1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classFileStream.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayOop.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "prims/jni.h"
  33 #include "prims/jvm.h"
  34 #include "prims/unsafe.hpp"
  35 #include "runtime/atomic.hpp"
  36 #include "runtime/globals.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 #include "runtime/reflection.hpp"
  40 #include "runtime/vm_version.hpp"
  41 #include "services/threadService.hpp"
  42 #include "trace/tracing.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/dtrace.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 
  50 /**
  51  * Implementation of the jdk.internal.misc.Unsafe class
  52  */
  53 
  54 
  55 #define MAX_OBJECT_SIZE \
  56   ( arrayOopDesc::header_size(T_DOUBLE) * HeapWordSize \
  57     + ((julong)max_jint * sizeof(double)) )
  58 
  59 
  60 #define UNSAFE_ENTRY(result_type, header) \
  61   JVM_ENTRY(static result_type, header)
  62 
  63 #define UNSAFE_LEAF(result_type, header) \
  64   JVM_LEAF(static result_type, header)
  65 
  66 #define UNSAFE_END JVM_END
  67 
  68 
  69 static inline void* addr_from_java(jlong addr) {
  70   // This assert fails in a variety of ways on 32-bit systems.
  71   // It is impossible to predict whether native code that converts
  72   // pointers to longs will sign-extend or zero-extend the addresses.
  73   //assert(addr == (uintptr_t)addr, "must not be odd high bits");
  74   return (void*)(uintptr_t)addr;
  75 }
  76 
  77 static inline jlong addr_to_java(void* p) {
  78   assert(p == (void*)(uintptr_t)p, "must not be odd high bits");
  79   return (uintptr_t)p;
  80 }
  81 
  82 
  83 // Note: The VM's obj_field and related accessors use byte-scaled
  84 // ("unscaled") offsets, just as the unsafe methods do.
  85 
  86 // However, the method Unsafe.fieldOffset explicitly declines to
  87 // guarantee this.  The field offset values manipulated by the Java user
  88 // through the Unsafe API are opaque cookies that just happen to be byte
  89 // offsets.  We represent this state of affairs by passing the cookies
  90 // through conversion functions when going between the VM and the Unsafe API.
  91 // The conversion functions just happen to be no-ops at present.
  92 
  93 static inline jlong field_offset_to_byte_offset(jlong field_offset) {
  94   return field_offset;
  95 }
  96 
  97 static inline jlong field_offset_from_byte_offset(jlong byte_offset) {
  98   return byte_offset;
  99 }
 100 
 101 static inline void* index_oop_from_field_offset_long(oop p, jlong field_offset) {
 102   jlong byte_offset = field_offset_to_byte_offset(field_offset);
 103 
 104 #ifdef ASSERT
 105   if (p != NULL) {
 106     assert(byte_offset >= 0 && byte_offset <= (jlong)MAX_OBJECT_SIZE, "sane offset");
 107     if (byte_offset == (jint)byte_offset) {
 108       void* ptr_plus_disp = (address)p + byte_offset;
 109       assert((void*)p->obj_field_addr<oop>((jint)byte_offset) == ptr_plus_disp,
 110              "raw [ptr+disp] must be consistent with oop::field_base");
 111     }
 112     jlong p_size = HeapWordSize * (jlong)(p->size());
 113     assert(byte_offset < p_size, "Unsafe access: offset " INT64_FORMAT " > object's size " INT64_FORMAT, byte_offset, p_size);
 114   }
 115 #endif
 116 
 117   if (sizeof(char*) == sizeof(jint)) {   // (this constant folds!)
 118     return (address)p + (jint) byte_offset;
 119   } else {
 120     return (address)p +        byte_offset;
 121   }
 122 }
 123 
 124 // Externally callable versions:
 125 // (Use these in compiler intrinsics which emulate unsafe primitives.)
 126 jlong Unsafe_field_offset_to_byte_offset(jlong field_offset) {
 127   return field_offset;
 128 }
 129 jlong Unsafe_field_offset_from_byte_offset(jlong byte_offset) {
 130   return byte_offset;
 131 }
 132 
 133 
 134 ///// Data read/writes on the Java heap and in native (off-heap) memory
 135 
 136 /**
 137  * Helper class for accessing memory.
 138  *
 139  * Normalizes values and wraps accesses in
 140  * JavaThread::doing_unsafe_access() if needed.
 141  */
 142 class MemoryAccess : StackObj {
 143   JavaThread* _thread;
 144   jobject _obj;
 145   jlong _offset;
 146 
 147   // Resolves and returns the address of the memory access
 148   void* addr() {
 149     return index_oop_from_field_offset_long(JNIHandles::resolve(_obj), _offset);
 150   }
 151 
 152   template <typename T>
 153   T normalize_for_write(T x) {
 154     return x;
 155   }
 156 
 157   jboolean normalize_for_write(jboolean x) {
 158     return x & 1;
 159   }
 160 
 161   template <typename T>
 162   T normalize_for_read(T x) {
 163     return x;
 164   }
 165 
 166   jboolean normalize_for_read(jboolean x) {
 167     return x != 0;
 168   }
 169 
 170   /**
 171    * Helper class to wrap memory accesses in JavaThread::doing_unsafe_access()
 172    */
 173   class GuardUnsafeAccess {
 174     JavaThread* _thread;
 175     bool _active;
 176 
 177   public:
 178     GuardUnsafeAccess(JavaThread* thread, jobject _obj) : _thread(thread) {
 179       if (JNIHandles::resolve(_obj) == NULL) {
 180         // native/off-heap access which may raise SIGBUS if accessing
 181         // memory mapped file data in a region of the file which has
 182         // been truncated and is now invalid
 183         _thread->set_doing_unsafe_access(true);
 184         _active = true;
 185       } else {
 186         _active = false;
 187       }
 188     }
 189 
 190     ~GuardUnsafeAccess() {
 191       if (_active) {
 192         _thread->set_doing_unsafe_access(false);
 193       }
 194     }
 195   };
 196 
 197 public:
 198   MemoryAccess(JavaThread* thread, jobject obj, jlong offset)
 199     : _thread(thread), _obj(obj), _offset(offset) {
 200   }
 201 
 202   template <typename T>
 203   T get() {
 204     GuardUnsafeAccess guard(_thread, _obj);
 205 
 206     T* p = (T*)addr();
 207 
 208     T x = normalize_for_read(*p);
 209 
 210     return x;
 211   }
 212 
 213   template <typename T>
 214   void put(T x) {
 215     GuardUnsafeAccess guard(_thread, _obj);
 216 
 217     T* p = (T*)addr();
 218 
 219     *p = normalize_for_write(x);
 220   }
 221 
 222 
 223   template <typename T>
 224   T get_volatile() {
 225     GuardUnsafeAccess guard(_thread, _obj);
 226 
 227     T* p = (T*)addr();
 228 
 229     if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
 230       OrderAccess::fence();
 231     }
 232 
 233     T x = OrderAccess::load_acquire((volatile T*)p);
 234 
 235     return normalize_for_read(x);
 236   }
 237 
 238   template <typename T>
 239   void put_volatile(T x) {
 240     GuardUnsafeAccess guard(_thread, _obj);
 241 
 242     T* p = (T*)addr();
 243 
 244     OrderAccess::release_store_fence((volatile T*)p, normalize_for_write(x));
 245   }
 246 
 247 
 248 #ifndef SUPPORTS_NATIVE_CX8
 249   jlong get_jlong_locked() {
 250     GuardUnsafeAccess guard(_thread, _obj);
 251 
 252     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 253 
 254     jlong* p = (jlong*)addr();
 255 
 256     jlong x = Atomic::load(p);
 257 
 258     return x;
 259   }
 260 
 261   void put_jlong_locked(jlong x) {
 262     GuardUnsafeAccess guard(_thread, _obj);
 263 
 264     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
 265 
 266     jlong* p = (jlong*)addr();
 267 
 268     Atomic::store(normalize_for_write(x),  p);
 269   }
 270 #endif
 271 };
 272 
 273 // Get/PutObject must be special-cased, since it works with handles.
 274 
 275 // We could be accessing the referent field in a reference
 276 // object. If G1 is enabled then we need to register non-null
 277 // referent with the SATB barrier.
 278 
 279 static bool is_java_lang_ref_Reference_access(oop o, jlong offset) {
 280   if (offset == java_lang_ref_Reference::referent_offset && o != NULL) {
 281     Klass* k = o->klass();
 282     if (InstanceKlass::cast(k)->reference_type() != REF_NONE) {
 283       assert(InstanceKlass::cast(k)->is_subclass_of(SystemDictionary::Reference_klass()), "sanity");
 284       return true;
 285     }
 286   }
 287   return false;
 288 }
 289 
 290 static void ensure_referent_alive(oop v) {
 291 #if INCLUDE_ALL_GCS
 292   if (UseG1GC && v != NULL) {
 293     G1SATBCardTableModRefBS::enqueue(v);
 294   }
 295 #endif
 296 }
 297 
 298 // These functions allow a null base pointer with an arbitrary address.
 299 // But if the base pointer is non-null, the offset should make some sense.
 300 // That is, it should be in the range [0, MAX_OBJECT_SIZE].
 301 UNSAFE_ENTRY(jobject, Unsafe_GetObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 302   oop p = JNIHandles::resolve(obj);
 303   oop v;
 304 
 305   if (UseCompressedOops) {
 306     narrowOop n = *(narrowOop*)index_oop_from_field_offset_long(p, offset);
 307     v = oopDesc::decode_heap_oop(n);
 308   } else {
 309     v = *(oop*)index_oop_from_field_offset_long(p, offset);
 310   }
 311 
 312   if (is_java_lang_ref_Reference_access(p, offset)) {
 313     ensure_referent_alive(v);
 314   }
 315 
 316   return JNIHandles::make_local(env, v);
 317 } UNSAFE_END
 318 
 319 UNSAFE_ENTRY(void, Unsafe_PutObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 320   oop x = JNIHandles::resolve(x_h);
 321   oop p = JNIHandles::resolve(obj);
 322 
 323   if (UseCompressedOops) {
 324     oop_store((narrowOop*)index_oop_from_field_offset_long(p, offset), x);
 325   } else {
 326     oop_store((oop*)index_oop_from_field_offset_long(p, offset), x);
 327   }
 328 } UNSAFE_END
 329 
 330 UNSAFE_ENTRY(jobject, Unsafe_GetObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 331   oop p = JNIHandles::resolve(obj);
 332   void* addr = index_oop_from_field_offset_long(p, offset);
 333 
 334   volatile oop v;
 335 
 336   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
 337     OrderAccess::fence();
 338   }
 339 
 340   if (UseCompressedOops) {
 341     volatile narrowOop n = *(volatile narrowOop*) addr;
 342     (void)const_cast<oop&>(v = oopDesc::decode_heap_oop(n));
 343   } else {
 344     (void)const_cast<oop&>(v = *(volatile oop*) addr);
 345   }
 346 
 347   if (is_java_lang_ref_Reference_access(p, offset)) {
 348     ensure_referent_alive(v);
 349   }
 350 
 351   OrderAccess::acquire();
 352   return JNIHandles::make_local(env, v);
 353 } UNSAFE_END
 354 
 355 UNSAFE_ENTRY(void, Unsafe_PutObjectVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject x_h)) {
 356   oop x = JNIHandles::resolve(x_h);
 357   oop p = JNIHandles::resolve(obj);
 358   void* addr = index_oop_from_field_offset_long(p, offset);
 359   OrderAccess::release();
 360 
 361   if (UseCompressedOops) {
 362     oop_store((narrowOop*)addr, x);
 363   } else {
 364     oop_store((oop*)addr, x);
 365   }
 366 
 367   OrderAccess::fence();
 368 } UNSAFE_END
 369 
 370 UNSAFE_ENTRY(jobject, Unsafe_GetUncompressedObject(JNIEnv *env, jobject unsafe, jlong addr)) {
 371   oop v = *(oop*) (address) addr;
 372 
 373   return JNIHandles::make_local(env, v);
 374 } UNSAFE_END
 375 
 376 #ifndef SUPPORTS_NATIVE_CX8
 377 
 378 // VM_Version::supports_cx8() is a surrogate for 'supports atomic long memory ops'.
 379 //
 380 // On platforms which do not support atomic compare-and-swap of jlong (8 byte)
 381 // values we have to use a lock-based scheme to enforce atomicity. This has to be
 382 // applied to all Unsafe operations that set the value of a jlong field. Even so
 383 // the compareAndSwapLong operation will not be atomic with respect to direct stores
 384 // to the field from Java code. It is important therefore that any Java code that
 385 // utilizes these Unsafe jlong operations does not perform direct stores. To permit
 386 // direct loads of the field from Java code we must also use Atomic::store within the
 387 // locked regions. And for good measure, in case there are direct stores, we also
 388 // employ Atomic::load within those regions. Note that the field in question must be
 389 // volatile and so must have atomic load/store accesses applied at the Java level.
 390 //
 391 // The locking scheme could utilize a range of strategies for controlling the locking
 392 // granularity: from a lock per-field through to a single global lock. The latter is
 393 // the simplest and is used for the current implementation. Note that the Java object
 394 // that contains the field, can not, in general, be used for locking. To do so can lead
 395 // to deadlocks as we may introduce locking into what appears to the Java code to be a
 396 // lock-free path.
 397 //
 398 // As all the locked-regions are very short and themselves non-blocking we can treat
 399 // them as leaf routines and elide safepoint checks (ie we don't perform any thread
 400 // state transitions even when blocking for the lock). Note that if we do choose to
 401 // add safepoint checks and thread state transitions, we must ensure that we calculate
 402 // the address of the field _after_ we have acquired the lock, else the object may have
 403 // been moved by the GC
 404 
 405 UNSAFE_ENTRY(jlong, Unsafe_GetLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) {
 406   if (VM_Version::supports_cx8()) {
 407     return MemoryAccess(thread, obj, offset).get_volatile<jlong>();
 408   } else {
 409     return MemoryAccess(thread, obj, offset).get_jlong_locked();
 410   }
 411 } UNSAFE_END
 412 
 413 UNSAFE_ENTRY(void, Unsafe_PutLongVolatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong x)) {
 414   if (VM_Version::supports_cx8()) {
 415     MemoryAccess(thread, obj, offset).put_volatile<jlong>(x);
 416   } else {
 417     MemoryAccess(thread, obj, offset).put_jlong_locked(x);
 418   }
 419 } UNSAFE_END
 420 
 421 #endif // not SUPPORTS_NATIVE_CX8
 422 
 423 UNSAFE_LEAF(jboolean, Unsafe_isBigEndian0(JNIEnv *env, jobject unsafe)) {
 424 #ifdef VM_LITTLE_ENDIAN
 425   return false;
 426 #else
 427   return true;
 428 #endif
 429 } UNSAFE_END
 430 
 431 UNSAFE_LEAF(jint, Unsafe_unalignedAccess0(JNIEnv *env, jobject unsafe)) {
 432   return UseUnalignedAccesses;
 433 } UNSAFE_END
 434 
 435 #define DEFINE_GETSETOOP(java_type, Type) \
 436  \
 437 UNSAFE_ENTRY(java_type, Unsafe_Get##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 438   return MemoryAccess(thread, obj, offset).get<java_type>(); \
 439 } UNSAFE_END \
 440  \
 441 UNSAFE_ENTRY(void, Unsafe_Put##Type(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 442   MemoryAccess(thread, obj, offset).put<java_type>(x); \
 443 } UNSAFE_END \
 444  \
 445 // END DEFINE_GETSETOOP.
 446 
 447 DEFINE_GETSETOOP(jboolean, Boolean)
 448 DEFINE_GETSETOOP(jbyte, Byte)
 449 DEFINE_GETSETOOP(jshort, Short);
 450 DEFINE_GETSETOOP(jchar, Char);
 451 DEFINE_GETSETOOP(jint, Int);
 452 DEFINE_GETSETOOP(jlong, Long);
 453 DEFINE_GETSETOOP(jfloat, Float);
 454 DEFINE_GETSETOOP(jdouble, Double);
 455 
 456 #undef DEFINE_GETSETOOP
 457 
 458 #define DEFINE_GETSETOOP_VOLATILE(java_type, Type) \
 459  \
 460 UNSAFE_ENTRY(java_type, Unsafe_Get##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset)) { \
 461   return MemoryAccess(thread, obj, offset).get_volatile<java_type>(); \
 462 } UNSAFE_END \
 463  \
 464 UNSAFE_ENTRY(void, Unsafe_Put##Type##Volatile(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, java_type x)) { \
 465   MemoryAccess(thread, obj, offset).put_volatile<java_type>(x); \
 466 } UNSAFE_END \
 467  \
 468 // END DEFINE_GETSETOOP_VOLATILE.
 469 
 470 DEFINE_GETSETOOP_VOLATILE(jboolean, Boolean)
 471 DEFINE_GETSETOOP_VOLATILE(jbyte, Byte)
 472 DEFINE_GETSETOOP_VOLATILE(jshort, Short);
 473 DEFINE_GETSETOOP_VOLATILE(jchar, Char);
 474 DEFINE_GETSETOOP_VOLATILE(jint, Int);
 475 DEFINE_GETSETOOP_VOLATILE(jfloat, Float);
 476 DEFINE_GETSETOOP_VOLATILE(jdouble, Double);
 477 
 478 #ifdef SUPPORTS_NATIVE_CX8
 479 DEFINE_GETSETOOP_VOLATILE(jlong, Long);
 480 #endif
 481 
 482 #undef DEFINE_GETSETOOP_VOLATILE
 483 
 484 UNSAFE_LEAF(void, Unsafe_LoadFence(JNIEnv *env, jobject unsafe)) {
 485   OrderAccess::acquire();
 486 } UNSAFE_END
 487 
 488 UNSAFE_LEAF(void, Unsafe_StoreFence(JNIEnv *env, jobject unsafe)) {
 489   OrderAccess::release();
 490 } UNSAFE_END
 491 
 492 UNSAFE_LEAF(void, Unsafe_FullFence(JNIEnv *env, jobject unsafe)) {
 493   OrderAccess::fence();
 494 } UNSAFE_END
 495 
 496 ////// Allocation requests
 497 
 498 UNSAFE_ENTRY(jobject, Unsafe_AllocateInstance(JNIEnv *env, jobject unsafe, jclass cls)) {
 499   ThreadToNativeFromVM ttnfv(thread);
 500   return env->AllocObject(cls);
 501 } UNSAFE_END
 502 
 503 UNSAFE_ENTRY(jlong, Unsafe_AllocateMemory0(JNIEnv *env, jobject unsafe, jlong size)) {
 504   size_t sz = (size_t)size;
 505 
 506   sz = round_to(sz, HeapWordSize);
 507   void* x = os::malloc(sz, mtInternal);
 508 
 509   return addr_to_java(x);
 510 } UNSAFE_END
 511 
 512 UNSAFE_ENTRY(jlong, Unsafe_ReallocateMemory0(JNIEnv *env, jobject unsafe, jlong addr, jlong size)) {
 513   void* p = addr_from_java(addr);
 514   size_t sz = (size_t)size;
 515   sz = round_to(sz, HeapWordSize);
 516 
 517   void* x = os::realloc(p, sz, mtInternal);
 518 
 519   return addr_to_java(x);
 520 } UNSAFE_END
 521 
 522 UNSAFE_ENTRY(void, Unsafe_FreeMemory0(JNIEnv *env, jobject unsafe, jlong addr)) {
 523   void* p = addr_from_java(addr);
 524 
 525   os::free(p);
 526 } UNSAFE_END
 527 
 528 UNSAFE_ENTRY(void, Unsafe_SetMemory0(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong size, jbyte value)) {
 529   size_t sz = (size_t)size;
 530 
 531   oop base = JNIHandles::resolve(obj);
 532   void* p = index_oop_from_field_offset_long(base, offset);
 533 
 534   Copy::fill_to_memory_atomic(p, sz, value);
 535 } UNSAFE_END
 536 
 537 UNSAFE_ENTRY(void, Unsafe_CopyMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size)) {
 538   size_t sz = (size_t)size;
 539 
 540   oop srcp = JNIHandles::resolve(srcObj);
 541   oop dstp = JNIHandles::resolve(dstObj);
 542 
 543   void* src = index_oop_from_field_offset_long(srcp, srcOffset);
 544   void* dst = index_oop_from_field_offset_long(dstp, dstOffset);
 545 
 546   Copy::conjoint_memory_atomic(src, dst, sz);
 547 } UNSAFE_END
 548 
 549 // This function is a leaf since if the source and destination are both in native memory
 550 // the copy may potentially be very large, and we don't want to disable GC if we can avoid it.
 551 // If either source or destination (or both) are on the heap, the function will enter VM using
 552 // JVM_ENTRY_FROM_LEAF
 553 UNSAFE_LEAF(void, Unsafe_CopySwapMemory0(JNIEnv *env, jobject unsafe, jobject srcObj, jlong srcOffset, jobject dstObj, jlong dstOffset, jlong size, jlong elemSize)) {
 554   size_t sz = (size_t)size;
 555   size_t esz = (size_t)elemSize;
 556 
 557   if (srcObj == NULL && dstObj == NULL) {
 558     // Both src & dst are in native memory
 559     address src = (address)srcOffset;
 560     address dst = (address)dstOffset;
 561 
 562     Copy::conjoint_swap(src, dst, sz, esz);
 563   } else {
 564     // At least one of src/dst are on heap, transition to VM to access raw pointers
 565 
 566     JVM_ENTRY_FROM_LEAF(env, void, Unsafe_CopySwapMemory0) {
 567       oop srcp = JNIHandles::resolve(srcObj);
 568       oop dstp = JNIHandles::resolve(dstObj);
 569 
 570       address src = (address)index_oop_from_field_offset_long(srcp, srcOffset);
 571       address dst = (address)index_oop_from_field_offset_long(dstp, dstOffset);
 572 
 573       Copy::conjoint_swap(src, dst, sz, esz);
 574     } JVM_END
 575   }
 576 } UNSAFE_END
 577 
 578 ////// Random queries
 579 
 580 UNSAFE_LEAF(jint, Unsafe_AddressSize0(JNIEnv *env, jobject unsafe)) {
 581   return sizeof(void*);
 582 } UNSAFE_END
 583 
 584 UNSAFE_LEAF(jint, Unsafe_PageSize()) {
 585   return os::vm_page_size();
 586 } UNSAFE_END
 587 
 588 static jint find_field_offset(jobject field, int must_be_static, TRAPS) {
 589   assert(field != NULL, "field must not be NULL");
 590 
 591   oop reflected   = JNIHandles::resolve_non_null(field);
 592   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 593   Klass* k        = java_lang_Class::as_Klass(mirror);
 594   int slot        = java_lang_reflect_Field::slot(reflected);
 595   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 596 
 597   if (must_be_static >= 0) {
 598     int really_is_static = ((modifiers & JVM_ACC_STATIC) != 0);
 599     if (must_be_static != really_is_static) {
 600       THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 601     }
 602   }
 603 
 604   int offset = InstanceKlass::cast(k)->field_offset(slot);
 605   return field_offset_from_byte_offset(offset);
 606 }
 607 
 608 UNSAFE_ENTRY(jlong, Unsafe_ObjectFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 609   return find_field_offset(field, 0, THREAD);
 610 } UNSAFE_END
 611 
 612 UNSAFE_ENTRY(jlong, Unsafe_StaticFieldOffset0(JNIEnv *env, jobject unsafe, jobject field)) {
 613   return find_field_offset(field, 1, THREAD);
 614 } UNSAFE_END
 615 
 616 UNSAFE_ENTRY(jobject, Unsafe_StaticFieldBase0(JNIEnv *env, jobject unsafe, jobject field)) {
 617   assert(field != NULL, "field must not be NULL");
 618 
 619   // Note:  In this VM implementation, a field address is always a short
 620   // offset from the base of a a klass metaobject.  Thus, the full dynamic
 621   // range of the return type is never used.  However, some implementations
 622   // might put the static field inside an array shared by many classes,
 623   // or even at a fixed address, in which case the address could be quite
 624   // large.  In that last case, this function would return NULL, since
 625   // the address would operate alone, without any base pointer.
 626 
 627   oop reflected   = JNIHandles::resolve_non_null(field);
 628   oop mirror      = java_lang_reflect_Field::clazz(reflected);
 629   int modifiers   = java_lang_reflect_Field::modifiers(reflected);
 630 
 631   if ((modifiers & JVM_ACC_STATIC) == 0) {
 632     THROW_0(vmSymbols::java_lang_IllegalArgumentException());
 633   }
 634 
 635   return JNIHandles::make_local(env, mirror);
 636 } UNSAFE_END
 637 
 638 UNSAFE_ENTRY(void, Unsafe_EnsureClassInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 639   assert(clazz != NULL, "clazz must not be NULL");
 640 
 641   oop mirror = JNIHandles::resolve_non_null(clazz);
 642 
 643   Klass* klass = java_lang_Class::as_Klass(mirror);
 644   if (klass != NULL && klass->should_be_initialized()) {
 645     InstanceKlass* k = InstanceKlass::cast(klass);
 646     k->initialize(CHECK);
 647   }
 648 }
 649 UNSAFE_END
 650 
 651 UNSAFE_ENTRY(jboolean, Unsafe_ShouldBeInitialized0(JNIEnv *env, jobject unsafe, jobject clazz)) {
 652   assert(clazz != NULL, "clazz must not be NULL");
 653 
 654   oop mirror = JNIHandles::resolve_non_null(clazz);
 655   Klass* klass = java_lang_Class::as_Klass(mirror);
 656 
 657   if (klass != NULL && klass->should_be_initialized()) {
 658     return true;
 659   }
 660 
 661   return false;
 662 }
 663 UNSAFE_END
 664 
 665 static void getBaseAndScale(int& base, int& scale, jclass clazz, TRAPS) {
 666   assert(clazz != NULL, "clazz must not be NULL");
 667 
 668   oop mirror = JNIHandles::resolve_non_null(clazz);
 669   Klass* k = java_lang_Class::as_Klass(mirror);
 670 
 671   if (k == NULL || !k->is_array_klass()) {
 672     THROW(vmSymbols::java_lang_InvalidClassException());
 673   } else if (k->is_objArray_klass()) {
 674     base  = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 675     scale = heapOopSize;
 676   } else if (k->is_typeArray_klass()) {
 677     TypeArrayKlass* tak = TypeArrayKlass::cast(k);
 678     base  = tak->array_header_in_bytes();
 679     assert(base == arrayOopDesc::base_offset_in_bytes(tak->element_type()), "array_header_size semantics ok");
 680     scale = (1 << tak->log2_element_size());
 681   } else {
 682     ShouldNotReachHere();
 683   }
 684 }
 685 
 686 UNSAFE_ENTRY(jint, Unsafe_ArrayBaseOffset0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 687   int base = 0, scale = 0;
 688   getBaseAndScale(base, scale, clazz, CHECK_0);
 689 
 690   return field_offset_from_byte_offset(base);
 691 } UNSAFE_END
 692 
 693 
 694 UNSAFE_ENTRY(jint, Unsafe_ArrayIndexScale0(JNIEnv *env, jobject unsafe, jclass clazz)) {
 695   int base = 0, scale = 0;
 696   getBaseAndScale(base, scale, clazz, CHECK_0);
 697 
 698   // This VM packs both fields and array elements down to the byte.
 699   // But watch out:  If this changes, so that array references for
 700   // a given primitive type (say, T_BOOLEAN) use different memory units
 701   // than fields, this method MUST return zero for such arrays.
 702   // For example, the VM used to store sub-word sized fields in full
 703   // words in the object layout, so that accessors like getByte(Object,int)
 704   // did not really do what one might expect for arrays.  Therefore,
 705   // this function used to report a zero scale factor, so that the user
 706   // would know not to attempt to access sub-word array elements.
 707   // // Code for unpacked fields:
 708   // if (scale < wordSize)  return 0;
 709 
 710   // The following allows for a pretty general fieldOffset cookie scheme,
 711   // but requires it to be linear in byte offset.
 712   return field_offset_from_byte_offset(scale) - field_offset_from_byte_offset(0);
 713 } UNSAFE_END
 714 
 715 
 716 static inline void throw_new(JNIEnv *env, const char *ename) {
 717   char buf[100];
 718 
 719   jio_snprintf(buf, 100, "%s%s", "java/lang/", ename);
 720 
 721   jclass cls = env->FindClass(buf);
 722   if (env->ExceptionCheck()) {
 723     env->ExceptionClear();
 724     tty->print_cr("Unsafe: cannot throw %s because FindClass has failed", buf);
 725     return;
 726   }
 727 
 728   env->ThrowNew(cls, NULL);
 729 }
 730 
 731 static jclass Unsafe_DefineClass_impl(JNIEnv *env, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd) {
 732   // Code lifted from JDK 1.3 ClassLoader.c
 733 
 734   jbyte *body;
 735   char *utfName = NULL;
 736   jclass result = 0;
 737   char buf[128];
 738 
 739   assert(data != NULL, "Class bytes must not be NULL");
 740   assert(length >= 0, "length must not be negative: %d", length);
 741 
 742   if (UsePerfData) {
 743     ClassLoader::unsafe_defineClassCallCounter()->inc();
 744   }
 745 
 746   body = NEW_C_HEAP_ARRAY(jbyte, length, mtInternal);
 747   if (body == NULL) {
 748     throw_new(env, "OutOfMemoryError");
 749     return 0;
 750   }
 751 
 752   env->GetByteArrayRegion(data, offset, length, body);
 753   if (env->ExceptionOccurred()) {
 754     goto free_body;
 755   }
 756 
 757   if (name != NULL) {
 758     uint len = env->GetStringUTFLength(name);
 759     int unicode_len = env->GetStringLength(name);
 760 
 761     if (len >= sizeof(buf)) {
 762       utfName = NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
 763       if (utfName == NULL) {
 764         throw_new(env, "OutOfMemoryError");
 765         goto free_body;
 766       }
 767     } else {
 768       utfName = buf;
 769     }
 770 
 771     env->GetStringUTFRegion(name, 0, unicode_len, utfName);
 772 
 773     for (uint i = 0; i < len; i++) {
 774       if (utfName[i] == '.')   utfName[i] = '/';
 775     }
 776   }
 777 
 778   result = JVM_DefineClass(env, utfName, loader, body, length, pd);
 779 
 780   if (utfName && utfName != buf) {
 781     FREE_C_HEAP_ARRAY(char, utfName);
 782   }
 783 
 784  free_body:
 785   FREE_C_HEAP_ARRAY(jbyte, body);
 786   return result;
 787 }
 788 
 789 
 790 UNSAFE_ENTRY(jclass, Unsafe_DefineClass0(JNIEnv *env, jobject unsafe, jstring name, jbyteArray data, int offset, int length, jobject loader, jobject pd)) {
 791   ThreadToNativeFromVM ttnfv(thread);
 792 
 793   return Unsafe_DefineClass_impl(env, name, data, offset, length, loader, pd);
 794 } UNSAFE_END
 795 
 796 
 797 // define a class but do not make it known to the class loader or system dictionary
 798 // - host_class:  supplies context for linkage, access control, protection domain, and class loader
 799 //                if host_class is itself anonymous then it is replaced with its host class.
 800 // - data:  bytes of a class file, a raw memory address (length gives the number of bytes)
 801 // - cp_patches:  where non-null entries exist, they replace corresponding CP entries in data
 802 
 803 // When you load an anonymous class U, it works as if you changed its name just before loading,
 804 // to a name that you will never use again.  Since the name is lost, no other class can directly
 805 // link to any member of U.  Just after U is loaded, the only way to use it is reflectively,
 806 // through java.lang.Class methods like Class.newInstance.
 807 
 808 // The package of an anonymous class must either match its host's class's package or be in the
 809 // unnamed package.  If it is in the unnamed package then it will be put in its host class's
 810 // package.
 811 //
 812 
 813 // Access checks for linkage sites within U continue to follow the same rules as for named classes.
 814 // An anonymous class also has special privileges to access any member of its host class.
 815 // This is the main reason why this loading operation is unsafe.  The purpose of this is to
 816 // allow language implementations to simulate "open classes"; a host class in effect gets
 817 // new code when an anonymous class is loaded alongside it.  A less convenient but more
 818 // standard way to do this is with reflection, which can also be set to ignore access
 819 // restrictions.
 820 
 821 // Access into an anonymous class is possible only through reflection.  Therefore, there
 822 // are no special access rules for calling into an anonymous class.  The relaxed access
 823 // rule for the host class is applied in the opposite direction:  A host class reflectively
 824 // access one of its anonymous classes.
 825 
 826 // If you load the same bytecodes twice, you get two different classes.  You can reload
 827 // the same bytecodes with or without varying CP patches.
 828 
 829 // By using the CP patching array, you can have a new anonymous class U2 refer to an older one U1.
 830 // The bytecodes for U2 should refer to U1 by a symbolic name (doesn't matter what the name is).
 831 // The CONSTANT_Class entry for that name can be patched to refer directly to U1.
 832 
 833 // This allows, for example, U2 to use U1 as a superclass or super-interface, or as
 834 // an outer class (so that U2 is an anonymous inner class of anonymous U1).
 835 // It is not possible for a named class, or an older anonymous class, to refer by
 836 // name (via its CP) to a newer anonymous class.
 837 
 838 // CP patching may also be used to modify (i.e., hack) the names of methods, classes,
 839 // or type descriptors used in the loaded anonymous class.
 840 
 841 // Finally, CP patching may be used to introduce "live" objects into the constant pool,
 842 // instead of "dead" strings.  A compiled statement like println((Object)"hello") can
 843 // be changed to println(greeting), where greeting is an arbitrary object created before
 844 // the anonymous class is loaded.  This is useful in dynamic languages, in which
 845 // various kinds of metaobjects must be introduced as constants into bytecode.
 846 // Note the cast (Object), which tells the verifier to expect an arbitrary object,
 847 // not just a literal string.  For such ldc instructions, the verifier uses the
 848 // type Object instead of String, if the loaded constant is not in fact a String.
 849 
 850 static instanceKlassHandle
 851 Unsafe_DefineAnonymousClass_impl(JNIEnv *env,
 852                                  jclass host_class, jbyteArray data, jobjectArray cp_patches_jh,
 853                                  u1** temp_alloc,
 854                                  TRAPS) {
 855   assert(host_class != NULL, "host_class must not be NULL");
 856   assert(data != NULL, "data must not be NULL");
 857 
 858   if (UsePerfData) {
 859     ClassLoader::unsafe_defineClassCallCounter()->inc();
 860   }
 861 
 862   jint length = typeArrayOop(JNIHandles::resolve_non_null(data))->length();
 863   assert(length >= 0, "class_bytes_length must not be negative: %d", length);
 864 
 865   int class_bytes_length = (int) length;
 866 
 867   u1* class_bytes = NEW_C_HEAP_ARRAY(u1, length, mtInternal);
 868   if (class_bytes == NULL) {
 869     THROW_0(vmSymbols::java_lang_OutOfMemoryError());
 870   }
 871 
 872   // caller responsible to free it:
 873   *temp_alloc = class_bytes;
 874 
 875   jbyte* array_base = typeArrayOop(JNIHandles::resolve_non_null(data))->byte_at_addr(0);
 876   Copy::conjoint_jbytes(array_base, class_bytes, length);
 877 
 878   objArrayHandle cp_patches_h;
 879   if (cp_patches_jh != NULL) {
 880     oop p = JNIHandles::resolve_non_null(cp_patches_jh);
 881     assert(p->is_objArray(), "cp_patches must be an object[]");
 882     cp_patches_h = objArrayHandle(THREAD, (objArrayOop)p);
 883   }
 884 
 885   const Klass* host_klass = java_lang_Class::as_Klass(JNIHandles::resolve_non_null(host_class));
 886 
 887   // Make sure it's the real host class, not another anonymous class.
 888   while (host_klass != NULL && host_klass->is_instance_klass() &&
 889          InstanceKlass::cast(host_klass)->is_anonymous()) {
 890     host_klass = InstanceKlass::cast(host_klass)->host_klass();
 891   }
 892 
 893   // Primitive types have NULL Klass* fields in their java.lang.Class instances.
 894   if (host_klass == NULL) {
 895     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "Host class is null");
 896   }
 897 
 898   assert(host_klass->is_instance_klass(), "Host class must be an instance class");
 899 
 900   const char* host_source = host_klass->external_name();
 901   Handle      host_loader(THREAD, host_klass->class_loader());
 902   Handle      host_domain(THREAD, host_klass->protection_domain());
 903 
 904   GrowableArray<Handle>* cp_patches = NULL;
 905 
 906   if (cp_patches_h.not_null()) {
 907     int alen = cp_patches_h->length();
 908 
 909     for (int i = alen-1; i >= 0; i--) {
 910       oop p = cp_patches_h->obj_at(i);
 911       if (p != NULL) {
 912         Handle patch(THREAD, p);
 913 
 914         if (cp_patches == NULL) {
 915           cp_patches = new GrowableArray<Handle>(i+1, i+1, Handle());
 916         }
 917 
 918         cp_patches->at_put(i, patch);
 919       }
 920     }
 921   }
 922 
 923   ClassFileStream st(class_bytes, class_bytes_length, host_source, ClassFileStream::verify);
 924 
 925   Symbol* no_class_name = NULL;
 926   Klass* anonk = SystemDictionary::parse_stream(no_class_name,
 927                                                 host_loader,
 928                                                 host_domain,
 929                                                 &st,
 930                                                 InstanceKlass::cast(host_klass),
 931                                                 cp_patches,
 932                                                 CHECK_NULL);
 933   if (anonk == NULL) {
 934     return NULL;
 935   }
 936 
 937   return instanceKlassHandle(THREAD, anonk);
 938 }
 939 
 940 UNSAFE_ENTRY(jclass, Unsafe_DefineAnonymousClass0(JNIEnv *env, jobject unsafe, jclass host_class, jbyteArray data, jobjectArray cp_patches_jh)) {
 941   ResourceMark rm(THREAD);
 942 
 943   instanceKlassHandle anon_klass;
 944   jobject res_jh = NULL;
 945   u1* temp_alloc = NULL;
 946 
 947   anon_klass = Unsafe_DefineAnonymousClass_impl(env, host_class, data, cp_patches_jh, &temp_alloc, THREAD);
 948   if (anon_klass() != NULL) {
 949     res_jh = JNIHandles::make_local(env, anon_klass->java_mirror());
 950   }
 951 
 952   // try/finally clause:
 953   if (temp_alloc != NULL) {
 954     FREE_C_HEAP_ARRAY(u1, temp_alloc);
 955   }
 956 
 957   // The anonymous class loader data has been artificially been kept alive to
 958   // this point.   The mirror and any instances of this class have to keep
 959   // it alive afterwards.
 960   if (anon_klass() != NULL) {
 961     anon_klass->class_loader_data()->dec_keep_alive();
 962   }
 963 
 964   // let caller initialize it as needed...
 965 
 966   return (jclass) res_jh;
 967 } UNSAFE_END
 968 
 969 
 970 
 971 UNSAFE_ENTRY(void, Unsafe_ThrowException(JNIEnv *env, jobject unsafe, jthrowable thr)) {
 972   ThreadToNativeFromVM ttnfv(thread);
 973   env->Throw(thr);
 974 } UNSAFE_END
 975 
 976 // JSR166 ------------------------------------------------------------------
 977 
 978 UNSAFE_ENTRY(jobject, Unsafe_CompareAndExchangeObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
 979   oop x = JNIHandles::resolve(x_h);
 980   oop e = JNIHandles::resolve(e_h);
 981   oop p = JNIHandles::resolve(obj);
 982   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
 983   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
 984   if (res == e) {
 985     update_barrier_set((void*)addr, x);
 986   }
 987   return JNIHandles::make_local(env, res);
 988 } UNSAFE_END
 989 
 990 UNSAFE_ENTRY(jint, Unsafe_CompareAndExchangeInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
 991   oop p = JNIHandles::resolve(obj);
 992   jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
 993 
 994   return (jint)(Atomic::cmpxchg(x, addr, e));
 995 } UNSAFE_END
 996 
 997 UNSAFE_ENTRY(jlong, Unsafe_CompareAndExchangeLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
 998   Handle p(THREAD, JNIHandles::resolve(obj));
 999   jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
1000 
1001 #ifdef SUPPORTS_NATIVE_CX8
1002   return (jlong)(Atomic::cmpxchg(x, addr, e));
1003 #else
1004   if (VM_Version::supports_cx8()) {
1005     return (jlong)(Atomic::cmpxchg(x, addr, e));
1006   } else {
1007     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
1008 
1009     jlong val = Atomic::load(addr);
1010     if (val == e) {
1011       Atomic::store(x, addr);
1012     }
1013     return val;
1014   }
1015 #endif
1016 } UNSAFE_END
1017 
1018 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapObject(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jobject e_h, jobject x_h)) {
1019   oop x = JNIHandles::resolve(x_h);
1020   oop e = JNIHandles::resolve(e_h);
1021   oop p = JNIHandles::resolve(obj);
1022   HeapWord* addr = (HeapWord *)index_oop_from_field_offset_long(p, offset);
1023   oop res = oopDesc::atomic_compare_exchange_oop(x, addr, e, true);
1024   if (res != e) {
1025     return false;
1026   }
1027 
1028   update_barrier_set((void*)addr, x);
1029 
1030   return true;
1031 } UNSAFE_END
1032 
1033 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x)) {
1034   oop p = JNIHandles::resolve(obj);
1035   jint* addr = (jint *)index_oop_from_field_offset_long(p, offset);
1036 
1037   return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
1038 } UNSAFE_END
1039 
1040 UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapLong(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jlong e, jlong x)) {
1041   Handle p(THREAD, JNIHandles::resolve(obj));
1042   jlong* addr = (jlong*)index_oop_from_field_offset_long(p(), offset);
1043 
1044 #ifdef SUPPORTS_NATIVE_CX8
1045   return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1046 #else
1047   if (VM_Version::supports_cx8()) {
1048     return (jlong)(Atomic::cmpxchg(x, addr, e)) == e;
1049   } else {
1050     MutexLockerEx mu(UnsafeJlong_lock, Mutex::_no_safepoint_check_flag);
1051 
1052     jlong val = Atomic::load(addr);
1053     if (val != e) {
1054       return false;
1055     }
1056 
1057     Atomic::store(x, addr);
1058     return true;
1059   }
1060 #endif
1061 } UNSAFE_END
1062 
1063 UNSAFE_ENTRY(void, Unsafe_Park(JNIEnv *env, jobject unsafe, jboolean isAbsolute, jlong time)) {
1064   EventThreadPark event;
1065   HOTSPOT_THREAD_PARK_BEGIN((uintptr_t) thread->parker(), (int) isAbsolute, time);
1066 
1067   JavaThreadParkedState jtps(thread, time != 0);
1068   thread->parker()->park(isAbsolute != 0, time);
1069 
1070   HOTSPOT_THREAD_PARK_END((uintptr_t) thread->parker());
1071 
1072   if (event.should_commit()) {
1073     oop obj = thread->current_park_blocker();
1074     event.set_parkedClass((obj != NULL) ? obj->klass() : NULL);
1075     event.set_timeout(time);
1076     event.set_address((obj != NULL) ? (TYPE_ADDRESS) cast_from_oop<uintptr_t>(obj) : 0);
1077     event.commit();
1078   }
1079 } UNSAFE_END
1080 
1081 UNSAFE_ENTRY(void, Unsafe_Unpark(JNIEnv *env, jobject unsafe, jobject jthread)) {
1082   Parker* p = NULL;
1083 
1084   if (jthread != NULL) {
1085     oop java_thread = JNIHandles::resolve_non_null(jthread);
1086     if (java_thread != NULL) {
1087       jlong lp = java_lang_Thread::park_event(java_thread);
1088       if (lp != 0) {
1089         // This cast is OK even though the jlong might have been read
1090         // non-atomically on 32bit systems, since there, one word will
1091         // always be zero anyway and the value set is always the same
1092         p = (Parker*)addr_from_java(lp);
1093       } else {
1094         // Grab lock if apparently null or using older version of library
1095         MutexLocker mu(Threads_lock);
1096         java_thread = JNIHandles::resolve_non_null(jthread);
1097 
1098         if (java_thread != NULL) {
1099           JavaThread* thr = java_lang_Thread::thread(java_thread);
1100           if (thr != NULL) {
1101             p = thr->parker();
1102             if (p != NULL) { // Bind to Java thread for next time.
1103               java_lang_Thread::set_park_event(java_thread, addr_to_java(p));
1104             }
1105           }
1106         }
1107       }
1108     }
1109   }
1110 
1111   if (p != NULL) {
1112     HOTSPOT_THREAD_UNPARK((uintptr_t) p);
1113     p->unpark();
1114   }
1115 } UNSAFE_END
1116 
1117 UNSAFE_ENTRY(jint, Unsafe_GetLoadAverage0(JNIEnv *env, jobject unsafe, jdoubleArray loadavg, jint nelem)) {
1118   const int max_nelem = 3;
1119   double la[max_nelem];
1120   jint ret;
1121 
1122   typeArrayOop a = typeArrayOop(JNIHandles::resolve_non_null(loadavg));
1123   assert(a->is_typeArray(), "must be type array");
1124 
1125   ret = os::loadavg(la, nelem);
1126   if (ret == -1) {
1127     return -1;
1128   }
1129 
1130   // if successful, ret is the number of samples actually retrieved.
1131   assert(ret >= 0 && ret <= max_nelem, "Unexpected loadavg return value");
1132   switch(ret) {
1133     case 3: a->double_at_put(2, (jdouble)la[2]); // fall through
1134     case 2: a->double_at_put(1, (jdouble)la[1]); // fall through
1135     case 1: a->double_at_put(0, (jdouble)la[0]); break;
1136   }
1137 
1138   return ret;
1139 } UNSAFE_END
1140 
1141 
1142 /// JVM_RegisterUnsafeMethods
1143 
1144 #define ADR "J"
1145 
1146 #define LANG "Ljava/lang/"
1147 
1148 #define OBJ LANG "Object;"
1149 #define CLS LANG "Class;"
1150 #define FLD LANG "reflect/Field;"
1151 #define THR LANG "Throwable;"
1152 
1153 #define DC_Args  LANG "String;[BII" LANG "ClassLoader;" "Ljava/security/ProtectionDomain;"
1154 #define DAC_Args CLS "[B[" OBJ
1155 
1156 #define CC (char*)  /*cast a literal from (const char*)*/
1157 #define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f)
1158 
1159 #define DECLARE_GETPUTOOP(Type, Desc) \
1160     {CC "get" #Type,      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type)}, \
1161     {CC "put" #Type,      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type)}, \
1162     {CC "get" #Type "Volatile",      CC "(" OBJ "J)" #Desc,       FN_PTR(Unsafe_Get##Type##Volatile)}, \
1163     {CC "put" #Type "Volatile",      CC "(" OBJ "J" #Desc ")V",   FN_PTR(Unsafe_Put##Type##Volatile)}
1164 
1165 
1166 static JNINativeMethod jdk_internal_misc_Unsafe_methods[] = {
1167     {CC "getObject",        CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObject)},
1168     {CC "putObject",        CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_PutObject)},
1169     {CC "getObjectVolatile",CC "(" OBJ "J)" OBJ "",   FN_PTR(Unsafe_GetObjectVolatile)},
1170     {CC "putObjectVolatile",CC "(" OBJ "J" OBJ ")V",  FN_PTR(Unsafe_PutObjectVolatile)},
1171 
1172     {CC "getUncompressedObject", CC "(" ADR ")" OBJ,  FN_PTR(Unsafe_GetUncompressedObject)},
1173 
1174     DECLARE_GETPUTOOP(Boolean, Z),
1175     DECLARE_GETPUTOOP(Byte, B),
1176     DECLARE_GETPUTOOP(Short, S),
1177     DECLARE_GETPUTOOP(Char, C),
1178     DECLARE_GETPUTOOP(Int, I),
1179     DECLARE_GETPUTOOP(Long, J),
1180     DECLARE_GETPUTOOP(Float, F),
1181     DECLARE_GETPUTOOP(Double, D),
1182 
1183     {CC "allocateMemory0",    CC "(J)" ADR,              FN_PTR(Unsafe_AllocateMemory0)},
1184     {CC "reallocateMemory0",  CC "(" ADR "J)" ADR,       FN_PTR(Unsafe_ReallocateMemory0)},
1185     {CC "freeMemory0",        CC "(" ADR ")V",           FN_PTR(Unsafe_FreeMemory0)},
1186 
1187     {CC "objectFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_ObjectFieldOffset0)},
1188     {CC "staticFieldOffset0", CC "(" FLD ")J",           FN_PTR(Unsafe_StaticFieldOffset0)},
1189     {CC "staticFieldBase0",   CC "(" FLD ")" OBJ,        FN_PTR(Unsafe_StaticFieldBase0)},
1190     {CC "ensureClassInitialized0", CC "(" CLS ")V",      FN_PTR(Unsafe_EnsureClassInitialized0)},
1191     {CC "arrayBaseOffset0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayBaseOffset0)},
1192     {CC "arrayIndexScale0",   CC "(" CLS ")I",           FN_PTR(Unsafe_ArrayIndexScale0)},
1193     {CC "addressSize0",       CC "()I",                  FN_PTR(Unsafe_AddressSize0)},
1194     {CC "pageSize",           CC "()I",                  FN_PTR(Unsafe_PageSize)},
1195 
1196     {CC "defineClass0",       CC "(" DC_Args ")" CLS,    FN_PTR(Unsafe_DefineClass0)},
1197     {CC "allocateInstance",   CC "(" CLS ")" OBJ,        FN_PTR(Unsafe_AllocateInstance)},
1198     {CC "throwException",     CC "(" THR ")V",           FN_PTR(Unsafe_ThrowException)},
1199     {CC "compareAndSwapObject", CC "(" OBJ "J" OBJ "" OBJ ")Z", FN_PTR(Unsafe_CompareAndSwapObject)},
1200     {CC "compareAndSwapInt",  CC "(" OBJ "J""I""I"")Z",  FN_PTR(Unsafe_CompareAndSwapInt)},
1201     {CC "compareAndSwapLong", CC "(" OBJ "J""J""J"")Z",  FN_PTR(Unsafe_CompareAndSwapLong)},
1202     {CC "compareAndExchangeObjectVolatile", CC "(" OBJ "J" OBJ "" OBJ ")" OBJ, FN_PTR(Unsafe_CompareAndExchangeObject)},
1203     {CC "compareAndExchangeIntVolatile",  CC "(" OBJ "J""I""I"")I", FN_PTR(Unsafe_CompareAndExchangeInt)},
1204     {CC "compareAndExchangeLongVolatile", CC "(" OBJ "J""J""J"")J", FN_PTR(Unsafe_CompareAndExchangeLong)},
1205 
1206     {CC "park",               CC "(ZJ)V",                FN_PTR(Unsafe_Park)},
1207     {CC "unpark",             CC "(" OBJ ")V",           FN_PTR(Unsafe_Unpark)},
1208 
1209     {CC "getLoadAverage0",    CC "([DI)I",               FN_PTR(Unsafe_GetLoadAverage0)},
1210 
1211     {CC "copyMemory0",        CC "(" OBJ "J" OBJ "JJ)V", FN_PTR(Unsafe_CopyMemory0)},
1212     {CC "copySwapMemory0",    CC "(" OBJ "J" OBJ "JJJ)V", FN_PTR(Unsafe_CopySwapMemory0)},
1213     {CC "setMemory0",         CC "(" OBJ "JJB)V",        FN_PTR(Unsafe_SetMemory0)},
1214 
1215     {CC "defineAnonymousClass0", CC "(" DAC_Args ")" CLS, FN_PTR(Unsafe_DefineAnonymousClass0)},
1216 
1217     {CC "shouldBeInitialized0", CC "(" CLS ")Z",         FN_PTR(Unsafe_ShouldBeInitialized0)},
1218 
1219     {CC "loadFence",          CC "()V",                  FN_PTR(Unsafe_LoadFence)},
1220     {CC "storeFence",         CC "()V",                  FN_PTR(Unsafe_StoreFence)},
1221     {CC "fullFence",          CC "()V",                  FN_PTR(Unsafe_FullFence)},
1222 
1223     {CC "isBigEndian0",       CC "()Z",                  FN_PTR(Unsafe_isBigEndian0)},
1224     {CC "unalignedAccess0",   CC "()Z",                  FN_PTR(Unsafe_unalignedAccess0)}
1225 };
1226 
1227 #undef CC
1228 #undef FN_PTR
1229 
1230 #undef ADR
1231 #undef LANG
1232 #undef OBJ
1233 #undef CLS
1234 #undef FLD
1235 #undef THR
1236 #undef DC_Args
1237 #undef DAC_Args
1238 
1239 #undef DECLARE_GETPUTOOP
1240 
1241 
1242 // This function is exported, used by NativeLookup.
1243 // The Unsafe_xxx functions above are called only from the interpreter.
1244 // The optimizer looks at names and signatures to recognize
1245 // individual functions.
1246 
1247 JVM_ENTRY(void, JVM_RegisterJDKInternalMiscUnsafeMethods(JNIEnv *env, jclass unsafeclass)) {
1248   ThreadToNativeFromVM ttnfv(thread);
1249 
1250   int ok = env->RegisterNatives(unsafeclass, jdk_internal_misc_Unsafe_methods, sizeof(jdk_internal_misc_Unsafe_methods)/sizeof(JNINativeMethod));
1251   guarantee(ok == 0, "register jdk.internal.misc.Unsafe natives");
1252 } JVM_END