1 /*
   2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 // MacroAssembler extends Assembler by a few frequently used macros.
  34 
  35 class ciTypeArray;
  36 
  37 class MacroAssembler: public Assembler {
  38  public:
  39   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  40 
  41   //
  42   // Optimized instruction emitters
  43   //
  44 
  45   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
  46   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
  47 
  48   // load d = *[a+si31]
  49   // Emits several instructions if the offset is not encodable in one instruction.
  50   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
  51   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
  52   inline static bool is_ld_largeoffset(address a);
  53   inline static int get_ld_largeoffset_offset(address a);
  54 
  55   inline void round_to(Register r, int modulus);
  56 
  57   // Load/store with type given by parameter.
  58   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
  59   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
  60 
  61   // Move register if destination register and target register are different
  62   inline void mr_if_needed(Register rd, Register rs);
  63   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
  64   // This is dedicated for emitting scheduled mach nodes. For better
  65   // readability of the ad file I put it here.
  66   // Endgroups are not needed if
  67   //  - the scheduler is off
  68   //  - the scheduler found that there is a natural group end, in that
  69   //    case it reduced the size of the instruction used in the test
  70   //    yielding 'needed'.
  71   inline void endgroup_if_needed(bool needed);
  72 
  73   // Memory barriers.
  74   inline void membar(int bits);
  75   inline void release();
  76   inline void acquire();
  77   inline void fence();
  78 
  79   // nop padding
  80   void align(int modulus, int max = 252, int rem = 0);
  81 
  82   //
  83   // Constants, loading constants, TOC support
  84   //
  85 
  86   // Address of the global TOC.
  87   inline static address global_toc();
  88   // Offset of given address to the global TOC.
  89   inline static int offset_to_global_toc(const address addr);
  90 
  91   // Address of TOC of the current method.
  92   inline address method_toc();
  93   // Offset of given address to TOC of the current method.
  94   inline int offset_to_method_toc(const address addr);
  95 
  96   // Global TOC.
  97   void calculate_address_from_global_toc(Register dst, address addr,
  98                                          bool hi16 = true, bool lo16 = true,
  99                                          bool add_relocation = true, bool emit_dummy_addr = false);
 100   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
 101     calculate_address_from_global_toc(dst, addr, true, false);
 102   };
 103   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
 104     calculate_address_from_global_toc(dst, addr, false, true);
 105   };
 106 
 107   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
 108   static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound);
 109   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
 110 
 111 #ifdef _LP64
 112   // Patch narrow oop constant.
 113   inline static bool is_set_narrow_oop(address a, address bound);
 114   static int patch_set_narrow_oop(address a, address bound, narrowOop data);
 115   static narrowOop get_narrow_oop(address a, address bound);
 116 #endif
 117 
 118   inline static bool is_load_const_at(address a);
 119 
 120   // Emits an oop const to the constant pool, loads the constant, and
 121   // sets a relocation info with address current_pc.
 122   // Returns true if successful.
 123   bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false);
 124 
 125   static bool is_load_const_from_method_toc_at(address a);
 126   static int get_offset_of_load_const_from_method_toc_at(address a);
 127 
 128   // Get the 64 bit constant from a `load_const' sequence.
 129   static long get_const(address load_const);
 130 
 131   // Patch the 64 bit constant of a `load_const' sequence. This is a
 132   // low level procedure. It neither flushes the instruction cache nor
 133   // is it atomic.
 134   static void patch_const(address load_const, long x);
 135 
 136   // Metadata in code that we have to keep track of.
 137   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
 138   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
 139   // Oops used directly in compiled code are stored in the constant pool,
 140   // and loaded from there.
 141   // Allocate new entry for oop in constant pool. Generate relocation.
 142   AddressLiteral allocate_oop_address(jobject obj);
 143   // Find oop obj in constant pool. Return relocation with it's index.
 144   AddressLiteral constant_oop_address(jobject obj);
 145 
 146   // Find oop in constant pool and emit instructions to load it.
 147   // Uses constant_oop_address.
 148   inline void set_oop_constant(jobject obj, Register d);
 149   // Same as load_address.
 150   inline void set_oop         (AddressLiteral obj_addr, Register d);
 151 
 152   // Read runtime constant:  Issue load if constant not yet established,
 153   // else use real constant.
 154   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 155                                                 Register tmp,
 156                                                 int offset);
 157 
 158   //
 159   // branch, jump
 160   //
 161 
 162   inline void pd_patch_instruction(address branch, address target);
 163   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
 164 
 165   // Conditional far branch for destinations encodable in 24+2 bits.
 166   // Same interface as bc, e.g. no inverse boint-field.
 167   enum {
 168     bc_far_optimize_not         = 0,
 169     bc_far_optimize_on_relocate = 1
 170   };
 171   // optimize: flag for telling the conditional far branch to optimize
 172   //           itself when relocated.
 173   void bc_far(int boint, int biint, Label& dest, int optimize);
 174   void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions
 175   // Relocation of conditional far branches.
 176   static bool    is_bc_far_at(address instruction_addr);
 177   static address get_dest_of_bc_far_at(address instruction_addr);
 178   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
 179  private:
 180   static bool inline is_bc_far_variant1_at(address instruction_addr);
 181   static bool inline is_bc_far_variant2_at(address instruction_addr);
 182   static bool inline is_bc_far_variant3_at(address instruction_addr);
 183  public:
 184 
 185   // Convenience bc_far versions.
 186   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
 187   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
 188   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
 189   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
 190   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
 191   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
 192   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
 193   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
 194 
 195   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
 196  private:
 197   enum {
 198     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
 199     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
 200     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
 201   };
 202   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
 203   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
 204   // Does the instruction use a pc-relative encoding of the destination?
 205   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
 206   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
 207   // Load destination relative to global toc.
 208   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
 209   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
 210   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
 211   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
 212 
 213  public:
 214   // call
 215   enum {
 216     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
 217     bl64_patchable_size              = bxx64_patchable_size,
 218     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
 219   };
 220   inline void bl64_patchable(address target, relocInfo::relocType rt) {
 221     bxx64_patchable(target, rt, /*link=*/true);
 222   }
 223   inline static bool is_bl64_patchable_at(address instruction_addr) {
 224     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
 225   }
 226   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
 227     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
 228   }
 229   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
 230     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
 231   }
 232   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
 233     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
 234   }
 235   // jump
 236   enum {
 237     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
 238     b64_patchable_size              = bxx64_patchable_size,
 239   };
 240   inline void b64_patchable(address target, relocInfo::relocType rt) {
 241     bxx64_patchable(target, rt, /*link=*/false);
 242   }
 243   inline static bool is_b64_patchable_at(address instruction_addr) {
 244     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
 245   }
 246   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
 247     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
 248   }
 249   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
 250     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
 251   }
 252   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
 253     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
 254   }
 255 
 256   //
 257   // Support for frame handling
 258   //
 259 
 260   // some ABI-related functions
 261   void save_nonvolatile_gprs(   Register dst_base, int offset);
 262   void restore_nonvolatile_gprs(Register src_base, int offset);
 263   enum { num_volatile_regs = 11 + 14 }; // GPR + FPR
 264   void save_volatile_gprs(   Register dst_base, int offset);
 265   void restore_volatile_gprs(Register src_base, int offset);
 266   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
 267   void restore_LR_CR(Register tmp);
 268 
 269   // Get current PC using bl-next-instruction trick.
 270   address get_PC_trash_LR(Register result);
 271 
 272   // Resize current frame either relatively wrt to current SP or absolute.
 273   void resize_frame(Register offset, Register tmp);
 274   void resize_frame(int      offset, Register tmp);
 275   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
 276 
 277   // Push a frame of size bytes.
 278   void push_frame(Register bytes, Register tmp);
 279 
 280   // Push a frame of size `bytes'. No abi space provided.
 281   void push_frame(unsigned int bytes, Register tmp);
 282 
 283   // Push a frame of size `bytes' plus abi_reg_args on top.
 284   void push_frame_reg_args(unsigned int bytes, Register tmp);
 285 
 286   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
 287   // space for local variables
 288   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
 289 
 290   // pop current C frame
 291   void pop_frame();
 292 
 293   //
 294   // Calls
 295   //
 296 
 297  private:
 298   address _last_calls_return_pc;
 299 
 300 #if defined(ABI_ELFv2)
 301   // Generic version of a call to C function.
 302   // Updates and returns _last_calls_return_pc.
 303   address branch_to(Register function_entry, bool and_link);
 304 #else
 305   // Generic version of a call to C function via a function descriptor
 306   // with variable support for C calling conventions (TOC, ENV, etc.).
 307   // updates and returns _last_calls_return_pc.
 308   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
 309                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
 310 #endif
 311 
 312  public:
 313 
 314   // Get the pc where the last call will return to. returns _last_calls_return_pc.
 315   inline address last_calls_return_pc();
 316 
 317 #if defined(ABI_ELFv2)
 318   // Call a C function via a function descriptor and use full C
 319   // calling conventions. Updates and returns _last_calls_return_pc.
 320   address call_c(Register function_entry);
 321   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 322   address call_c_and_return_to_caller(Register function_entry);
 323   address call_c(address function_entry, relocInfo::relocType rt);
 324 #else
 325   // Call a C function via a function descriptor and use full C
 326   // calling conventions. Updates and returns _last_calls_return_pc.
 327   address call_c(Register function_descriptor);
 328   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 329   address call_c_and_return_to_caller(Register function_descriptor);
 330   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
 331   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
 332                            Register toc);
 333 #endif
 334 
 335  protected:
 336 
 337   // It is imperative that all calls into the VM are handled via the
 338   // call_VM macros. They make sure that the stack linkage is setup
 339   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
 340   // while call_VM_leaf's correspond to LEAF entry points.
 341   //
 342   // This is the base routine called by the different versions of
 343   // call_VM. The interpreter may customize this version by overriding
 344   // it for its purposes (e.g., to save/restore additional registers
 345   // when doing a VM call).
 346   //
 347   // If no last_java_sp is specified (noreg) then SP will be used instead.
 348   virtual void call_VM_base(
 349      // where an oop-result ends up if any; use noreg otherwise
 350     Register        oop_result,
 351     // to set up last_Java_frame in stubs; use noreg otherwise
 352     Register        last_java_sp,
 353     // the entry point
 354     address         entry_point,
 355     // flag which indicates if exception should be checked
 356     bool            check_exception = true
 357   );
 358 
 359   // Support for VM calls. This is the base routine called by the
 360   // different versions of call_VM_leaf. The interpreter may customize
 361   // this version by overriding it for its purposes (e.g., to
 362   // save/restore additional registers when doing a VM call).
 363   void call_VM_leaf_base(address entry_point);
 364 
 365  public:
 366   // Call into the VM.
 367   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
 368   // Makes sure oop return values are visible to the GC.
 369   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 370   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 371   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 372   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
 373   void call_VM_leaf(address entry_point);
 374   void call_VM_leaf(address entry_point, Register arg_1);
 375   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 376   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 377 
 378   // Call a stub function via a function descriptor, but don't save
 379   // TOC before call, don't setup TOC and ENV for call, and don't
 380   // restore TOC after call. Updates and returns _last_calls_return_pc.
 381   inline address call_stub(Register function_entry);
 382   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
 383 
 384   //
 385   // Java utilities
 386   //
 387 
 388   // Read from the polling page, its address is already in a register.
 389   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
 390   // Check whether instruction is a read access to the polling page
 391   // which was emitted by load_from_polling_page(..).
 392   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
 393                                         address* polling_address_ptr = NULL);
 394 
 395   // Check whether instruction is a write access to the memory
 396   // serialization page realized by one of the instructions stw, stwu,
 397   // stwx, or stwux.
 398   static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
 399 
 400   // Support for NULL-checks
 401   //
 402   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 403   // If the accessed location is M[reg + offset] and the offset is known, provide the
 404   // offset. No explicit code generation is needed if the offset is within a certain
 405   // range (0 <= offset <= page_size).
 406 
 407   // Stack overflow checking
 408   void bang_stack_with_offset(int offset);
 409 
 410   // If instruction is a stack bang of the form ld, stdu, or
 411   // stdux, return the banged address. Otherwise, return 0.
 412   static address get_stack_bang_address(int instruction, void* ucontext);
 413 
 414   // Check for reserved stack access in method being exited. If the reserved
 415   // stack area was accessed, protect it again and throw StackOverflowError.
 416   void reserved_stack_check(Register return_pc);
 417 
 418   // Atomics
 419   // CmpxchgX sets condition register to cmpX(current, compare).
 420   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
 421   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
 422   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
 423   // The stxcx will probably not be succeeded by a releasing store.
 424   static inline bool cmpxchgx_hint_release_lock()  { return false; }
 425   static inline bool cmpxchgx_hint_atomic_update() { return false; }
 426 
 427   // Cmpxchg semantics
 428   enum {
 429     MemBarNone = 0,
 430     MemBarRel  = 1,
 431     MemBarAcq  = 2,
 432     MemBarFenceAfter = 4 // use powers of 2
 433   };
 434   void cmpxchgw(ConditionRegister flag,
 435                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 436                 int semantics, bool cmpxchgx_hint = false,
 437                 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false);
 438   void cmpxchgd(ConditionRegister flag,
 439                 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value,
 440                 Register addr_base, int semantics, bool cmpxchgx_hint = false,
 441                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false, bool weak = false);
 442 
 443   // interface method calling
 444   void lookup_interface_method(Register recv_klass,
 445                                Register intf_klass,
 446                                RegisterOrConstant itable_index,
 447                                Register method_result,
 448                                Register temp_reg, Register temp2_reg,
 449                                Label& no_such_interface);
 450 
 451   // virtual method calling
 452   void lookup_virtual_method(Register recv_klass,
 453                              RegisterOrConstant vtable_index,
 454                              Register method_result);
 455 
 456   // Test sub_klass against super_klass, with fast and slow paths.
 457 
 458   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 459   // One of the three labels can be NULL, meaning take the fall-through.
 460   // If super_check_offset is -1, the value is loaded up from super_klass.
 461   // No registers are killed, except temp_reg and temp2_reg.
 462   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
 463   void check_klass_subtype_fast_path(Register sub_klass,
 464                                      Register super_klass,
 465                                      Register temp1_reg,
 466                                      Register temp2_reg,
 467                                      Label* L_success,
 468                                      Label* L_failure,
 469                                      Label* L_slow_path = NULL, // default fall through
 470                                      RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 471 
 472   // The rest of the type check; must be wired to a corresponding fast path.
 473   // It does not repeat the fast path logic, so don't use it standalone.
 474   // The temp_reg can be noreg, if no temps are available.
 475   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
 476   // Updates the sub's secondary super cache as necessary.
 477   void check_klass_subtype_slow_path(Register sub_klass,
 478                                      Register super_klass,
 479                                      Register temp1_reg,
 480                                      Register temp2_reg,
 481                                      Label* L_success = NULL,
 482                                      Register result_reg = noreg);
 483 
 484   // Simplified, combined version, good for typical uses.
 485   // Falls through on failure.
 486   void check_klass_subtype(Register sub_klass,
 487                            Register super_klass,
 488                            Register temp1_reg,
 489                            Register temp2_reg,
 490                            Label& L_success);
 491 
 492   // Method handle support (JSR 292).
 493   void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
 494 
 495   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
 496 
 497   // Biased locking support
 498   // Upon entry,obj_reg must contain the target object, and mark_reg
 499   // must contain the target object's header.
 500   // Destroys mark_reg if an attempt is made to bias an anonymously
 501   // biased lock. In this case a failure will go either to the slow
 502   // case or fall through with the notEqual condition code set with
 503   // the expectation that the slow case in the runtime will be called.
 504   // In the fall-through case where the CAS-based lock is done,
 505   // mark_reg is not destroyed.
 506   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
 507                             Register temp2_reg, Label& done, Label* slow_case = NULL);
 508   // Upon entry, the base register of mark_addr must contain the oop.
 509   // Destroys temp_reg.
 510   // If allow_delay_slot_filling is set to true, the next instruction
 511   // emitted after this one will go in an annulled delay slot if the
 512   // biased locking exit case failed.
 513   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
 514 
 515   // allocation (for C1)
 516   void eden_allocate(
 517     Register obj,                      // result: pointer to object after successful allocation
 518     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 519     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 520     Register t1,                       // temp register
 521     Register t2,                       // temp register
 522     Label&   slow_case                 // continuation point if fast allocation fails
 523   );
 524   void tlab_allocate(
 525     Register obj,                      // result: pointer to object after successful allocation
 526     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 527     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 528     Register t1,                       // temp register
 529     Label&   slow_case                 // continuation point if fast allocation fails
 530   );
 531   void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
 532   void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2);
 533 
 534   enum { trampoline_stub_size = 6 * 4 };
 535   address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg);
 536 
 537   void atomic_inc_ptr(Register addr, Register result, int simm16 = 1);
 538   void atomic_ori_int(Register addr, Register result, int uimm16);
 539 
 540 #if INCLUDE_RTM_OPT
 541   void rtm_counters_update(Register abort_status, Register rtm_counters);
 542   void branch_on_random_using_tb(Register tmp, int count, Label& brLabel);
 543   void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters,
 544                                    Metadata* method_data);
 545   void rtm_profiling(Register abort_status_Reg, Register temp_Reg,
 546                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 547   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status,
 548                                Label& retryLabel, Label* checkRetry = NULL);
 549   void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel);
 550   void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp,
 551                          Register retry_on_abort_count,
 552                          RTMLockingCounters* stack_rtm_counters,
 553                          Metadata* method_data, bool profile_rtm,
 554                          Label& DONE_LABEL, Label& IsInflated);
 555   void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box,
 556                             Register retry_on_busy_count, Register retry_on_abort_count,
 557                             RTMLockingCounters* rtm_counters,
 558                             Metadata* method_data, bool profile_rtm,
 559                             Label& DONE_LABEL);
 560 #endif
 561 
 562   void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box,
 563                                  Register tmp1, Register tmp2, Register tmp3,
 564                                  bool try_bias = UseBiasedLocking,
 565                                  RTMLockingCounters* rtm_counters = NULL,
 566                                  RTMLockingCounters* stack_rtm_counters = NULL,
 567                                  Metadata* method_data = NULL,
 568                                  bool use_rtm = false, bool profile_rtm = false);
 569 
 570   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box,
 571                                    Register tmp1, Register tmp2, Register tmp3,
 572                                    bool try_bias = UseBiasedLocking, bool use_rtm = false);
 573 
 574   // Support for serializing memory accesses between threads
 575   void serialize_memory(Register thread, Register tmp1, Register tmp2);
 576 
 577   // GC barrier support.
 578   void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
 579   void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
 580 
 581 #if INCLUDE_ALL_GCS
 582   // General G1 pre-barrier generator.
 583   void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
 584                             Register Rtmp1, Register Rtmp2, bool needs_frame = false);
 585   // General G1 post-barrier generator
 586   void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
 587                              Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
 588 #endif
 589 
 590   // Support for managing the JavaThread pointer (i.e.; the reference to
 591   // thread-local information).
 592 
 593   // Support for last Java frame (but use call_VM instead where possible):
 594   // access R16_thread->last_Java_sp.
 595   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
 596   void reset_last_Java_frame(void);
 597   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
 598 
 599   // Read vm result from thread: oop_result = R16_thread->result;
 600   void get_vm_result  (Register oop_result);
 601   void get_vm_result_2(Register metadata_result);
 602 
 603   static bool needs_explicit_null_check(intptr_t offset);
 604 
 605   // Trap-instruction-based checks.
 606   // Range checks can be distinguished from zero checks as they check 32 bit,
 607   // zero checks all 64 bits (tw, td).
 608   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
 609   static bool is_trap_null_check(int x) {
 610     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
 611            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
 612   }
 613 
 614   inline void trap_zombie_not_entrant();
 615   static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
 616 
 617   inline void trap_should_not_reach_here();
 618   static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
 619 
 620   inline void trap_ic_miss_check(Register a, Register b);
 621   static bool is_trap_ic_miss_check(int x) {
 622     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
 623   }
 624 
 625   // Implicit or explicit null check, jumps to static address exception_entry.
 626   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
 627   inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided
 628 
 629   // Load heap oop and decompress. Loaded oop may not be null.
 630   // Specify tmp to save one cycle.
 631   inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg,
 632                                      Register tmp = noreg);
 633   // Store heap oop and decompress.  Decompressed oop may not be null.
 634   // Specify tmp register if d should not be changed.
 635   inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1,
 636                                       Register tmp = noreg);
 637 
 638   // Null allowed.
 639   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg, Label *is_null = NULL);
 640 
 641   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
 642   // src == d allowed.
 643   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
 644   inline Register decode_heap_oop_not_null(Register d, Register src = noreg);
 645 
 646   // Null allowed.
 647   inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier!
 648   inline void decode_heap_oop(Register d);
 649 
 650   // Load/Store klass oop from klass field. Compress.
 651   void load_klass(Register dst, Register src);
 652   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
 653   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
 654 
 655   void load_mirror(Register mirror, Register method);
 656 
 657   static int instr_size_for_decode_klass_not_null();
 658   void decode_klass_not_null(Register dst, Register src = noreg);
 659   Register encode_klass_not_null(Register dst, Register src = noreg);
 660 
 661   // SIGTRAP-based range checks for arrays.
 662   inline void trap_range_check_l(Register a, Register b);
 663   inline void trap_range_check_l(Register a, int si16);
 664   static bool is_trap_range_check_l(int x) {
 665     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 666             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
 667   }
 668   inline void trap_range_check_le(Register a, int si16);
 669   static bool is_trap_range_check_le(int x) {
 670     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
 671   }
 672   inline void trap_range_check_g(Register a, int si16);
 673   static bool is_trap_range_check_g(int x) {
 674     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
 675   }
 676   inline void trap_range_check_ge(Register a, Register b);
 677   inline void trap_range_check_ge(Register a, int si16);
 678   static bool is_trap_range_check_ge(int x) {
 679     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 680             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
 681   }
 682   static bool is_trap_range_check(int x) {
 683     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
 684            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
 685   }
 686 
 687   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0);
 688 
 689 #ifdef COMPILER2
 690   // Intrinsics for CompactStrings
 691   // Compress char[] to byte[] by compressing 16 bytes at once.
 692   void string_compress_16(Register src, Register dst, Register cnt,
 693                           Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 694                           Label& Lfailure);
 695 
 696   // Compress char[] to byte[]. cnt must be positive int.
 697   void string_compress(Register src, Register dst, Register cnt, Register tmp, Label& Lfailure);
 698 
 699   // Inflate byte[] to char[] by inflating 16 bytes at once.
 700   void string_inflate_16(Register src, Register dst, Register cnt,
 701                          Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
 702 
 703   // Inflate byte[] to char[]. cnt must be positive int.
 704   void string_inflate(Register src, Register dst, Register cnt, Register tmp);
 705 
 706   void string_compare(Register str1, Register str2, Register cnt1, Register cnt2,
 707                       Register tmp1, Register result, int ae);
 708 
 709   void array_equals(bool is_array_equ, Register ary1, Register ary2,
 710                     Register limit, Register tmp1, Register result, bool is_byte);
 711 
 712   void string_indexof(Register result, Register haystack, Register haycnt,
 713                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
 714                       Register tmp1, Register tmp2, Register tmp3, Register tmp4, int ae);
 715 
 716   void string_indexof_char(Register result, Register haystack, Register haycnt,
 717                            Register needle, jchar needleChar, Register tmp1, Register tmp2, bool is_byte);
 718 
 719   void has_negatives(Register src, Register cnt, Register result, Register tmp1, Register tmp2);
 720 
 721   // Intrinsics for non-CompactStrings
 722   // Needle of length 1.
 723   void string_indexof_1(Register result, Register haystack, Register haycnt,
 724                         Register needle, jchar needleChar,
 725                         Register tmp1, Register tmp2);
 726   // General indexof, eventually with constant needle length.
 727   void string_indexof(Register result, Register haystack, Register haycnt,
 728                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
 729                       Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 730   void string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
 731                       Register result_reg, Register tmp_reg);
 732   void char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
 733                           Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
 734                           Register tmp5_reg);
 735   void char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
 736                              Register tmp1_reg, Register tmp2_reg);
 737 #endif
 738 
 739   // Emitters for BigInteger.multiplyToLen intrinsic.
 740   inline void multiply64(Register dest_hi, Register dest_lo,
 741                          Register x, Register y);
 742   void add2_with_carry(Register dest_hi, Register dest_lo,
 743                        Register src1, Register src2);
 744   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
 745                              Register y, Register y_idx, Register z,
 746                              Register carry, Register product_high, Register product,
 747                              Register idx, Register kdx, Register tmp);
 748   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
 749                               Register yz_idx, Register idx, Register carry,
 750                               Register product_high, Register product, Register tmp,
 751                               int offset);
 752   void multiply_128_x_128_loop(Register x_xstart,
 753                                Register y, Register z,
 754                                Register yz_idx, Register idx, Register carry,
 755                                Register product_high, Register product,
 756                                Register carry2, Register tmp);
 757   void multiply_to_len(Register x, Register xlen,
 758                        Register y, Register ylen,
 759                        Register z, Register zlen,
 760                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5,
 761                        Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10,
 762                        Register tmp11, Register tmp12, Register tmp13);
 763 
 764   // CRC32 Intrinsics.
 765   void load_reverse_32(Register dst, Register src);
 766   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
 767   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
 768   void fold_8bit_crc32(Register crc, Register table, Register tmp);
 769   void update_byte_crc32(Register crc, Register val, Register table);
 770   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
 771                              Register data, bool loopAlignment, bool invertCRC);
 772   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
 773                           Register t0,  Register t1,  Register t2,  Register t3,
 774                           Register tc0, Register tc1, Register tc2, Register tc3);
 775   void kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
 776                           Register t0,  Register t1,  Register t2,  Register t3,
 777                           Register tc0, Register tc1, Register tc2, Register tc3);
 778   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
 779                           Register t0,  Register t1,  Register t2,  Register t3,
 780                           Register tc0, Register tc1, Register tc2, Register tc3);
 781   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
 782                           Register t0,  Register t1,  Register t2,  Register t3);
 783   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp);
 784 
 785   //
 786   // Debugging
 787   //
 788 
 789   // assert on cr0
 790   void asm_assert(bool check_equal, const char* msg, int id);
 791   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
 792   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
 793 
 794  private:
 795   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
 796                             const char* msg, int id);
 797 
 798  public:
 799 
 800   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 801     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg, id);
 802   }
 803   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 804     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
 805   }
 806 
 807   // Verify R16_thread contents.
 808   void verify_thread();
 809 
 810   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
 811   void verify_oop(Register reg, const char* s = "broken oop");
 812   void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop");
 813 
 814   // TODO: verify method and klass metadata (compare against vptr?)
 815   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 816   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 817 
 818   // Convenience method returning function entry. For the ELFv1 case
 819   // creates function descriptor at the current address and returs
 820   // the pointer to it. For the ELFv2 case returns the current address.
 821   inline address function_entry();
 822 
 823 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 824 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 825 
 826  private:
 827 
 828   enum {
 829     stop_stop                = 0,
 830     stop_untested            = 1,
 831     stop_unimplemented       = 2,
 832     stop_shouldnotreachhere  = 3,
 833     stop_end                 = 4
 834   };
 835   void stop(int type, const char* msg, int id);
 836 
 837  public:
 838   // Prints msg, dumps registers and stops execution.
 839   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,               msg, id); }
 840   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,           msg, id); }
 841   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented,      msg, id); }
 842   void should_not_reach_here()                         { stop(stop_shouldnotreachhere,  "", -1); }
 843 
 844   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
 845 };
 846 
 847 // class SkipIfEqualZero:
 848 //
 849 // Instantiating this class will result in assembly code being output that will
 850 // jump around any code emitted between the creation of the instance and it's
 851 // automatic destruction at the end of a scope block, depending on the value of
 852 // the flag passed to the constructor, which will be checked at run-time.
 853 class SkipIfEqualZero : public StackObj {
 854  private:
 855   MacroAssembler* _masm;
 856   Label _label;
 857 
 858  public:
 859    // 'Temp' is a temp register that this object can use (and trash).
 860    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
 861    ~SkipIfEqualZero();
 862 };
 863 
 864 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP