/* * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/parallel/gcTaskManager.hpp" #include "gc/parallel/mutableSpace.hpp" #include "gc/parallel/parallelScavengeHeap.hpp" #include "gc/parallel/psOldGen.hpp" #include "gc/parallel/psPromotionManager.inline.hpp" #include "gc/parallel/psScavenge.inline.hpp" #include "gc/shared/gcTrace.hpp" #include "gc/shared/preservedMarks.inline.hpp" #include "gc/shared/taskqueue.inline.hpp" #include "logging/log.hpp" #include "memory/allocation.inline.hpp" #include "memory/memRegion.hpp" #include "memory/padded.inline.hpp" #include "memory/resourceArea.hpp" #include "oops/instanceKlass.inline.hpp" #include "oops/instanceMirrorKlass.inline.hpp" #include "oops/objArrayKlass.inline.hpp" #include "oops/oop.inline.hpp" PaddedEnd* PSPromotionManager::_manager_array = NULL; OopStarTaskQueueSet* PSPromotionManager::_stack_array_depth = NULL; PreservedMarksSet* PSPromotionManager::_preserved_marks_set = NULL; PSOldGen* PSPromotionManager::_old_gen = NULL; MutableSpace* PSPromotionManager::_young_space = NULL; void PSPromotionManager::initialize() { ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); _old_gen = heap->old_gen(); _young_space = heap->young_gen()->to_space(); const uint promotion_manager_num = ParallelGCThreads + 1; // To prevent false sharing, we pad the PSPromotionManagers // and make sure that the first instance starts at a cache line. assert(_manager_array == NULL, "Attempt to initialize twice"); _manager_array = PaddedArray::create_unfreeable(promotion_manager_num); guarantee(_manager_array != NULL, "Could not initialize promotion manager"); _stack_array_depth = new OopStarTaskQueueSet(ParallelGCThreads); guarantee(_stack_array_depth != NULL, "Could not initialize promotion manager"); // Create and register the PSPromotionManager(s) for the worker threads. for(uint i=0; iregister_queue(i, _manager_array[i].claimed_stack_depth()); } // The VMThread gets its own PSPromotionManager, which is not available // for work stealing. assert(_preserved_marks_set == NULL, "Attempt to initialize twice"); _preserved_marks_set = new PreservedMarksSet(true /* in_c_heap */); guarantee(_preserved_marks_set != NULL, "Could not initialize preserved marks set"); _preserved_marks_set->init(promotion_manager_num); for (uint i = 0; i < promotion_manager_num; i += 1) { _manager_array[i].register_preserved_marks(_preserved_marks_set->get(i)); } } // Helper functions to get around the circular dependency between // psScavenge.inline.hpp and psPromotionManager.inline.hpp. bool PSPromotionManager::should_scavenge(oop* p, bool check_to_space) { return PSScavenge::should_scavenge(p, check_to_space); } bool PSPromotionManager::should_scavenge(narrowOop* p, bool check_to_space) { return PSScavenge::should_scavenge(p, check_to_space); } PSPromotionManager* PSPromotionManager::gc_thread_promotion_manager(uint index) { assert(index < ParallelGCThreads, "index out of range"); assert(_manager_array != NULL, "Sanity"); return &_manager_array[index]; } PSPromotionManager* PSPromotionManager::vm_thread_promotion_manager() { assert(_manager_array != NULL, "Sanity"); return &_manager_array[ParallelGCThreads]; } void PSPromotionManager::pre_scavenge() { ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); _preserved_marks_set->assert_empty(); _young_space = heap->young_gen()->to_space(); for(uint i=0; ireset(); } } bool PSPromotionManager::post_scavenge(YoungGCTracer& gc_tracer) { bool promotion_failure_occurred = false; TASKQUEUE_STATS_ONLY(print_taskqueue_stats()); for (uint i = 0; i < ParallelGCThreads + 1; i++) { PSPromotionManager* manager = manager_array(i); assert(manager->claimed_stack_depth()->is_empty(), "should be empty"); if (manager->_promotion_failed_info.has_failed()) { gc_tracer.report_promotion_failed(manager->_promotion_failed_info); promotion_failure_occurred = true; } manager->flush_labs(); } if (!promotion_failure_occurred) { // If there was no promotion failure, the preserved mark stacks // should be empty. _preserved_marks_set->assert_empty(); } return promotion_failure_occurred; } #if TASKQUEUE_STATS void PSPromotionManager::print_local_stats(outputStream* const out, uint i) const { #define FMT " " SIZE_FORMAT_W(10) out->print_cr("%3u" FMT FMT FMT FMT, i, _masked_pushes, _masked_steals, _arrays_chunked, _array_chunks_processed); #undef FMT } static const char* const pm_stats_hdr[] = { " --------masked------- arrays array", "thr push steal chunked chunks", "--- ---------- ---------- ---------- ----------" }; void PSPromotionManager::print_taskqueue_stats() { if (!log_develop_is_enabled(Trace, gc, task, stats)) { return; } Log(gc, task, stats) log; ResourceMark rm; outputStream* out = log.trace_stream(); out->print_cr("== GC Tasks Stats, GC %3d", ParallelScavengeHeap::heap()->total_collections()); TaskQueueStats totals; out->print("thr "); TaskQueueStats::print_header(1, out); out->cr(); out->print("--- "); TaskQueueStats::print_header(2, out); out->cr(); for (uint i = 0; i < ParallelGCThreads + 1; ++i) { TaskQueueStats& next = manager_array(i)->_claimed_stack_depth.stats; out->print("%3d ", i); next.print(out); out->cr(); totals += next; } out->print("tot "); totals.print(out); out->cr(); const uint hlines = sizeof(pm_stats_hdr) / sizeof(pm_stats_hdr[0]); for (uint i = 0; i < hlines; ++i) out->print_cr("%s", pm_stats_hdr[i]); for (uint i = 0; i < ParallelGCThreads + 1; ++i) { manager_array(i)->print_local_stats(out, i); } } void PSPromotionManager::reset_stats() { claimed_stack_depth()->stats.reset(); _masked_pushes = _masked_steals = 0; _arrays_chunked = _array_chunks_processed = 0; } #endif // TASKQUEUE_STATS PSPromotionManager::PSPromotionManager() { ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); // We set the old lab's start array. _old_lab.set_start_array(old_gen()->start_array()); uint queue_size; claimed_stack_depth()->initialize(); queue_size = claimed_stack_depth()->max_elems(); _totally_drain = (ParallelGCThreads == 1) || (GCDrainStackTargetSize == 0); if (_totally_drain) { _target_stack_size = 0; } else { // don't let the target stack size to be more than 1/4 of the entries _target_stack_size = (uint) MIN2((uint) GCDrainStackTargetSize, (uint) (queue_size / 4)); } _array_chunk_size = ParGCArrayScanChunk; // let's choose 1.5x the chunk size _min_array_size_for_chunking = 3 * _array_chunk_size / 2; _preserved_marks = NULL; reset(); } void PSPromotionManager::reset() { assert(stacks_empty(), "reset of non-empty stack"); // We need to get an assert in here to make sure the labs are always flushed. ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); // Do not prefill the LAB's, save heap wastage! HeapWord* lab_base = young_space()->top(); _young_lab.initialize(MemRegion(lab_base, (size_t)0)); _young_gen_is_full = false; lab_base = old_gen()->object_space()->top(); _old_lab.initialize(MemRegion(lab_base, (size_t)0)); _old_gen_is_full = false; _promotion_failed_info.reset(); TASKQUEUE_STATS_ONLY(reset_stats()); } void PSPromotionManager::register_preserved_marks(PreservedMarks* preserved_marks) { assert(_preserved_marks == NULL, "do not set it twice"); _preserved_marks = preserved_marks; } class ParRestoreGCTask : public GCTask { private: const uint _id; PreservedMarksSet* const _preserved_marks_set; volatile size_t* const _total_size_addr; public: virtual char* name() { return (char*) "preserved mark restoration task"; } virtual void do_it(GCTaskManager* manager, uint which){ _preserved_marks_set->get(_id)->restore_and_increment(_total_size_addr); } ParRestoreGCTask(uint id, PreservedMarksSet* preserved_marks_set, volatile size_t* total_size_addr) : _id(id), _preserved_marks_set(preserved_marks_set), _total_size_addr(total_size_addr) { } }; class PSRestorePreservedMarksTaskExecutor : public RestorePreservedMarksTaskExecutor { private: GCTaskManager* _gc_task_manager; public: PSRestorePreservedMarksTaskExecutor(GCTaskManager* gc_task_manager) : _gc_task_manager(gc_task_manager) { } void restore(PreservedMarksSet* preserved_marks_set, volatile size_t* total_size_addr) { // GCTask / GCTaskQueue are ResourceObjs ResourceMark rm; GCTaskQueue* q = GCTaskQueue::create(); for (uint i = 0; i < preserved_marks_set->num(); i += 1) { q->enqueue(new ParRestoreGCTask(i, preserved_marks_set, total_size_addr)); } _gc_task_manager->execute_and_wait(q); } }; void PSPromotionManager::restore_preserved_marks() { PSRestorePreservedMarksTaskExecutor task_executor(PSScavenge::gc_task_manager()); _preserved_marks_set->restore(&task_executor); } void PSPromotionManager::drain_stacks_depth(bool totally_drain) { totally_drain = totally_drain || _totally_drain; #ifdef ASSERT ParallelScavengeHeap* heap = ParallelScavengeHeap::heap(); MutableSpace* to_space = heap->young_gen()->to_space(); MutableSpace* old_space = heap->old_gen()->object_space(); #endif /* ASSERT */ OopStarTaskQueue* const tq = claimed_stack_depth(); do { StarTask p; // Drain overflow stack first, so other threads can steal from // claimed stack while we work. while (tq->pop_overflow(p)) { process_popped_location_depth(p); } if (totally_drain) { while (tq->pop_local(p)) { process_popped_location_depth(p); } } else { while (tq->size() > _target_stack_size && tq->pop_local(p)) { process_popped_location_depth(p); } } } while (totally_drain && !tq->taskqueue_empty() || !tq->overflow_empty()); assert(!totally_drain || tq->taskqueue_empty(), "Sanity"); assert(totally_drain || tq->size() <= _target_stack_size, "Sanity"); assert(tq->overflow_empty(), "Sanity"); } void PSPromotionManager::flush_labs() { assert(stacks_empty(), "Attempt to flush lab with live stack"); // If either promotion lab fills up, we can flush the // lab but not refill it, so check first. assert(!_young_lab.is_flushed() || _young_gen_is_full, "Sanity"); if (!_young_lab.is_flushed()) _young_lab.flush(); assert(!_old_lab.is_flushed() || _old_gen_is_full, "Sanity"); if (!_old_lab.is_flushed()) _old_lab.flush(); // Let PSScavenge know if we overflowed if (_young_gen_is_full) { PSScavenge::set_survivor_overflow(true); } } template void PSPromotionManager::process_array_chunk_work( oop obj, int start, int end) { assert(start <= end, "invariant"); T* const base = (T*)objArrayOop(obj)->base(); T* p = base + start; T* const chunk_end = base + end; while (p < chunk_end) { if (PSScavenge::should_scavenge(p)) { claim_or_forward_depth(p); } ++p; } } void PSPromotionManager::process_array_chunk(oop old) { assert(PSChunkLargeArrays, "invariant"); assert(old->is_objArray(), "invariant"); assert(old->is_forwarded(), "invariant"); TASKQUEUE_STATS_ONLY(++_array_chunks_processed); oop const obj = old->forwardee(); int start; int const end = arrayOop(old)->length(); if (end > (int) _min_array_size_for_chunking) { // we'll chunk more start = end - _array_chunk_size; assert(start > 0, "invariant"); arrayOop(old)->set_length(start); push_depth(mask_chunked_array_oop(old)); TASKQUEUE_STATS_ONLY(++_masked_pushes); } else { // this is the final chunk for this array start = 0; int const actual_length = arrayOop(obj)->length(); arrayOop(old)->set_length(actual_length); } if (UseCompressedOops) { process_array_chunk_work(obj, start, end); } else { process_array_chunk_work(obj, start, end); } } class PushContentsClosure : public ExtendedOopClosure { PSPromotionManager* _pm; public: PushContentsClosure(PSPromotionManager* pm) : _pm(pm) {} template void do_oop_nv(T* p) { if (PSScavenge::should_scavenge(p)) { _pm->claim_or_forward_depth(p); } } virtual void do_oop(oop* p) { do_oop_nv(p); } virtual void do_oop(narrowOop* p) { do_oop_nv(p); } // Don't use the oop verification code in the oop_oop_iterate framework. debug_only(virtual bool should_verify_oops() { return false; }) }; void InstanceKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { PushContentsClosure cl(pm); oop_oop_iterate_oop_maps_reverse(obj, &cl); } void InstanceMirrorKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { // Note that we don't have to follow the mirror -> klass pointer, since all // klasses that are dirty will be scavenged when we iterate over the // ClassLoaderData objects. InstanceKlass::oop_ps_push_contents(obj, pm); PushContentsClosure cl(pm); oop_oop_iterate_statics(obj, &cl); } void InstanceClassLoaderKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { InstanceKlass::oop_ps_push_contents(obj, pm); // This is called by the young collector. It will already have taken care of // all class loader data. So, we don't have to follow the class loader -> // class loader data link. } template static void oop_ps_push_contents_specialized(oop obj, InstanceRefKlass *klass, PSPromotionManager* pm) { T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj); if (PSScavenge::should_scavenge(referent_addr)) { ReferenceProcessor* rp = PSScavenge::reference_processor(); if (rp->discover_reference(obj, klass->reference_type())) { // reference already enqueued, referent and next will be traversed later klass->InstanceKlass::oop_ps_push_contents(obj, pm); return; } else { // treat referent as normal oop pm->claim_or_forward_depth(referent_addr); } } // Treat discovered as normal oop, if ref is not "active", // i.e. if next is non-NULL. T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj); T next_oop = oopDesc::load_heap_oop(next_addr); if (!oopDesc::is_null(next_oop)) { // i.e. ref is not "active" T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj); log_develop_trace(gc, ref)(" Process discovered as normal " PTR_FORMAT, p2i(discovered_addr)); if (PSScavenge::should_scavenge(discovered_addr)) { pm->claim_or_forward_depth(discovered_addr); } } // Treat next as normal oop; next is a link in the reference queue. if (PSScavenge::should_scavenge(next_addr)) { pm->claim_or_forward_depth(next_addr); } klass->InstanceKlass::oop_ps_push_contents(obj, pm); } void InstanceRefKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { if (UseCompressedOops) { oop_ps_push_contents_specialized(obj, this, pm); } else { oop_ps_push_contents_specialized(obj, this, pm); } } void ObjArrayKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { assert(obj->is_objArray(), "obj must be obj array"); PushContentsClosure cl(pm); oop_oop_iterate_elements(objArrayOop(obj), &cl); } void TypeArrayKlass::oop_ps_push_contents(oop obj, PSPromotionManager* pm) { assert(obj->is_typeArray(),"must be a type array"); ShouldNotReachHere(); } oop PSPromotionManager::oop_promotion_failed(oop obj, markOop obj_mark) { assert(_old_gen_is_full || PromotionFailureALot, "Sanity"); // Attempt to CAS in the header. // This tests if the header is still the same as when // this started. If it is the same (i.e., no forwarding // pointer has been installed), then this thread owns // it. if (obj->cas_forward_to(obj, obj_mark, memory_order_relaxed)) { // We won any races, we "own" this object. assert(obj == obj->forwardee(), "Sanity"); _promotion_failed_info.register_copy_failure(obj->size()); push_contents(obj); _preserved_marks->push_if_necessary(obj, obj_mark); } else { // We lost, someone else "owns" this object guarantee(obj->is_forwarded(), "Object must be forwarded if the cas failed."); // No unallocation to worry about. obj = obj->forwardee(); } log_develop_trace(gc, scavenge)("{promotion-failure %s " PTR_FORMAT " (%d)}", obj->klass()->internal_name(), p2i(obj), obj->size()); return obj; }