 Unloading of Classes and Interfaces
3522              */
3523             WEAK(WEAK_CLASS);
3524 
3525             /* the flag value is used by VM at define class time */
3526             private final int flag;
3527             ClassOption(int flag) {
3528                 this.flag = flag;
3529             }
3530 
3531             static int optionsToFlag(Set<ClassOption> options) {
3532                 int flags = 0;
3533                 for (ClassOption cp : options) {
3534                     flags |= cp.flag;
3535                 }
3536                 return flags;
3537             }
3538         }
3539     }
3540 
3541     /**
3542      * Produces a method handle constructing arrays of a desired type,
3543      * as if by the {@code anewarray} bytecode.
3544      * The return type of the method handle will be the array type.
3545      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3546      *
3547      * <p> If the returned method handle is invoked with a negative
3548      * array size, a {@code NegativeArraySizeException} will be thrown.
3549      *
3550      * @param arrayClass an array type
3551      * @return a method handle which can create arrays of the given type
3552      * @throws NullPointerException if the argument is {@code null}
3553      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3554      * @see java.lang.reflect.Array#newInstance(Class, int)
3555      * @jvms 6.5 {@code anewarray} Instruction
3556      * @since 9
3557      */
3558     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3559         if (!arrayClass.isArray()) {
3560             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3561         }
3562         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3563                 bindTo(arrayClass.getComponentType());
3564         return ani.asType(ani.type().changeReturnType(arrayClass));
3565     }
3566 
3567     /**
3568      * Produces a method handle returning the length of an array,
3569      * as if by the {@code arraylength} bytecode.
3570      * The type of the method handle will have {@code int} as return type,
3571      * and its sole argument will be the array type.
3572      *
3573      * <p> If the returned method handle is invoked with a {@code null}
3574      * array reference, a {@code NullPointerException} will be thrown.
3575      *
3576      * @param arrayClass an array type
3577      * @return a method handle which can retrieve the length of an array of the given array type
3578      * @throws NullPointerException if the argument is {@code null}
3579      * @throws IllegalArgumentException if arrayClass is not an array type
3580      * @jvms 6.5 {@code arraylength} Instruction
3581      * @since 9
3582      */
3583     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3584         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3585     }
3586 
3587     /**
3588      * Produces a method handle giving read access to elements of an array,
3589      * as if by the {@code aaload} bytecode.
3590      * The type of the method handle will have a return type of the array's
3591      * element type.  Its first argument will be the array type,
3592      * and the second will be {@code int}.
3593      *
3594      * <p> When the returned method handle is invoked,
3595      * the array reference and array index are checked.
3596      * A {@code NullPointerException} will be thrown if the array reference
3597      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3598      * thrown if the index is negative or if it is greater than or equal to
3599      * the length of the array.
3600      *
3601      * @param arrayClass an array type
3602      * @return a method handle which can load values from the given array type
3603      * @throws NullPointerException if the argument is null
3604      * @throws  IllegalArgumentException if arrayClass is not an array type
3605      * @jvms 6.5 {@code aaload} Instruction
3606      */
3607     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3608         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3609     }
3610 
3611     /**
3612      * Produces a method handle giving write access to elements of an array,
3613      * as if by the {@code astore} bytecode.
3614      * The type of the method handle will have a void return type.
3615      * Its last argument will be the array's element type.
3616      * The first and second arguments will be the array type and int.
3617      *
3618      * <p> When the returned method handle is invoked,
3619      * the array reference and array index are checked.
3620      * A {@code NullPointerException} will be thrown if the array reference
3621      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3622      * thrown if the index is negative or if it is greater than or equal to
3623      * the length of the array.
3624      *
3625      * @param arrayClass the class of an array
3626      * @return a method handle which can store values into the array type
3627      * @throws NullPointerException if the argument is null
3628      * @throws IllegalArgumentException if arrayClass is not an array type
3629      * @jvms 6.5 {@code aastore} Instruction
3630      */
3631     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3632         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3633     }
3634 
3635     /**
3636      * Produces a VarHandle giving access to elements of an array of type
3637      * {@code arrayClass}.  The VarHandle's variable type is the component type
3638      * of {@code arrayClass} and the list of coordinate types is
3639      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3640      * corresponds to an argument that is an index into an array.
3641      * <p>
3642      * Certain access modes of the returned VarHandle are unsupported under
3643      * the following conditions:
3644      * <ul>
3645      * <li>if the component type is anything other than {@code byte},
3646      *     {@code short}, {@code char}, {@code int}, {@code long},
3647      *     {@code float}, or {@code double} then numeric atomic update access
3648      *     modes are unsupported.
3649      * <li>if the field type is anything other than {@code boolean},
3650      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3651      *     {@code long} then bitwise atomic update access modes are
3652      *     unsupported.
3653      * </ul>
3654      * <p>
3655      * If the component type is {@code float} or {@code double} then numeric
3656      * and atomic update access modes compare values using their bitwise
3657      * representation (see {@link Float#floatToRawIntBits} and
3658      * {@link Double#doubleToRawLongBits}, respectively).
3659      *
3660      * <p> When the returned {@code VarHandle} is invoked,
3661      * the array reference and array index are checked.
3662      * A {@code NullPointerException} will be thrown if the array reference
3663      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3664      * thrown if the index is negative or if it is greater than or equal to
3665      * the length of the array.
3666      *
3667      * @apiNote
3668      * Bitwise comparison of {@code float} values or {@code double} values,
3669      * as performed by the numeric and atomic update access modes, differ
3670      * from the primitive {@code ==} operator and the {@link Float#equals}
3671      * and {@link Double#equals} methods, specifically with respect to
3672      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3673      * Care should be taken when performing a compare and set or a compare
3674      * and exchange operation with such values since the operation may
3675      * unexpectedly fail.
3676      * There are many possible NaN values that are considered to be
3677      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3678      * provided by Java can distinguish between them.  Operation failure can
3679      * occur if the expected or witness value is a NaN value and it is
3680      * transformed (perhaps in a platform specific manner) into another NaN
3681      * value, and thus has a different bitwise representation (see
3682      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3683      * details).
3684      * The values {@code -0.0} and {@code +0.0} have different bitwise
3685      * representations but are considered equal when using the primitive
3686      * {@code ==} operator.  Operation failure can occur if, for example, a
3687      * numeric algorithm computes an expected value to be say {@code -0.0}
3688      * and previously computed the witness value to be say {@code +0.0}.
3689      * @param arrayClass the class of an array, of type {@code T[]}
3690      * @return a VarHandle giving access to elements of an array
3691      * @throws NullPointerException if the arrayClass is null
3692      * @throws IllegalArgumentException if arrayClass is not an array type
3693      * @since 9
3694      */
3695     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3696         return VarHandles.makeArrayElementHandle(arrayClass);
3697     }
3698 
3699     /**
3700      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3701      * viewed as if it were a different primitive array type, such as
3702      * {@code int[]} or {@code long[]}.
3703      * The VarHandle's variable type is the component type of
3704      * {@code viewArrayClass} and the list of coordinate types is
3705      * {@code (byte[], int)}, where the {@code int} coordinate type
3706      * corresponds to an argument that is an index into a {@code byte[]} array.
3707      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3708      * array, composing bytes to or from a value of the component type of
3709      * {@code viewArrayClass} according to the given endianness.
3710      * <p>
3711      * The supported component types (variables types) are {@code short},
3712      * {@code char}, {@code int}, {@code long}, {@code float} and
3713      * {@code double}.
3714      * <p>
3715      * Access of bytes at a given index will result in an
3716      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3717      * or greater than the {@code byte[]} array length minus the size (in bytes)
3718      * of {@code T}.
3719      * <p>
3720      * Access of bytes at an index may be aligned or misaligned for {@code T},
3721      * with respect to the underlying memory address, {@code A} say, associated
3722      * with the array and index.
3723      * If access is misaligned then access for anything other than the
3724      * {@code get} and {@code set} access modes will result in an
3725      * {@code IllegalStateException}.  In such cases atomic access is only
3726      * guaranteed with respect to the largest power of two that divides the GCD
3727      * of {@code A} and the size (in bytes) of {@code T}.
3728      * If access is aligned then following access modes are supported and are
3729      * guaranteed to support atomic access:
3730      * <ul>
3731      * <li>read write access modes for all {@code T}, with the exception of
3732      *     access modes {@code get} and {@code set} for {@code long} and
3733      *     {@code double} on 32-bit platforms.
3734      * <li>atomic update access modes for {@code int}, {@code long},
3735      *     {@code float} or {@code double}.
3736      *     (Future major platform releases of the JDK may support additional
3737      *     types for certain currently unsupported access modes.)
3738      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3739      *     (Future major platform releases of the JDK may support additional
3740      *     numeric types for certain currently unsupported access modes.)
3741      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3742      *     (Future major platform releases of the JDK may support additional
3743      *     numeric types for certain currently unsupported access modes.)
3744      * </ul>
3745      * <p>
3746      * Misaligned access, and therefore atomicity guarantees, may be determined
3747      * for {@code byte[]} arrays without operating on a specific array.  Given
3748      * an {@code index}, {@code T} and it's corresponding boxed type,
3749      * {@code T_BOX}, misalignment may be determined as follows:
3750      * <pre>{@code
3751      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3752      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3753      *     alignmentOffset(0, sizeOfT);
3754      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3755      * boolean isMisaligned = misalignedAtIndex != 0;
3756      * }</pre>
3757      * <p>
3758      * If the variable type is {@code float} or {@code double} then atomic
3759      * update access modes compare values using their bitwise representation
3760      * (see {@link Float#floatToRawIntBits} and
3761      * {@link Double#doubleToRawLongBits}, respectively).
3762      * @param viewArrayClass the view array class, with a component type of
3763      * type {@code T}
3764      * @param byteOrder the endianness of the view array elements, as
3765      * stored in the underlying {@code byte} array
3766      * @return a VarHandle giving access to elements of a {@code byte[]} array
3767      * viewed as if elements corresponding to the components type of the view
3768      * array class
3769      * @throws NullPointerException if viewArrayClass or byteOrder is null
3770      * @throws IllegalArgumentException if viewArrayClass is not an array type
3771      * @throws UnsupportedOperationException if the component type of
3772      * viewArrayClass is not supported as a variable type
3773      * @since 9
3774      */
3775     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3776                                      ByteOrder byteOrder) throws IllegalArgumentException {
3777         Objects.requireNonNull(byteOrder);
3778         return VarHandles.byteArrayViewHandle(viewArrayClass,
3779                                               byteOrder == ByteOrder.BIG_ENDIAN);
3780     }
3781 
3782     /**
3783      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3784      * viewed as if it were an array of elements of a different primitive
3785      * component type to that of {@code byte}, such as {@code int[]} or
3786      * {@code long[]}.
3787      * The VarHandle's variable type is the component type of
3788      * {@code viewArrayClass} and the list of coordinate types is
3789      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3790      * corresponds to an argument that is an index into a {@code byte[]} array.
3791      * The returned VarHandle accesses bytes at an index in a
3792      * {@code ByteBuffer}, composing bytes to or from a value of the component
3793      * type of {@code viewArrayClass} according to the given endianness.
3794      * <p>
3795      * The supported component types (variables types) are {@code short},
3796      * {@code char}, {@code int}, {@code long}, {@code float} and
3797      * {@code double}.
3798      * <p>
3799      * Access will result in a {@code ReadOnlyBufferException} for anything
3800      * other than the read access modes if the {@code ByteBuffer} is read-only.
3801      * <p>
3802      * Access of bytes at a given index will result in an
3803      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3804      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3805      * {@code T}.
3806      * <p>
3807      * Access of bytes at an index may be aligned or misaligned for {@code T},
3808      * with respect to the underlying memory address, {@code A} say, associated
3809      * with the {@code ByteBuffer} and index.
3810      * If access is misaligned then access for anything other than the
3811      * {@code get} and {@code set} access modes will result in an
3812      * {@code IllegalStateException}.  In such cases atomic access is only
3813      * guaranteed with respect to the largest power of two that divides the GCD
3814      * of {@code A} and the size (in bytes) of {@code T}.
3815      * If access is aligned then following access modes are supported and are
3816      * guaranteed to support atomic access:
3817      * <ul>
3818      * <li>read write access modes for all {@code T}, with the exception of
3819      *     access modes {@code get} and {@code set} for {@code long} and
3820      *     {@code double} on 32-bit platforms.
3821      * <li>atomic update access modes for {@code int}, {@code long},
3822      *     {@code float} or {@code double}.
3823      *     (Future major platform releases of the JDK may support additional
3824      *     types for certain currently unsupported access modes.)
3825      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3826      *     (Future major platform releases of the JDK may support additional
3827      *     numeric types for certain currently unsupported access modes.)
3828      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3829      *     (Future major platform releases of the JDK may support additional
3830      *     numeric types for certain currently unsupported access modes.)
3831      * </ul>
3832      * <p>
3833      * Misaligned access, and therefore atomicity guarantees, may be determined
3834      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3835      * {@code index}, {@code T} and it's corresponding boxed type,
3836      * {@code T_BOX}, as follows:
3837      * <pre>{@code
3838      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3839      * ByteBuffer bb = ...
3840      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3841      * boolean isMisaligned = misalignedAtIndex != 0;
3842      * }</pre>
3843      * <p>
3844      * If the variable type is {@code float} or {@code double} then atomic
3845      * update access modes compare values using their bitwise representation
3846      * (see {@link Float#floatToRawIntBits} and
3847      * {@link Double#doubleToRawLongBits}, respectively).
3848      * @param viewArrayClass the view array class, with a component type of
3849      * type {@code T}
3850      * @param byteOrder the endianness of the view array elements, as
3851      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3852      * endianness of a {@code ByteBuffer})
3853      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3854      * viewed as if elements corresponding to the components type of the view
3855      * array class
3856      * @throws NullPointerException if viewArrayClass or byteOrder is null
3857      * @throws IllegalArgumentException if viewArrayClass is not an array type
3858      * @throws UnsupportedOperationException if the component type of
3859      * viewArrayClass is not supported as a variable type
3860      * @since 9
3861      */
3862     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3863                                       ByteOrder byteOrder) throws IllegalArgumentException {
3864         Objects.requireNonNull(byteOrder);
3865         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3866                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3867     }
3868 
3869 
3870     /// method handle invocation (reflective style)
3871 
3872     /**
3873      * Produces a method handle which will invoke any method handle of the
3874      * given {@code type}, with a given number of trailing arguments replaced by
3875      * a single trailing {@code Object[]} array.
3876      * The resulting invoker will be a method handle with the following
3877      * arguments:
3878      * <ul>
3879      * <li>a single {@code MethodHandle} target
3880      * <li>zero or more leading values (counted by {@code leadingArgCount})
3881      * <li>an {@code Object[]} array containing trailing arguments
3882      * </ul>
3883      * <p>
3884      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3885      * the indicated {@code type}.
3886      * That is, if the target is exactly of the given {@code type}, it will behave
3887      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3888      * is used to convert the target to the required {@code type}.
3889      * <p>
3890      * The type of the returned invoker will not be the given {@code type}, but rather
3891      * will have all parameters except the first {@code leadingArgCount}
3892      * replaced by a single array of type {@code Object[]}, which will be
3893      * the final parameter.
3894      * <p>
3895      * Before invoking its target, the invoker will spread the final array, apply
3896      * reference casts as necessary, and unbox and widen primitive arguments.
3897      * If, when the invoker is called, the supplied array argument does
3898      * not have the correct number of elements, the invoker will throw
3899      * an {@link IllegalArgumentException} instead of invoking the target.
3900      * <p>
3901      * This method is equivalent to the following code (though it may be more efficient):
3902      * <blockquote><pre>{@code
3903 MethodHandle invoker = MethodHandles.invoker(type);
3904 int spreadArgCount = type.parameterCount() - leadingArgCount;
3905 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3906 return invoker;
3907      * }</pre></blockquote>
3908      * This method throws no reflective or security exceptions.
3909      * @param type the desired target type
3910      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3911      * @return a method handle suitable for invoking any method handle of the given type
3912      * @throws NullPointerException if {@code type} is null
3913      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3914      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3915      *                  or if the resulting method handle's type would have
3916      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3917      */
3918     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3919         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3920             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3921         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3922         return type.invokers().spreadInvoker(leadingArgCount);
3923     }
3924 
3925     /**
3926      * Produces a special <em>invoker method handle</em> which can be used to
3927      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3928      * The resulting invoker will have a type which is
3929      * exactly equal to the desired type, except that it will accept
3930      * an additional leading argument of type {@code MethodHandle}.
3931      * <p>
3932      * This method is equivalent to the following code (though it may be more efficient):
3933      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3934      *
3935      * <p style="font-size:smaller;">
3936      * <em>Discussion:</em>
3937      * Invoker method handles can be useful when working with variable method handles
3938      * of unknown types.
3939      * For example, to emulate an {@code invokeExact} call to a variable method
3940      * handle {@code M}, extract its type {@code T},
3941      * look up the invoker method {@code X} for {@code T},
3942      * and call the invoker method, as {@code X.invoke(T, A...)}.
3943      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3944      * is unknown.)
3945      * If spreading, collecting, or other argument transformations are required,
3946      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3947      * method handle values, as long as they are compatible with the type of {@code X}.
3948      * <p style="font-size:smaller;">
3949      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3950      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3951      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3952      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3953      * <p>
3954      * This method throws no reflective or security exceptions.
3955      * @param type the desired target type
3956      * @return a method handle suitable for invoking any method handle of the given type
3957      * @throws IllegalArgumentException if the resulting method handle's type would have
3958      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3959      */
3960     public static MethodHandle exactInvoker(MethodType type) {
3961         return type.invokers().exactInvoker();
3962     }
3963 
3964     /**
3965      * Produces a special <em>invoker method handle</em> which can be used to
3966      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3967      * The resulting invoker will have a type which is
3968      * exactly equal to the desired type, except that it will accept
3969      * an additional leading argument of type {@code MethodHandle}.
3970      * <p>
3971      * Before invoking its target, if the target differs from the expected type,
3972      * the invoker will apply reference casts as
3973      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3974      * Similarly, the return value will be converted as necessary.
3975      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3976      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3977      * <p>
3978      * This method is equivalent to the following code (though it may be more efficient):
3979      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3980      * <p style="font-size:smaller;">
3981      * <em>Discussion:</em>
3982      * A {@linkplain MethodType#genericMethodType general method type} is one which
3983      * mentions only {@code Object} arguments and return values.
3984      * An invoker for such a type is capable of calling any method handle
3985      * of the same arity as the general type.
3986      * <p style="font-size:smaller;">
3987      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3988      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3989      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3990      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3991      * <p>
3992      * This method throws no reflective or security exceptions.
3993      * @param type the desired target type
3994      * @return a method handle suitable for invoking any method handle convertible to the given type
3995      * @throws IllegalArgumentException if the resulting method handle's type would have
3996      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3997      */
3998     public static MethodHandle invoker(MethodType type) {
3999         return type.invokers().genericInvoker();
4000     }
4001 
4002     /**
4003      * Produces a special <em>invoker method handle</em> which can be used to
4004      * invoke a signature-polymorphic access mode method on any VarHandle whose
4005      * associated access mode type is compatible with the given type.
4006      * The resulting invoker will have a type which is exactly equal to the
4007      * desired given type, except that it will accept an additional leading
4008      * argument of type {@code VarHandle}.
4009      *
4010      * @param accessMode the VarHandle access mode
4011      * @param type the desired target type
4012      * @return a method handle suitable for invoking an access mode method of
4013      *         any VarHandle whose access mode type is of the given type.
4014      * @since 9
4015      */
4016     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4017         return type.invokers().varHandleMethodExactInvoker(accessMode);
4018     }
4019 
4020     /**
4021      * Produces a special <em>invoker method handle</em> which can be used to
4022      * invoke a signature-polymorphic access mode method on any VarHandle whose
4023      * associated access mode type is compatible with the given type.
4024      * The resulting invoker will have a type which is exactly equal to the
4025      * desired given type, except that it will accept an additional leading
4026      * argument of type {@code VarHandle}.
4027      * <p>
4028      * Before invoking its target, if the access mode type differs from the
4029      * desired given type, the invoker will apply reference casts as necessary
4030      * and box, unbox, or widen primitive values, as if by
4031      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
4032      * converted as necessary.
4033      * <p>
4034      * This method is equivalent to the following code (though it may be more
4035      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
4036      *
4037      * @param accessMode the VarHandle access mode
4038      * @param type the desired target type
4039      * @return a method handle suitable for invoking an access mode method of
4040      *         any VarHandle whose access mode type is convertible to the given
4041      *         type.
4042      * @since 9
4043      */
4044     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
4045         return type.invokers().varHandleMethodInvoker(accessMode);
4046     }
4047 
4048     /*non-public*/
4049     static MethodHandle basicInvoker(MethodType type) {
4050         return type.invokers().basicInvoker();
4051     }
4052 
4053      /// method handle modification (creation from other method handles)
4054 
4055     /**
4056      * Produces a method handle which adapts the type of the
4057      * given method handle to a new type by pairwise argument and return type conversion.
4058      * The original type and new type must have the same number of arguments.
4059      * The resulting method handle is guaranteed to report a type
4060      * which is equal to the desired new type.
4061      * <p>
4062      * If the original type and new type are equal, returns target.
4063      * <p>
4064      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
4065      * and some additional conversions are also applied if those conversions fail.
4066      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
4067      * if possible, before or instead of any conversions done by {@code asType}:
4068      * <ul>
4069      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
4070      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
4071      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
4072      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
4073      *     the boolean is converted to a byte value, 1 for true, 0 for false.
4074      *     (This treatment follows the usage of the bytecode verifier.)
4075      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
4076      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
4077      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
4078      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
4079      *     then a Java casting conversion (JLS 5.5) is applied.
4080      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
4081      *     widening and/or narrowing.)
4082      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
4083      *     conversion will be applied at runtime, possibly followed
4084      *     by a Java casting conversion (JLS 5.5) on the primitive value,
4085      *     possibly followed by a conversion from byte to boolean by testing
4086      *     the low-order bit.
4087      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
4088      *     and if the reference is null at runtime, a zero value is introduced.
4089      * </ul>
4090      * @param target the method handle to invoke after arguments are retyped
4091      * @param newType the expected type of the new method handle
4092      * @return a method handle which delegates to the target after performing
4093      *           any necessary argument conversions, and arranges for any
4094      *           necessary return value conversions
4095      * @throws NullPointerException if either argument is null
4096      * @throws WrongMethodTypeException if the conversion cannot be made
4097      * @see MethodHandle#asType
4098      */
4099     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
4100         explicitCastArgumentsChecks(target, newType);
4101         // use the asTypeCache when possible:
4102         MethodType oldType = target.type();
4103         if (oldType == newType)  return target;
4104         if (oldType.explicitCastEquivalentToAsType(newType)) {
4105             return target.asFixedArity().asType(newType);
4106         }
4107         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
4108     }
4109 
4110     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
4111         if (target.type().parameterCount() != newType.parameterCount()) {
4112             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
4113         }
4114     }
4115 
4116     /**
4117      * Produces a method handle which adapts the calling sequence of the
4118      * given method handle to a new type, by reordering the arguments.
4119      * The resulting method handle is guaranteed to report a type
4120      * which is equal to the desired new type.
4121      * <p>
4122      * The given array controls the reordering.
4123      * Call {@code #I} the number of incoming parameters (the value
4124      * {@code newType.parameterCount()}, and call {@code #O} the number
4125      * of outgoing parameters (the value {@code target.type().parameterCount()}).
4126      * Then the length of the reordering array must be {@code #O},
4127      * and each element must be a non-negative number less than {@code #I}.
4128      * For every {@code N} less than {@code #O}, the {@code N}-th
4129      * outgoing argument will be taken from the {@code I}-th incoming
4130      * argument, where {@code I} is {@code reorder[N]}.
4131      * <p>
4132      * No argument or return value conversions are applied.
4133      * The type of each incoming argument, as determined by {@code newType},
4134      * must be identical to the type of the corresponding outgoing parameter
4135      * or parameters in the target method handle.
4136      * The return type of {@code newType} must be identical to the return
4137      * type of the original target.
4138      * <p>
4139      * The reordering array need not specify an actual permutation.
4140      * An incoming argument will be duplicated if its index appears
4141      * more than once in the array, and an incoming argument will be dropped
4142      * if its index does not appear in the array.
4143      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
4144      * incoming arguments which are not mentioned in the reordering array
4145      * may be of any type, as determined only by {@code newType}.
4146      * <blockquote><pre>{@code
4147 import static java.lang.invoke.MethodHandles.*;
4148 import static java.lang.invoke.MethodType.*;
4149 ...
4150 MethodType intfn1 = methodType(int.class, int.class);
4151 MethodType intfn2 = methodType(int.class, int.class, int.class);
4152 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
4153 assert(sub.type().equals(intfn2));
4154 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
4155 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
4156 assert((int)rsub.invokeExact(1, 100) == 99);
4157 MethodHandle add = ... (int x, int y) -> (x+y) ...;
4158 assert(add.type().equals(intfn2));
4159 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
4160 assert(twice.type().equals(intfn1));
4161 assert((int)twice.invokeExact(21) == 42);
4162      * }</pre></blockquote>
4163      * <p>
4164      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4165      * variable-arity method handle}, even if the original target method handle was.
4166      * @param target the method handle to invoke after arguments are reordered
4167      * @param newType the expected type of the new method handle
4168      * @param reorder an index array which controls the reordering
4169      * @return a method handle which delegates to the target after it
4170      *           drops unused arguments and moves and/or duplicates the other arguments
4171      * @throws NullPointerException if any argument is null
4172      * @throws IllegalArgumentException if the index array length is not equal to
4173      *                  the arity of the target, or if any index array element
4174      *                  not a valid index for a parameter of {@code newType},
4175      *                  or if two corresponding parameter types in
4176      *                  {@code target.type()} and {@code newType} are not identical,
4177      */
4178     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
4179         reorder = reorder.clone();  // get a private copy
4180         MethodType oldType = target.type();
4181         permuteArgumentChecks(reorder, newType, oldType);
4182         // first detect dropped arguments and handle them separately
4183         int[] originalReorder = reorder;
4184         BoundMethodHandle result = target.rebind();
4185         LambdaForm form = result.form;
4186         int newArity = newType.parameterCount();
4187         // Normalize the reordering into a real permutation,
4188         // by removing duplicates and adding dropped elements.
4189         // This somewhat improves lambda form caching, as well
4190         // as simplifying the transform by breaking it up into steps.
4191         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
4192             if (ddIdx > 0) {
4193                 // We found a duplicated entry at reorder[ddIdx].
4194                 // Example:  (x,y,z)->asList(x,y,z)
4195                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
4196                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
4197                 // The starred element corresponds to the argument
4198                 // deleted by the dupArgumentForm transform.
4199                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
4200                 boolean killFirst = false;
4201                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
4202                     // Set killFirst if the dup is larger than an intervening position.
4203                     // This will remove at least one inversion from the permutation.
4204                     if (dupVal > val) killFirst = true;
4205                 }
4206                 if (!killFirst) {
4207                     srcPos = dstPos;
4208                     dstPos = ddIdx;
4209                 }
4210                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
4211                 assert (reorder[srcPos] == reorder[dstPos]);
4212                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
4213                 // contract the reordering by removing the element at dstPos
4214                 int tailPos = dstPos + 1;
4215                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
4216                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
4217             } else {
4218                 int dropVal = ~ddIdx, insPos = 0;
4219                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
4220                     // Find first element of reorder larger than dropVal.
4221                     // This is where we will insert the dropVal.
4222                     insPos += 1;
4223                 }
4224                 Class<?> ptype = newType.parameterType(dropVal);
4225                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
4226                 oldType = oldType.insertParameterTypes(insPos, ptype);
4227                 // expand the reordering by inserting an element at insPos
4228                 int tailPos = insPos + 1;
4229                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
4230                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
4231                 reorder[insPos] = dropVal;
4232             }
4233             assert (permuteArgumentChecks(reorder, newType, oldType));
4234         }
4235         assert (reorder.length == newArity);  // a perfect permutation
4236         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4237         form = form.editor().permuteArgumentsForm(1, reorder);
4238         if (newType == result.type() && form == result.internalForm())
4239             return result;
4240         return result.copyWith(newType, form);
4241     }
4242 
4243     /**
4244      * Return an indication of any duplicate or omission in reorder.
4245      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4246      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4247      * Otherwise, return zero.
4248      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4249      */
4250     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4251         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4252         if (newArity < BIT_LIMIT) {
4253             long mask = 0;
4254             for (int i = 0; i < reorder.length; i++) {
4255                 int arg = reorder[i];
4256                 if (arg >= newArity) {
4257                     return reorder.length;
4258                 }
4259                 long bit = 1L << arg;
4260                 if ((mask & bit) != 0) {
4261                     return i;  // >0 indicates a dup
4262                 }
4263                 mask |= bit;
4264             }
4265             if (mask == (1L << newArity) - 1) {
4266                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4267                 return 0;
4268             }
4269             // find first zero
4270             long zeroBit = Long.lowestOneBit(~mask);
4271             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4272             assert(zeroPos <= newArity);
4273             if (zeroPos == newArity) {
4274                 return 0;
4275             }
4276             return ~zeroPos;
4277         } else {
4278             // same algorithm, different bit set
4279             BitSet mask = new BitSet(newArity);
4280             for (int i = 0; i < reorder.length; i++) {
4281                 int arg = reorder[i];
4282                 if (arg >= newArity) {
4283                     return reorder.length;
4284                 }
4285                 if (mask.get(arg)) {
4286                     return i;  // >0 indicates a dup
4287                 }
4288                 mask.set(arg);
4289             }
4290             int zeroPos = mask.nextClearBit(0);
4291             assert(zeroPos <= newArity);
4292             if (zeroPos == newArity) {
4293                 return 0;
4294             }
4295             return ~zeroPos;
4296         }
4297     }
4298 
4299     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4300         if (newType.returnType() != oldType.returnType())
4301             throw newIllegalArgumentException("return types do not match",
4302                     oldType, newType);
4303         if (reorder.length == oldType.parameterCount()) {
4304             int limit = newType.parameterCount();
4305             boolean bad = false;
4306             for (int j = 0; j < reorder.length; j++) {
4307                 int i = reorder[j];
4308                 if (i < 0 || i >= limit) {
4309                     bad = true; break;
4310                 }
4311                 Class<?> src = newType.parameterType(i);
4312                 Class<?> dst = oldType.parameterType(j);
4313                 if (src != dst)
4314                     throw newIllegalArgumentException("parameter types do not match after reorder",
4315                             oldType, newType);
4316             }
4317             if (!bad)  return true;
4318         }
4319         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4320     }
4321 
4322     /**
4323      * Produces a method handle of the requested return type which returns the given
4324      * constant value every time it is invoked.
4325      * <p>
4326      * Before the method handle is returned, the passed-in value is converted to the requested type.
4327      * If the requested type is primitive, widening primitive conversions are attempted,
4328      * else reference conversions are attempted.
4329      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4330      * @param type the return type of the desired method handle
4331      * @param value the value to return
4332      * @return a method handle of the given return type and no arguments, which always returns the given value
4333      * @throws NullPointerException if the {@code type} argument is null
4334      * @throws ClassCastException if the value cannot be converted to the required return type
4335      * @throws IllegalArgumentException if the given type is {@code void.class}
4336      */
4337     public static MethodHandle constant(Class<?> type, Object value) {
4338         if (type.isPrimitive()) {
4339             if (type == void.class)
4340                 throw newIllegalArgumentException("void type");
4341             Wrapper w = Wrapper.forPrimitiveType(type);
4342             value = w.convert(value, type);
4343             if (w.zero().equals(value))
4344                 return zero(w, type);
4345             return insertArguments(identity(type), 0, value);
4346         } else {
4347             if (value == null)
4348                 return zero(Wrapper.OBJECT, type);
4349             return identity(type).bindTo(value);
4350         }
4351     }
4352 
4353     /**
4354      * Produces a method handle which returns its sole argument when invoked.
4355      * @param type the type of the sole parameter and return value of the desired method handle
4356      * @return a unary method handle which accepts and returns the given type
4357      * @throws NullPointerException if the argument is null
4358      * @throws IllegalArgumentException if the given type is {@code void.class}
4359      */
4360     public static MethodHandle identity(Class<?> type) {
4361         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4362         int pos = btw.ordinal();
4363         MethodHandle ident = IDENTITY_MHS[pos];
4364         if (ident == null) {
4365             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4366         }
4367         if (ident.type().returnType() == type)
4368             return ident;
4369         // something like identity(Foo.class); do not bother to intern these
4370         assert (btw == Wrapper.OBJECT);
4371         return makeIdentity(type);
4372     }
4373 
4374     /**
4375      * Produces a constant method handle of the requested return type which
4376      * returns the default value for that type every time it is invoked.
4377      * The resulting constant method handle will have no side effects.
4378      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4379      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4380      * since {@code explicitCastArguments} converts {@code null} to default values.
4381      * @param type the expected return type of the desired method handle
4382      * @return a constant method handle that takes no arguments
4383      *         and returns the default value of the given type (or void, if the type is void)
4384      * @throws NullPointerException if the argument is null
4385      * @see MethodHandles#constant
4386      * @see MethodHandles#empty
4387      * @see MethodHandles#explicitCastArguments
4388      * @since 9
4389      */
4390     public static MethodHandle zero(Class<?> type) {
4391         Objects.requireNonNull(type);
4392         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4393     }
4394 
4395     private static MethodHandle identityOrVoid(Class<?> type) {
4396         return type == void.class ? zero(type) : identity(type);
4397     }
4398 
4399     /**
4400      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4401      * and returns a suitable default depending on the return type.
4402      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4403      * <p>The returned method handle is equivalent to
4404      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4405      *
4406      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4407      * {@code guardWithTest(pred, target, empty(target.type())}.
4408      * @param type the type of the desired method handle
4409      * @return a constant method handle of the given type, which returns a default value of the given return type
4410      * @throws NullPointerException if the argument is null
4411      * @see MethodHandles#zero
4412      * @see MethodHandles#constant
4413      * @since 9
4414      */
4415     public static  MethodHandle empty(MethodType type) {
4416         Objects.requireNonNull(type);
4417         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4418     }
4419 
4420     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4421     private static MethodHandle makeIdentity(Class<?> ptype) {
4422         MethodType mtype = methodType(ptype, ptype);
4423         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4424         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4425     }
4426 
4427     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4428         int pos = btw.ordinal();
4429         MethodHandle zero = ZERO_MHS[pos];
4430         if (zero == null) {
4431             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4432         }
4433         if (zero.type().returnType() == rtype)
4434             return zero;
4435         assert(btw == Wrapper.OBJECT);
4436         return makeZero(rtype);
4437     }
4438     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4439     private static MethodHandle makeZero(Class<?> rtype) {
4440         MethodType mtype = methodType(rtype);
4441         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4442         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4443     }
4444 
4445     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4446         // Simulate a CAS, to avoid racy duplication of results.
4447         MethodHandle prev = cache[pos];
4448         if (prev != null) return prev;
4449         return cache[pos] = value;
4450     }
4451 
4452     /**
4453      * Provides a target method handle with one or more <em>bound arguments</em>
4454      * in advance of the method handle's invocation.
4455      * The formal parameters to the target corresponding to the bound
4456      * arguments are called <em>bound parameters</em>.
4457      * Returns a new method handle which saves away the bound arguments.
4458      * When it is invoked, it receives arguments for any non-bound parameters,
4459      * binds the saved arguments to their corresponding parameters,
4460      * and calls the original target.
4461      * <p>
4462      * The type of the new method handle will drop the types for the bound
4463      * parameters from the original target type, since the new method handle
4464      * will no longer require those arguments to be supplied by its callers.
4465      * <p>
4466      * Each given argument object must match the corresponding bound parameter type.
4467      * If a bound parameter type is a primitive, the argument object
4468      * must be a wrapper, and will be unboxed to produce the primitive value.
4469      * <p>
4470      * The {@code pos} argument selects which parameters are to be bound.
4471      * It may range between zero and <i>N-L</i> (inclusively),
4472      * where <i>N</i> is the arity of the target method handle
4473      * and <i>L</i> is the length of the values array.
4474      * <p>
4475      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4476      * variable-arity method handle}, even if the original target method handle was.
4477      * @param target the method handle to invoke after the argument is inserted
4478      * @param pos where to insert the argument (zero for the first)
4479      * @param values the series of arguments to insert
4480      * @return a method handle which inserts an additional argument,
4481      *         before calling the original method handle
4482      * @throws NullPointerException if the target or the {@code values} array is null
4483      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4484      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4485      *         is the length of the values array.
4486      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4487      *         type.
4488      * @see MethodHandle#bindTo
4489      */
4490     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4491         int insCount = values.length;
4492         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4493         if (insCount == 0)  return target;
4494         BoundMethodHandle result = target.rebind();
4495         for (int i = 0; i < insCount; i++) {
4496             Object value = values[i];
4497             Class<?> ptype = ptypes[pos+i];
4498             if (ptype.isPrimitive()) {
4499                 result = insertArgumentPrimitive(result, pos, ptype, value);
4500             } else {
4501                 value = ptype.cast(value);  // throw CCE if needed
4502                 result = result.bindArgumentL(pos, value);
4503             }
4504         }
4505         return result;
4506     }
4507 
4508     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4509                                                              Class<?> ptype, Object value) {
4510         Wrapper w = Wrapper.forPrimitiveType(ptype);
4511         // perform unboxing and/or primitive conversion
4512         value = w.convert(value, ptype);
4513         switch (w) {
4514         case INT:     return result.bindArgumentI(pos, (int)value);
4515         case LONG:    return result.bindArgumentJ(pos, (long)value);
4516         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4517         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4518         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4519         }
4520     }
4521 
4522     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4523         MethodType oldType = target.type();
4524         int outargs = oldType.parameterCount();
4525         int inargs  = outargs - insCount;
4526         if (inargs < 0)
4527             throw newIllegalArgumentException("too many values to insert");
4528         if (pos < 0 || pos > inargs)
4529             throw newIllegalArgumentException("no argument type to append");
4530         return oldType.ptypes();
4531     }
4532 
4533     /**
4534      * Produces a method handle which will discard some dummy arguments
4535      * before calling some other specified <i>target</i> method handle.
4536      * The type of the new method handle will be the same as the target's type,
4537      * except it will also include the dummy argument types,
4538      * at some given position.
4539      * <p>
4540      * The {@code pos} argument may range between zero and <i>N</i>,
4541      * where <i>N</i> is the arity of the target.
4542      * If {@code pos} is zero, the dummy arguments will precede
4543      * the target's real arguments; if {@code pos} is <i>N</i>
4544      * they will come after.
4545      * <p>
4546      * <b>Example:</b>
4547      * <blockquote><pre>{@code
4548 import static java.lang.invoke.MethodHandles.*;
4549 import static java.lang.invoke.MethodType.*;
4550 ...
4551 MethodHandle cat = lookup().findVirtual(String.class,
4552   "concat", methodType(String.class, String.class));
4553 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4554 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4555 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4556 assertEquals(bigType, d0.type());
4557 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4558      * }</pre></blockquote>
4559      * <p>
4560      * This method is also equivalent to the following code:
4561      * <blockquote><pre>
4562      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4563      * </pre></blockquote>
4564      * @param target the method handle to invoke after the arguments are dropped
4565      * @param pos position of first argument to drop (zero for the leftmost)
4566      * @param valueTypes the type(s) of the argument(s) to drop
4567      * @return a method handle which drops arguments of the given types,
4568      *         before calling the original method handle
4569      * @throws NullPointerException if the target is null,
4570      *                              or if the {@code valueTypes} list or any of its elements is null
4571      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4572      *                  or if {@code pos} is negative or greater than the arity of the target,
4573      *                  or if the new method handle's type would have too many parameters
4574      */
4575     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4576         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4577     }
4578 
4579     private static List<Class<?>> copyTypes(Object[] array) {
4580         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4581     }
4582 
4583     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4584         MethodType oldType = target.type();  // get NPE
4585         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4586         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4587         if (dropped == 0)  return target;
4588         BoundMethodHandle result = target.rebind();
4589         LambdaForm lform = result.form;
4590         int insertFormArg = 1 + pos;
4591         for (Class<?> ptype : valueTypes) {
4592             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4593         }
4594         result = result.copyWith(newType, lform);
4595         return result;
4596     }
4597 
4598     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4599         int dropped = valueTypes.size();
4600         MethodType.checkSlotCount(dropped);
4601         int outargs = oldType.parameterCount();
4602         int inargs  = outargs + dropped;
4603         if (pos < 0 || pos > outargs)
4604             throw newIllegalArgumentException("no argument type to remove"
4605                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4606                     );
4607         return dropped;
4608     }
4609 
4610     /**
4611      * Produces a method handle which will discard some dummy arguments
4612      * before calling some other specified <i>target</i> method handle.
4613      * The type of the new method handle will be the same as the target's type,
4614      * except it will also include the dummy argument types,
4615      * at some given position.
4616      * <p>
4617      * The {@code pos} argument may range between zero and <i>N</i>,
4618      * where <i>N</i> is the arity of the target.
4619      * If {@code pos} is zero, the dummy arguments will precede
4620      * the target's real arguments; if {@code pos} is <i>N</i>
4621      * they will come after.
4622      * @apiNote
4623      * <blockquote><pre>{@code
4624 import static java.lang.invoke.MethodHandles.*;
4625 import static java.lang.invoke.MethodType.*;
4626 ...
4627 MethodHandle cat = lookup().findVirtual(String.class,
4628   "concat", methodType(String.class, String.class));
4629 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4630 MethodHandle d0 = dropArguments(cat, 0, String.class);
4631 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4632 MethodHandle d1 = dropArguments(cat, 1, String.class);
4633 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4634 MethodHandle d2 = dropArguments(cat, 2, String.class);
4635 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4636 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4637 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4638      * }</pre></blockquote>
4639      * <p>
4640      * This method is also equivalent to the following code:
4641      * <blockquote><pre>
4642      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4643      * </pre></blockquote>
4644      * @param target the method handle to invoke after the arguments are dropped
4645      * @param pos position of first argument to drop (zero for the leftmost)
4646      * @param valueTypes the type(s) of the argument(s) to drop
4647      * @return a method handle which drops arguments of the given types,
4648      *         before calling the original method handle
4649      * @throws NullPointerException if the target is null,
4650      *                              or if the {@code valueTypes} array or any of its elements is null
4651      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4652      *                  or if {@code pos} is negative or greater than the arity of the target,
4653      *                  or if the new method handle's type would have
4654      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4655      */
4656     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4657         return dropArguments0(target, pos, copyTypes(valueTypes));
4658     }
4659 
4660     // private version which allows caller some freedom with error handling
4661     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4662                                       boolean nullOnFailure) {
4663         newTypes = copyTypes(newTypes.toArray());
4664         List<Class<?>> oldTypes = target.type().parameterList();
4665         int match = oldTypes.size();
4666         if (skip != 0) {
4667             if (skip < 0 || skip > match) {
4668                 throw newIllegalArgumentException("illegal skip", skip, target);
4669             }
4670             oldTypes = oldTypes.subList(skip, match);
4671             match -= skip;
4672         }
4673         List<Class<?>> addTypes = newTypes;
4674         int add = addTypes.size();
4675         if (pos != 0) {
4676             if (pos < 0 || pos > add) {
4677                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4678             }
4679             addTypes = addTypes.subList(pos, add);
4680             add -= pos;
4681             assert(addTypes.size() == add);
4682         }
4683         // Do not add types which already match the existing arguments.
4684         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4685             if (nullOnFailure) {
4686                 return null;
4687             }
4688             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4689         }
4690         addTypes = addTypes.subList(match, add);
4691         add -= match;
4692         assert(addTypes.size() == add);
4693         // newTypes:     (   P*[pos], M*[match], A*[add] )
4694         // target: ( S*[skip],        M*[match]  )
4695         MethodHandle adapter = target;
4696         if (add > 0) {
4697             adapter = dropArguments0(adapter, skip+ match, addTypes);
4698         }
4699         // adapter: (S*[skip],        M*[match], A*[add] )
4700         if (pos > 0) {
4701             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4702         }
4703         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4704         return adapter;
4705     }
4706 
4707     /**
4708      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4709      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4710      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4711      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4712      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4713      * {@link #dropArguments(MethodHandle, int, Class[])}.
4714      * <p>
4715      * The resulting handle will have the same return type as the target handle.
4716      * <p>
4717      * In more formal terms, assume these two type lists:<ul>
4718      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4719      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4720      * {@code newTypes}.
4721      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4722      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4723      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4724      * sub-list.
4725      * </ul>
4726      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4727      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4728      * {@link #dropArguments(MethodHandle, int, Class[])}.
4729      *
4730      * @apiNote
4731      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4732      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4733      * <blockquote><pre>{@code
4734 import static java.lang.invoke.MethodHandles.*;
4735 import static java.lang.invoke.MethodType.*;
4736 ...
4737 ...
4738 MethodHandle h0 = constant(boolean.class, true);
4739 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4740 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4741 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4742 if (h1.type().parameterCount() < h2.type().parameterCount())
4743     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4744 else
4745     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4746 MethodHandle h3 = guardWithTest(h0, h1, h2);
4747 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4748      * }</pre></blockquote>
4749      * @param target the method handle to adapt
4750      * @param skip number of targets parameters to disregard (they will be unchanged)
4751      * @param newTypes the list of types to match {@code target}'s parameter type list to
4752      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4753      * @return a possibly adapted method handle
4754      * @throws NullPointerException if either argument is null
4755      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4756      *         or if {@code skip} is negative or greater than the arity of the target,
4757      *         or if {@code pos} is negative or greater than the newTypes list size,
4758      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4759      *         {@code pos}.
4760      * @since 9
4761      */
4762     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4763         Objects.requireNonNull(target);
4764         Objects.requireNonNull(newTypes);
4765         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4766     }
4767 
4768     /**
4769      * Adapts a target method handle by pre-processing
4770      * one or more of its arguments, each with its own unary filter function,
4771      * and then calling the target with each pre-processed argument
4772      * replaced by the result of its corresponding filter function.
4773      * <p>
4774      * The pre-processing is performed by one or more method handles,
4775      * specified in the elements of the {@code filters} array.
4776      * The first element of the filter array corresponds to the {@code pos}
4777      * argument of the target, and so on in sequence.
4778      * The filter functions are invoked in left to right order.
4779      * <p>
4780      * Null arguments in the array are treated as identity functions,
4781      * and the corresponding arguments left unchanged.
4782      * (If there are no non-null elements in the array, the original target is returned.)
4783      * Each filter is applied to the corresponding argument of the adapter.
4784      * <p>
4785      * If a filter {@code F} applies to the {@code N}th argument of
4786      * the target, then {@code F} must be a method handle which
4787      * takes exactly one argument.  The type of {@code F}'s sole argument
4788      * replaces the corresponding argument type of the target
4789      * in the resulting adapted method handle.
4790      * The return type of {@code F} must be identical to the corresponding
4791      * parameter type of the target.
4792      * <p>
4793      * It is an error if there are elements of {@code filters}
4794      * (null or not)
4795      * which do not correspond to argument positions in the target.
4796      * <p><b>Example:</b>
4797      * <blockquote><pre>{@code
4798 import static java.lang.invoke.MethodHandles.*;
4799 import static java.lang.invoke.MethodType.*;
4800 ...
4801 MethodHandle cat = lookup().findVirtual(String.class,
4802   "concat", methodType(String.class, String.class));
4803 MethodHandle upcase = lookup().findVirtual(String.class,
4804   "toUpperCase", methodType(String.class));
4805 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4806 MethodHandle f0 = filterArguments(cat, 0, upcase);
4807 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4808 MethodHandle f1 = filterArguments(cat, 1, upcase);
4809 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4810 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4811 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4812      * }</pre></blockquote>
4813      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4814      * denotes the return type of both the {@code target} and resulting adapter.
4815      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4816      * of the parameters and arguments that precede and follow the filter position
4817      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4818      * values of the filtered parameters and arguments; they also represent the
4819      * return types of the {@code filter[i]} handles. The latter accept arguments
4820      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4821      * the resulting adapter.
4822      * <blockquote><pre>{@code
4823      * T target(P... p, A[i]... a[i], B... b);
4824      * A[i] filter[i](V[i]);
4825      * T adapter(P... p, V[i]... v[i], B... b) {
4826      *   return target(p..., filter[i](v[i])..., b...);
4827      * }
4828      * }</pre></blockquote>
4829      * <p>
4830      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4831      * variable-arity method handle}, even if the original target method handle was.
4832      *
4833      * @param target the method handle to invoke after arguments are filtered
4834      * @param pos the position of the first argument to filter
4835      * @param filters method handles to call initially on filtered arguments
4836      * @return method handle which incorporates the specified argument filtering logic
4837      * @throws NullPointerException if the target is null
4838      *                              or if the {@code filters} array is null
4839      * @throws IllegalArgumentException if a non-null element of {@code filters}
4840      *          does not match a corresponding argument type of target as described above,
4841      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4842      *          or if the resulting method handle's type would have
4843      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4844      */
4845     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4846         // In method types arguments start at index 0, while the LF
4847         // editor have the MH receiver at position 0 - adjust appropriately.
4848         final int MH_RECEIVER_OFFSET = 1;
4849         filterArgumentsCheckArity(target, pos, filters);
4850         MethodHandle adapter = target;
4851 
4852         // keep track of currently matched filters, as to optimize repeated filters
4853         int index = 0;
4854         int[] positions = new int[filters.length];
4855         MethodHandle filter = null;
4856 
4857         // process filters in reverse order so that the invocation of
4858         // the resulting adapter will invoke the filters in left-to-right order
4859         for (int i = filters.length - 1; i >= 0; --i) {
4860             MethodHandle newFilter = filters[i];
4861             if (newFilter == null) continue;  // ignore null elements of filters
4862 
4863             // flush changes on update
4864             if (filter != newFilter) {
4865                 if (filter != null) {
4866                     if (index > 1) {
4867                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4868                     } else {
4869                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4870                     }
4871                 }
4872                 filter = newFilter;
4873                 index = 0;
4874             }
4875 
4876             filterArgumentChecks(target, pos + i, newFilter);
4877             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4878         }
4879         if (index > 1) {
4880             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4881         } else if (index == 1) {
4882             adapter = filterArgument(adapter, positions[0] - 1, filter);
4883         }
4884         return adapter;
4885     }
4886 
4887     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4888         MethodType targetType = adapter.type();
4889         MethodType filterType = filter.type();
4890         BoundMethodHandle result = adapter.rebind();
4891         Class<?> newParamType = filterType.parameterType(0);
4892 
4893         Class<?>[] ptypes = targetType.ptypes().clone();
4894         for (int pos : positions) {
4895             ptypes[pos - 1] = newParamType;
4896         }
4897         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4898 
4899         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4900         return result.copyWithExtendL(newType, lform, filter);
4901     }
4902 
4903     /*non-public*/
4904     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4905         filterArgumentChecks(target, pos, filter);
4906         MethodType targetType = target.type();
4907         MethodType filterType = filter.type();
4908         BoundMethodHandle result = target.rebind();
4909         Class<?> newParamType = filterType.parameterType(0);
4910         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4911         MethodType newType = targetType.changeParameterType(pos, newParamType);
4912         result = result.copyWithExtendL(newType, lform, filter);
4913         return result;
4914     }
4915 
4916     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4917         MethodType targetType = target.type();
4918         int maxPos = targetType.parameterCount();
4919         if (pos + filters.length > maxPos)
4920             throw newIllegalArgumentException("too many filters");
4921     }
4922 
4923     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4924         MethodType targetType = target.type();
4925         MethodType filterType = filter.type();
4926         if (filterType.parameterCount() != 1
4927             || filterType.returnType() != targetType.parameterType(pos))
4928             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4929     }
4930 
4931     /**
4932      * Adapts a target method handle by pre-processing
4933      * a sub-sequence of its arguments with a filter (another method handle).
4934      * The pre-processed arguments are replaced by the result (if any) of the
4935      * filter function.
4936      * The target is then called on the modified (usually shortened) argument list.
4937      * <p>
4938      * If the filter returns a value, the target must accept that value as
4939      * its argument in position {@code pos}, preceded and/or followed by
4940      * any arguments not passed to the filter.
4941      * If the filter returns void, the target must accept all arguments
4942      * not passed to the filter.
4943      * No arguments are reordered, and a result returned from the filter
4944      * replaces (in order) the whole subsequence of arguments originally
4945      * passed to the adapter.
4946      * <p>
4947      * The argument types (if any) of the filter
4948      * replace zero or one argument types of the target, at position {@code pos},
4949      * in the resulting adapted method handle.
4950      * The return type of the filter (if any) must be identical to the
4951      * argument type of the target at position {@code pos}, and that target argument
4952      * is supplied by the return value of the filter.
4953      * <p>
4954      * In all cases, {@code pos} must be greater than or equal to zero, and
4955      * {@code pos} must also be less than or equal to the target's arity.
4956      * <p><b>Example:</b>
4957      * <blockquote><pre>{@code
4958 import static java.lang.invoke.MethodHandles.*;
4959 import static java.lang.invoke.MethodType.*;
4960 ...
4961 MethodHandle deepToString = publicLookup()
4962   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4963 
4964 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4965 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4966 
4967 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4968 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4969 
4970 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4971 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4972 assertEquals("[top, [up, down], strange]",
4973              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4974 
4975 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4976 assertEquals("[top, [up, down], [strange]]",
4977              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4978 
4979 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4980 assertEquals("[top, [[up, down, strange], charm], bottom]",
4981              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4982      * }</pre></blockquote>
4983      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4984      * represents the return type of the {@code target} and resulting adapter.
4985      * {@code V}/{@code v} stand for the return type and value of the
4986      * {@code filter}, which are also found in the signature and arguments of
4987      * the {@code target}, respectively, unless {@code V} is {@code void}.
4988      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4989      * and values preceding and following the collection position, {@code pos},
4990      * in the {@code target}'s signature. They also turn up in the resulting
4991      * adapter's signature and arguments, where they surround
4992      * {@code B}/{@code b}, which represent the parameter types and arguments
4993      * to the {@code filter} (if any).
4994      * <blockquote><pre>{@code
4995      * T target(A...,V,C...);
4996      * V filter(B...);
4997      * T adapter(A... a,B... b,C... c) {
4998      *   V v = filter(b...);
4999      *   return target(a...,v,c...);
5000      * }
5001      * // and if the filter has no arguments:
5002      * T target2(A...,V,C...);
5003      * V filter2();
5004      * T adapter2(A... a,C... c) {
5005      *   V v = filter2();
5006      *   return target2(a...,v,c...);
5007      * }
5008      * // and if the filter has a void return:
5009      * T target3(A...,C...);
5010      * void filter3(B...);
5011      * T adapter3(A... a,B... b,C... c) {
5012      *   filter3(b...);
5013      *   return target3(a...,c...);
5014      * }
5015      * }</pre></blockquote>
5016      * <p>
5017      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
5018      * one which first "folds" the affected arguments, and then drops them, in separate
5019      * steps as follows:
5020      * <blockquote><pre>{@code
5021      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
5022      * mh = MethodHandles.foldArguments(mh, coll); //step 1
5023      * }</pre></blockquote>
5024      * If the target method handle consumes no arguments besides than the result
5025      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
5026      * is equivalent to {@code filterReturnValue(coll, mh)}.
5027      * If the filter method handle {@code coll} consumes one argument and produces
5028      * a non-void result, then {@code collectArguments(mh, N, coll)}
5029      * is equivalent to {@code filterArguments(mh, N, coll)}.
5030      * Other equivalences are possible but would require argument permutation.
5031      * <p>
5032      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5033      * variable-arity method handle}, even if the original target method handle was.
5034      *
5035      * @param target the method handle to invoke after filtering the subsequence of arguments
5036      * @param pos the position of the first adapter argument to pass to the filter,
5037      *            and/or the target argument which receives the result of the filter
5038      * @param filter method handle to call on the subsequence of arguments
5039      * @return method handle which incorporates the specified argument subsequence filtering logic
5040      * @throws NullPointerException if either argument is null
5041      * @throws IllegalArgumentException if the return type of {@code filter}
5042      *          is non-void and is not the same as the {@code pos} argument of the target,
5043      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
5044      *          or if the resulting method handle's type would have
5045      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
5046      * @see MethodHandles#foldArguments
5047      * @see MethodHandles#filterArguments
5048      * @see MethodHandles#filterReturnValue
5049      */
5050     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
5051         MethodType newType = collectArgumentsChecks(target, pos, filter);
5052         MethodType collectorType = filter.type();
5053         BoundMethodHandle result = target.rebind();
5054         LambdaForm lform;
5055         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
5056             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
5057             if (lform != null) {
5058                 return result.copyWith(newType, lform);
5059             }
5060         }
5061         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
5062         return result.copyWithExtendL(newType, lform, filter);
5063     }
5064 
5065     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
5066         MethodType targetType = target.type();
5067         MethodType filterType = filter.type();
5068         Class<?> rtype = filterType.returnType();
5069         List<Class<?>> filterArgs = filterType.parameterList();
5070         if (rtype == void.class) {
5071             return targetType.insertParameterTypes(pos, filterArgs);
5072         }
5073         if (rtype != targetType.parameterType(pos)) {
5074             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5075         }
5076         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
5077     }
5078 
5079     /**
5080      * Adapts a target method handle by post-processing
5081      * its return value (if any) with a filter (another method handle).
5082      * The result of the filter is returned from the adapter.
5083      * <p>
5084      * If the target returns a value, the filter must accept that value as
5085      * its only argument.
5086      * If the target returns void, the filter must accept no arguments.
5087      * <p>
5088      * The return type of the filter
5089      * replaces the return type of the target
5090      * in the resulting adapted method handle.
5091      * The argument type of the filter (if any) must be identical to the
5092      * return type of the target.
5093      * <p><b>Example:</b>
5094      * <blockquote><pre>{@code
5095 import static java.lang.invoke.MethodHandles.*;
5096 import static java.lang.invoke.MethodType.*;
5097 ...
5098 MethodHandle cat = lookup().findVirtual(String.class,
5099   "concat", methodType(String.class, String.class));
5100 MethodHandle length = lookup().findVirtual(String.class,
5101   "length", methodType(int.class));
5102 System.out.println((String) cat.invokeExact("x", "y")); // xy
5103 MethodHandle f0 = filterReturnValue(cat, length);
5104 System.out.println((int) f0.invokeExact("x", "y")); // 2
5105      * }</pre></blockquote>
5106      * <p>Here is pseudocode for the resulting adapter. In the code,
5107      * {@code T}/{@code t} represent the result type and value of the
5108      * {@code target}; {@code V}, the result type of the {@code filter}; and
5109      * {@code A}/{@code a}, the types and values of the parameters and arguments
5110      * of the {@code target} as well as the resulting adapter.
5111      * <blockquote><pre>{@code
5112      * T target(A...);
5113      * V filter(T);
5114      * V adapter(A... a) {
5115      *   T t = target(a...);
5116      *   return filter(t);
5117      * }
5118      * // and if the target has a void return:
5119      * void target2(A...);
5120      * V filter2();
5121      * V adapter2(A... a) {
5122      *   target2(a...);
5123      *   return filter2();
5124      * }
5125      * // and if the filter has a void return:
5126      * T target3(A...);
5127      * void filter3(V);
5128      * void adapter3(A... a) {
5129      *   T t = target3(a...);
5130      *   filter3(t);
5131      * }
5132      * }</pre></blockquote>
5133      * <p>
5134      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5135      * variable-arity method handle}, even if the original target method handle was.
5136      * @param target the method handle to invoke before filtering the return value
5137      * @param filter method handle to call on the return value
5138      * @return method handle which incorporates the specified return value filtering logic
5139      * @throws NullPointerException if either argument is null
5140      * @throws IllegalArgumentException if the argument list of {@code filter}
5141      *          does not match the return type of target as described above
5142      */
5143     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
5144         MethodType targetType = target.type();
5145         MethodType filterType = filter.type();
5146         filterReturnValueChecks(targetType, filterType);
5147         BoundMethodHandle result = target.rebind();
5148         BasicType rtype = BasicType.basicType(filterType.returnType());
5149         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
5150         MethodType newType = targetType.changeReturnType(filterType.returnType());
5151         result = result.copyWithExtendL(newType, lform, filter);
5152         return result;
5153     }
5154 
5155     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
5156         Class<?> rtype = targetType.returnType();
5157         int filterValues = filterType.parameterCount();
5158         if (filterValues == 0
5159                 ? (rtype != void.class)
5160                 : (rtype != filterType.parameterType(0) || filterValues != 1))
5161             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
5162     }
5163 
5164     /**
5165      * Adapts a target method handle by pre-processing
5166      * some of its arguments, and then calling the target with
5167      * the result of the pre-processing, inserted into the original
5168      * sequence of arguments.
5169      * <p>
5170      * The pre-processing is performed by {@code combiner}, a second method handle.
5171      * Of the arguments passed to the adapter, the first {@code N} arguments
5172      * are copied to the combiner, which is then called.
5173      * (Here, {@code N} is defined as the parameter count of the combiner.)
5174      * After this, control passes to the target, with any result
5175      * from the combiner inserted before the original {@code N} incoming
5176      * arguments.
5177      * <p>
5178      * If the combiner returns a value, the first parameter type of the target
5179      * must be identical with the return type of the combiner, and the next
5180      * {@code N} parameter types of the target must exactly match the parameters
5181      * of the combiner.
5182      * <p>
5183      * If the combiner has a void return, no result will be inserted,
5184      * and the first {@code N} parameter types of the target
5185      * must exactly match the parameters of the combiner.
5186      * <p>
5187      * The resulting adapter is the same type as the target, except that the
5188      * first parameter type is dropped,
5189      * if it corresponds to the result of the combiner.
5190      * <p>
5191      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
5192      * that either the combiner or the target does not wish to receive.
5193      * If some of the incoming arguments are destined only for the combiner,
5194      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
5195      * arguments will not need to be live on the stack on entry to the
5196      * target.)
5197      * <p><b>Example:</b>
5198      * <blockquote><pre>{@code
5199 import static java.lang.invoke.MethodHandles.*;
5200 import static java.lang.invoke.MethodType.*;
5201 ...
5202 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5203   "println", methodType(void.class, String.class))
5204     .bindTo(System.out);
5205 MethodHandle cat = lookup().findVirtual(String.class,
5206   "concat", methodType(String.class, String.class));
5207 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5208 MethodHandle catTrace = foldArguments(cat, trace);
5209 // also prints "boo":
5210 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5211      * }</pre></blockquote>
5212      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5213      * represents the result type of the {@code target} and resulting adapter.
5214      * {@code V}/{@code v} represent the type and value of the parameter and argument
5215      * of {@code target} that precedes the folding position; {@code V} also is
5216      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5217      * types and values of the {@code N} parameters and arguments at the folding
5218      * position. {@code B}/{@code b} represent the types and values of the
5219      * {@code target} parameters and arguments that follow the folded parameters
5220      * and arguments.
5221      * <blockquote><pre>{@code
5222      * // there are N arguments in A...
5223      * T target(V, A[N]..., B...);
5224      * V combiner(A...);
5225      * T adapter(A... a, B... b) {
5226      *   V v = combiner(a...);
5227      *   return target(v, a..., b...);
5228      * }
5229      * // and if the combiner has a void return:
5230      * T target2(A[N]..., B...);
5231      * void combiner2(A...);
5232      * T adapter2(A... a, B... b) {
5233      *   combiner2(a...);
5234      *   return target2(a..., b...);
5235      * }
5236      * }</pre></blockquote>
5237      * <p>
5238      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5239      * variable-arity method handle}, even if the original target method handle was.
5240      * @param target the method handle to invoke after arguments are combined
5241      * @param combiner method handle to call initially on the incoming arguments
5242      * @return method handle which incorporates the specified argument folding logic
5243      * @throws NullPointerException if either argument is null
5244      * @throws IllegalArgumentException if {@code combiner}'s return type
5245      *          is non-void and not the same as the first argument type of
5246      *          the target, or if the initial {@code N} argument types
5247      *          of the target
5248      *          (skipping one matching the {@code combiner}'s return type)
5249      *          are not identical with the argument types of {@code combiner}
5250      */
5251     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5252         return foldArguments(target, 0, combiner);
5253     }
5254 
5255     /**
5256      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5257      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5258      * before the folded arguments.
5259      * <p>
5260      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5261      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5262      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5263      * 0.
5264      *
5265      * @apiNote Example:
5266      * <blockquote><pre>{@code
5267     import static java.lang.invoke.MethodHandles.*;
5268     import static java.lang.invoke.MethodType.*;
5269     ...
5270     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5271     "println", methodType(void.class, String.class))
5272     .bindTo(System.out);
5273     MethodHandle cat = lookup().findVirtual(String.class,
5274     "concat", methodType(String.class, String.class));
5275     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5276     MethodHandle catTrace = foldArguments(cat, 1, trace);
5277     // also prints "jum":
5278     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5279      * }</pre></blockquote>
5280      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5281      * represents the result type of the {@code target} and resulting adapter.
5282      * {@code V}/{@code v} represent the type and value of the parameter and argument
5283      * of {@code target} that precedes the folding position; {@code V} also is
5284      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5285      * types and values of the {@code N} parameters and arguments at the folding
5286      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5287      * and values of the {@code target} parameters and arguments that precede and
5288      * follow the folded parameters and arguments starting at {@code pos},
5289      * respectively.
5290      * <blockquote><pre>{@code
5291      * // there are N arguments in A...
5292      * T target(Z..., V, A[N]..., B...);
5293      * V combiner(A...);
5294      * T adapter(Z... z, A... a, B... b) {
5295      *   V v = combiner(a...);
5296      *   return target(z..., v, a..., b...);
5297      * }
5298      * // and if the combiner has a void return:
5299      * T target2(Z..., A[N]..., B...);
5300      * void combiner2(A...);
5301      * T adapter2(Z... z, A... a, B... b) {
5302      *   combiner2(a...);
5303      *   return target2(z..., a..., b...);
5304      * }
5305      * }</pre></blockquote>
5306      * <p>
5307      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5308      * variable-arity method handle}, even if the original target method handle was.
5309      *
5310      * @param target the method handle to invoke after arguments are combined
5311      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5312      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5313      * @param combiner method handle to call initially on the incoming arguments
5314      * @return method handle which incorporates the specified argument folding logic
5315      * @throws NullPointerException if either argument is null
5316      * @throws IllegalArgumentException if either of the following two conditions holds:
5317      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5318      *              {@code pos} of the target signature;
5319      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5320      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5321      *
5322      * @see #foldArguments(MethodHandle, MethodHandle)
5323      * @since 9
5324      */
5325     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5326         MethodType targetType = target.type();
5327         MethodType combinerType = combiner.type();
5328         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5329         BoundMethodHandle result = target.rebind();
5330         boolean dropResult = rtype == void.class;
5331         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5332         MethodType newType = targetType;
5333         if (!dropResult) {
5334             newType = newType.dropParameterTypes(pos, pos + 1);
5335         }
5336         result = result.copyWithExtendL(newType, lform, combiner);
5337         return result;
5338     }
5339 
5340     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5341         int foldArgs   = combinerType.parameterCount();
5342         Class<?> rtype = combinerType.returnType();
5343         int foldVals = rtype == void.class ? 0 : 1;
5344         int afterInsertPos = foldPos + foldVals;
5345         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5346         if (ok) {
5347             for (int i = 0; i < foldArgs; i++) {
5348                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5349                     ok = false;
5350                     break;
5351                 }
5352             }
5353         }
5354         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5355             ok = false;
5356         if (!ok)
5357             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5358         return rtype;
5359     }
5360 
5361     /**
5362      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5363      * of the pre-processing replacing the argument at the given position.
5364      *
5365      * @param target the method handle to invoke after arguments are combined
5366      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5367      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5368      * @param combiner method handle to call initially on the incoming arguments
5369      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5370      * @return method handle which incorporates the specified argument folding logic
5371      * @throws NullPointerException if either argument is null
5372      * @throws IllegalArgumentException if either of the following two conditions holds:
5373      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5374      *              {@code pos} of the target signature;
5375      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5376      *              not identical with the argument types of {@code combiner}.
5377      */
5378     /*non-public*/
5379     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5380         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5381     }
5382 
5383     /**
5384      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5385      * the pre-processing inserted into the original sequence of arguments at the given position.
5386      *
5387      * @param target the method handle to invoke after arguments are combined
5388      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5389      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5390      * @param combiner method handle to call initially on the incoming arguments
5391      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5392      * @return method handle which incorporates the specified argument folding logic
5393      * @throws NullPointerException if either argument is null
5394      * @throws IllegalArgumentException if either of the following two conditions holds:
5395      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5396      *              {@code pos} of the target signature;
5397      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5398      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5399      *              with the argument types of {@code combiner}.
5400      */
5401     /*non-public*/
5402     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5403         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5404     }
5405 
5406     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5407         MethodType targetType = target.type();
5408         MethodType combinerType = combiner.type();
5409         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5410         BoundMethodHandle result = target.rebind();
5411 
5412         MethodType newType = targetType;
5413         LambdaForm lform;
5414         if (filter) {
5415             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5416         } else {
5417             boolean dropResult = rtype == void.class;
5418             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5419             if (!dropResult) {
5420                 newType = newType.dropParameterTypes(position, position + 1);
5421             }
5422         }
5423         result = result.copyWithExtendL(newType, lform, combiner);
5424         return result;
5425     }
5426 
5427     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5428         int combinerArgs = combinerType.parameterCount();
5429         if (argPos.length != combinerArgs) {
5430             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5431         }
5432         Class<?> rtype = combinerType.returnType();
5433 
5434         for (int i = 0; i < combinerArgs; i++) {
5435             int arg = argPos[i];
5436             if (arg < 0 || arg > targetType.parameterCount()) {
5437                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5438             }
5439             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5440                 throw newIllegalArgumentException("target argument type at position " + arg
5441                         + " must match combiner argument type at index " + i + ": " + targetType
5442                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5443             }
5444         }
5445         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5446             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5447         }
5448         return rtype;
5449     }
5450 
5451     /**
5452      * Makes a method handle which adapts a target method handle,
5453      * by guarding it with a test, a boolean-valued method handle.
5454      * If the guard fails, a fallback handle is called instead.
5455      * All three method handles must have the same corresponding
5456      * argument and return types, except that the return type
5457      * of the test must be boolean, and the test is allowed
5458      * to have fewer arguments than the other two method handles.
5459      * <p>
5460      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5461      * represents the uniform result type of the three involved handles;
5462      * {@code A}/{@code a}, the types and values of the {@code target}
5463      * parameters and arguments that are consumed by the {@code test}; and
5464      * {@code B}/{@code b}, those types and values of the {@code target}
5465      * parameters and arguments that are not consumed by the {@code test}.
5466      * <blockquote><pre>{@code
5467      * boolean test(A...);
5468      * T target(A...,B...);
5469      * T fallback(A...,B...);
5470      * T adapter(A... a,B... b) {
5471      *   if (test(a...))
5472      *     return target(a..., b...);
5473      *   else
5474      *     return fallback(a..., b...);
5475      * }
5476      * }</pre></blockquote>
5477      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5478      * be modified by execution of the test, and so are passed unchanged
5479      * from the caller to the target or fallback as appropriate.
5480      * @param test method handle used for test, must return boolean
5481      * @param target method handle to call if test passes
5482      * @param fallback method handle to call if test fails
5483      * @return method handle which incorporates the specified if/then/else logic
5484      * @throws NullPointerException if any argument is null
5485      * @throws IllegalArgumentException if {@code test} does not return boolean,
5486      *          or if all three method types do not match (with the return
5487      *          type of {@code test} changed to match that of the target).
5488      */
5489     public static MethodHandle guardWithTest(MethodHandle test,
5490                                MethodHandle target,
5491                                MethodHandle fallback) {
5492         MethodType gtype = test.type();
5493         MethodType ttype = target.type();
5494         MethodType ftype = fallback.type();
5495         if (!ttype.equals(ftype))
5496             throw misMatchedTypes("target and fallback types", ttype, ftype);
5497         if (gtype.returnType() != boolean.class)
5498             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5499         List<Class<?>> targs = ttype.parameterList();
5500         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5501         if (test == null) {
5502             throw misMatchedTypes("target and test types", ttype, gtype);
5503         }
5504         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5505     }
5506 
5507     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5508         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5509     }
5510 
5511     /**
5512      * Makes a method handle which adapts a target method handle,
5513      * by running it inside an exception handler.
5514      * If the target returns normally, the adapter returns that value.
5515      * If an exception matching the specified type is thrown, the fallback
5516      * handle is called instead on the exception, plus the original arguments.
5517      * <p>
5518      * The target and handler must have the same corresponding
5519      * argument and return types, except that handler may omit trailing arguments
5520      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5521      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5522      * <p>
5523      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5524      * represents the return type of the {@code target} and {@code handler},
5525      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5526      * the types and values of arguments to the resulting handle consumed by
5527      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5528      * resulting handle discarded by {@code handler}.
5529      * <blockquote><pre>{@code
5530      * T target(A..., B...);
5531      * T handler(ExType, A...);
5532      * T adapter(A... a, B... b) {
5533      *   try {
5534      *     return target(a..., b...);
5535      *   } catch (ExType ex) {
5536      *     return handler(ex, a...);
5537      *   }
5538      * }
5539      * }</pre></blockquote>
5540      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5541      * be modified by execution of the target, and so are passed unchanged
5542      * from the caller to the handler, if the handler is invoked.
5543      * <p>
5544      * The target and handler must return the same type, even if the handler
5545      * always throws.  (This might happen, for instance, because the handler
5546      * is simulating a {@code finally} clause).
5547      * To create such a throwing handler, compose the handler creation logic
5548      * with {@link #throwException throwException},
5549      * in order to create a method handle of the correct return type.
5550      * @param target method handle to call
5551      * @param exType the type of exception which the handler will catch
5552      * @param handler method handle to call if a matching exception is thrown
5553      * @return method handle which incorporates the specified try/catch logic
5554      * @throws NullPointerException if any argument is null
5555      * @throws IllegalArgumentException if {@code handler} does not accept
5556      *          the given exception type, or if the method handle types do
5557      *          not match in their return types and their
5558      *          corresponding parameters
5559      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5560      */
5561     public static MethodHandle catchException(MethodHandle target,
5562                                 Class<? extends Throwable> exType,
5563                                 MethodHandle handler) {
5564         MethodType ttype = target.type();
5565         MethodType htype = handler.type();
5566         if (!Throwable.class.isAssignableFrom(exType))
5567             throw new ClassCastException(exType.getName());
5568         if (htype.parameterCount() < 1 ||
5569             !htype.parameterType(0).isAssignableFrom(exType))
5570             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5571         if (htype.returnType() != ttype.returnType())
5572             throw misMatchedTypes("target and handler return types", ttype, htype);
5573         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5574         if (handler == null) {
5575             throw misMatchedTypes("target and handler types", ttype, htype);
5576         }
5577         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5578     }
5579 
5580     /**
5581      * Produces a method handle which will throw exceptions of the given {@code exType}.
5582      * The method handle will accept a single argument of {@code exType},
5583      * and immediately throw it as an exception.
5584      * The method type will nominally specify a return of {@code returnType}.
5585      * The return type may be anything convenient:  It doesn't matter to the
5586      * method handle's behavior, since it will never return normally.
5587      * @param returnType the return type of the desired method handle
5588      * @param exType the parameter type of the desired method handle
5589      * @return method handle which can throw the given exceptions
5590      * @throws NullPointerException if either argument is null
5591      */
5592     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5593         if (!Throwable.class.isAssignableFrom(exType))
5594             throw new ClassCastException(exType.getName());
5595         return MethodHandleImpl.throwException(methodType(returnType, exType));
5596     }
5597 
5598     /**
5599      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5600      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5601      * delivers the loop's result, which is the return value of the resulting handle.
5602      * <p>
5603      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5604      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5605      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5606      * terms of method handles, each clause will specify up to four independent actions:<ul>
5607      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5608      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5609      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5610      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5611      * </ul>
5612      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5613      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5614      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5615      * <p>
5616      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5617      * this case. See below for a detailed description.
5618      * <p>
5619      * <em>Parameters optional everywhere:</em>
5620      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5621      * As an exception, the init functions cannot take any {@code v} parameters,
5622      * because those values are not yet computed when the init functions are executed.
5623      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5624      * In fact, any clause function may take no arguments at all.
5625      * <p>
5626      * <em>Loop parameters:</em>
5627      * A clause function may take all the iteration variable values it is entitled to, in which case
5628      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5629      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5630      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5631      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5632      * init function is automatically a loop parameter {@code a}.)
5633      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5634      * These loop parameters act as loop-invariant values visible across the whole loop.
5635      * <p>
5636      * <em>Parameters visible everywhere:</em>
5637      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5638      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5639      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5640      * Most clause functions will not need all of this information, but they will be formally connected to it
5641      * as if by {@link #dropArguments}.
5642      * <a id="astar"></a>
5643      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5644      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5645      * In that notation, the general form of an init function parameter list
5646      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5647      * <p>
5648      * <em>Checking clause structure:</em>
5649      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5650      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5651      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5652      * met by the inputs to the loop combinator.
5653      * <p>
5654      * <em>Effectively identical sequences:</em>
5655      * <a id="effid"></a>
5656      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5657      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5658      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5659      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5660      * that longest list.
5661      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5662      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5663      * <p>
5664      * <em>Step 0: Determine clause structure.</em><ol type="a">
5665      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5666      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5667      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5668      * four. Padding takes place by appending elements to the array.
5669      * <li>Clauses with all {@code null}s are disregarded.
5670      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5671      * </ol>
5672      * <p>
5673      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5674      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5675      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5676      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5677      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5678      * iteration variable type.
5679      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5680      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5681      * </ol>
5682      * <p>
5683      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5684      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5685      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5686      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5687      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5688      * (These types will be checked in step 2, along with all the clause function types.)
5689      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5690      * <li>All of the collected parameter lists must be effectively identical.
5691      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5692      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5693      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5694      * the "internal parameter list".
5695      * </ul>
5696      * <p>
5697      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5698      * <li>Examine fini function return types, disregarding omitted fini functions.
5699      * <li>If there are no fini functions, the loop return type is {@code void}.
5700      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5701      * type.
5702      * </ol>
5703      * <p>
5704      * <em>Step 1D: Check other types.</em><ol type="a">
5705      * <li>There must be at least one non-omitted pred function.
5706      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5707      * </ol>
5708      * <p>
5709      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5710      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5711      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5712      * (Note that their parameter lists are already effectively identical to this list.)
5713      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5714      * effectively identical to the internal parameter list {@code (V... A...)}.
5715      * </ol>
5716      * <p>
5717      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5718      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5719      * type.
5720      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5721      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5722      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5723      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5724      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5725      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5726      * loop return type.
5727      * </ol>
5728      * <p>
5729      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5730      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5731      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5732      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5733      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5734      * pad out the end of the list.
5735      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5736      * </ol>
5737      * <p>
5738      * <em>Final observations.</em><ol type="a">
5739      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5740      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5741      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5742      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5743      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5744      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5745      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5746      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5747      * </ol>
5748      * <p>
5749      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5750      * <ul>
5751      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5752      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5753      * (Only one {@code Pn} has to be non-{@code null}.)
5754      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5755      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5756      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5757      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5758      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5759      * the resulting loop handle's parameter types {@code (A...)}.
5760      * </ul>
5761      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5762      * which is natural if most of the loop computation happens in the steps.  For some loops,
5763      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5764      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5765      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5766      * where the init functions will need the extra parameters.  For such reasons, the rules for
5767      * determining these parameters are as symmetric as possible, across all clause parts.
5768      * In general, the loop parameters function as common invariant values across the whole
5769      * loop, while the iteration variables function as common variant values, or (if there is
5770      * no step function) as internal loop invariant temporaries.
5771      * <p>
5772      * <em>Loop execution.</em><ol type="a">
5773      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5774      * every clause function. These locals are loop invariant.
5775      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5776      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5777      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5778      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5779      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5780      * (in argument order).
5781      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5782      * returns {@code false}.
5783      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5784      * sequence {@code (v...)} of loop variables.
5785      * The updated value is immediately visible to all subsequent function calls.
5786      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5787      * (of type {@code R}) is returned from the loop as a whole.
5788      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5789      * except by throwing an exception.
5790      * </ol>
5791      * <p>
5792      * <em>Usage tips.</em>
5793      * <ul>
5794      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5795      * sometimes a step function only needs to observe the current value of its own variable.
5796      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5797      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5798      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5799      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5800      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5801      * <li>If some of the clause functions are virtual methods on an instance, the instance
5802      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5803      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5804      * will be the first iteration variable value, and it will be easy to use virtual
5805      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5806      * </ul>
5807      * <p>
5808      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5809      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5810      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5811      * <blockquote><pre>{@code
5812      * V... init...(A...);
5813      * boolean pred...(V..., A...);
5814      * V... step...(V..., A...);
5815      * R fini...(V..., A...);
5816      * R loop(A... a) {
5817      *   V... v... = init...(a...);
5818      *   for (;;) {
5819      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5820      *       v = s(v..., a...);
5821      *       if (!p(v..., a...)) {
5822      *         return f(v..., a...);
5823      *       }
5824      *     }
5825      *   }
5826      * }
5827      * }</pre></blockquote>
5828      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5829      * to their full length, even though individual clause functions may neglect to take them all.
5830      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5831      *
5832      * @apiNote Example:
5833      * <blockquote><pre>{@code
5834      * // iterative implementation of the factorial function as a loop handle
5835      * static int one(int k) { return 1; }
5836      * static int inc(int i, int acc, int k) { return i + 1; }
5837      * static int mult(int i, int acc, int k) { return i * acc; }
5838      * static boolean pred(int i, int acc, int k) { return i < k; }
5839      * static int fin(int i, int acc, int k) { return acc; }
5840      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5841      * // null initializer for counter, should initialize to 0
5842      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5843      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5844      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5845      * assertEquals(120, loop.invoke(5));
5846      * }</pre></blockquote>
5847      * The same example, dropping arguments and using combinators:
5848      * <blockquote><pre>{@code
5849      * // simplified implementation of the factorial function as a loop handle
5850      * static int inc(int i) { return i + 1; } // drop acc, k
5851      * static int mult(int i, int acc) { return i * acc; } //drop k
5852      * static boolean cmp(int i, int k) { return i < k; }
5853      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5854      * // null initializer for counter, should initialize to 0
5855      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5856      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5857      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5858      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5859      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5860      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5861      * assertEquals(720, loop.invoke(6));
5862      * }</pre></blockquote>
5863      * A similar example, using a helper object to hold a loop parameter:
5864      * <blockquote><pre>{@code
5865      * // instance-based implementation of the factorial function as a loop handle
5866      * static class FacLoop {
5867      *   final int k;
5868      *   FacLoop(int k) { this.k = k; }
5869      *   int inc(int i) { return i + 1; }
5870      *   int mult(int i, int acc) { return i * acc; }
5871      *   boolean pred(int i) { return i < k; }
5872      *   int fin(int i, int acc) { return acc; }
5873      * }
5874      * // assume MH_FacLoop is a handle to the constructor
5875      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5876      * // null initializer for counter, should initialize to 0
5877      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5878      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5879      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5880      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5881      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5882      * assertEquals(5040, loop.invoke(7));
5883      * }</pre></blockquote>
5884      *
5885      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5886      *
5887      * @return a method handle embodying the looping behavior as defined by the arguments.
5888      *
5889      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5890      *
5891      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5892      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5893      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5894      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5895      * @since 9
5896      */
5897     public static MethodHandle loop(MethodHandle[]... clauses) {
5898         // Step 0: determine clause structure.
5899         loopChecks0(clauses);
5900 
5901         List<MethodHandle> init = new ArrayList<>();
5902         List<MethodHandle> step = new ArrayList<>();
5903         List<MethodHandle> pred = new ArrayList<>();
5904         List<MethodHandle> fini = new ArrayList<>();
5905 
5906         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5907             init.add(clause[0]); // all clauses have at least length 1
5908             step.add(clause.length <= 1 ? null : clause[1]);
5909             pred.add(clause.length <= 2 ? null : clause[2]);
5910             fini.add(clause.length <= 3 ? null : clause[3]);
5911         });
5912 
5913         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5914         final int nclauses = init.size();
5915 
5916         // Step 1A: determine iteration variables (V...).
5917         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5918         for (int i = 0; i < nclauses; ++i) {
5919             MethodHandle in = init.get(i);
5920             MethodHandle st = step.get(i);
5921             if (in == null && st == null) {
5922                 iterationVariableTypes.add(void.class);
5923             } else if (in != null && st != null) {
5924                 loopChecks1a(i, in, st);
5925                 iterationVariableTypes.add(in.type().returnType());
5926             } else {
5927                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5928             }
5929         }
5930         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5931                 collect(Collectors.toList());
5932 
5933         // Step 1B: determine loop parameters (A...).
5934         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5935         loopChecks1b(init, commonSuffix);
5936 
5937         // Step 1C: determine loop return type.
5938         // Step 1D: check other types.
5939         // local variable required here; see JDK-8223553
5940         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5941                 .map(MethodType::returnType);
5942         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5943         loopChecks1cd(pred, fini, loopReturnType);
5944 
5945         // Step 2: determine parameter lists.
5946         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5947         commonParameterSequence.addAll(commonSuffix);
5948         loopChecks2(step, pred, fini, commonParameterSequence);
5949 
5950         // Step 3: fill in omitted functions.
5951         for (int i = 0; i < nclauses; ++i) {
5952             Class<?> t = iterationVariableTypes.get(i);
5953             if (init.get(i) == null) {
5954                 init.set(i, empty(methodType(t, commonSuffix)));
5955             }
5956             if (step.get(i) == null) {
5957                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5958             }
5959             if (pred.get(i) == null) {
5960                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5961             }
5962             if (fini.get(i) == null) {
5963                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5964             }
5965         }
5966 
5967         // Step 4: fill in missing parameter types.
5968         // Also convert all handles to fixed-arity handles.
5969         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5970         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5971         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5972         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5973 
5974         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5975                 allMatch(pl -> pl.equals(commonSuffix));
5976         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5977                 allMatch(pl -> pl.equals(commonParameterSequence));
5978 
5979         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5980     }
5981 
5982     private static void loopChecks0(MethodHandle[][] clauses) {
5983         if (clauses == null || clauses.length == 0) {
5984             throw newIllegalArgumentException("null or no clauses passed");
5985         }
5986         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5987             throw newIllegalArgumentException("null clauses are not allowed");
5988         }
5989         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5990             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5991         }
5992     }
5993 
5994     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5995         if (in.type().returnType() != st.type().returnType()) {
5996             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5997                     st.type().returnType());
5998         }
5999     }
6000 
6001     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
6002         final List<Class<?>> empty = List.of();
6003         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
6004                 // take only those that can contribute to a common suffix because they are longer than the prefix
6005                         map(MethodHandle::type).
6006                         filter(t -> t.parameterCount() > skipSize).
6007                         map(MethodType::parameterList).
6008                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6009         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
6010     }
6011 
6012     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
6013         final List<Class<?>> empty = List.of();
6014         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
6015     }
6016 
6017     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
6018         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
6019         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
6020         return longestParameterList(Arrays.asList(longest1, longest2));
6021     }
6022 
6023     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
6024         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
6025                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
6026             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
6027                     " (common suffix: " + commonSuffix + ")");
6028         }
6029     }
6030 
6031     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
6032         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6033                 anyMatch(t -> t != loopReturnType)) {
6034             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
6035                     loopReturnType + ")");
6036         }
6037 
6038         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
6039             throw newIllegalArgumentException("no predicate found", pred);
6040         }
6041         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
6042                 anyMatch(t -> t != boolean.class)) {
6043             throw newIllegalArgumentException("predicates must have boolean return type", pred);
6044         }
6045     }
6046 
6047     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
6048         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
6049                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
6050             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
6051                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
6052         }
6053     }
6054 
6055     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
6056         return hs.stream().map(h -> {
6057             int pc = h.type().parameterCount();
6058             int tpsize = targetParams.size();
6059             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
6060         }).collect(Collectors.toList());
6061     }
6062 
6063     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
6064         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
6065     }
6066 
6067     /**
6068      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
6069      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6070      * <p>
6071      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6072      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
6073      * evaluates to {@code true}).
6074      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
6075      * <p>
6076      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6077      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6078      * and updated with the value returned from its invocation. The result of loop execution will be
6079      * the final value of the additional loop-local variable (if present).
6080      * <p>
6081      * The following rules hold for these argument handles:<ul>
6082      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6083      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6084      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6085      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6086      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6087      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6088      * It will constrain the parameter lists of the other loop parts.
6089      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6090      * list {@code (A...)} is called the <em>external parameter list</em>.
6091      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6092      * additional state variable of the loop.
6093      * The body must both accept and return a value of this type {@code V}.
6094      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6095      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6096      * <a href="MethodHandles.html#effid">effectively identical</a>
6097      * to the external parameter list {@code (A...)}.
6098      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6099      * {@linkplain #empty default value}.
6100      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6101      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6102      * effectively identical to the internal parameter list.
6103      * </ul>
6104      * <p>
6105      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6106      * <li>The loop handle's result type is the result type {@code V} of the body.
6107      * <li>The loop handle's parameter types are the types {@code (A...)},
6108      * from the external parameter list.
6109      * </ul>
6110      * <p>
6111      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6112      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6113      * passed to the loop.
6114      * <blockquote><pre>{@code
6115      * V init(A...);
6116      * boolean pred(V, A...);
6117      * V body(V, A...);
6118      * V whileLoop(A... a...) {
6119      *   V v = init(a...);
6120      *   while (pred(v, a...)) {
6121      *     v = body(v, a...);
6122      *   }
6123      *   return v;
6124      * }
6125      * }</pre></blockquote>
6126      *
6127      * @apiNote Example:
6128      * <blockquote><pre>{@code
6129      * // implement the zip function for lists as a loop handle
6130      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
6131      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
6132      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
6133      *   zip.add(a.next());
6134      *   zip.add(b.next());
6135      *   return zip;
6136      * }
6137      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
6138      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
6139      * List<String> a = Arrays.asList("a", "b", "c", "d");
6140      * List<String> b = Arrays.asList("e", "f", "g", "h");
6141      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
6142      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
6143      * }</pre></blockquote>
6144      *
6145      *
6146      * @apiNote The implementation of this method can be expressed as follows:
6147      * <blockquote><pre>{@code
6148      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6149      *     MethodHandle fini = (body.type().returnType() == void.class
6150      *                         ? null : identity(body.type().returnType()));
6151      *     MethodHandle[]
6152      *         checkExit = { null, null, pred, fini },
6153      *         varBody   = { init, body };
6154      *     return loop(checkExit, varBody);
6155      * }
6156      * }</pre></blockquote>
6157      *
6158      * @param init optional initializer, providing the initial value of the loop variable.
6159      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6160      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6161      *             above for other constraints.
6162      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6163      *             See above for other constraints.
6164      *
6165      * @return a method handle implementing the {@code while} loop as described by the arguments.
6166      * @throws IllegalArgumentException if the rules for the arguments are violated.
6167      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6168      *
6169      * @see #loop(MethodHandle[][])
6170      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
6171      * @since 9
6172      */
6173     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
6174         whileLoopChecks(init, pred, body);
6175         MethodHandle fini = identityOrVoid(body.type().returnType());
6176         MethodHandle[] checkExit = { null, null, pred, fini };
6177         MethodHandle[] varBody = { init, body };
6178         return loop(checkExit, varBody);
6179     }
6180 
6181     /**
6182      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
6183      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6184      * <p>
6185      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
6186      * method will, in each iteration, first execute its body and then evaluate the predicate.
6187      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
6188      * <p>
6189      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
6190      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
6191      * and updated with the value returned from its invocation. The result of loop execution will be
6192      * the final value of the additional loop-local variable (if present).
6193      * <p>
6194      * The following rules hold for these argument handles:<ul>
6195      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6196      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
6197      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6198      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
6199      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
6200      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
6201      * It will constrain the parameter lists of the other loop parts.
6202      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
6203      * list {@code (A...)} is called the <em>external parameter list</em>.
6204      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6205      * additional state variable of the loop.
6206      * The body must both accept and return a value of this type {@code V}.
6207      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6208      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6209      * <a href="MethodHandles.html#effid">effectively identical</a>
6210      * to the external parameter list {@code (A...)}.
6211      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6212      * {@linkplain #empty default value}.
6213      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
6214      * Its parameter list (either empty or of the form {@code (V A*)}) must be
6215      * effectively identical to the internal parameter list.
6216      * </ul>
6217      * <p>
6218      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6219      * <li>The loop handle's result type is the result type {@code V} of the body.
6220      * <li>The loop handle's parameter types are the types {@code (A...)},
6221      * from the external parameter list.
6222      * </ul>
6223      * <p>
6224      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6225      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
6226      * passed to the loop.
6227      * <blockquote><pre>{@code
6228      * V init(A...);
6229      * boolean pred(V, A...);
6230      * V body(V, A...);
6231      * V doWhileLoop(A... a...) {
6232      *   V v = init(a...);
6233      *   do {
6234      *     v = body(v, a...);
6235      *   } while (pred(v, a...));
6236      *   return v;
6237      * }
6238      * }</pre></blockquote>
6239      *
6240      * @apiNote Example:
6241      * <blockquote><pre>{@code
6242      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6243      * static int zero(int limit) { return 0; }
6244      * static int step(int i, int limit) { return i + 1; }
6245      * static boolean pred(int i, int limit) { return i < limit; }
6246      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6247      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6248      * assertEquals(23, loop.invoke(23));
6249      * }</pre></blockquote>
6250      *
6251      *
6252      * @apiNote The implementation of this method can be expressed as follows:
6253      * <blockquote><pre>{@code
6254      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6255      *     MethodHandle fini = (body.type().returnType() == void.class
6256      *                         ? null : identity(body.type().returnType()));
6257      *     MethodHandle[] clause = { init, body, pred, fini };
6258      *     return loop(clause);
6259      * }
6260      * }</pre></blockquote>
6261      *
6262      * @param init optional initializer, providing the initial value of the loop variable.
6263      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6264      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6265      *             See above for other constraints.
6266      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6267      *             above for other constraints.
6268      *
6269      * @return a method handle implementing the {@code while} loop as described by the arguments.
6270      * @throws IllegalArgumentException if the rules for the arguments are violated.
6271      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6272      *
6273      * @see #loop(MethodHandle[][])
6274      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6275      * @since 9
6276      */
6277     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6278         whileLoopChecks(init, pred, body);
6279         MethodHandle fini = identityOrVoid(body.type().returnType());
6280         MethodHandle[] clause = {init, body, pred, fini };
6281         return loop(clause);
6282     }
6283 
6284     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6285         Objects.requireNonNull(pred);
6286         Objects.requireNonNull(body);
6287         MethodType bodyType = body.type();
6288         Class<?> returnType = bodyType.returnType();
6289         List<Class<?>> innerList = bodyType.parameterList();
6290         List<Class<?>> outerList = innerList;
6291         if (returnType == void.class) {
6292             // OK
6293         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6294             // leading V argument missing => error
6295             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6296             throw misMatchedTypes("body function", bodyType, expected);
6297         } else {
6298             outerList = innerList.subList(1, innerList.size());
6299         }
6300         MethodType predType = pred.type();
6301         if (predType.returnType() != boolean.class ||
6302                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6303             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6304         }
6305         if (init != null) {
6306             MethodType initType = init.type();
6307             if (initType.returnType() != returnType ||
6308                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6309                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6310             }
6311         }
6312     }
6313 
6314     /**
6315      * Constructs a loop that runs a given number of iterations.
6316      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6317      * <p>
6318      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6319      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6320      * It will be initialized to 0 and incremented by 1 in each iteration.
6321      * <p>
6322      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6323      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6324      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6325      * <p>
6326      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6327      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6328      * iteration variable.
6329      * The result of the loop handle execution will be the final {@code V} value of that variable
6330      * (or {@code void} if there is no {@code V} variable).
6331      * <p>
6332      * The following rules hold for the argument handles:<ul>
6333      * <li>The {@code iterations} handle must not be {@code null}, and must return
6334      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6335      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6336      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6337      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6338      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6339      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6340      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6341      * of types called the <em>internal parameter list</em>.
6342      * It will constrain the parameter lists of the other loop parts.
6343      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6344      * with no additional {@code A} types, then the internal parameter list is extended by
6345      * the argument types {@code A...} of the {@code iterations} handle.
6346      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6347      * list {@code (A...)} is called the <em>external parameter list</em>.
6348      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6349      * additional state variable of the loop.
6350      * The body must both accept a leading parameter and return a value of this type {@code V}.
6351      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6352      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6353      * <a href="MethodHandles.html#effid">effectively identical</a>
6354      * to the external parameter list {@code (A...)}.
6355      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6356      * {@linkplain #empty default value}.
6357      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6358      * effectively identical to the external parameter list {@code (A...)}.
6359      * </ul>
6360      * <p>
6361      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6362      * <li>The loop handle's result type is the result type {@code V} of the body.
6363      * <li>The loop handle's parameter types are the types {@code (A...)},
6364      * from the external parameter list.
6365      * </ul>
6366      * <p>
6367      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6368      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6369      * arguments passed to the loop.
6370      * <blockquote><pre>{@code
6371      * int iterations(A...);
6372      * V init(A...);
6373      * V body(V, int, A...);
6374      * V countedLoop(A... a...) {
6375      *   int end = iterations(a...);
6376      *   V v = init(a...);
6377      *   for (int i = 0; i < end; ++i) {
6378      *     v = body(v, i, a...);
6379      *   }
6380      *   return v;
6381      * }
6382      * }</pre></blockquote>
6383      *
6384      * @apiNote Example with a fully conformant body method:
6385      * <blockquote><pre>{@code
6386      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6387      * // => a variation on a well known theme
6388      * static String step(String v, int counter, String init) { return "na " + v; }
6389      * // assume MH_step is a handle to the method above
6390      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6391      * MethodHandle start = MethodHandles.identity(String.class);
6392      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6393      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6394      * }</pre></blockquote>
6395      *
6396      * @apiNote Example with the simplest possible body method type,
6397      * and passing the number of iterations to the loop invocation:
6398      * <blockquote><pre>{@code
6399      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6400      * // => a variation on a well known theme
6401      * static String step(String v, int counter ) { return "na " + v; }
6402      * // assume MH_step is a handle to the method above
6403      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6404      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6405      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6406      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6407      * }</pre></blockquote>
6408      *
6409      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6410      * as loop parameters:
6411      * <blockquote><pre>{@code
6412      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6413      * // => a variation on a well known theme
6414      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6415      * // assume MH_step is a handle to the method above
6416      * MethodHandle count = MethodHandles.identity(int.class);
6417      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6418      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6419      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6420      * }</pre></blockquote>
6421      *
6422      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6423      * to enforce a loop type:
6424      * <blockquote><pre>{@code
6425      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6426      * // => a variation on a well known theme
6427      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6428      * // assume MH_step is a handle to the method above
6429      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6430      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6431      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6432      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6433      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6434      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6435      * }</pre></blockquote>
6436      *
6437      * @apiNote The implementation of this method can be expressed as follows:
6438      * <blockquote><pre>{@code
6439      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6440      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6441      * }
6442      * }</pre></blockquote>
6443      *
6444      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6445      *                   result type must be {@code int}. See above for other constraints.
6446      * @param init optional initializer, providing the initial value of the loop variable.
6447      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6448      * @param body body of the loop, which may not be {@code null}.
6449      *             It controls the loop parameters and result type in the standard case (see above for details).
6450      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6451      *             and may accept any number of additional types.
6452      *             See above for other constraints.
6453      *
6454      * @return a method handle representing the loop.
6455      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6456      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6457      *
6458      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6459      * @since 9
6460      */
6461     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6462         return countedLoop(empty(iterations.type()), iterations, init, body);
6463     }
6464 
6465     /**
6466      * Constructs a loop that counts over a range of numbers.
6467      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6468      * <p>
6469      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6470      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6471      * values of the loop counter.
6472      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6473      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6474      * <p>
6475      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6476      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6477      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6478      * <p>
6479      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6480      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6481      * iteration variable.
6482      * The result of the loop handle execution will be the final {@code V} value of that variable
6483      * (or {@code void} if there is no {@code V} variable).
6484      * <p>
6485      * The following rules hold for the argument handles:<ul>
6486      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6487      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6488      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6489      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6490      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6491      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6492      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6493      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6494      * of types called the <em>internal parameter list</em>.
6495      * It will constrain the parameter lists of the other loop parts.
6496      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6497      * with no additional {@code A} types, then the internal parameter list is extended by
6498      * the argument types {@code A...} of the {@code end} handle.
6499      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6500      * list {@code (A...)} is called the <em>external parameter list</em>.
6501      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6502      * additional state variable of the loop.
6503      * The body must both accept a leading parameter and return a value of this type {@code V}.
6504      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6505      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6506      * <a href="MethodHandles.html#effid">effectively identical</a>
6507      * to the external parameter list {@code (A...)}.
6508      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6509      * {@linkplain #empty default value}.
6510      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6511      * effectively identical to the external parameter list {@code (A...)}.
6512      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6513      * to the external parameter list.
6514      * </ul>
6515      * <p>
6516      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6517      * <li>The loop handle's result type is the result type {@code V} of the body.
6518      * <li>The loop handle's parameter types are the types {@code (A...)},
6519      * from the external parameter list.
6520      * </ul>
6521      * <p>
6522      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6523      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6524      * arguments passed to the loop.
6525      * <blockquote><pre>{@code
6526      * int start(A...);
6527      * int end(A...);
6528      * V init(A...);
6529      * V body(V, int, A...);
6530      * V countedLoop(A... a...) {
6531      *   int e = end(a...);
6532      *   int s = start(a...);
6533      *   V v = init(a...);
6534      *   for (int i = s; i < e; ++i) {
6535      *     v = body(v, i, a...);
6536      *   }
6537      *   return v;
6538      * }
6539      * }</pre></blockquote>
6540      *
6541      * @apiNote The implementation of this method can be expressed as follows:
6542      * <blockquote><pre>{@code
6543      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6544      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6545      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6546      *     // the following semantics:
6547      *     // MH_increment: (int limit, int counter) -> counter + 1
6548      *     // MH_predicate: (int limit, int counter) -> counter < limit
6549      *     Class<?> counterType = start.type().returnType();  // int
6550      *     Class<?> returnType = body.type().returnType();
6551      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6552      *     if (returnType != void.class) {  // ignore the V variable
6553      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6554      *         pred = dropArguments(pred, 1, returnType);  // ditto
6555      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6556      *     }
6557      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6558      *     MethodHandle[]
6559      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6560      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6561      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6562      *     return loop(loopLimit, bodyClause, indexVar);
6563      * }
6564      * }</pre></blockquote>
6565      *
6566      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6567      *              See above for other constraints.
6568      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6569      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6570      * @param init optional initializer, providing the initial value of the loop variable.
6571      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6572      * @param body body of the loop, which may not be {@code null}.
6573      *             It controls the loop parameters and result type in the standard case (see above for details).
6574      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6575      *             and may accept any number of additional types.
6576      *             See above for other constraints.
6577      *
6578      * @return a method handle representing the loop.
6579      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6580      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6581      *
6582      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6583      * @since 9
6584      */
6585     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6586         countedLoopChecks(start, end, init, body);
6587         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6588         Class<?> limitType   = end.type().returnType();    // yes, int again
6589         Class<?> returnType  = body.type().returnType();
6590         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6591         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6592         MethodHandle retv = null;
6593         if (returnType != void.class) {
6594             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6595             pred = dropArguments(pred, 1, returnType);  // ditto
6596             retv = dropArguments(identity(returnType), 0, counterType);
6597         }
6598         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6599         MethodHandle[]
6600             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6601             bodyClause = { init, body },            // v = init(); v = body(v, i)
6602             indexVar   = { start, incr };           // i = start(); i = i + 1
6603         return loop(loopLimit, bodyClause, indexVar);
6604     }
6605 
6606     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6607         Objects.requireNonNull(start);
6608         Objects.requireNonNull(end);
6609         Objects.requireNonNull(body);
6610         Class<?> counterType = start.type().returnType();
6611         if (counterType != int.class) {
6612             MethodType expected = start.type().changeReturnType(int.class);
6613             throw misMatchedTypes("start function", start.type(), expected);
6614         } else if (end.type().returnType() != counterType) {
6615             MethodType expected = end.type().changeReturnType(counterType);
6616             throw misMatchedTypes("end function", end.type(), expected);
6617         }
6618         MethodType bodyType = body.type();
6619         Class<?> returnType = bodyType.returnType();
6620         List<Class<?>> innerList = bodyType.parameterList();
6621         // strip leading V value if present
6622         int vsize = (returnType == void.class ? 0 : 1);
6623         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6624             // argument list has no "V" => error
6625             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6626             throw misMatchedTypes("body function", bodyType, expected);
6627         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6628             // missing I type => error
6629             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6630             throw misMatchedTypes("body function", bodyType, expected);
6631         }
6632         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6633         if (outerList.isEmpty()) {
6634             // special case; take lists from end handle
6635             outerList = end.type().parameterList();
6636             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6637         }
6638         MethodType expected = methodType(counterType, outerList);
6639         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6640             throw misMatchedTypes("start parameter types", start.type(), expected);
6641         }
6642         if (end.type() != start.type() &&
6643             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6644             throw misMatchedTypes("end parameter types", end.type(), expected);
6645         }
6646         if (init != null) {
6647             MethodType initType = init.type();
6648             if (initType.returnType() != returnType ||
6649                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6650                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6651             }
6652         }
6653     }
6654 
6655     /**
6656      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6657      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6658      * <p>
6659      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6660      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6661      * <p>
6662      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6663      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6664      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6665      * <p>
6666      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6667      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6668      * iteration variable.
6669      * The result of the loop handle execution will be the final {@code V} value of that variable
6670      * (or {@code void} if there is no {@code V} variable).
6671      * <p>
6672      * The following rules hold for the argument handles:<ul>
6673      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6674      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6675      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6676      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6677      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6678      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6679      * of types called the <em>internal parameter list</em>.
6680      * It will constrain the parameter lists of the other loop parts.
6681      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6682      * with no additional {@code A} types, then the internal parameter list is extended by
6683      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6684      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6685      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6686      * list {@code (A...)} is called the <em>external parameter list</em>.
6687      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6688      * additional state variable of the loop.
6689      * The body must both accept a leading parameter and return a value of this type {@code V}.
6690      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6691      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6692      * <a href="MethodHandles.html#effid">effectively identical</a>
6693      * to the external parameter list {@code (A...)}.
6694      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6695      * {@linkplain #empty default value}.
6696      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6697      * type {@code java.util.Iterator} or a subtype thereof.
6698      * The iterator it produces when the loop is executed will be assumed
6699      * to yield values which can be converted to type {@code T}.
6700      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6701      * effectively identical to the external parameter list {@code (A...)}.
6702      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6703      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6704      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6705      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6706      * the {@link MethodHandle#asType asType} conversion method.
6707      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6708      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6709      * </ul>
6710      * <p>
6711      * The type {@code T} may be either a primitive or reference.
6712      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6713      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6714      * as if by the {@link MethodHandle#asType asType} conversion method.
6715      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6716      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6717      * <p>
6718      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6719      * <li>The loop handle's result type is the result type {@code V} of the body.
6720      * <li>The loop handle's parameter types are the types {@code (A...)},
6721      * from the external parameter list.
6722      * </ul>
6723      * <p>
6724      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6725      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6726      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6727      * <blockquote><pre>{@code
6728      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6729      * V init(A...);
6730      * V body(V,T,A...);
6731      * V iteratedLoop(A... a...) {
6732      *   Iterator<T> it = iterator(a...);
6733      *   V v = init(a...);
6734      *   while (it.hasNext()) {
6735      *     T t = it.next();
6736      *     v = body(v, t, a...);
6737      *   }
6738      *   return v;
6739      * }
6740      * }</pre></blockquote>
6741      *
6742      * @apiNote Example:
6743      * <blockquote><pre>{@code
6744      * // get an iterator from a list
6745      * static List<String> reverseStep(List<String> r, String e) {
6746      *   r.add(0, e);
6747      *   return r;
6748      * }
6749      * static List<String> newArrayList() { return new ArrayList<>(); }
6750      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6751      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6752      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6753      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6754      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6755      * }</pre></blockquote>
6756      *
6757      * @apiNote The implementation of this method can be expressed approximately as follows:
6758      * <blockquote><pre>{@code
6759      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6760      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6761      *     Class<?> returnType = body.type().returnType();
6762      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6763      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6764      *     MethodHandle retv = null, step = body, startIter = iterator;
6765      *     if (returnType != void.class) {
6766      *         // the simple thing first:  in (I V A...), drop the I to get V
6767      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6768      *         // body type signature (V T A...), internal loop types (I V A...)
6769      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6770      *     }
6771      *     if (startIter == null)  startIter = MH_getIter;
6772      *     MethodHandle[]
6773      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6774      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6775      *     return loop(iterVar, bodyClause);
6776      * }
6777      * }</pre></blockquote>
6778      *
6779      * @param iterator an optional handle to return the iterator to start the loop.
6780      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6781      *                 See above for other constraints.
6782      * @param init optional initializer, providing the initial value of the loop variable.
6783      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6784      * @param body body of the loop, which may not be {@code null}.
6785      *             It controls the loop parameters and result type in the standard case (see above for details).
6786      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6787      *             and may accept any number of additional types.
6788      *             See above for other constraints.
6789      *
6790      * @return a method handle embodying the iteration loop functionality.
6791      * @throws NullPointerException if the {@code body} handle is {@code null}.
6792      * @throws IllegalArgumentException if any argument violates the above requirements.
6793      *
6794      * @since 9
6795      */
6796     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6797         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6798         Class<?> returnType = body.type().returnType();
6799         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6800         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6801         MethodHandle startIter;
6802         MethodHandle nextVal;
6803         {
6804             MethodType iteratorType;
6805             if (iterator == null) {
6806                 // derive argument type from body, if available, else use Iterable
6807                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6808                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6809             } else {
6810                 // force return type to the internal iterator class
6811                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6812                 startIter = iterator;
6813             }
6814             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6815             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6816 
6817             // perform the asType transforms under an exception transformer, as per spec.:
6818             try {
6819                 startIter = startIter.asType(iteratorType);
6820                 nextVal = nextRaw.asType(nextValType);
6821             } catch (WrongMethodTypeException ex) {
6822                 throw new IllegalArgumentException(ex);
6823             }
6824         }
6825 
6826         MethodHandle retv = null, step = body;
6827         if (returnType != void.class) {
6828             // the simple thing first:  in (I V A...), drop the I to get V
6829             retv = dropArguments(identity(returnType), 0, Iterator.class);
6830             // body type signature (V T A...), internal loop types (I V A...)
6831             step = swapArguments(body, 0, 1);  // swap V <-> T
6832         }
6833 
6834         MethodHandle[]
6835             iterVar    = { startIter, null, hasNext, retv },
6836             bodyClause = { init, filterArgument(step, 0, nextVal) };
6837         return loop(iterVar, bodyClause);
6838     }
6839 
6840     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6841         Objects.requireNonNull(body);
6842         MethodType bodyType = body.type();
6843         Class<?> returnType = bodyType.returnType();
6844         List<Class<?>> internalParamList = bodyType.parameterList();
6845         // strip leading V value if present
6846         int vsize = (returnType == void.class ? 0 : 1);
6847         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6848             // argument list has no "V" => error
6849             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6850             throw misMatchedTypes("body function", bodyType, expected);
6851         } else if (internalParamList.size() <= vsize) {
6852             // missing T type => error
6853             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6854             throw misMatchedTypes("body function", bodyType, expected);
6855         }
6856         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6857         Class<?> iterableType = null;
6858         if (iterator != null) {
6859             // special case; if the body handle only declares V and T then
6860             // the external parameter list is obtained from iterator handle
6861             if (externalParamList.isEmpty()) {
6862                 externalParamList = iterator.type().parameterList();
6863             }
6864             MethodType itype = iterator.type();
6865             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6866                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6867             }
6868             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6869                 MethodType expected = methodType(itype.returnType(), externalParamList);
6870                 throw misMatchedTypes("iterator parameters", itype, expected);
6871             }
6872         } else {
6873             if (externalParamList.isEmpty()) {
6874                 // special case; if the iterator handle is null and the body handle
6875                 // only declares V and T then the external parameter list consists
6876                 // of Iterable
6877                 externalParamList = Arrays.asList(Iterable.class);
6878                 iterableType = Iterable.class;
6879             } else {
6880                 // special case; if the iterator handle is null and the external
6881                 // parameter list is not empty then the first parameter must be
6882                 // assignable to Iterable
6883                 iterableType = externalParamList.get(0);
6884                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6885                     throw newIllegalArgumentException(
6886                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6887                 }
6888             }
6889         }
6890         if (init != null) {
6891             MethodType initType = init.type();
6892             if (initType.returnType() != returnType ||
6893                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6894                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6895             }
6896         }
6897         return iterableType;  // help the caller a bit
6898     }
6899 
6900     /*non-public*/
6901     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6902         // there should be a better way to uncross my wires
6903         int arity = mh.type().parameterCount();
6904         int[] order = new int[arity];
6905         for (int k = 0; k < arity; k++)  order[k] = k;
6906         order[i] = j; order[j] = i;
6907         Class<?>[] types = mh.type().parameterArray();
6908         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6909         MethodType swapType = methodType(mh.type().returnType(), types);
6910         return permuteArguments(mh, swapType, order);
6911     }
6912 
6913     /**
6914      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6915      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6916      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6917      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6918      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6919      * {@code try-finally} handle.
6920      * <p>
6921      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6922      * The first is the exception thrown during the
6923      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6924      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6925      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6926      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6927      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6928      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6929      * <p>
6930      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6931      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6932      * two extra leading parameters:<ul>
6933      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6934      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6935      * the result from the execution of the {@code target} handle.
6936      * This parameter is not present if the {@code target} returns {@code void}.
6937      * </ul>
6938      * <p>
6939      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6940      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6941      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6942      * the cleanup.
6943      * <blockquote><pre>{@code
6944      * V target(A..., B...);
6945      * V cleanup(Throwable, V, A...);
6946      * V adapter(A... a, B... b) {
6947      *   V result = (zero value for V);
6948      *   Throwable throwable = null;
6949      *   try {
6950      *     result = target(a..., b...);
6951      *   } catch (Throwable t) {
6952      *     throwable = t;
6953      *     throw t;
6954      *   } finally {
6955      *     result = cleanup(throwable, result, a...);
6956      *   }
6957      *   return result;
6958      * }
6959      * }</pre></blockquote>
6960      * <p>
6961      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6962      * be modified by execution of the target, and so are passed unchanged
6963      * from the caller to the cleanup, if it is invoked.
6964      * <p>
6965      * The target and cleanup must return the same type, even if the cleanup
6966      * always throws.
6967      * To create such a throwing cleanup, compose the cleanup logic
6968      * with {@link #throwException throwException},
6969      * in order to create a method handle of the correct return type.
6970      * <p>
6971      * Note that {@code tryFinally} never converts exceptions into normal returns.
6972      * In rare cases where exceptions must be converted in that way, first wrap
6973      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6974      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6975      * <p>
6976      * It is recommended that the first parameter type of {@code cleanup} be
6977      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6978      * {@code cleanup} will always be invoked with whatever exception that
6979      * {@code target} throws.  Declaring a narrower type may result in a
6980      * {@code ClassCastException} being thrown by the {@code try-finally}
6981      * handle if the type of the exception thrown by {@code target} is not
6982      * assignable to the first parameter type of {@code cleanup}.  Note that
6983      * various exception types of {@code VirtualMachineError},
6984      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6985      * thrown by almost any kind of Java code, and a finally clause that
6986      * catches (say) only {@code IOException} would mask any of the others
6987      * behind a {@code ClassCastException}.
6988      *
6989      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6990      * @param cleanup the handle that is invoked in the finally block.
6991      *
6992      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6993      * @throws NullPointerException if any argument is null
6994      * @throws IllegalArgumentException if {@code cleanup} does not accept
6995      *          the required leading arguments, or if the method handle types do
6996      *          not match in their return types and their
6997      *          corresponding trailing parameters
6998      *
6999      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
7000      * @since 9
7001      */
7002     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
7003         List<Class<?>> targetParamTypes = target.type().parameterList();
7004         Class<?> rtype = target.type().returnType();
7005 
7006         tryFinallyChecks(target, cleanup);
7007 
7008         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
7009         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7010         // target parameter list.
7011         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
7012 
7013         // Ensure that the intrinsic type checks the instance thrown by the
7014         // target against the first parameter of cleanup
7015         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
7016 
7017         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
7018         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
7019     }
7020 
7021     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
7022         Class<?> rtype = target.type().returnType();
7023         if (rtype != cleanup.type().returnType()) {
7024             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
7025         }
7026         MethodType cleanupType = cleanup.type();
7027         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
7028             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
7029         }
7030         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
7031             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
7032         }
7033         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
7034         // target parameter list.
7035         int cleanupArgIndex = rtype == void.class ? 1 : 2;
7036         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
7037             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
7038                     cleanup.type(), target.type());
7039         }
7040     }
7041 
7042 }