1 /*
   2  * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 import valhalla.shady.MinimalValueTypes_1_0;
  40 import valhalla.shady.ValueTypeHolder;
  41 
  42 import java.lang.invoke.LambdaForm.BasicType;
  43 import java.lang.reflect.Constructor;
  44 import java.lang.reflect.Field;
  45 import java.lang.reflect.Member;
  46 import java.lang.reflect.Method;
  47 import java.lang.reflect.Modifier;
  48 import java.lang.reflect.ReflectPermission;
  49 import java.nio.ByteOrder;
  50 import java.security.AccessController;
  51 import java.security.PrivilegedAction;
  52 import java.security.ProtectionDomain;
  53 import java.util.ArrayList;
  54 import java.util.Arrays;
  55 import java.util.BitSet;
  56 import java.util.Iterator;
  57 import java.util.List;
  58 import java.util.Objects;
  59 import java.util.concurrent.ConcurrentHashMap;
  60 import java.util.stream.Collectors;
  61 import java.util.stream.Stream;
  62 
  63 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  64 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  65 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  66 import static java.lang.invoke.MethodType.methodType;
  67 
  68 /**
  69  * This class consists exclusively of static methods that operate on or return
  70  * method handles. They fall into several categories:
  71  * <ul>
  72  * <li>Lookup methods which help create method handles for methods and fields.
  73  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  74  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  75  * </ul>
  76  *
  77  * @author John Rose, JSR 292 EG
  78  * @since 1.7
  79  */
  80 public class MethodHandles {
  81 
  82     private MethodHandles() { }  // do not instantiate
  83 
  84     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  85 
  86     // See IMPL_LOOKUP below.
  87 
  88     //// Method handle creation from ordinary methods.
  89 
  90     /**
  91      * Returns a {@link Lookup lookup object} with
  92      * full capabilities to emulate all supported bytecode behaviors of the caller.
  93      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  94      * Factory methods on the lookup object can create
  95      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  96      * for any member that the caller has access to via bytecodes,
  97      * including protected and private fields and methods.
  98      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
  99      * Do not store it in place where untrusted code can access it.
 100      * <p>
 101      * This method is caller sensitive, which means that it may return different
 102      * values to different callers.
 103      * <p>
 104      * For any given caller class {@code C}, the lookup object returned by this call
 105      * has equivalent capabilities to any lookup object
 106      * supplied by the JVM to the bootstrap method of an
 107      * <a href="package-summary.html#indyinsn">invokedynamic instruction</a>
 108      * executing in the same caller class {@code C}.
 109      * @return a lookup object for the caller of this method, with private access
 110      */
 111     @CallerSensitive
 112     @ForceInline // to ensure Reflection.getCallerClass optimization
 113     public static Lookup lookup() {
 114         return new Lookup(Reflection.getCallerClass());
 115     }
 116 
 117     /**
 118      * This reflected$lookup method is the alternate implementation of
 119      * the lookup method when being invoked by reflection.
 120      */
 121     @CallerSensitive
 122     private static Lookup reflected$lookup() {
 123         Class<?> caller = Reflection.getCallerClass();
 124         if (caller.getClassLoader() == null) {
 125             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 126         }
 127         return new Lookup(caller);
 128     }
 129 
 130     /**
 131      * Returns a {@link Lookup lookup object} which is trusted minimally.
 132      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 133      * It can only be used to create method handles to public members of
 134      * public classes in packages that are exported unconditionally.
 135      * <p>
 136      * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
 137      * of this lookup object will be {@link java.lang.Object}.
 138      *
 139      * @apiNote The use of Object is conventional, and because the lookup modes are
 140      * limited, there is no special access provided to the internals of Object, its package
 141      * or its module. Consequently, the lookup context of this lookup object will be the
 142      * bootstrap class loader, which means it cannot find user classes.
 143      *
 144      * <p style="font-size:smaller;">
 145      * <em>Discussion:</em>
 146      * The lookup class can be changed to any other class {@code C} using an expression of the form
 147      * {@link Lookup#in publicLookup().in(C.class)}.
 148      * but may change the lookup context by virtue of changing the class loader.
 149      * A public lookup object is always subject to
 150      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 151      * Also, it cannot access
 152      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 153      * @return a lookup object which is trusted minimally
 154      *
 155      * @revised 9
 156      * @spec JPMS
 157      */
 158     public static Lookup publicLookup() {
 159         return Lookup.PUBLIC_LOOKUP;
 160     }
 161 
 162     /**
 163      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 164      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 165      * private access</a>, on a target class.
 166      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 167      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 168      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 169      * the target class, then this check ensures that
 170      * <ul>
 171      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 172      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 173      *     the target class to at least {@code m1}.</li>
 174      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 175      * </ul>
 176      * <p>
 177      * If there is a security manager, its {@code checkPermission} method is called to
 178      * check {@code ReflectPermission("suppressAccessChecks")}.
 179      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 180      * was created by code in the caller module (or derived from a lookup object originally
 181      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 182      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 183      * access to the caller.
 184      * @param targetClass the target class
 185      * @param lookup the caller lookup object
 186      * @return a lookup object for the target class, with private access
 187      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 188      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 189      * @throws IllegalAccessException if the access check specified above fails
 190      * @throws SecurityException if denied by the security manager
 191      * @since 9
 192      * @spec JPMS
 193      * @see Lookup#dropLookupMode
 194      */
 195     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 196         SecurityManager sm = System.getSecurityManager();
 197         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 198         if (targetClass.isPrimitive())
 199             throw new IllegalArgumentException(targetClass + " is a primitive class");
 200         if (targetClass.isArray())
 201             throw new IllegalArgumentException(targetClass + " is an array class");
 202         Module targetModule = targetClass.getModule();
 203         Module callerModule = lookup.lookupClass().getModule();
 204         if (!callerModule.canRead(targetModule))
 205             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 206         if (targetModule.isNamed()) {
 207             String pn = targetClass.getPackageName();
 208             assert pn.length() > 0 : "unnamed package cannot be in named module";
 209             if (!targetModule.isOpen(pn, callerModule))
 210                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 211         }
 212         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 213             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 214         if (!callerModule.isNamed() && targetModule.isNamed()) {
 215             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 216             if (logger != null) {
 217                 logger.logIfOpenedForIllegalAccess(lookup, targetClass);
 218             }
 219         }
 220         return new Lookup(targetClass);
 221     }
 222 
 223     /**
 224      * Performs an unchecked "crack" of a
 225      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 226      * The result is as if the user had obtained a lookup object capable enough
 227      * to crack the target method handle, called
 228      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 229      * on the target to obtain its symbolic reference, and then called
 230      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 231      * to resolve the symbolic reference to a member.
 232      * <p>
 233      * If there is a security manager, its {@code checkPermission} method
 234      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 235      * @param <T> the desired type of the result, either {@link Member} or a subtype
 236      * @param target a direct method handle to crack into symbolic reference components
 237      * @param expected a class object representing the desired result type {@code T}
 238      * @return a reference to the method, constructor, or field object
 239      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 240      * @exception NullPointerException if either argument is {@code null}
 241      * @exception IllegalArgumentException if the target is not a direct method handle
 242      * @exception ClassCastException if the member is not of the expected type
 243      * @since 1.8
 244      */
 245     public static <T extends Member> T
 246     reflectAs(Class<T> expected, MethodHandle target) {
 247         SecurityManager smgr = System.getSecurityManager();
 248         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 249         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 250         return lookup.revealDirect(target).reflectAs(expected, lookup);
 251     }
 252     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 253     private static final java.security.Permission ACCESS_PERMISSION =
 254         new ReflectPermission("suppressAccessChecks");
 255 
 256     /**
 257      * A <em>lookup object</em> is a factory for creating method handles,
 258      * when the creation requires access checking.
 259      * Method handles do not perform
 260      * access checks when they are called, but rather when they are created.
 261      * Therefore, method handle access
 262      * restrictions must be enforced when a method handle is created.
 263      * The caller class against which those restrictions are enforced
 264      * is known as the {@linkplain #lookupClass lookup class}.
 265      * <p>
 266      * A lookup class which needs to create method handles will call
 267      * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
 268      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 269      * determined, and securely stored in the {@code Lookup} object.
 270      * The lookup class (or its delegates) may then use factory methods
 271      * on the {@code Lookup} object to create method handles for access-checked members.
 272      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 273      * even private ones.
 274      *
 275      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
 276      * The factory methods on a {@code Lookup} object correspond to all major
 277      * use cases for methods, constructors, and fields.
 278      * Each method handle created by a factory method is the functional
 279      * equivalent of a particular <em>bytecode behavior</em>.
 280      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 281      * Here is a summary of the correspondence between these factory methods and
 282      * the behavior of the resulting method handles:
 283      * <table class="striped">
 284      * <caption style="display:none">lookup method behaviors</caption>
 285      * <thead>
 286      * <tr>
 287      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 288      *     <th scope="col">member</th>
 289      *     <th scope="col">bytecode behavior</th>
 290      * </tr>
 291      * </thead>
 292      * <tbody>
 293      * <tr>
 294      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 295      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 296      * </tr>
 297      * <tr>
 298      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 299      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 300      * </tr>
 301      * <tr>
 302      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 303      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 304      * </tr>
 305      * <tr>
 306      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 307      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 308      * </tr>
 309      * <tr>
 310      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 311      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 312      * </tr>
 313      * <tr>
 314      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 315      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 316      * </tr>
 317      * <tr>
 318      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 319      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 320      * </tr>
 321      * <tr>
 322      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 323      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 324      * </tr>
 325      * <tr>
 326      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 327      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 328      * </tr>
 329      * <tr>
 330      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 331      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 332      * </tr>
 333      * <tr>
 334      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 335      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 336      * </tr>
 337      * <tr>
 338      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 339      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 340      * </tr>
 341      * <tr>
 342      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 343      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 344      * </tr>
 345      * <tr>
 346      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 347      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 348      * </tr>
 349      * </tbody>
 350      * </table>
 351      *
 352      * Here, the type {@code C} is the class or interface being searched for a member,
 353      * documented as a parameter named {@code refc} in the lookup methods.
 354      * The method type {@code MT} is composed from the return type {@code T}
 355      * and the sequence of argument types {@code A*}.
 356      * The constructor also has a sequence of argument types {@code A*} and
 357      * is deemed to return the newly-created object of type {@code C}.
 358      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 359      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 360      * if it is present, it is always the leading argument to the method handle invocation.
 361      * (In the case of some {@code protected} members, {@code this} may be
 362      * restricted in type to the lookup class; see below.)
 363      * The name {@code arg} stands for all the other method handle arguments.
 364      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 365      * stands for a null reference if the accessed method or field is static,
 366      * and {@code this} otherwise.
 367      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 368      * for reflective objects corresponding to the given members.
 369      * <p>
 370      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 371      * as if by {@code ldc CONSTANT_Class}.
 372      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 373      * <p>
 374      * In cases where the given member is of variable arity (i.e., a method or constructor)
 375      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 376      * In all other cases, the returned method handle will be of fixed arity.
 377      * <p style="font-size:smaller;">
 378      * <em>Discussion:</em>
 379      * The equivalence between looked-up method handles and underlying
 380      * class members and bytecode behaviors
 381      * can break down in a few ways:
 382      * <ul style="font-size:smaller;">
 383      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 384      * the lookup can still succeed, even when there is no equivalent
 385      * Java expression or bytecoded constant.
 386      * <li>Likewise, if {@code T} or {@code MT}
 387      * is not symbolically accessible from the lookup class's loader,
 388      * the lookup can still succeed.
 389      * For example, lookups for {@code MethodHandle.invokeExact} and
 390      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 391      * <li>If there is a security manager installed, it can forbid the lookup
 392      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 393      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 394      * constant is not subject to security manager checks.
 395      * <li>If the looked-up method has a
 396      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 397      * the method handle creation may fail, due to the method handle
 398      * type having too many parameters.
 399      * </ul>
 400      *
 401      * <h1><a id="access"></a>Access checking</h1>
 402      * Access checks are applied in the factory methods of {@code Lookup},
 403      * when a method handle is created.
 404      * This is a key difference from the Core Reflection API, since
 405      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 406      * performs access checking against every caller, on every call.
 407      * <p>
 408      * All access checks start from a {@code Lookup} object, which
 409      * compares its recorded lookup class against all requests to
 410      * create method handles.
 411      * A single {@code Lookup} object can be used to create any number
 412      * of access-checked method handles, all checked against a single
 413      * lookup class.
 414      * <p>
 415      * A {@code Lookup} object can be shared with other trusted code,
 416      * such as a metaobject protocol.
 417      * A shared {@code Lookup} object delegates the capability
 418      * to create method handles on private members of the lookup class.
 419      * Even if privileged code uses the {@code Lookup} object,
 420      * the access checking is confined to the privileges of the
 421      * original lookup class.
 422      * <p>
 423      * A lookup can fail, because
 424      * the containing class is not accessible to the lookup class, or
 425      * because the desired class member is missing, or because the
 426      * desired class member is not accessible to the lookup class, or
 427      * because the lookup object is not trusted enough to access the member.
 428      * In any of these cases, a {@code ReflectiveOperationException} will be
 429      * thrown from the attempted lookup.  The exact class will be one of
 430      * the following:
 431      * <ul>
 432      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 433      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 434      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 435      * </ul>
 436      * <p>
 437      * In general, the conditions under which a method handle may be
 438      * looked up for a method {@code M} are no more restrictive than the conditions
 439      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 440      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 441      * a method handle lookup will generally raise a corresponding
 442      * checked exception, such as {@code NoSuchMethodException}.
 443      * And the effect of invoking the method handle resulting from the lookup
 444      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 445      * to executing the compiled, verified, and resolved call to {@code M}.
 446      * The same point is true of fields and constructors.
 447      * <p style="font-size:smaller;">
 448      * <em>Discussion:</em>
 449      * Access checks only apply to named and reflected methods,
 450      * constructors, and fields.
 451      * Other method handle creation methods, such as
 452      * {@link MethodHandle#asType MethodHandle.asType},
 453      * do not require any access checks, and are used
 454      * independently of any {@code Lookup} object.
 455      * <p>
 456      * If the desired member is {@code protected}, the usual JVM rules apply,
 457      * including the requirement that the lookup class must be either be in the
 458      * same package as the desired member, or must inherit that member.
 459      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 460      * In addition, if the desired member is a non-static field or method
 461      * in a different package, the resulting method handle may only be applied
 462      * to objects of the lookup class or one of its subclasses.
 463      * This requirement is enforced by narrowing the type of the leading
 464      * {@code this} parameter from {@code C}
 465      * (which will necessarily be a superclass of the lookup class)
 466      * to the lookup class itself.
 467      * <p>
 468      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 469      * that the receiver argument must match both the resolved method <em>and</em>
 470      * the current class.  Again, this requirement is enforced by narrowing the
 471      * type of the leading parameter to the resulting method handle.
 472      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 473      * <p>
 474      * The JVM represents constructors and static initializer blocks as internal methods
 475      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 476      * The internal syntax of invocation instructions allows them to refer to such internal
 477      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 478      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 479      * <p>
 480      * In some cases, access between nested classes is obtained by the Java compiler by creating
 481      * an wrapper method to access a private method of another class
 482      * in the same top-level declaration.
 483      * For example, a nested class {@code C.D}
 484      * can access private members within other related classes such as
 485      * {@code C}, {@code C.D.E}, or {@code C.B},
 486      * but the Java compiler may need to generate wrapper methods in
 487      * those related classes.  In such cases, a {@code Lookup} object on
 488      * {@code C.E} would be unable to those private members.
 489      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 490      * which can transform a lookup on {@code C.E} into one on any of those other
 491      * classes, without special elevation of privilege.
 492      * <p>
 493      * The accesses permitted to a given lookup object may be limited,
 494      * according to its set of {@link #lookupModes lookupModes},
 495      * to a subset of members normally accessible to the lookup class.
 496      * For example, the {@link MethodHandles#publicLookup publicLookup}
 497      * method produces a lookup object which is only allowed to access
 498      * public members in public classes of exported packages.
 499      * The caller sensitive method {@link MethodHandles#lookup lookup}
 500      * produces a lookup object with full capabilities relative to
 501      * its caller class, to emulate all supported bytecode behaviors.
 502      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 503      * with fewer access modes than the original lookup object.
 504      *
 505      * <p style="font-size:smaller;">
 506      * <a id="privacc"></a>
 507      * <em>Discussion of private access:</em>
 508      * We say that a lookup has <em>private access</em>
 509      * if its {@linkplain #lookupModes lookup modes}
 510      * include the possibility of accessing {@code private} members.
 511      * As documented in the relevant methods elsewhere,
 512      * only lookups with private access possess the following capabilities:
 513      * <ul style="font-size:smaller;">
 514      * <li>access private fields, methods, and constructors of the lookup class
 515      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 516      *     such as {@code Class.forName}
 517      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 518      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 519      *     for classes accessible to the lookup class
 520      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 521      *     within the same package member
 522      * </ul>
 523      * <p style="font-size:smaller;">
 524      * Each of these permissions is a consequence of the fact that a lookup object
 525      * with private access can be securely traced back to an originating class,
 526      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 527      * can be reliably determined and emulated by method handles.
 528      *
 529      * <h1><a id="secmgr"></a>Security manager interactions</h1>
 530      * Although bytecode instructions can only refer to classes in
 531      * a related class loader, this API can search for methods in any
 532      * class, as long as a reference to its {@code Class} object is
 533      * available.  Such cross-loader references are also possible with the
 534      * Core Reflection API, and are impossible to bytecode instructions
 535      * such as {@code invokestatic} or {@code getfield}.
 536      * There is a {@linkplain java.lang.SecurityManager security manager API}
 537      * to allow applications to check such cross-loader references.
 538      * These checks apply to both the {@code MethodHandles.Lookup} API
 539      * and the Core Reflection API
 540      * (as found on {@link java.lang.Class Class}).
 541      * <p>
 542      * If a security manager is present, member and class lookups are subject to
 543      * additional checks.
 544      * From one to three calls are made to the security manager.
 545      * Any of these calls can refuse access by throwing a
 546      * {@link java.lang.SecurityException SecurityException}.
 547      * Define {@code smgr} as the security manager,
 548      * {@code lookc} as the lookup class of the current lookup object,
 549      * {@code refc} as the containing class in which the member
 550      * is being sought, and {@code defc} as the class in which the
 551      * member is actually defined.
 552      * (If a class or other type is being accessed,
 553      * the {@code refc} and {@code defc} values are the class itself.)
 554      * The value {@code lookc} is defined as <em>not present</em>
 555      * if the current lookup object does not have
 556      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 557      * The calls are made according to the following rules:
 558      * <ul>
 559      * <li><b>Step 1:</b>
 560      *     If {@code lookc} is not present, or if its class loader is not
 561      *     the same as or an ancestor of the class loader of {@code refc},
 562      *     then {@link SecurityManager#checkPackageAccess
 563      *     smgr.checkPackageAccess(refcPkg)} is called,
 564      *     where {@code refcPkg} is the package of {@code refc}.
 565      * <li><b>Step 2a:</b>
 566      *     If the retrieved member is not public and
 567      *     {@code lookc} is not present, then
 568      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 569      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 570      * <li><b>Step 2b:</b>
 571      *     If the retrieved class has a {@code null} class loader,
 572      *     and {@code lookc} is not present, then
 573      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 574      *     with {@code RuntimePermission("getClassLoader")} is called.
 575      * <li><b>Step 3:</b>
 576      *     If the retrieved member is not public,
 577      *     and if {@code lookc} is not present,
 578      *     and if {@code defc} and {@code refc} are different,
 579      *     then {@link SecurityManager#checkPackageAccess
 580      *     smgr.checkPackageAccess(defcPkg)} is called,
 581      *     where {@code defcPkg} is the package of {@code defc}.
 582      * </ul>
 583      * Security checks are performed after other access checks have passed.
 584      * Therefore, the above rules presuppose a member or class that is public,
 585      * or else that is being accessed from a lookup class that has
 586      * rights to access the member or class.
 587      *
 588      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
 589      * A small number of Java methods have a special property called caller sensitivity.
 590      * A <em>caller-sensitive</em> method can behave differently depending on the
 591      * identity of its immediate caller.
 592      * <p>
 593      * If a method handle for a caller-sensitive method is requested,
 594      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 595      * but they take account of the lookup class in a special way.
 596      * The resulting method handle behaves as if it were called
 597      * from an instruction contained in the lookup class,
 598      * so that the caller-sensitive method detects the lookup class.
 599      * (By contrast, the invoker of the method handle is disregarded.)
 600      * Thus, in the case of caller-sensitive methods,
 601      * different lookup classes may give rise to
 602      * differently behaving method handles.
 603      * <p>
 604      * In cases where the lookup object is
 605      * {@link MethodHandles#publicLookup() publicLookup()},
 606      * or some other lookup object without
 607      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 608      * the lookup class is disregarded.
 609      * In such cases, no caller-sensitive method handle can be created,
 610      * access is forbidden, and the lookup fails with an
 611      * {@code IllegalAccessException}.
 612      * <p style="font-size:smaller;">
 613      * <em>Discussion:</em>
 614      * For example, the caller-sensitive method
 615      * {@link java.lang.Class#forName(String) Class.forName(x)}
 616      * can return varying classes or throw varying exceptions,
 617      * depending on the class loader of the class that calls it.
 618      * A public lookup of {@code Class.forName} will fail, because
 619      * there is no reasonable way to determine its bytecode behavior.
 620      * <p style="font-size:smaller;">
 621      * If an application caches method handles for broad sharing,
 622      * it should use {@code publicLookup()} to create them.
 623      * If there is a lookup of {@code Class.forName}, it will fail,
 624      * and the application must take appropriate action in that case.
 625      * It may be that a later lookup, perhaps during the invocation of a
 626      * bootstrap method, can incorporate the specific identity
 627      * of the caller, making the method accessible.
 628      * <p style="font-size:smaller;">
 629      * The function {@code MethodHandles.lookup} is caller sensitive
 630      * so that there can be a secure foundation for lookups.
 631      * Nearly all other methods in the JSR 292 API rely on lookup
 632      * objects to check access requests.
 633      *
 634      * @revised 9
 635      */
 636     public static final
 637     class Lookup {
 638         /** The class on behalf of whom the lookup is being performed. */
 639         private final Class<?> lookupClass;
 640 
 641         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 642         private final int allowedModes;
 643 
 644         /** A single-bit mask representing {@code public} access,
 645          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 646          *  The value, {@code 0x01}, happens to be the same as the value of the
 647          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 648          */
 649         public static final int PUBLIC = Modifier.PUBLIC;
 650 
 651         /** A single-bit mask representing {@code private} access,
 652          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 653          *  The value, {@code 0x02}, happens to be the same as the value of the
 654          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 655          */
 656         public static final int PRIVATE = Modifier.PRIVATE;
 657 
 658         /** A single-bit mask representing {@code protected} access,
 659          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 660          *  The value, {@code 0x04}, happens to be the same as the value of the
 661          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 662          */
 663         public static final int PROTECTED = Modifier.PROTECTED;
 664 
 665         /** A single-bit mask representing {@code package} access (default access),
 666          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 667          *  The value is {@code 0x08}, which does not correspond meaningfully to
 668          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 669          */
 670         public static final int PACKAGE = Modifier.STATIC;
 671 
 672         /** A single-bit mask representing {@code module} access (default access),
 673          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 674          *  The value is {@code 0x10}, which does not correspond meaningfully to
 675          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 676          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 677          *  with this lookup mode can access all public types in the module of the
 678          *  lookup class and public types in packages exported by other modules
 679          *  to the module of the lookup class.
 680          *  @since 9
 681          *  @spec JPMS
 682          */
 683         public static final int MODULE = PACKAGE << 1;
 684 
 685         /** A single-bit mask representing {@code unconditional} access
 686          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 687          *  The value is {@code 0x20}, which does not correspond meaningfully to
 688          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 689          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 690          *  java.lang.Module#canRead(java.lang.Module) readability}.
 691          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 692          *  with this lookup mode can access all public members of public types
 693          *  of all modules where the type is in a package that is {@link
 694          *  java.lang.Module#isExported(String) exported unconditionally}.
 695          *  @since 9
 696          *  @spec JPMS
 697          *  @see #publicLookup()
 698          */
 699         public static final int UNCONDITIONAL = PACKAGE << 2;
 700 
 701         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 702         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 703         private static final int TRUSTED   = -1;
 704 
 705         private static int fixmods(int mods) {
 706             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 707             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 708         }
 709 
 710         /** Tells which class is performing the lookup.  It is this class against
 711          *  which checks are performed for visibility and access permissions.
 712          *  <p>
 713          *  The class implies a maximum level of access permission,
 714          *  but the permissions may be additionally limited by the bitmask
 715          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 716          *  can be accessed.
 717          *  @return the lookup class, on behalf of which this lookup object finds members
 718          */
 719         public Class<?> lookupClass() {
 720             return lookupClass;
 721         }
 722 
 723         // This is just for calling out to MethodHandleImpl.
 724         private Class<?> lookupClassOrNull() {
 725             return (allowedModes == TRUSTED) ? null : lookupClass;
 726         }
 727 
 728         /** Tells which access-protection classes of members this lookup object can produce.
 729          *  The result is a bit-mask of the bits
 730          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 731          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 732          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 733          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 734          *  {@linkplain #MODULE MODULE (0x10)},
 735          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 736          *  <p>
 737          *  A freshly-created lookup object
 738          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 739          *  all possible bits set, except {@code UNCONDITIONAL}. The lookup can be used to
 740          *  access all members of the caller's class, all public types in the caller's module,
 741          *  and all public types in packages exported by other modules to the caller's module.
 742          *  A lookup object on a new lookup class
 743          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 744          *  may have some mode bits set to zero.
 745          *  Mode bits can also be
 746          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 747          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 748          *  The purpose of this is to restrict access via the new lookup object,
 749          *  so that it can access only names which can be reached by the original
 750          *  lookup object, and also by the new lookup class.
 751          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 752          *  @see #in
 753          *  @see #dropLookupMode
 754          *
 755          *  @revised 9
 756          *  @spec JPMS
 757          */
 758         public int lookupModes() {
 759             return allowedModes & ALL_MODES;
 760         }
 761 
 762         /** Embody the current class (the lookupClass) as a lookup class
 763          * for method handle creation.
 764          * Must be called by from a method in this package,
 765          * which in turn is called by a method not in this package.
 766          */
 767         Lookup(Class<?> lookupClass) {
 768             this(lookupClass, FULL_POWER_MODES);
 769             // make sure we haven't accidentally picked up a privileged class:
 770             checkUnprivilegedlookupClass(lookupClass);
 771         }
 772 
 773         private Lookup(Class<?> lookupClass, int allowedModes) {
 774             this.lookupClass = lookupClass;
 775             this.allowedModes = allowedModes;
 776         }
 777 
 778         /**
 779          * Creates a lookup on the specified new lookup class.
 780          * The resulting object will report the specified
 781          * class as its own {@link #lookupClass lookupClass}.
 782          * <p>
 783          * However, the resulting {@code Lookup} object is guaranteed
 784          * to have no more access capabilities than the original.
 785          * In particular, access capabilities can be lost as follows:<ul>
 786          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 787          * the new lookup class is in a different module {@code M}, then no members, not
 788          * even public members in {@code M}'s exported packages, will be accessible.
 789          * The exception to this is when this lookup is {@link #publicLookup()
 790          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 791          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 792          * is a different module then {@link #MODULE MODULE} access is lost.
 793          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 794          * <li>If the new lookup class is in a different package
 795          * than the old one, protected and default (package) members will not be accessible.
 796          * <li>If the new lookup class is not within the same package member
 797          * as the old one, private members will not be accessible, and protected members
 798          * will not be accessible by virtue of inheritance.
 799          * (Protected members may continue to be accessible because of package sharing.)
 800          * <li>If the new lookup class is not accessible to the old lookup class,
 801          * then no members, not even public members, will be accessible.
 802          * (In all other cases, public members will continue to be accessible.)
 803          * </ul>
 804          * <p>
 805          * The resulting lookup's capabilities for loading classes
 806          * (used during {@link #findClass} invocations)
 807          * are determined by the lookup class' loader,
 808          * which may change due to this operation.
 809          *
 810          * @param requestedLookupClass the desired lookup class for the new lookup object
 811          * @return a lookup object which reports the desired lookup class, or the same object
 812          * if there is no change
 813          * @throws NullPointerException if the argument is null
 814          *
 815          * @revised 9
 816          * @spec JPMS
 817          */
 818         public Lookup in(Class<?> requestedLookupClass) {
 819             Objects.requireNonNull(requestedLookupClass);
 820             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 821                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 822             if (requestedLookupClass == this.lookupClass)
 823                 return this;  // keep same capabilities
 824             int newModes = (allowedModes & FULL_POWER_MODES);
 825             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 826                 // Need to drop all access when teleporting from a named module to another
 827                 // module. The exception is publicLookup where PUBLIC is not lost.
 828                 if (this.lookupClass.getModule().isNamed()
 829                     && (this.allowedModes & UNCONDITIONAL) == 0)
 830                     newModes = 0;
 831                 else
 832                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 833             }
 834             if ((newModes & PACKAGE) != 0
 835                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 836                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 837             }
 838             // Allow nestmate lookups to be created without special privilege:
 839             if ((newModes & PRIVATE) != 0
 840                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 841                 newModes &= ~(PRIVATE|PROTECTED);
 842             }
 843             if ((newModes & PUBLIC) != 0
 844                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 845                 // The requested class it not accessible from the lookup class.
 846                 // No permissions.
 847                 newModes = 0;
 848             }
 849 
 850             checkUnprivilegedlookupClass(requestedLookupClass);
 851             return new Lookup(requestedLookupClass, newModes);
 852         }
 853 
 854 
 855         /**
 856          * Creates a lookup on the same lookup class which this lookup object
 857          * finds members, but with a lookup mode that has lost the given lookup mode.
 858          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 859          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 860          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 861          * dropped and so the resulting lookup mode will never have these access capabilities.
 862          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 863          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 864          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 865          * is dropped then the resulting lookup has no access.
 866          * @param modeToDrop the lookup mode to drop
 867          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 868          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 869          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 870          * @see MethodHandles#privateLookupIn
 871          * @since 9
 872          */
 873         public Lookup dropLookupMode(int modeToDrop) {
 874             int oldModes = lookupModes();
 875             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 876             switch (modeToDrop) {
 877                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 878                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 879                 case PACKAGE: newModes &= ~(PRIVATE); break;
 880                 case PROTECTED:
 881                 case PRIVATE:
 882                 case UNCONDITIONAL: break;
 883                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 884             }
 885             if (newModes == oldModes) return this;  // return self if no change
 886             return new Lookup(lookupClass(), newModes);
 887         }
 888 
 889         /**
 890          * Defines a class to the same class loader and in the same runtime package and
 891          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
 892          * {@linkplain #lookupClass() lookup class}.
 893          *
 894          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
 895          * {@link #PACKAGE PACKAGE} access as default (package) members will be
 896          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
 897          * that the lookup object was created by a caller in the runtime package (or derived
 898          * from a lookup originally created by suitably privileged code to a target class in
 899          * the runtime package). </p>
 900          *
 901          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
 902          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
 903          * same package as the lookup class. </p>
 904          *
 905          * <p> This method does not run the class initializer. The class initializer may
 906          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
 907          * Specification</em>. </p>
 908          *
 909          * <p> If there is a security manager, its {@code checkPermission} method is first called
 910          * to check {@code RuntimePermission("defineClass")}. </p>
 911          *
 912          * @param bytes the class bytes
 913          * @return the {@code Class} object for the class
 914          * @throws IllegalArgumentException the bytes are for a class in a different package
 915          * to the lookup class
 916          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
 917          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
 918          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
 919          * @throws SecurityException if denied by the security manager
 920          * @throws NullPointerException if {@code bytes} is {@code null}
 921          * @since 9
 922          * @spec JPMS
 923          * @see Lookup#privateLookupIn
 924          * @see Lookup#dropLookupMode
 925          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
 926          */
 927         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
 928             SecurityManager sm = System.getSecurityManager();
 929             if (sm != null)
 930                 sm.checkPermission(new RuntimePermission("defineClass"));
 931             if ((lookupModes() & PACKAGE) == 0)
 932                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
 933             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
 934 
 935             // parse class bytes to get class name (in internal form)
 936             bytes = bytes.clone();
 937             String name;
 938             try {
 939                 ClassReader reader = new ClassReader(bytes);
 940                 name = reader.getClassName();
 941             } catch (RuntimeException e) {
 942                 // ASM exceptions are poorly specified
 943                 ClassFormatError cfe = new ClassFormatError();
 944                 cfe.initCause(e);
 945                 throw cfe;
 946             }
 947 
 948             // get package and class name in binary form
 949             String cn, pn;
 950             int index = name.lastIndexOf('/');
 951             if (index == -1) {
 952                 cn = name;
 953                 pn = "";
 954             } else {
 955                 cn = name.replace('/', '.');
 956                 pn = cn.substring(0, index);
 957             }
 958             if (!pn.equals(lookupClass.getPackageName())) {
 959                 throw new IllegalArgumentException("Class not in same package as lookup class");
 960             }
 961 
 962             // invoke the class loader's defineClass method
 963             ClassLoader loader = lookupClass.getClassLoader();
 964             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
 965             String source = "__Lookup_defineClass__";
 966             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
 967             assert clazz.getClassLoader() == lookupClass.getClassLoader()
 968                     && clazz.getPackageName().equals(lookupClass.getPackageName())
 969                     && protectionDomain(clazz) == lookupClassProtectionDomain();
 970             return clazz;
 971         }
 972 
 973         private ProtectionDomain lookupClassProtectionDomain() {
 974             ProtectionDomain pd = cachedProtectionDomain;
 975             if (pd == null) {
 976                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
 977             }
 978             return pd;
 979         }
 980 
 981         private ProtectionDomain protectionDomain(Class<?> clazz) {
 982             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
 983             return AccessController.doPrivileged(pa);
 984         }
 985 
 986         // cached protection domain
 987         private volatile ProtectionDomain cachedProtectionDomain;
 988 
 989 
 990         // Make sure outer class is initialized first.
 991         static { IMPL_NAMES.getClass(); }
 992 
 993         /** Package-private version of lookup which is trusted. */
 994         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 995 
 996         /** Version of lookup which is trusted minimally.
 997          *  It can only be used to create method handles to publicly accessible
 998          *  members in packages that are exported unconditionally.
 999          */
1000         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
1001 
1002         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1003             String name = lookupClass.getName();
1004             if (name.startsWith("java.lang.invoke."))
1005                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1006         }
1007 
1008         /**
1009          * Displays the name of the class from which lookups are to be made.
1010          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1011          * If there are restrictions on the access permitted to this lookup,
1012          * this is indicated by adding a suffix to the class name, consisting
1013          * of a slash and a keyword.  The keyword represents the strongest
1014          * allowed access, and is chosen as follows:
1015          * <ul>
1016          * <li>If no access is allowed, the suffix is "/noaccess".
1017          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1018          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1019          * <li>If only public and module access are allowed, the suffix is "/module".
1020          * <li>If only public, module and package access are allowed, the suffix is "/package".
1021          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1022          * </ul>
1023          * If none of the above cases apply, it is the case that full
1024          * access (public, module, package, private, and protected) is allowed.
1025          * In this case, no suffix is added.
1026          * This is true only of an object obtained originally from
1027          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1028          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1029          * always have restricted access, and will display a suffix.
1030          * <p>
1031          * (It may seem strange that protected access should be
1032          * stronger than private access.  Viewed independently from
1033          * package access, protected access is the first to be lost,
1034          * because it requires a direct subclass relationship between
1035          * caller and callee.)
1036          * @see #in
1037          *
1038          * @revised 9
1039          * @spec JPMS
1040          */
1041         @Override
1042         public String toString() {
1043             String cname = lookupClass.getName();
1044             switch (allowedModes) {
1045             case 0:  // no privileges
1046                 return cname + "/noaccess";
1047             case PUBLIC:
1048                 return cname + "/public";
1049             case PUBLIC|UNCONDITIONAL:
1050                 return cname  + "/publicLookup";
1051             case PUBLIC|MODULE:
1052                 return cname + "/module";
1053             case PUBLIC|MODULE|PACKAGE:
1054                 return cname + "/package";
1055             case FULL_POWER_MODES & ~PROTECTED:
1056                 return cname + "/private";
1057             case FULL_POWER_MODES:
1058                 return cname;
1059             case TRUSTED:
1060                 return "/trusted";  // internal only; not exported
1061             default:  // Should not happen, but it's a bitfield...
1062                 cname = cname + "/" + Integer.toHexString(allowedModes);
1063                 assert(false) : cname;
1064                 return cname;
1065             }
1066         }
1067 
1068         /**
1069          * Produces a method handle for a static method.
1070          * The type of the method handle will be that of the method.
1071          * (Since static methods do not take receivers, there is no
1072          * additional receiver argument inserted into the method handle type,
1073          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1074          * The method and all its argument types must be accessible to the lookup object.
1075          * <p>
1076          * The returned method handle will have
1077          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1078          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1079          * <p>
1080          * If the returned method handle is invoked, the method's class will
1081          * be initialized, if it has not already been initialized.
1082          * <p><b>Example:</b>
1083          * <blockquote><pre>{@code
1084 import static java.lang.invoke.MethodHandles.*;
1085 import static java.lang.invoke.MethodType.*;
1086 ...
1087 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1088   "asList", methodType(List.class, Object[].class));
1089 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1090          * }</pre></blockquote>
1091          * @param refc the class from which the method is accessed
1092          * @param name the name of the method
1093          * @param type the type of the method
1094          * @return the desired method handle
1095          * @throws NoSuchMethodException if the method does not exist
1096          * @throws IllegalAccessException if access checking fails,
1097          *                                or if the method is not {@code static},
1098          *                                or if the method's variable arity modifier bit
1099          *                                is set and {@code asVarargsCollector} fails
1100          * @exception SecurityException if a security manager is present and it
1101          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1102          * @throws NullPointerException if any argument is null
1103          */
1104         public
1105         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1106             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1107             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1108         }
1109 
1110         /**
1111          * Produces a method handle for a virtual method.
1112          * The type of the method handle will be that of the method,
1113          * with the receiver type (usually {@code refc}) prepended.
1114          * The method and all its argument types must be accessible to the lookup object.
1115          * <p>
1116          * When called, the handle will treat the first argument as a receiver
1117          * and dispatch on the receiver's type to determine which method
1118          * implementation to enter.
1119          * (The dispatching action is identical with that performed by an
1120          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1121          * <p>
1122          * The first argument will be of type {@code refc} if the lookup
1123          * class has full privileges to access the member.  Otherwise
1124          * the member must be {@code protected} and the first argument
1125          * will be restricted in type to the lookup class.
1126          * <p>
1127          * The returned method handle will have
1128          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1129          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1130          * <p>
1131          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1132          * instructions and method handles produced by {@code findVirtual},
1133          * if the class is {@code MethodHandle} and the name string is
1134          * {@code invokeExact} or {@code invoke}, the resulting
1135          * method handle is equivalent to one produced by
1136          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1137          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1138          * with the same {@code type} argument.
1139          * <p>
1140          * If the class is {@code VarHandle} and the name string corresponds to
1141          * the name of a signature-polymorphic access mode method, the resulting
1142          * method handle is equivalent to one produced by
1143          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1144          * the access mode corresponding to the name string and with the same
1145          * {@code type} arguments.
1146          * <p>
1147          * <b>Example:</b>
1148          * <blockquote><pre>{@code
1149 import static java.lang.invoke.MethodHandles.*;
1150 import static java.lang.invoke.MethodType.*;
1151 ...
1152 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1153   "concat", methodType(String.class, String.class));
1154 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1155   "hashCode", methodType(int.class));
1156 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1157   "hashCode", methodType(int.class));
1158 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1159 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1160 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1161 // interface method:
1162 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1163   "subSequence", methodType(CharSequence.class, int.class, int.class));
1164 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1165 // constructor "internal method" must be accessed differently:
1166 MethodType MT_newString = methodType(void.class); //()V for new String()
1167 try { assertEquals("impossible", lookup()
1168         .findVirtual(String.class, "<init>", MT_newString));
1169  } catch (NoSuchMethodException ex) { } // OK
1170 MethodHandle MH_newString = publicLookup()
1171   .findConstructor(String.class, MT_newString);
1172 assertEquals("", (String) MH_newString.invokeExact());
1173          * }</pre></blockquote>
1174          *
1175          * @param refc the class or interface from which the method is accessed
1176          * @param name the name of the method
1177          * @param type the type of the method, with the receiver argument omitted
1178          * @return the desired method handle
1179          * @throws NoSuchMethodException if the method does not exist
1180          * @throws IllegalAccessException if access checking fails,
1181          *                                or if the method is {@code static},
1182          *                                or if the method is {@code private} method of interface,
1183          *                                or if the method's variable arity modifier bit
1184          *                                is set and {@code asVarargsCollector} fails
1185          * @exception SecurityException if a security manager is present and it
1186          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1187          * @throws NullPointerException if any argument is null
1188          */
1189         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1190             if (refc == MethodHandle.class) {
1191                 MethodHandle mh = findVirtualForMH(name, type);
1192                 if (mh != null)  return mh;
1193             } else if (refc == VarHandle.class) {
1194                 MethodHandle mh = findVirtualForVH(name, type);
1195                 if (mh != null)  return mh;
1196             }
1197             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1198             MemberName method = resolveOrFail(refKind, refc, name, type);
1199             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1200         }
1201         private MethodHandle findVirtualForMH(String name, MethodType type) {
1202             // these names require special lookups because of the implicit MethodType argument
1203             if ("invoke".equals(name))
1204                 return invoker(type);
1205             if ("invokeExact".equals(name))
1206                 return exactInvoker(type);
1207             assert(!MemberName.isMethodHandleInvokeName(name));
1208             return null;
1209         }
1210         private MethodHandle findVirtualForVH(String name, MethodType type) {
1211             try {
1212                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1213             } catch (IllegalArgumentException e) {
1214                 return null;
1215             }
1216         }
1217 
1218         /**
1219          * Produces a method handle which creates an object and initializes it, using
1220          * the constructor of the specified type.
1221          * The parameter types of the method handle will be those of the constructor,
1222          * while the return type will be a reference to the constructor's class.
1223          * The constructor and all its argument types must be accessible to the lookup object.
1224          * <p>
1225          * The requested type must have a return type of {@code void}.
1226          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1227          * <p>
1228          * The returned method handle will have
1229          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1230          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1231          * <p>
1232          * If the returned method handle is invoked, the constructor's class will
1233          * be initialized, if it has not already been initialized.
1234          * <p><b>Example:</b>
1235          * <blockquote><pre>{@code
1236 import static java.lang.invoke.MethodHandles.*;
1237 import static java.lang.invoke.MethodType.*;
1238 ...
1239 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1240   ArrayList.class, methodType(void.class, Collection.class));
1241 Collection orig = Arrays.asList("x", "y");
1242 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1243 assert(orig != copy);
1244 assertEquals(orig, copy);
1245 // a variable-arity constructor:
1246 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1247   ProcessBuilder.class, methodType(void.class, String[].class));
1248 ProcessBuilder pb = (ProcessBuilder)
1249   MH_newProcessBuilder.invoke("x", "y", "z");
1250 assertEquals("[x, y, z]", pb.command().toString());
1251          * }</pre></blockquote>
1252          * @param refc the class or interface from which the method is accessed
1253          * @param type the type of the method, with the receiver argument omitted, and a void return type
1254          * @return the desired method handle
1255          * @throws NoSuchMethodException if the constructor does not exist
1256          * @throws IllegalAccessException if access checking fails
1257          *                                or if the method's variable arity modifier bit
1258          *                                is set and {@code asVarargsCollector} fails
1259          * @exception SecurityException if a security manager is present and it
1260          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1261          * @throws NullPointerException if any argument is null
1262          */
1263         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1264             if (refc.isArray()) {
1265                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1266             }
1267             String name = "<init>";
1268             if (MinimalValueTypes_1_0.isValueType(refc)) {
1269                 //shady: The findConstructor method of Lookup will expose all accessible constructors of the original
1270                 //value-capable class, for both the Q-type and the legacy L-type. The return type of a method handle produced
1271                 //by findConstructor will be identical with the lookup class, even if it is a Q-type.
1272                 refc = MinimalValueTypes_1_0.getValueCapableClass(refc);
1273             }
1274             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1275             return getDirectConstructor(refc, ctor);
1276         }
1277 
1278         /**
1279          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1280          * initializer of the class is not run.
1281          * <p>
1282          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1283          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1284          * load the requested class, and then determines whether the class is accessible to this lookup object.
1285          *
1286          * @param targetName the fully qualified name of the class to be looked up.
1287          * @return the requested class.
1288          * @exception SecurityException if a security manager is present and it
1289          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1290          * @throws LinkageError if the linkage fails
1291          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1292          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1293          * modes.
1294          * @exception SecurityException if a security manager is present and it
1295          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1296          * @since 9
1297          */
1298         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1299             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1300             return accessClass(targetClass);
1301         }
1302 
1303         /**
1304          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1305          * static initializer of the class is not run.
1306          * <p>
1307          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1308          * {@linkplain #lookupModes() lookup modes}.
1309          *
1310          * @param targetClass the class to be access-checked
1311          *
1312          * @return the class that has been access-checked
1313          *
1314          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1315          * modes.
1316          * @exception SecurityException if a security manager is present and it
1317          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1318          * @since 9
1319          */
1320         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1321             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1322                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1323             }
1324             checkSecurityManager(targetClass, null);
1325             return targetClass;
1326         }
1327 
1328         /**
1329          * Produces an early-bound method handle for a virtual method.
1330          * It will bypass checks for overriding methods on the receiver,
1331          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1332          * instruction from within the explicitly specified {@code specialCaller}.
1333          * The type of the method handle will be that of the method,
1334          * with a suitably restricted receiver type prepended.
1335          * (The receiver type will be {@code specialCaller} or a subtype.)
1336          * The method and all its argument types must be accessible
1337          * to the lookup object.
1338          * <p>
1339          * Before method resolution,
1340          * if the explicitly specified caller class is not identical with the
1341          * lookup class, or if this lookup object does not have
1342          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1343          * privileges, the access fails.
1344          * <p>
1345          * The returned method handle will have
1346          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1347          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1348          * <p style="font-size:smaller;">
1349          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1350          * even though the {@code invokespecial} instruction can refer to them
1351          * in special circumstances.  Use {@link #findConstructor findConstructor}
1352          * to access instance initialization methods in a safe manner.)</em>
1353          * <p><b>Example:</b>
1354          * <blockquote><pre>{@code
1355 import static java.lang.invoke.MethodHandles.*;
1356 import static java.lang.invoke.MethodType.*;
1357 ...
1358 static class Listie extends ArrayList {
1359   public String toString() { return "[wee Listie]"; }
1360   static Lookup lookup() { return MethodHandles.lookup(); }
1361 }
1362 ...
1363 // no access to constructor via invokeSpecial:
1364 MethodHandle MH_newListie = Listie.lookup()
1365   .findConstructor(Listie.class, methodType(void.class));
1366 Listie l = (Listie) MH_newListie.invokeExact();
1367 try { assertEquals("impossible", Listie.lookup().findSpecial(
1368         Listie.class, "<init>", methodType(void.class), Listie.class));
1369  } catch (NoSuchMethodException ex) { } // OK
1370 // access to super and self methods via invokeSpecial:
1371 MethodHandle MH_super = Listie.lookup().findSpecial(
1372   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1373 MethodHandle MH_this = Listie.lookup().findSpecial(
1374   Listie.class, "toString" , methodType(String.class), Listie.class);
1375 MethodHandle MH_duper = Listie.lookup().findSpecial(
1376   Object.class, "toString" , methodType(String.class), Listie.class);
1377 assertEquals("[]", (String) MH_super.invokeExact(l));
1378 assertEquals(""+l, (String) MH_this.invokeExact(l));
1379 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1380 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1381         String.class, "toString", methodType(String.class), Listie.class));
1382  } catch (IllegalAccessException ex) { } // OK
1383 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1384 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1385          * }</pre></blockquote>
1386          *
1387          * @param refc the class or interface from which the method is accessed
1388          * @param name the name of the method (which must not be "&lt;init&gt;")
1389          * @param type the type of the method, with the receiver argument omitted
1390          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1391          * @return the desired method handle
1392          * @throws NoSuchMethodException if the method does not exist
1393          * @throws IllegalAccessException if access checking fails,
1394          *                                or if the method is {@code static},
1395          *                                or if the method's variable arity modifier bit
1396          *                                is set and {@code asVarargsCollector} fails
1397          * @exception SecurityException if a security manager is present and it
1398          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1399          * @throws NullPointerException if any argument is null
1400          */
1401         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1402                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1403             checkSpecialCaller(specialCaller, refc);
1404             Lookup specialLookup = this.in(specialCaller);
1405             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1406             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1407         }
1408 
1409         /**
1410          * Produces a method handle giving read access to a non-static field.
1411          * The type of the method handle will have a return type of the field's
1412          * value type.
1413          * The method handle's single argument will be the instance containing
1414          * the field.
1415          * Access checking is performed immediately on behalf of the lookup class.
1416          * @param refc the class or interface from which the method is accessed
1417          * @param name the field's name
1418          * @param type the field's type
1419          * @return a method handle which can load values from the field
1420          * @throws NoSuchFieldException if the field does not exist
1421          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1422          * @exception SecurityException if a security manager is present and it
1423          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1424          * @throws NullPointerException if any argument is null
1425          * @see #findVarHandle(Class, String, Class)
1426          */
1427         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1428             if (MinimalValueTypes_1_0.isValueType(refc)) {
1429                 return MinimalValueTypes_1_0.findValueType(refc).findGetter(this, name, type);
1430             } else {
1431                 MemberName field = resolveOrFail(REF_getField, refc, name, type);
1432                 return getDirectField(REF_getField, refc, field);
1433             }
1434         }
1435 
1436         /**
1437          * Produces a method handle giving write access to a non-static field.
1438          * The type of the method handle will have a void return type.
1439          * The method handle will take two arguments, the instance containing
1440          * the field, and the value to be stored.
1441          * The second argument will be of the field's value type.
1442          * Access checking is performed immediately on behalf of the lookup class.
1443          * @param refc the class or interface from which the method is accessed
1444          * @param name the field's name
1445          * @param type the field's type
1446          * @return a method handle which can store values into the field
1447          * @throws NoSuchFieldException if the field does not exist
1448          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1449          * @exception SecurityException if a security manager is present and it
1450          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1451          * @throws NullPointerException if any argument is null
1452          * @see #findVarHandle(Class, String, Class)
1453          */
1454         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1455             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1456             return getDirectField(REF_putField, refc, field);
1457         }
1458 
1459         /**
1460          * Produces a VarHandle giving access to a non-static field {@code name}
1461          * of type {@code type} declared in a class of type {@code recv}.
1462          * The VarHandle's variable type is {@code type} and it has one
1463          * coordinate type, {@code recv}.
1464          * <p>
1465          * Access checking is performed immediately on behalf of the lookup
1466          * class.
1467          * <p>
1468          * Certain access modes of the returned VarHandle are unsupported under
1469          * the following conditions:
1470          * <ul>
1471          * <li>if the field is declared {@code final}, then the write, atomic
1472          *     update, numeric atomic update, and bitwise atomic update access
1473          *     modes are unsupported.
1474          * <li>if the field type is anything other than {@code byte},
1475          *     {@code short}, {@code char}, {@code int}, {@code long},
1476          *     {@code float}, or {@code double} then numeric atomic update
1477          *     access modes are unsupported.
1478          * <li>if the field type is anything other than {@code boolean},
1479          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1480          *     {@code long} then bitwise atomic update access modes are
1481          *     unsupported.
1482          * </ul>
1483          * <p>
1484          * If the field is declared {@code volatile} then the returned VarHandle
1485          * will override access to the field (effectively ignore the
1486          * {@code volatile} declaration) in accordance to its specified
1487          * access modes.
1488          * <p>
1489          * If the field type is {@code float} or {@code double} then numeric
1490          * and atomic update access modes compare values using their bitwise
1491          * representation (see {@link Float#floatToRawIntBits} and
1492          * {@link Double#doubleToRawLongBits}, respectively).
1493          * @apiNote
1494          * Bitwise comparison of {@code float} values or {@code double} values,
1495          * as performed by the numeric and atomic update access modes, differ
1496          * from the primitive {@code ==} operator and the {@link Float#equals}
1497          * and {@link Double#equals} methods, specifically with respect to
1498          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1499          * Care should be taken when performing a compare and set or a compare
1500          * and exchange operation with such values since the operation may
1501          * unexpectedly fail.
1502          * There are many possible NaN values that are considered to be
1503          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1504          * provided by Java can distinguish between them.  Operation failure can
1505          * occur if the expected or witness value is a NaN value and it is
1506          * transformed (perhaps in a platform specific manner) into another NaN
1507          * value, and thus has a different bitwise representation (see
1508          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1509          * details).
1510          * The values {@code -0.0} and {@code +0.0} have different bitwise
1511          * representations but are considered equal when using the primitive
1512          * {@code ==} operator.  Operation failure can occur if, for example, a
1513          * numeric algorithm computes an expected value to be say {@code -0.0}
1514          * and previously computed the witness value to be say {@code +0.0}.
1515          * @param recv the receiver class, of type {@code R}, that declares the
1516          * non-static field
1517          * @param name the field's name
1518          * @param type the field's type, of type {@code T}
1519          * @return a VarHandle giving access to non-static fields.
1520          * @throws NoSuchFieldException if the field does not exist
1521          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1522          * @exception SecurityException if a security manager is present and it
1523          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1524          * @throws NullPointerException if any argument is null
1525          * @since 9
1526          */
1527         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1528             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1529             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1530             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1531         }
1532 
1533         /**
1534          * Produces a method handle giving read access to a static field.
1535          * The type of the method handle will have a return type of the field's
1536          * value type.
1537          * The method handle will take no arguments.
1538          * Access checking is performed immediately on behalf of the lookup class.
1539          * <p>
1540          * If the returned method handle is invoked, the field's class will
1541          * be initialized, if it has not already been initialized.
1542          * @param refc the class or interface from which the method is accessed
1543          * @param name the field's name
1544          * @param type the field's type
1545          * @return a method handle which can load values from the field
1546          * @throws NoSuchFieldException if the field does not exist
1547          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1548          * @exception SecurityException if a security manager is present and it
1549          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1550          * @throws NullPointerException if any argument is null
1551          */
1552         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1553             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1554             return getDirectField(REF_getStatic, refc, field);
1555         }
1556 
1557         /**
1558          * Produces a method handle giving write access to a static field.
1559          * The type of the method handle will have a void return type.
1560          * The method handle will take a single
1561          * argument, of the field's value type, the value to be stored.
1562          * Access checking is performed immediately on behalf of the lookup class.
1563          * <p>
1564          * If the returned method handle is invoked, the field's class will
1565          * be initialized, if it has not already been initialized.
1566          * @param refc the class or interface from which the method is accessed
1567          * @param name the field's name
1568          * @param type the field's type
1569          * @return a method handle which can store values into the field
1570          * @throws NoSuchFieldException if the field does not exist
1571          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1572          * @exception SecurityException if a security manager is present and it
1573          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1574          * @throws NullPointerException if any argument is null
1575          */
1576         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1577             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1578             return getDirectField(REF_putStatic, refc, field);
1579         }
1580 
1581         /**
1582          * Produces a VarHandle giving access to a static field {@code name} of
1583          * type {@code type} declared in a class of type {@code decl}.
1584          * The VarHandle's variable type is {@code type} and it has no
1585          * coordinate types.
1586          * <p>
1587          * Access checking is performed immediately on behalf of the lookup
1588          * class.
1589          * <p>
1590          * If the returned VarHandle is operated on, the declaring class will be
1591          * initialized, if it has not already been initialized.
1592          * <p>
1593          * Certain access modes of the returned VarHandle are unsupported under
1594          * the following conditions:
1595          * <ul>
1596          * <li>if the field is declared {@code final}, then the write, atomic
1597          *     update, numeric atomic update, and bitwise atomic update access
1598          *     modes are unsupported.
1599          * <li>if the field type is anything other than {@code byte},
1600          *     {@code short}, {@code char}, {@code int}, {@code long},
1601          *     {@code float}, or {@code double}, then numeric atomic update
1602          *     access modes are unsupported.
1603          * <li>if the field type is anything other than {@code boolean},
1604          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1605          *     {@code long} then bitwise atomic update access modes are
1606          *     unsupported.
1607          * </ul>
1608          * <p>
1609          * If the field is declared {@code volatile} then the returned VarHandle
1610          * will override access to the field (effectively ignore the
1611          * {@code volatile} declaration) in accordance to its specified
1612          * access modes.
1613          * <p>
1614          * If the field type is {@code float} or {@code double} then numeric
1615          * and atomic update access modes compare values using their bitwise
1616          * representation (see {@link Float#floatToRawIntBits} and
1617          * {@link Double#doubleToRawLongBits}, respectively).
1618          * @apiNote
1619          * Bitwise comparison of {@code float} values or {@code double} values,
1620          * as performed by the numeric and atomic update access modes, differ
1621          * from the primitive {@code ==} operator and the {@link Float#equals}
1622          * and {@link Double#equals} methods, specifically with respect to
1623          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1624          * Care should be taken when performing a compare and set or a compare
1625          * and exchange operation with such values since the operation may
1626          * unexpectedly fail.
1627          * There are many possible NaN values that are considered to be
1628          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1629          * provided by Java can distinguish between them.  Operation failure can
1630          * occur if the expected or witness value is a NaN value and it is
1631          * transformed (perhaps in a platform specific manner) into another NaN
1632          * value, and thus has a different bitwise representation (see
1633          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1634          * details).
1635          * The values {@code -0.0} and {@code +0.0} have different bitwise
1636          * representations but are considered equal when using the primitive
1637          * {@code ==} operator.  Operation failure can occur if, for example, a
1638          * numeric algorithm computes an expected value to be say {@code -0.0}
1639          * and previously computed the witness value to be say {@code +0.0}.
1640          * @param decl the class that declares the static field
1641          * @param name the field's name
1642          * @param type the field's type, of type {@code T}
1643          * @return a VarHandle giving access to a static field
1644          * @throws NoSuchFieldException if the field does not exist
1645          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1646          * @exception SecurityException if a security manager is present and it
1647          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1648          * @throws NullPointerException if any argument is null
1649          * @since 9
1650          */
1651         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1652             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1653             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1654             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1655         }
1656 
1657         /**
1658          * Produces an early-bound method handle for a non-static method.
1659          * The receiver must have a supertype {@code defc} in which a method
1660          * of the given name and type is accessible to the lookup class.
1661          * The method and all its argument types must be accessible to the lookup object.
1662          * The type of the method handle will be that of the method,
1663          * without any insertion of an additional receiver parameter.
1664          * The given receiver will be bound into the method handle,
1665          * so that every call to the method handle will invoke the
1666          * requested method on the given receiver.
1667          * <p>
1668          * The returned method handle will have
1669          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1670          * the method's variable arity modifier bit ({@code 0x0080}) is set
1671          * <em>and</em> the trailing array argument is not the only argument.
1672          * (If the trailing array argument is the only argument,
1673          * the given receiver value will be bound to it.)
1674          * <p>
1675          * This is almost equivalent to the following code, with some differences noted below:
1676          * <blockquote><pre>{@code
1677 import static java.lang.invoke.MethodHandles.*;
1678 import static java.lang.invoke.MethodType.*;
1679 ...
1680 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1681 MethodHandle mh1 = mh0.bindTo(receiver);
1682 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1683 return mh1;
1684          * }</pre></blockquote>
1685          * where {@code defc} is either {@code receiver.getClass()} or a super
1686          * type of that class, in which the requested method is accessible
1687          * to the lookup class.
1688          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
1689          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
1690          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
1691          * the receiver is restricted by {@code findVirtual} to the lookup class.)
1692          * @param receiver the object from which the method is accessed
1693          * @param name the name of the method
1694          * @param type the type of the method, with the receiver argument omitted
1695          * @return the desired method handle
1696          * @throws NoSuchMethodException if the method does not exist
1697          * @throws IllegalAccessException if access checking fails
1698          *                                or if the method's variable arity modifier bit
1699          *                                is set and {@code asVarargsCollector} fails
1700          * @exception SecurityException if a security manager is present and it
1701          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1702          * @throws NullPointerException if any argument is null
1703          * @see MethodHandle#bindTo
1704          * @see #findVirtual
1705          */
1706         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1707             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1708             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1709             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
1710             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
1711                 throw new IllegalAccessException("The restricted defining class " +
1712                                                  mh.type().leadingReferenceParameter().getName() +
1713                                                  " is not assignable from receiver class " +
1714                                                  receiver.getClass().getName());
1715             }
1716             return mh.bindArgumentL(0, receiver).setVarargs(method);
1717         }
1718 
1719         /**
1720          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1721          * to <i>m</i>, if the lookup class has permission.
1722          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1723          * If <i>m</i> is virtual, overriding is respected on every call.
1724          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1725          * The type of the method handle will be that of the method,
1726          * with the receiver type prepended (but only if it is non-static).
1727          * If the method's {@code accessible} flag is not set,
1728          * access checking is performed immediately on behalf of the lookup class.
1729          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1730          * <p>
1731          * The returned method handle will have
1732          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1733          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1734          * <p>
1735          * If <i>m</i> is static, and
1736          * if the returned method handle is invoked, the method's class will
1737          * be initialized, if it has not already been initialized.
1738          * @param m the reflected method
1739          * @return a method handle which can invoke the reflected method
1740          * @throws IllegalAccessException if access checking fails
1741          *                                or if the method's variable arity modifier bit
1742          *                                is set and {@code asVarargsCollector} fails
1743          * @throws NullPointerException if the argument is null
1744          */
1745         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1746             if (m.getDeclaringClass() == MethodHandle.class) {
1747                 MethodHandle mh = unreflectForMH(m);
1748                 if (mh != null)  return mh;
1749             }
1750             if (m.getDeclaringClass() == VarHandle.class) {
1751                 MethodHandle mh = unreflectForVH(m);
1752                 if (mh != null)  return mh;
1753             }
1754             MemberName method = new MemberName(m);
1755             byte refKind = method.getReferenceKind();
1756             if (refKind == REF_invokeSpecial)
1757                 refKind = REF_invokeVirtual;
1758             assert(method.isMethod());
1759             @SuppressWarnings("deprecation")
1760             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1761             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1762         }
1763         private MethodHandle unreflectForMH(Method m) {
1764             // these names require special lookups because they throw UnsupportedOperationException
1765             if (MemberName.isMethodHandleInvokeName(m.getName()))
1766                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1767             return null;
1768         }
1769         private MethodHandle unreflectForVH(Method m) {
1770             // these names require special lookups because they throw UnsupportedOperationException
1771             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1772                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1773             return null;
1774         }
1775 
1776         /**
1777          * Produces a method handle for a reflected method.
1778          * It will bypass checks for overriding methods on the receiver,
1779          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1780          * instruction from within the explicitly specified {@code specialCaller}.
1781          * The type of the method handle will be that of the method,
1782          * with a suitably restricted receiver type prepended.
1783          * (The receiver type will be {@code specialCaller} or a subtype.)
1784          * If the method's {@code accessible} flag is not set,
1785          * access checking is performed immediately on behalf of the lookup class,
1786          * as if {@code invokespecial} instruction were being linked.
1787          * <p>
1788          * Before method resolution,
1789          * if the explicitly specified caller class is not identical with the
1790          * lookup class, or if this lookup object does not have
1791          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1792          * privileges, the access fails.
1793          * <p>
1794          * The returned method handle will have
1795          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1796          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1797          * @param m the reflected method
1798          * @param specialCaller the class nominally calling the method
1799          * @return a method handle which can invoke the reflected method
1800          * @throws IllegalAccessException if access checking fails,
1801          *                                or if the method is {@code static},
1802          *                                or if the method's variable arity modifier bit
1803          *                                is set and {@code asVarargsCollector} fails
1804          * @throws NullPointerException if any argument is null
1805          */
1806         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1807             checkSpecialCaller(specialCaller, null);
1808             Lookup specialLookup = this.in(specialCaller);
1809             MemberName method = new MemberName(m, true);
1810             assert(method.isMethod());
1811             // ignore m.isAccessible:  this is a new kind of access
1812             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1813         }
1814 
1815         /**
1816          * Produces a method handle for a reflected constructor.
1817          * The type of the method handle will be that of the constructor,
1818          * with the return type changed to the declaring class.
1819          * The method handle will perform a {@code newInstance} operation,
1820          * creating a new instance of the constructor's class on the
1821          * arguments passed to the method handle.
1822          * <p>
1823          * If the constructor's {@code accessible} flag is not set,
1824          * access checking is performed immediately on behalf of the lookup class.
1825          * <p>
1826          * The returned method handle will have
1827          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1828          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1829          * <p>
1830          * If the returned method handle is invoked, the constructor's class will
1831          * be initialized, if it has not already been initialized.
1832          * @param c the reflected constructor
1833          * @return a method handle which can invoke the reflected constructor
1834          * @throws IllegalAccessException if access checking fails
1835          *                                or if the method's variable arity modifier bit
1836          *                                is set and {@code asVarargsCollector} fails
1837          * @throws NullPointerException if the argument is null
1838          */
1839         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1840             MemberName ctor = new MemberName(c);
1841             assert(ctor.isConstructor());
1842             @SuppressWarnings("deprecation")
1843             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1844             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1845         }
1846 
1847         /**
1848          * Produces a method handle giving read access to a reflected field.
1849          * The type of the method handle will have a return type of the field's
1850          * value type.
1851          * If the field is static, the method handle will take no arguments.
1852          * Otherwise, its single argument will be the instance containing
1853          * the field.
1854          * If the field's {@code accessible} flag is not set,
1855          * access checking is performed immediately on behalf of the lookup class.
1856          * <p>
1857          * If the field is static, and
1858          * if the returned method handle is invoked, the field's class will
1859          * be initialized, if it has not already been initialized.
1860          * @param f the reflected field
1861          * @return a method handle which can load values from the reflected field
1862          * @throws IllegalAccessException if access checking fails
1863          * @throws NullPointerException if the argument is null
1864          */
1865         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1866             return unreflectField(f, false);
1867         }
1868         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1869             MemberName field = new MemberName(f, isSetter);
1870             assert(isSetter
1871                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1872                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1873             @SuppressWarnings("deprecation")
1874             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1875             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1876         }
1877 
1878         /**
1879          * Produces a method handle giving write access to a reflected field.
1880          * The type of the method handle will have a void return type.
1881          * If the field is static, the method handle will take a single
1882          * argument, of the field's value type, the value to be stored.
1883          * Otherwise, the two arguments will be the instance containing
1884          * the field, and the value to be stored.
1885          * If the field's {@code accessible} flag is not set,
1886          * access checking is performed immediately on behalf of the lookup class.
1887          * <p>
1888          * If the field is static, and
1889          * if the returned method handle is invoked, the field's class will
1890          * be initialized, if it has not already been initialized.
1891          * @param f the reflected field
1892          * @return a method handle which can store values into the reflected field
1893          * @throws IllegalAccessException if access checking fails
1894          * @throws NullPointerException if the argument is null
1895          */
1896         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1897             return unreflectField(f, true);
1898         }
1899 
1900         /**
1901          * Produces a VarHandle giving access to a reflected field {@code f}
1902          * of type {@code T} declared in a class of type {@code R}.
1903          * The VarHandle's variable type is {@code T}.
1904          * If the field is non-static the VarHandle has one coordinate type,
1905          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1906          * coordinate types.
1907          * <p>
1908          * Access checking is performed immediately on behalf of the lookup
1909          * class, regardless of the value of the field's {@code accessible}
1910          * flag.
1911          * <p>
1912          * If the field is static, and if the returned VarHandle is operated
1913          * on, the field's declaring class will be initialized, if it has not
1914          * already been initialized.
1915          * <p>
1916          * Certain access modes of the returned VarHandle are unsupported under
1917          * the following conditions:
1918          * <ul>
1919          * <li>if the field is declared {@code final}, then the write, atomic
1920          *     update, numeric atomic update, and bitwise atomic update access
1921          *     modes are unsupported.
1922          * <li>if the field type is anything other than {@code byte},
1923          *     {@code short}, {@code char}, {@code int}, {@code long},
1924          *     {@code float}, or {@code double} then numeric atomic update
1925          *     access modes are unsupported.
1926          * <li>if the field type is anything other than {@code boolean},
1927          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1928          *     {@code long} then bitwise atomic update access modes are
1929          *     unsupported.
1930          * </ul>
1931          * <p>
1932          * If the field is declared {@code volatile} then the returned VarHandle
1933          * will override access to the field (effectively ignore the
1934          * {@code volatile} declaration) in accordance to its specified
1935          * access modes.
1936          * <p>
1937          * If the field type is {@code float} or {@code double} then numeric
1938          * and atomic update access modes compare values using their bitwise
1939          * representation (see {@link Float#floatToRawIntBits} and
1940          * {@link Double#doubleToRawLongBits}, respectively).
1941          * @apiNote
1942          * Bitwise comparison of {@code float} values or {@code double} values,
1943          * as performed by the numeric and atomic update access modes, differ
1944          * from the primitive {@code ==} operator and the {@link Float#equals}
1945          * and {@link Double#equals} methods, specifically with respect to
1946          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1947          * Care should be taken when performing a compare and set or a compare
1948          * and exchange operation with such values since the operation may
1949          * unexpectedly fail.
1950          * There are many possible NaN values that are considered to be
1951          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1952          * provided by Java can distinguish between them.  Operation failure can
1953          * occur if the expected or witness value is a NaN value and it is
1954          * transformed (perhaps in a platform specific manner) into another NaN
1955          * value, and thus has a different bitwise representation (see
1956          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1957          * details).
1958          * The values {@code -0.0} and {@code +0.0} have different bitwise
1959          * representations but are considered equal when using the primitive
1960          * {@code ==} operator.  Operation failure can occur if, for example, a
1961          * numeric algorithm computes an expected value to be say {@code -0.0}
1962          * and previously computed the witness value to be say {@code +0.0}.
1963          * @param f the reflected field, with a field of type {@code T}, and
1964          * a declaring class of type {@code R}
1965          * @return a VarHandle giving access to non-static fields or a static
1966          * field
1967          * @throws IllegalAccessException if access checking fails
1968          * @throws NullPointerException if the argument is null
1969          * @since 9
1970          */
1971         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1972             MemberName getField = new MemberName(f, false);
1973             MemberName putField = new MemberName(f, true);
1974             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1975                                                       f.getDeclaringClass(), getField, putField);
1976         }
1977 
1978         /**
1979          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1980          * created by this lookup object or a similar one.
1981          * Security and access checks are performed to ensure that this lookup object
1982          * is capable of reproducing the target method handle.
1983          * This means that the cracking may fail if target is a direct method handle
1984          * but was created by an unrelated lookup object.
1985          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1986          * and was created by a lookup object for a different class.
1987          * @param target a direct method handle to crack into symbolic reference components
1988          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1989          * @exception SecurityException if a security manager is present and it
1990          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1991          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1992          * @exception NullPointerException if the target is {@code null}
1993          * @see MethodHandleInfo
1994          * @since 1.8
1995          */
1996         public MethodHandleInfo revealDirect(MethodHandle target) {
1997             MemberName member = target.internalMemberName();
1998             if (member == null || (!member.isResolved() &&
1999                                    !member.isMethodHandleInvoke() &&
2000                                    !member.isVarHandleMethodInvoke()))
2001                 throw newIllegalArgumentException("not a direct method handle");
2002             Class<?> defc = member.getDeclaringClass();
2003             byte refKind = member.getReferenceKind();
2004             assert(MethodHandleNatives.refKindIsValid(refKind));
2005             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2006                 // Devirtualized method invocation is usually formally virtual.
2007                 // To avoid creating extra MemberName objects for this common case,
2008                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2009                 refKind = REF_invokeVirtual;
2010             if (refKind == REF_invokeVirtual && defc.isInterface())
2011                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2012                 refKind = REF_invokeInterface;
2013             // Check SM permissions and member access before cracking.
2014             try {
2015                 checkAccess(refKind, defc, member);
2016                 checkSecurityManager(defc, member);
2017             } catch (IllegalAccessException ex) {
2018                 throw new IllegalArgumentException(ex);
2019             }
2020             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2021                 Class<?> callerClass = target.internalCallerClass();
2022                 if (!hasPrivateAccess() || callerClass != lookupClass())
2023                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2024             }
2025             // Produce the handle to the results.
2026             return new InfoFromMemberName(this, member, refKind);
2027         }
2028 
2029         /// Helper methods, all package-private.
2030 
2031         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2032             checkSymbolicClass(refc);  // do this before attempting to resolve
2033             Objects.requireNonNull(name);
2034             Objects.requireNonNull(type);
2035             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2036                                             NoSuchFieldException.class);
2037         }
2038 
2039         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2040             checkSymbolicClass(refc);  // do this before attempting to resolve
2041             Objects.requireNonNull(name);
2042             Objects.requireNonNull(type);
2043             checkMethodName(refKind, name);  // NPE check on name
2044             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2045                                             NoSuchMethodException.class);
2046         }
2047 
2048         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2049             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2050             Objects.requireNonNull(member.getName());
2051             Objects.requireNonNull(member.getType());
2052             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2053                                             ReflectiveOperationException.class);
2054         }
2055 
2056         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2057             Objects.requireNonNull(refc);
2058             Class<?> caller = lookupClassOrNull();
2059             if (caller != null && !VerifyAccess.isClassAccessible(refc, caller, allowedModes))
2060                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2061         }
2062 
2063         /** Check name for an illegal leading "&lt;" character. */
2064         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2065             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2066                 throw new NoSuchMethodException("illegal method name: "+name);
2067         }
2068 
2069 
2070         /**
2071          * Find my trustable caller class if m is a caller sensitive method.
2072          * If this lookup object has private access, then the caller class is the lookupClass.
2073          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2074          */
2075         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2076             Class<?> callerClass = null;
2077             if (MethodHandleNatives.isCallerSensitive(m)) {
2078                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2079                 if (hasPrivateAccess()) {
2080                     callerClass = lookupClass;
2081                 } else {
2082                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2083                 }
2084             }
2085             return callerClass;
2086         }
2087 
2088         /**
2089          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2090          * @return {@code true} if this lookup has {@code PRIVATE} access.
2091          * @since 9
2092          */
2093         public boolean hasPrivateAccess() {
2094             return (allowedModes & PRIVATE) != 0;
2095         }
2096 
2097         /**
2098          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2099          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2100          * If this lookup object has private access, then the caller class is the lookupClass.
2101          */
2102         void checkSecurityManager(Class<?> refc, MemberName m) {
2103             SecurityManager smgr = System.getSecurityManager();
2104             if (smgr == null)  return;
2105             if (allowedModes == TRUSTED)  return;
2106 
2107             // Step 1:
2108             boolean fullPowerLookup = hasPrivateAccess();
2109             if (!fullPowerLookup ||
2110                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2111                 ReflectUtil.checkPackageAccess(refc);
2112             }
2113 
2114             if (m == null) {  // findClass or accessClass
2115                 // Step 2b:
2116                 if (!fullPowerLookup) {
2117                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2118                 }
2119                 return;
2120             }
2121 
2122             // Step 2a:
2123             if (m.isPublic()) return;
2124             if (!fullPowerLookup) {
2125                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2126             }
2127 
2128             // Step 3:
2129             Class<?> defc = m.getDeclaringClass();
2130             if (!fullPowerLookup && defc != refc) {
2131                 ReflectUtil.checkPackageAccess(defc);
2132             }
2133         }
2134 
2135         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2136             boolean wantStatic = (refKind == REF_invokeStatic);
2137             String message;
2138             if (m.isConstructor())
2139                 message = "expected a method, not a constructor";
2140             else if (!m.isMethod())
2141                 message = "expected a method";
2142             else if (wantStatic != m.isStatic())
2143                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2144             else
2145                 { checkAccess(refKind, refc, m); return; }
2146             throw m.makeAccessException(message, this);
2147         }
2148 
2149         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2150             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2151             String message;
2152             if (wantStatic != m.isStatic())
2153                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2154             else
2155                 { checkAccess(refKind, refc, m); return; }
2156             throw m.makeAccessException(message, this);
2157         }
2158 
2159         /** Check public/protected/private bits on the symbolic reference class and its member. */
2160         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2161             assert(m.referenceKindIsConsistentWith(refKind) &&
2162                    MethodHandleNatives.refKindIsValid(refKind) &&
2163                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2164             int allowedModes = this.allowedModes;
2165             if (allowedModes == TRUSTED)  return;
2166             int mods = m.getModifiers();
2167             if (Modifier.isProtected(mods) &&
2168                     refKind == REF_invokeVirtual &&
2169                     m.getDeclaringClass() == Object.class &&
2170                     m.getName().equals("clone") &&
2171                     refc.isArray()) {
2172                 // The JVM does this hack also.
2173                 // (See ClassVerifier::verify_invoke_instructions
2174                 // and LinkResolver::check_method_accessability.)
2175                 // Because the JVM does not allow separate methods on array types,
2176                 // there is no separate method for int[].clone.
2177                 // All arrays simply inherit Object.clone.
2178                 // But for access checking logic, we make Object.clone
2179                 // (normally protected) appear to be public.
2180                 // Later on, when the DirectMethodHandle is created,
2181                 // its leading argument will be restricted to the
2182                 // requested array type.
2183                 // N.B. The return type is not adjusted, because
2184                 // that is *not* the bytecode behavior.
2185                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2186             }
2187             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2188                 // cannot "new" a protected ctor in a different package
2189                 mods ^= Modifier.PROTECTED;
2190             }
2191             if (Modifier.isFinal(mods) &&
2192                     MethodHandleNatives.refKindIsSetter(refKind))
2193                 throw m.makeAccessException("unexpected set of a final field", this);
2194             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2195             if ((requestedModes & allowedModes) != 0) {
2196                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2197                                                     mods, lookupClass(), allowedModes))
2198                     return;
2199             } else {
2200                 // Protected members can also be checked as if they were package-private.
2201                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2202                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2203                     return;
2204             }
2205             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2206         }
2207 
2208         String accessFailedMessage(Class<?> refc, MemberName m) {
2209             Class<?> defc = m.getDeclaringClass();
2210             int mods = m.getModifiers();
2211             // check the class first:
2212             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2213                                (defc == refc ||
2214                                 Modifier.isPublic(refc.getModifiers())));
2215             if (!classOK && (allowedModes & PACKAGE) != 0) {
2216                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2217                            (defc == refc ||
2218                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2219             }
2220             if (!classOK)
2221                 return "class is not public";
2222             if (Modifier.isPublic(mods))
2223                 return "access to public member failed";  // (how?, module not readable?)
2224             if (Modifier.isPrivate(mods))
2225                 return "member is private";
2226             if (Modifier.isProtected(mods))
2227                 return "member is protected";
2228             return "member is private to package";
2229         }
2230 
2231         private static final boolean ALLOW_NESTMATE_ACCESS = false;
2232 
2233         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2234             int allowedModes = this.allowedModes;
2235             if (allowedModes == TRUSTED)  return;
2236             if (!hasPrivateAccess()
2237                 || (specialCaller != lookupClass()
2238                        // ensure non-abstract methods in superinterfaces can be special-invoked
2239                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))
2240                     && !(ALLOW_NESTMATE_ACCESS &&
2241                          VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
2242                 throw new MemberName(specialCaller).
2243                     makeAccessException("no private access for invokespecial", this);
2244         }
2245 
2246         private boolean restrictProtectedReceiver(MemberName method) {
2247             // The accessing class only has the right to use a protected member
2248             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2249             if (!method.isProtected() || method.isStatic()
2250                 || allowedModes == TRUSTED
2251                 || method.getDeclaringClass() == lookupClass()
2252                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass())
2253                 || (ALLOW_NESTMATE_ACCESS &&
2254                     VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
2255                 return false;
2256             return true;
2257         }
2258         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2259             assert(!method.isStatic());
2260             // receiver type of mh is too wide; narrow to caller
2261             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2262                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2263             }
2264             MethodType rawType = mh.type();
2265             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2266             MethodType narrowType = rawType.changeParameterType(0, caller);
2267             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2268             assert(mh.viewAsTypeChecks(narrowType, true));
2269             return mh.copyWith(narrowType, mh.form);
2270         }
2271 
2272         /** Check access and get the requested method. */
2273         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2274             final boolean doRestrict    = true;
2275             final boolean checkSecurity = true;
2276             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2277         }
2278         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
2279         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2280             final boolean doRestrict    = false;
2281             final boolean checkSecurity = true;
2282             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerClass);
2283         }
2284         /** Check access and get the requested method, eliding security manager checks. */
2285         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> callerClass) throws IllegalAccessException {
2286             final boolean doRestrict    = true;
2287             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2288             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerClass);
2289         }
2290         /** Common code for all methods; do not call directly except from immediately above. */
2291         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2292                                                    boolean checkSecurity,
2293                                                    boolean doRestrict, Class<?> callerClass) throws IllegalAccessException {
2294             checkMethod(refKind, refc, method);
2295             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2296             if (checkSecurity)
2297                 checkSecurityManager(refc, method);
2298             assert(!method.isMethodHandleInvoke());
2299 
2300             if (refKind == REF_invokeSpecial &&
2301                 refc != lookupClass() &&
2302                 !refc.isInterface() &&
2303                 refc != lookupClass().getSuperclass() &&
2304                 refc.isAssignableFrom(lookupClass())) {
2305                 assert(!method.getName().equals("<init>"));  // not this code path
2306                 // Per JVMS 6.5, desc. of invokespecial instruction:
2307                 // If the method is in a superclass of the LC,
2308                 // and if our original search was above LC.super,
2309                 // repeat the search (symbolic lookup) from LC.super
2310                 // and continue with the direct superclass of that class,
2311                 // and so forth, until a match is found or no further superclasses exist.
2312                 // FIXME: MemberName.resolve should handle this instead.
2313                 Class<?> refcAsSuper = lookupClass();
2314                 MemberName m2;
2315                 do {
2316                     refcAsSuper = refcAsSuper.getSuperclass();
2317                     m2 = new MemberName(refcAsSuper,
2318                                         method.getName(),
2319                                         method.getMethodType(),
2320                                         REF_invokeSpecial);
2321                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2322                 } while (m2 == null &&         // no method is found yet
2323                          refc != refcAsSuper); // search up to refc
2324                 if (m2 == null)  throw new InternalError(method.toString());
2325                 method = m2;
2326                 refc = refcAsSuper;
2327                 // redo basic checks
2328                 checkMethod(refKind, refc, method);
2329             }
2330 
2331             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method);
2332             MethodHandle mh = dmh;
2333             // Optionally narrow the receiver argument to refc using restrictReceiver.
2334             if ((doRestrict && refKind == REF_invokeSpecial) ||
2335                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2336                 mh = restrictReceiver(method, dmh, lookupClass());
2337             }
2338             mh = maybeBindCaller(method, mh, callerClass);
2339             mh = mh.setVarargs(method);
2340             return mh;
2341         }
2342         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2343                                              Class<?> callerClass)
2344                                              throws IllegalAccessException {
2345             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2346                 return mh;
2347             Class<?> hostClass = lookupClass;
2348             if (!hasPrivateAccess())  // caller must have private access
2349                 hostClass = callerClass;  // callerClass came from a security manager style stack walk
2350             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2351             // Note: caller will apply varargs after this step happens.
2352             return cbmh;
2353         }
2354         /** Check access and get the requested field. */
2355         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2356             final boolean checkSecurity = true;
2357             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2358         }
2359         /** Check access and get the requested field, eliding security manager checks. */
2360         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2361             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2362             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2363         }
2364         /** Common code for all fields; do not call directly except from immediately above. */
2365         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2366                                                   boolean checkSecurity) throws IllegalAccessException {
2367             checkField(refKind, refc, field);
2368             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2369             if (checkSecurity)
2370                 checkSecurityManager(refc, field);
2371             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2372             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2373                                     restrictProtectedReceiver(field));
2374             if (doRestrict)
2375                 return restrictReceiver(field, dmh, lookupClass());
2376             return dmh;
2377         }
2378         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2379                                             Class<?> refc, MemberName getField, MemberName putField)
2380                 throws IllegalAccessException {
2381             final boolean checkSecurity = true;
2382             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2383         }
2384         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2385                                                              Class<?> refc, MemberName getField, MemberName putField)
2386                 throws IllegalAccessException {
2387             final boolean checkSecurity = false;
2388             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2389         }
2390         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2391                                                   Class<?> refc, MemberName getField, MemberName putField,
2392                                                   boolean checkSecurity) throws IllegalAccessException {
2393             assert getField.isStatic() == putField.isStatic();
2394             assert getField.isGetter() && putField.isSetter();
2395             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2396             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2397 
2398             checkField(getRefKind, refc, getField);
2399             if (checkSecurity)
2400                 checkSecurityManager(refc, getField);
2401 
2402             if (!putField.isFinal()) {
2403                 // A VarHandle does not support updates to final fields, any
2404                 // such VarHandle to a final field will be read-only and
2405                 // therefore the following write-based accessibility checks are
2406                 // only required for non-final fields
2407                 checkField(putRefKind, refc, putField);
2408                 if (checkSecurity)
2409                     checkSecurityManager(refc, putField);
2410             }
2411 
2412             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2413                                   restrictProtectedReceiver(getField));
2414             if (doRestrict) {
2415                 assert !getField.isStatic();
2416                 // receiver type of VarHandle is too wide; narrow to caller
2417                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2418                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2419                 }
2420                 refc = lookupClass();
2421             }
2422             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2423         }
2424         /** Check access and get the requested constructor. */
2425         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2426             final boolean checkSecurity = true;
2427             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2428         }
2429         /** Check access and get the requested constructor, eliding security manager checks. */
2430         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2431             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2432             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2433         }
2434         /** Common code for all constructors; do not call directly except from immediately above. */
2435         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2436                                                   boolean checkSecurity) throws IllegalAccessException {
2437             assert(ctor.isConstructor());
2438             checkAccess(REF_newInvokeSpecial, refc, ctor);
2439             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2440             if (checkSecurity)
2441                 checkSecurityManager(refc, ctor);
2442             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2443             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2444         }
2445 
2446         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2447          */
2448         /*non-public*/
2449         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2450             if (!(type instanceof Class || type instanceof MethodType))
2451                 throw new InternalError("unresolved MemberName");
2452             MemberName member = new MemberName(refKind, defc, name, type);
2453             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2454             if (mh != null) {
2455                 checkSymbolicClass(defc);
2456                 return mh;
2457             }
2458             // Treat MethodHandle.invoke and invokeExact specially.
2459             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2460                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2461                 if (mh != null) {
2462                     return mh;
2463                 }
2464             }
2465             MemberName resolved = resolveOrFail(refKind, member);
2466             mh = getDirectMethodForConstant(refKind, defc, resolved);
2467             if (mh instanceof DirectMethodHandle
2468                     && canBeCached(refKind, defc, resolved)) {
2469                 MemberName key = mh.internalMemberName();
2470                 if (key != null) {
2471                     key = key.asNormalOriginal();
2472                 }
2473                 if (member.equals(key)) {  // better safe than sorry
2474                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2475                 }
2476             }
2477             return mh;
2478         }
2479         private
2480         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2481             if (refKind == REF_invokeSpecial) {
2482                 return false;
2483             }
2484             if (!Modifier.isPublic(defc.getModifiers()) ||
2485                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2486                     !member.isPublic() ||
2487                     member.isCallerSensitive()) {
2488                 return false;
2489             }
2490             ClassLoader loader = defc.getClassLoader();
2491             if (loader != null) {
2492                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2493                 boolean found = false;
2494                 while (sysl != null) {
2495                     if (loader == sysl) { found = true; break; }
2496                     sysl = sysl.getParent();
2497                 }
2498                 if (!found) {
2499                     return false;
2500                 }
2501             }
2502             try {
2503                 MemberName resolved2 = publicLookup().resolveOrFail(refKind,
2504                     new MemberName(refKind, defc, member.getName(), member.getType()));
2505                 checkSecurityManager(defc, resolved2);
2506             } catch (ReflectiveOperationException | SecurityException ex) {
2507                 return false;
2508             }
2509             return true;
2510         }
2511         private
2512         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2513                 throws ReflectiveOperationException {
2514             if (MethodHandleNatives.refKindIsField(refKind)) {
2515                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2516             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2517                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2518             } else if (refKind == REF_newInvokeSpecial) {
2519                 return getDirectConstructorNoSecurityManager(defc, member);
2520             }
2521             // oops
2522             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2523         }
2524 
2525         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2526     }
2527 
2528     /**
2529      * Produces a method handle constructing arrays of a desired type.
2530      * The return type of the method handle will be the array type.
2531      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2532      * @param arrayClass an array type
2533      * @return a method handle which can create arrays of the given type
2534      * @throws NullPointerException if the argument is {@code null}
2535      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2536      * @see java.lang.reflect.Array#newInstance(Class, int)
2537      * @since 9
2538      */
2539     public static
2540     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2541         ValueTypeHolder<?> compValue = valueComponent(arrayClass);
2542         if (compValue != null) {
2543             return compValue.newArray();
2544         } else {
2545             MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2546                     bindTo(arrayClass.getComponentType());
2547             return ani.asType(ani.type().changeReturnType(arrayClass));
2548         }
2549     }
2550 
2551     /**
2552      * Produces a method handle returning the length of an array.
2553      * The type of the method handle will have {@code int} as return type,
2554      * and its sole argument will be the array type.
2555      * @param arrayClass an array type
2556      * @return a method handle which can retrieve the length of an array of the given array type
2557      * @throws NullPointerException if the argument is {@code null}
2558      * @throws IllegalArgumentException if arrayClass is not an array type
2559      * @since 9
2560      */
2561     public static
2562     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2563         ValueTypeHolder<?> compValue = valueComponent(arrayClass);
2564         return (compValue != null) ?
2565                 compValue.arrayLength() :
2566                 MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2567     }
2568 
2569     /**
2570      * Produces a method handle giving read access to elements of an array.
2571      * The type of the method handle will have a return type of the array's
2572      * element type.  Its first argument will be the array type,
2573      * and the second will be {@code int}.
2574      * @param arrayClass an array type
2575      * @return a method handle which can load values from the given array type
2576      * @throws NullPointerException if the argument is null
2577      * @throws  IllegalArgumentException if arrayClass is not an array type
2578      */
2579     public static
2580     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2581         ValueTypeHolder<?> compValue = valueComponent(arrayClass);
2582         return (compValue != null) ?
2583                 compValue.arrayGetter() :
2584                 MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2585     }
2586 
2587     /**
2588      * Produces a method handle giving write access to elements of an array.
2589      * The type of the method handle will have a void return type.
2590      * Its last argument will be the array's element type.
2591      * The first and second arguments will be the array type and int.
2592      * @param arrayClass the class of an array
2593      * @return a method handle which can store values into the array type
2594      * @throws NullPointerException if the argument is null
2595      * @throws IllegalArgumentException if arrayClass is not an array type
2596      */
2597     public static
2598     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2599         ValueTypeHolder<?> compValue = valueComponent(arrayClass);
2600         return (compValue != null) ?
2601                 compValue.arraySetter() :
2602                 MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2603     }
2604 
2605     @SuppressWarnings("unchecked")
2606     private static <Z> ValueTypeHolder<Z> valueComponent(Class<Z> arrayClass) {
2607         if (!arrayClass.isArray()) {
2608             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2609         }
2610 
2611         Class<?> comp = arrayClass.getComponentType();
2612         if (MinimalValueTypes_1_0.isValueType(comp)) {
2613             return (ValueTypeHolder<Z>) MinimalValueTypes_1_0.findValueType(comp);
2614         } else {
2615             return null;
2616         }
2617     }
2618 
2619     /**
2620      * Produces a VarHandle giving access to elements of an array of type
2621      * {@code arrayClass}.  The VarHandle's variable type is the component type
2622      * of {@code arrayClass} and the list of coordinate types is
2623      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2624      * corresponds to an argument that is an index into an array.
2625      * <p>
2626      * Certain access modes of the returned VarHandle are unsupported under
2627      * the following conditions:
2628      * <ul>
2629      * <li>if the component type is anything other than {@code byte},
2630      *     {@code short}, {@code char}, {@code int}, {@code long},
2631      *     {@code float}, or {@code double} then numeric atomic update access
2632      *     modes are unsupported.
2633      * <li>if the field type is anything other than {@code boolean},
2634      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2635      *     {@code long} then bitwise atomic update access modes are
2636      *     unsupported.
2637      * </ul>
2638      * <p>
2639      * If the component type is {@code float} or {@code double} then numeric
2640      * and atomic update access modes compare values using their bitwise
2641      * representation (see {@link Float#floatToRawIntBits} and
2642      * {@link Double#doubleToRawLongBits}, respectively).
2643      * @apiNote
2644      * Bitwise comparison of {@code float} values or {@code double} values,
2645      * as performed by the numeric and atomic update access modes, differ
2646      * from the primitive {@code ==} operator and the {@link Float#equals}
2647      * and {@link Double#equals} methods, specifically with respect to
2648      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2649      * Care should be taken when performing a compare and set or a compare
2650      * and exchange operation with such values since the operation may
2651      * unexpectedly fail.
2652      * There are many possible NaN values that are considered to be
2653      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2654      * provided by Java can distinguish between them.  Operation failure can
2655      * occur if the expected or witness value is a NaN value and it is
2656      * transformed (perhaps in a platform specific manner) into another NaN
2657      * value, and thus has a different bitwise representation (see
2658      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2659      * details).
2660      * The values {@code -0.0} and {@code +0.0} have different bitwise
2661      * representations but are considered equal when using the primitive
2662      * {@code ==} operator.  Operation failure can occur if, for example, a
2663      * numeric algorithm computes an expected value to be say {@code -0.0}
2664      * and previously computed the witness value to be say {@code +0.0}.
2665      * @param arrayClass the class of an array, of type {@code T[]}
2666      * @return a VarHandle giving access to elements of an array
2667      * @throws NullPointerException if the arrayClass is null
2668      * @throws IllegalArgumentException if arrayClass is not an array type
2669      * @since 9
2670      */
2671     public static
2672     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2673         return VarHandles.makeArrayElementHandle(arrayClass);
2674     }
2675 
2676     /**
2677      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2678      * viewed as if it were a different primitive array type, such as
2679      * {@code int[]} or {@code long[]}.
2680      * The VarHandle's variable type is the component type of
2681      * {@code viewArrayClass} and the list of coordinate types is
2682      * {@code (byte[], int)}, where the {@code int} coordinate type
2683      * corresponds to an argument that is an index into a {@code byte[]} array.
2684      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2685      * array, composing bytes to or from a value of the component type of
2686      * {@code viewArrayClass} according to the given endianness.
2687      * <p>
2688      * The supported component types (variables types) are {@code short},
2689      * {@code char}, {@code int}, {@code long}, {@code float} and
2690      * {@code double}.
2691      * <p>
2692      * Access of bytes at a given index will result in an
2693      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2694      * or greater than the {@code byte[]} array length minus the size (in bytes)
2695      * of {@code T}.
2696      * <p>
2697      * Access of bytes at an index may be aligned or misaligned for {@code T},
2698      * with respect to the underlying memory address, {@code A} say, associated
2699      * with the array and index.
2700      * If access is misaligned then access for anything other than the
2701      * {@code get} and {@code set} access modes will result in an
2702      * {@code IllegalStateException}.  In such cases atomic access is only
2703      * guaranteed with respect to the largest power of two that divides the GCD
2704      * of {@code A} and the size (in bytes) of {@code T}.
2705      * If access is aligned then following access modes are supported and are
2706      * guaranteed to support atomic access:
2707      * <ul>
2708      * <li>read write access modes for all {@code T}, with the exception of
2709      *     access modes {@code get} and {@code set} for {@code long} and
2710      *     {@code double} on 32-bit platforms.
2711      * <li>atomic update access modes for {@code int}, {@code long},
2712      *     {@code float} or {@code double}.
2713      *     (Future major platform releases of the JDK may support additional
2714      *     types for certain currently unsupported access modes.)
2715      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2716      *     (Future major platform releases of the JDK may support additional
2717      *     numeric types for certain currently unsupported access modes.)
2718      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2719      *     (Future major platform releases of the JDK may support additional
2720      *     numeric types for certain currently unsupported access modes.)
2721      * </ul>
2722      * <p>
2723      * Misaligned access, and therefore atomicity guarantees, may be determined
2724      * for {@code byte[]} arrays without operating on a specific array.  Given
2725      * an {@code index}, {@code T} and it's corresponding boxed type,
2726      * {@code T_BOX}, misalignment may be determined as follows:
2727      * <pre>{@code
2728      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2729      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2730      *     alignmentOffset(0, sizeOfT);
2731      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2732      * boolean isMisaligned = misalignedAtIndex != 0;
2733      * }</pre>
2734      * <p>
2735      * If the variable type is {@code float} or {@code double} then atomic
2736      * update access modes compare values using their bitwise representation
2737      * (see {@link Float#floatToRawIntBits} and
2738      * {@link Double#doubleToRawLongBits}, respectively).
2739      * @param viewArrayClass the view array class, with a component type of
2740      * type {@code T}
2741      * @param byteOrder the endianness of the view array elements, as
2742      * stored in the underlying {@code byte} array
2743      * @return a VarHandle giving access to elements of a {@code byte[]} array
2744      * viewed as if elements corresponding to the components type of the view
2745      * array class
2746      * @throws NullPointerException if viewArrayClass or byteOrder is null
2747      * @throws IllegalArgumentException if viewArrayClass is not an array type
2748      * @throws UnsupportedOperationException if the component type of
2749      * viewArrayClass is not supported as a variable type
2750      * @since 9
2751      */
2752     public static
2753     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2754                                      ByteOrder byteOrder) throws IllegalArgumentException {
2755         Objects.requireNonNull(byteOrder);
2756         return VarHandles.byteArrayViewHandle(viewArrayClass,
2757                                               byteOrder == ByteOrder.BIG_ENDIAN);
2758     }
2759 
2760     /**
2761      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2762      * viewed as if it were an array of elements of a different primitive
2763      * component type to that of {@code byte}, such as {@code int[]} or
2764      * {@code long[]}.
2765      * The VarHandle's variable type is the component type of
2766      * {@code viewArrayClass} and the list of coordinate types is
2767      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2768      * corresponds to an argument that is an index into a {@code byte[]} array.
2769      * The returned VarHandle accesses bytes at an index in a
2770      * {@code ByteBuffer}, composing bytes to or from a value of the component
2771      * type of {@code viewArrayClass} according to the given endianness.
2772      * <p>
2773      * The supported component types (variables types) are {@code short},
2774      * {@code char}, {@code int}, {@code long}, {@code float} and
2775      * {@code double}.
2776      * <p>
2777      * Access will result in a {@code ReadOnlyBufferException} for anything
2778      * other than the read access modes if the {@code ByteBuffer} is read-only.
2779      * <p>
2780      * Access of bytes at a given index will result in an
2781      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2782      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2783      * {@code T}.
2784      * <p>
2785      * Access of bytes at an index may be aligned or misaligned for {@code T},
2786      * with respect to the underlying memory address, {@code A} say, associated
2787      * with the {@code ByteBuffer} and index.
2788      * If access is misaligned then access for anything other than the
2789      * {@code get} and {@code set} access modes will result in an
2790      * {@code IllegalStateException}.  In such cases atomic access is only
2791      * guaranteed with respect to the largest power of two that divides the GCD
2792      * of {@code A} and the size (in bytes) of {@code T}.
2793      * If access is aligned then following access modes are supported and are
2794      * guaranteed to support atomic access:
2795      * <ul>
2796      * <li>read write access modes for all {@code T}, with the exception of
2797      *     access modes {@code get} and {@code set} for {@code long} and
2798      *     {@code double} on 32-bit platforms.
2799      * <li>atomic update access modes for {@code int}, {@code long},
2800      *     {@code float} or {@code double}.
2801      *     (Future major platform releases of the JDK may support additional
2802      *     types for certain currently unsupported access modes.)
2803      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2804      *     (Future major platform releases of the JDK may support additional
2805      *     numeric types for certain currently unsupported access modes.)
2806      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2807      *     (Future major platform releases of the JDK may support additional
2808      *     numeric types for certain currently unsupported access modes.)
2809      * </ul>
2810      * <p>
2811      * Misaligned access, and therefore atomicity guarantees, may be determined
2812      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2813      * {@code index}, {@code T} and it's corresponding boxed type,
2814      * {@code T_BOX}, as follows:
2815      * <pre>{@code
2816      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2817      * ByteBuffer bb = ...
2818      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2819      * boolean isMisaligned = misalignedAtIndex != 0;
2820      * }</pre>
2821      * <p>
2822      * If the variable type is {@code float} or {@code double} then atomic
2823      * update access modes compare values using their bitwise representation
2824      * (see {@link Float#floatToRawIntBits} and
2825      * {@link Double#doubleToRawLongBits}, respectively).
2826      * @param viewArrayClass the view array class, with a component type of
2827      * type {@code T}
2828      * @param byteOrder the endianness of the view array elements, as
2829      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2830      * endianness of a {@code ByteBuffer})
2831      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2832      * viewed as if elements corresponding to the components type of the view
2833      * array class
2834      * @throws NullPointerException if viewArrayClass or byteOrder is null
2835      * @throws IllegalArgumentException if viewArrayClass is not an array type
2836      * @throws UnsupportedOperationException if the component type of
2837      * viewArrayClass is not supported as a variable type
2838      * @since 9
2839      */
2840     public static
2841     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2842                                       ByteOrder byteOrder) throws IllegalArgumentException {
2843         Objects.requireNonNull(byteOrder);
2844         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2845                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2846     }
2847 
2848 
2849     /// method handle invocation (reflective style)
2850 
2851     /**
2852      * Produces a method handle which will invoke any method handle of the
2853      * given {@code type}, with a given number of trailing arguments replaced by
2854      * a single trailing {@code Object[]} array.
2855      * The resulting invoker will be a method handle with the following
2856      * arguments:
2857      * <ul>
2858      * <li>a single {@code MethodHandle} target
2859      * <li>zero or more leading values (counted by {@code leadingArgCount})
2860      * <li>an {@code Object[]} array containing trailing arguments
2861      * </ul>
2862      * <p>
2863      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2864      * the indicated {@code type}.
2865      * That is, if the target is exactly of the given {@code type}, it will behave
2866      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2867      * is used to convert the target to the required {@code type}.
2868      * <p>
2869      * The type of the returned invoker will not be the given {@code type}, but rather
2870      * will have all parameters except the first {@code leadingArgCount}
2871      * replaced by a single array of type {@code Object[]}, which will be
2872      * the final parameter.
2873      * <p>
2874      * Before invoking its target, the invoker will spread the final array, apply
2875      * reference casts as necessary, and unbox and widen primitive arguments.
2876      * If, when the invoker is called, the supplied array argument does
2877      * not have the correct number of elements, the invoker will throw
2878      * an {@link IllegalArgumentException} instead of invoking the target.
2879      * <p>
2880      * This method is equivalent to the following code (though it may be more efficient):
2881      * <blockquote><pre>{@code
2882 MethodHandle invoker = MethodHandles.invoker(type);
2883 int spreadArgCount = type.parameterCount() - leadingArgCount;
2884 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2885 return invoker;
2886      * }</pre></blockquote>
2887      * This method throws no reflective or security exceptions.
2888      * @param type the desired target type
2889      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2890      * @return a method handle suitable for invoking any method handle of the given type
2891      * @throws NullPointerException if {@code type} is null
2892      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2893      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2894      *                  or if the resulting method handle's type would have
2895      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2896      */
2897     public static
2898     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2899         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2900             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2901         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2902         return type.invokers().spreadInvoker(leadingArgCount);
2903     }
2904 
2905     /**
2906      * Produces a special <em>invoker method handle</em> which can be used to
2907      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2908      * The resulting invoker will have a type which is
2909      * exactly equal to the desired type, except that it will accept
2910      * an additional leading argument of type {@code MethodHandle}.
2911      * <p>
2912      * This method is equivalent to the following code (though it may be more efficient):
2913      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2914      *
2915      * <p style="font-size:smaller;">
2916      * <em>Discussion:</em>
2917      * Invoker method handles can be useful when working with variable method handles
2918      * of unknown types.
2919      * For example, to emulate an {@code invokeExact} call to a variable method
2920      * handle {@code M}, extract its type {@code T},
2921      * look up the invoker method {@code X} for {@code T},
2922      * and call the invoker method, as {@code X.invoke(T, A...)}.
2923      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2924      * is unknown.)
2925      * If spreading, collecting, or other argument transformations are required,
2926      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2927      * method handle values, as long as they are compatible with the type of {@code X}.
2928      * <p style="font-size:smaller;">
2929      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2930      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2931      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2932      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2933      * <p>
2934      * This method throws no reflective or security exceptions.
2935      * @param type the desired target type
2936      * @return a method handle suitable for invoking any method handle of the given type
2937      * @throws IllegalArgumentException if the resulting method handle's type would have
2938      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2939      */
2940     public static
2941     MethodHandle exactInvoker(MethodType type) {
2942         return type.invokers().exactInvoker();
2943     }
2944 
2945     /**
2946      * Produces a special <em>invoker method handle</em> which can be used to
2947      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2948      * The resulting invoker will have a type which is
2949      * exactly equal to the desired type, except that it will accept
2950      * an additional leading argument of type {@code MethodHandle}.
2951      * <p>
2952      * Before invoking its target, if the target differs from the expected type,
2953      * the invoker will apply reference casts as
2954      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2955      * Similarly, the return value will be converted as necessary.
2956      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2957      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2958      * <p>
2959      * This method is equivalent to the following code (though it may be more efficient):
2960      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2961      * <p style="font-size:smaller;">
2962      * <em>Discussion:</em>
2963      * A {@linkplain MethodType#genericMethodType general method type} is one which
2964      * mentions only {@code Object} arguments and return values.
2965      * An invoker for such a type is capable of calling any method handle
2966      * of the same arity as the general type.
2967      * <p style="font-size:smaller;">
2968      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2969      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2970      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2971      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2972      * <p>
2973      * This method throws no reflective or security exceptions.
2974      * @param type the desired target type
2975      * @return a method handle suitable for invoking any method handle convertible to the given type
2976      * @throws IllegalArgumentException if the resulting method handle's type would have
2977      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2978      */
2979     public static
2980     MethodHandle invoker(MethodType type) {
2981         return type.invokers().genericInvoker();
2982     }
2983 
2984     /**
2985      * Produces a special <em>invoker method handle</em> which can be used to
2986      * invoke a signature-polymorphic access mode method on any VarHandle whose
2987      * associated access mode type is compatible with the given type.
2988      * The resulting invoker will have a type which is exactly equal to the
2989      * desired given type, except that it will accept an additional leading
2990      * argument of type {@code VarHandle}.
2991      *
2992      * @param accessMode the VarHandle access mode
2993      * @param type the desired target type
2994      * @return a method handle suitable for invoking an access mode method of
2995      *         any VarHandle whose access mode type is of the given type.
2996      * @since 9
2997      */
2998     static public
2999     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3000         return type.invokers().varHandleMethodExactInvoker(accessMode);
3001     }
3002 
3003     /**
3004      * Produces a special <em>invoker method handle</em> which can be used to
3005      * invoke a signature-polymorphic access mode method on any VarHandle whose
3006      * associated access mode type is compatible with the given type.
3007      * The resulting invoker will have a type which is exactly equal to the
3008      * desired given type, except that it will accept an additional leading
3009      * argument of type {@code VarHandle}.
3010      * <p>
3011      * Before invoking its target, if the access mode type differs from the
3012      * desired given type, the invoker will apply reference casts as necessary
3013      * and box, unbox, or widen primitive values, as if by
3014      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3015      * converted as necessary.
3016      * <p>
3017      * This method is equivalent to the following code (though it may be more
3018      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3019      *
3020      * @param accessMode the VarHandle access mode
3021      * @param type the desired target type
3022      * @return a method handle suitable for invoking an access mode method of
3023      *         any VarHandle whose access mode type is convertible to the given
3024      *         type.
3025      * @since 9
3026      */
3027     static public
3028     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3029         return type.invokers().varHandleMethodInvoker(accessMode);
3030     }
3031 
3032     static /*non-public*/
3033     MethodHandle basicInvoker(MethodType type) {
3034         return type.invokers().basicInvoker();
3035     }
3036 
3037      /// method handle modification (creation from other method handles)
3038 
3039     /**
3040      * Produces a method handle which adapts the type of the
3041      * given method handle to a new type by pairwise argument and return type conversion.
3042      * The original type and new type must have the same number of arguments.
3043      * The resulting method handle is guaranteed to report a type
3044      * which is equal to the desired new type.
3045      * <p>
3046      * If the original type and new type are equal, returns target.
3047      * <p>
3048      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3049      * and some additional conversions are also applied if those conversions fail.
3050      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3051      * if possible, before or instead of any conversions done by {@code asType}:
3052      * <ul>
3053      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3054      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3055      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3056      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3057      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3058      *     (This treatment follows the usage of the bytecode verifier.)
3059      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3060      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3061      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3062      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3063      *     then a Java casting conversion (JLS 5.5) is applied.
3064      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3065      *     widening and/or narrowing.)
3066      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3067      *     conversion will be applied at runtime, possibly followed
3068      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3069      *     possibly followed by a conversion from byte to boolean by testing
3070      *     the low-order bit.
3071      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3072      *     and if the reference is null at runtime, a zero value is introduced.
3073      * </ul>
3074      * @param target the method handle to invoke after arguments are retyped
3075      * @param newType the expected type of the new method handle
3076      * @return a method handle which delegates to the target after performing
3077      *           any necessary argument conversions, and arranges for any
3078      *           necessary return value conversions
3079      * @throws NullPointerException if either argument is null
3080      * @throws WrongMethodTypeException if the conversion cannot be made
3081      * @see MethodHandle#asType
3082      */
3083     public static
3084     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3085         explicitCastArgumentsChecks(target, newType);
3086         // use the asTypeCache when possible:
3087         MethodType oldType = target.type();
3088         if (oldType == newType)  return target;
3089         if (oldType.explicitCastEquivalentToAsType(newType)) {
3090             return target.asFixedArity().asType(newType);
3091         }
3092         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3093     }
3094 
3095     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3096         if (target.type().parameterCount() != newType.parameterCount()) {
3097             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3098         }
3099     }
3100 
3101     /**
3102      * Produces a method handle which adapts the calling sequence of the
3103      * given method handle to a new type, by reordering the arguments.
3104      * The resulting method handle is guaranteed to report a type
3105      * which is equal to the desired new type.
3106      * <p>
3107      * The given array controls the reordering.
3108      * Call {@code #I} the number of incoming parameters (the value
3109      * {@code newType.parameterCount()}, and call {@code #O} the number
3110      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3111      * Then the length of the reordering array must be {@code #O},
3112      * and each element must be a non-negative number less than {@code #I}.
3113      * For every {@code N} less than {@code #O}, the {@code N}-th
3114      * outgoing argument will be taken from the {@code I}-th incoming
3115      * argument, where {@code I} is {@code reorder[N]}.
3116      * <p>
3117      * No argument or return value conversions are applied.
3118      * The type of each incoming argument, as determined by {@code newType},
3119      * must be identical to the type of the corresponding outgoing parameter
3120      * or parameters in the target method handle.
3121      * The return type of {@code newType} must be identical to the return
3122      * type of the original target.
3123      * <p>
3124      * The reordering array need not specify an actual permutation.
3125      * An incoming argument will be duplicated if its index appears
3126      * more than once in the array, and an incoming argument will be dropped
3127      * if its index does not appear in the array.
3128      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3129      * incoming arguments which are not mentioned in the reordering array
3130      * may be of any type, as determined only by {@code newType}.
3131      * <blockquote><pre>{@code
3132 import static java.lang.invoke.MethodHandles.*;
3133 import static java.lang.invoke.MethodType.*;
3134 ...
3135 MethodType intfn1 = methodType(int.class, int.class);
3136 MethodType intfn2 = methodType(int.class, int.class, int.class);
3137 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3138 assert(sub.type().equals(intfn2));
3139 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3140 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3141 assert((int)rsub.invokeExact(1, 100) == 99);
3142 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3143 assert(add.type().equals(intfn2));
3144 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3145 assert(twice.type().equals(intfn1));
3146 assert((int)twice.invokeExact(21) == 42);
3147      * }</pre></blockquote>
3148      * <p>
3149      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3150      * variable-arity method handle}, even if the original target method handle was.
3151      * @param target the method handle to invoke after arguments are reordered
3152      * @param newType the expected type of the new method handle
3153      * @param reorder an index array which controls the reordering
3154      * @return a method handle which delegates to the target after it
3155      *           drops unused arguments and moves and/or duplicates the other arguments
3156      * @throws NullPointerException if any argument is null
3157      * @throws IllegalArgumentException if the index array length is not equal to
3158      *                  the arity of the target, or if any index array element
3159      *                  not a valid index for a parameter of {@code newType},
3160      *                  or if two corresponding parameter types in
3161      *                  {@code target.type()} and {@code newType} are not identical,
3162      */
3163     public static
3164     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3165         reorder = reorder.clone();  // get a private copy
3166         MethodType oldType = target.type();
3167         permuteArgumentChecks(reorder, newType, oldType);
3168         // first detect dropped arguments and handle them separately
3169         int[] originalReorder = reorder;
3170         BoundMethodHandle result = target.rebind();
3171         LambdaForm form = result.form;
3172         int newArity = newType.parameterCount();
3173         // Normalize the reordering into a real permutation,
3174         // by removing duplicates and adding dropped elements.
3175         // This somewhat improves lambda form caching, as well
3176         // as simplifying the transform by breaking it up into steps.
3177         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3178             if (ddIdx > 0) {
3179                 // We found a duplicated entry at reorder[ddIdx].
3180                 // Example:  (x,y,z)->asList(x,y,z)
3181                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3182                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3183                 // The starred element corresponds to the argument
3184                 // deleted by the dupArgumentForm transform.
3185                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3186                 boolean killFirst = false;
3187                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3188                     // Set killFirst if the dup is larger than an intervening position.
3189                     // This will remove at least one inversion from the permutation.
3190                     if (dupVal > val) killFirst = true;
3191                 }
3192                 if (!killFirst) {
3193                     srcPos = dstPos;
3194                     dstPos = ddIdx;
3195                 }
3196                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3197                 assert (reorder[srcPos] == reorder[dstPos]);
3198                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3199                 // contract the reordering by removing the element at dstPos
3200                 int tailPos = dstPos + 1;
3201                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3202                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3203             } else {
3204                 int dropVal = ~ddIdx, insPos = 0;
3205                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3206                     // Find first element of reorder larger than dropVal.
3207                     // This is where we will insert the dropVal.
3208                     insPos += 1;
3209                 }
3210                 Class<?> ptype = newType.parameterType(dropVal);
3211                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3212                 oldType = oldType.insertParameterTypes(insPos, ptype);
3213                 // expand the reordering by inserting an element at insPos
3214                 int tailPos = insPos + 1;
3215                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3216                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3217                 reorder[insPos] = dropVal;
3218             }
3219             assert (permuteArgumentChecks(reorder, newType, oldType));
3220         }
3221         assert (reorder.length == newArity);  // a perfect permutation
3222         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3223         form = form.editor().permuteArgumentsForm(1, reorder);
3224         if (newType == result.type() && form == result.internalForm())
3225             return result;
3226         return result.copyWith(newType, form);
3227     }
3228 
3229     /**
3230      * Return an indication of any duplicate or omission in reorder.
3231      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3232      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3233      * Otherwise, return zero.
3234      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3235      */
3236     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3237         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3238         if (newArity < BIT_LIMIT) {
3239             long mask = 0;
3240             for (int i = 0; i < reorder.length; i++) {
3241                 int arg = reorder[i];
3242                 if (arg >= newArity) {
3243                     return reorder.length;
3244                 }
3245                 long bit = 1L << arg;
3246                 if ((mask & bit) != 0) {
3247                     return i;  // >0 indicates a dup
3248                 }
3249                 mask |= bit;
3250             }
3251             if (mask == (1L << newArity) - 1) {
3252                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3253                 return 0;
3254             }
3255             // find first zero
3256             long zeroBit = Long.lowestOneBit(~mask);
3257             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3258             assert(zeroPos <= newArity);
3259             if (zeroPos == newArity) {
3260                 return 0;
3261             }
3262             return ~zeroPos;
3263         } else {
3264             // same algorithm, different bit set
3265             BitSet mask = new BitSet(newArity);
3266             for (int i = 0; i < reorder.length; i++) {
3267                 int arg = reorder[i];
3268                 if (arg >= newArity) {
3269                     return reorder.length;
3270                 }
3271                 if (mask.get(arg)) {
3272                     return i;  // >0 indicates a dup
3273                 }
3274                 mask.set(arg);
3275             }
3276             int zeroPos = mask.nextClearBit(0);
3277             assert(zeroPos <= newArity);
3278             if (zeroPos == newArity) {
3279                 return 0;
3280             }
3281             return ~zeroPos;
3282         }
3283     }
3284 
3285     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3286         if (newType.returnType() != oldType.returnType())
3287             throw newIllegalArgumentException("return types do not match",
3288                     oldType, newType);
3289         if (reorder.length == oldType.parameterCount()) {
3290             int limit = newType.parameterCount();
3291             boolean bad = false;
3292             for (int j = 0; j < reorder.length; j++) {
3293                 int i = reorder[j];
3294                 if (i < 0 || i >= limit) {
3295                     bad = true; break;
3296                 }
3297                 Class<?> src = newType.parameterType(i);
3298                 Class<?> dst = oldType.parameterType(j);
3299                 if (src != dst)
3300                     throw newIllegalArgumentException("parameter types do not match after reorder",
3301                             oldType, newType);
3302             }
3303             if (!bad)  return true;
3304         }
3305         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3306     }
3307 
3308     /**
3309      * Produces a method handle of the requested return type which returns the given
3310      * constant value every time it is invoked.
3311      * <p>
3312      * Before the method handle is returned, the passed-in value is converted to the requested type.
3313      * If the requested type is primitive, widening primitive conversions are attempted,
3314      * else reference conversions are attempted.
3315      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3316      * @param type the return type of the desired method handle
3317      * @param value the value to return
3318      * @return a method handle of the given return type and no arguments, which always returns the given value
3319      * @throws NullPointerException if the {@code type} argument is null
3320      * @throws ClassCastException if the value cannot be converted to the required return type
3321      * @throws IllegalArgumentException if the given type is {@code void.class}
3322      */
3323     public static
3324     MethodHandle constant(Class<?> type, Object value) {
3325         if (type.isPrimitive()) {
3326             if (type == void.class)
3327                 throw newIllegalArgumentException("void type");
3328             Wrapper w = Wrapper.forPrimitiveType(type);
3329             value = w.convert(value, type);
3330             if (w.zero().equals(value))
3331                 return zero(w, type);
3332             return insertArguments(identity(type), 0, value);
3333         } else if (MinimalValueTypes_1_0.isValueType(type)) {
3334             return insertArguments(identity(type), 0, value);
3335         } else {
3336             if (value == null)
3337                 return zero(Wrapper.OBJECT, type);
3338             return identity(type).bindTo(value);
3339         }
3340     }
3341 
3342     /**
3343      * Produces a method handle which returns its sole argument when invoked.
3344      * @param type the type of the sole parameter and return value of the desired method handle
3345      * @return a unary method handle which accepts and returns the given type
3346      * @throws NullPointerException if the argument is null
3347      * @throws IllegalArgumentException if the given type is {@code void.class}
3348      */
3349     public static
3350     MethodHandle identity(Class<?> type) {
3351         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3352         int pos = btw.ordinal();
3353         MethodHandle ident = IDENTITY_MHS[pos];
3354         if (ident == null) {
3355             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3356         }
3357         if (ident.type().returnType() == type)
3358             return ident;
3359         // something like identity(Foo.class); do not bother to intern these
3360         assert (btw == Wrapper.OBJECT);
3361         return makeIdentity(type);
3362     }
3363 
3364     /**
3365      * Produces a constant method handle of the requested return type which
3366      * returns the default value for that type every time it is invoked.
3367      * The resulting constant method handle will have no side effects.
3368      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3369      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3370      * since {@code explicitCastArguments} converts {@code null} to default values.
3371      * @param type the expected return type of the desired method handle
3372      * @return a constant method handle that takes no arguments
3373      *         and returns the default value of the given type (or void, if the type is void)
3374      * @throws NullPointerException if the argument is null
3375      * @see MethodHandles#constant
3376      * @see MethodHandles#empty
3377      * @see MethodHandles#explicitCastArguments
3378      * @since 9
3379      */
3380     public static MethodHandle zero(Class<?> type) {
3381         Objects.requireNonNull(type);
3382         if (type.isPrimitive()) {
3383             return zero(Wrapper.forPrimitiveType(type), type);
3384         } else if (MinimalValueTypes_1_0.isValueType(type)) {
3385             return MinimalValueTypes_1_0.findValueType(type).defaultValueConstant();
3386         } else {
3387             return zero(Wrapper.OBJECT, type);
3388         }
3389     }
3390 
3391     private static MethodHandle identityOrVoid(Class<?> type) {
3392         return type == void.class ? zero(type) : identity(type);
3393     }
3394 
3395     /**
3396      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3397      * and returns a suitable default depending on the return type.
3398      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3399      * <p>The returned method handle is equivalent to
3400      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3401      *
3402      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3403      * {@code guardWithTest(pred, target, empty(target.type())}.
3404      * @param type the type of the desired method handle
3405      * @return a constant method handle of the given type, which returns a default value of the given return type
3406      * @throws NullPointerException if the argument is null
3407      * @see MethodHandles#zero
3408      * @see MethodHandles#constant
3409      * @since 9
3410      */
3411     public static  MethodHandle empty(MethodType type) {
3412         Objects.requireNonNull(type);
3413         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3414     }
3415 
3416     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3417     private static MethodHandle makeIdentity(Class<?> ptype) {
3418         if (!MinimalValueTypes_1_0.isValueType(ptype)) {
3419             MethodType mtype = MethodType.methodType(ptype, ptype);
3420             LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3421             return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3422         } else {
3423             return MinimalValueTypes_1_0.findValueType(ptype).identity();
3424         }
3425     }
3426 
3427     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3428         int pos = btw.ordinal();
3429         MethodHandle zero = ZERO_MHS[pos];
3430         if (zero == null) {
3431             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3432         }
3433         if (zero.type().returnType() == rtype)
3434             return zero;
3435         assert(btw == Wrapper.OBJECT);
3436         return makeZero(rtype);
3437     }
3438     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3439     private static MethodHandle makeZero(Class<?> rtype) {
3440         MethodType mtype = methodType(rtype);
3441         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3442         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3443     }
3444 
3445     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3446         // Simulate a CAS, to avoid racy duplication of results.
3447         MethodHandle prev = cache[pos];
3448         if (prev != null) return prev;
3449         return cache[pos] = value;
3450     }
3451 
3452     /**
3453      * Provides a target method handle with one or more <em>bound arguments</em>
3454      * in advance of the method handle's invocation.
3455      * The formal parameters to the target corresponding to the bound
3456      * arguments are called <em>bound parameters</em>.
3457      * Returns a new method handle which saves away the bound arguments.
3458      * When it is invoked, it receives arguments for any non-bound parameters,
3459      * binds the saved arguments to their corresponding parameters,
3460      * and calls the original target.
3461      * <p>
3462      * The type of the new method handle will drop the types for the bound
3463      * parameters from the original target type, since the new method handle
3464      * will no longer require those arguments to be supplied by its callers.
3465      * <p>
3466      * Each given argument object must match the corresponding bound parameter type.
3467      * If a bound parameter type is a primitive, the argument object
3468      * must be a wrapper, and will be unboxed to produce the primitive value.
3469      * <p>
3470      * The {@code pos} argument selects which parameters are to be bound.
3471      * It may range between zero and <i>N-L</i> (inclusively),
3472      * where <i>N</i> is the arity of the target method handle
3473      * and <i>L</i> is the length of the values array.
3474      * <p>
3475      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3476      * variable-arity method handle}, even if the original target method handle was.
3477      * @param target the method handle to invoke after the argument is inserted
3478      * @param pos where to insert the argument (zero for the first)
3479      * @param values the series of arguments to insert
3480      * @return a method handle which inserts an additional argument,
3481      *         before calling the original method handle
3482      * @throws NullPointerException if the target or the {@code values} array is null
3483      * @see MethodHandle#bindTo
3484      */
3485     public static
3486     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3487         int insCount = values.length;
3488         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3489         if (insCount == 0)  return target;
3490         BoundMethodHandle result = target.rebind();
3491         for (int i = 0; i < insCount; i++) {
3492             Object value = values[i];
3493             Class<?> ptype = ptypes[pos+i];
3494             if (ptype.isPrimitive()) {
3495                 result = insertArgumentPrimitive(result, pos, ptype, value);
3496             } else if (MinimalValueTypes_1_0.isValueType(ptype)) {
3497                 Class<?> vcc = MinimalValueTypes_1_0.getValueCapableClass(ptype);
3498                 Objects.requireNonNull(value); // throw NPE if needed
3499                 value = vcc.cast(value);       // throw CCE if needed
3500                 MethodHandle unbox = MinimalValueTypes_1_0.findValueType(ptype).unbox();
3501                 result = result.bindArgumentQ(pos, value, unbox);
3502             } else {
3503                 value = ptype.cast(value);  // throw CCE if needed
3504                 result = result.bindArgumentL(pos, value);
3505             }
3506         }
3507         return result;
3508     }
3509 
3510     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3511                                                              Class<?> ptype, Object value) {
3512         Wrapper w = Wrapper.forPrimitiveType(ptype);
3513         // perform unboxing and/or primitive conversion
3514         value = w.convert(value, ptype);
3515         switch (w) {
3516         case INT:     return result.bindArgumentI(pos, (int)value);
3517         case LONG:    return result.bindArgumentJ(pos, (long)value);
3518         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3519         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3520         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3521         }
3522     }
3523 
3524     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3525         MethodType oldType = target.type();
3526         int outargs = oldType.parameterCount();
3527         int inargs  = outargs - insCount;
3528         if (inargs < 0)
3529             throw newIllegalArgumentException("too many values to insert");
3530         if (pos < 0 || pos > inargs)
3531             throw newIllegalArgumentException("no argument type to append");
3532         return oldType.ptypes();
3533     }
3534 
3535     /**
3536      * Produces a method handle which will discard some dummy arguments
3537      * before calling some other specified <i>target</i> method handle.
3538      * The type of the new method handle will be the same as the target's type,
3539      * except it will also include the dummy argument types,
3540      * at some given position.
3541      * <p>
3542      * The {@code pos} argument may range between zero and <i>N</i>,
3543      * where <i>N</i> is the arity of the target.
3544      * If {@code pos} is zero, the dummy arguments will precede
3545      * the target's real arguments; if {@code pos} is <i>N</i>
3546      * they will come after.
3547      * <p>
3548      * <b>Example:</b>
3549      * <blockquote><pre>{@code
3550 import static java.lang.invoke.MethodHandles.*;
3551 import static java.lang.invoke.MethodType.*;
3552 ...
3553 MethodHandle cat = lookup().findVirtual(String.class,
3554   "concat", methodType(String.class, String.class));
3555 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3556 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3557 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3558 assertEquals(bigType, d0.type());
3559 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3560      * }</pre></blockquote>
3561      * <p>
3562      * This method is also equivalent to the following code:
3563      * <blockquote><pre>
3564      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3565      * </pre></blockquote>
3566      * @param target the method handle to invoke after the arguments are dropped
3567      * @param valueTypes the type(s) of the argument(s) to drop
3568      * @param pos position of first argument to drop (zero for the leftmost)
3569      * @return a method handle which drops arguments of the given types,
3570      *         before calling the original method handle
3571      * @throws NullPointerException if the target is null,
3572      *                              or if the {@code valueTypes} list or any of its elements is null
3573      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3574      *                  or if {@code pos} is negative or greater than the arity of the target,
3575      *                  or if the new method handle's type would have too many parameters
3576      */
3577     public static
3578     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3579         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3580     }
3581 
3582     private static List<Class<?>> copyTypes(Object[] array) {
3583         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3584     }
3585 
3586     private static
3587     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3588         MethodType oldType = target.type();  // get NPE
3589         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3590         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3591         if (dropped == 0)  return target;
3592         BoundMethodHandle result = target.rebind();
3593         LambdaForm lform = result.form;
3594         int insertFormArg = 1 + pos;
3595         for (Class<?> ptype : valueTypes) {
3596             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3597         }
3598         result = result.copyWith(newType, lform);
3599         return result;
3600     }
3601 
3602     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3603         int dropped = valueTypes.size();
3604         MethodType.checkSlotCount(dropped);
3605         int outargs = oldType.parameterCount();
3606         int inargs  = outargs + dropped;
3607         if (pos < 0 || pos > outargs)
3608             throw newIllegalArgumentException("no argument type to remove"
3609                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3610                     );
3611         return dropped;
3612     }
3613 
3614     /**
3615      * Produces a method handle which will discard some dummy arguments
3616      * before calling some other specified <i>target</i> method handle.
3617      * The type of the new method handle will be the same as the target's type,
3618      * except it will also include the dummy argument types,
3619      * at some given position.
3620      * <p>
3621      * The {@code pos} argument may range between zero and <i>N</i>,
3622      * where <i>N</i> is the arity of the target.
3623      * If {@code pos} is zero, the dummy arguments will precede
3624      * the target's real arguments; if {@code pos} is <i>N</i>
3625      * they will come after.
3626      * @apiNote
3627      * <blockquote><pre>{@code
3628 import static java.lang.invoke.MethodHandles.*;
3629 import static java.lang.invoke.MethodType.*;
3630 ...
3631 MethodHandle cat = lookup().findVirtual(String.class,
3632   "concat", methodType(String.class, String.class));
3633 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3634 MethodHandle d0 = dropArguments(cat, 0, String.class);
3635 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3636 MethodHandle d1 = dropArguments(cat, 1, String.class);
3637 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3638 MethodHandle d2 = dropArguments(cat, 2, String.class);
3639 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3640 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3641 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3642      * }</pre></blockquote>
3643      * <p>
3644      * This method is also equivalent to the following code:
3645      * <blockquote><pre>
3646      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3647      * </pre></blockquote>
3648      * @param target the method handle to invoke after the arguments are dropped
3649      * @param valueTypes the type(s) of the argument(s) to drop
3650      * @param pos position of first argument to drop (zero for the leftmost)
3651      * @return a method handle which drops arguments of the given types,
3652      *         before calling the original method handle
3653      * @throws NullPointerException if the target is null,
3654      *                              or if the {@code valueTypes} array or any of its elements is null
3655      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3656      *                  or if {@code pos} is negative or greater than the arity of the target,
3657      *                  or if the new method handle's type would have
3658      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3659      */
3660     public static
3661     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3662         return dropArguments0(target, pos, copyTypes(valueTypes));
3663     }
3664 
3665     // private version which allows caller some freedom with error handling
3666     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3667                                       boolean nullOnFailure) {
3668         newTypes = copyTypes(newTypes.toArray());
3669         List<Class<?>> oldTypes = target.type().parameterList();
3670         int match = oldTypes.size();
3671         if (skip != 0) {
3672             if (skip < 0 || skip > match) {
3673                 throw newIllegalArgumentException("illegal skip", skip, target);
3674             }
3675             oldTypes = oldTypes.subList(skip, match);
3676             match -= skip;
3677         }
3678         List<Class<?>> addTypes = newTypes;
3679         int add = addTypes.size();
3680         if (pos != 0) {
3681             if (pos < 0 || pos > add) {
3682                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3683             }
3684             addTypes = addTypes.subList(pos, add);
3685             add -= pos;
3686             assert(addTypes.size() == add);
3687         }
3688         // Do not add types which already match the existing arguments.
3689         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3690             if (nullOnFailure) {
3691                 return null;
3692             }
3693             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3694         }
3695         addTypes = addTypes.subList(match, add);
3696         add -= match;
3697         assert(addTypes.size() == add);
3698         // newTypes:     (   P*[pos], M*[match], A*[add] )
3699         // target: ( S*[skip],        M*[match]  )
3700         MethodHandle adapter = target;
3701         if (add > 0) {
3702             adapter = dropArguments0(adapter, skip+ match, addTypes);
3703         }
3704         // adapter: (S*[skip],        M*[match], A*[add] )
3705         if (pos > 0) {
3706             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3707         }
3708         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3709         return adapter;
3710     }
3711 
3712     /**
3713      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3714      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3715      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3716      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3717      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3718      * {@link #dropArguments(MethodHandle, int, Class[])}.
3719      * <p>
3720      * The resulting handle will have the same return type as the target handle.
3721      * <p>
3722      * In more formal terms, assume these two type lists:<ul>
3723      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3724      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3725      * {@code newTypes}.
3726      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3727      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3728      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3729      * sub-list.
3730      * </ul>
3731      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3732      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3733      * {@link #dropArguments(MethodHandle, int, Class[])}.
3734      *
3735      * @apiNote
3736      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3737      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3738      * <blockquote><pre>{@code
3739 import static java.lang.invoke.MethodHandles.*;
3740 import static java.lang.invoke.MethodType.*;
3741 ...
3742 ...
3743 MethodHandle h0 = constant(boolean.class, true);
3744 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3745 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3746 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3747 if (h1.type().parameterCount() < h2.type().parameterCount())
3748     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3749 else
3750     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3751 MethodHandle h3 = guardWithTest(h0, h1, h2);
3752 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3753      * }</pre></blockquote>
3754      * @param target the method handle to adapt
3755      * @param skip number of targets parameters to disregard (they will be unchanged)
3756      * @param newTypes the list of types to match {@code target}'s parameter type list to
3757      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3758      * @return a possibly adapted method handle
3759      * @throws NullPointerException if either argument is null
3760      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3761      *         or if {@code skip} is negative or greater than the arity of the target,
3762      *         or if {@code pos} is negative or greater than the newTypes list size,
3763      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3764      *         {@code pos}.
3765      * @since 9
3766      */
3767     public static
3768     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3769         Objects.requireNonNull(target);
3770         Objects.requireNonNull(newTypes);
3771         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3772     }
3773 
3774     /**
3775      * Adapts a target method handle by pre-processing
3776      * one or more of its arguments, each with its own unary filter function,
3777      * and then calling the target with each pre-processed argument
3778      * replaced by the result of its corresponding filter function.
3779      * <p>
3780      * The pre-processing is performed by one or more method handles,
3781      * specified in the elements of the {@code filters} array.
3782      * The first element of the filter array corresponds to the {@code pos}
3783      * argument of the target, and so on in sequence.
3784      * <p>
3785      * Null arguments in the array are treated as identity functions,
3786      * and the corresponding arguments left unchanged.
3787      * (If there are no non-null elements in the array, the original target is returned.)
3788      * Each filter is applied to the corresponding argument of the adapter.
3789      * <p>
3790      * If a filter {@code F} applies to the {@code N}th argument of
3791      * the target, then {@code F} must be a method handle which
3792      * takes exactly one argument.  The type of {@code F}'s sole argument
3793      * replaces the corresponding argument type of the target
3794      * in the resulting adapted method handle.
3795      * The return type of {@code F} must be identical to the corresponding
3796      * parameter type of the target.
3797      * <p>
3798      * It is an error if there are elements of {@code filters}
3799      * (null or not)
3800      * which do not correspond to argument positions in the target.
3801      * <p><b>Example:</b>
3802      * <blockquote><pre>{@code
3803 import static java.lang.invoke.MethodHandles.*;
3804 import static java.lang.invoke.MethodType.*;
3805 ...
3806 MethodHandle cat = lookup().findVirtual(String.class,
3807   "concat", methodType(String.class, String.class));
3808 MethodHandle upcase = lookup().findVirtual(String.class,
3809   "toUpperCase", methodType(String.class));
3810 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3811 MethodHandle f0 = filterArguments(cat, 0, upcase);
3812 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3813 MethodHandle f1 = filterArguments(cat, 1, upcase);
3814 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3815 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3816 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3817      * }</pre></blockquote>
3818      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3819      * denotes the return type of both the {@code target} and resulting adapter.
3820      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3821      * of the parameters and arguments that precede and follow the filter position
3822      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3823      * values of the filtered parameters and arguments; they also represent the
3824      * return types of the {@code filter[i]} handles. The latter accept arguments
3825      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3826      * the resulting adapter.
3827      * <blockquote><pre>{@code
3828      * T target(P... p, A[i]... a[i], B... b);
3829      * A[i] filter[i](V[i]);
3830      * T adapter(P... p, V[i]... v[i], B... b) {
3831      *   return target(p..., filter[i](v[i])..., b...);
3832      * }
3833      * }</pre></blockquote>
3834      * <p>
3835      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3836      * variable-arity method handle}, even if the original target method handle was.
3837      *
3838      * @param target the method handle to invoke after arguments are filtered
3839      * @param pos the position of the first argument to filter
3840      * @param filters method handles to call initially on filtered arguments
3841      * @return method handle which incorporates the specified argument filtering logic
3842      * @throws NullPointerException if the target is null
3843      *                              or if the {@code filters} array is null
3844      * @throws IllegalArgumentException if a non-null element of {@code filters}
3845      *          does not match a corresponding argument type of target as described above,
3846      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3847      *          or if the resulting method handle's type would have
3848      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3849      */
3850     public static
3851     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3852         filterArgumentsCheckArity(target, pos, filters);
3853         MethodHandle adapter = target;
3854         int curPos = pos-1;  // pre-incremented
3855         for (MethodHandle filter : filters) {
3856             curPos += 1;
3857             if (filter == null)  continue;  // ignore null elements of filters
3858             adapter = filterArgument(adapter, curPos, filter);
3859         }
3860         return adapter;
3861     }
3862 
3863     /*non-public*/ static
3864     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3865         filterArgumentChecks(target, pos, filter);
3866         MethodType targetType = target.type();
3867         MethodType filterType = filter.type();
3868         BoundMethodHandle result = target.rebind();
3869         Class<?> newParamType = filterType.parameterType(0);
3870         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3871         MethodType newType = targetType.changeParameterType(pos, newParamType);
3872         result = result.copyWithExtendL(newType, lform, filter);
3873         return result;
3874     }
3875 
3876     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3877         MethodType targetType = target.type();
3878         int maxPos = targetType.parameterCount();
3879         if (pos + filters.length > maxPos)
3880             throw newIllegalArgumentException("too many filters");
3881     }
3882 
3883     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3884         MethodType targetType = target.type();
3885         MethodType filterType = filter.type();
3886         if (filterType.parameterCount() != 1
3887             || filterType.returnType() != targetType.parameterType(pos))
3888             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3889     }
3890 
3891     /**
3892      * Adapts a target method handle by pre-processing
3893      * a sub-sequence of its arguments with a filter (another method handle).
3894      * The pre-processed arguments are replaced by the result (if any) of the
3895      * filter function.
3896      * The target is then called on the modified (usually shortened) argument list.
3897      * <p>
3898      * If the filter returns a value, the target must accept that value as
3899      * its argument in position {@code pos}, preceded and/or followed by
3900      * any arguments not passed to the filter.
3901      * If the filter returns void, the target must accept all arguments
3902      * not passed to the filter.
3903      * No arguments are reordered, and a result returned from the filter
3904      * replaces (in order) the whole subsequence of arguments originally
3905      * passed to the adapter.
3906      * <p>
3907      * The argument types (if any) of the filter
3908      * replace zero or one argument types of the target, at position {@code pos},
3909      * in the resulting adapted method handle.
3910      * The return type of the filter (if any) must be identical to the
3911      * argument type of the target at position {@code pos}, and that target argument
3912      * is supplied by the return value of the filter.
3913      * <p>
3914      * In all cases, {@code pos} must be greater than or equal to zero, and
3915      * {@code pos} must also be less than or equal to the target's arity.
3916      * <p><b>Example:</b>
3917      * <blockquote><pre>{@code
3918 import static java.lang.invoke.MethodHandles.*;
3919 import static java.lang.invoke.MethodType.*;
3920 ...
3921 MethodHandle deepToString = publicLookup()
3922   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3923 
3924 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3925 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3926 
3927 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3928 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3929 
3930 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3931 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3932 assertEquals("[top, [up, down], strange]",
3933              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3934 
3935 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3936 assertEquals("[top, [up, down], [strange]]",
3937              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3938 
3939 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3940 assertEquals("[top, [[up, down, strange], charm], bottom]",
3941              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3942      * }</pre></blockquote>
3943      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3944      * represents the return type of the {@code target} and resulting adapter.
3945      * {@code V}/{@code v} stand for the return type and value of the
3946      * {@code filter}, which are also found in the signature and arguments of
3947      * the {@code target}, respectively, unless {@code V} is {@code void}.
3948      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3949      * and values preceding and following the collection position, {@code pos},
3950      * in the {@code target}'s signature. They also turn up in the resulting
3951      * adapter's signature and arguments, where they surround
3952      * {@code B}/{@code b}, which represent the parameter types and arguments
3953      * to the {@code filter} (if any).
3954      * <blockquote><pre>{@code
3955      * T target(A...,V,C...);
3956      * V filter(B...);
3957      * T adapter(A... a,B... b,C... c) {
3958      *   V v = filter(b...);
3959      *   return target(a...,v,c...);
3960      * }
3961      * // and if the filter has no arguments:
3962      * T target2(A...,V,C...);
3963      * V filter2();
3964      * T adapter2(A... a,C... c) {
3965      *   V v = filter2();
3966      *   return target2(a...,v,c...);
3967      * }
3968      * // and if the filter has a void return:
3969      * T target3(A...,C...);
3970      * void filter3(B...);
3971      * T adapter3(A... a,B... b,C... c) {
3972      *   filter3(b...);
3973      *   return target3(a...,c...);
3974      * }
3975      * }</pre></blockquote>
3976      * <p>
3977      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3978      * one which first "folds" the affected arguments, and then drops them, in separate
3979      * steps as follows:
3980      * <blockquote><pre>{@code
3981      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3982      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3983      * }</pre></blockquote>
3984      * If the target method handle consumes no arguments besides than the result
3985      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
3986      * is equivalent to {@code filterReturnValue(coll, mh)}.
3987      * If the filter method handle {@code coll} consumes one argument and produces
3988      * a non-void result, then {@code collectArguments(mh, N, coll)}
3989      * is equivalent to {@code filterArguments(mh, N, coll)}.
3990      * Other equivalences are possible but would require argument permutation.
3991      * <p>
3992      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3993      * variable-arity method handle}, even if the original target method handle was.
3994      *
3995      * @param target the method handle to invoke after filtering the subsequence of arguments
3996      * @param pos the position of the first adapter argument to pass to the filter,
3997      *            and/or the target argument which receives the result of the filter
3998      * @param filter method handle to call on the subsequence of arguments
3999      * @return method handle which incorporates the specified argument subsequence filtering logic
4000      * @throws NullPointerException if either argument is null
4001      * @throws IllegalArgumentException if the return type of {@code filter}
4002      *          is non-void and is not the same as the {@code pos} argument of the target,
4003      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4004      *          or if the resulting method handle's type would have
4005      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4006      * @see MethodHandles#foldArguments
4007      * @see MethodHandles#filterArguments
4008      * @see MethodHandles#filterReturnValue
4009      */
4010     public static
4011     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4012         MethodType newType = collectArgumentsChecks(target, pos, filter);
4013         MethodType collectorType = filter.type();
4014         BoundMethodHandle result = target.rebind();
4015         LambdaForm lform;
4016         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4017             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4018             if (lform != null) {
4019                 return result.copyWith(newType, lform);
4020             }
4021         }
4022         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4023         return result.copyWithExtendL(newType, lform, filter);
4024     }
4025 
4026     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4027         MethodType targetType = target.type();
4028         MethodType filterType = filter.type();
4029         Class<?> rtype = filterType.returnType();
4030         List<Class<?>> filterArgs = filterType.parameterList();
4031         if (rtype == void.class) {
4032             return targetType.insertParameterTypes(pos, filterArgs);
4033         }
4034         if (rtype != targetType.parameterType(pos)) {
4035             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4036         }
4037         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4038     }
4039 
4040     /**
4041      * Adapts a target method handle by post-processing
4042      * its return value (if any) with a filter (another method handle).
4043      * The result of the filter is returned from the adapter.
4044      * <p>
4045      * If the target returns a value, the filter must accept that value as
4046      * its only argument.
4047      * If the target returns void, the filter must accept no arguments.
4048      * <p>
4049      * The return type of the filter
4050      * replaces the return type of the target
4051      * in the resulting adapted method handle.
4052      * The argument type of the filter (if any) must be identical to the
4053      * return type of the target.
4054      * <p><b>Example:</b>
4055      * <blockquote><pre>{@code
4056 import static java.lang.invoke.MethodHandles.*;
4057 import static java.lang.invoke.MethodType.*;
4058 ...
4059 MethodHandle cat = lookup().findVirtual(String.class,
4060   "concat", methodType(String.class, String.class));
4061 MethodHandle length = lookup().findVirtual(String.class,
4062   "length", methodType(int.class));
4063 System.out.println((String) cat.invokeExact("x", "y")); // xy
4064 MethodHandle f0 = filterReturnValue(cat, length);
4065 System.out.println((int) f0.invokeExact("x", "y")); // 2
4066      * }</pre></blockquote>
4067      * <p>Here is pseudocode for the resulting adapter. In the code,
4068      * {@code T}/{@code t} represent the result type and value of the
4069      * {@code target}; {@code V}, the result type of the {@code filter}; and
4070      * {@code A}/{@code a}, the types and values of the parameters and arguments
4071      * of the {@code target} as well as the resulting adapter.
4072      * <blockquote><pre>{@code
4073      * T target(A...);
4074      * V filter(T);
4075      * V adapter(A... a) {
4076      *   T t = target(a...);
4077      *   return filter(t);
4078      * }
4079      * // and if the target has a void return:
4080      * void target2(A...);
4081      * V filter2();
4082      * V adapter2(A... a) {
4083      *   target2(a...);
4084      *   return filter2();
4085      * }
4086      * // and if the filter has a void return:
4087      * T target3(A...);
4088      * void filter3(V);
4089      * void adapter3(A... a) {
4090      *   T t = target3(a...);
4091      *   filter3(t);
4092      * }
4093      * }</pre></blockquote>
4094      * <p>
4095      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4096      * variable-arity method handle}, even if the original target method handle was.
4097      * @param target the method handle to invoke before filtering the return value
4098      * @param filter method handle to call on the return value
4099      * @return method handle which incorporates the specified return value filtering logic
4100      * @throws NullPointerException if either argument is null
4101      * @throws IllegalArgumentException if the argument list of {@code filter}
4102      *          does not match the return type of target as described above
4103      */
4104     public static
4105     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4106         MethodType targetType = target.type();
4107         MethodType filterType = filter.type();
4108         filterReturnValueChecks(targetType, filterType);
4109         BoundMethodHandle result = target.rebind();
4110         BasicType rtype = BasicType.basicType(filterType.returnType());
4111         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4112         MethodType newType = targetType.changeReturnType(filterType.returnType());
4113         result = result.copyWithExtendL(newType, lform, filter);
4114         return result;
4115     }
4116 
4117     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4118         Class<?> rtype = targetType.returnType();
4119         int filterValues = filterType.parameterCount();
4120         if (filterValues == 0
4121                 ? (rtype != void.class)
4122                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4123             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4124     }
4125 
4126     /**
4127      * Adapts a target method handle by pre-processing
4128      * some of its arguments, and then calling the target with
4129      * the result of the pre-processing, inserted into the original
4130      * sequence of arguments.
4131      * <p>
4132      * The pre-processing is performed by {@code combiner}, a second method handle.
4133      * Of the arguments passed to the adapter, the first {@code N} arguments
4134      * are copied to the combiner, which is then called.
4135      * (Here, {@code N} is defined as the parameter count of the combiner.)
4136      * After this, control passes to the target, with any result
4137      * from the combiner inserted before the original {@code N} incoming
4138      * arguments.
4139      * <p>
4140      * If the combiner returns a value, the first parameter type of the target
4141      * must be identical with the return type of the combiner, and the next
4142      * {@code N} parameter types of the target must exactly match the parameters
4143      * of the combiner.
4144      * <p>
4145      * If the combiner has a void return, no result will be inserted,
4146      * and the first {@code N} parameter types of the target
4147      * must exactly match the parameters of the combiner.
4148      * <p>
4149      * The resulting adapter is the same type as the target, except that the
4150      * first parameter type is dropped,
4151      * if it corresponds to the result of the combiner.
4152      * <p>
4153      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4154      * that either the combiner or the target does not wish to receive.
4155      * If some of the incoming arguments are destined only for the combiner,
4156      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4157      * arguments will not need to be live on the stack on entry to the
4158      * target.)
4159      * <p><b>Example:</b>
4160      * <blockquote><pre>{@code
4161 import static java.lang.invoke.MethodHandles.*;
4162 import static java.lang.invoke.MethodType.*;
4163 ...
4164 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4165   "println", methodType(void.class, String.class))
4166     .bindTo(System.out);
4167 MethodHandle cat = lookup().findVirtual(String.class,
4168   "concat", methodType(String.class, String.class));
4169 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4170 MethodHandle catTrace = foldArguments(cat, trace);
4171 // also prints "boo":
4172 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4173      * }</pre></blockquote>
4174      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4175      * represents the result type of the {@code target} and resulting adapter.
4176      * {@code V}/{@code v} represent the type and value of the parameter and argument
4177      * of {@code target} that precedes the folding position; {@code V} also is
4178      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4179      * types and values of the {@code N} parameters and arguments at the folding
4180      * position. {@code B}/{@code b} represent the types and values of the
4181      * {@code target} parameters and arguments that follow the folded parameters
4182      * and arguments.
4183      * <blockquote><pre>{@code
4184      * // there are N arguments in A...
4185      * T target(V, A[N]..., B...);
4186      * V combiner(A...);
4187      * T adapter(A... a, B... b) {
4188      *   V v = combiner(a...);
4189      *   return target(v, a..., b...);
4190      * }
4191      * // and if the combiner has a void return:
4192      * T target2(A[N]..., B...);
4193      * void combiner2(A...);
4194      * T adapter2(A... a, B... b) {
4195      *   combiner2(a...);
4196      *   return target2(a..., b...);
4197      * }
4198      * }</pre></blockquote>
4199      * <p>
4200      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4201      * variable-arity method handle}, even if the original target method handle was.
4202      * @param target the method handle to invoke after arguments are combined
4203      * @param combiner method handle to call initially on the incoming arguments
4204      * @return method handle which incorporates the specified argument folding logic
4205      * @throws NullPointerException if either argument is null
4206      * @throws IllegalArgumentException if {@code combiner}'s return type
4207      *          is non-void and not the same as the first argument type of
4208      *          the target, or if the initial {@code N} argument types
4209      *          of the target
4210      *          (skipping one matching the {@code combiner}'s return type)
4211      *          are not identical with the argument types of {@code combiner}
4212      */
4213     public static
4214     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4215         return foldArguments(target, 0, combiner);
4216     }
4217 
4218     /**
4219      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4220      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4221      * before the folded arguments.
4222      * <p>
4223      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4224      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4225      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4226      * 0.
4227      *
4228      * @apiNote Example:
4229      * <blockquote><pre>{@code
4230     import static java.lang.invoke.MethodHandles.*;
4231     import static java.lang.invoke.MethodType.*;
4232     ...
4233     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4234     "println", methodType(void.class, String.class))
4235     .bindTo(System.out);
4236     MethodHandle cat = lookup().findVirtual(String.class,
4237     "concat", methodType(String.class, String.class));
4238     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4239     MethodHandle catTrace = foldArguments(cat, 1, trace);
4240     // also prints "jum":
4241     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4242      * }</pre></blockquote>
4243      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4244      * represents the result type of the {@code target} and resulting adapter.
4245      * {@code V}/{@code v} represent the type and value of the parameter and argument
4246      * of {@code target} that precedes the folding position; {@code V} also is
4247      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4248      * types and values of the {@code N} parameters and arguments at the folding
4249      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4250      * and values of the {@code target} parameters and arguments that precede and
4251      * follow the folded parameters and arguments starting at {@code pos},
4252      * respectively.
4253      * <blockquote><pre>{@code
4254      * // there are N arguments in A...
4255      * T target(Z..., V, A[N]..., B...);
4256      * V combiner(A...);
4257      * T adapter(Z... z, A... a, B... b) {
4258      *   V v = combiner(a...);
4259      *   return target(z..., v, a..., b...);
4260      * }
4261      * // and if the combiner has a void return:
4262      * T target2(Z..., A[N]..., B...);
4263      * void combiner2(A...);
4264      * T adapter2(Z... z, A... a, B... b) {
4265      *   combiner2(a...);
4266      *   return target2(z..., a..., b...);
4267      * }
4268      * }</pre></blockquote>
4269      * <p>
4270      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4271      * variable-arity method handle}, even if the original target method handle was.
4272      *
4273      * @param target the method handle to invoke after arguments are combined
4274      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4275      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4276      * @param combiner method handle to call initially on the incoming arguments
4277      * @return method handle which incorporates the specified argument folding logic
4278      * @throws NullPointerException if either argument is null
4279      * @throws IllegalArgumentException if either of the following two conditions holds:
4280      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4281      *              {@code pos} of the target signature;
4282      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4283      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4284      *
4285      * @see #foldArguments(MethodHandle, MethodHandle)
4286      * @since 9
4287      */
4288     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4289         MethodType targetType = target.type();
4290         MethodType combinerType = combiner.type();
4291         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4292         BoundMethodHandle result = target.rebind();
4293         boolean dropResult = rtype == void.class;
4294         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4295         MethodType newType = targetType;
4296         if (!dropResult) {
4297             newType = newType.dropParameterTypes(pos, pos + 1);
4298         }
4299         result = result.copyWithExtendL(newType, lform, combiner);
4300         return result;
4301     }
4302 
4303     /**
4304      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4305      * added capability of selecting the arguments from the targets parameters
4306      * to call the combiner with. This allows us to avoid some simple cases of
4307      * permutations and padding the combiner with dropArguments to select the
4308      * right argument, which may ultimately produce fewer intermediaries.
4309      */
4310     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4311         MethodType targetType = target.type();
4312         MethodType combinerType = combiner.type();
4313         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4314         BoundMethodHandle result = target.rebind();
4315         boolean dropResult = rtype == void.class;
4316         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4317         MethodType newType = targetType;
4318         if (!dropResult) {
4319             newType = newType.dropParameterTypes(pos, pos + 1);
4320         }
4321         result = result.copyWithExtendL(newType, lform, combiner);
4322         return result;
4323     }
4324 
4325     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4326         int foldArgs   = combinerType.parameterCount();
4327         Class<?> rtype = combinerType.returnType();
4328         int foldVals = rtype == void.class ? 0 : 1;
4329         int afterInsertPos = foldPos + foldVals;
4330         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4331         if (ok) {
4332             for (int i = 0; i < foldArgs; i++) {
4333                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4334                     ok = false;
4335                     break;
4336                 }
4337             }
4338         }
4339         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4340             ok = false;
4341         if (!ok)
4342             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4343         return rtype;
4344     }
4345 
4346     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4347         int foldArgs = combinerType.parameterCount();
4348         if (argPos.length != foldArgs) {
4349             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4350         }
4351         Class<?> rtype = combinerType.returnType();
4352         int foldVals = rtype == void.class ? 0 : 1;
4353         boolean ok = true;
4354         for (int i = 0; i < foldArgs; i++) {
4355             int arg = argPos[i];
4356             if (arg < 0 || arg > targetType.parameterCount()) {
4357                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4358             }
4359             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4360                 throw newIllegalArgumentException("target argument type at position " + arg
4361                         + " must match combiner argument type at index " + i + ": " + targetType
4362                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4363             }
4364         }
4365         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4366             ok = false;
4367         }
4368         if (!ok)
4369             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4370         return rtype;
4371     }
4372 
4373     /**
4374      * Makes a method handle which adapts a target method handle,
4375      * by guarding it with a test, a boolean-valued method handle.
4376      * If the guard fails, a fallback handle is called instead.
4377      * All three method handles must have the same corresponding
4378      * argument and return types, except that the return type
4379      * of the test must be boolean, and the test is allowed
4380      * to have fewer arguments than the other two method handles.
4381      * <p>
4382      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4383      * represents the uniform result type of the three involved handles;
4384      * {@code A}/{@code a}, the types and values of the {@code target}
4385      * parameters and arguments that are consumed by the {@code test}; and
4386      * {@code B}/{@code b}, those types and values of the {@code target}
4387      * parameters and arguments that are not consumed by the {@code test}.
4388      * <blockquote><pre>{@code
4389      * boolean test(A...);
4390      * T target(A...,B...);
4391      * T fallback(A...,B...);
4392      * T adapter(A... a,B... b) {
4393      *   if (test(a...))
4394      *     return target(a..., b...);
4395      *   else
4396      *     return fallback(a..., b...);
4397      * }
4398      * }</pre></blockquote>
4399      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4400      * be modified by execution of the test, and so are passed unchanged
4401      * from the caller to the target or fallback as appropriate.
4402      * @param test method handle used for test, must return boolean
4403      * @param target method handle to call if test passes
4404      * @param fallback method handle to call if test fails
4405      * @return method handle which incorporates the specified if/then/else logic
4406      * @throws NullPointerException if any argument is null
4407      * @throws IllegalArgumentException if {@code test} does not return boolean,
4408      *          or if all three method types do not match (with the return
4409      *          type of {@code test} changed to match that of the target).
4410      */
4411     public static
4412     MethodHandle guardWithTest(MethodHandle test,
4413                                MethodHandle target,
4414                                MethodHandle fallback) {
4415         MethodType gtype = test.type();
4416         MethodType ttype = target.type();
4417         MethodType ftype = fallback.type();
4418         if (!ttype.equals(ftype))
4419             throw misMatchedTypes("target and fallback types", ttype, ftype);
4420         if (gtype.returnType() != boolean.class)
4421             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4422         List<Class<?>> targs = ttype.parameterList();
4423         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4424         if (test == null) {
4425             throw misMatchedTypes("target and test types", ttype, gtype);
4426         }
4427         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4428     }
4429 
4430     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4431         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4432     }
4433 
4434     /**
4435      * Makes a method handle which adapts a target method handle,
4436      * by running it inside an exception handler.
4437      * If the target returns normally, the adapter returns that value.
4438      * If an exception matching the specified type is thrown, the fallback
4439      * handle is called instead on the exception, plus the original arguments.
4440      * <p>
4441      * The target and handler must have the same corresponding
4442      * argument and return types, except that handler may omit trailing arguments
4443      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4444      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4445      * <p>
4446      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4447      * represents the return type of the {@code target} and {@code handler},
4448      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4449      * the types and values of arguments to the resulting handle consumed by
4450      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4451      * resulting handle discarded by {@code handler}.
4452      * <blockquote><pre>{@code
4453      * T target(A..., B...);
4454      * T handler(ExType, A...);
4455      * T adapter(A... a, B... b) {
4456      *   try {
4457      *     return target(a..., b...);
4458      *   } catch (ExType ex) {
4459      *     return handler(ex, a...);
4460      *   }
4461      * }
4462      * }</pre></blockquote>
4463      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4464      * be modified by execution of the target, and so are passed unchanged
4465      * from the caller to the handler, if the handler is invoked.
4466      * <p>
4467      * The target and handler must return the same type, even if the handler
4468      * always throws.  (This might happen, for instance, because the handler
4469      * is simulating a {@code finally} clause).
4470      * To create such a throwing handler, compose the handler creation logic
4471      * with {@link #throwException throwException},
4472      * in order to create a method handle of the correct return type.
4473      * @param target method handle to call
4474      * @param exType the type of exception which the handler will catch
4475      * @param handler method handle to call if a matching exception is thrown
4476      * @return method handle which incorporates the specified try/catch logic
4477      * @throws NullPointerException if any argument is null
4478      * @throws IllegalArgumentException if {@code handler} does not accept
4479      *          the given exception type, or if the method handle types do
4480      *          not match in their return types and their
4481      *          corresponding parameters
4482      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4483      */
4484     public static
4485     MethodHandle catchException(MethodHandle target,
4486                                 Class<? extends Throwable> exType,
4487                                 MethodHandle handler) {
4488         MethodType ttype = target.type();
4489         MethodType htype = handler.type();
4490         if (!Throwable.class.isAssignableFrom(exType))
4491             throw new ClassCastException(exType.getName());
4492         if (htype.parameterCount() < 1 ||
4493             !htype.parameterType(0).isAssignableFrom(exType))
4494             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4495         if (htype.returnType() != ttype.returnType())
4496             throw misMatchedTypes("target and handler return types", ttype, htype);
4497         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4498         if (handler == null) {
4499             throw misMatchedTypes("target and handler types", ttype, htype);
4500         }
4501         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4502     }
4503 
4504     /**
4505      * Produces a method handle which will throw exceptions of the given {@code exType}.
4506      * The method handle will accept a single argument of {@code exType},
4507      * and immediately throw it as an exception.
4508      * The method type will nominally specify a return of {@code returnType}.
4509      * The return type may be anything convenient:  It doesn't matter to the
4510      * method handle's behavior, since it will never return normally.
4511      * @param returnType the return type of the desired method handle
4512      * @param exType the parameter type of the desired method handle
4513      * @return method handle which can throw the given exceptions
4514      * @throws NullPointerException if either argument is null
4515      */
4516     public static
4517     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4518         if (!Throwable.class.isAssignableFrom(exType))
4519             throw new ClassCastException(exType.getName());
4520         return MethodHandleImpl.throwException(methodType(returnType, exType));
4521     }
4522 
4523     /**
4524      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4525      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4526      * delivers the loop's result, which is the return value of the resulting handle.
4527      * <p>
4528      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4529      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4530      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4531      * terms of method handles, each clause will specify up to four independent actions:<ul>
4532      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4533      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4534      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4535      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4536      * </ul>
4537      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4538      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4539      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4540      * <p>
4541      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4542      * this case. See below for a detailed description.
4543      * <p>
4544      * <em>Parameters optional everywhere:</em>
4545      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4546      * As an exception, the init functions cannot take any {@code v} parameters,
4547      * because those values are not yet computed when the init functions are executed.
4548      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4549      * In fact, any clause function may take no arguments at all.
4550      * <p>
4551      * <em>Loop parameters:</em>
4552      * A clause function may take all the iteration variable values it is entitled to, in which case
4553      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4554      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4555      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4556      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4557      * init function is automatically a loop parameter {@code a}.)
4558      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4559      * These loop parameters act as loop-invariant values visible across the whole loop.
4560      * <p>
4561      * <em>Parameters visible everywhere:</em>
4562      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4563      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4564      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4565      * Most clause functions will not need all of this information, but they will be formally connected to it
4566      * as if by {@link #dropArguments}.
4567      * <a id="astar"></a>
4568      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4569      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4570      * In that notation, the general form of an init function parameter list
4571      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4572      * <p>
4573      * <em>Checking clause structure:</em>
4574      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4575      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4576      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4577      * met by the inputs to the loop combinator.
4578      * <p>
4579      * <em>Effectively identical sequences:</em>
4580      * <a id="effid"></a>
4581      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4582      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4583      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4584      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4585      * that longest list.
4586      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4587      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4588      * <p>
4589      * <em>Step 0: Determine clause structure.</em><ol type="a">
4590      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4591      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4592      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4593      * four. Padding takes place by appending elements to the array.
4594      * <li>Clauses with all {@code null}s are disregarded.
4595      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4596      * </ol>
4597      * <p>
4598      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4599      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4600      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4601      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4602      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4603      * iteration variable type.
4604      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4605      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4606      * </ol>
4607      * <p>
4608      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4609      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4610      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4611      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4612      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4613      * (These types will checked in step 2, along with all the clause function types.)
4614      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4615      * <li>All of the collected parameter lists must be effectively identical.
4616      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4617      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4618      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4619      * the "internal parameter list".
4620      * </ul>
4621      * <p>
4622      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4623      * <li>Examine fini function return types, disregarding omitted fini functions.
4624      * <li>If there are no fini functions, the loop return type is {@code void}.
4625      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4626      * type.
4627      * </ol>
4628      * <p>
4629      * <em>Step 1D: Check other types.</em><ol type="a">
4630      * <li>There must be at least one non-omitted pred function.
4631      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4632      * </ol>
4633      * <p>
4634      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4635      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4636      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4637      * (Note that their parameter lists are already effectively identical to this list.)
4638      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4639      * effectively identical to the internal parameter list {@code (V... A...)}.
4640      * </ol>
4641      * <p>
4642      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4643      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4644      * type.
4645      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4646      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4647      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4648      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4649      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4650      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4651      * loop return type.
4652      * </ol>
4653      * <p>
4654      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4655      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4656      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4657      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4658      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4659      * pad out the end of the list.
4660      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch dropping unused trailing arguments}.
4661      * </ol>
4662      * <p>
4663      * <em>Final observations.</em><ol type="a">
4664      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4665      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4666      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4667      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4668      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4669      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4670      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4671      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4672      * </ol>
4673      * <p>
4674      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4675      * <ul>
4676      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4677      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4678      * (Only one {@code Pn} has to be non-{@code null}.)
4679      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4680      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4681      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4682      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4683      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4684      * the resulting loop handle's parameter types {@code (A...)}.
4685      * </ul>
4686      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4687      * which is natural if most of the loop computation happens in the steps.  For some loops,
4688      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4689      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4690      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4691      * where the init functions will need the extra parameters.  For such reasons, the rules for
4692      * determining these parameters are as symmetric as possible, across all clause parts.
4693      * In general, the loop parameters function as common invariant values across the whole
4694      * loop, while the iteration variables function as common variant values, or (if there is
4695      * no step function) as internal loop invariant temporaries.
4696      * <p>
4697      * <em>Loop execution.</em><ol type="a">
4698      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4699      * every clause function. These locals are loop invariant.
4700      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4701      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4702      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4703      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4704      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4705      * (in argument order).
4706      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4707      * returns {@code false}.
4708      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4709      * sequence {@code (v...)} of loop variables.
4710      * The updated value is immediately visible to all subsequent function calls.
4711      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4712      * (of type {@code R}) is returned from the loop as a whole.
4713      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4714      * except by throwing an exception.
4715      * </ol>
4716      * <p>
4717      * <em>Usage tips.</em>
4718      * <ul>
4719      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4720      * sometimes a step function only needs to observe the current value of its own variable.
4721      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4722      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4723      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4724      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4725      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4726      * <li>If some of the clause functions are virtual methods on an instance, the instance
4727      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4728      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4729      * will be the first iteration variable value, and it will be easy to use virtual
4730      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4731      * </ul>
4732      * <p>
4733      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4734      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4735      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4736      * <blockquote><pre>{@code
4737      * V... init...(A...);
4738      * boolean pred...(V..., A...);
4739      * V... step...(V..., A...);
4740      * R fini...(V..., A...);
4741      * R loop(A... a) {
4742      *   V... v... = init...(a...);
4743      *   for (;;) {
4744      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4745      *       v = s(v..., a...);
4746      *       if (!p(v..., a...)) {
4747      *         return f(v..., a...);
4748      *       }
4749      *     }
4750      *   }
4751      * }
4752      * }</pre></blockquote>
4753      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4754      * to their full length, even though individual clause functions may neglect to take them all.
4755      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch}.
4756      *
4757      * @apiNote Example:
4758      * <blockquote><pre>{@code
4759      * // iterative implementation of the factorial function as a loop handle
4760      * static int one(int k) { return 1; }
4761      * static int inc(int i, int acc, int k) { return i + 1; }
4762      * static int mult(int i, int acc, int k) { return i * acc; }
4763      * static boolean pred(int i, int acc, int k) { return i < k; }
4764      * static int fin(int i, int acc, int k) { return acc; }
4765      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4766      * // null initializer for counter, should initialize to 0
4767      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4768      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4769      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4770      * assertEquals(120, loop.invoke(5));
4771      * }</pre></blockquote>
4772      * The same example, dropping arguments and using combinators:
4773      * <blockquote><pre>{@code
4774      * // simplified implementation of the factorial function as a loop handle
4775      * static int inc(int i) { return i + 1; } // drop acc, k
4776      * static int mult(int i, int acc) { return i * acc; } //drop k
4777      * static boolean cmp(int i, int k) { return i < k; }
4778      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4779      * // null initializer for counter, should initialize to 0
4780      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4781      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4782      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4783      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4784      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4785      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4786      * assertEquals(720, loop.invoke(6));
4787      * }</pre></blockquote>
4788      * A similar example, using a helper object to hold a loop parameter:
4789      * <blockquote><pre>{@code
4790      * // instance-based implementation of the factorial function as a loop handle
4791      * static class FacLoop {
4792      *   final int k;
4793      *   FacLoop(int k) { this.k = k; }
4794      *   int inc(int i) { return i + 1; }
4795      *   int mult(int i, int acc) { return i * acc; }
4796      *   boolean pred(int i) { return i < k; }
4797      *   int fin(int i, int acc) { return acc; }
4798      * }
4799      * // assume MH_FacLoop is a handle to the constructor
4800      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4801      * // null initializer for counter, should initialize to 0
4802      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4803      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4804      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4805      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4806      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4807      * assertEquals(5040, loop.invoke(7));
4808      * }</pre></blockquote>
4809      *
4810      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4811      *
4812      * @return a method handle embodying the looping behavior as defined by the arguments.
4813      *
4814      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4815      *
4816      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4817      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4818      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4819      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4820      * @since 9
4821      */
4822     public static MethodHandle loop(MethodHandle[]... clauses) {
4823         // Step 0: determine clause structure.
4824         loopChecks0(clauses);
4825 
4826         List<MethodHandle> init = new ArrayList<>();
4827         List<MethodHandle> step = new ArrayList<>();
4828         List<MethodHandle> pred = new ArrayList<>();
4829         List<MethodHandle> fini = new ArrayList<>();
4830 
4831         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4832             init.add(clause[0]); // all clauses have at least length 1
4833             step.add(clause.length <= 1 ? null : clause[1]);
4834             pred.add(clause.length <= 2 ? null : clause[2]);
4835             fini.add(clause.length <= 3 ? null : clause[3]);
4836         });
4837 
4838         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4839         final int nclauses = init.size();
4840 
4841         // Step 1A: determine iteration variables (V...).
4842         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4843         for (int i = 0; i < nclauses; ++i) {
4844             MethodHandle in = init.get(i);
4845             MethodHandle st = step.get(i);
4846             if (in == null && st == null) {
4847                 iterationVariableTypes.add(void.class);
4848             } else if (in != null && st != null) {
4849                 loopChecks1a(i, in, st);
4850                 iterationVariableTypes.add(in.type().returnType());
4851             } else {
4852                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4853             }
4854         }
4855         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4856                 collect(Collectors.toList());
4857 
4858         // Step 1B: determine loop parameters (A...).
4859         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4860         loopChecks1b(init, commonSuffix);
4861 
4862         // Step 1C: determine loop return type.
4863         // Step 1D: check other types.
4864         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4865                 map(MethodType::returnType).findFirst().orElse(void.class);
4866         loopChecks1cd(pred, fini, loopReturnType);
4867 
4868         // Step 2: determine parameter lists.
4869         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4870         commonParameterSequence.addAll(commonSuffix);
4871         loopChecks2(step, pred, fini, commonParameterSequence);
4872 
4873         // Step 3: fill in omitted functions.
4874         for (int i = 0; i < nclauses; ++i) {
4875             Class<?> t = iterationVariableTypes.get(i);
4876             if (init.get(i) == null) {
4877                 init.set(i, empty(methodType(t, commonSuffix)));
4878             }
4879             if (step.get(i) == null) {
4880                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4881             }
4882             if (pred.get(i) == null) {
4883                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4884             }
4885             if (fini.get(i) == null) {
4886                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4887             }
4888         }
4889 
4890         // Step 4: fill in missing parameter types.
4891         // Also convert all handles to fixed-arity handles.
4892         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4893         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4894         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4895         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4896 
4897         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4898                 allMatch(pl -> pl.equals(commonSuffix));
4899         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4900                 allMatch(pl -> pl.equals(commonParameterSequence));
4901 
4902         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4903     }
4904 
4905     private static void loopChecks0(MethodHandle[][] clauses) {
4906         if (clauses == null || clauses.length == 0) {
4907             throw newIllegalArgumentException("null or no clauses passed");
4908         }
4909         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4910             throw newIllegalArgumentException("null clauses are not allowed");
4911         }
4912         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4913             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4914         }
4915     }
4916 
4917     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4918         if (in.type().returnType() != st.type().returnType()) {
4919             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4920                     st.type().returnType());
4921         }
4922     }
4923 
4924     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4925         final List<Class<?>> empty = List.of();
4926         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4927                 // take only those that can contribute to a common suffix because they are longer than the prefix
4928                         map(MethodHandle::type).
4929                         filter(t -> t.parameterCount() > skipSize).
4930                         map(MethodType::parameterList).
4931                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4932         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4933     }
4934 
4935     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4936         final List<Class<?>> empty = List.of();
4937         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4938     }
4939 
4940     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4941         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4942         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4943         return longestParameterList(Arrays.asList(longest1, longest2));
4944     }
4945 
4946     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4947         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4948                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4949             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4950                     " (common suffix: " + commonSuffix + ")");
4951         }
4952     }
4953 
4954     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4955         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4956                 anyMatch(t -> t != loopReturnType)) {
4957             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4958                     loopReturnType + ")");
4959         }
4960 
4961         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4962             throw newIllegalArgumentException("no predicate found", pred);
4963         }
4964         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4965                 anyMatch(t -> t != boolean.class)) {
4966             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4967         }
4968     }
4969 
4970     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4971         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4972                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4973             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4974                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4975         }
4976     }
4977 
4978     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4979         return hs.stream().map(h -> {
4980             int pc = h.type().parameterCount();
4981             int tpsize = targetParams.size();
4982             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4983         }).collect(Collectors.toList());
4984     }
4985 
4986     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
4987         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
4988     }
4989 
4990     /**
4991      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
4992      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
4993      * <p>
4994      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
4995      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
4996      * evaluates to {@code true}).
4997      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
4998      * <p>
4999      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5000      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5001      * and updated with the value returned from its invocation. The result of loop execution will be
5002      * the final value of the additional loop-local variable (if present).
5003      * <p>
5004      * The following rules hold for these argument handles:<ul>
5005      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5006      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5007      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5008      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5009      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5010      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5011      * It will constrain the parameter lists of the other loop parts.
5012      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5013      * list {@code (A...)} is called the <em>external parameter list</em>.
5014      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5015      * additional state variable of the loop.
5016      * The body must both accept and return a value of this type {@code V}.
5017      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5018      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5019      * <a href="MethodHandles.html#effid">effectively identical</a>
5020      * to the external parameter list {@code (A...)}.
5021      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5022      * {@linkplain #empty default value}.
5023      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5024      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5025      * effectively identical to the internal parameter list.
5026      * </ul>
5027      * <p>
5028      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5029      * <li>The loop handle's result type is the result type {@code V} of the body.
5030      * <li>The loop handle's parameter types are the types {@code (A...)},
5031      * from the external parameter list.
5032      * </ul>
5033      * <p>
5034      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5035      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5036      * passed to the loop.
5037      * <blockquote><pre>{@code
5038      * V init(A...);
5039      * boolean pred(V, A...);
5040      * V body(V, A...);
5041      * V whileLoop(A... a...) {
5042      *   V v = init(a...);
5043      *   while (pred(v, a...)) {
5044      *     v = body(v, a...);
5045      *   }
5046      *   return v;
5047      * }
5048      * }</pre></blockquote>
5049      *
5050      * @apiNote Example:
5051      * <blockquote><pre>{@code
5052      * // implement the zip function for lists as a loop handle
5053      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5054      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5055      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5056      *   zip.add(a.next());
5057      *   zip.add(b.next());
5058      *   return zip;
5059      * }
5060      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5061      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5062      * List<String> a = Arrays.asList("a", "b", "c", "d");
5063      * List<String> b = Arrays.asList("e", "f", "g", "h");
5064      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5065      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5066      * }</pre></blockquote>
5067      *
5068      *
5069      * @apiNote The implementation of this method can be expressed as follows:
5070      * <blockquote><pre>{@code
5071      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5072      *     MethodHandle fini = (body.type().returnType() == void.class
5073      *                         ? null : identity(body.type().returnType()));
5074      *     MethodHandle[]
5075      *         checkExit = { null, null, pred, fini },
5076      *         varBody   = { init, body };
5077      *     return loop(checkExit, varBody);
5078      * }
5079      * }</pre></blockquote>
5080      *
5081      * @param init optional initializer, providing the initial value of the loop variable.
5082      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5083      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5084      *             above for other constraints.
5085      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5086      *             See above for other constraints.
5087      *
5088      * @return a method handle implementing the {@code while} loop as described by the arguments.
5089      * @throws IllegalArgumentException if the rules for the arguments are violated.
5090      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5091      *
5092      * @see #loop(MethodHandle[][])
5093      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5094      * @since 9
5095      */
5096     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5097         whileLoopChecks(init, pred, body);
5098         MethodHandle fini = identityOrVoid(body.type().returnType());
5099         MethodHandle[] checkExit = { null, null, pred, fini };
5100         MethodHandle[] varBody = { init, body };
5101         return loop(checkExit, varBody);
5102     }
5103 
5104     /**
5105      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5106      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5107      * <p>
5108      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5109      * method will, in each iteration, first execute its body and then evaluate the predicate.
5110      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5111      * <p>
5112      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5113      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5114      * and updated with the value returned from its invocation. The result of loop execution will be
5115      * the final value of the additional loop-local variable (if present).
5116      * <p>
5117      * The following rules hold for these argument handles:<ul>
5118      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5119      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5120      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5121      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5122      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5123      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5124      * It will constrain the parameter lists of the other loop parts.
5125      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5126      * list {@code (A...)} is called the <em>external parameter list</em>.
5127      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5128      * additional state variable of the loop.
5129      * The body must both accept and return a value of this type {@code V}.
5130      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5131      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5132      * <a href="MethodHandles.html#effid">effectively identical</a>
5133      * to the external parameter list {@code (A...)}.
5134      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5135      * {@linkplain #empty default value}.
5136      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5137      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5138      * effectively identical to the internal parameter list.
5139      * </ul>
5140      * <p>
5141      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5142      * <li>The loop handle's result type is the result type {@code V} of the body.
5143      * <li>The loop handle's parameter types are the types {@code (A...)},
5144      * from the external parameter list.
5145      * </ul>
5146      * <p>
5147      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5148      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5149      * passed to the loop.
5150      * <blockquote><pre>{@code
5151      * V init(A...);
5152      * boolean pred(V, A...);
5153      * V body(V, A...);
5154      * V doWhileLoop(A... a...) {
5155      *   V v = init(a...);
5156      *   do {
5157      *     v = body(v, a...);
5158      *   } while (pred(v, a...));
5159      *   return v;
5160      * }
5161      * }</pre></blockquote>
5162      *
5163      * @apiNote Example:
5164      * <blockquote><pre>{@code
5165      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5166      * static int zero(int limit) { return 0; }
5167      * static int step(int i, int limit) { return i + 1; }
5168      * static boolean pred(int i, int limit) { return i < limit; }
5169      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5170      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5171      * assertEquals(23, loop.invoke(23));
5172      * }</pre></blockquote>
5173      *
5174      *
5175      * @apiNote The implementation of this method can be expressed as follows:
5176      * <blockquote><pre>{@code
5177      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5178      *     MethodHandle fini = (body.type().returnType() == void.class
5179      *                         ? null : identity(body.type().returnType()));
5180      *     MethodHandle[] clause = { init, body, pred, fini };
5181      *     return loop(clause);
5182      * }
5183      * }</pre></blockquote>
5184      *
5185      * @param init optional initializer, providing the initial value of the loop variable.
5186      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5187      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5188      *             See above for other constraints.
5189      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5190      *             above for other constraints.
5191      *
5192      * @return a method handle implementing the {@code while} loop as described by the arguments.
5193      * @throws IllegalArgumentException if the rules for the arguments are violated.
5194      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5195      *
5196      * @see #loop(MethodHandle[][])
5197      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5198      * @since 9
5199      */
5200     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5201         whileLoopChecks(init, pred, body);
5202         MethodHandle fini = identityOrVoid(body.type().returnType());
5203         MethodHandle[] clause = {init, body, pred, fini };
5204         return loop(clause);
5205     }
5206 
5207     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5208         Objects.requireNonNull(pred);
5209         Objects.requireNonNull(body);
5210         MethodType bodyType = body.type();
5211         Class<?> returnType = bodyType.returnType();
5212         List<Class<?>> innerList = bodyType.parameterList();
5213         List<Class<?>> outerList = innerList;
5214         if (returnType == void.class) {
5215             // OK
5216         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5217             // leading V argument missing => error
5218             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5219             throw misMatchedTypes("body function", bodyType, expected);
5220         } else {
5221             outerList = innerList.subList(1, innerList.size());
5222         }
5223         MethodType predType = pred.type();
5224         if (predType.returnType() != boolean.class ||
5225                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5226             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5227         }
5228         if (init != null) {
5229             MethodType initType = init.type();
5230             if (initType.returnType() != returnType ||
5231                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5232                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5233             }
5234         }
5235     }
5236 
5237     /**
5238      * Constructs a loop that runs a given number of iterations.
5239      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5240      * <p>
5241      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5242      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5243      * It will be initialized to 0 and incremented by 1 in each iteration.
5244      * <p>
5245      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5246      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5247      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5248      * <p>
5249      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5250      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5251      * iteration variable.
5252      * The result of the loop handle execution will be the final {@code V} value of that variable
5253      * (or {@code void} if there is no {@code V} variable).
5254      * <p>
5255      * The following rules hold for the argument handles:<ul>
5256      * <li>The {@code iterations} handle must not be {@code null}, and must return
5257      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5258      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5259      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5260      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5261      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5262      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5263      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5264      * of types called the <em>internal parameter list</em>.
5265      * It will constrain the parameter lists of the other loop parts.
5266      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5267      * with no additional {@code A} types, then the internal parameter list is extended by
5268      * the argument types {@code A...} of the {@code iterations} handle.
5269      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5270      * list {@code (A...)} is called the <em>external parameter list</em>.
5271      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5272      * additional state variable of the loop.
5273      * The body must both accept a leading parameter and return a value of this type {@code V}.
5274      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5275      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5276      * <a href="MethodHandles.html#effid">effectively identical</a>
5277      * to the external parameter list {@code (A...)}.
5278      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5279      * {@linkplain #empty default value}.
5280      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5281      * effectively identical to the external parameter list {@code (A...)}.
5282      * </ul>
5283      * <p>
5284      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5285      * <li>The loop handle's result type is the result type {@code V} of the body.
5286      * <li>The loop handle's parameter types are the types {@code (A...)},
5287      * from the external parameter list.
5288      * </ul>
5289      * <p>
5290      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5291      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5292      * arguments passed to the loop.
5293      * <blockquote><pre>{@code
5294      * int iterations(A...);
5295      * V init(A...);
5296      * V body(V, int, A...);
5297      * V countedLoop(A... a...) {
5298      *   int end = iterations(a...);
5299      *   V v = init(a...);
5300      *   for (int i = 0; i < end; ++i) {
5301      *     v = body(v, i, a...);
5302      *   }
5303      *   return v;
5304      * }
5305      * }</pre></blockquote>
5306      *
5307      * @apiNote Example with a fully conformant body method:
5308      * <blockquote><pre>{@code
5309      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5310      * // => a variation on a well known theme
5311      * static String step(String v, int counter, String init) { return "na " + v; }
5312      * // assume MH_step is a handle to the method above
5313      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5314      * MethodHandle start = MethodHandles.identity(String.class);
5315      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5316      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5317      * }</pre></blockquote>
5318      *
5319      * @apiNote Example with the simplest possible body method type,
5320      * and passing the number of iterations to the loop invocation:
5321      * <blockquote><pre>{@code
5322      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5323      * // => a variation on a well known theme
5324      * static String step(String v, int counter ) { return "na " + v; }
5325      * // assume MH_step is a handle to the method above
5326      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5327      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5328      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5329      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5330      * }</pre></blockquote>
5331      *
5332      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5333      * as loop parameters:
5334      * <blockquote><pre>{@code
5335      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5336      * // => a variation on a well known theme
5337      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5338      * // assume MH_step is a handle to the method above
5339      * MethodHandle count = MethodHandles.identity(int.class);
5340      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5341      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5342      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5343      * }</pre></blockquote>
5344      *
5345      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5346      * to enforce a loop type:
5347      * <blockquote><pre>{@code
5348      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5349      * // => a variation on a well known theme
5350      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5351      * // assume MH_step is a handle to the method above
5352      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5353      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5354      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5355      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5356      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5357      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5358      * }</pre></blockquote>
5359      *
5360      * @apiNote The implementation of this method can be expressed as follows:
5361      * <blockquote><pre>{@code
5362      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5363      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5364      * }
5365      * }</pre></blockquote>
5366      *
5367      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5368      *                   result type must be {@code int}. See above for other constraints.
5369      * @param init optional initializer, providing the initial value of the loop variable.
5370      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5371      * @param body body of the loop, which may not be {@code null}.
5372      *             It controls the loop parameters and result type in the standard case (see above for details).
5373      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5374      *             and may accept any number of additional types.
5375      *             See above for other constraints.
5376      *
5377      * @return a method handle representing the loop.
5378      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5379      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5380      *
5381      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5382      * @since 9
5383      */
5384     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5385         return countedLoop(empty(iterations.type()), iterations, init, body);
5386     }
5387 
5388     /**
5389      * Constructs a loop that counts over a range of numbers.
5390      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5391      * <p>
5392      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5393      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5394      * values of the loop counter.
5395      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5396      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5397      * <p>
5398      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5399      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5400      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5401      * <p>
5402      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5403      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5404      * iteration variable.
5405      * The result of the loop handle execution will be the final {@code V} value of that variable
5406      * (or {@code void} if there is no {@code V} variable).
5407      * <p>
5408      * The following rules hold for the argument handles:<ul>
5409      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5410      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5411      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5412      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5413      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5414      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5415      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5416      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5417      * of types called the <em>internal parameter list</em>.
5418      * It will constrain the parameter lists of the other loop parts.
5419      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5420      * with no additional {@code A} types, then the internal parameter list is extended by
5421      * the argument types {@code A...} of the {@code end} handle.
5422      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5423      * list {@code (A...)} is called the <em>external parameter list</em>.
5424      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5425      * additional state variable of the loop.
5426      * The body must both accept a leading parameter and return a value of this type {@code V}.
5427      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5428      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5429      * <a href="MethodHandles.html#effid">effectively identical</a>
5430      * to the external parameter list {@code (A...)}.
5431      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5432      * {@linkplain #empty default value}.
5433      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5434      * effectively identical to the external parameter list {@code (A...)}.
5435      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5436      * to the external parameter list.
5437      * </ul>
5438      * <p>
5439      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5440      * <li>The loop handle's result type is the result type {@code V} of the body.
5441      * <li>The loop handle's parameter types are the types {@code (A...)},
5442      * from the external parameter list.
5443      * </ul>
5444      * <p>
5445      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5446      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5447      * arguments passed to the loop.
5448      * <blockquote><pre>{@code
5449      * int start(A...);
5450      * int end(A...);
5451      * V init(A...);
5452      * V body(V, int, A...);
5453      * V countedLoop(A... a...) {
5454      *   int e = end(a...);
5455      *   int s = start(a...);
5456      *   V v = init(a...);
5457      *   for (int i = s; i < e; ++i) {
5458      *     v = body(v, i, a...);
5459      *   }
5460      *   return v;
5461      * }
5462      * }</pre></blockquote>
5463      *
5464      * @apiNote The implementation of this method can be expressed as follows:
5465      * <blockquote><pre>{@code
5466      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5467      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5468      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5469      *     // the following semantics:
5470      *     // MH_increment: (int limit, int counter) -> counter + 1
5471      *     // MH_predicate: (int limit, int counter) -> counter < limit
5472      *     Class<?> counterType = start.type().returnType();  // int
5473      *     Class<?> returnType = body.type().returnType();
5474      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5475      *     if (returnType != void.class) {  // ignore the V variable
5476      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5477      *         pred = dropArguments(pred, 1, returnType);  // ditto
5478      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5479      *     }
5480      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5481      *     MethodHandle[]
5482      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5483      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5484      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5485      *     return loop(loopLimit, bodyClause, indexVar);
5486      * }
5487      * }</pre></blockquote>
5488      *
5489      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5490      *              See above for other constraints.
5491      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5492      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5493      * @param init optional initializer, providing the initial value of the loop variable.
5494      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5495      * @param body body of the loop, which may not be {@code null}.
5496      *             It controls the loop parameters and result type in the standard case (see above for details).
5497      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5498      *             and may accept any number of additional types.
5499      *             See above for other constraints.
5500      *
5501      * @return a method handle representing the loop.
5502      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5503      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5504      *
5505      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5506      * @since 9
5507      */
5508     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5509         countedLoopChecks(start, end, init, body);
5510         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5511         Class<?> limitType   = end.type().returnType();    // yes, int again
5512         Class<?> returnType  = body.type().returnType();
5513         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5514         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5515         MethodHandle retv = null;
5516         if (returnType != void.class) {
5517             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5518             pred = dropArguments(pred, 1, returnType);  // ditto
5519             retv = dropArguments(identity(returnType), 0, counterType);
5520         }
5521         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5522         MethodHandle[]
5523             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5524             bodyClause = { init, body },            // v = init(); v = body(v, i)
5525             indexVar   = { start, incr };           // i = start(); i = i + 1
5526         return loop(loopLimit, bodyClause, indexVar);
5527     }
5528 
5529     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5530         Objects.requireNonNull(start);
5531         Objects.requireNonNull(end);
5532         Objects.requireNonNull(body);
5533         Class<?> counterType = start.type().returnType();
5534         if (counterType != int.class) {
5535             MethodType expected = start.type().changeReturnType(int.class);
5536             throw misMatchedTypes("start function", start.type(), expected);
5537         } else if (end.type().returnType() != counterType) {
5538             MethodType expected = end.type().changeReturnType(counterType);
5539             throw misMatchedTypes("end function", end.type(), expected);
5540         }
5541         MethodType bodyType = body.type();
5542         Class<?> returnType = bodyType.returnType();
5543         List<Class<?>> innerList = bodyType.parameterList();
5544         // strip leading V value if present
5545         int vsize = (returnType == void.class ? 0 : 1);
5546         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5547             // argument list has no "V" => error
5548             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5549             throw misMatchedTypes("body function", bodyType, expected);
5550         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5551             // missing I type => error
5552             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5553             throw misMatchedTypes("body function", bodyType, expected);
5554         }
5555         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5556         if (outerList.isEmpty()) {
5557             // special case; take lists from end handle
5558             outerList = end.type().parameterList();
5559             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5560         }
5561         MethodType expected = methodType(counterType, outerList);
5562         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5563             throw misMatchedTypes("start parameter types", start.type(), expected);
5564         }
5565         if (end.type() != start.type() &&
5566             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5567             throw misMatchedTypes("end parameter types", end.type(), expected);
5568         }
5569         if (init != null) {
5570             MethodType initType = init.type();
5571             if (initType.returnType() != returnType ||
5572                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5573                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5574             }
5575         }
5576     }
5577 
5578     /**
5579      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5580      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5581      * <p>
5582      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5583      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5584      * <p>
5585      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5586      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5587      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5588      * <p>
5589      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5590      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5591      * iteration variable.
5592      * The result of the loop handle execution will be the final {@code V} value of that variable
5593      * (or {@code void} if there is no {@code V} variable).
5594      * <p>
5595      * The following rules hold for the argument handles:<ul>
5596      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5597      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5598      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5599      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5600      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5601      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5602      * of types called the <em>internal parameter list</em>.
5603      * It will constrain the parameter lists of the other loop parts.
5604      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5605      * with no additional {@code A} types, then the internal parameter list is extended by
5606      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5607      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5608      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5609      * list {@code (A...)} is called the <em>external parameter list</em>.
5610      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5611      * additional state variable of the loop.
5612      * The body must both accept a leading parameter and return a value of this type {@code V}.
5613      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5614      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5615      * <a href="MethodHandles.html#effid">effectively identical</a>
5616      * to the external parameter list {@code (A...)}.
5617      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5618      * {@linkplain #empty default value}.
5619      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5620      * type {@code java.util.Iterator} or a subtype thereof.
5621      * The iterator it produces when the loop is executed will be assumed
5622      * to yield values which can be converted to type {@code T}.
5623      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5624      * effectively identical to the external parameter list {@code (A...)}.
5625      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5626      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5627      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5628      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5629      * the {@link MethodHandle#asType asType} conversion method.
5630      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5631      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5632      * </ul>
5633      * <p>
5634      * The type {@code T} may be either a primitive or reference.
5635      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5636      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5637      * as if by the {@link MethodHandle#asType asType} conversion method.
5638      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5639      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5640      * <p>
5641      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5642      * <li>The loop handle's result type is the result type {@code V} of the body.
5643      * <li>The loop handle's parameter types are the types {@code (A...)},
5644      * from the external parameter list.
5645      * </ul>
5646      * <p>
5647      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5648      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5649      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5650      * <blockquote><pre>{@code
5651      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5652      * V init(A...);
5653      * V body(V,T,A...);
5654      * V iteratedLoop(A... a...) {
5655      *   Iterator<T> it = iterator(a...);
5656      *   V v = init(a...);
5657      *   while (it.hasNext()) {
5658      *     T t = it.next();
5659      *     v = body(v, t, a...);
5660      *   }
5661      *   return v;
5662      * }
5663      * }</pre></blockquote>
5664      *
5665      * @apiNote Example:
5666      * <blockquote><pre>{@code
5667      * // get an iterator from a list
5668      * static List<String> reverseStep(List<String> r, String e) {
5669      *   r.add(0, e);
5670      *   return r;
5671      * }
5672      * static List<String> newArrayList() { return new ArrayList<>(); }
5673      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5674      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5675      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5676      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5677      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5678      * }</pre></blockquote>
5679      *
5680      * @apiNote The implementation of this method can be expressed approximately as follows:
5681      * <blockquote><pre>{@code
5682      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5683      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5684      *     Class<?> returnType = body.type().returnType();
5685      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5686      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5687      *     MethodHandle retv = null, step = body, startIter = iterator;
5688      *     if (returnType != void.class) {
5689      *         // the simple thing first:  in (I V A...), drop the I to get V
5690      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5691      *         // body type signature (V T A...), internal loop types (I V A...)
5692      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5693      *     }
5694      *     if (startIter == null)  startIter = MH_getIter;
5695      *     MethodHandle[]
5696      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5697      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5698      *     return loop(iterVar, bodyClause);
5699      * }
5700      * }</pre></blockquote>
5701      *
5702      * @param iterator an optional handle to return the iterator to start the loop.
5703      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5704      *                 See above for other constraints.
5705      * @param init optional initializer, providing the initial value of the loop variable.
5706      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5707      * @param body body of the loop, which may not be {@code null}.
5708      *             It controls the loop parameters and result type in the standard case (see above for details).
5709      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5710      *             and may accept any number of additional types.
5711      *             See above for other constraints.
5712      *
5713      * @return a method handle embodying the iteration loop functionality.
5714      * @throws NullPointerException if the {@code body} handle is {@code null}.
5715      * @throws IllegalArgumentException if any argument violates the above requirements.
5716      *
5717      * @since 9
5718      */
5719     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5720         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5721         Class<?> returnType = body.type().returnType();
5722         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5723         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5724         MethodHandle startIter;
5725         MethodHandle nextVal;
5726         {
5727             MethodType iteratorType;
5728             if (iterator == null) {
5729                 // derive argument type from body, if available, else use Iterable
5730                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5731                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5732             } else {
5733                 // force return type to the internal iterator class
5734                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5735                 startIter = iterator;
5736             }
5737             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5738             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5739 
5740             // perform the asType transforms under an exception transformer, as per spec.:
5741             try {
5742                 startIter = startIter.asType(iteratorType);
5743                 nextVal = nextRaw.asType(nextValType);
5744             } catch (WrongMethodTypeException ex) {
5745                 throw new IllegalArgumentException(ex);
5746             }
5747         }
5748 
5749         MethodHandle retv = null, step = body;
5750         if (returnType != void.class) {
5751             // the simple thing first:  in (I V A...), drop the I to get V
5752             retv = dropArguments(identity(returnType), 0, Iterator.class);
5753             // body type signature (V T A...), internal loop types (I V A...)
5754             step = swapArguments(body, 0, 1);  // swap V <-> T
5755         }
5756 
5757         MethodHandle[]
5758             iterVar    = { startIter, null, hasNext, retv },
5759             bodyClause = { init, filterArgument(step, 0, nextVal) };
5760         return loop(iterVar, bodyClause);
5761     }
5762 
5763     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5764         Objects.requireNonNull(body);
5765         MethodType bodyType = body.type();
5766         Class<?> returnType = bodyType.returnType();
5767         List<Class<?>> internalParamList = bodyType.parameterList();
5768         // strip leading V value if present
5769         int vsize = (returnType == void.class ? 0 : 1);
5770         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5771             // argument list has no "V" => error
5772             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5773             throw misMatchedTypes("body function", bodyType, expected);
5774         } else if (internalParamList.size() <= vsize) {
5775             // missing T type => error
5776             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5777             throw misMatchedTypes("body function", bodyType, expected);
5778         }
5779         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5780         Class<?> iterableType = null;
5781         if (iterator != null) {
5782             // special case; if the body handle only declares V and T then
5783             // the external parameter list is obtained from iterator handle
5784             if (externalParamList.isEmpty()) {
5785                 externalParamList = iterator.type().parameterList();
5786             }
5787             MethodType itype = iterator.type();
5788             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5789                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5790             }
5791             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5792                 MethodType expected = methodType(itype.returnType(), externalParamList);
5793                 throw misMatchedTypes("iterator parameters", itype, expected);
5794             }
5795         } else {
5796             if (externalParamList.isEmpty()) {
5797                 // special case; if the iterator handle is null and the body handle
5798                 // only declares V and T then the external parameter list consists
5799                 // of Iterable
5800                 externalParamList = Arrays.asList(Iterable.class);
5801                 iterableType = Iterable.class;
5802             } else {
5803                 // special case; if the iterator handle is null and the external
5804                 // parameter list is not empty then the first parameter must be
5805                 // assignable to Iterable
5806                 iterableType = externalParamList.get(0);
5807                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5808                     throw newIllegalArgumentException(
5809                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5810                 }
5811             }
5812         }
5813         if (init != null) {
5814             MethodType initType = init.type();
5815             if (initType.returnType() != returnType ||
5816                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5817                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5818             }
5819         }
5820         return iterableType;  // help the caller a bit
5821     }
5822 
5823     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5824         // there should be a better way to uncross my wires
5825         int arity = mh.type().parameterCount();
5826         int[] order = new int[arity];
5827         for (int k = 0; k < arity; k++)  order[k] = k;
5828         order[i] = j; order[j] = i;
5829         Class<?>[] types = mh.type().parameterArray();
5830         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5831         MethodType swapType = methodType(mh.type().returnType(), types);
5832         return permuteArguments(mh, swapType, order);
5833     }
5834 
5835     /**
5836      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5837      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5838      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5839      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5840      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5841      * {@code try-finally} handle.
5842      * <p>
5843      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5844      * The first is the exception thrown during the
5845      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5846      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5847      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5848      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5849      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5850      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5851      * <p>
5852      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5853      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5854      * two extra leading parameters:<ul>
5855      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5856      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5857      * the result from the execution of the {@code target} handle.
5858      * This parameter is not present if the {@code target} returns {@code void}.
5859      * </ul>
5860      * <p>
5861      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5862      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5863      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5864      * the cleanup.
5865      * <blockquote><pre>{@code
5866      * V target(A..., B...);
5867      * V cleanup(Throwable, V, A...);
5868      * V adapter(A... a, B... b) {
5869      *   V result = (zero value for V);
5870      *   Throwable throwable = null;
5871      *   try {
5872      *     result = target(a..., b...);
5873      *   } catch (Throwable t) {
5874      *     throwable = t;
5875      *     throw t;
5876      *   } finally {
5877      *     result = cleanup(throwable, result, a...);
5878      *   }
5879      *   return result;
5880      * }
5881      * }</pre></blockquote>
5882      * <p>
5883      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5884      * be modified by execution of the target, and so are passed unchanged
5885      * from the caller to the cleanup, if it is invoked.
5886      * <p>
5887      * The target and cleanup must return the same type, even if the cleanup
5888      * always throws.
5889      * To create such a throwing cleanup, compose the cleanup logic
5890      * with {@link #throwException throwException},
5891      * in order to create a method handle of the correct return type.
5892      * <p>
5893      * Note that {@code tryFinally} never converts exceptions into normal returns.
5894      * In rare cases where exceptions must be converted in that way, first wrap
5895      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5896      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5897      *
5898      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5899      * @param cleanup the handle that is invoked in the finally block.
5900      *
5901      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5902      * @throws NullPointerException if any argument is null
5903      * @throws IllegalArgumentException if {@code cleanup} does not accept
5904      *          the required leading arguments, or if the method handle types do
5905      *          not match in their return types and their
5906      *          corresponding trailing parameters
5907      *
5908      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5909      * @since 9
5910      */
5911     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5912         List<Class<?>> targetParamTypes = target.type().parameterList();
5913         List<Class<?>> cleanupParamTypes = cleanup.type().parameterList();
5914         Class<?> rtype = target.type().returnType();
5915 
5916         tryFinallyChecks(target, cleanup);
5917 
5918         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5919         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5920         // target parameter list.
5921         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5922 
5923         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5924         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5925     }
5926 
5927     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5928         Class<?> rtype = target.type().returnType();
5929         if (rtype != cleanup.type().returnType()) {
5930             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5931         }
5932         MethodType cleanupType = cleanup.type();
5933         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5934             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5935         }
5936         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5937             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5938         }
5939         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5940         // target parameter list.
5941         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5942         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5943             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5944                     cleanup.type(), target.type());
5945         }
5946     }
5947 
5948 }