1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "prims/forte.hpp"
  44 #include "prims/jvmtiExport.hpp"
  45 #include "prims/jvmtiRedefineClassesTrace.hpp"
  46 #include "prims/methodHandles.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "utilities/copy.hpp"
  61 #include "utilities/dtrace.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/hashtable.inline.hpp"
  64 #include "utilities/macros.hpp"
  65 #include "utilities/xmlstream.hpp"
  66 #ifdef COMPILER1
  67 #include "c1/c1_Runtime1.hpp"
  68 #endif
  69 
  70 // Shared stub locations
  71 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  72 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  73 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  77 
  78 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  82 
  83 #ifdef COMPILER2
  84 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  85 #endif // COMPILER2
  86 
  87 
  88 //----------------------------generate_stubs-----------------------------------
  89 void SharedRuntime::generate_stubs() {
  90   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  91   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  92   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  93   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  94   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  95   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  96 
  97 #if defined(COMPILER2) || INCLUDE_JVMCI
  98   // Vectors are generated only by C2 and JVMCI.
  99   bool support_wide = is_wide_vector(MaxVectorSize);
 100   if (support_wide) {
 101     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 102   }
 103 #endif // COMPILER2 || INCLUDE_JVMCI
 104   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 105   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 106 
 107   generate_deopt_blob();
 108 
 109 #ifdef COMPILER2
 110   generate_uncommon_trap_blob();
 111 #endif // COMPILER2
 112 }
 113 
 114 #include <math.h>
 115 
 116 // Implementation of SharedRuntime
 117 
 118 #ifndef PRODUCT
 119 // For statistics
 120 int SharedRuntime::_ic_miss_ctr = 0;
 121 int SharedRuntime::_wrong_method_ctr = 0;
 122 int SharedRuntime::_resolve_static_ctr = 0;
 123 int SharedRuntime::_resolve_virtual_ctr = 0;
 124 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 125 int SharedRuntime::_implicit_null_throws = 0;
 126 int SharedRuntime::_implicit_div0_throws = 0;
 127 int SharedRuntime::_throw_null_ctr = 0;
 128 
 129 int SharedRuntime::_nof_normal_calls = 0;
 130 int SharedRuntime::_nof_optimized_calls = 0;
 131 int SharedRuntime::_nof_inlined_calls = 0;
 132 int SharedRuntime::_nof_megamorphic_calls = 0;
 133 int SharedRuntime::_nof_static_calls = 0;
 134 int SharedRuntime::_nof_inlined_static_calls = 0;
 135 int SharedRuntime::_nof_interface_calls = 0;
 136 int SharedRuntime::_nof_optimized_interface_calls = 0;
 137 int SharedRuntime::_nof_inlined_interface_calls = 0;
 138 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 139 int SharedRuntime::_nof_removable_exceptions = 0;
 140 
 141 int SharedRuntime::_new_instance_ctr=0;
 142 int SharedRuntime::_new_array_ctr=0;
 143 int SharedRuntime::_multi1_ctr=0;
 144 int SharedRuntime::_multi2_ctr=0;
 145 int SharedRuntime::_multi3_ctr=0;
 146 int SharedRuntime::_multi4_ctr=0;
 147 int SharedRuntime::_multi5_ctr=0;
 148 int SharedRuntime::_mon_enter_stub_ctr=0;
 149 int SharedRuntime::_mon_exit_stub_ctr=0;
 150 int SharedRuntime::_mon_enter_ctr=0;
 151 int SharedRuntime::_mon_exit_ctr=0;
 152 int SharedRuntime::_partial_subtype_ctr=0;
 153 int SharedRuntime::_jbyte_array_copy_ctr=0;
 154 int SharedRuntime::_jshort_array_copy_ctr=0;
 155 int SharedRuntime::_jint_array_copy_ctr=0;
 156 int SharedRuntime::_jlong_array_copy_ctr=0;
 157 int SharedRuntime::_oop_array_copy_ctr=0;
 158 int SharedRuntime::_checkcast_array_copy_ctr=0;
 159 int SharedRuntime::_unsafe_array_copy_ctr=0;
 160 int SharedRuntime::_generic_array_copy_ctr=0;
 161 int SharedRuntime::_slow_array_copy_ctr=0;
 162 int SharedRuntime::_find_handler_ctr=0;
 163 int SharedRuntime::_rethrow_ctr=0;
 164 
 165 int     SharedRuntime::_ICmiss_index                    = 0;
 166 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 167 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 168 
 169 
 170 void SharedRuntime::trace_ic_miss(address at) {
 171   for (int i = 0; i < _ICmiss_index; i++) {
 172     if (_ICmiss_at[i] == at) {
 173       _ICmiss_count[i]++;
 174       return;
 175     }
 176   }
 177   int index = _ICmiss_index++;
 178   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 179   _ICmiss_at[index] = at;
 180   _ICmiss_count[index] = 1;
 181 }
 182 
 183 void SharedRuntime::print_ic_miss_histogram() {
 184   if (ICMissHistogram) {
 185     tty->print_cr("IC Miss Histogram:");
 186     int tot_misses = 0;
 187     for (int i = 0; i < _ICmiss_index; i++) {
 188       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 189       tot_misses += _ICmiss_count[i];
 190     }
 191     tty->print_cr("Total IC misses: %7d", tot_misses);
 192   }
 193 }
 194 #endif // PRODUCT
 195 
 196 #if INCLUDE_ALL_GCS
 197 
 198 // G1 write-barrier pre: executed before a pointer store.
 199 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 200   if (orig == NULL) {
 201     assert(false, "should be optimized out");
 202     return;
 203   }
 204   assert(orig->is_oop(true /* ignore mark word */), "Error");
 205   // store the original value that was in the field reference
 206   thread->satb_mark_queue().enqueue(orig);
 207 JRT_END
 208 
 209 // G1 write-barrier post: executed after a pointer store.
 210 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 211   thread->dirty_card_queue().enqueue(card_addr);
 212 JRT_END
 213 
 214 #endif // INCLUDE_ALL_GCS
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 218   return x * y;
 219 JRT_END
 220 
 221 
 222 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 223   if (x == min_jlong && y == CONST64(-1)) {
 224     return x;
 225   } else {
 226     return x / y;
 227   }
 228 JRT_END
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 232   if (x == min_jlong && y == CONST64(-1)) {
 233     return 0;
 234   } else {
 235     return x % y;
 236   }
 237 JRT_END
 238 
 239 
 240 const juint  float_sign_mask  = 0x7FFFFFFF;
 241 const juint  float_infinity   = 0x7F800000;
 242 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 243 const julong double_infinity  = CONST64(0x7FF0000000000000);
 244 
 245 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 246 #ifdef _WIN64
 247   // 64-bit Windows on amd64 returns the wrong values for
 248   // infinity operands.
 249   union { jfloat f; juint i; } xbits, ybits;
 250   xbits.f = x;
 251   ybits.f = y;
 252   // x Mod Infinity == x unless x is infinity
 253   if (((xbits.i & float_sign_mask) != float_infinity) &&
 254        ((ybits.i & float_sign_mask) == float_infinity) ) {
 255     return x;
 256   }
 257 #endif
 258   return ((jfloat)fmod((double)x,(double)y));
 259 JRT_END
 260 
 261 
 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 263 #ifdef _WIN64
 264   union { jdouble d; julong l; } xbits, ybits;
 265   xbits.d = x;
 266   ybits.d = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.l & double_sign_mask) != double_infinity) &&
 269        ((ybits.l & double_sign_mask) == double_infinity) ) {
 270     return x;
 271   }
 272 #endif
 273   return ((jdouble)fmod((double)x,(double)y));
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC32)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when TraceRedefineClasses has the right bits
 595 // set. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 601 
 602   if (method->is_obsolete()) {
 603     // We are calling an obsolete method, but this is not necessarily
 604     // an error. Our method could have been redefined just after we
 605     // fetched the Method* from the constant pool.
 606 
 607     // RC_TRACE macro has an embedded ResourceMark
 608     RC_TRACE_WITH_THREAD(0x00001000, thread,
 609                          ("calling obsolete method '%s'",
 610                           method->name_and_sig_as_C_string()));
 611     if (RC_TRACE_ENABLED(0x00002000)) {
 612       // this option is provided to debug calls to obsolete methods
 613       guarantee(false, "faulting at call to an obsolete method.");
 614     }
 615   }
 616   return 0;
 617 JRT_END
 618 
 619 // ret_pc points into caller; we are returning caller's exception handler
 620 // for given exception
 621 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 622                                                     bool force_unwind, bool top_frame_only) {
 623   assert(nm != NULL, "must exist");
 624   ResourceMark rm;
 625 
 626 #if INCLUDE_JVMCI
 627   if (nm->is_compiled_by_jvmci()) {
 628     // lookup exception handler for this pc
 629     int catch_pco = ret_pc - nm->code_begin();
 630     ExceptionHandlerTable table(nm);
 631     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 632     if (t != NULL) {
 633       return nm->code_begin() + t->pco();
 634     } else {
 635       // there is no exception handler for this pc => deoptimize
 636       nm->make_not_entrant();
 637 
 638       // Use Deoptimization::deoptimize for all of its side-effects:
 639       // revoking biases of monitors, gathering traps statistics, logging...
 640       // it also patches the return pc but we do not care about that
 641       // since we return a continuation to the deopt_blob below.
 642       JavaThread* thread = JavaThread::current();
 643       RegisterMap reg_map(thread, UseBiasedLocking);
 644       frame runtime_frame = thread->last_frame();
 645       frame caller_frame = runtime_frame.sender(&reg_map);
 646       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 647 
 648       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 649     }
 650   }
 651 #endif // INCLUDE_JVMCI
 652 
 653   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 654   // determine handler bci, if any
 655   EXCEPTION_MARK;
 656 
 657   int handler_bci = -1;
 658   int scope_depth = 0;
 659   if (!force_unwind) {
 660     int bci = sd->bci();
 661     bool recursive_exception = false;
 662     do {
 663       bool skip_scope_increment = false;
 664       // exception handler lookup
 665       KlassHandle ek (THREAD, exception->klass());
 666       methodHandle mh(THREAD, sd->method());
 667       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 668       if (HAS_PENDING_EXCEPTION) {
 669         recursive_exception = true;
 670         // We threw an exception while trying to find the exception handler.
 671         // Transfer the new exception to the exception handle which will
 672         // be set into thread local storage, and do another lookup for an
 673         // exception handler for this exception, this time starting at the
 674         // BCI of the exception handler which caused the exception to be
 675         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 676         // argument to ensure that the correct exception is thrown (4870175).
 677         exception = Handle(THREAD, PENDING_EXCEPTION);
 678         CLEAR_PENDING_EXCEPTION;
 679         if (handler_bci >= 0) {
 680           bci = handler_bci;
 681           handler_bci = -1;
 682           skip_scope_increment = true;
 683         }
 684       }
 685       else {
 686         recursive_exception = false;
 687       }
 688       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 689         sd = sd->sender();
 690         if (sd != NULL) {
 691           bci = sd->bci();
 692         }
 693         ++scope_depth;
 694       }
 695     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 696   }
 697 
 698   // found handling method => lookup exception handler
 699   int catch_pco = ret_pc - nm->code_begin();
 700 
 701   ExceptionHandlerTable table(nm);
 702   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 703   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 704     // Allow abbreviated catch tables.  The idea is to allow a method
 705     // to materialize its exceptions without committing to the exact
 706     // routing of exceptions.  In particular this is needed for adding
 707     // a synthetic handler to unlock monitors when inlining
 708     // synchronized methods since the unlock path isn't represented in
 709     // the bytecodes.
 710     t = table.entry_for(catch_pco, -1, 0);
 711   }
 712 
 713 #ifdef COMPILER1
 714   if (t == NULL && nm->is_compiled_by_c1()) {
 715     assert(nm->unwind_handler_begin() != NULL, "");
 716     return nm->unwind_handler_begin();
 717   }
 718 #endif
 719 
 720   if (t == NULL) {
 721     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 722     tty->print_cr("   Exception:");
 723     exception->print();
 724     tty->cr();
 725     tty->print_cr(" Compiled exception table :");
 726     table.print();
 727     nm->print_code();
 728     guarantee(false, "missing exception handler");
 729     return NULL;
 730   }
 731 
 732   return nm->code_begin() + t->pco();
 733 }
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 741   // These errors occur only at call sites
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 754   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 755   // cache sites (when the callee activation is not yet set up) so we are at a call site
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 760   // We avoid using the normal exception construction in this case because
 761   // it performs an upcall to Java, and we're already out of stack space.
 762   Klass* k = SystemDictionary::StackOverflowError_klass();
 763   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 764   Handle exception (thread, exception_oop);
 765   if (StackTraceInThrowable) {
 766     java_lang_Throwable::fill_in_stack_trace(exception);
 767   }
 768   // Increment counter for hs_err file reporting
 769   Atomic::inc(&Exceptions::_stack_overflow_errors);
 770   throw_and_post_jvmti_exception(thread, exception);
 771 JRT_END
 772 
 773 #if INCLUDE_JVMCI
 774 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 775   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 776   thread->set_jvmci_implicit_exception_pc(pc);
 777   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 778   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 779 }
 780 #endif // INCLUDE_JVMCI
 781 
 782 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 783                                                            address pc,
 784                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 785 {
 786   address target_pc = NULL;
 787 
 788   if (Interpreter::contains(pc)) {
 789 #ifdef CC_INTERP
 790     // C++ interpreter doesn't throw implicit exceptions
 791     ShouldNotReachHere();
 792 #else
 793     switch (exception_kind) {
 794       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 795       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 796       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 797       default:                      ShouldNotReachHere();
 798     }
 799 #endif // !CC_INTERP
 800   } else {
 801     switch (exception_kind) {
 802       case STACK_OVERFLOW: {
 803         // Stack overflow only occurs upon frame setup; the callee is
 804         // going to be unwound. Dispatch to a shared runtime stub
 805         // which will cause the StackOverflowError to be fabricated
 806         // and processed.
 807         // Stack overflow should never occur during deoptimization:
 808         // the compiled method bangs the stack by as much as the
 809         // interpreter would need in case of a deoptimization. The
 810         // deoptimization blob and uncommon trap blob bang the stack
 811         // in a debug VM to verify the correctness of the compiled
 812         // method stack banging.
 813         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 814         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 815         return StubRoutines::throw_StackOverflowError_entry();
 816       }
 817 
 818       case IMPLICIT_NULL: {
 819         if (VtableStubs::contains(pc)) {
 820           // We haven't yet entered the callee frame. Fabricate an
 821           // exception and begin dispatching it in the caller. Since
 822           // the caller was at a call site, it's safe to destroy all
 823           // caller-saved registers, as these entry points do.
 824           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 825 
 826           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 827           if (vt_stub == NULL) return NULL;
 828 
 829           if (vt_stub->is_abstract_method_error(pc)) {
 830             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 831             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 832             return StubRoutines::throw_AbstractMethodError_entry();
 833           } else {
 834             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837         } else {
 838           CodeBlob* cb = CodeCache::find_blob(pc);
 839 
 840           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (cb == NULL) return NULL;
 842 
 843           // Exception happened in CodeCache. Must be either:
 844           // 1. Inline-cache check in C2I handler blob,
 845           // 2. Inline-cache check in nmethod, or
 846           // 3. Implicit null exception in nmethod
 847 
 848           if (!cb->is_nmethod()) {
 849             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 850             if (!is_in_blob) {
 851               // Allow normal crash reporting to handle this
 852               return NULL;
 853             }
 854             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 855             // There is no handler here, so we will simply unwind.
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           // Otherwise, it's an nmethod.  Consult its exception handlers.
 860           nmethod* nm = (nmethod*)cb;
 861           if (nm->inlinecache_check_contains(pc)) {
 862             // exception happened inside inline-cache check code
 863             // => the nmethod is not yet active (i.e., the frame
 864             // is not set up yet) => use return address pushed by
 865             // caller => don't push another return address
 866             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870           if (nm->method()->is_method_handle_intrinsic()) {
 871             // exception happened inside MH dispatch code, similar to a vtable stub
 872             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876 #ifndef PRODUCT
 877           _implicit_null_throws++;
 878 #endif
 879 #if INCLUDE_JVMCI
 880           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 881             // If there's no PcDesc then we'll die way down inside of
 882             // deopt instead of just getting normal error reporting,
 883             // so only go there if it will succeed.
 884             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 885           } else {
 886 #endif // INCLUDE_JVMCI
 887           assert (nm->is_nmethod(), "Expect nmethod");
 888           target_pc = nm->continuation_for_implicit_exception(pc);
 889 #if INCLUDE_JVMCI
 890           }
 891 #endif // INCLUDE_JVMCI
 892           // If there's an unexpected fault, target_pc might be NULL,
 893           // in which case we want to fall through into the normal
 894           // error handling code.
 895         }
 896 
 897         break; // fall through
 898       }
 899 
 900 
 901       case IMPLICIT_DIVIDE_BY_ZERO: {
 902         nmethod* nm = CodeCache::find_nmethod(pc);
 903         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 904 #ifndef PRODUCT
 905         _implicit_div0_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 909           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 910         } else {
 911 #endif // INCLUDE_JVMCI
 912         target_pc = nm->continuation_for_implicit_exception(pc);
 913 #if INCLUDE_JVMCI
 914         }
 915 #endif // INCLUDE_JVMCI
 916         // If there's an unexpected fault, target_pc might be NULL,
 917         // in which case we want to fall through into the normal
 918         // error handling code.
 919         break; // fall through
 920       }
 921 
 922       default: ShouldNotReachHere();
 923     }
 924 
 925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 926 
 927     if (exception_kind == IMPLICIT_NULL) {
 928 #ifndef PRODUCT
 929       // for AbortVMOnException flag
 930       Exceptions::debug_check_abort("java.lang.NullPointerException");
 931 #endif //PRODUCT
 932       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 933     } else {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     }
 940     return target_pc;
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 
 948 /**
 949  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 950  * installed in the native function entry of all native Java methods before
 951  * they get linked to their actual native methods.
 952  *
 953  * \note
 954  * This method actually never gets called!  The reason is because
 955  * the interpreter's native entries call NativeLookup::lookup() which
 956  * throws the exception when the lookup fails.  The exception is then
 957  * caught and forwarded on the return from NativeLookup::lookup() call
 958  * before the call to the native function.  This might change in the future.
 959  */
 960 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 961 {
 962   // We return a bad value here to make sure that the exception is
 963   // forwarded before we look at the return value.
 964   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 965 }
 966 JNI_END
 967 
 968 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 969   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 970 }
 971 
 972 
 973 #ifndef PRODUCT
 974 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 975   const frame f = thread->last_frame();
 976   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 977 #ifndef PRODUCT
 978   methodHandle mh(THREAD, f.interpreter_frame_method());
 979   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 980 #endif // !PRODUCT
 981   return preserve_this_value;
 982 JRT_END
 983 #endif // !PRODUCT
 984 
 985 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 986   assert(obj->is_oop(), "must be a valid oop");
 987 #if INCLUDE_JVMCI
 988   // This removes the requirement for JVMCI compilers to emit code
 989   // performing a dynamic check that obj has a finalizer before
 990   // calling this routine. There should be no performance impact
 991   // for C1 since it emits a dynamic check. C2 and the interpreter
 992   // uses other runtime routines for registering finalizers.
 993   if (!obj->klass()->has_finalizer()) {
 994     return;
 995   }
 996 #endif // INCLUDE_JVMCI
 997   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 998   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 999 JRT_END
1000 
1001 
1002 jlong SharedRuntime::get_java_tid(Thread* thread) {
1003   if (thread != NULL) {
1004     if (thread->is_Java_thread()) {
1005       oop obj = ((JavaThread*)thread)->threadObj();
1006       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1007     }
1008   }
1009   return 0;
1010 }
1011 
1012 /**
1013  * This function ought to be a void function, but cannot be because
1014  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1015  * 6254741.  Once that is fixed we can remove the dummy return value.
1016  */
1017 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1018   return dtrace_object_alloc_base(Thread::current(), o, size);
1019 }
1020 
1021 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1022   assert(DTraceAllocProbes, "wrong call");
1023   Klass* klass = o->klass();
1024   Symbol* name = klass->name();
1025   HOTSPOT_OBJECT_ALLOC(
1026                    get_java_tid(thread),
1027                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1028   return 0;
1029 }
1030 
1031 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1032     JavaThread* thread, Method* method))
1033   assert(DTraceMethodProbes, "wrong call");
1034   Symbol* kname = method->klass_name();
1035   Symbol* name = method->name();
1036   Symbol* sig = method->signature();
1037   HOTSPOT_METHOD_ENTRY(
1038       get_java_tid(thread),
1039       (char *) kname->bytes(), kname->utf8_length(),
1040       (char *) name->bytes(), name->utf8_length(),
1041       (char *) sig->bytes(), sig->utf8_length());
1042   return 0;
1043 JRT_END
1044 
1045 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1046     JavaThread* thread, Method* method))
1047   assert(DTraceMethodProbes, "wrong call");
1048   Symbol* kname = method->klass_name();
1049   Symbol* name = method->name();
1050   Symbol* sig = method->signature();
1051   HOTSPOT_METHOD_RETURN(
1052       get_java_tid(thread),
1053       (char *) kname->bytes(), kname->utf8_length(),
1054       (char *) name->bytes(), name->utf8_length(),
1055       (char *) sig->bytes(), sig->utf8_length());
1056   return 0;
1057 JRT_END
1058 
1059 
1060 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1061 // for a call current in progress, i.e., arguments has been pushed on stack
1062 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1063 // vtable updates, etc.  Caller frame must be compiled.
1064 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1065   ResourceMark rm(THREAD);
1066 
1067   // last java frame on stack (which includes native call frames)
1068   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1069 
1070   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1071 }
1072 
1073 
1074 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1075 // for a call current in progress, i.e., arguments has been pushed on stack
1076 // but callee has not been invoked yet.  Caller frame must be compiled.
1077 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1078                                               vframeStream& vfst,
1079                                               Bytecodes::Code& bc,
1080                                               CallInfo& callinfo, TRAPS) {
1081   Handle receiver;
1082   Handle nullHandle;  //create a handy null handle for exception returns
1083 
1084   assert(!vfst.at_end(), "Java frame must exist");
1085 
1086   // Find caller and bci from vframe
1087   methodHandle caller(THREAD, vfst.method());
1088   int          bci   = vfst.bci();
1089 
1090   // Find bytecode
1091   Bytecode_invoke bytecode(caller, bci);
1092   bc = bytecode.invoke_code();
1093   int bytecode_index = bytecode.index();
1094 
1095   // Find receiver for non-static call
1096   if (bc != Bytecodes::_invokestatic &&
1097       bc != Bytecodes::_invokedynamic &&
1098       bc != Bytecodes::_invokehandle) {
1099     // This register map must be update since we need to find the receiver for
1100     // compiled frames. The receiver might be in a register.
1101     RegisterMap reg_map2(thread);
1102     frame stubFrame   = thread->last_frame();
1103     // Caller-frame is a compiled frame
1104     frame callerFrame = stubFrame.sender(&reg_map2);
1105 
1106     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1107     if (callee.is_null()) {
1108       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1109     }
1110     // Retrieve from a compiled argument list
1111     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1112 
1113     if (receiver.is_null()) {
1114       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1115     }
1116   }
1117 
1118   // Resolve method. This is parameterized by bytecode.
1119   constantPoolHandle constants(THREAD, caller->constants());
1120   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1121   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1122 
1123 #ifdef ASSERT
1124   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1125   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1126     assert(receiver.not_null(), "should have thrown exception");
1127     KlassHandle receiver_klass(THREAD, receiver->klass());
1128     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1129                             // klass is already loaded
1130     KlassHandle static_receiver_klass(THREAD, rk);
1131     // Method handle invokes might have been optimized to a direct call
1132     // so don't check for the receiver class.
1133     // FIXME this weakens the assert too much
1134     methodHandle callee = callinfo.selected_method();
1135     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1136            callee->is_method_handle_intrinsic() ||
1137            callee->is_compiled_lambda_form(),
1138            "actual receiver must be subclass of static receiver klass");
1139     if (receiver_klass->is_instance_klass()) {
1140       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1141         tty->print_cr("ERROR: Klass not yet initialized!!");
1142         receiver_klass()->print();
1143       }
1144       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1145     }
1146   }
1147 #endif
1148 
1149   return receiver;
1150 }
1151 
1152 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1153   ResourceMark rm(THREAD);
1154   // We need first to check if any Java activations (compiled, interpreted)
1155   // exist on the stack since last JavaCall.  If not, we need
1156   // to get the target method from the JavaCall wrapper.
1157   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1158   methodHandle callee_method;
1159   if (vfst.at_end()) {
1160     // No Java frames were found on stack since we did the JavaCall.
1161     // Hence the stack can only contain an entry_frame.  We need to
1162     // find the target method from the stub frame.
1163     RegisterMap reg_map(thread, false);
1164     frame fr = thread->last_frame();
1165     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1166     fr = fr.sender(&reg_map);
1167     assert(fr.is_entry_frame(), "must be");
1168     // fr is now pointing to the entry frame.
1169     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1170     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1171   } else {
1172     Bytecodes::Code bc;
1173     CallInfo callinfo;
1174     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1175     callee_method = callinfo.selected_method();
1176   }
1177   assert(callee_method()->is_method(), "must be");
1178   return callee_method;
1179 }
1180 
1181 // Resolves a call.
1182 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1183                                            bool is_virtual,
1184                                            bool is_optimized, TRAPS) {
1185   methodHandle callee_method;
1186   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1187   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1188     int retry_count = 0;
1189     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1190            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1191       // If has a pending exception then there is no need to re-try to
1192       // resolve this method.
1193       // If the method has been redefined, we need to try again.
1194       // Hack: we have no way to update the vtables of arrays, so don't
1195       // require that java.lang.Object has been updated.
1196 
1197       // It is very unlikely that method is redefined more than 100 times
1198       // in the middle of resolve. If it is looping here more than 100 times
1199       // means then there could be a bug here.
1200       guarantee((retry_count++ < 100),
1201                 "Could not resolve to latest version of redefined method");
1202       // method is redefined in the middle of resolve so re-try.
1203       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1204     }
1205   }
1206   return callee_method;
1207 }
1208 
1209 // Resolves a call.  The compilers generate code for calls that go here
1210 // and are patched with the real destination of the call.
1211 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1212                                            bool is_virtual,
1213                                            bool is_optimized, TRAPS) {
1214 
1215   ResourceMark rm(thread);
1216   RegisterMap cbl_map(thread, false);
1217   frame caller_frame = thread->last_frame().sender(&cbl_map);
1218 
1219   CodeBlob* caller_cb = caller_frame.cb();
1220   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1221   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1222 
1223   // make sure caller is not getting deoptimized
1224   // and removed before we are done with it.
1225   // CLEANUP - with lazy deopt shouldn't need this lock
1226   nmethodLocker caller_lock(caller_nm);
1227 
1228   // determine call info & receiver
1229   // note: a) receiver is NULL for static calls
1230   //       b) an exception is thrown if receiver is NULL for non-static calls
1231   CallInfo call_info;
1232   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1233   Handle receiver = find_callee_info(thread, invoke_code,
1234                                      call_info, CHECK_(methodHandle()));
1235   methodHandle callee_method = call_info.selected_method();
1236 
1237   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1238          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1239          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1240          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1241          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1242 
1243   assert(caller_nm->is_alive(), "It should be alive");
1244 
1245 #ifndef PRODUCT
1246   // tracing/debugging/statistics
1247   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1248                 (is_virtual) ? (&_resolve_virtual_ctr) :
1249                                (&_resolve_static_ctr);
1250   Atomic::inc(addr);
1251 
1252   if (TraceCallFixup) {
1253     ResourceMark rm(thread);
1254     tty->print("resolving %s%s (%s) call to",
1255       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1256       Bytecodes::name(invoke_code));
1257     callee_method->print_short_name(tty);
1258     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1259                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1260   }
1261 #endif
1262 
1263   // JSR 292 key invariant:
1264   // If the resolved method is a MethodHandle invoke target, the call
1265   // site must be a MethodHandle call site, because the lambda form might tail-call
1266   // leaving the stack in a state unknown to either caller or callee
1267   // TODO detune for now but we might need it again
1268 //  assert(!callee_method->is_compiled_lambda_form() ||
1269 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1270 
1271   // Compute entry points. This might require generation of C2I converter
1272   // frames, so we cannot be holding any locks here. Furthermore, the
1273   // computation of the entry points is independent of patching the call.  We
1274   // always return the entry-point, but we only patch the stub if the call has
1275   // not been deoptimized.  Return values: For a virtual call this is an
1276   // (cached_oop, destination address) pair. For a static call/optimized
1277   // virtual this is just a destination address.
1278 
1279   StaticCallInfo static_call_info;
1280   CompiledICInfo virtual_call_info;
1281 
1282   // Make sure the callee nmethod does not get deoptimized and removed before
1283   // we are done patching the code.
1284   nmethod* callee_nm = callee_method->code();
1285   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1286     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1287     callee_nm = NULL;
1288   }
1289   nmethodLocker nl_callee(callee_nm);
1290 #ifdef ASSERT
1291   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1292 #endif
1293 
1294   if (is_virtual) {
1295     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1296     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1297     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1298     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1299                      is_optimized, static_bound, virtual_call_info,
1300                      CHECK_(methodHandle()));
1301   } else {
1302     // static call
1303     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1304   }
1305 
1306   // grab lock, check for deoptimization and potentially patch caller
1307   {
1308     MutexLocker ml_patch(CompiledIC_lock);
1309 
1310     // Lock blocks for safepoint during which both nmethods can change state.
1311 
1312     // Now that we are ready to patch if the Method* was redefined then
1313     // don't update call site and let the caller retry.
1314     // Don't update call site if callee nmethod was unloaded or deoptimized.
1315     // Don't update call site if callee nmethod was replaced by an other nmethod
1316     // which may happen when multiply alive nmethod (tiered compilation)
1317     // will be supported.
1318     if (!callee_method->is_old() &&
1319         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1320 #ifdef ASSERT
1321       // We must not try to patch to jump to an already unloaded method.
1322       if (dest_entry_point != 0) {
1323         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1324         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1325                "should not call unloaded nmethod");
1326       }
1327 #endif
1328       if (is_virtual) {
1329         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1330         if (inline_cache->is_clean()) {
1331           inline_cache->set_to_monomorphic(virtual_call_info);
1332         }
1333       } else {
1334         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1335         if (ssc->is_clean()) ssc->set(static_call_info);
1336       }
1337     }
1338 
1339   } // unlock CompiledIC_lock
1340 
1341   return callee_method;
1342 }
1343 
1344 
1345 // Inline caches exist only in compiled code
1346 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1347 #ifdef ASSERT
1348   RegisterMap reg_map(thread, false);
1349   frame stub_frame = thread->last_frame();
1350   assert(stub_frame.is_runtime_frame(), "sanity check");
1351   frame caller_frame = stub_frame.sender(&reg_map);
1352   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1353 #endif /* ASSERT */
1354 
1355   methodHandle callee_method;
1356   JRT_BLOCK
1357     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1358     // Return Method* through TLS
1359     thread->set_vm_result_2(callee_method());
1360   JRT_BLOCK_END
1361   // return compiled code entry point after potential safepoints
1362   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1363   return callee_method->verified_code_entry();
1364 JRT_END
1365 
1366 
1367 // Handle call site that has been made non-entrant
1368 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1369   // 6243940 We might end up in here if the callee is deoptimized
1370   // as we race to call it.  We don't want to take a safepoint if
1371   // the caller was interpreted because the caller frame will look
1372   // interpreted to the stack walkers and arguments are now
1373   // "compiled" so it is much better to make this transition
1374   // invisible to the stack walking code. The i2c path will
1375   // place the callee method in the callee_target. It is stashed
1376   // there because if we try and find the callee by normal means a
1377   // safepoint is possible and have trouble gc'ing the compiled args.
1378   RegisterMap reg_map(thread, false);
1379   frame stub_frame = thread->last_frame();
1380   assert(stub_frame.is_runtime_frame(), "sanity check");
1381   frame caller_frame = stub_frame.sender(&reg_map);
1382 
1383   if (caller_frame.is_interpreted_frame() ||
1384       caller_frame.is_entry_frame()) {
1385     Method* callee = thread->callee_target();
1386     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1387     thread->set_vm_result_2(callee);
1388     thread->set_callee_target(NULL);
1389     return callee->get_c2i_entry();
1390   }
1391 
1392   // Must be compiled to compiled path which is safe to stackwalk
1393   methodHandle callee_method;
1394   JRT_BLOCK
1395     // Force resolving of caller (if we called from compiled frame)
1396     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1397     thread->set_vm_result_2(callee_method());
1398   JRT_BLOCK_END
1399   // return compiled code entry point after potential safepoints
1400   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1401   return callee_method->verified_code_entry();
1402 JRT_END
1403 
1404 // Handle abstract method call
1405 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1406   return StubRoutines::throw_AbstractMethodError_entry();
1407 JRT_END
1408 
1409 
1410 // resolve a static call and patch code
1411 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1412   methodHandle callee_method;
1413   JRT_BLOCK
1414     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1415     thread->set_vm_result_2(callee_method());
1416   JRT_BLOCK_END
1417   // return compiled code entry point after potential safepoints
1418   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1419   return callee_method->verified_code_entry();
1420 JRT_END
1421 
1422 
1423 // resolve virtual call and update inline cache to monomorphic
1424 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1425   methodHandle callee_method;
1426   JRT_BLOCK
1427     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1428     thread->set_vm_result_2(callee_method());
1429   JRT_BLOCK_END
1430   // return compiled code entry point after potential safepoints
1431   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1432   return callee_method->verified_code_entry();
1433 JRT_END
1434 
1435 
1436 // Resolve a virtual call that can be statically bound (e.g., always
1437 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1438 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1439   methodHandle callee_method;
1440   JRT_BLOCK
1441     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1442     thread->set_vm_result_2(callee_method());
1443   JRT_BLOCK_END
1444   // return compiled code entry point after potential safepoints
1445   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1446   return callee_method->verified_code_entry();
1447 JRT_END
1448 
1449 
1450 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1451   ResourceMark rm(thread);
1452   CallInfo call_info;
1453   Bytecodes::Code bc;
1454 
1455   // receiver is NULL for static calls. An exception is thrown for NULL
1456   // receivers for non-static calls
1457   Handle receiver = find_callee_info(thread, bc, call_info,
1458                                      CHECK_(methodHandle()));
1459   // Compiler1 can produce virtual call sites that can actually be statically bound
1460   // If we fell thru to below we would think that the site was going megamorphic
1461   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1462   // we'd try and do a vtable dispatch however methods that can be statically bound
1463   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1464   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1465   // plain ic_miss) and the site will be converted to an optimized virtual call site
1466   // never to miss again. I don't believe C2 will produce code like this but if it
1467   // did this would still be the correct thing to do for it too, hence no ifdef.
1468   //
1469   if (call_info.resolved_method()->can_be_statically_bound()) {
1470     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1471     if (TraceCallFixup) {
1472       RegisterMap reg_map(thread, false);
1473       frame caller_frame = thread->last_frame().sender(&reg_map);
1474       ResourceMark rm(thread);
1475       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1476       callee_method->print_short_name(tty);
1477       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1478       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1479     }
1480     return callee_method;
1481   }
1482 
1483   methodHandle callee_method = call_info.selected_method();
1484 
1485   bool should_be_mono = false;
1486 
1487 #ifndef PRODUCT
1488   Atomic::inc(&_ic_miss_ctr);
1489 
1490   // Statistics & Tracing
1491   if (TraceCallFixup) {
1492     ResourceMark rm(thread);
1493     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1494     callee_method->print_short_name(tty);
1495     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1496   }
1497 
1498   if (ICMissHistogram) {
1499     MutexLocker m(VMStatistic_lock);
1500     RegisterMap reg_map(thread, false);
1501     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1502     // produce statistics under the lock
1503     trace_ic_miss(f.pc());
1504   }
1505 #endif
1506 
1507   // install an event collector so that when a vtable stub is created the
1508   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1509   // event can't be posted when the stub is created as locks are held
1510   // - instead the event will be deferred until the event collector goes
1511   // out of scope.
1512   JvmtiDynamicCodeEventCollector event_collector;
1513 
1514   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1515   { MutexLocker ml_patch (CompiledIC_lock);
1516     RegisterMap reg_map(thread, false);
1517     frame caller_frame = thread->last_frame().sender(&reg_map);
1518     CodeBlob* cb = caller_frame.cb();
1519     if (cb->is_nmethod()) {
1520       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1521       bool should_be_mono = false;
1522       if (inline_cache->is_optimized()) {
1523         if (TraceCallFixup) {
1524           ResourceMark rm(thread);
1525           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1526           callee_method->print_short_name(tty);
1527           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1528         }
1529         should_be_mono = true;
1530       } else if (inline_cache->is_icholder_call()) {
1531         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1532         if (ic_oop != NULL) {
1533 
1534           if (receiver()->klass() == ic_oop->holder_klass()) {
1535             // This isn't a real miss. We must have seen that compiled code
1536             // is now available and we want the call site converted to a
1537             // monomorphic compiled call site.
1538             // We can't assert for callee_method->code() != NULL because it
1539             // could have been deoptimized in the meantime
1540             if (TraceCallFixup) {
1541               ResourceMark rm(thread);
1542               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1543               callee_method->print_short_name(tty);
1544               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1545             }
1546             should_be_mono = true;
1547           }
1548         }
1549       }
1550 
1551       if (should_be_mono) {
1552 
1553         // We have a path that was monomorphic but was going interpreted
1554         // and now we have (or had) a compiled entry. We correct the IC
1555         // by using a new icBuffer.
1556         CompiledICInfo info;
1557         KlassHandle receiver_klass(THREAD, receiver()->klass());
1558         inline_cache->compute_monomorphic_entry(callee_method,
1559                                                 receiver_klass,
1560                                                 inline_cache->is_optimized(),
1561                                                 false,
1562                                                 info, CHECK_(methodHandle()));
1563         inline_cache->set_to_monomorphic(info);
1564       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1565         // Potential change to megamorphic
1566         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1567         if (!successful) {
1568           inline_cache->set_to_clean();
1569         }
1570       } else {
1571         // Either clean or megamorphic
1572       }
1573     } else {
1574       fatal("Unimplemented");
1575     }
1576   } // Release CompiledIC_lock
1577 
1578   return callee_method;
1579 }
1580 
1581 //
1582 // Resets a call-site in compiled code so it will get resolved again.
1583 // This routines handles both virtual call sites, optimized virtual call
1584 // sites, and static call sites. Typically used to change a call sites
1585 // destination from compiled to interpreted.
1586 //
1587 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1588   ResourceMark rm(thread);
1589   RegisterMap reg_map(thread, false);
1590   frame stub_frame = thread->last_frame();
1591   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1592   frame caller = stub_frame.sender(&reg_map);
1593 
1594   // Do nothing if the frame isn't a live compiled frame.
1595   // nmethod could be deoptimized by the time we get here
1596   // so no update to the caller is needed.
1597 
1598   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1599 
1600     address pc = caller.pc();
1601 
1602     // Check for static or virtual call
1603     bool is_static_call = false;
1604     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1605 
1606     // Default call_addr is the location of the "basic" call.
1607     // Determine the address of the call we a reresolving. With
1608     // Inline Caches we will always find a recognizable call.
1609     // With Inline Caches disabled we may or may not find a
1610     // recognizable call. We will always find a call for static
1611     // calls and for optimized virtual calls. For vanilla virtual
1612     // calls it depends on the state of the UseInlineCaches switch.
1613     //
1614     // With Inline Caches disabled we can get here for a virtual call
1615     // for two reasons:
1616     //   1 - calling an abstract method. The vtable for abstract methods
1617     //       will run us thru handle_wrong_method and we will eventually
1618     //       end up in the interpreter to throw the ame.
1619     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1620     //       call and between the time we fetch the entry address and
1621     //       we jump to it the target gets deoptimized. Similar to 1
1622     //       we will wind up in the interprter (thru a c2i with c2).
1623     //
1624     address call_addr = NULL;
1625     {
1626       // Get call instruction under lock because another thread may be
1627       // busy patching it.
1628       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1629       // Location of call instruction
1630       if (NativeCall::is_call_before(pc)) {
1631         NativeCall *ncall = nativeCall_before(pc);
1632         call_addr = ncall->instruction_address();
1633       }
1634     }
1635     // Make sure nmethod doesn't get deoptimized and removed until
1636     // this is done with it.
1637     // CLEANUP - with lazy deopt shouldn't need this lock
1638     nmethodLocker nmlock(caller_nm);
1639 
1640     if (call_addr != NULL) {
1641       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1642       int ret = iter.next(); // Get item
1643       if (ret) {
1644         assert(iter.addr() == call_addr, "must find call");
1645         if (iter.type() == relocInfo::static_call_type) {
1646           is_static_call = true;
1647         } else {
1648           assert(iter.type() == relocInfo::virtual_call_type ||
1649                  iter.type() == relocInfo::opt_virtual_call_type
1650                 , "unexpected relocInfo. type");
1651         }
1652       } else {
1653         assert(!UseInlineCaches, "relocation info. must exist for this address");
1654       }
1655 
1656       // Cleaning the inline cache will force a new resolve. This is more robust
1657       // than directly setting it to the new destination, since resolving of calls
1658       // is always done through the same code path. (experience shows that it
1659       // leads to very hard to track down bugs, if an inline cache gets updated
1660       // to a wrong method). It should not be performance critical, since the
1661       // resolve is only done once.
1662 
1663       MutexLocker ml(CompiledIC_lock);
1664       if (is_static_call) {
1665         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1666         ssc->set_to_clean();
1667       } else {
1668         // compiled, dispatched call (which used to call an interpreted method)
1669         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1670         inline_cache->set_to_clean();
1671       }
1672     }
1673 
1674   }
1675 
1676   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1677 
1678 
1679 #ifndef PRODUCT
1680   Atomic::inc(&_wrong_method_ctr);
1681 
1682   if (TraceCallFixup) {
1683     ResourceMark rm(thread);
1684     tty->print("handle_wrong_method reresolving call to");
1685     callee_method->print_short_name(tty);
1686     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1687   }
1688 #endif
1689 
1690   return callee_method;
1691 }
1692 
1693 #ifdef ASSERT
1694 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1695                                                                 const BasicType* sig_bt,
1696                                                                 const VMRegPair* regs) {
1697   ResourceMark rm;
1698   const int total_args_passed = method->size_of_parameters();
1699   const VMRegPair*    regs_with_member_name = regs;
1700         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1701 
1702   const int member_arg_pos = total_args_passed - 1;
1703   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1704   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1705 
1706   const bool is_outgoing = method->is_method_handle_intrinsic();
1707   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1708 
1709   for (int i = 0; i < member_arg_pos; i++) {
1710     VMReg a =    regs_with_member_name[i].first();
1711     VMReg b = regs_without_member_name[i].first();
1712     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1713   }
1714   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1715 }
1716 #endif
1717 
1718 // ---------------------------------------------------------------------------
1719 // We are calling the interpreter via a c2i. Normally this would mean that
1720 // we were called by a compiled method. However we could have lost a race
1721 // where we went int -> i2c -> c2i and so the caller could in fact be
1722 // interpreted. If the caller is compiled we attempt to patch the caller
1723 // so he no longer calls into the interpreter.
1724 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1725   Method* moop(method);
1726 
1727   address entry_point = moop->from_compiled_entry();
1728 
1729   // It's possible that deoptimization can occur at a call site which hasn't
1730   // been resolved yet, in which case this function will be called from
1731   // an nmethod that has been patched for deopt and we can ignore the
1732   // request for a fixup.
1733   // Also it is possible that we lost a race in that from_compiled_entry
1734   // is now back to the i2c in that case we don't need to patch and if
1735   // we did we'd leap into space because the callsite needs to use
1736   // "to interpreter" stub in order to load up the Method*. Don't
1737   // ask me how I know this...
1738 
1739   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1740   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1741     return;
1742   }
1743 
1744   // The check above makes sure this is a nmethod.
1745   nmethod* nm = cb->as_nmethod_or_null();
1746   assert(nm, "must be");
1747 
1748   // Get the return PC for the passed caller PC.
1749   address return_pc = caller_pc + frame::pc_return_offset;
1750 
1751   // There is a benign race here. We could be attempting to patch to a compiled
1752   // entry point at the same time the callee is being deoptimized. If that is
1753   // the case then entry_point may in fact point to a c2i and we'd patch the
1754   // call site with the same old data. clear_code will set code() to NULL
1755   // at the end of it. If we happen to see that NULL then we can skip trying
1756   // to patch. If we hit the window where the callee has a c2i in the
1757   // from_compiled_entry and the NULL isn't present yet then we lose the race
1758   // and patch the code with the same old data. Asi es la vida.
1759 
1760   if (moop->code() == NULL) return;
1761 
1762   if (nm->is_in_use()) {
1763 
1764     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1765     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1766     if (NativeCall::is_call_before(return_pc)) {
1767       NativeCall *call = nativeCall_before(return_pc);
1768       //
1769       // bug 6281185. We might get here after resolving a call site to a vanilla
1770       // virtual call. Because the resolvee uses the verified entry it may then
1771       // see compiled code and attempt to patch the site by calling us. This would
1772       // then incorrectly convert the call site to optimized and its downhill from
1773       // there. If you're lucky you'll get the assert in the bugid, if not you've
1774       // just made a call site that could be megamorphic into a monomorphic site
1775       // for the rest of its life! Just another racing bug in the life of
1776       // fixup_callers_callsite ...
1777       //
1778       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1779       iter.next();
1780       assert(iter.has_current(), "must have a reloc at java call site");
1781       relocInfo::relocType typ = iter.reloc()->type();
1782       if (typ != relocInfo::static_call_type &&
1783            typ != relocInfo::opt_virtual_call_type &&
1784            typ != relocInfo::static_stub_type) {
1785         return;
1786       }
1787       address destination = call->destination();
1788       if (destination != entry_point) {
1789         CodeBlob* callee = CodeCache::find_blob(destination);
1790         // callee == cb seems weird. It means calling interpreter thru stub.
1791         if (callee == cb || callee->is_adapter_blob()) {
1792           // static call or optimized virtual
1793           if (TraceCallFixup) {
1794             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1795             moop->print_short_name(tty);
1796             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1797           }
1798           call->set_destination_mt_safe(entry_point);
1799         } else {
1800           if (TraceCallFixup) {
1801             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1802             moop->print_short_name(tty);
1803             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1804           }
1805           // assert is too strong could also be resolve destinations.
1806           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1807         }
1808       } else {
1809           if (TraceCallFixup) {
1810             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1811             moop->print_short_name(tty);
1812             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1813           }
1814       }
1815     }
1816   }
1817 IRT_END
1818 
1819 
1820 // same as JVM_Arraycopy, but called directly from compiled code
1821 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1822                                                 oopDesc* dest, jint dest_pos,
1823                                                 jint length,
1824                                                 JavaThread* thread)) {
1825 #ifndef PRODUCT
1826   _slow_array_copy_ctr++;
1827 #endif
1828   // Check if we have null pointers
1829   if (src == NULL || dest == NULL) {
1830     THROW(vmSymbols::java_lang_NullPointerException());
1831   }
1832   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1833   // even though the copy_array API also performs dynamic checks to ensure
1834   // that src and dest are truly arrays (and are conformable).
1835   // The copy_array mechanism is awkward and could be removed, but
1836   // the compilers don't call this function except as a last resort,
1837   // so it probably doesn't matter.
1838   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1839                                         (arrayOopDesc*)dest, dest_pos,
1840                                         length, thread);
1841 }
1842 JRT_END
1843 
1844 char* SharedRuntime::generate_class_cast_message(
1845     JavaThread* thread, const char* objName) {
1846 
1847   // Get target class name from the checkcast instruction
1848   vframeStream vfst(thread, true);
1849   assert(!vfst.at_end(), "Java frame must exist");
1850   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1851   Klass* targetKlass = vfst.method()->constants()->klass_at(
1852     cc.index(), thread);
1853   return generate_class_cast_message(objName, targetKlass->external_name());
1854 }
1855 
1856 char* SharedRuntime::generate_class_cast_message(
1857     const char* objName, const char* targetKlassName, const char* desc) {
1858   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1859 
1860   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1861   if (NULL == message) {
1862     // Shouldn't happen, but don't cause even more problems if it does
1863     message = const_cast<char*>(objName);
1864   } else {
1865     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1866   }
1867   return message;
1868 }
1869 
1870 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1871   (void) JavaThread::current()->reguard_stack();
1872 JRT_END
1873 
1874 
1875 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1876 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1877   // Disable ObjectSynchronizer::quick_enter() in default config
1878   // until JDK-8077392 is resolved.
1879   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1880     // Only try quick_enter() if we're not trying to reach a safepoint
1881     // so that the calling thread reaches the safepoint more quickly.
1882     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1883   }
1884   // NO_ASYNC required because an async exception on the state transition destructor
1885   // would leave you with the lock held and it would never be released.
1886   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1887   // and the model is that an exception implies the method failed.
1888   JRT_BLOCK_NO_ASYNC
1889   oop obj(_obj);
1890   if (PrintBiasedLockingStatistics) {
1891     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1892   }
1893   Handle h_obj(THREAD, obj);
1894   if (UseBiasedLocking) {
1895     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1896     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1897   } else {
1898     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1899   }
1900   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1901   JRT_BLOCK_END
1902 JRT_END
1903 
1904 // Handles the uncommon cases of monitor unlocking in compiled code
1905 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1906    oop obj(_obj);
1907   assert(JavaThread::current() == THREAD, "invariant");
1908   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1909   // testing was unable to ever fire the assert that guarded it so I have removed it.
1910   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1911 #undef MIGHT_HAVE_PENDING
1912 #ifdef MIGHT_HAVE_PENDING
1913   // Save and restore any pending_exception around the exception mark.
1914   // While the slow_exit must not throw an exception, we could come into
1915   // this routine with one set.
1916   oop pending_excep = NULL;
1917   const char* pending_file;
1918   int pending_line;
1919   if (HAS_PENDING_EXCEPTION) {
1920     pending_excep = PENDING_EXCEPTION;
1921     pending_file  = THREAD->exception_file();
1922     pending_line  = THREAD->exception_line();
1923     CLEAR_PENDING_EXCEPTION;
1924   }
1925 #endif /* MIGHT_HAVE_PENDING */
1926 
1927   {
1928     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1929     EXCEPTION_MARK;
1930     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1931   }
1932 
1933 #ifdef MIGHT_HAVE_PENDING
1934   if (pending_excep != NULL) {
1935     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1936   }
1937 #endif /* MIGHT_HAVE_PENDING */
1938 JRT_END
1939 
1940 #ifndef PRODUCT
1941 
1942 void SharedRuntime::print_statistics() {
1943   ttyLocker ttyl;
1944   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1945 
1946   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1947 
1948   SharedRuntime::print_ic_miss_histogram();
1949 
1950   if (CountRemovableExceptions) {
1951     if (_nof_removable_exceptions > 0) {
1952       Unimplemented(); // this counter is not yet incremented
1953       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1954     }
1955   }
1956 
1957   // Dump the JRT_ENTRY counters
1958   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1959   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1960   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1961   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1962   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1963   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1964   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1965 
1966   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1967   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1968   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1969   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1970   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1971 
1972   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1973   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1974   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1975   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1976   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1977   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1978   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1979   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1980   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1981   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1982   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1983   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1984   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1985   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1986   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1987   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1988 
1989   AdapterHandlerLibrary::print_statistics();
1990 
1991   if (xtty != NULL)  xtty->tail("statistics");
1992 }
1993 
1994 inline double percent(int x, int y) {
1995   return 100.0 * x / MAX2(y, 1);
1996 }
1997 
1998 class MethodArityHistogram {
1999  public:
2000   enum { MAX_ARITY = 256 };
2001  private:
2002   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2003   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2004   static int _max_arity;                      // max. arity seen
2005   static int _max_size;                       // max. arg size seen
2006 
2007   static void add_method_to_histogram(nmethod* nm) {
2008     Method* m = nm->method();
2009     ArgumentCount args(m->signature());
2010     int arity   = args.size() + (m->is_static() ? 0 : 1);
2011     int argsize = m->size_of_parameters();
2012     arity   = MIN2(arity, MAX_ARITY-1);
2013     argsize = MIN2(argsize, MAX_ARITY-1);
2014     int count = nm->method()->compiled_invocation_count();
2015     _arity_histogram[arity]  += count;
2016     _size_histogram[argsize] += count;
2017     _max_arity = MAX2(_max_arity, arity);
2018     _max_size  = MAX2(_max_size, argsize);
2019   }
2020 
2021   void print_histogram_helper(int n, int* histo, const char* name) {
2022     const int N = MIN2(5, n);
2023     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2024     double sum = 0;
2025     double weighted_sum = 0;
2026     int i;
2027     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2028     double rest = sum;
2029     double percent = sum / 100;
2030     for (i = 0; i <= N; i++) {
2031       rest -= histo[i];
2032       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2033     }
2034     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2035     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2036   }
2037 
2038   void print_histogram() {
2039     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2040     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2041     tty->print_cr("\nSame for parameter size (in words):");
2042     print_histogram_helper(_max_size, _size_histogram, "size");
2043     tty->cr();
2044   }
2045 
2046  public:
2047   MethodArityHistogram() {
2048     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2049     _max_arity = _max_size = 0;
2050     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2051     CodeCache::nmethods_do(add_method_to_histogram);
2052     print_histogram();
2053   }
2054 };
2055 
2056 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2057 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2058 int MethodArityHistogram::_max_arity;
2059 int MethodArityHistogram::_max_size;
2060 
2061 void SharedRuntime::print_call_statistics(int comp_total) {
2062   tty->print_cr("Calls from compiled code:");
2063   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2064   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2065   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2066   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2067   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2068   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2069   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2070   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2071   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2072   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2073   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2074   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2075   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2076   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2077   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2078   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2079   tty->cr();
2080   tty->print_cr("Note 1: counter updates are not MT-safe.");
2081   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2082   tty->print_cr("        %% in nested categories are relative to their category");
2083   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2084   tty->cr();
2085 
2086   MethodArityHistogram h;
2087 }
2088 #endif
2089 
2090 
2091 // A simple wrapper class around the calling convention information
2092 // that allows sharing of adapters for the same calling convention.
2093 class AdapterFingerPrint : public CHeapObj<mtCode> {
2094  private:
2095   enum {
2096     _basic_type_bits = 4,
2097     _basic_type_mask = right_n_bits(_basic_type_bits),
2098     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2099     _compact_int_count = 3
2100   };
2101   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2102   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2103 
2104   union {
2105     int  _compact[_compact_int_count];
2106     int* _fingerprint;
2107   } _value;
2108   int _length; // A negative length indicates the fingerprint is in the compact form,
2109                // Otherwise _value._fingerprint is the array.
2110 
2111   // Remap BasicTypes that are handled equivalently by the adapters.
2112   // These are correct for the current system but someday it might be
2113   // necessary to make this mapping platform dependent.
2114   static int adapter_encoding(BasicType in) {
2115     switch (in) {
2116       case T_BOOLEAN:
2117       case T_BYTE:
2118       case T_SHORT:
2119       case T_CHAR:
2120         // There are all promoted to T_INT in the calling convention
2121         return T_INT;
2122 
2123       case T_OBJECT:
2124       case T_ARRAY:
2125         // In other words, we assume that any register good enough for
2126         // an int or long is good enough for a managed pointer.
2127 #ifdef _LP64
2128         return T_LONG;
2129 #else
2130         return T_INT;
2131 #endif
2132 
2133       case T_INT:
2134       case T_LONG:
2135       case T_FLOAT:
2136       case T_DOUBLE:
2137       case T_VOID:
2138         return in;
2139 
2140       default:
2141         ShouldNotReachHere();
2142         return T_CONFLICT;
2143     }
2144   }
2145 
2146  public:
2147   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2148     // The fingerprint is based on the BasicType signature encoded
2149     // into an array of ints with eight entries per int.
2150     int* ptr;
2151     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2152     if (len <= _compact_int_count) {
2153       assert(_compact_int_count == 3, "else change next line");
2154       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2155       // Storing the signature encoded as signed chars hits about 98%
2156       // of the time.
2157       _length = -len;
2158       ptr = _value._compact;
2159     } else {
2160       _length = len;
2161       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2162       ptr = _value._fingerprint;
2163     }
2164 
2165     // Now pack the BasicTypes with 8 per int
2166     int sig_index = 0;
2167     for (int index = 0; index < len; index++) {
2168       int value = 0;
2169       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2170         int bt = ((sig_index < total_args_passed)
2171                   ? adapter_encoding(sig_bt[sig_index++])
2172                   : 0);
2173         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2174         value = (value << _basic_type_bits) | bt;
2175       }
2176       ptr[index] = value;
2177     }
2178   }
2179 
2180   ~AdapterFingerPrint() {
2181     if (_length > 0) {
2182       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2183     }
2184   }
2185 
2186   int value(int index) {
2187     if (_length < 0) {
2188       return _value._compact[index];
2189     }
2190     return _value._fingerprint[index];
2191   }
2192   int length() {
2193     if (_length < 0) return -_length;
2194     return _length;
2195   }
2196 
2197   bool is_compact() {
2198     return _length <= 0;
2199   }
2200 
2201   unsigned int compute_hash() {
2202     int hash = 0;
2203     for (int i = 0; i < length(); i++) {
2204       int v = value(i);
2205       hash = (hash << 8) ^ v ^ (hash >> 5);
2206     }
2207     return (unsigned int)hash;
2208   }
2209 
2210   const char* as_string() {
2211     stringStream st;
2212     st.print("0x");
2213     for (int i = 0; i < length(); i++) {
2214       st.print("%08x", value(i));
2215     }
2216     return st.as_string();
2217   }
2218 
2219   bool equals(AdapterFingerPrint* other) {
2220     if (other->_length != _length) {
2221       return false;
2222     }
2223     if (_length < 0) {
2224       assert(_compact_int_count == 3, "else change next line");
2225       return _value._compact[0] == other->_value._compact[0] &&
2226              _value._compact[1] == other->_value._compact[1] &&
2227              _value._compact[2] == other->_value._compact[2];
2228     } else {
2229       for (int i = 0; i < _length; i++) {
2230         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2231           return false;
2232         }
2233       }
2234     }
2235     return true;
2236   }
2237 };
2238 
2239 
2240 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2241 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2242   friend class AdapterHandlerTableIterator;
2243 
2244  private:
2245 
2246 #ifndef PRODUCT
2247   static int _lookups; // number of calls to lookup
2248   static int _buckets; // number of buckets checked
2249   static int _equals;  // number of buckets checked with matching hash
2250   static int _hits;    // number of successful lookups
2251   static int _compact; // number of equals calls with compact signature
2252 #endif
2253 
2254   AdapterHandlerEntry* bucket(int i) {
2255     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2256   }
2257 
2258  public:
2259   AdapterHandlerTable()
2260     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2261 
2262   // Create a new entry suitable for insertion in the table
2263   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2264     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2265     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2266     return entry;
2267   }
2268 
2269   // Insert an entry into the table
2270   void add(AdapterHandlerEntry* entry) {
2271     int index = hash_to_index(entry->hash());
2272     add_entry(index, entry);
2273   }
2274 
2275   void free_entry(AdapterHandlerEntry* entry) {
2276     entry->deallocate();
2277     BasicHashtable<mtCode>::free_entry(entry);
2278   }
2279 
2280   // Find a entry with the same fingerprint if it exists
2281   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2282     NOT_PRODUCT(_lookups++);
2283     AdapterFingerPrint fp(total_args_passed, sig_bt);
2284     unsigned int hash = fp.compute_hash();
2285     int index = hash_to_index(hash);
2286     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2287       NOT_PRODUCT(_buckets++);
2288       if (e->hash() == hash) {
2289         NOT_PRODUCT(_equals++);
2290         if (fp.equals(e->fingerprint())) {
2291 #ifndef PRODUCT
2292           if (fp.is_compact()) _compact++;
2293           _hits++;
2294 #endif
2295           return e;
2296         }
2297       }
2298     }
2299     return NULL;
2300   }
2301 
2302 #ifndef PRODUCT
2303   void print_statistics() {
2304     ResourceMark rm;
2305     int longest = 0;
2306     int empty = 0;
2307     int total = 0;
2308     int nonempty = 0;
2309     for (int index = 0; index < table_size(); index++) {
2310       int count = 0;
2311       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2312         count++;
2313       }
2314       if (count != 0) nonempty++;
2315       if (count == 0) empty++;
2316       if (count > longest) longest = count;
2317       total += count;
2318     }
2319     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2320                   empty, longest, total, total / (double)nonempty);
2321     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2322                   _lookups, _buckets, _equals, _hits, _compact);
2323   }
2324 #endif
2325 };
2326 
2327 
2328 #ifndef PRODUCT
2329 
2330 int AdapterHandlerTable::_lookups;
2331 int AdapterHandlerTable::_buckets;
2332 int AdapterHandlerTable::_equals;
2333 int AdapterHandlerTable::_hits;
2334 int AdapterHandlerTable::_compact;
2335 
2336 #endif
2337 
2338 class AdapterHandlerTableIterator : public StackObj {
2339  private:
2340   AdapterHandlerTable* _table;
2341   int _index;
2342   AdapterHandlerEntry* _current;
2343 
2344   void scan() {
2345     while (_index < _table->table_size()) {
2346       AdapterHandlerEntry* a = _table->bucket(_index);
2347       _index++;
2348       if (a != NULL) {
2349         _current = a;
2350         return;
2351       }
2352     }
2353   }
2354 
2355  public:
2356   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2357     scan();
2358   }
2359   bool has_next() {
2360     return _current != NULL;
2361   }
2362   AdapterHandlerEntry* next() {
2363     if (_current != NULL) {
2364       AdapterHandlerEntry* result = _current;
2365       _current = _current->next();
2366       if (_current == NULL) scan();
2367       return result;
2368     } else {
2369       return NULL;
2370     }
2371   }
2372 };
2373 
2374 
2375 // ---------------------------------------------------------------------------
2376 // Implementation of AdapterHandlerLibrary
2377 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2378 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2379 const int AdapterHandlerLibrary_size = 16*K;
2380 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2381 
2382 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2383   // Should be called only when AdapterHandlerLibrary_lock is active.
2384   if (_buffer == NULL) // Initialize lazily
2385       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2386   return _buffer;
2387 }
2388 
2389 extern "C" void unexpected_adapter_call() {
2390   ShouldNotCallThis();
2391 }
2392 
2393 void AdapterHandlerLibrary::initialize() {
2394   if (_adapters != NULL) return;
2395   _adapters = new AdapterHandlerTable();
2396 
2397   if (!CodeCacheExtensions::skip_compiler_support()) {
2398     // Create a special handler for abstract methods.  Abstract methods
2399     // are never compiled so an i2c entry is somewhat meaningless, but
2400     // throw AbstractMethodError just in case.
2401     // Pass wrong_method_abstract for the c2i transitions to return
2402     // AbstractMethodError for invalid invocations.
2403     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2404     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2405                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2406                                                                 wrong_method_abstract, wrong_method_abstract);
2407   } else {
2408     // Adapters are not supposed to be used.
2409     // Generate a special one to cause an error if used (and store this
2410     // singleton in place of the useless _abstract_method_error adapter).
2411     address entry = (address) &unexpected_adapter_call;
2412     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2413                                                                 entry,
2414                                                                 entry,
2415                                                                 entry);
2416 
2417   }
2418 }
2419 
2420 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2421                                                       address i2c_entry,
2422                                                       address c2i_entry,
2423                                                       address c2i_unverified_entry) {
2424   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2425 }
2426 
2427 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2428   // Use customized signature handler.  Need to lock around updates to
2429   // the AdapterHandlerTable (it is not safe for concurrent readers
2430   // and a single writer: this could be fixed if it becomes a
2431   // problem).
2432 
2433   ResourceMark rm;
2434 
2435   NOT_PRODUCT(int insts_size);
2436   AdapterBlob* new_adapter = NULL;
2437   AdapterHandlerEntry* entry = NULL;
2438   AdapterFingerPrint* fingerprint = NULL;
2439   {
2440     MutexLocker mu(AdapterHandlerLibrary_lock);
2441     // make sure data structure is initialized
2442     initialize();
2443 
2444     if (CodeCacheExtensions::skip_compiler_support()) {
2445       // adapters are useless and should not be used, including the
2446       // abstract_method_handler. However, some callers check that
2447       // an adapter was installed.
2448       // Return the singleton adapter, stored into _abstract_method_handler
2449       // and modified to cause an error if we ever call it.
2450       return _abstract_method_handler;
2451     }
2452 
2453     if (method->is_abstract()) {
2454       return _abstract_method_handler;
2455     }
2456 
2457     // Fill in the signature array, for the calling-convention call.
2458     int total_args_passed = method->size_of_parameters(); // All args on stack
2459 
2460     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2461     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2462     int i = 0;
2463     if (!method->is_static())  // Pass in receiver first
2464       sig_bt[i++] = T_OBJECT;
2465     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2466       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2467       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2468         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2469     }
2470     assert(i == total_args_passed, "");
2471 
2472     // Lookup method signature's fingerprint
2473     entry = _adapters->lookup(total_args_passed, sig_bt);
2474 
2475 #ifdef ASSERT
2476     AdapterHandlerEntry* shared_entry = NULL;
2477     // Start adapter sharing verification only after the VM is booted.
2478     if (VerifyAdapterSharing && (entry != NULL)) {
2479       shared_entry = entry;
2480       entry = NULL;
2481     }
2482 #endif
2483 
2484     if (entry != NULL) {
2485       return entry;
2486     }
2487 
2488     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2489     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2490 
2491     // Make a C heap allocated version of the fingerprint to store in the adapter
2492     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2493 
2494     // StubRoutines::code2() is initialized after this function can be called. As a result,
2495     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2496     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2497     // stub that ensure that an I2C stub is called from an interpreter frame.
2498     bool contains_all_checks = StubRoutines::code2() != NULL;
2499 
2500     // Create I2C & C2I handlers
2501     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2502     if (buf != NULL) {
2503       CodeBuffer buffer(buf);
2504       short buffer_locs[20];
2505       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2506                                              sizeof(buffer_locs)/sizeof(relocInfo));
2507 
2508       MacroAssembler _masm(&buffer);
2509       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2510                                                      total_args_passed,
2511                                                      comp_args_on_stack,
2512                                                      sig_bt,
2513                                                      regs,
2514                                                      fingerprint);
2515 #ifdef ASSERT
2516       if (VerifyAdapterSharing) {
2517         if (shared_entry != NULL) {
2518           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2519           // Release the one just created and return the original
2520           _adapters->free_entry(entry);
2521           return shared_entry;
2522         } else  {
2523           entry->save_code(buf->code_begin(), buffer.insts_size());
2524         }
2525       }
2526 #endif
2527 
2528       new_adapter = AdapterBlob::create(&buffer);
2529       NOT_PRODUCT(insts_size = buffer.insts_size());
2530     }
2531     if (new_adapter == NULL) {
2532       // CodeCache is full, disable compilation
2533       // Ought to log this but compile log is only per compile thread
2534       // and we're some non descript Java thread.
2535       return NULL; // Out of CodeCache space
2536     }
2537     entry->relocate(new_adapter->content_begin());
2538 #ifndef PRODUCT
2539     // debugging suppport
2540     if (PrintAdapterHandlers || PrintStubCode) {
2541       ttyLocker ttyl;
2542       entry->print_adapter_on(tty);
2543       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2544                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2545                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2546       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2547       if (Verbose || PrintStubCode) {
2548         address first_pc = entry->base_address();
2549         if (first_pc != NULL) {
2550           Disassembler::decode(first_pc, first_pc + insts_size);
2551           tty->cr();
2552         }
2553       }
2554     }
2555 #endif
2556     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2557     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2558     if (contains_all_checks || !VerifyAdapterCalls) {
2559       _adapters->add(entry);
2560     }
2561   }
2562   // Outside of the lock
2563   if (new_adapter != NULL) {
2564     char blob_id[256];
2565     jio_snprintf(blob_id,
2566                  sizeof(blob_id),
2567                  "%s(%s)@" PTR_FORMAT,
2568                  new_adapter->name(),
2569                  fingerprint->as_string(),
2570                  new_adapter->content_begin());
2571     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2572 
2573     if (JvmtiExport::should_post_dynamic_code_generated()) {
2574       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2575     }
2576   }
2577   return entry;
2578 }
2579 
2580 address AdapterHandlerEntry::base_address() {
2581   address base = _i2c_entry;
2582   if (base == NULL)  base = _c2i_entry;
2583   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2584   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2585   return base;
2586 }
2587 
2588 void AdapterHandlerEntry::relocate(address new_base) {
2589   address old_base = base_address();
2590   assert(old_base != NULL, "");
2591   ptrdiff_t delta = new_base - old_base;
2592   if (_i2c_entry != NULL)
2593     _i2c_entry += delta;
2594   if (_c2i_entry != NULL)
2595     _c2i_entry += delta;
2596   if (_c2i_unverified_entry != NULL)
2597     _c2i_unverified_entry += delta;
2598   assert(base_address() == new_base, "");
2599 }
2600 
2601 
2602 void AdapterHandlerEntry::deallocate() {
2603   delete _fingerprint;
2604 #ifdef ASSERT
2605   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2606 #endif
2607 }
2608 
2609 
2610 #ifdef ASSERT
2611 // Capture the code before relocation so that it can be compared
2612 // against other versions.  If the code is captured after relocation
2613 // then relative instructions won't be equivalent.
2614 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2615   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2616   _saved_code_length = length;
2617   memcpy(_saved_code, buffer, length);
2618 }
2619 
2620 
2621 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2622   if (length != _saved_code_length) {
2623     return false;
2624   }
2625 
2626   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2627 }
2628 #endif
2629 
2630 
2631 /**
2632  * Create a native wrapper for this native method.  The wrapper converts the
2633  * Java-compiled calling convention to the native convention, handles
2634  * arguments, and transitions to native.  On return from the native we transition
2635  * back to java blocking if a safepoint is in progress.
2636  */
2637 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2638   ResourceMark rm;
2639   nmethod* nm = NULL;
2640 
2641   assert(method->is_native(), "must be native");
2642   assert(method->is_method_handle_intrinsic() ||
2643          method->has_native_function(), "must have something valid to call!");
2644 
2645   {
2646     // Perform the work while holding the lock, but perform any printing outside the lock
2647     MutexLocker mu(AdapterHandlerLibrary_lock);
2648     // See if somebody beat us to it
2649     if (method->code() != NULL) {
2650       return;
2651     }
2652 
2653     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2654     assert(compile_id > 0, "Must generate native wrapper");
2655 
2656 
2657     ResourceMark rm;
2658     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2659     if (buf != NULL) {
2660       CodeBuffer buffer(buf);
2661       double locs_buf[20];
2662       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2663       MacroAssembler _masm(&buffer);
2664 
2665       // Fill in the signature array, for the calling-convention call.
2666       const int total_args_passed = method->size_of_parameters();
2667 
2668       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2669       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2670       int i=0;
2671       if (!method->is_static())  // Pass in receiver first
2672         sig_bt[i++] = T_OBJECT;
2673       SignatureStream ss(method->signature());
2674       for (; !ss.at_return_type(); ss.next()) {
2675         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2676         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2677           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2678       }
2679       assert(i == total_args_passed, "");
2680       BasicType ret_type = ss.type();
2681 
2682       // Now get the compiled-Java layout as input (or output) arguments.
2683       // NOTE: Stubs for compiled entry points of method handle intrinsics
2684       // are just trampolines so the argument registers must be outgoing ones.
2685       const bool is_outgoing = method->is_method_handle_intrinsic();
2686       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2687 
2688       // Generate the compiled-to-native wrapper code
2689       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2690 
2691       if (nm != NULL) {
2692         method->set_code(method, nm);
2693 
2694         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2695         if (directive->PrintAssemblyOption) {
2696           Disassembler::decode(nm, tty);
2697         }
2698         DirectivesStack::release(directive);
2699       }
2700     }
2701   } // Unlock AdapterHandlerLibrary_lock
2702 
2703 
2704   // Install the generated code.
2705   if (nm != NULL) {
2706     if (PrintCompilation) {
2707       ttyLocker ttyl;
2708       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2709     }
2710     nm->post_compiled_method_load_event();
2711   }
2712 }
2713 
2714 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2715   assert(thread == JavaThread::current(), "must be");
2716   // The code is about to enter a JNI lazy critical native method and
2717   // _needs_gc is true, so if this thread is already in a critical
2718   // section then just return, otherwise this thread should block
2719   // until needs_gc has been cleared.
2720   if (thread->in_critical()) {
2721     return;
2722   }
2723   // Lock and unlock a critical section to give the system a chance to block
2724   GC_locker::lock_critical(thread);
2725   GC_locker::unlock_critical(thread);
2726 JRT_END
2727 
2728 // -------------------------------------------------------------------------
2729 // Java-Java calling convention
2730 // (what you use when Java calls Java)
2731 
2732 //------------------------------name_for_receiver----------------------------------
2733 // For a given signature, return the VMReg for parameter 0.
2734 VMReg SharedRuntime::name_for_receiver() {
2735   VMRegPair regs;
2736   BasicType sig_bt = T_OBJECT;
2737   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2738   // Return argument 0 register.  In the LP64 build pointers
2739   // take 2 registers, but the VM wants only the 'main' name.
2740   return regs.first();
2741 }
2742 
2743 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2744   // This method is returning a data structure allocating as a
2745   // ResourceObject, so do not put any ResourceMarks in here.
2746   char *s = sig->as_C_string();
2747   int len = (int)strlen(s);
2748   s++; len--;                   // Skip opening paren
2749   char *t = s+len;
2750   while (*(--t) != ')');      // Find close paren
2751 
2752   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2753   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2754   int cnt = 0;
2755   if (has_receiver) {
2756     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2757   }
2758 
2759   while (s < t) {
2760     switch (*s++) {            // Switch on signature character
2761     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2762     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2763     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2764     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2765     case 'I': sig_bt[cnt++] = T_INT;     break;
2766     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2767     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2768     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2769     case 'V': sig_bt[cnt++] = T_VOID;    break;
2770     case 'L':                   // Oop
2771       while (*s++ != ';');   // Skip signature
2772       sig_bt[cnt++] = T_OBJECT;
2773       break;
2774     case '[': {                 // Array
2775       do {                      // Skip optional size
2776         while (*s >= '0' && *s <= '9') s++;
2777       } while (*s++ == '[');   // Nested arrays?
2778       // Skip element type
2779       if (s[-1] == 'L')
2780         while (*s++ != ';'); // Skip signature
2781       sig_bt[cnt++] = T_ARRAY;
2782       break;
2783     }
2784     default : ShouldNotReachHere();
2785     }
2786   }
2787 
2788   if (has_appendix) {
2789     sig_bt[cnt++] = T_OBJECT;
2790   }
2791 
2792   assert(cnt < 256, "grow table size");
2793 
2794   int comp_args_on_stack;
2795   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2796 
2797   // the calling convention doesn't count out_preserve_stack_slots so
2798   // we must add that in to get "true" stack offsets.
2799 
2800   if (comp_args_on_stack) {
2801     for (int i = 0; i < cnt; i++) {
2802       VMReg reg1 = regs[i].first();
2803       if (reg1->is_stack()) {
2804         // Yuck
2805         reg1 = reg1->bias(out_preserve_stack_slots());
2806       }
2807       VMReg reg2 = regs[i].second();
2808       if (reg2->is_stack()) {
2809         // Yuck
2810         reg2 = reg2->bias(out_preserve_stack_slots());
2811       }
2812       regs[i].set_pair(reg2, reg1);
2813     }
2814   }
2815 
2816   // results
2817   *arg_size = cnt;
2818   return regs;
2819 }
2820 
2821 // OSR Migration Code
2822 //
2823 // This code is used convert interpreter frames into compiled frames.  It is
2824 // called from very start of a compiled OSR nmethod.  A temp array is
2825 // allocated to hold the interesting bits of the interpreter frame.  All
2826 // active locks are inflated to allow them to move.  The displaced headers and
2827 // active interpreter locals are copied into the temp buffer.  Then we return
2828 // back to the compiled code.  The compiled code then pops the current
2829 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2830 // copies the interpreter locals and displaced headers where it wants.
2831 // Finally it calls back to free the temp buffer.
2832 //
2833 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2834 
2835 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2836 
2837   //
2838   // This code is dependent on the memory layout of the interpreter local
2839   // array and the monitors. On all of our platforms the layout is identical
2840   // so this code is shared. If some platform lays the their arrays out
2841   // differently then this code could move to platform specific code or
2842   // the code here could be modified to copy items one at a time using
2843   // frame accessor methods and be platform independent.
2844 
2845   frame fr = thread->last_frame();
2846   assert(fr.is_interpreted_frame(), "");
2847   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2848 
2849   // Figure out how many monitors are active.
2850   int active_monitor_count = 0;
2851   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2852        kptr < fr.interpreter_frame_monitor_begin();
2853        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2854     if (kptr->obj() != NULL) active_monitor_count++;
2855   }
2856 
2857   // QQQ we could place number of active monitors in the array so that compiled code
2858   // could double check it.
2859 
2860   Method* moop = fr.interpreter_frame_method();
2861   int max_locals = moop->max_locals();
2862   // Allocate temp buffer, 1 word per local & 2 per active monitor
2863   int buf_size_words = max_locals + active_monitor_count*2;
2864   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2865 
2866   // Copy the locals.  Order is preserved so that loading of longs works.
2867   // Since there's no GC I can copy the oops blindly.
2868   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2869   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2870                        (HeapWord*)&buf[0],
2871                        max_locals);
2872 
2873   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2874   int i = max_locals;
2875   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2876        kptr2 < fr.interpreter_frame_monitor_begin();
2877        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2878     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2879       BasicLock *lock = kptr2->lock();
2880       // Inflate so the displaced header becomes position-independent
2881       if (lock->displaced_header()->is_unlocked())
2882         ObjectSynchronizer::inflate_helper(kptr2->obj());
2883       // Now the displaced header is free to move
2884       buf[i++] = (intptr_t)lock->displaced_header();
2885       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2886     }
2887   }
2888   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2889 
2890   return buf;
2891 JRT_END
2892 
2893 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2894   FREE_C_HEAP_ARRAY(intptr_t, buf);
2895 JRT_END
2896 
2897 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2898   AdapterHandlerTableIterator iter(_adapters);
2899   while (iter.has_next()) {
2900     AdapterHandlerEntry* a = iter.next();
2901     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2902   }
2903   return false;
2904 }
2905 
2906 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2907   AdapterHandlerTableIterator iter(_adapters);
2908   while (iter.has_next()) {
2909     AdapterHandlerEntry* a = iter.next();
2910     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2911       st->print("Adapter for signature: ");
2912       a->print_adapter_on(tty);
2913       return;
2914     }
2915   }
2916   assert(false, "Should have found handler");
2917 }
2918 
2919 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2920   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2921                p2i(this), fingerprint()->as_string(),
2922                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
2923 
2924 }
2925 
2926 #ifndef PRODUCT
2927 
2928 void AdapterHandlerLibrary::print_statistics() {
2929   _adapters->print_statistics();
2930 }
2931 
2932 #endif /* PRODUCT */