1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classFileStream.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayOop.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "prims/jni.h"
  33 #include "prims/jvm.h"
  34 #include "prims/unsafe.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/globals.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 #include "runtime/reflection.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "services/threadService.hpp"
  42 #include "trace/tracing.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/dtrace.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 
  50 /**
  51  * Implementation of the jdk.internal.misc.Unsafe class
  52  */
  53 
  54 
  55 #define MAX_OBJECT_SIZE \
  56   ( arrayOopDesc::header_size(T_DOUBLE) * HeapWordSize \
  57     + ((julong)max_jint * sizeof(double)) )
  58 
  59 
  60 #define UNSAFE_ENTRY(result_type, header) \
  61   JVM_ENTRY(static result_type, header)
  62 
  63 #define UNSAFE_LEAF(result_type, header) \
  64   JVM_LEAF(static result_type, header)
  65 
  66 #define UNSAFE_END JVM_END
  67 
  68 
  69 static inline void* addr_from_java(jlong addr) {
  70   // This assert fails in a variety of ways on 32-bit systems.
  71   // It is impossible to predict whether native code that converts
  72   // pointers to longs will sign-extend or zero-extend the addresses.
  73   //assert(addr == (uintptr_t)addr, "must not be odd high bits");
  74   return (void*)(uintptr_t)addr;
  75 }
  76 
  77 static inline jlong addr_to_java(void* p) {
  78   assert(p == (void*)(uintptr_t)p, "must not be odd high bits");
  79   return (uintptr_t)p;
  80 }
  81 
  82 
  83 // Note: The VM's obj_field and related accessors use byte-scaled
  84 // ("unscaled") offsets, just as the unsafe methods do.
  85 
  86 // However, the method Unsafe.fieldOffset explicitly declines to
  87 // guarantee this.  The field offset values manipulated by the Java user
  88 // through the Unsafe API are opaque cookies that just happen to be byte
  89 // offsets.  We represent this state of affairs by passing the cookies
  90 // through conversion functions when going between the VM and the Unsafe API.
  91 // The conversion functions just happen to be no-ops at present.
  92 
  93 static inline jlong field_offset_to_byte_offset(jlong field_offset) {
  94   return field_offset;
  95 }
  96 
  97 static inline jlong field_offset_from_byte_offset(jlong byte_offset) {
  98   return byte_offset;
  99 }
 100 
 101 static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
 102   jlong byte_offset = field_offset_to_byte_offset(field_offset);
 103 
 104 #ifdef ASSERT
 105   if (p != NULL) {
 106     assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset");
 107     if (byte_offset == (jint)byte_offset) {
 108       void* ptr_plus_disp = (address)p + byte_offset;
 109       assert((void*)p->obj_field_addr<oop>((jint)byte_offset) == ptr_plus_disp,
 110              "raw [ptr+disp] must be consistent with oop::field_base");
 111     }
 112     jlong p_size = HeapWordSize * (jlong)(p->size());
 113     assert(byte_offset < p_size, "Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, byte_offset, p_size);
 114   }
 115 #endif
 116 
 117   if (sizeof(char*) == sizeof(jint)) {   // (this constant folds!)
 118     return (address)p + (jint) byte_offset;
 119   } else {
 120     return (address)p +        byte_offset;
 121   }
 122 }
 123 
 124 // Externally callable versions:
 125 // (Use these in compiler intrinsics which emulate unsafe primitives.)
 126 jlong Unsafe_field_offset_to_byte_offset(jlong field_offset) {
 127   return field_offset;
 128 }
 129 jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) {
 130   return byte_offset;
 131 }
 132 
 133 
 134 ///// Data read/writes on the Java heap and in native (off-heap) memory
 135 
 136 /**
 137  * Helper class for accessing memory.
 138  *
 139  * Normalizes values and wraps accesses in
 140  * JavaThread::doing_unsafe_access() if needed.
 141  */
 142 class MemoryAccess : StackObj {
 143   JavaThread* _thread;
 144   jobject _obj;
 145   jlong _offset;
 146 
 147   // Resolves and returns the address of the memory access
 148   void* addr() {
 149     return index_oop_from_field_offset_long(JNIHandles::resolve(_obj), _offset);
 150   }
 151 
 152   template <typename T>
 153   T normalize(T x) {
 154     return x;
 155   }
 156 
 157   jboolean normalize(jboolean x) {
 158     return x & 1;
 159   }
 160 
 161   /**
 162    * Helper class to wrap memory accesses in JavaThread::doing_unsafe_access()
 163    */
 164   class GuardUnsafeAccess {
 165     JavaThread* _thread;
 166     bool _active;
 167 
 168   public:
 169     GuardUnsafeAccess(JavaThread* thread, jobject _obj) : _thread(thread) {
 170       if (JNIHandles::resolve(_obj) == NULL) {
 171         // native/off-heap access which may raise SIGBUS if accessing
 172         // memory mapped file data in a region of the file which has
 173         // been truncated and is now invalid
 174         _thread->set_doing_unsafe_access(true);
 175         _active = true;
 176       } else {
 177         _active = false;
 178       }
 179     }
 180 
 181     ~GuardUnsafeAccess() {
 182       if (_active) {
 183         _thread->set_doing_unsafe_access(false);
 184       }
 185     }
 186   };
 187 
 188 public:
 189   MemoryAccess(JavaThread* thread, jobject obj, jlong offset)
 190     : _thread(thread), _obj(obj), _offset(offset) {
 191   }
 192 
 193   template <typename T>
 194   T get() {
 195     GuardUnsafeAccess guard(_thread, _obj);
 196 
 197     T* p = (T*)addr();
 198 
 199     T x = *p;
 200 
 201     return x;
 202   }
 203 
 204   template <typename T>
 205   void put(T x) {
 206     GuardUnsafeAccess guard(_thread, _obj);
 207 
 208     T* p = (T*)addr();
 209 
 210     *p = normalize(x);
 211   }
 212 
 213 
 214   template <typename T>
 215   T get_volatile() {
 216     GuardUnsafeAccess guard(_thread, _obj);
 217 
 218     T* p = (T*)addr();
 219 
 220     if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
 221       OrderAccess::fence();
 222     }
 223 
 224     T x = OrderAccess::load_acquire((volatile T*)p);
 225 
 226     return x;
 227   }
 228 
 229   template <typename T>
 230   void put_volatile(T x) {
 231     GuardUnsafeAccess guard(_thread, _obj);
 232 
 233     T* p = (T*)addr();
 234 
 235     OrderAccess::release_store_fence((volatile T*)p, normalize(x));
 236   }
 237 
 238 
 239 #ifndef SUPPORTS_NATIVE_CX8
 240   jlong get_jlong_locked() {
 241     GuardUnsafeAccess guard(_thread, _obj);
 242 
 243     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 244 
 245     jlong* p = (jlong*)addr();
 246 
 247     jlong x = Atomic::load(p);
 248 
 249     return x;
 250   }
 251 
 252   void put_jlong_locked(jlong x) {
 253     GuardUnsafeAccess guard(_thread, _obj);
 254 
 255     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 256 
 257     jlong* p = (jlong*)addr();
 258 
 259     Atomic::store(normalize(x),  p);
 260   }
 261 #endif
 262 };
 263 
 264 // Get/PutObject must be special-cased, since it works with handles.
 265 
 266 // These functions allow a null base pointer with an arbitrary address.
 267 // But if the base pointer is non-null, the offset should make some sense.
 268 // That is, it should be in the range [0, MAX_OBJECT_SIZE].
 269 UNSAFE_ENTRY(jobject, Unsafe_GetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 270   oop p = JNIHandles::resolve(obj);
 271   oop v;
 272 
 273   if (UseCompressedOops) {
 274     narrowOop n = *(narrowOop*)index_oop_from_field_offset_long(p, offset);
 275     v = oopDesc::decode_heap_oop(n);
 276   } else {
 277     v = *(oop*)index_oop_from_field_offset_long(p, offset);
 278   }
 279 
 280   jobject ret = JNIHandles::make_local(env, v);
 281 
 282 #if INCLUDE_ALL_GCS
 283   // We could be accessing the referent field in a reference
 284   // object. If G1 is enabled then we need to register non-null
 285   // referent with the SATB barrier.
 286   if (UseG1GC) {
 287     bool needs_barrier = false;
 288 
 289     if (ret != NULL) {
 290       if (offset == java_lang_ref_Reference::referent_offset && obj != NULL) {
 291         oop o = JNIHandles::resolve(obj);
 292         Klass* k = o->klass();
 293         if (InstanceKlass::cast(k)->reference_type() != REF_NONE) {
 294           assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
 295           needs_barrier = true;
 296         }
 297       }
 298     }
 299 
 300     if (needs_barrier) {
 301       oop referent = JNIHandles::resolve(ret);
 302       G1SATBCardTableModRefBS::enqueue(referent);
 303     }
 304   }
 305 #endif // INCLUDE_ALL_GCS
 306 
 307   return ret;
 308 } UNSAFE_END
 309 
 310 UNSAFE_ENTRY(void, Unsafe_PutObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 311   oop x = JNIHandles::resolve(x_h);
 312   oop p = JNIHandles::resolve(obj);
 313 
 314   if (UseCompressedOops) {
 315     oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x);
 316   } else {
 317     oop_store((oop*)index_oop_from_field_offset_long(p, offset), x);
 318   }
 319 } UNSAFE_END
 320 
 321 UNSAFE_ENTRY(jobject, Unsafe_GetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 322   oop p = JNIHandles::resolve(obj);
 323   void* addr = index_oop_from_field_offset_long(p, offset);
 324 
 325   volatile oop v;
 326 
 327   if (UseCompressedOops) {
 328     volatile narrowOop n = *(volatile narrowOop*) addr;
 329     (void)const_cast<oop&>(v = oopDesc::decode_heap_oop(n));
 330   } else {
 331     (void)const_cast<oop&>(v = *(volatile oop*) addr);
 332   }
 333 
 334   OrderAccess::acquire();
 335   return JNIHandles::make_local(env, v);
 336 } UNSAFE_END
 337 
 338 UNSAFE_ENTRY(void, Unsafe_PutObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 339   oop x = JNIHandles::resolve(x_h);
 340   oop p = JNIHandles::resolve(obj);
 341   void* addr = index_oop_from_field_offset_long(p, offset);
 342   OrderAccess::release();
 343 
 344   if (UseCompressedOops) {
 345     oop_store((narrowOop*)addr, x);
 346   } else {
 347     oop_store((oop*)addr, x);
 348   }
 349 
 350   OrderAccess::fence();
 351 } UNSAFE_END
 352 
 353 UNSAFE_ENTRY(jobject, Unsafe_GetUncompressedObject(JNIEnv *env, jobject unsafe, jlong addr)) {
 354   oop v = *(oop*) (address) addr;
 355 
 356   return JNIHandles::make_local(env, v);
 357 } UNSAFE_END
 358 
 359 #ifndef SUPPORTS_NATIVE_CX8
 360 
 361 // VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
 362 //
 363 // On platforms which do not support atomic compare-and-swap of jlong (8 byte)
 364 // values we have to use a lock-based scheme to enforce atomicity. This has to be
 365 // applied to all Unsafe operations that set the value of a jlong field. Even so
 366 // the compareAndSwapLong operation will not be atomic with respect to direct stores
 367 // to the field from Java code. It is important therefore that any Java code that
 368 // utilizes these Unsafe jlong operations does not perform direct stores. To permit
 369 // direct loads of the field from Java code we must also use Atomic::store within the
 370 // locked regions. And for good measure, in case there are direct stores, we also
 371 // employ Atomic::load within those regions. Note that the field in question must be
 372 // volatile and so must have atomic load/store accesses applied at the Java level.
 373 //
 374 // The locking scheme could utilize a range of strategies for controlling the locking
 375 // granularity: from a lock per-field through to a single global lock. The latter is
 376 // the simplest and is used for the current implementation. Note that the Java object
 377 // that contains the field, can not, in general, be used for locking. To do so can lead
 378 // to deadlocks as we may introduce locking into what appears to the Java code to be a
 379 // lock-free path.
 380 //
 381 // As all the locked-regions are very short and themselves non-blocking we can treat
 382 // them as leaf routines and elide safepoint checks (ie we don't perform any thread
 383 // state transitions even when blocking for the lock). Note that if we do choose to
 384 // add safepoint checks and thread state transitions, we must ensure that we calculate
 385 // the address of the field _after_ we have acquired the lock, else the object may have
 386 // been moved by the GC
 387 
 388 UNSAFE_ENTRY(jlong, Unsafe_GetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 389   if (VM_Version::supports_cx8()) {
 390     return MemoryAccess(thread, obj, offset).get_volatile<jlong>();
 391   } else {
 392     return MemoryAccess(thread, obj, offset).get_jlong_locked();
 393   }
 394 } UNSAFE_END
 395 
 396 UNSAFE_ENTRY(void, Unsafe_PutLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) {
 397   if (VM_Version::supports_cx8()) {
 398     MemoryAccess(thread, obj, offset).put_volatile<jlong>(x);
 399   } else {
 400     MemoryAccess(thread, obj, offset).put_jlong_locked(x);
 401   }
 402 } UNSAFE_END
 403 
 404 #endif // not SUPPORTS_NATIVE_CX8
 405 
 406 UNSAFE_LEAF(jboolean, Unsafe_isBigEndian0(JNIEnv *env, jobject unsafe)) {
 407 #ifdef VM_LITTLE_ENDIAN
 408   return false;
 409 #else
 410   return true;
 411 #endif
 412 } UNSAFE_END
 413 
 414 UNSAFE_LEAF(jint, Unsafe_unalignedAccess0(JNIEnv *env, jobject unsafe)) {
 415   return UseUnalignedAccesses;
 416 } UNSAFE_END
 417 
 418 #define DEFINE_GETSETOOP(java_type, Type) \
 419  \
 420 UNSAFE_ENTRY(java_type, Unsafe_Get##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 421   return MemoryAccess(thread, obj, offset).get<java_type>(); \
 422 } UNSAFE_END \
 423  \
 424 UNSAFE_ENTRY(void, Unsafe_Put##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 425   MemoryAccess(thread, obj, offset).put<java_type>(x); \
 426 } UNSAFE_END \
 427  \
 428 // END DEFINE_GETSETOOP.
 429 
 430 DEFINE_GETSETOOP(jboolean, Boolean)
 431 DEFINE_GETSETOOP(jbyte, Byte)
 432 DEFINE_GETSETOOP(jshort, Short);
 433 DEFINE_GETSETOOP(jchar, Char);
 434 DEFINE_GETSETOOP(jint, Int);
 435 DEFINE_GETSETOOP(jlong, Long);
 436 DEFINE_GETSETOOP(jfloat, Float);
 437 DEFINE_GETSETOOP(jdouble, Double);
 438 
 439 #undef DEFINE_GETSETOOP
 440 
 441 #define DEFINE_GETSETOOP_VOLATILE(java_type, Type) \
 442  \
 443 UNSAFE_ENTRY(java_type, Unsafe_Get##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 444   return MemoryAccess(thread, obj, offset).get_volatile<java_type>(); \
 445 } UNSAFE_END \
 446  \
 447 UNSAFE_ENTRY(void, Unsafe_Put##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 448   MemoryAccess(thread, obj, offset).put_volatile<java_type>(x); \
 449 } UNSAFE_END \
 450  \
 451 // END DEFINE_GETSETOOP_VOLATILE.
 452 
 453 DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean)
 454 DEFINE_GETSETOOP_VOLATILE(jbyte, Byte)
 455 DEFINE_GETSETOOP_VOLATILE(jshort, Short);
 456 DEFINE_GETSETOOP_VOLATILE(jchar, Char);
 457 DEFINE_GETSETOOP_VOLATILE(jint, Int);
 458 DEFINE_GETSETOOP_VOLATILE(jfloat, Float);
 459 DEFINE_GETSETOOP_VOLATILE(jdouble, Double);
 460 
 461 #ifdef SUPPORTS_NATIVE_CX8
 462 DEFINE_GETSETOOP_VOLATILE(jlong, Long);
 463 #endif
 464 
 465 #undef DEFINE_GETSETOOP_VOLATILE
 466 
 467 UNSAFE_LEAF(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) {
 468   OrderAccess::acquire();
 469 } UNSAFE_END
 470 
 471 UNSAFE_LEAF(void, Unsafe_StoreFence(JNIEnv *env, jobject unsafe)) {
 472   OrderAccess::release();
 473 } UNSAFE_END
 474 
 475 UNSAFE_LEAF(void, Unsafe_FullFence(JNIEnv *env, jobject unsafe)) {
 476   OrderAccess::fence();
 477 } UNSAFE_END
 478 
 479 ////// Allocation requests
 480 
 481 UNSAFE_ENTRY(jobject, Unsafe_AllocateInstance(JNIEnv *env, jobject unsafe, jclass cls)) {
 482   ThreadToNativeFromVM ttnfv(thread);
 483   return env->AllocObject(cls);
 484 } UNSAFE_END
 485 
 486 UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory0(JNIEnv *env, jobject unsafe, jlong size)) {
 487   size_t sz = (size_t)size;
 488 
 489   sz = round_to(sz, HeapWordSize);
 490   void* x = os::malloc(sz, mtInternal);
 491 
 492   return addr_to_java(x);
 493 } UNSAFE_END
 494 
 495 UNSAFE_ENTRY(jlong, Unsafe_ReallocateMemory0(JNIEnv *env, jobject unsafe, jlong addr, jlong size)) {
 496   void* p = addr_from_java(addr);
 497   size_t sz = (size_t)size;
 498   sz = round_to(sz, HeapWordSize);
 499 
 500   void* x = os::realloc(p, sz, mtInternal);
 501 
 502   return addr_to_java(x);
 503 } UNSAFE_END
 504 
 505 UNSAFE_ENTRY(void, Unsafe_FreeMemory0(JNIEnv *env, jobject unsafe, jlong addr)) {
 506   void* p = addr_from_java(addr);
 507 
 508   os::free(p);
 509 } UNSAFE_END
 510 
 511 UNSAFE_ENTRY(void, Unsafe_SetMemory0(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong size, jbyte value)) {
 512   size_t sz = (size_t)size;
 513 
 514   oop base = JNIHandles::resolve(obj);
 515   void* p = index_oop_from_field_offset_long(base, offset);
 516 
 517   Copy::fill_to_memory_atomic(p, sz, value);
 518 } UNSAFE_END
 519 
 520 UNSAFE_ENTRY(void, Unsafe_CopyMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size)) {
 521   size_t sz = (size_t)size;
 522 
 523   oop srcp = JNIHandles::resolve(srcObj);
 524   oop dstp = JNIHandles::resolve(dstObj);
 525 
 526   void* src = index_oop_from_field_offset_long(srcp, srcOffset);
 527   void* dst = index_oop_from_field_offset_long(dstp, dstOffset);
 528 
 529   Copy::conjoint_memory_atomic(src, dst, sz);
 530 } UNSAFE_END
 531 
 532 // This function is a leaf since if the source and destination are both in native memory
 533 // the copy may potentially be very large, and we don't want to disable GC if we can avoid it.
 534 // If either source or destination (or both) are on the heap, the function will enter VM using
 535 // JVM_ENTRY_FROM_LEAF
 536 UNSAFE_LEAF(void, Unsafe_CopySwapMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size, jlong elemSize)) {
 537   size_t sz = (size_t)size;
 538   size_t esz = (size_t)elemSize;
 539 
 540   if (srcObj == NULL && dstObj == NULL) {
 541     // Both src & dst are in native memory
 542     address src = (address)srcOffset;
 543     address dst = (address)dstOffset;
 544 
 545     Copy::conjoint_swap(src, dst, sz, esz);
 546   } else {
 547     // At least one of src/dst are on heap, transition to VM to access raw pointers
 548 
 549     JVM_ENTRY_FROM_LEAF(env, void, Unsafe_CopySwapMemory0) {
 550       oop srcp = JNIHandles::resolve(srcObj);
 551       oop dstp = JNIHandles::resolve(dstObj);
 552 
 553       address src = (address)index_oop_from_field_offset_long(srcp, srcOffset);
 554       address dst = (address)index_oop_from_field_offset_long(dstp, dstOffset);
 555 
 556       Copy::conjoint_swap(src, dst, sz, esz);
 557     } JVM_END
 558   }
 559 } UNSAFE_END
 560 
 561 ////// Random queries
 562 
 563 UNSAFE_LEAF(jint, Unsafe_AddressSize0(JNIEnv *env, jobject unsafe)) {
 564   return sizeof(void*);
 565 } UNSAFE_END
 566 
 567 UNSAFE_LEAF(jint, Unsafe_PageSize()) {
 568   return os::vm_page_size();
 569 } UNSAFE_END
 570 
 571 static jint find_field_offset(jobject field, int must_be_static, TRAPS) {
 572   assert(field != NULL, "field must not be NULL");
 573 
 574   oop reflected   = JNIHandles::resolve_non_null(field);
 575   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 576   Klass* k        = java_lang_Class::as_Klass(mirror);
 577   int slot        = java_lang_reflect_Field::slot(reflected);
 578   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 579 
 580   if (must_be_static >= 0) {
 581     int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0);
 582     if (must_be_static != really_is_static) {
 583       THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 584     }
 585   }
 586 
 587   int offset = InstanceKlass::cast(k)->field_offset(slot);
 588   return field_offset_from_byte_offset(offset);
 589 }
 590 
 591 UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 592   return find_field_offset(field, 0, THREAD);
 593 } UNSAFE_END
 594 
 595 UNSAFE_ENTRY(jlong, Unsafe_StaticFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 596   return find_field_offset(field, 1, THREAD);
 597 } UNSAFE_END
 598 
 599 UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBase0(JNIEnv *env, jobject unsafe, jobject field)) {
 600   assert(field != NULL, "field must not be NULL");
 601 
 602   // Note:  In this VM implementation, a field address is always a short
 603   // offset from the base of a a klass metaobject.  Thus, the full dynamic
 604   // range of the return type is never used.  However, some implementations
 605   // might put the static field inside an array shared by many classes,
 606   // or even at a fixed address, in which case the address could be quite
 607   // large.  In that last case, this function would return NULL, since
 608   // the address would operate alone, without any base pointer.
 609 
 610   oop reflected   = JNIHandles::resolve_non_null(field);
 611   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 612   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 613 
 614   if ((modifiers & JVM_ACC_STATIC) == 0) {
 615     THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 616   }
 617 
 618   return JNIHandles::make_local(env, mirror);
 619 } UNSAFE_END
 620 
 621 UNSAFE_ENTRY(void, Unsafe_EnsureClassInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 622   assert(clazz != NULL, "clazz must not be NULL");
 623 
 624   oop mirror = JNIHandles::resolve_non_null(clazz);
 625 
 626   Klass* klass = java_lang_Class::as_Klass(mirror);
 627   if (klass != NULL && klass->should_be_initialized()) {
 628     InstanceKlass* k = InstanceKlass::cast(klass);
 629     k->initialize(CHECK);
 630   }
 631 }
 632 UNSAFE_END
 633 
 634 UNSAFE_ENTRY(jboolean, Unsafe_ShouldBeInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 635   assert(clazz != NULL, "clazz must not be NULL");
 636 
 637   oop mirror = JNIHandles::resolve_non_null(clazz);
 638   Klass* klass = java_lang_Class::as_Klass(mirror);
 639 
 640   if (klass != NULL && klass->should_be_initialized()) {
 641     return true;
 642   }
 643 
 644   return false;
 645 }
 646 UNSAFE_END
 647 
 648 static void getBaseAndScale(int& base, int& scale, jclass clazz, TRAPS) {
 649   assert(clazz != NULL, "clazz must not be NULL");
 650 
 651   oop mirror = JNIHandles::resolve_non_null(clazz);
 652   Klass* k = java_lang_Class::as_Klass(mirror);
 653 
 654   if (k == NULL || !k->is_array_klass()) {
 655     THROW(vmSymbols::java_lang_InvalidClassException());
 656   } else if (k->is_objArray_klass()) {
 657     base  = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 658     scale = heapOopSize;
 659   } else if (k->is_typeArray_klass()) {
 660     TypeArrayKlass* tak = TypeArrayKlass::cast(k);
 661     base  = tak->array_header_in_bytes();
 662     assert(base == arrayOopDesc::base_offset_in_bytes(tak->element_type()), "array_header_size semantics ok");
 663     scale = (1 << tak->log2_element_size());
 664   } else {
 665     ShouldNotReachHere();
 666   }
 667 }
 668 
 669 UNSAFE_ENTRY(jint, Unsafe_ArrayBaseOffset0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 670   int base = 0, scale = 0;
 671   getBaseAndScale(base, scale, clazz, CHECK_0);
 672 
 673   return field_offset_from_byte_offset(base);
 674 } UNSAFE_END
 675 
 676 
 677 UNSAFE_ENTRY(jint, Unsafe_ArrayIndexScale0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 678   int base = 0, scale = 0;
 679   getBaseAndScale(base, scale, clazz, CHECK_0);
 680 
 681   // This VM packs both fields and array elements down to the byte.
 682   // But watch out:  If this changes, so that array references for
 683   // a given primitive type (say, T_BOOLEAN) use different memory units
 684   // than fields, this method MUST return zero for such arrays.
 685   // For example, the VM used to store sub-word sized fields in full
 686   // words in the object layout, so that accessors like getByte(Object,int)
 687   // did not really do what one might expect for arrays.  Therefore,
 688   // this function used to report a zero scale factor, so that the user
 689   // would know not to attempt to access sub-word array elements.
 690   // // Code for unpacked fields:
 691   // if (scale < wordSize)  return 0;
 692 
 693   // The following allows for a pretty general fieldOffset cookie scheme,
 694   // but requires it to be linear in byte offset.
 695   return field_offset_from_byte_offset(scale) - field_offset_from_byte_offset(0);
 696 } UNSAFE_END
 697 
 698 
 699 static inline void throw_new(JNIEnv *env, const char *ename) {
 700   char buf[100];
 701 
 702   jio_snprintf(buf, 100, "%s%s", "java/lang/", ename);
 703 
 704   jclass cls = env->FindClass(buf);
 705   if (env->ExceptionCheck()) {
 706     env->ExceptionClear();
 707     tty->print_cr("Unsafe: cannot throw %s because FindClass has failed", buf);
 708     return;
 709   }
 710 
 711   env->ThrowNew(cls, NULL);
 712 }
 713 
 714 static jclass Unsafe_DefineClass_impl(JNIEnv *env, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd) {
 715   // Code lifted from JDK 1.3 ClassLoader.c
 716 
 717   jbyte *body;
 718   char *utfName = NULL;
 719   jclass result = 0;
 720   char buf[128];
 721 
 722   assert(data != NULL, "Class bytes must not be NULL");
 723   assert(length >= 0, "length must not be negative: %d", length);
 724 
 725   if (UsePerfData) {
 726     ClassLoader::unsafe_defineClassCallCounter()->inc();
 727   }
 728 
 729   body = NEW_C_HEAP_ARRAY(jbyte, length, mtInternal);
 730   if (body == NULL) {
 731     throw_new(env, "OutOfMemoryError");
 732     return 0;
 733   }
 734 
 735   env->GetByteArrayRegion(data, offset, length, body);
 736   if (env->ExceptionOccurred()) {
 737     goto free_body;
 738   }
 739 
 740   if (name != NULL) {
 741     uint len = env->GetStringUTFLength(name);
 742     int unicode_len = env->GetStringLength(name);
 743 
 744     if (len >= sizeof(buf)) {
 745       utfName = NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
 746       if (utfName == NULL) {
 747         throw_new(env, "OutOfMemoryError");
 748         goto free_body;
 749       }
 750     } else {
 751       utfName = buf;
 752     }
 753 
 754     env->GetStringUTFRegion(name, 0, unicode_len, utfName);
 755 
 756     for (uint i = 0; i < len; i++) {
 757       if (utfName[i] == '.')   utfName[i] = '/';
 758     }
 759   }
 760 
 761   result = JVM_DefineClass(env, utfName, loader, body, length, pd);
 762 
 763   if (utfName && utfName != buf) {
 764     FREE_C_HEAP_ARRAY(char, utfName);
 765   }
 766 
 767  free_body:
 768   FREE_C_HEAP_ARRAY(jbyte, body);
 769   return result;
 770 }
 771 
 772 
 773 UNSAFE_ENTRY(jclass, Unsafe_DefineClass0(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd)) {
 774   ThreadToNativeFromVM ttnfv(thread);
 775 
 776   return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd);
 777 } UNSAFE_END
 778 
 779 
 780 // define a class but do not make it known to the class loader or system dictionary
 781 // - host_class:  supplies context for linkage, access control, protection domain, and class loader
 782 // - data:  bytes of a class file, a raw memory address (length gives the number of bytes)
 783 // - cp_patches:  where non-null entries exist, they replace corresponding CP entries in data
 784 
 785 // When you load an anonymous class U, it works as if you changed its name just before loading,
 786 // to a name that you will never use again.  Since the name is lost, no other class can directly
 787 // link to any member of U.  Just after U is loaded, the only way to use it is reflectively,
 788 // through java.lang.Class methods like Class.newInstance.
 789 
 790 // Access checks for linkage sites within U continue to follow the same rules as for named classes.
 791 // The package of an anonymous class is given by the package qualifier on the name under which it was loaded.
 792 // An anonymous class also has special privileges to access any member of its host class.
 793 // This is the main reason why this loading operation is unsafe.  The purpose of this is to
 794 // allow language implementations to simulate "open classes"; a host class in effect gets
 795 // new code when an anonymous class is loaded alongside it.  A less convenient but more
 796 // standard way to do this is with reflection, which can also be set to ignore access
 797 // restrictions.
 798 
 799 // Access into an anonymous class is possible only through reflection.  Therefore, there
 800 // are no special access rules for calling into an anonymous class.  The relaxed access
 801 // rule for the host class is applied in the opposite direction:  A host class reflectively
 802 // access one of its anonymous classes.
 803 
 804 // If you load the same bytecodes twice, you get two different classes.  You can reload
 805 // the same bytecodes with or without varying CP patches.
 806 
 807 // By using the CP patching array, you can have a new anonymous class U2 refer to an older one U1.
 808 // The bytecodes for U2 should refer to U1 by a symbolic name (doesn't matter what the name is).
 809 // The CONSTANT_Class entry for that name can be patched to refer directly to U1.
 810 
 811 // This allows, for example, U2 to use U1 as a superclass or super-interface, or as
 812 // an outer class (so that U2 is an anonymous inner class of anonymous U1).
 813 // It is not possible for a named class, or an older anonymous class, to refer by
 814 // name (via its CP) to a newer anonymous class.
 815 
 816 // CP patching may also be used to modify (i.e., hack) the names of methods, classes,
 817 // or type descriptors used in the loaded anonymous class.
 818 
 819 // Finally, CP patching may be used to introduce "live" objects into the constant pool,
 820 // instead of "dead" strings.  A compiled statement like println((Object)"hello") can
 821 // be changed to println(greeting), where greeting is an arbitrary object created before
 822 // the anonymous class is loaded.  This is useful in dynamic languages, in which
 823 // various kinds of metaobjects must be introduced as constants into bytecode.
 824 // Note the cast (Object), which tells the verifier to expect an arbitrary object,
 825 // not just a literal string.  For such ldc instructions, the verifier uses the
 826 // type Object instead of String, if the loaded constant is not in fact a String.
 827 
 828 static instanceKlassHandle
 829 Unsafe_DefineAnonymousClass_impl(JNIEnv *env,
 830                                  jclass host_class, jbyteArray data, jobjectArray cp_patches_jh,
 831                                  u1** temp_alloc,
 832                                  TRAPS) {
 833   assert(host_class != NULL, "host_class must not be NULL");
 834   assert(data != NULL, "data must not be NULL");
 835 
 836   if (UsePerfData) {
 837     ClassLoader::unsafe_defineClassCallCounter()->inc();
 838   }
 839 
 840   jint length = typeArrayOop(JNIHandles::resolve_non_null(data))->length();
 841   assert(length >= 0, "class_bytes_length must not be negative: %d", length);
 842 
 843   int class_bytes_length = (int) length;
 844 
 845   u1* class_bytes = NEW_C_HEAP_ARRAY(u1, length, mtInternal);
 846   if (class_bytes == NULL) {
 847     THROW_0(vmSymbols::java_lang_OutOfMemoryError());
 848   }
 849 
 850   // caller responsible to free it:
 851   *temp_alloc = class_bytes;
 852 
 853   jbyte* array_base = typeArrayOop(JNIHandles::resolve_non_null(data))->byte_at_addr(0);
 854   Copy::conjoint_jbytes(array_base, class_bytes, length);
 855 
 856   objArrayHandle cp_patches_h;
 857   if (cp_patches_jh != NULL) {
 858     oop p = JNIHandles::resolve_non_null(cp_patches_jh);
 859     assert(p->is_objArray(), "cp_patches must be an object[]");
 860     cp_patches_h = objArrayHandle(THREAD, (objArrayOop)p);
 861   }
 862 
 863   const Klass* host_klass = java_lang_Class::as_Klass(JNIHandles::resolve_non_null(host_class));
 864 
 865   // Make sure it's the real host class, not another anonymous class.
 866   while (host_klass != NULL && host_klass->is_instance_klass() &&
 867          InstanceKlass::cast(host_klass)->is_anonymous()) {
 868     host_klass = InstanceKlass::cast(host_klass)->host_klass();
 869   }
 870 
 871   // Primitive types have NULL Klass* fields in their java.lang.Class instances.
 872   if (host_klass == NULL) {
 873     THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 874   }
 875 
 876   const char* host_source = host_klass->external_name();
 877   Handle      host_loader(THREAD, host_klass->class_loader());
 878   Handle      host_domain(THREAD, host_klass->protection_domain());
 879 
 880   GrowableArray<Handle>* cp_patches = NULL;
 881 
 882   if (cp_patches_h.not_null()) {
 883     int alen = cp_patches_h->length();
 884 
 885     for (int i = alen-1; i >= 0; i--) {
 886       oop p = cp_patches_h->obj_at(i);
 887       if (p != NULL) {
 888         Handle patch(THREAD, p);
 889 
 890         if (cp_patches == NULL) {
 891           cp_patches = new GrowableArray<Handle>(i+1, i+1, Handle());
 892         }
 893 
 894         cp_patches->at_put(i, patch);
 895       }
 896     }
 897   }
 898 
 899   ClassFileStream st(class_bytes, class_bytes_length, host_source, ClassFileStream::verify);
 900 
 901   Symbol* no_class_name = NULL;
 902   Klass* anonk = SystemDictionary::parse_stream(no_class_name,
 903                                                 host_loader,
 904                                                 host_domain,
 905                                                 &st,
 906                                                 host_klass,
 907                                                 cp_patches,
 908                                                 CHECK_NULL);
 909   if (anonk == NULL) {
 910     return NULL;
 911   }
 912 
 913   return instanceKlassHandle(THREAD, anonk);
 914 }
 915 
 916 UNSAFE_ENTRY(jclass, Unsafe_DefineAnonymousClass0(JNIEnv *env, jobject unsafe, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh)) {
 917   ResourceMark rm(THREAD);
 918 
 919   instanceKlassHandle anon_klass;
 920   jobject res_jh = NULL;
 921   u1* temp_alloc = NULL;
 922 
 923   anon_klass = Unsafe_DefineAnonymousClass_impl(env, host_class, data, cp_patches_jh, &temp_alloc, THREAD);
 924   if (anon_klass() != NULL) {
 925     res_jh = JNIHandles::make_local(env, anon_klass->java_mirror());
 926   }
 927 
 928   // try/finally clause:
 929   if (temp_alloc != NULL) {
 930     FREE_C_HEAP_ARRAY(u1, temp_alloc);
 931   }
 932 
 933   // The anonymous class loader data has been artificially been kept alive to
 934   // this point.   The mirror and any instances of this class have to keep
 935   // it alive afterwards.
 936   if (anon_klass() != NULL) {
 937     anon_klass->class_loader_data()->dec_keep_alive();
 938   }
 939 
 940   // let caller initialize it as needed...
 941 
 942   return (jclass) res_jh;
 943 } UNSAFE_END
 944 
 945 
 946 
 947 UNSAFE_ENTRY(void, Unsafe_ThrowException(JNIEnv *env, jobject unsafe, jthrowable thr)) {
 948   ThreadToNativeFromVM ttnfv(thread);
 949   env->Throw(thr);
 950 } UNSAFE_END
 951 
 952 // JSR166 ------------------------------------------------------------------
 953 
 954 UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
 955   oop x = JNIHandles::resolve(x_h);
 956   oop e = JNIHandles::resolve(e_h);
 957   oop p = JNIHandles::resolve(obj);
 958   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
 959   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
 960   if (res == e) {
 961     update_barrier_set((void*)addr, x);
 962   }
 963   return JNIHandles::make_local(env, res);
 964 } UNSAFE_END
 965 
 966 UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
 967   oop p = JNIHandles::resolve(obj);
 968   jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
 969 
 970   return (jint)(Atomic::cmpxchg(x, addr, e));
 971 } UNSAFE_END
 972 
 973 UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
 974   Handle p(THREAD, JNIHandles::resolve(obj));
 975   jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
 976 
 977 #ifdef SUPPORTS_NATIVE_CX8
 978   return (jlong)(Atomic::cmpxchg(x, addr, e));
 979 #else
 980   if (VM_Version::supports_cx8()) {
 981     return (jlong)(Atomic::cmpxchg(x, addr, e));
 982   } else {
 983     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 984 
 985     jlong val = Atomic::load(addr);
 986     if (val == e) {
 987       Atomic::store(x, addr);
 988     }
 989     return val;
 990   }
 991 #endif
 992 } UNSAFE_END
 993 
 994 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
 995   oop x = JNIHandles::resolve(x_h);
 996   oop e = JNIHandles::resolve(e_h);
 997   oop p = JNIHandles::resolve(obj);
 998   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
 999   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
1000   if (res != e) {
1001     return false;
1002   }
1003 
1004   update_barrier_set((void*)addr, x);
1005 
1006   return true;
1007 } UNSAFE_END
1008 
1009 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
1010   oop p = JNIHandles::resolve(obj);
1011   jint* addr = (jint *)index_oop_from_field_offset_long(p, offset);
1012 
1013   return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
1014 } UNSAFE_END
1015 
1016 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
1017   Handle p(THREAD, JNIHandles::resolve(obj));
1018   jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
1019 
1020 #ifdef SUPPORTS_NATIVE_CX8
1021   return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1022 #else
1023   if (VM_Version::supports_cx8()) {
1024     return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1025   } else {
1026     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
1027 
1028     jlong val = Atomic::load(addr);
1029     if (val != e) {
1030       return false;
1031     }
1032 
1033     Atomic::store(x, addr);
1034     return true;
1035   }
1036 #endif
1037 } UNSAFE_END
1038 
1039 UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) {
1040   EventThreadPark event;
1041   HOTSPOT_THREAD_PARK_BEGIN((uintptr_t) thread->parker(), (int) isAbsolute, time);
1042 
1043   JavaThreadParkedState jtps(thread, time != 0);
1044   thread->parker()->park(isAbsolute != 0, time);
1045 
1046   HOTSPOT_THREAD_PARK_END((uintptr_t) thread->parker());
1047 
1048   if (event.should_commit()) {
1049     oop obj = thread->current_park_blocker();
1050     event.set_parkedClass((obj != NULL) ? obj->klass() : NULL);
1051     event.set_timeout(time);
1052     event.set_address((obj != NULL) ? (TYPE_ADDRESS) cast_from_oop<uintptr_t>(obj) : 0);
1053     event.commit();
1054   }
1055 } UNSAFE_END
1056 
1057 UNSAFE_ENTRY(void, Unsafe_Unpark(JNIEnv *env, jobject unsafe, jobject jthread)) {
1058   Parker* p = NULL;
1059 
1060   if (jthread != NULL) {
1061     oop java_thread = JNIHandles::resolve_non_null(jthread);
1062     if (java_thread != NULL) {
1063       jlong lp = java_lang_Thread::park_event(java_thread);
1064       if (lp != 0) {
1065         // This cast is OK even though the jlong might have been read
1066         // non-atomically on 32bit systems, since there, one word will
1067         // always be zero anyway and the value set is always the same
1068         p = (Parker*)addr_from_java(lp);
1069       } else {
1070         // Grab lock if apparently null or using older version of library
1071         MutexLocker mu(Threads_lock);
1072         java_thread = JNIHandles::resolve_non_null(jthread);
1073 
1074         if (java_thread != NULL) {
1075           JavaThread* thr = java_lang_Thread::thread(java_thread);
1076           if (thr != NULL) {
1077             p = thr->parker();
1078             if (p != NULL) { // Bind to Java thread for next time.
1079               java_lang_Thread::set_park_event(java_thread, addr_to_java(p));
1080             }
1081           }
1082         }
1083       }
1084     }
1085   }
1086 
1087   if (p != NULL) {
1088     HOTSPOT_THREAD_UNPARK((uintptr_t) p);
1089     p->unpark();
1090   }
1091 } UNSAFE_END
1092 
1093 UNSAFE_ENTRY(jint, Unsafe_GetLoadAverage0(JNIEnv *env, jobject unsafe, jdoubleArray loadavg, jint nelem)) {
1094   const int max_nelem = 3;
1095   double la[max_nelem];
1096   jint ret;
1097 
1098   typeArrayOop a = typeArrayOop(JNIHandles::resolve_non_null(loadavg));
1099   assert(a->is_typeArray(), "must be type array");
1100 
1101   ret = os::loadavg(la, nelem);
1102   if (ret == -1) {
1103     return -1;
1104   }
1105 
1106   // if successful, ret is the number of samples actually retrieved.
1107   assert(ret >= 0 && ret <= max_nelem, "Unexpected loadavg return value");
1108   switch(ret) {
1109     case 3: a->double_at_put(2, (jdouble)la[2]); // fall through
1110     case 2: a->double_at_put(1, (jdouble)la[1]); // fall through
1111     case 1: a->double_at_put(0, (jdouble)la[0]); break;
1112   }
1113 
1114   return ret;
1115 } UNSAFE_END
1116 
1117 
1118 /// JVM_RegisterUnsafeMethods
1119 
1120 #define ADR "J"
1121 
1122 #define LANG "Ljava/lang/"
1123 
1124 #define OBJ LANG "Object;"
1125 #define CLS LANG "Class;"
1126 #define FLD LANG "reflect/Field;"
1127 #define THR LANG "Throwable;"
1128 
1129 #define DC_Args  LANG "String;[BII" LANG "ClassLoader;" "Ljava/security/ProtectionDomain;"
1130 #define DAC_Args CLS "[B[" OBJ
1131 
1132 #define CC (char*)  /*cast a literal from (const char*)*/
1133 #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)
1134 
1135 #define DECLARE_GETPUTOOP(Type, Desc) \
1136     {CC "get" #Type,      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type)}, \
1137     {CC "put" #Type,      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type)}, \
1138     {CC "get" #Type "Volatile",      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type##Volatile)}, \
1139     {CC "put" #Type "Volatile",      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type##Volatile)}
1140 
1141 
1142 static JNINativeMethod jdk_internal_misc_Unsafe_methods[] = {
1143     {CC "getObject",        CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObject)},
1144     {CC "putObject",        CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_PutObject)},
1145     {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObjectVolatile)},
1146     {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_PutObjectVolatile)},
1147 
1148     {CC "getUncompressedObject", CC "(" ADR ")" OBJ,  FN_PTR(Unsafe_GetUncompressedObject)},
1149 
1150     DECLARE_GETPUTOOP(Boolean, Z),
1151     DECLARE_GETPUTOOP(Byte, B),
1152     DECLARE_GETPUTOOP(Short, S),
1153     DECLARE_GETPUTOOP(Char, C),
1154     DECLARE_GETPUTOOP(Int, I),
1155     DECLARE_GETPUTOOP(Long, J),
1156     DECLARE_GETPUTOOP(Float, F),
1157     DECLARE_GETPUTOOP(Double, D),
1158 
1159     {CC "allocateMemory0",    CC "(J)" ADR,              FN_PTR(Unsafe_AllocateMemory0)},
1160     {CC "reallocateMemory0",  CC "(" ADR "J)" ADR,       FN_PTR(Unsafe_ReallocateMemory0)},
1161     {CC "freeMemory0",        CC "(" ADR ")V",           FN_PTR(Unsafe_FreeMemory0)},
1162 
1163     {CC "objectFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_ObjectFieldOffset0)},
1164     {CC "staticFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_StaticFieldOffset0)},
1165     {CC "staticFieldBase0",   CC "(" FLD ")" OBJ,        FN_PTR(Unsafe_StaticFieldBase0)},
1166     {CC "ensureClassInitialized0", CC "(" CLS ")V",      FN_PTR(Unsafe_EnsureClassInitialized0)},
1167     {CC "arrayBaseOffset0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayBaseOffset0)},
1168     {CC "arrayIndexScale0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayIndexScale0)},
1169     {CC "addressSize0",       CC "()I",                  FN_PTR(Unsafe_AddressSize0)},
1170     {CC "pageSize",           CC "()I",                  FN_PTR(Unsafe_PageSize)},
1171 
1172     {CC "defineClass0",       CC "(" DC_Args ")" CLS,    FN_PTR(Unsafe_DefineClass0)},
1173     {CC "allocateInstance",   CC "(" CLS ")" OBJ,        FN_PTR(Unsafe_AllocateInstance)},
1174     {CC "throwException",     CC "(" THR ")V",           FN_PTR(Unsafe_ThrowException)},
1175     {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)},
1176     {CC "compareAndSwapInt",  CC "(" OBJ "J""I""I"")Z",  FN_PTR(Unsafe_CompareAndSwapInt)},
1177     {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z",  FN_PTR(Unsafe_CompareAndSwapLong)},
1178     {CC "compareAndExchangeObjectVolatile", CC "(" OBJ "J" OBJ "" OBJ ")" OBJ, FN_PTR(Unsafe_CompareAndExchangeObject)},
1179     {CC "compareAndExchangeIntVolatile",  CC "(" OBJ "J""I""I"")I", FN_PTR(Unsafe_CompareAndExchangeInt)},
1180     {CC "compareAndExchangeLongVolatile", CC "(" OBJ "J""J""J"")J", FN_PTR(Unsafe_CompareAndExchangeLong)},
1181 
1182     {CC "park",               CC "(ZJ)V",                FN_PTR(Unsafe_Park)},
1183     {CC "unpark",             CC "(" OBJ ")V",           FN_PTR(Unsafe_Unpark)},
1184 
1185     {CC "getLoadAverage0",    CC "([DI)I",               FN_PTR(Unsafe_GetLoadAverage0)},
1186 
1187     {CC "copyMemory0",        CC "(" OBJ "J" OBJ "JJ)V", FN_PTR(Unsafe_CopyMemory0)},
1188     {CC "copySwapMemory0",    CC "(" OBJ "J" OBJ "JJJ)V", FN_PTR(Unsafe_CopySwapMemory0)},
1189     {CC "setMemory0",         CC "(" OBJ "JJB)V",        FN_PTR(Unsafe_SetMemory0)},
1190 
1191     {CC "defineAnonymousClass0", CC "(" DAC_Args ")" CLS, FN_PTR(Unsafe_DefineAnonymousClass0)},
1192 
1193     {CC "shouldBeInitialized0", CC "(" CLS ")Z",         FN_PTR(Unsafe_ShouldBeInitialized0)},
1194 
1195     {CC "loadFence",          CC "()V",                  FN_PTR(Unsafe_LoadFence)},
1196     {CC "storeFence",         CC "()V",                  FN_PTR(Unsafe_StoreFence)},
1197     {CC "fullFence",          CC "()V",                  FN_PTR(Unsafe_FullFence)},
1198 
1199     {CC "isBigEndian0",       CC "()Z",                  FN_PTR(Unsafe_isBigEndian0)},
1200     {CC "unalignedAccess0",   CC "()Z",                  FN_PTR(Unsafe_unalignedAccess0)}
1201 };
1202 
1203 #undef CC
1204 #undef FN_PTR
1205 
1206 #undef ADR
1207 #undef LANG
1208 #undef OBJ
1209 #undef CLS
1210 #undef FLD
1211 #undef THR
1212 #undef DC_Args
1213 #undef DAC_Args
1214 
1215 #undef DECLARE_GETPUTOOP
1216 
1217 
1218 // This function is exported, used by NativeLookup.
1219 // The Unsafe_xxx functions above are called only from the interpreter.
1220 // The optimizer looks at names and signatures to recognize
1221 // individual functions.
1222 
1223 JVM_ENTRY(void, JVM_RegisterJDKInternalMiscUnsafeMethods(JNIEnv *env, jclass unsafeclass)) {
1224   ThreadToNativeFromVM ttnfv(thread);
1225 
1226   int ok = env->RegisterNatives(unsafeclass, jdk_internal_misc_Unsafe_methods, sizeof(jdk_internal_misc_Unsafe_methods)/sizeof(JNINativeMethod));
1227   guarantee(ok == 0, "register jdk.internal.misc.Unsafe natives");
1228 } JVM_END