1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "vmreg_x86.inline.hpp"
  39 
  40 #ifdef ASSERT
  41 #define __ gen()->lir(__FILE__, __LINE__)->
  42 #else
  43 #define __ gen()->lir()->
  44 #endif
  45 
  46 // Item will be loaded into a byte register; Intel only
  47 void LIRItem::load_byte_item() {
  48   load_item();
  49   LIR_Opr res = result();
  50 
  51   if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
  52     // make sure that it is a byte register
  53     assert(!value()->type()->is_float() && !value()->type()->is_double(),
  54            "can't load floats in byte register");
  55     LIR_Opr reg = _gen->rlock_byte(T_BYTE);
  56     __ move(res, reg);
  57 
  58     _result = reg;
  59   }
  60 }
  61 
  62 
  63 void LIRItem::load_nonconstant() {
  64   LIR_Opr r = value()->operand();
  65   if (r->is_constant()) {
  66     _result = r;
  67   } else {
  68     load_item();
  69   }
  70 }
  71 
  72 //--------------------------------------------------------------
  73 //               LIRGenerator
  74 //--------------------------------------------------------------
  75 
  76 
  77 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
  78 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::rdx_opr; }
  79 LIR_Opr LIRGenerator::divInOpr()        { return FrameMap::rax_opr; }
  80 LIR_Opr LIRGenerator::divOutOpr()       { return FrameMap::rax_opr; }
  81 LIR_Opr LIRGenerator::remOutOpr()       { return FrameMap::rdx_opr; }
  82 LIR_Opr LIRGenerator::shiftCountOpr()   { return FrameMap::rcx_opr; }
  83 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  84 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::rax_opr; }
  85 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  86 
  87 
  88 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  89   LIR_Opr opr;
  90   switch (type->tag()) {
  91     case intTag:     opr = FrameMap::rax_opr;          break;
  92     case objectTag:  opr = FrameMap::rax_oop_opr;      break;
  93     case longTag:    opr = FrameMap::long0_opr;        break;
  94     case floatTag:   opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr  : FrameMap::fpu0_float_opr;  break;
  95     case doubleTag:  opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr;  break;
  96 
  97     case addressTag:
  98     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  99   }
 100 
 101   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 102   return opr;
 103 }
 104 
 105 
 106 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 107   LIR_Opr reg = new_register(T_INT);
 108   set_vreg_flag(reg, LIRGenerator::byte_reg);
 109   return reg;
 110 }
 111 
 112 
 113 //--------- loading items into registers --------------------------------
 114 
 115 
 116 // i486 instructions can inline constants
 117 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 118   if (type == T_SHORT || type == T_CHAR) {
 119     // there is no immediate move of word values in asembler_i486.?pp
 120     return false;
 121   }
 122   Constant* c = v->as_Constant();
 123   if (c && c->state_before() == NULL) {
 124     // constants of any type can be stored directly, except for
 125     // unloaded object constants.
 126     return true;
 127   }
 128   return false;
 129 }
 130 
 131 
 132 bool LIRGenerator::can_inline_as_constant(Value v) const {
 133   if (v->type()->tag() == longTag) return false;
 134   return v->type()->tag() != objectTag ||
 135     (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
 136 }
 137 
 138 
 139 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 140   if (c->type() == T_LONG) return false;
 141   return c->type() != T_OBJECT || c->as_jobject() == NULL;
 142 }
 143 
 144 
 145 LIR_Opr LIRGenerator::safepoint_poll_register() {
 146   return LIR_OprFact::illegalOpr;
 147 }
 148 
 149 
 150 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 151                                             int shift, int disp, BasicType type) {
 152   assert(base->is_register(), "must be");
 153   if (index->is_constant()) {
 154     return new LIR_Address(base,
 155                            ((intx)(index->as_constant_ptr()->as_jint()) << shift) + disp,
 156                            type);
 157   } else {
 158     return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
 159   }
 160 }
 161 
 162 
 163 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 164                                               BasicType type, bool needs_card_mark) {
 165   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 166 
 167   LIR_Address* addr;
 168   if (index_opr->is_constant()) {
 169     int elem_size = type2aelembytes(type);
 170     addr = new LIR_Address(array_opr,
 171                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 172   } else {
 173 #ifdef _LP64
 174     if (index_opr->type() == T_INT) {
 175       LIR_Opr tmp = new_register(T_LONG);
 176       __ convert(Bytecodes::_i2l, index_opr, tmp);
 177       index_opr = tmp;
 178     }
 179 #endif // _LP64
 180     addr =  new LIR_Address(array_opr,
 181                             index_opr,
 182                             LIR_Address::scale(type),
 183                             offset_in_bytes, type);
 184   }
 185   if (needs_card_mark) {
 186     // This store will need a precise card mark, so go ahead and
 187     // compute the full adddres instead of computing once for the
 188     // store and again for the card mark.
 189     LIR_Opr tmp = new_pointer_register();
 190     __ leal(LIR_OprFact::address(addr), tmp);
 191     return new LIR_Address(tmp, type);
 192   } else {
 193     return addr;
 194   }
 195 }
 196 
 197 
 198 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 199   LIR_Opr r = NULL;
 200   if (type == T_LONG) {
 201     r = LIR_OprFact::longConst(x);
 202   } else if (type == T_INT) {
 203     r = LIR_OprFact::intConst(x);
 204   } else {
 205     ShouldNotReachHere();
 206   }
 207   return r;
 208 }
 209 
 210 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 211   LIR_Opr pointer = new_pointer_register();
 212   __ move(LIR_OprFact::intptrConst(counter), pointer);
 213   LIR_Address* addr = new LIR_Address(pointer, type);
 214   increment_counter(addr, step);
 215 }
 216 
 217 
 218 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 219   __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
 220 }
 221 
 222 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 223   __ cmp_mem_int(condition, base, disp, c, info);
 224 }
 225 
 226 
 227 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 228   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 229 }
 230 
 231 
 232 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
 233   __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
 234 }
 235 
 236 
 237 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 238   if (tmp->is_valid()) {
 239     if (is_power_of_2(c + 1)) {
 240       __ move(left, tmp);
 241       __ shift_left(left, log2_intptr(c + 1), left);
 242       __ sub(left, tmp, result);
 243       return true;
 244     } else if (is_power_of_2(c - 1)) {
 245       __ move(left, tmp);
 246       __ shift_left(left, log2_intptr(c - 1), left);
 247       __ add(left, tmp, result);
 248       return true;
 249     }
 250   }
 251   return false;
 252 }
 253 
 254 
 255 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 256   BasicType type = item->type();
 257   __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
 258 }
 259 
 260 //----------------------------------------------------------------------
 261 //             visitor functions
 262 //----------------------------------------------------------------------
 263 
 264 
 265 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
 266   assert(x->is_pinned(),"");
 267   bool needs_range_check = x->compute_needs_range_check();
 268   bool use_length = x->length() != NULL;
 269   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
 270   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
 271                                          !get_jobject_constant(x->value())->is_null_object() ||
 272                                          x->should_profile());
 273 
 274   LIRItem array(x->array(), this);
 275   LIRItem index(x->index(), this);
 276   LIRItem value(x->value(), this);
 277   LIRItem length(this);
 278 
 279   array.load_item();
 280   index.load_nonconstant();
 281 
 282   if (use_length && needs_range_check) {
 283     length.set_instruction(x->length());
 284     length.load_item();
 285 
 286   }
 287   if (needs_store_check || x->check_boolean()) {
 288     value.load_item();
 289   } else {
 290     value.load_for_store(x->elt_type());
 291   }
 292 
 293   set_no_result(x);
 294 
 295   // the CodeEmitInfo must be duplicated for each different
 296   // LIR-instruction because spilling can occur anywhere between two
 297   // instructions and so the debug information must be different
 298   CodeEmitInfo* range_check_info = state_for(x);
 299   CodeEmitInfo* null_check_info = NULL;
 300   if (x->needs_null_check()) {
 301     null_check_info = new CodeEmitInfo(range_check_info);
 302   }
 303 
 304   // emit array address setup early so it schedules better
 305   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
 306 
 307   if (GenerateRangeChecks && needs_range_check) {
 308     if (use_length) {
 309       __ cmp(lir_cond_belowEqual, length.result(), index.result());
 310       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
 311     } else {
 312       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
 313       // range_check also does the null check
 314       null_check_info = NULL;
 315     }
 316   }
 317 
 318   if (GenerateArrayStoreCheck && needs_store_check) {
 319     LIR_Opr tmp1 = new_register(objectType);
 320     LIR_Opr tmp2 = new_register(objectType);
 321     LIR_Opr tmp3 = new_register(objectType);
 322 
 323     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
 324     __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info, x->profiled_method(), x->profiled_bci());
 325   }
 326 
 327   if (obj_store) {
 328     // Needs GC write barriers.
 329     pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
 330                 true /* do_load */, false /* patch */, NULL);
 331     __ move(value.result(), array_addr, null_check_info);
 332     // Seems to be a precise
 333     post_barrier(LIR_OprFact::address(array_addr), value.result());
 334   } else {
 335     LIR_Opr result = maybe_mask_boolean(x, array.result(), value.result(), null_check_info);
 336     __ move(result, array_addr, null_check_info);
 337   }
 338 }
 339 
 340 
 341 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 342   assert(x->is_pinned(),"");
 343   LIRItem obj(x->obj(), this);
 344   obj.load_item();
 345 
 346   set_no_result(x);
 347 
 348   // "lock" stores the address of the monitor stack slot, so this is not an oop
 349   LIR_Opr lock = new_register(T_INT);
 350   // Need a scratch register for biased locking on x86
 351   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 352   if (UseBiasedLocking) {
 353     scratch = new_register(T_INT);
 354   }
 355 
 356   CodeEmitInfo* info_for_exception = NULL;
 357   if (x->needs_null_check()) {
 358     info_for_exception = state_for(x);
 359   }
 360   // this CodeEmitInfo must not have the xhandlers because here the
 361   // object is already locked (xhandlers expect object to be unlocked)
 362   CodeEmitInfo* info = state_for(x, x->state(), true);
 363   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 364                         x->monitor_no(), info_for_exception, info);
 365 }
 366 
 367 
 368 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 369   assert(x->is_pinned(),"");
 370 
 371   LIRItem obj(x->obj(), this);
 372   obj.dont_load_item();
 373 
 374   LIR_Opr lock = new_register(T_INT);
 375   LIR_Opr obj_temp = new_register(T_INT);
 376   set_no_result(x);
 377   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 378 }
 379 
 380 
 381 // _ineg, _lneg, _fneg, _dneg
 382 void LIRGenerator::do_NegateOp(NegateOp* x) {
 383   LIRItem value(x->x(), this);
 384   value.set_destroys_register();
 385   value.load_item();
 386   LIR_Opr reg = rlock(x);
 387   __ negate(value.result(), reg);
 388 
 389   set_result(x, round_item(reg));
 390 }
 391 
 392 
 393 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 394 //      _dadd, _dmul, _dsub, _ddiv, _drem
 395 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 396   LIRItem left(x->x(),  this);
 397   LIRItem right(x->y(), this);
 398   LIRItem* left_arg  = &left;
 399   LIRItem* right_arg = &right;
 400   assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
 401   bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
 402   if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
 403     left.load_item();
 404   } else {
 405     left.dont_load_item();
 406   }
 407 
 408   // do not load right operand if it is a constant.  only 0 and 1 are
 409   // loaded because there are special instructions for loading them
 410   // without memory access (not needed for SSE2 instructions)
 411   bool must_load_right = false;
 412   if (right.is_constant()) {
 413     LIR_Const* c = right.result()->as_constant_ptr();
 414     assert(c != NULL, "invalid constant");
 415     assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
 416 
 417     if (c->type() == T_FLOAT) {
 418       must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
 419     } else {
 420       must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
 421     }
 422   }
 423 
 424   if (must_load_both) {
 425     // frem and drem destroy also right operand, so move it to a new register
 426     right.set_destroys_register();
 427     right.load_item();
 428   } else if (right.is_register() || must_load_right) {
 429     right.load_item();
 430   } else {
 431     right.dont_load_item();
 432   }
 433   LIR_Opr reg = rlock(x);
 434   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 435   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 436     tmp = new_register(T_DOUBLE);
 437   }
 438 
 439   if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
 440     // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
 441     LIR_Opr fpu0, fpu1;
 442     if (x->op() == Bytecodes::_frem) {
 443       fpu0 = LIR_OprFact::single_fpu(0);
 444       fpu1 = LIR_OprFact::single_fpu(1);
 445     } else {
 446       fpu0 = LIR_OprFact::double_fpu(0);
 447       fpu1 = LIR_OprFact::double_fpu(1);
 448     }
 449     __ move(right.result(), fpu1); // order of left and right operand is important!
 450     __ move(left.result(), fpu0);
 451     __ rem (fpu0, fpu1, fpu0);
 452     __ move(fpu0, reg);
 453 
 454   } else {
 455     arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
 456   }
 457 
 458   set_result(x, round_item(reg));
 459 }
 460 
 461 
 462 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 463 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 464   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
 465     // long division is implemented as a direct call into the runtime
 466     LIRItem left(x->x(), this);
 467     LIRItem right(x->y(), this);
 468 
 469     // the check for division by zero destroys the right operand
 470     right.set_destroys_register();
 471 
 472     BasicTypeList signature(2);
 473     signature.append(T_LONG);
 474     signature.append(T_LONG);
 475     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 476 
 477     // check for division by zero (destroys registers of right operand!)
 478     CodeEmitInfo* info = state_for(x);
 479 
 480     const LIR_Opr result_reg = result_register_for(x->type());
 481     left.load_item_force(cc->at(1));
 482     right.load_item();
 483 
 484     __ move(right.result(), cc->at(0));
 485 
 486     __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 487     __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 488 
 489     address entry = NULL;
 490     switch (x->op()) {
 491     case Bytecodes::_lrem:
 492       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 493       break; // check if dividend is 0 is done elsewhere
 494     case Bytecodes::_ldiv:
 495       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 496       break; // check if dividend is 0 is done elsewhere
 497     case Bytecodes::_lmul:
 498       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 499       break;
 500     default:
 501       ShouldNotReachHere();
 502     }
 503 
 504     LIR_Opr result = rlock_result(x);
 505     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 506     __ move(result_reg, result);
 507   } else if (x->op() == Bytecodes::_lmul) {
 508     // missing test if instr is commutative and if we should swap
 509     LIRItem left(x->x(), this);
 510     LIRItem right(x->y(), this);
 511 
 512     // right register is destroyed by the long mul, so it must be
 513     // copied to a new register.
 514     right.set_destroys_register();
 515 
 516     left.load_item();
 517     right.load_item();
 518 
 519     LIR_Opr reg = FrameMap::long0_opr;
 520     arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
 521     LIR_Opr result = rlock_result(x);
 522     __ move(reg, result);
 523   } else {
 524     // missing test if instr is commutative and if we should swap
 525     LIRItem left(x->x(), this);
 526     LIRItem right(x->y(), this);
 527 
 528     left.load_item();
 529     // don't load constants to save register
 530     right.load_nonconstant();
 531     rlock_result(x);
 532     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 533   }
 534 }
 535 
 536 
 537 
 538 // for: _iadd, _imul, _isub, _idiv, _irem
 539 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 540   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 541     // The requirements for division and modulo
 542     // input : rax,: dividend                         min_int
 543     //         reg: divisor   (may not be rax,/rdx)   -1
 544     //
 545     // output: rax,: quotient  (= rax, idiv reg)       min_int
 546     //         rdx: remainder (= rax, irem reg)       0
 547 
 548     // rax, and rdx will be destroyed
 549 
 550     // Note: does this invalidate the spec ???
 551     LIRItem right(x->y(), this);
 552     LIRItem left(x->x() , this);   // visit left second, so that the is_register test is valid
 553 
 554     // call state_for before load_item_force because state_for may
 555     // force the evaluation of other instructions that are needed for
 556     // correct debug info.  Otherwise the live range of the fix
 557     // register might be too long.
 558     CodeEmitInfo* info = state_for(x);
 559 
 560     left.load_item_force(divInOpr());
 561 
 562     right.load_item();
 563 
 564     LIR_Opr result = rlock_result(x);
 565     LIR_Opr result_reg;
 566     if (x->op() == Bytecodes::_idiv) {
 567       result_reg = divOutOpr();
 568     } else {
 569       result_reg = remOutOpr();
 570     }
 571 
 572     if (!ImplicitDiv0Checks) {
 573       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
 574       __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
 575     }
 576     LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
 577     if (x->op() == Bytecodes::_irem) {
 578       __ irem(left.result(), right.result(), result_reg, tmp, info);
 579     } else if (x->op() == Bytecodes::_idiv) {
 580       __ idiv(left.result(), right.result(), result_reg, tmp, info);
 581     } else {
 582       ShouldNotReachHere();
 583     }
 584 
 585     __ move(result_reg, result);
 586   } else {
 587     // missing test if instr is commutative and if we should swap
 588     LIRItem left(x->x(),  this);
 589     LIRItem right(x->y(), this);
 590     LIRItem* left_arg = &left;
 591     LIRItem* right_arg = &right;
 592     if (x->is_commutative() && left.is_stack() && right.is_register()) {
 593       // swap them if left is real stack (or cached) and right is real register(not cached)
 594       left_arg = &right;
 595       right_arg = &left;
 596     }
 597 
 598     left_arg->load_item();
 599 
 600     // do not need to load right, as we can handle stack and constants
 601     if (x->op() == Bytecodes::_imul ) {
 602       // check if we can use shift instead
 603       bool use_constant = false;
 604       bool use_tmp = false;
 605       if (right_arg->is_constant()) {
 606         int iconst = right_arg->get_jint_constant();
 607         if (iconst > 0) {
 608           if (is_power_of_2(iconst)) {
 609             use_constant = true;
 610           } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
 611             use_constant = true;
 612             use_tmp = true;
 613           }
 614         }
 615       }
 616       if (use_constant) {
 617         right_arg->dont_load_item();
 618       } else {
 619         right_arg->load_item();
 620       }
 621       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 622       if (use_tmp) {
 623         tmp = new_register(T_INT);
 624       }
 625       rlock_result(x);
 626 
 627       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 628     } else {
 629       right_arg->dont_load_item();
 630       rlock_result(x);
 631       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 632       arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
 633     }
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 639   // when an operand with use count 1 is the left operand, then it is
 640   // likely that no move for 2-operand-LIR-form is necessary
 641   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 642     x->swap_operands();
 643   }
 644 
 645   ValueTag tag = x->type()->tag();
 646   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 647   switch (tag) {
 648     case floatTag:
 649     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 650     case longTag:    do_ArithmeticOp_Long(x); return;
 651     case intTag:     do_ArithmeticOp_Int(x);  return;
 652   }
 653   ShouldNotReachHere();
 654 }
 655 
 656 
 657 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 658 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 659   // count must always be in rcx
 660   LIRItem value(x->x(), this);
 661   LIRItem count(x->y(), this);
 662 
 663   ValueTag elemType = x->type()->tag();
 664   bool must_load_count = !count.is_constant() || elemType == longTag;
 665   if (must_load_count) {
 666     // count for long must be in register
 667     count.load_item_force(shiftCountOpr());
 668   } else {
 669     count.dont_load_item();
 670   }
 671   value.load_item();
 672   LIR_Opr reg = rlock_result(x);
 673 
 674   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 675 }
 676 
 677 
 678 // _iand, _land, _ior, _lor, _ixor, _lxor
 679 void LIRGenerator::do_LogicOp(LogicOp* x) {
 680   // when an operand with use count 1 is the left operand, then it is
 681   // likely that no move for 2-operand-LIR-form is necessary
 682   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 683     x->swap_operands();
 684   }
 685 
 686   LIRItem left(x->x(), this);
 687   LIRItem right(x->y(), this);
 688 
 689   left.load_item();
 690   right.load_nonconstant();
 691   LIR_Opr reg = rlock_result(x);
 692 
 693   logic_op(x->op(), reg, left.result(), right.result());
 694 }
 695 
 696 
 697 
 698 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 699 void LIRGenerator::do_CompareOp(CompareOp* x) {
 700   LIRItem left(x->x(), this);
 701   LIRItem right(x->y(), this);
 702   ValueTag tag = x->x()->type()->tag();
 703   if (tag == longTag) {
 704     left.set_destroys_register();
 705   }
 706   left.load_item();
 707   right.load_item();
 708   LIR_Opr reg = rlock_result(x);
 709 
 710   if (x->x()->type()->is_float_kind()) {
 711     Bytecodes::Code code = x->op();
 712     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 713   } else if (x->x()->type()->tag() == longTag) {
 714     __ lcmp2int(left.result(), right.result(), reg);
 715   } else {
 716     Unimplemented();
 717   }
 718 }
 719 
 720 
 721 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
 722   assert(x->number_of_arguments() == 4, "wrong type");
 723   LIRItem obj   (x->argument_at(0), this);  // object
 724   LIRItem offset(x->argument_at(1), this);  // offset of field
 725   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
 726   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
 727 
 728   assert(obj.type()->tag() == objectTag, "invalid type");
 729 
 730   // In 64bit the type can be long, sparc doesn't have this assert
 731   // assert(offset.type()->tag() == intTag, "invalid type");
 732 
 733   assert(cmp.type()->tag() == type->tag(), "invalid type");
 734   assert(val.type()->tag() == type->tag(), "invalid type");
 735 
 736   // get address of field
 737   obj.load_item();
 738   offset.load_nonconstant();
 739 
 740   LIR_Opr addr = new_pointer_register();
 741   LIR_Address* a;
 742   if(offset.result()->is_constant()) {
 743 #ifdef _LP64
 744     jlong c = offset.result()->as_jlong();
 745     if ((jlong)((jint)c) == c) {
 746       a = new LIR_Address(obj.result(),
 747                           (jint)c,
 748                           as_BasicType(type));
 749     } else {
 750       LIR_Opr tmp = new_register(T_LONG);
 751       __ move(offset.result(), tmp);
 752       a = new LIR_Address(obj.result(),
 753                           tmp,
 754                           as_BasicType(type));
 755     }
 756 #else
 757     a = new LIR_Address(obj.result(),
 758                         offset.result()->as_jint(),
 759                         as_BasicType(type));
 760 #endif
 761   } else {
 762     a = new LIR_Address(obj.result(),
 763                         offset.result(),
 764                         0,
 765                         as_BasicType(type));
 766   }
 767   __ leal(LIR_OprFact::address(a), addr);
 768 
 769   if (type == objectType) {  // Write-barrier needed for Object fields.
 770     // Do the pre-write barrier, if any.
 771     pre_barrier(addr, LIR_OprFact::illegalOpr /* pre_val */,
 772                 true /* do_load */, false /* patch */, NULL);
 773   }
 774 
 775   if (type == objectType) {
 776     cmp.load_item_force(FrameMap::rax_oop_opr);
 777     val.load_item();
 778   } else if (type == intType) {
 779     cmp.load_item_force(FrameMap::rax_opr);
 780     val.load_item();
 781   } else if (type == longType) {
 782     cmp.load_item_force(FrameMap::long0_opr);
 783     val.load_item_force(FrameMap::long1_opr);
 784   } else {
 785     ShouldNotReachHere();
 786   }
 787 
 788   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 789   if (type == objectType)
 790     __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
 791   else if (type == intType)
 792     __ cas_int(addr, cmp.result(), val.result(), ill, ill);
 793   else if (type == longType)
 794     __ cas_long(addr, cmp.result(), val.result(), ill, ill);
 795   else {
 796     ShouldNotReachHere();
 797   }
 798 
 799   // generate conditional move of boolean result
 800   LIR_Opr result = rlock_result(x);
 801   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 802            result, as_BasicType(type));
 803   if (type == objectType) {   // Write-barrier needed for Object fields.
 804     // Seems to be precise
 805     post_barrier(addr, val.result());
 806   }
 807 }
 808 
 809 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
 810   assert(x->number_of_arguments() == 3, "wrong type");
 811   assert(UseFMA, "Needs FMA instructions support.");
 812   LIRItem value(x->argument_at(0), this);
 813   LIRItem value1(x->argument_at(1), this);
 814   LIRItem value2(x->argument_at(2), this);
 815 
 816   value2.set_destroys_register();
 817 
 818   value.load_item();
 819   value1.load_item();
 820   value2.load_item();
 821 
 822   LIR_Opr calc_input = value.result();
 823   LIR_Opr calc_input1 = value1.result();
 824   LIR_Opr calc_input2 = value2.result();
 825   LIR_Opr calc_result = rlock_result(x);
 826 
 827   switch (x->id()) {
 828   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
 829   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
 830   default:                    ShouldNotReachHere();
 831   }
 832 
 833 }
 834 
 835 
 836 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 837   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 838 
 839   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 840       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 841       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 842       x->id() == vmIntrinsics::_dlog10) {
 843     do_LibmIntrinsic(x);
 844     return;
 845   }
 846 
 847   LIRItem value(x->argument_at(0), this);
 848 
 849   bool use_fpu = false;
 850   if (UseSSE < 2) {
 851     value.set_destroys_register();
 852   }
 853   value.load_item();
 854 
 855   LIR_Opr calc_input = value.result();
 856   LIR_Opr calc_result = rlock_result(x);
 857 
 858   switch(x->id()) {
 859     case vmIntrinsics::_dabs:   __ abs  (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 860     case vmIntrinsics::_dsqrt:  __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
 861     default:                    ShouldNotReachHere();
 862   }
 863 
 864   if (use_fpu) {
 865     __ move(calc_result, x->operand());
 866   }
 867 }
 868 
 869 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 870   LIRItem value(x->argument_at(0), this);
 871   value.set_destroys_register();
 872 
 873   LIR_Opr calc_result = rlock_result(x);
 874   LIR_Opr result_reg = result_register_for(x->type());
 875 
 876   CallingConvention* cc = NULL;
 877 
 878   if (x->id() == vmIntrinsics::_dpow) {
 879     LIRItem value1(x->argument_at(1), this);
 880 
 881     value1.set_destroys_register();
 882 
 883     BasicTypeList signature(2);
 884     signature.append(T_DOUBLE);
 885     signature.append(T_DOUBLE);
 886     cc = frame_map()->c_calling_convention(&signature);
 887     value.load_item_force(cc->at(0));
 888     value1.load_item_force(cc->at(1));
 889   } else {
 890     BasicTypeList signature(1);
 891     signature.append(T_DOUBLE);
 892     cc = frame_map()->c_calling_convention(&signature);
 893     value.load_item_force(cc->at(0));
 894   }
 895 
 896 #ifndef _LP64
 897   LIR_Opr tmp = FrameMap::fpu0_double_opr;
 898   result_reg = tmp;
 899   switch(x->id()) {
 900     case vmIntrinsics::_dexp:
 901       if (StubRoutines::dexp() != NULL) {
 902         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 903       } else {
 904         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 905       }
 906       break;
 907     case vmIntrinsics::_dlog:
 908       if (StubRoutines::dlog() != NULL) {
 909         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 910       } else {
 911         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 912       }
 913       break;
 914     case vmIntrinsics::_dlog10:
 915       if (StubRoutines::dlog10() != NULL) {
 916        __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 917       } else {
 918         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 919       }
 920       break;
 921     case vmIntrinsics::_dpow:
 922       if (StubRoutines::dpow() != NULL) {
 923         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 924       } else {
 925         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 926       }
 927       break;
 928     case vmIntrinsics::_dsin:
 929       if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) {
 930         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 931       } else {
 932         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 933       }
 934       break;
 935     case vmIntrinsics::_dcos:
 936       if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) {
 937         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 938       } else {
 939         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 940       }
 941       break;
 942     case vmIntrinsics::_dtan:
 943       if (StubRoutines::dtan() != NULL) {
 944         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 945       } else {
 946         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 947       }
 948       break;
 949     default:  ShouldNotReachHere();
 950   }
 951 #else
 952   switch (x->id()) {
 953     case vmIntrinsics::_dexp:
 954       if (StubRoutines::dexp() != NULL) {
 955         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 956       } else {
 957         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 958       }
 959       break;
 960     case vmIntrinsics::_dlog:
 961       if (StubRoutines::dlog() != NULL) {
 962       __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 963       } else {
 964         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 965       }
 966       break;
 967     case vmIntrinsics::_dlog10:
 968       if (StubRoutines::dlog10() != NULL) {
 969       __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 970       } else {
 971         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 972       }
 973       break;
 974     case vmIntrinsics::_dpow:
 975        if (StubRoutines::dpow() != NULL) {
 976       __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 977       } else {
 978         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 979       }
 980       break;
 981     case vmIntrinsics::_dsin:
 982       if (StubRoutines::dsin() != NULL) {
 983         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 984       } else {
 985         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 986       }
 987       break;
 988     case vmIntrinsics::_dcos:
 989       if (StubRoutines::dcos() != NULL) {
 990         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 991       } else {
 992         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 993       }
 994       break;
 995     case vmIntrinsics::_dtan:
 996        if (StubRoutines::dtan() != NULL) {
 997       __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 998       } else {
 999         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
1000       }
1001       break;
1002     default:  ShouldNotReachHere();
1003   }
1004 #endif // _LP64
1005   __ move(result_reg, calc_result);
1006 }
1007 
1008 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
1009   assert(x->number_of_arguments() == 5, "wrong type");
1010 
1011   // Make all state_for calls early since they can emit code
1012   CodeEmitInfo* info = state_for(x, x->state());
1013 
1014   LIRItem src(x->argument_at(0), this);
1015   LIRItem src_pos(x->argument_at(1), this);
1016   LIRItem dst(x->argument_at(2), this);
1017   LIRItem dst_pos(x->argument_at(3), this);
1018   LIRItem length(x->argument_at(4), this);
1019 
1020   // operands for arraycopy must use fixed registers, otherwise
1021   // LinearScan will fail allocation (because arraycopy always needs a
1022   // call)
1023 
1024 #ifndef _LP64
1025   src.load_item_force     (FrameMap::rcx_oop_opr);
1026   src_pos.load_item_force (FrameMap::rdx_opr);
1027   dst.load_item_force     (FrameMap::rax_oop_opr);
1028   dst_pos.load_item_force (FrameMap::rbx_opr);
1029   length.load_item_force  (FrameMap::rdi_opr);
1030   LIR_Opr tmp =           (FrameMap::rsi_opr);
1031 #else
1032 
1033   // The java calling convention will give us enough registers
1034   // so that on the stub side the args will be perfect already.
1035   // On the other slow/special case side we call C and the arg
1036   // positions are not similar enough to pick one as the best.
1037   // Also because the java calling convention is a "shifted" version
1038   // of the C convention we can process the java args trivially into C
1039   // args without worry of overwriting during the xfer
1040 
1041   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
1042   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
1043   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
1044   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
1045   length.load_item_force  (FrameMap::as_opr(j_rarg4));
1046 
1047   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
1048 #endif // LP64
1049 
1050   set_no_result(x);
1051 
1052   int flags;
1053   ciArrayKlass* expected_type;
1054   arraycopy_helper(x, &flags, &expected_type);
1055 
1056   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
1057 }
1058 
1059 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1060   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
1061   // Make all state_for calls early since they can emit code
1062   LIR_Opr result = rlock_result(x);
1063   int flags = 0;
1064   switch (x->id()) {
1065     case vmIntrinsics::_updateCRC32: {
1066       LIRItem crc(x->argument_at(0), this);
1067       LIRItem val(x->argument_at(1), this);
1068       // val is destroyed by update_crc32
1069       val.set_destroys_register();
1070       crc.load_item();
1071       val.load_item();
1072       __ update_crc32(crc.result(), val.result(), result);
1073       break;
1074     }
1075     case vmIntrinsics::_updateBytesCRC32:
1076     case vmIntrinsics::_updateByteBufferCRC32: {
1077       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1078 
1079       LIRItem crc(x->argument_at(0), this);
1080       LIRItem buf(x->argument_at(1), this);
1081       LIRItem off(x->argument_at(2), this);
1082       LIRItem len(x->argument_at(3), this);
1083       buf.load_item();
1084       off.load_nonconstant();
1085 
1086       LIR_Opr index = off.result();
1087       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1088       if(off.result()->is_constant()) {
1089         index = LIR_OprFact::illegalOpr;
1090        offset += off.result()->as_jint();
1091       }
1092       LIR_Opr base_op = buf.result();
1093 
1094 #ifndef _LP64
1095       if (!is_updateBytes) { // long b raw address
1096          base_op = new_register(T_INT);
1097          __ convert(Bytecodes::_l2i, buf.result(), base_op);
1098       }
1099 #else
1100       if (index->is_valid()) {
1101         LIR_Opr tmp = new_register(T_LONG);
1102         __ convert(Bytecodes::_i2l, index, tmp);
1103         index = tmp;
1104       }
1105 #endif
1106 
1107       LIR_Address* a = new LIR_Address(base_op,
1108                                        index,
1109                                        offset,
1110                                        T_BYTE);
1111       BasicTypeList signature(3);
1112       signature.append(T_INT);
1113       signature.append(T_ADDRESS);
1114       signature.append(T_INT);
1115       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1116       const LIR_Opr result_reg = result_register_for(x->type());
1117 
1118       LIR_Opr addr = new_pointer_register();
1119       __ leal(LIR_OprFact::address(a), addr);
1120 
1121       crc.load_item_force(cc->at(0));
1122       __ move(addr, cc->at(1));
1123       len.load_item_force(cc->at(2));
1124 
1125       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1126       __ move(result_reg, result);
1127 
1128       break;
1129     }
1130     default: {
1131       ShouldNotReachHere();
1132     }
1133   }
1134 }
1135 
1136 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1137   Unimplemented();
1138 }
1139 
1140 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1141   assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support");
1142 
1143   // Make all state_for calls early since they can emit code
1144   LIR_Opr result = rlock_result(x);
1145 
1146   LIRItem a(x->argument_at(0), this); // Object
1147   LIRItem aOffset(x->argument_at(1), this); // long
1148   LIRItem b(x->argument_at(2), this); // Object
1149   LIRItem bOffset(x->argument_at(3), this); // long
1150   LIRItem length(x->argument_at(4), this); // int
1151   LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int
1152 
1153   a.load_item();
1154   aOffset.load_nonconstant();
1155   b.load_item();
1156   bOffset.load_nonconstant();
1157 
1158   long constant_aOffset = 0;
1159   LIR_Opr result_aOffset = aOffset.result();
1160   if (result_aOffset->is_constant()) {
1161     constant_aOffset = result_aOffset->as_jlong();
1162     result_aOffset = LIR_OprFact::illegalOpr;
1163   }
1164   LIR_Opr result_a = a.result();
1165 
1166   long constant_bOffset = 0;
1167   LIR_Opr result_bOffset = bOffset.result();
1168   if (result_bOffset->is_constant()) {
1169     constant_bOffset = result_bOffset->as_jlong();
1170     result_bOffset = LIR_OprFact::illegalOpr;
1171   }
1172   LIR_Opr result_b = b.result();
1173 
1174 #ifndef _LP64
1175   result_a = new_register(T_INT);
1176   __ convert(Bytecodes::_l2i, a.result(), result_a);
1177   result_b = new_register(T_INT);
1178   __ convert(Bytecodes::_l2i, b.result(), result_b);
1179 #endif
1180 
1181 
1182   LIR_Address* addr_a = new LIR_Address(result_a,
1183                                         result_aOffset,
1184                                         constant_aOffset,
1185                                         T_BYTE);
1186 
1187   LIR_Address* addr_b = new LIR_Address(result_b,
1188                                         result_bOffset,
1189                                         constant_bOffset,
1190                                         T_BYTE);
1191 
1192   BasicTypeList signature(4);
1193   signature.append(T_ADDRESS);
1194   signature.append(T_ADDRESS);
1195   signature.append(T_INT);
1196   signature.append(T_INT);
1197   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1198   const LIR_Opr result_reg = result_register_for(x->type());
1199 
1200   LIR_Opr ptr_addr_a = new_pointer_register();
1201   __ leal(LIR_OprFact::address(addr_a), ptr_addr_a);
1202 
1203   LIR_Opr ptr_addr_b = new_pointer_register();
1204   __ leal(LIR_OprFact::address(addr_b), ptr_addr_b);
1205 
1206   __ move(ptr_addr_a, cc->at(0));
1207   __ move(ptr_addr_b, cc->at(1));
1208   length.load_item_force(cc->at(2));
1209   log2ArrayIndexScale.load_item_force(cc->at(3));
1210 
1211   __ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args());
1212   __ move(result_reg, result);
1213 }
1214 
1215 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1216 // _i2b, _i2c, _i2s
1217 LIR_Opr fixed_register_for(BasicType type) {
1218   switch (type) {
1219     case T_FLOAT:  return FrameMap::fpu0_float_opr;
1220     case T_DOUBLE: return FrameMap::fpu0_double_opr;
1221     case T_INT:    return FrameMap::rax_opr;
1222     case T_LONG:   return FrameMap::long0_opr;
1223     default:       ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1224   }
1225 }
1226 
1227 void LIRGenerator::do_Convert(Convert* x) {
1228   // flags that vary for the different operations and different SSE-settings
1229   bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1230 
1231   switch (x->op()) {
1232     case Bytecodes::_i2l: // fall through
1233     case Bytecodes::_l2i: // fall through
1234     case Bytecodes::_i2b: // fall through
1235     case Bytecodes::_i2c: // fall through
1236     case Bytecodes::_i2s: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1237 
1238     case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false;       round_result = false;      needs_stub = false; break;
1239     case Bytecodes::_d2f: fixed_input = false;       fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1240     case Bytecodes::_i2f: fixed_input = false;       fixed_result = false;       round_result = UseSSE < 1; needs_stub = false; break;
1241     case Bytecodes::_i2d: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = false; break;
1242     case Bytecodes::_f2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1243     case Bytecodes::_d2i: fixed_input = false;       fixed_result = false;       round_result = false;      needs_stub = true;  break;
1244     case Bytecodes::_l2f: fixed_input = false;       fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1245     case Bytecodes::_l2d: fixed_input = false;       fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1246     case Bytecodes::_f2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1247     case Bytecodes::_d2l: fixed_input = true;        fixed_result = true;        round_result = false;      needs_stub = false; break;
1248     default: ShouldNotReachHere();
1249   }
1250 
1251   LIRItem value(x->value(), this);
1252   value.load_item();
1253   LIR_Opr input = value.result();
1254   LIR_Opr result = rlock(x);
1255 
1256   // arguments of lir_convert
1257   LIR_Opr conv_input = input;
1258   LIR_Opr conv_result = result;
1259   ConversionStub* stub = NULL;
1260 
1261   if (fixed_input) {
1262     conv_input = fixed_register_for(input->type());
1263     __ move(input, conv_input);
1264   }
1265 
1266   assert(fixed_result == false || round_result == false, "cannot set both");
1267   if (fixed_result) {
1268     conv_result = fixed_register_for(result->type());
1269   } else if (round_result) {
1270     result = new_register(result->type());
1271     set_vreg_flag(result, must_start_in_memory);
1272   }
1273 
1274   if (needs_stub) {
1275     stub = new ConversionStub(x->op(), conv_input, conv_result);
1276   }
1277 
1278   __ convert(x->op(), conv_input, conv_result, stub);
1279 
1280   if (result != conv_result) {
1281     __ move(conv_result, result);
1282   }
1283 
1284   assert(result->is_virtual(), "result must be virtual register");
1285   set_result(x, result);
1286 }
1287 
1288 
1289 void LIRGenerator::do_NewInstance(NewInstance* x) {
1290   print_if_not_loaded(x);
1291 
1292   CodeEmitInfo* info = state_for(x, x->state());
1293   LIR_Opr reg = result_register_for(x->type());
1294   new_instance(reg, x->klass(), x->is_unresolved(),
1295                        FrameMap::rcx_oop_opr,
1296                        FrameMap::rdi_oop_opr,
1297                        FrameMap::rsi_oop_opr,
1298                        LIR_OprFact::illegalOpr,
1299                        FrameMap::rdx_metadata_opr, info);
1300   LIR_Opr result = rlock_result(x);
1301   __ move(reg, result);
1302 }
1303 
1304 
1305 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1306   CodeEmitInfo* info = state_for(x, x->state());
1307 
1308   LIRItem length(x->length(), this);
1309   length.load_item_force(FrameMap::rbx_opr);
1310 
1311   LIR_Opr reg = result_register_for(x->type());
1312   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1313   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1314   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1315   LIR_Opr tmp4 = reg;
1316   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1317   LIR_Opr len = length.result();
1318   BasicType elem_type = x->elt_type();
1319 
1320   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1321 
1322   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1323   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1324 
1325   LIR_Opr result = rlock_result(x);
1326   __ move(reg, result);
1327 }
1328 
1329 
1330 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1331   LIRItem length(x->length(), this);
1332   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1333   // and therefore provide the state before the parameters have been consumed
1334   CodeEmitInfo* patching_info = NULL;
1335   if (!x->klass()->is_loaded() || PatchALot) {
1336     patching_info =  state_for(x, x->state_before());
1337   }
1338 
1339   CodeEmitInfo* info = state_for(x, x->state());
1340 
1341   const LIR_Opr reg = result_register_for(x->type());
1342   LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1343   LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1344   LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1345   LIR_Opr tmp4 = reg;
1346   LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1347 
1348   length.load_item_force(FrameMap::rbx_opr);
1349   LIR_Opr len = length.result();
1350 
1351   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1352   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1353   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1354     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1355   }
1356   klass2reg_with_patching(klass_reg, obj, patching_info);
1357   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1358 
1359   LIR_Opr result = rlock_result(x);
1360   __ move(reg, result);
1361 }
1362 
1363 
1364 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1365   Values* dims = x->dims();
1366   int i = dims->length();
1367   LIRItemList* items = new LIRItemList(i, i, NULL);
1368   while (i-- > 0) {
1369     LIRItem* size = new LIRItem(dims->at(i), this);
1370     items->at_put(i, size);
1371   }
1372 
1373   // Evaluate state_for early since it may emit code.
1374   CodeEmitInfo* patching_info = NULL;
1375   if (!x->klass()->is_loaded() || PatchALot) {
1376     patching_info = state_for(x, x->state_before());
1377 
1378     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1379     // clone all handlers (NOTE: Usually this is handled transparently
1380     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1381     // is done explicitly here because a stub isn't being used).
1382     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1383   }
1384   CodeEmitInfo* info = state_for(x, x->state());
1385 
1386   i = dims->length();
1387   while (i-- > 0) {
1388     LIRItem* size = items->at(i);
1389     size->load_nonconstant();
1390 
1391     store_stack_parameter(size->result(), in_ByteSize(i*4));
1392   }
1393 
1394   LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1395   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1396 
1397   LIR_Opr rank = FrameMap::rbx_opr;
1398   __ move(LIR_OprFact::intConst(x->rank()), rank);
1399   LIR_Opr varargs = FrameMap::rcx_opr;
1400   __ move(FrameMap::rsp_opr, varargs);
1401   LIR_OprList* args = new LIR_OprList(3);
1402   args->append(klass_reg);
1403   args->append(rank);
1404   args->append(varargs);
1405   LIR_Opr reg = result_register_for(x->type());
1406   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1407                   LIR_OprFact::illegalOpr,
1408                   reg, args, info);
1409 
1410   LIR_Opr result = rlock_result(x);
1411   __ move(reg, result);
1412 }
1413 
1414 
1415 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1416   // nothing to do for now
1417 }
1418 
1419 
1420 void LIRGenerator::do_CheckCast(CheckCast* x) {
1421   LIRItem obj(x->obj(), this);
1422 
1423   CodeEmitInfo* patching_info = NULL;
1424   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1425     // must do this before locking the destination register as an oop register,
1426     // and before the obj is loaded (the latter is for deoptimization)
1427     patching_info = state_for(x, x->state_before());
1428   }
1429   obj.load_item();
1430 
1431   // info for exceptions
1432   CodeEmitInfo* info_for_exception = state_for(x);
1433 
1434   CodeStub* stub;
1435   if (x->is_incompatible_class_change_check()) {
1436     assert(patching_info == NULL, "can't patch this");
1437     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1438   } else {
1439     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1440   }
1441   LIR_Opr reg = rlock_result(x);
1442   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1443   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1444     tmp3 = new_register(objectType);
1445   }
1446   __ checkcast(reg, obj.result(), x->klass(),
1447                new_register(objectType), new_register(objectType), tmp3,
1448                x->direct_compare(), info_for_exception, patching_info, stub,
1449                x->profiled_method(), x->profiled_bci());
1450 }
1451 
1452 
1453 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1454   LIRItem obj(x->obj(), this);
1455 
1456   // result and test object may not be in same register
1457   LIR_Opr reg = rlock_result(x);
1458   CodeEmitInfo* patching_info = NULL;
1459   if ((!x->klass()->is_loaded() || PatchALot)) {
1460     // must do this before locking the destination register as an oop register
1461     patching_info = state_for(x, x->state_before());
1462   }
1463   obj.load_item();
1464   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1465   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1466     tmp3 = new_register(objectType);
1467   }
1468   __ instanceof(reg, obj.result(), x->klass(),
1469                 new_register(objectType), new_register(objectType), tmp3,
1470                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1471 }
1472 
1473 
1474 void LIRGenerator::do_If(If* x) {
1475   assert(x->number_of_sux() == 2, "inconsistency");
1476   ValueTag tag = x->x()->type()->tag();
1477   bool is_safepoint = x->is_safepoint();
1478 
1479   If::Condition cond = x->cond();
1480 
1481   LIRItem xitem(x->x(), this);
1482   LIRItem yitem(x->y(), this);
1483   LIRItem* xin = &xitem;
1484   LIRItem* yin = &yitem;
1485 
1486   if (tag == longTag) {
1487     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1488     // mirror for other conditions
1489     if (cond == If::gtr || cond == If::leq) {
1490       cond = Instruction::mirror(cond);
1491       xin = &yitem;
1492       yin = &xitem;
1493     }
1494     xin->set_destroys_register();
1495   }
1496   xin->load_item();
1497   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1498     // inline long zero
1499     yin->dont_load_item();
1500   } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1501     // longs cannot handle constants at right side
1502     yin->load_item();
1503   } else {
1504     yin->dont_load_item();
1505   }
1506 
1507   // add safepoint before generating condition code so it can be recomputed
1508   if (x->is_safepoint()) {
1509     // increment backedge counter if needed
1510     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1511     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1512   }
1513   set_no_result(x);
1514 
1515   LIR_Opr left = xin->result();
1516   LIR_Opr right = yin->result();
1517   __ cmp(lir_cond(cond), left, right);
1518   // Generate branch profiling. Profiling code doesn't kill flags.
1519   profile_branch(x, cond);
1520   move_to_phi(x->state());
1521   if (x->x()->type()->is_float_kind()) {
1522     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1523   } else {
1524     __ branch(lir_cond(cond), right->type(), x->tsux());
1525   }
1526   assert(x->default_sux() == x->fsux(), "wrong destination above");
1527   __ jump(x->default_sux());
1528 }
1529 
1530 
1531 LIR_Opr LIRGenerator::getThreadPointer() {
1532 #ifdef _LP64
1533   return FrameMap::as_pointer_opr(r15_thread);
1534 #else
1535   LIR_Opr result = new_register(T_INT);
1536   __ get_thread(result);
1537   return result;
1538 #endif //
1539 }
1540 
1541 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1542   store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1543   LIR_OprList* args = new LIR_OprList();
1544   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1545   __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1546 }
1547 
1548 
1549 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1550                                         CodeEmitInfo* info) {
1551   if (address->type() == T_LONG) {
1552     address = new LIR_Address(address->base(),
1553                               address->index(), address->scale(),
1554                               address->disp(), T_DOUBLE);
1555     // Transfer the value atomically by using FP moves.  This means
1556     // the value has to be moved between CPU and FPU registers.  It
1557     // always has to be moved through spill slot since there's no
1558     // quick way to pack the value into an SSE register.
1559     LIR_Opr temp_double = new_register(T_DOUBLE);
1560     LIR_Opr spill = new_register(T_LONG);
1561     set_vreg_flag(spill, must_start_in_memory);
1562     __ move(value, spill);
1563     __ volatile_move(spill, temp_double, T_LONG);
1564     __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1565   } else {
1566     __ store(value, address, info);
1567   }
1568 }
1569 
1570 
1571 
1572 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1573                                        CodeEmitInfo* info) {
1574   if (address->type() == T_LONG) {
1575     address = new LIR_Address(address->base(),
1576                               address->index(), address->scale(),
1577                               address->disp(), T_DOUBLE);
1578     // Transfer the value atomically by using FP moves.  This means
1579     // the value has to be moved between CPU and FPU registers.  In
1580     // SSE0 and SSE1 mode it has to be moved through spill slot but in
1581     // SSE2+ mode it can be moved directly.
1582     LIR_Opr temp_double = new_register(T_DOUBLE);
1583     __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1584     __ volatile_move(temp_double, result, T_LONG);
1585     if (UseSSE < 2) {
1586       // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1587       set_vreg_flag(result, must_start_in_memory);
1588     }
1589   } else {
1590     __ load(address, result, info);
1591   }
1592 }
1593 
1594 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1595                                      BasicType type, bool is_volatile) {
1596   if (is_volatile && type == T_LONG) {
1597     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1598     LIR_Opr tmp = new_register(T_DOUBLE);
1599     __ load(addr, tmp);
1600     LIR_Opr spill = new_register(T_LONG);
1601     set_vreg_flag(spill, must_start_in_memory);
1602     __ move(tmp, spill);
1603     __ move(spill, dst);
1604   } else {
1605     LIR_Address* addr = new LIR_Address(src, offset, type);
1606     __ load(addr, dst);
1607   }
1608 }
1609 
1610 
1611 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1612                                      BasicType type, bool is_volatile) {
1613   if (is_volatile && type == T_LONG) {
1614     LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
1615     LIR_Opr tmp = new_register(T_DOUBLE);
1616     LIR_Opr spill = new_register(T_DOUBLE);
1617     set_vreg_flag(spill, must_start_in_memory);
1618     __ move(data, spill);
1619     __ move(spill, tmp);
1620     __ move(tmp, addr);
1621   } else {
1622     LIR_Address* addr = new LIR_Address(src, offset, type);
1623     bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1624     if (is_obj) {
1625       // Do the pre-write barrier, if any.
1626       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1627                   true /* do_load */, false /* patch */, NULL);
1628       __ move(data, addr);
1629       assert(src->is_register(), "must be register");
1630       // Seems to be a precise address
1631       post_barrier(LIR_OprFact::address(addr), data);
1632     } else {
1633       __ move(data, addr);
1634     }
1635   }
1636 }
1637 
1638 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1639   BasicType type = x->basic_type();
1640   LIRItem src(x->object(), this);
1641   LIRItem off(x->offset(), this);
1642   LIRItem value(x->value(), this);
1643 
1644   src.load_item();
1645   value.load_item();
1646   off.load_nonconstant();
1647 
1648   LIR_Opr dst = rlock_result(x, type);
1649   LIR_Opr data = value.result();
1650   bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1651   LIR_Opr offset = off.result();
1652 
1653   assert (type == T_INT || (!x->is_add() && is_obj) LP64_ONLY( || type == T_LONG ), "unexpected type");
1654   LIR_Address* addr;
1655   if (offset->is_constant()) {
1656 #ifdef _LP64
1657     jlong c = offset->as_jlong();
1658     if ((jlong)((jint)c) == c) {
1659       addr = new LIR_Address(src.result(), (jint)c, type);
1660     } else {
1661       LIR_Opr tmp = new_register(T_LONG);
1662       __ move(offset, tmp);
1663       addr = new LIR_Address(src.result(), tmp, type);
1664     }
1665 #else
1666     addr = new LIR_Address(src.result(), offset->as_jint(), type);
1667 #endif
1668   } else {
1669     addr = new LIR_Address(src.result(), offset, type);
1670   }
1671 
1672   // Because we want a 2-arg form of xchg and xadd
1673   __ move(data, dst);
1674 
1675   if (x->is_add()) {
1676     __ xadd(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1677   } else {
1678     if (is_obj) {
1679       // Do the pre-write barrier, if any.
1680       pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1681                   true /* do_load */, false /* patch */, NULL);
1682     }
1683     __ xchg(LIR_OprFact::address(addr), dst, dst, LIR_OprFact::illegalOpr);
1684     if (is_obj) {
1685       // Seems to be a precise address
1686       post_barrier(LIR_OprFact::address(addr), data);
1687     }
1688   }
1689 }