1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_GraphBuilder.hpp"
  29 #include "c1/c1_IR.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "c1/c1_Optimizer.hpp"
  32 #include "utilities/bitMap.inline.hpp"
  33 
  34 
  35 // Implementation of XHandlers
  36 //
  37 // Note: This code could eventually go away if we are
  38 //       just using the ciExceptionHandlerStream.
  39 
  40 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  41   ciExceptionHandlerStream s(method);
  42   while (!s.is_done()) {
  43     _list.append(new XHandler(s.handler()));
  44     s.next();
  45   }
  46   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  47 }
  48 
  49 // deep copy of all XHandler contained in list
  50 XHandlers::XHandlers(XHandlers* other) :
  51   _list(other->length())
  52 {
  53   for (int i = 0; i < other->length(); i++) {
  54     _list.append(new XHandler(other->handler_at(i)));
  55   }
  56 }
  57 
  58 // Returns whether a particular exception type can be caught.  Also
  59 // returns true if klass is unloaded or any exception handler
  60 // classes are unloaded.  type_is_exact indicates whether the throw
  61 // is known to be exactly that class or it might throw a subtype.
  62 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  63   // the type is unknown so be conservative
  64   if (!klass->is_loaded()) {
  65     return true;
  66   }
  67 
  68   for (int i = 0; i < length(); i++) {
  69     XHandler* handler = handler_at(i);
  70     if (handler->is_catch_all()) {
  71       // catch of ANY
  72       return true;
  73     }
  74     ciInstanceKlass* handler_klass = handler->catch_klass();
  75     // if it's unknown it might be catchable
  76     if (!handler_klass->is_loaded()) {
  77       return true;
  78     }
  79     // if the throw type is definitely a subtype of the catch type
  80     // then it can be caught.
  81     if (klass->is_subtype_of(handler_klass)) {
  82       return true;
  83     }
  84     if (!type_is_exact) {
  85       // If the type isn't exactly known then it can also be caught by
  86       // catch statements where the inexact type is a subtype of the
  87       // catch type.
  88       // given: foo extends bar extends Exception
  89       // throw bar can be caught by catch foo, catch bar, and catch
  90       // Exception, however it can't be caught by any handlers without
  91       // bar in its type hierarchy.
  92       if (handler_klass->is_subtype_of(klass)) {
  93         return true;
  94       }
  95     }
  96   }
  97 
  98   return false;
  99 }
 100 
 101 
 102 bool XHandlers::equals(XHandlers* others) const {
 103   if (others == NULL) return false;
 104   if (length() != others->length()) return false;
 105 
 106   for (int i = 0; i < length(); i++) {
 107     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 108   }
 109   return true;
 110 }
 111 
 112 bool XHandler::equals(XHandler* other) const {
 113   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 114 
 115   if (entry_pco() != other->entry_pco()) return false;
 116   if (scope_count() != other->scope_count()) return false;
 117   if (_desc != other->_desc) return false;
 118 
 119   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 120   return true;
 121 }
 122 
 123 
 124 // Implementation of IRScope
 125 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 126   GraphBuilder gm(compilation, this);
 127   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 128   if (compilation->bailed_out()) return NULL;
 129   return gm.start();
 130 }
 131 
 132 
 133 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 134 : _callees(2)
 135 , _compilation(compilation)
 136 , _requires_phi_function(method->max_locals())
 137 {
 138   _caller             = caller;
 139   _level              = caller == NULL ?  0 : caller->level() + 1;
 140   _method             = method;
 141   _xhandlers          = new XHandlers(method);
 142   _number_of_locks    = 0;
 143   _monitor_pairing_ok = method->has_balanced_monitors();
 144   _wrote_final        = false;
 145   _wrote_fields       = false;
 146   _start              = NULL;
 147 
 148   if (osr_bci == -1) {
 149     _requires_phi_function.clear();
 150   } else {
 151         // selective creation of phi functions is not possibel in osr-methods
 152     _requires_phi_function.set_range(0, method->max_locals());
 153   }
 154 
 155   assert(method->holder()->is_loaded() , "method holder must be loaded");
 156 
 157   // build graph if monitor pairing is ok
 158   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 159 }
 160 
 161 
 162 int IRScope::max_stack() const {
 163   int my_max = method()->max_stack();
 164   int callee_max = 0;
 165   for (int i = 0; i < number_of_callees(); i++) {
 166     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 167   }
 168   return my_max + callee_max;
 169 }
 170 
 171 
 172 bool IRScopeDebugInfo::should_reexecute() {
 173   ciMethod* cur_method = scope()->method();
 174   int       cur_bci    = bci();
 175   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 176     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 177     return Interpreter::bytecode_should_reexecute(code);
 178   } else
 179     return false;
 180 }
 181 
 182 
 183 // Implementation of CodeEmitInfo
 184 
 185 // Stack must be NON-null
 186 CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
 187   : _scope(stack->scope())
 188   , _scope_debug_info(NULL)
 189   , _oop_map(NULL)
 190   , _stack(stack)
 191   , _exception_handlers(exception_handlers)
 192   , _is_method_handle_invoke(false)
 193   , _deoptimize_on_exception(deoptimize_on_exception) {
 194   assert(_stack != NULL, "must be non null");
 195 }
 196 
 197 
 198 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
 199   : _scope(info->_scope)
 200   , _exception_handlers(NULL)
 201   , _scope_debug_info(NULL)
 202   , _oop_map(NULL)
 203   , _stack(stack == NULL ? info->_stack : stack)
 204   , _is_method_handle_invoke(info->_is_method_handle_invoke)
 205   , _deoptimize_on_exception(info->_deoptimize_on_exception) {
 206 
 207   // deep copy of exception handlers
 208   if (info->_exception_handlers != NULL) {
 209     _exception_handlers = new XHandlers(info->_exception_handlers);
 210   }
 211 }
 212 
 213 
 214 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 215   // record the safepoint before recording the debug info for enclosing scopes
 216   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 217   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 218   recorder->end_safepoint(pc_offset);
 219 }
 220 
 221 
 222 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 223   assert(_oop_map != NULL, "oop map must already exist");
 224   assert(opr->is_single_cpu(), "should not call otherwise");
 225 
 226   VMReg name = frame_map()->regname(opr);
 227   _oop_map->set_oop(name);
 228 }
 229 
 230 // Mirror the stack size calculation in the deopt code
 231 // How much stack space would we need at this point in the program in
 232 // case of deoptimization?
 233 int CodeEmitInfo::interpreter_frame_size() const {
 234   ValueStack* state = _stack;
 235   int size = 0;
 236   int callee_parameters = 0;
 237   int callee_locals = 0;
 238   int extra_args = state->scope()->method()->max_stack() - state->stack_size();
 239 
 240   while (state != NULL) {
 241     int locks = state->locks_size();
 242     int temps = state->stack_size();
 243     bool is_top_frame = (state == _stack);
 244     ciMethod* method = state->scope()->method();
 245 
 246     int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
 247                                                                  temps + callee_parameters,
 248                                                                  extra_args,
 249                                                                  locks,
 250                                                                  callee_parameters,
 251                                                                  callee_locals,
 252                                                                  is_top_frame);
 253     size += frame_size;
 254 
 255     callee_parameters = method->size_of_parameters();
 256     callee_locals = method->max_locals();
 257     extra_args = 0;
 258     state = state->caller_state();
 259   }
 260   return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
 261 }
 262 
 263 // Implementation of IR
 264 
 265 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 266   _num_loops(0) {
 267   // setup IR fields
 268   _compilation = compilation;
 269   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 270   _code        = NULL;
 271 }
 272 
 273 
 274 void IR::optimize_blocks() {
 275   Optimizer opt(this);
 276   if (!compilation()->profile_branches()) {
 277     if (DoCEE) {
 278       opt.eliminate_conditional_expressions();
 279 #ifndef PRODUCT
 280       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 281       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 282 #endif
 283     }
 284     if (EliminateBlocks) {
 285       opt.eliminate_blocks();
 286 #ifndef PRODUCT
 287       if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 288       if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 289 #endif
 290     }
 291   }
 292 }
 293 
 294 void IR::eliminate_null_checks() {
 295   Optimizer opt(this);
 296   if (EliminateNullChecks) {
 297     opt.eliminate_null_checks();
 298 #ifndef PRODUCT
 299     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 300     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 301 #endif
 302   }
 303 }
 304 
 305 
 306 static int sort_pairs(BlockPair** a, BlockPair** b) {
 307   if ((*a)->from() == (*b)->from()) {
 308     return (*a)->to()->block_id() - (*b)->to()->block_id();
 309   } else {
 310     return (*a)->from()->block_id() - (*b)->from()->block_id();
 311   }
 312 }
 313 
 314 
 315 class CriticalEdgeFinder: public BlockClosure {
 316   BlockPairList blocks;
 317   IR*       _ir;
 318 
 319  public:
 320   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 321   void block_do(BlockBegin* bb) {
 322     BlockEnd* be = bb->end();
 323     int nos = be->number_of_sux();
 324     if (nos >= 2) {
 325       for (int i = 0; i < nos; i++) {
 326         BlockBegin* sux = be->sux_at(i);
 327         if (sux->number_of_preds() >= 2) {
 328           blocks.append(new BlockPair(bb, sux));
 329         }
 330       }
 331     }
 332   }
 333 
 334   void split_edges() {
 335     BlockPair* last_pair = NULL;
 336     blocks.sort(sort_pairs);
 337     for (int i = 0; i < blocks.length(); i++) {
 338       BlockPair* pair = blocks.at(i);
 339       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 340       BlockBegin* from = pair->from();
 341       BlockBegin* to = pair->to();
 342       BlockBegin* split = from->insert_block_between(to);
 343 #ifndef PRODUCT
 344       if ((PrintIR || PrintIR1) && Verbose) {
 345         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 346                       from->block_id(), to->block_id(), split->block_id());
 347       }
 348 #endif
 349       last_pair = pair;
 350     }
 351   }
 352 };
 353 
 354 void IR::split_critical_edges() {
 355   CriticalEdgeFinder cef(this);
 356 
 357   iterate_preorder(&cef);
 358   cef.split_edges();
 359 }
 360 
 361 
 362 class UseCountComputer: public ValueVisitor, BlockClosure {
 363  private:
 364   void visit(Value* n) {
 365     // Local instructions and Phis for expression stack values at the
 366     // start of basic blocks are not added to the instruction list
 367     if (!(*n)->is_linked() && (*n)->can_be_linked()) {
 368       assert(false, "a node was not appended to the graph");
 369       Compilation::current()->bailout("a node was not appended to the graph");
 370     }
 371     // use n's input if not visited before
 372     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 373       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 374       //       b) if the instruction has uses, it was touched before
 375       //       => in both cases we don't need to update n's values
 376       uses_do(n);
 377     }
 378     // use n
 379     (*n)->_use_count++;
 380   }
 381 
 382   Values* worklist;
 383   int depth;
 384   enum {
 385     max_recurse_depth = 20
 386   };
 387 
 388   void uses_do(Value* n) {
 389     depth++;
 390     if (depth > max_recurse_depth) {
 391       // don't allow the traversal to recurse too deeply
 392       worklist->push(*n);
 393     } else {
 394       (*n)->input_values_do(this);
 395       // special handling for some instructions
 396       if ((*n)->as_BlockEnd() != NULL) {
 397         // note on BlockEnd:
 398         //   must 'use' the stack only if the method doesn't
 399         //   terminate, however, in those cases stack is empty
 400         (*n)->state_values_do(this);
 401       }
 402     }
 403     depth--;
 404   }
 405 
 406   void block_do(BlockBegin* b) {
 407     depth = 0;
 408     // process all pinned nodes as the roots of expression trees
 409     for (Instruction* n = b; n != NULL; n = n->next()) {
 410       if (n->is_pinned()) uses_do(&n);
 411     }
 412     assert(depth == 0, "should have counted back down");
 413 
 414     // now process any unpinned nodes which recursed too deeply
 415     while (worklist->length() > 0) {
 416       Value t = worklist->pop();
 417       if (!t->is_pinned()) {
 418         // compute the use count
 419         uses_do(&t);
 420 
 421         // pin the instruction so that LIRGenerator doesn't recurse
 422         // too deeply during it's evaluation.
 423         t->pin();
 424       }
 425     }
 426     assert(depth == 0, "should have counted back down");
 427   }
 428 
 429   UseCountComputer() {
 430     worklist = new Values();
 431     depth = 0;
 432   }
 433 
 434  public:
 435   static void compute(BlockList* blocks) {
 436     UseCountComputer ucc;
 437     blocks->iterate_backward(&ucc);
 438   }
 439 };
 440 
 441 
 442 // helper macro for short definition of trace-output inside code
 443 #ifndef PRODUCT
 444   #define TRACE_LINEAR_SCAN(level, code)       \
 445     if (TraceLinearScanLevel >= level) {       \
 446       code;                                    \
 447     }
 448 #else
 449   #define TRACE_LINEAR_SCAN(level, code)
 450 #endif
 451 
 452 class ComputeLinearScanOrder : public StackObj {
 453  private:
 454   int        _max_block_id;        // the highest block_id of a block
 455   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 456   int        _num_loops;           // total number of loops
 457   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 458 
 459   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 460 
 461   BitMap     _visited_blocks;      // used for recursive processing of blocks
 462   BitMap     _active_blocks;       // used for recursive processing of blocks
 463   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 464   intArray   _forward_branches;    // number of incoming forward branches for each block
 465   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 466   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 467   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 468   BlockList  _loop_headers;
 469 
 470   Compilation* _compilation;
 471 
 472   // accessors for _visited_blocks and _active_blocks
 473   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 474   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 475   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 476   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 477   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 478   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 479 
 480   // accessors for _forward_branches
 481   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 482   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 483 
 484   // accessors for _loop_map
 485   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 486   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 487   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 488 
 489   // count edges between blocks
 490   void count_edges(BlockBegin* cur, BlockBegin* parent);
 491 
 492   // loop detection
 493   void mark_loops();
 494   void clear_non_natural_loops(BlockBegin* start_block);
 495   void assign_loop_depth(BlockBegin* start_block);
 496 
 497   // computation of final block order
 498   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 499   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 500   int  compute_weight(BlockBegin* cur);
 501   bool ready_for_processing(BlockBegin* cur);
 502   void sort_into_work_list(BlockBegin* b);
 503   void append_block(BlockBegin* cur);
 504   void compute_order(BlockBegin* start_block);
 505 
 506   // fixup of dominators for non-natural loops
 507   bool compute_dominators_iter();
 508   void compute_dominators();
 509 
 510   // debug functions
 511   NOT_PRODUCT(void print_blocks();)
 512   DEBUG_ONLY(void verify();)
 513 
 514   Compilation* compilation() const { return _compilation; }
 515  public:
 516   ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
 517 
 518   // accessors for final result
 519   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 520   int        num_loops() const            { return _num_loops; }
 521 };
 522 
 523 
 524 ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
 525   _max_block_id(BlockBegin::number_of_blocks()),
 526   _num_blocks(0),
 527   _num_loops(0),
 528   _iterative_dominators(false),
 529   _visited_blocks(_max_block_id),
 530   _active_blocks(_max_block_id),
 531   _dominator_blocks(_max_block_id),
 532   _forward_branches(_max_block_id, 0),
 533   _loop_end_blocks(8),
 534   _work_list(8),
 535   _linear_scan_order(NULL), // initialized later with correct size
 536   _loop_map(0, 0),          // initialized later with correct size
 537   _compilation(c)
 538 {
 539   TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
 540 
 541   init_visited();
 542   count_edges(start_block, NULL);
 543 
 544   if (compilation()->is_profiling()) {
 545     ciMethod *method = compilation()->method();
 546     if (!method->is_accessor()) {
 547       ciMethodData* md = method->method_data_or_null();
 548       assert(md != NULL, "Sanity");
 549       md->set_compilation_stats(_num_loops, _num_blocks);
 550     }
 551   }
 552 
 553   if (_num_loops > 0) {
 554     mark_loops();
 555     clear_non_natural_loops(start_block);
 556     assign_loop_depth(start_block);
 557   }
 558 
 559   compute_order(start_block);
 560   compute_dominators();
 561 
 562   NOT_PRODUCT(print_blocks());
 563   DEBUG_ONLY(verify());
 564 }
 565 
 566 
 567 // Traverse the CFG:
 568 // * count total number of blocks
 569 // * count all incoming edges and backward incoming edges
 570 // * number loop header blocks
 571 // * create a list with all loop end blocks
 572 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 573   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 574   assert(cur->dominator() == NULL, "dominator already initialized");
 575 
 576   if (is_active(cur)) {
 577     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 578     assert(is_visited(cur), "block must be visisted when block is active");
 579     assert(parent != NULL, "must have parent");
 580 
 581     cur->set(BlockBegin::linear_scan_loop_header_flag);
 582     cur->set(BlockBegin::backward_branch_target_flag);
 583 
 584     parent->set(BlockBegin::linear_scan_loop_end_flag);
 585 
 586     // When a loop header is also the start of an exception handler, then the backward branch is
 587     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 588     // loop must be excluded here from processing.
 589     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 590       // Make sure that dominators are correct in this weird situation
 591       _iterative_dominators = true;
 592       return;
 593     }
 594     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 595            "loop end blocks must have one successor (critical edges are split)");
 596 
 597     _loop_end_blocks.append(parent);
 598     return;
 599   }
 600 
 601   // increment number of incoming forward branches
 602   inc_forward_branches(cur);
 603 
 604   if (is_visited(cur)) {
 605     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 606     return;
 607   }
 608 
 609   _num_blocks++;
 610   set_visited(cur);
 611   set_active(cur);
 612 
 613   // recursive call for all successors
 614   int i;
 615   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 616     count_edges(cur->sux_at(i), cur);
 617   }
 618   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 619     count_edges(cur->exception_handler_at(i), cur);
 620   }
 621 
 622   clear_active(cur);
 623 
 624   // Each loop has a unique number.
 625   // When multiple loops are nested, assign_loop_depth assumes that the
 626   // innermost loop has the lowest number. This is guaranteed by setting
 627   // the loop number after the recursive calls for the successors above
 628   // have returned.
 629   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 630     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 631     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 632 
 633     cur->set_loop_index(_num_loops);
 634     _loop_headers.append(cur);
 635     _num_loops++;
 636   }
 637 
 638   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 639 }
 640 
 641 
 642 void ComputeLinearScanOrder::mark_loops() {
 643   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 644 
 645   _loop_map = BitMap2D(_num_loops, _max_block_id);
 646   _loop_map.clear();
 647 
 648   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 649     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 650     BlockBegin* loop_start = loop_end->sux_at(0);
 651     int         loop_idx   = loop_start->loop_index();
 652 
 653     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 654     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 655     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 656     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 657     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 658     assert(_work_list.is_empty(), "work list must be empty before processing");
 659 
 660     // add the end-block of the loop to the working list
 661     _work_list.push(loop_end);
 662     set_block_in_loop(loop_idx, loop_end);
 663     do {
 664       BlockBegin* cur = _work_list.pop();
 665 
 666       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 667       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 668 
 669       // recursive processing of all predecessors ends when start block of loop is reached
 670       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 671         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 672           BlockBegin* pred = cur->pred_at(j);
 673 
 674           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 675             // this predecessor has not been processed yet, so add it to work list
 676             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 677             _work_list.push(pred);
 678             set_block_in_loop(loop_idx, pred);
 679           }
 680         }
 681       }
 682     } while (!_work_list.is_empty());
 683   }
 684 }
 685 
 686 
 687 // check for non-natural loops (loops where the loop header does not dominate
 688 // all other loop blocks = loops with mulitple entries).
 689 // such loops are ignored
 690 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 691   for (int i = _num_loops - 1; i >= 0; i--) {
 692     if (is_block_in_loop(i, start_block)) {
 693       // loop i contains the entry block of the method
 694       // -> this is not a natural loop, so ignore it
 695       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 696 
 697       BlockBegin *loop_header = _loop_headers.at(i);
 698       assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
 699 
 700       for (int j = 0; j < loop_header->number_of_preds(); j++) {
 701         BlockBegin *pred = loop_header->pred_at(j);
 702         pred->clear(BlockBegin::linear_scan_loop_end_flag);
 703       }
 704 
 705       loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
 706 
 707       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 708         clear_block_in_loop(i, block_id);
 709       }
 710       _iterative_dominators = true;
 711     }
 712   }
 713 }
 714 
 715 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 716   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
 717   init_visited();
 718 
 719   assert(_work_list.is_empty(), "work list must be empty before processing");
 720   _work_list.append(start_block);
 721 
 722   do {
 723     BlockBegin* cur = _work_list.pop();
 724 
 725     if (!is_visited(cur)) {
 726       set_visited(cur);
 727       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 728 
 729       // compute loop-depth and loop-index for the block
 730       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 731       int i;
 732       int loop_depth = 0;
 733       int min_loop_idx = -1;
 734       for (i = _num_loops - 1; i >= 0; i--) {
 735         if (is_block_in_loop(i, cur)) {
 736           loop_depth++;
 737           min_loop_idx = i;
 738         }
 739       }
 740       cur->set_loop_depth(loop_depth);
 741       cur->set_loop_index(min_loop_idx);
 742 
 743       // append all unvisited successors to work list
 744       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 745         _work_list.append(cur->sux_at(i));
 746       }
 747       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 748         _work_list.append(cur->exception_handler_at(i));
 749       }
 750     }
 751   } while (!_work_list.is_empty());
 752 }
 753 
 754 
 755 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 756   assert(a != NULL && b != NULL, "must have input blocks");
 757 
 758   _dominator_blocks.clear();
 759   while (a != NULL) {
 760     _dominator_blocks.set_bit(a->block_id());
 761     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 762     a = a->dominator();
 763   }
 764   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 765     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 766     b = b->dominator();
 767   }
 768 
 769   assert(b != NULL, "could not find dominator");
 770   return b;
 771 }
 772 
 773 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 774   if (cur->dominator() == NULL) {
 775     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 776     cur->set_dominator(parent);
 777 
 778   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 779     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 780     // Does not hold for exception blocks
 781     assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
 782     cur->set_dominator(common_dominator(cur->dominator(), parent));
 783   }
 784 
 785   // Additional edge to xhandler of all our successors
 786   // range check elimination needs that the state at the end of a
 787   // block be valid in every block it dominates so cur must dominate
 788   // the exception handlers of its successors.
 789   int num_cur_xhandler = cur->number_of_exception_handlers();
 790   for (int j = 0; j < num_cur_xhandler; j++) {
 791     BlockBegin* xhandler = cur->exception_handler_at(j);
 792     compute_dominator(xhandler, parent);
 793   }
 794 }
 795 
 796 
 797 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 798   BlockBegin* single_sux = NULL;
 799   if (cur->number_of_sux() == 1) {
 800     single_sux = cur->sux_at(0);
 801   }
 802 
 803   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 804   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 805 
 806   // general macro for short definition of weight flags
 807   // the first instance of INC_WEIGHT_IF has the highest priority
 808   int cur_bit = 15;
 809   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 810 
 811   // this is necessery for the (very rare) case that two successing blocks have
 812   // the same loop depth, but a different loop index (can happen for endless loops
 813   // with exception handlers)
 814   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 815 
 816   // loop end blocks (blocks that end with a backward branch) are added
 817   // after all other blocks of the loop.
 818   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 819 
 820   // critical edge split blocks are prefered because than they have a bigger
 821   // proability to be completely empty
 822   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 823 
 824   // exceptions should not be thrown in normal control flow, so these blocks
 825   // are added as late as possible
 826   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 827   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 828 
 829   // exceptions handlers are added as late as possible
 830   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 831 
 832   // guarantee that weight is > 0
 833   weight |= 1;
 834 
 835   #undef INC_WEIGHT_IF
 836   assert(cur_bit >= 0, "too many flags");
 837   assert(weight > 0, "weight cannot become negative");
 838 
 839   return weight;
 840 }
 841 
 842 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 843   // Discount the edge just traveled.
 844   // When the number drops to zero, all forward branches were processed
 845   if (dec_forward_branches(cur) != 0) {
 846     return false;
 847   }
 848 
 849   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 850   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 851   return true;
 852 }
 853 
 854 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 855   assert(_work_list.index_of(cur) == -1, "block already in work list");
 856 
 857   int cur_weight = compute_weight(cur);
 858 
 859   // the linear_scan_number is used to cache the weight of a block
 860   cur->set_linear_scan_number(cur_weight);
 861 
 862 #ifndef PRODUCT
 863   if (StressLinearScan) {
 864     _work_list.insert_before(0, cur);
 865     return;
 866   }
 867 #endif
 868 
 869   _work_list.append(NULL); // provide space for new element
 870 
 871   int insert_idx = _work_list.length() - 1;
 872   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 873     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 874     insert_idx--;
 875   }
 876   _work_list.at_put(insert_idx, cur);
 877 
 878   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 879   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 880 
 881 #ifdef ASSERT
 882   for (int i = 0; i < _work_list.length(); i++) {
 883     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 884     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 885   }
 886 #endif
 887 }
 888 
 889 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 890   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 891   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 892 
 893   // currently, the linear scan order and code emit order are equal.
 894   // therefore the linear_scan_number and the weight of a block must also
 895   // be equal.
 896   cur->set_linear_scan_number(_linear_scan_order->length());
 897   _linear_scan_order->append(cur);
 898 }
 899 
 900 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 901   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
 902 
 903   // the start block is always the first block in the linear scan order
 904   _linear_scan_order = new BlockList(_num_blocks);
 905   append_block(start_block);
 906 
 907   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 908   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 909   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 910 
 911   BlockBegin* sux_of_osr_entry = NULL;
 912   if (osr_entry != NULL) {
 913     // special handling for osr entry:
 914     // ignore the edge between the osr entry and its successor for processing
 915     // the osr entry block is added manually below
 916     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 917     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 918 
 919     sux_of_osr_entry = osr_entry->sux_at(0);
 920     dec_forward_branches(sux_of_osr_entry);
 921 
 922     compute_dominator(osr_entry, start_block);
 923     _iterative_dominators = true;
 924   }
 925   compute_dominator(std_entry, start_block);
 926 
 927   // start processing with standard entry block
 928   assert(_work_list.is_empty(), "list must be empty before processing");
 929 
 930   if (ready_for_processing(std_entry)) {
 931     sort_into_work_list(std_entry);
 932   } else {
 933     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 934   }
 935 
 936   do {
 937     BlockBegin* cur = _work_list.pop();
 938 
 939     if (cur == sux_of_osr_entry) {
 940       // the osr entry block is ignored in normal processing, it is never added to the
 941       // work list. Instead, it is added as late as possible manually here.
 942       append_block(osr_entry);
 943       compute_dominator(cur, osr_entry);
 944     }
 945     append_block(cur);
 946 
 947     int i;
 948     int num_sux = cur->number_of_sux();
 949     // changed loop order to get "intuitive" order of if- and else-blocks
 950     for (i = 0; i < num_sux; i++) {
 951       BlockBegin* sux = cur->sux_at(i);
 952       compute_dominator(sux, cur);
 953       if (ready_for_processing(sux)) {
 954         sort_into_work_list(sux);
 955       }
 956     }
 957     num_sux = cur->number_of_exception_handlers();
 958     for (i = 0; i < num_sux; i++) {
 959       BlockBegin* sux = cur->exception_handler_at(i);
 960       if (ready_for_processing(sux)) {
 961         sort_into_work_list(sux);
 962       }
 963     }
 964   } while (_work_list.length() > 0);
 965 }
 966 
 967 
 968 bool ComputeLinearScanOrder::compute_dominators_iter() {
 969   bool changed = false;
 970   int num_blocks = _linear_scan_order->length();
 971 
 972   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 973   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 974   for (int i = 1; i < num_blocks; i++) {
 975     BlockBegin* block = _linear_scan_order->at(i);
 976 
 977     BlockBegin* dominator = block->pred_at(0);
 978     int num_preds = block->number_of_preds();
 979 
 980     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
 981 
 982     for (int j = 0; j < num_preds; j++) {
 983 
 984       BlockBegin *pred = block->pred_at(j);
 985       TRACE_LINEAR_SCAN(4, tty->print_cr("   DOM: Subrocessing B%d", pred->block_id()));
 986 
 987       if (block->is_set(BlockBegin::exception_entry_flag)) {
 988         dominator = common_dominator(dominator, pred);
 989         int num_pred_preds = pred->number_of_preds();
 990         for (int k = 0; k < num_pred_preds; k++) {
 991           dominator = common_dominator(dominator, pred->pred_at(k));
 992         }
 993       } else {
 994         dominator = common_dominator(dominator, pred);
 995       }
 996     }
 997 
 998     if (dominator != block->dominator()) {
 999       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
1000 
1001       block->set_dominator(dominator);
1002       changed = true;
1003     }
1004   }
1005   return changed;
1006 }
1007 
1008 void ComputeLinearScanOrder::compute_dominators() {
1009   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1010 
1011   // iterative computation of dominators is only required for methods with non-natural loops
1012   // and OSR-methods. For all other methods, the dominators computed when generating the
1013   // linear scan block order are correct.
1014   if (_iterative_dominators) {
1015     do {
1016       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1017     } while (compute_dominators_iter());
1018   }
1019 
1020   // check that dominators are correct
1021   assert(!compute_dominators_iter(), "fix point not reached");
1022 
1023   // Add Blocks to dominates-Array
1024   int num_blocks = _linear_scan_order->length();
1025   for (int i = 0; i < num_blocks; i++) {
1026     BlockBegin* block = _linear_scan_order->at(i);
1027 
1028     BlockBegin *dom = block->dominator();
1029     if (dom) {
1030       assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1031       dom->dominates()->append(block);
1032       block->set_dominator_depth(dom->dominator_depth() + 1);
1033     } else {
1034       block->set_dominator_depth(0);
1035     }
1036   }
1037 }
1038 
1039 
1040 #ifndef PRODUCT
1041 void ComputeLinearScanOrder::print_blocks() {
1042   if (TraceLinearScanLevel >= 2) {
1043     tty->print_cr("----- loop information:");
1044     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1045       BlockBegin* cur = _linear_scan_order->at(block_idx);
1046 
1047       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1048       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1049         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1050       }
1051       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1052     }
1053   }
1054 
1055   if (TraceLinearScanLevel >= 1) {
1056     tty->print_cr("----- linear-scan block order:");
1057     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1058       BlockBegin* cur = _linear_scan_order->at(block_idx);
1059       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1060 
1061       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1062       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1063       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1064       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1065 
1066       if (cur->dominator() != NULL) {
1067         tty->print("    dom: B%d ", cur->dominator()->block_id());
1068       } else {
1069         tty->print("    dom: NULL ");
1070       }
1071 
1072       if (cur->number_of_preds() > 0) {
1073         tty->print("    preds: ");
1074         for (int j = 0; j < cur->number_of_preds(); j++) {
1075           BlockBegin* pred = cur->pred_at(j);
1076           tty->print("B%d ", pred->block_id());
1077         }
1078       }
1079       if (cur->number_of_sux() > 0) {
1080         tty->print("    sux: ");
1081         for (int j = 0; j < cur->number_of_sux(); j++) {
1082           BlockBegin* sux = cur->sux_at(j);
1083           tty->print("B%d ", sux->block_id());
1084         }
1085       }
1086       if (cur->number_of_exception_handlers() > 0) {
1087         tty->print("    ex: ");
1088         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1089           BlockBegin* ex = cur->exception_handler_at(j);
1090           tty->print("B%d ", ex->block_id());
1091         }
1092       }
1093       tty->cr();
1094     }
1095   }
1096 }
1097 #endif
1098 
1099 #ifdef ASSERT
1100 void ComputeLinearScanOrder::verify() {
1101   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1102 
1103   if (StressLinearScan) {
1104     // blocks are scrambled when StressLinearScan is used
1105     return;
1106   }
1107 
1108   // check that all successors of a block have a higher linear-scan-number
1109   // and that all predecessors of a block have a lower linear-scan-number
1110   // (only backward branches of loops are ignored)
1111   int i;
1112   for (i = 0; i < _linear_scan_order->length(); i++) {
1113     BlockBegin* cur = _linear_scan_order->at(i);
1114 
1115     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1116     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1117 
1118     int j;
1119     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1120       BlockBegin* sux = cur->sux_at(j);
1121 
1122       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1123       if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1124         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1125       }
1126       if (cur->loop_depth() == sux->loop_depth()) {
1127         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1128       }
1129     }
1130 
1131     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1132       BlockBegin* pred = cur->pred_at(j);
1133 
1134       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1135       if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1136         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1137       }
1138       if (cur->loop_depth() == pred->loop_depth()) {
1139         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1140       }
1141 
1142       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1143     }
1144 
1145     // check dominator
1146     if (i == 0) {
1147       assert(cur->dominator() == NULL, "first block has no dominator");
1148     } else {
1149       assert(cur->dominator() != NULL, "all but first block must have dominator");
1150     }
1151     // Assertion does not hold for exception handlers
1152     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1153   }
1154 
1155   // check that all loops are continuous
1156   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1157     int block_idx = 0;
1158     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1159 
1160     // skip blocks before the loop
1161     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1162       block_idx++;
1163     }
1164     // skip blocks of loop
1165     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1166       block_idx++;
1167     }
1168     // after the first non-loop block, there must not be another loop-block
1169     while (block_idx < _num_blocks) {
1170       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1171       block_idx++;
1172     }
1173   }
1174 }
1175 #endif
1176 
1177 
1178 void IR::compute_code() {
1179   assert(is_valid(), "IR must be valid");
1180 
1181   ComputeLinearScanOrder compute_order(compilation(), start());
1182   _num_loops = compute_order.num_loops();
1183   _code = compute_order.linear_scan_order();
1184 }
1185 
1186 
1187 void IR::compute_use_counts() {
1188   // make sure all values coming out of this block get evaluated.
1189   int num_blocks = _code->length();
1190   for (int i = 0; i < num_blocks; i++) {
1191     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1192   }
1193 
1194   // compute use counts
1195   UseCountComputer::compute(_code);
1196 }
1197 
1198 
1199 void IR::iterate_preorder(BlockClosure* closure) {
1200   assert(is_valid(), "IR must be valid");
1201   start()->iterate_preorder(closure);
1202 }
1203 
1204 
1205 void IR::iterate_postorder(BlockClosure* closure) {
1206   assert(is_valid(), "IR must be valid");
1207   start()->iterate_postorder(closure);
1208 }
1209 
1210 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1211   linear_scan_order()->iterate_forward(closure);
1212 }
1213 
1214 
1215 #ifndef PRODUCT
1216 class BlockPrinter: public BlockClosure {
1217  private:
1218   InstructionPrinter* _ip;
1219   bool                _cfg_only;
1220   bool                _live_only;
1221 
1222  public:
1223   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1224     _ip       = ip;
1225     _cfg_only = cfg_only;
1226     _live_only = live_only;
1227   }
1228 
1229   virtual void block_do(BlockBegin* block) {
1230     if (_cfg_only) {
1231       _ip->print_instr(block); tty->cr();
1232     } else {
1233       block->print_block(*_ip, _live_only);
1234     }
1235   }
1236 };
1237 
1238 
1239 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1240   ttyLocker ttyl;
1241   InstructionPrinter ip(!cfg_only);
1242   BlockPrinter bp(&ip, cfg_only, live_only);
1243   start->iterate_preorder(&bp);
1244   tty->cr();
1245 }
1246 
1247 void IR::print(bool cfg_only, bool live_only) {
1248   if (is_valid()) {
1249     print(start(), cfg_only, live_only);
1250   } else {
1251     tty->print_cr("invalid IR");
1252   }
1253 }
1254 
1255 
1256 define_array(BlockListArray, BlockList*)
1257 define_stack(BlockListList, BlockListArray)
1258 
1259 class PredecessorValidator : public BlockClosure {
1260  private:
1261   BlockListList* _predecessors;
1262   BlockList*     _blocks;
1263 
1264   static int cmp(BlockBegin** a, BlockBegin** b) {
1265     return (*a)->block_id() - (*b)->block_id();
1266   }
1267 
1268  public:
1269   PredecessorValidator(IR* hir) {
1270     ResourceMark rm;
1271     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1272     _blocks = new BlockList();
1273 
1274     int i;
1275     hir->start()->iterate_preorder(this);
1276     if (hir->code() != NULL) {
1277       assert(hir->code()->length() == _blocks->length(), "must match");
1278       for (i = 0; i < _blocks->length(); i++) {
1279         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1280       }
1281     }
1282 
1283     for (i = 0; i < _blocks->length(); i++) {
1284       BlockBegin* block = _blocks->at(i);
1285       BlockList* preds = _predecessors->at(block->block_id());
1286       if (preds == NULL) {
1287         assert(block->number_of_preds() == 0, "should be the same");
1288         continue;
1289       }
1290 
1291       // clone the pred list so we can mutate it
1292       BlockList* pred_copy = new BlockList();
1293       int j;
1294       for (j = 0; j < block->number_of_preds(); j++) {
1295         pred_copy->append(block->pred_at(j));
1296       }
1297       // sort them in the same order
1298       preds->sort(cmp);
1299       pred_copy->sort(cmp);
1300       int length = MIN2(preds->length(), block->number_of_preds());
1301       for (j = 0; j < block->number_of_preds(); j++) {
1302         assert(preds->at(j) == pred_copy->at(j), "must match");
1303       }
1304 
1305       assert(preds->length() == block->number_of_preds(), "should be the same");
1306     }
1307   }
1308 
1309   virtual void block_do(BlockBegin* block) {
1310     _blocks->append(block);
1311     BlockEnd* be = block->end();
1312     int n = be->number_of_sux();
1313     int i;
1314     for (i = 0; i < n; i++) {
1315       BlockBegin* sux = be->sux_at(i);
1316       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1317 
1318       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1319       if (preds == NULL) {
1320         preds = new BlockList();
1321         _predecessors->at_put(sux->block_id(), preds);
1322       }
1323       preds->append(block);
1324     }
1325 
1326     n = block->number_of_exception_handlers();
1327     for (i = 0; i < n; i++) {
1328       BlockBegin* sux = block->exception_handler_at(i);
1329       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1330 
1331       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1332       if (preds == NULL) {
1333         preds = new BlockList();
1334         _predecessors->at_put(sux->block_id(), preds);
1335       }
1336       preds->append(block);
1337     }
1338   }
1339 };
1340 
1341 class VerifyBlockBeginField : public BlockClosure {
1342 
1343 public:
1344 
1345   virtual void block_do(BlockBegin *block) {
1346     for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1347       assert(cur->block() == block, "Block begin is not correct");
1348     }
1349   }
1350 };
1351 
1352 void IR::verify() {
1353 #ifdef ASSERT
1354   PredecessorValidator pv(this);
1355   VerifyBlockBeginField verifier;
1356   this->iterate_postorder(&verifier);
1357 #endif
1358 }
1359 
1360 #endif // PRODUCT
1361 
1362 void SubstitutionResolver::visit(Value* v) {
1363   Value v0 = *v;
1364   if (v0) {
1365     Value vs = v0->subst();
1366     if (vs != v0) {
1367       *v = v0->subst();
1368     }
1369   }
1370 }
1371 
1372 #ifdef ASSERT
1373 class SubstitutionChecker: public ValueVisitor {
1374   void visit(Value* v) {
1375     Value v0 = *v;
1376     if (v0) {
1377       Value vs = v0->subst();
1378       assert(vs == v0, "missed substitution");
1379     }
1380   }
1381 };
1382 #endif
1383 
1384 
1385 void SubstitutionResolver::block_do(BlockBegin* block) {
1386   Instruction* last = NULL;
1387   for (Instruction* n = block; n != NULL;) {
1388     n->values_do(this);
1389     // need to remove this instruction from the instruction stream
1390     if (n->subst() != n) {
1391       assert(last != NULL, "must have last");
1392       last->set_next(n->next());
1393     } else {
1394       last = n;
1395     }
1396     n = last->next();
1397   }
1398 
1399 #ifdef ASSERT
1400   SubstitutionChecker check_substitute;
1401   if (block->state()) block->state()->values_do(&check_substitute);
1402   block->block_values_do(&check_substitute);
1403   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1404 #endif
1405 }