/* * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciInstance.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "nativeInst_ppc.hpp" #include "oops/objArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #define __ _masm-> const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5; bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; // Currently not used on this platform. } LIR_Opr LIR_Assembler::receiverOpr() { return FrameMap::R3_oop_opr; } LIR_Opr LIR_Assembler::osrBufferPointer() { return FrameMap::R3_opr; } // This specifies the stack pointer decrement needed to build the frame. int LIR_Assembler::initial_frame_size_in_bytes() const { return in_bytes(frame_map()->framesize_in_bytes()); } // Inline cache check: the inline cached class is in inline_cache_reg; // we fetch the class of the receiver and compare it with the cached class. // If they do not match we jump to slow case. int LIR_Assembler::check_icache() { int offset = __ offset(); __ inline_cache_check(R3_ARG1, R19_inline_cache_reg); return offset; } void LIR_Assembler::osr_entry() { // On-stack-replacement entry sequence: // // 1. Create a new compiled activation. // 2. Initialize local variables in the compiled activation. The expression // stack must be empty at the osr_bci; it is not initialized. // 3. Jump to the continuation address in compiled code to resume execution. // OSR entry point offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); BlockBegin* osr_entry = compilation()->hir()->osr_entry(); ValueStack* entry_state = osr_entry->end()->state(); int number_of_locks = entry_state->locks_size(); // Create a frame for the compiled activation. __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); // OSR buffer is // // locals[nlocals-1..0] // monitors[number_of_locks-1..0] // // Locals is a direct copy of the interpreter frame so in the osr buffer // the first slot in the local array is the last local from the interpreter // and the last slot is local[0] (receiver) from the interpreter. // // Similarly with locks. The first lock slot in the osr buffer is the nth lock // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock // in the interpreter frame (the method lock if a sync method). // Initialize monitors in the compiled activation. // R3: pointer to osr buffer // // All other registers are dead at this point and the locals will be // copied into place by code emitted in the IR. Register OSR_buf = osrBufferPointer()->as_register(); { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); int monitor_offset = BytesPerWord * method()->max_locals() + (2 * BytesPerWord) * (number_of_locks - 1); // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in // the OSR buffer using 2 word entries: first the lock and then // the oop. for (int i = 0; i < number_of_locks; i++) { int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); #ifdef ASSERT // Verify the interpreter's monitor has a non-null object. { Label L; __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); __ cmpdi(CCR0, R0, 0); __ bne(CCR0, L); __ stop("locked object is NULL"); __ bind(L); } #endif // ASSERT // Copy the lock field into the compiled activation. Address ml = frame_map()->address_for_monitor_lock(i), mo = frame_map()->address_for_monitor_object(i); assert(ml.index() == noreg && mo.index() == noreg, "sanity"); __ ld(R0, slot_offset + 0, OSR_buf); __ std(R0, ml.disp(), ml.base()); __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); __ std(R0, mo.disp(), mo.base()); } } } int LIR_Assembler::emit_exception_handler() { // If the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri). __ nop(); // Generate code for the exception handler. address handler_base = __ start_a_stub(exception_handler_size()); if (handler_base == NULL) { // Not enough space left for the handler. bailout("exception handler overflow"); return -1; } int offset = code_offset(); address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)); //__ load_const_optimized(R0, entry_point); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); __ mtctr(R0); __ bctr(); guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); __ end_a_stub(); return offset; } // Emit the code to remove the frame from the stack in the exception // unwind path. int LIR_Assembler::emit_unwind_handler() { _masm->block_comment("Unwind handler"); int offset = code_offset(); bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; // Fetch the exception from TLS and clear out exception related thread state. __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ li(R0, 0); __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); __ bind(_unwind_handler_entry); __ verify_not_null_oop(Rexception); if (preserve_exception) { __ mr(Rexception_save, Rexception); } // Perform needed unlocking MonitorExitStub* stub = NULL; if (method()->is_synchronized()) { monitor_address(0, FrameMap::R4_opr); stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); __ unlock_object(R5, R6, R4, *stub->entry()); __ bind(*stub->continuation()); } if (compilation()->env()->dtrace_method_probes()) { Unimplemented(); } // Dispatch to the unwind logic. address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id); //__ load_const_optimized(R0, unwind_stub); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); if (preserve_exception) { __ mr(Rexception, Rexception_save); } __ mtctr(R0); __ bctr(); // Emit the slow path assembly. if (stub != NULL) { stub->emit_code(this); } return offset; } int LIR_Assembler::emit_deopt_handler() { // If the last instruction is a call (typically to do a throw which // is coming at the end after block reordering) the return address // must still point into the code area in order to avoid assertion // failures when searching for the corresponding bci => add a nop // (was bug 5/14/1999 - gri). __ nop(); // Generate code for deopt handler. address handler_base = __ start_a_stub(deopt_handler_size()); if (handler_base == NULL) { // Not enough space left for the handler. bailout("deopt handler overflow"); return -1; } int offset = code_offset(); __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); __ end_a_stub(); return offset; } void LIR_Assembler::jobject2reg(jobject o, Register reg) { if (o == NULL) { __ li(reg, 0); } else { AddressLiteral addrlit = __ constant_oop_address(o); __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); } } void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { // Allocate a new index in table to hold the object once it's been patched. int oop_index = __ oop_recorder()->allocate_oop_index(NULL); PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); AddressLiteral addrlit((address)NULL, oop_Relocation::spec(oop_index)); __ load_const(reg, addrlit, R0); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); } void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { // Allocate a new index in table to hold the klass once it's been patched. int index = __ oop_recorder()->allocate_metadata_index(NULL); PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); AddressLiteral addrlit((address)NULL, metadata_Relocation::spec(index)); assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); __ load_const(reg, addrlit, R0); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { const bool is_int = result->is_single_cpu(); Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); Register Rdivisor = noreg; Register Rscratch = temp->as_register(); Register Rresult = is_int ? result->as_register() : result->as_register_lo(); long divisor = -1; if (right->is_register()) { Rdivisor = is_int ? right->as_register() : right->as_register_lo(); } else { divisor = is_int ? right->as_constant_ptr()->as_jint() : right->as_constant_ptr()->as_jlong(); } assert(Rdividend != Rscratch, ""); assert(Rdivisor != Rscratch, ""); assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); if (Rdivisor == noreg) { if (divisor == 1) { // stupid, but can happen if (code == lir_idiv) { __ mr_if_needed(Rresult, Rdividend); } else { __ li(Rresult, 0); } } else if (is_power_of_2(divisor)) { // Convert division by a power of two into some shifts and logical operations. int log2 = log2_intptr(divisor); // Round towards 0. if (divisor == 2) { if (is_int) { __ srwi(Rscratch, Rdividend, 31); } else { __ srdi(Rscratch, Rdividend, 63); } } else { if (is_int) { __ srawi(Rscratch, Rdividend, 31); } else { __ sradi(Rscratch, Rdividend, 63); } __ clrldi(Rscratch, Rscratch, 64-log2); } __ add(Rscratch, Rdividend, Rscratch); if (code == lir_idiv) { if (is_int) { __ srawi(Rresult, Rscratch, log2); } else { __ sradi(Rresult, Rscratch, log2); } } else { // lir_irem __ clrrdi(Rscratch, Rscratch, log2); __ sub(Rresult, Rdividend, Rscratch); } } else if (divisor == -1) { if (code == lir_idiv) { __ neg(Rresult, Rdividend); } else { __ li(Rresult, 0); } } else { __ load_const_optimized(Rscratch, divisor); if (code == lir_idiv) { if (is_int) { __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. } else { __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. } } else { assert(Rscratch != R0, "need both"); if (is_int) { __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. __ mullw(Rscratch, R0, Rscratch); } else { __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. __ mulld(Rscratch, R0, Rscratch); } __ sub(Rresult, Rdividend, Rscratch); } } return; } Label regular, done; if (is_int) { __ cmpwi(CCR0, Rdivisor, -1); } else { __ cmpdi(CCR0, Rdivisor, -1); } __ bne(CCR0, regular); if (code == lir_idiv) { __ neg(Rresult, Rdividend); __ b(done); __ bind(regular); if (is_int) { __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. } else { __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. } } else { // lir_irem __ li(Rresult, 0); __ b(done); __ bind(regular); if (is_int) { __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. __ mullw(Rscratch, Rscratch, Rdivisor); } else { __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. __ mulld(Rscratch, Rscratch, Rdivisor); } __ sub(Rresult, Rdividend, Rscratch); } __ bind(done); } void LIR_Assembler::emit_op3(LIR_Op3* op) { switch (op->code()) { case lir_idiv: case lir_irem: arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), op->result_opr(), op->info()); break; case lir_fmad: __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); break; case lir_fmaf: __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); break; default: ShouldNotReachHere(); break; } } void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { #ifdef ASSERT assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); if (op->block() != NULL) _branch_target_blocks.append(op->block()); if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); assert(op->info() == NULL, "shouldn't have CodeEmitInfo"); #endif Label *L = op->label(); if (op->cond() == lir_cond_always) { __ b(*L); } else { Label done; bool is_unordered = false; if (op->code() == lir_cond_float_branch) { assert(op->ublock() != NULL, "must have unordered successor"); is_unordered = true; } else { assert(op->code() == lir_branch, "just checking"); } bool positive = false; Assembler::Condition cond = Assembler::equal; switch (op->cond()) { case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; case lir_cond_less: positive = true ; cond = Assembler::less ; break; case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; case lir_cond_greater: positive = true ; cond = Assembler::greater; break; case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; default: ShouldNotReachHere(); } int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; int bi = Assembler::bi0(BOOL_RESULT, cond); if (is_unordered) { if (positive) { if (op->ublock() == op->block()) { __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); } } else { if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } } } __ bc_far_optimized(bo, bi, *L); __ bind(done); } } void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { Bytecodes::Code code = op->bytecode(); LIR_Opr src = op->in_opr(), dst = op->result_opr(); switch(code) { case Bytecodes::_i2l: { __ extsw(dst->as_register_lo(), src->as_register()); break; } case Bytecodes::_l2i: { __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage break; } case Bytecodes::_i2b: { __ extsb(dst->as_register(), src->as_register()); break; } case Bytecodes::_i2c: { __ clrldi(dst->as_register(), src->as_register(), 64-16); break; } case Bytecodes::_i2s: { __ extsh(dst->as_register(), src->as_register()); break; } case Bytecodes::_i2d: case Bytecodes::_l2d: { __ fcfid(dst->as_double_reg(), src->as_double_reg()); // via mem break; } case Bytecodes::_i2f: { FloatRegister rdst = dst->as_float_reg(); FloatRegister rsrc = src->as_double_reg(); // via mem if (VM_Version::has_fcfids()) { __ fcfids(rdst, rsrc); } else { __ fcfid(rdst, rsrc); __ frsp(rdst, rdst); } break; } case Bytecodes::_l2f: { // >= Power7 assert(VM_Version::has_fcfids(), "fcfid+frsp needs fixup code to avoid rounding incompatibility"); __ fcfids(dst->as_float_reg(), src->as_double_reg()); // via mem break; } case Bytecodes::_f2d: { __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); break; } case Bytecodes::_d2f: { __ frsp(dst->as_float_reg(), src->as_double_reg()); break; } case Bytecodes::_d2i: case Bytecodes::_f2i: { FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); Address addr = frame_map()->address_for_slot(dst->double_stack_ix()); Label L; // Result must be 0 if value is NaN; test by comparing value to itself. __ fcmpu(CCR0, rsrc, rsrc); __ li(R0, 0); // 0 in case of NAN __ std(R0, addr.disp(), addr.base()); __ bso(CCR0, L); __ fctiwz(rsrc, rsrc); // USE_KILL __ stfd(rsrc, addr.disp(), addr.base()); __ bind(L); break; } case Bytecodes::_d2l: case Bytecodes::_f2l: { FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); Address addr = frame_map()->address_for_slot(dst->double_stack_ix()); Label L; // Result must be 0 if value is NaN; test by comparing value to itself. __ fcmpu(CCR0, rsrc, rsrc); __ li(R0, 0); // 0 in case of NAN __ std(R0, addr.disp(), addr.base()); __ bso(CCR0, L); __ fctidz(rsrc, rsrc); // USE_KILL __ stfd(rsrc, addr.disp(), addr.base()); __ bind(L); break; } default: ShouldNotReachHere(); } } void LIR_Assembler::align_call(LIR_Code) { // do nothing since all instructions are word aligned on ppc } bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { int start_offset = __ offset(); // Put the entry point as a constant into the constant pool. const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); if (entry_point_toc_addr == NULL) { bailout("const section overflow"); return false; } const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); // Emit the trampoline stub which will be related to the branch-and-link below. address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); if (!stub) { bailout("no space for trampoline stub"); return false; } return true; } void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); bool success = emit_trampoline_stub_for_call(op->addr()); if (!success) { return; } __ relocate(rtype); // Note: At this point we do not have the address of the trampoline // stub, and the entry point might be too far away for bl, so __ pc() // serves as dummy and the bl will be patched later. __ code()->set_insts_mark(); __ bl(__ pc()); add_call_info(code_offset(), op->info()); } void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); // Virtual call relocation will point to ic load. address virtual_call_meta_addr = __ pc(); // Load a clear inline cache. AddressLiteral empty_ic((address) Universe::non_oop_word()); bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); if (!success) { bailout("const section overflow"); return; } // Call to fixup routine. Fixup routine uses ScopeDesc info // to determine who we intended to call. __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); if (!success) { return; } // Note: At this point we do not have the address of the trampoline // stub, and the entry point might be too far away for bl, so __ pc() // serves as dummy and the bl will be patched later. __ bl(__ pc()); add_call_info(code_offset(), op->info()); } void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { ShouldNotReachHere(); // ic_call is used instead. } void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); __ null_check(addr, stub->entry()); append_code_stub(stub); } // Attention: caller must encode oop if needed int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) { int store_offset; if (!Assembler::is_simm16(offset)) { // For offsets larger than a simm16 we setup the offset. assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); __ load_const_optimized(R0, offset); store_offset = store(from_reg, base, R0, type, wide); } else { store_offset = code_offset(); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; case T_CHAR : case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; case T_INT : __ stw(from_reg->as_register(), offset, base); break; case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; case T_ADDRESS: case T_METADATA: __ std(from_reg->as_register(), offset, base); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { // Encoding done in caller __ stw(from_reg->as_register(), offset, base); } else { __ std(from_reg->as_register(), offset, base); } __ verify_oop(from_reg->as_register()); break; } case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; default : ShouldNotReachHere(); } } return store_offset; } // Attention: caller must encode oop if needed int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { int store_offset = code_offset(); switch (type) { case T_BOOLEAN: // fall through case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; case T_CHAR : case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; case T_INT : __ stwx(from_reg->as_register(), base, disp); break; case T_LONG : #ifdef _LP64 __ stdx(from_reg->as_register_lo(), base, disp); #else Unimplemented(); #endif break; case T_ADDRESS: __ stdx(from_reg->as_register(), base, disp); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { // Encoding done in caller. __ stwx(from_reg->as_register(), base, disp); } else { __ stdx(from_reg->as_register(), base, disp); } __ verify_oop(from_reg->as_register()); // kills R0 break; } case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; default : ShouldNotReachHere(); } return store_offset; } int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) { int load_offset; if (!Assembler::is_simm16(offset)) { // For offsets larger than a simm16 we setup the offset. __ load_const_optimized(R0, offset); load_offset = load(base, R0, to_reg, type, wide); } else { load_offset = code_offset(); switch(type) { case T_BOOLEAN: // fall through case T_BYTE : __ lbz(to_reg->as_register(), offset, base); __ extsb(to_reg->as_register(), to_reg->as_register()); break; case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; case T_INT : __ lwa(to_reg->as_register(), offset, base); break; case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; case T_ADDRESS: if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) { __ lwz(to_reg->as_register(), offset, base); __ decode_klass_not_null(to_reg->as_register()); } else { __ ld(to_reg->as_register(), offset, base); } break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ lwz(to_reg->as_register(), offset, base); __ decode_heap_oop(to_reg->as_register()); } else { __ ld(to_reg->as_register(), offset, base); } __ verify_oop(to_reg->as_register()); break; } case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; default : ShouldNotReachHere(); } } return load_offset; } int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { int load_offset = code_offset(); switch(type) { case T_BOOLEAN: // fall through case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); __ extsb(to_reg->as_register(), to_reg->as_register()); break; case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; case T_INT : __ lwax(to_reg->as_register(), base, disp); break; case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; case T_ARRAY : // fall through case T_OBJECT: { if (UseCompressedOops && !wide) { __ lwzx(to_reg->as_register(), base, disp); __ decode_heap_oop(to_reg->as_register()); } else { __ ldx(to_reg->as_register(), base, disp); } __ verify_oop(to_reg->as_register()); break; } case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; case T_LONG : #ifdef _LP64 __ ldx(to_reg->as_register_lo(), base, disp); #else Unimplemented(); #endif break; default : ShouldNotReachHere(); } return load_offset; } void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { LIR_Const* c = src->as_constant_ptr(); Register src_reg = R0; switch (c->type()) { case T_INT: case T_FLOAT: { int value = c->as_jint_bits(); __ load_const_optimized(src_reg, value); Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ stw(src_reg, addr.disp(), addr.base()); break; } case T_ADDRESS: { int value = c->as_jint_bits(); __ load_const_optimized(src_reg, value); Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ std(src_reg, addr.disp(), addr.base()); break; } case T_OBJECT: { jobject2reg(c->as_jobject(), src_reg); Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); __ std(src_reg, addr.disp(), addr.base()); break; } case T_LONG: case T_DOUBLE: { int value = c->as_jlong_bits(); __ load_const_optimized(src_reg, value); Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); __ std(src_reg, addr.disp(), addr.base()); break; } default: Unimplemented(); } } void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { LIR_Const* c = src->as_constant_ptr(); LIR_Address* addr = dest->as_address_ptr(); Register base = addr->base()->as_pointer_register(); LIR_Opr tmp = LIR_OprFact::illegalOpr; int offset = -1; // Null check for large offsets in LIRGenerator::do_StoreField. bool needs_explicit_null_check = !ImplicitNullChecks; if (info != NULL && needs_explicit_null_check) { explicit_null_check(base, info); } switch (c->type()) { case T_FLOAT: type = T_INT; case T_INT: case T_ADDRESS: { tmp = FrameMap::R0_opr; __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); break; } case T_DOUBLE: type = T_LONG; case T_LONG: { tmp = FrameMap::R0_long_opr; __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); break; } case T_OBJECT: { tmp = FrameMap::R0_opr; if (UseCompressedOops && !wide && c->as_jobject() != NULL) { AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); __ lis(R0, oop_addr.value() >> 16); // Don't care about sign extend (will use stw). __ relocate(oop_addr.rspec(), /*compressed format*/ 1); __ ori(R0, R0, oop_addr.value() & 0xffff); } else { jobject2reg(c->as_jobject(), R0); } break; } default: Unimplemented(); } // Handle either reg+reg or reg+disp address. if (addr->index()->is_valid()) { assert(addr->disp() == 0, "must be zero"); offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); } else { assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); offset = store(tmp, base, addr->disp(), type, wide, false); } if (info != NULL) { assert(offset != -1, "offset should've been set"); if (!needs_explicit_null_check) { add_debug_info_for_null_check(offset, info); } } } void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { LIR_Const* c = src->as_constant_ptr(); LIR_Opr to_reg = dest; switch (c->type()) { case T_INT: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register(), c->as_jint(), R0); break; } case T_ADDRESS: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... break; } case T_LONG: { assert(patch_code == lir_patch_none, "no patching handled here"); __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); break; } case T_OBJECT: { if (patch_code == lir_patch_none) { jobject2reg(c->as_jobject(), to_reg->as_register()); } else { jobject2reg_with_patching(to_reg->as_register(), info); } break; } case T_METADATA: { if (patch_code == lir_patch_none) { metadata2reg(c->as_metadata(), to_reg->as_register()); } else { klass2reg_with_patching(to_reg->as_register(), info); } } break; case T_FLOAT: { if (to_reg->is_single_fpu()) { address const_addr = __ float_constant(c->as_jfloat()); if (const_addr == NULL) { bailout("const section overflow"); break; } RelocationHolder rspec = internal_word_Relocation::spec(const_addr); __ relocate(rspec); __ load_const(R0, const_addr); __ lfsx(to_reg->as_float_reg(), R0); } else { assert(to_reg->is_single_cpu(), "Must be a cpu register."); __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); } } break; case T_DOUBLE: { if (to_reg->is_double_fpu()) { address const_addr = __ double_constant(c->as_jdouble()); if (const_addr == NULL) { bailout("const section overflow"); break; } RelocationHolder rspec = internal_word_Relocation::spec(const_addr); __ relocate(rspec); __ load_const(R0, const_addr); __ lfdx(to_reg->as_double_reg(), R0); } else { assert(to_reg->is_double_cpu(), "Must be a long register."); __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); } } break; default: ShouldNotReachHere(); } } Address LIR_Assembler::as_Address(LIR_Address* addr) { Unimplemented(); return Address(); } inline RegisterOrConstant index_or_disp(LIR_Address* addr) { if (addr->index()->is_illegal()) { return (RegisterOrConstant)(addr->disp()); } else { return (RegisterOrConstant)(addr->index()->as_pointer_register()); } } void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { const Register tmp = R0; switch (type) { case T_INT: case T_FLOAT: { Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ lwz(tmp, from.disp(), from.base()); __ stw(tmp, to.disp(), to.base()); break; } case T_ADDRESS: case T_OBJECT: { Address from = frame_map()->address_for_slot(src->single_stack_ix()); Address to = frame_map()->address_for_slot(dest->single_stack_ix()); __ ld(tmp, from.disp(), from.base()); __ std(tmp, to.disp(), to.base()); break; } case T_LONG: case T_DOUBLE: { Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); __ ld(tmp, from.disp(), from.base()); __ std(tmp, to.disp(), to.base()); break; } default: ShouldNotReachHere(); } } Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { Unimplemented(); return Address(); } Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { Unimplemented(); return Address(); } void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) { assert(type != T_METADATA, "load of metadata ptr not supported"); LIR_Address* addr = src_opr->as_address_ptr(); LIR_Opr to_reg = dest; Register src = addr->base()->as_pointer_register(); Register disp_reg = noreg; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); // null check for large offsets in LIRGenerator::do_LoadField bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; if (info != NULL && needs_explicit_null_check) { explicit_null_check(src, info); } if (addr->base()->type() == T_OBJECT) { __ verify_oop(src); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!to_reg->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } if (addr->index()->is_illegal()) { if (!Assembler::is_simm16(disp_value)) { if (needs_patching) { __ load_const32(R0, 0); // patchable int } else { __ load_const_optimized(R0, disp_value); } disp_reg = R0; } } else { disp_reg = addr->index()->as_pointer_register(); assert(disp_value == 0, "can't handle 3 operand addresses"); } // Remember the offset of the load. The patching_epilog must be done // before the call to add_debug_info, otherwise the PcDescs don't get // entered in increasing order. int offset; if (disp_reg == noreg) { assert(Assembler::is_simm16(disp_value), "should have set this up"); offset = load(src, disp_value, to_reg, type, wide, unaligned); } else { assert(!unaligned, "unexpected"); offset = load(src, disp_reg, to_reg, type, wide); } if (patch != NULL) { patching_epilog(patch, patch_code, src, info); } if (info != NULL && !needs_explicit_null_check) { add_debug_info_for_null_check(offset, info); } } void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { Address addr; if (src->is_single_word()) { addr = frame_map()->address_for_slot(src->single_stack_ix()); } else if (src->is_double_word()) { addr = frame_map()->address_for_double_slot(src->double_stack_ix()); } bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0; load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned); } void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { Address addr; if (dest->is_single_word()) { addr = frame_map()->address_for_slot(dest->single_stack_ix()); } else if (dest->is_double_word()) { addr = frame_map()->address_for_slot(dest->double_stack_ix()); } bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0; store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned); } void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { if (from_reg->is_float_kind() && to_reg->is_float_kind()) { if (from_reg->is_double_fpu()) { // double to double moves assert(to_reg->is_double_fpu(), "should match"); __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); } else { // float to float moves assert(to_reg->is_single_fpu(), "should match"); __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); } } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { if (from_reg->is_double_cpu()) { __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); } else if (to_reg->is_double_cpu()) { // int to int moves __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); } else { // int to int moves __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); } } else { ShouldNotReachHere(); } if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) { __ verify_oop(to_reg->as_register()); } } void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool unaligned) { assert(type != T_METADATA, "store of metadata ptr not supported"); LIR_Address* addr = dest->as_address_ptr(); Register src = addr->base()->as_pointer_register(); Register disp_reg = noreg; int disp_value = addr->disp(); bool needs_patching = (patch_code != lir_patch_none); bool compress_oop = (type == T_ARRAY || type == T_OBJECT) && UseCompressedOops && !wide && Universe::narrow_oop_mode() != Universe::UnscaledNarrowOop; bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. // Null check for large offsets in LIRGenerator::do_StoreField. bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; if (info != NULL && needs_explicit_null_check) { explicit_null_check(src, info); } if (addr->base()->is_oop_register()) { __ verify_oop(src); } PatchingStub* patch = NULL; if (needs_patching) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); assert(!from_reg->is_double_cpu() || patch_code == lir_patch_none || patch_code == lir_patch_normal, "patching doesn't match register"); } if (addr->index()->is_illegal()) { if (load_disp) { disp_reg = use_R29 ? R29_TOC : R0; if (needs_patching) { __ load_const32(disp_reg, 0); // patchable int } else { __ load_const_optimized(disp_reg, disp_value); } } } else { disp_reg = addr->index()->as_pointer_register(); assert(disp_value == 0, "can't handle 3 operand addresses"); } // remember the offset of the store. The patching_epilog must be done // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get // entered in increasing order. int offset; if (compress_oop) { Register co = __ encode_heap_oop(R0, from_reg->as_register()); from_reg = FrameMap::as_opr(co); } if (disp_reg == noreg) { assert(Assembler::is_simm16(disp_value), "should have set this up"); offset = store(from_reg, src, disp_value, type, wide, unaligned); } else { assert(!unaligned, "unexpected"); offset = store(from_reg, src, disp_reg, type, wide); } if (use_R29) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit } if (patch != NULL) { patching_epilog(patch, patch_code, src, info); } if (info != NULL && !needs_explicit_null_check) { add_debug_info_for_null_check(offset, info); } } void LIR_Assembler::return_op(LIR_Opr result) { const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). const Register polling_page = R12; // Pop the stack before the safepoint code. int frame_size = initial_frame_size_in_bytes(); if (Assembler::is_simm(frame_size, 16)) { __ addi(R1_SP, R1_SP, frame_size); } else { __ pop_frame(); } if (LoadPollAddressFromThread) { // TODO: PPC port __ ld(polling_page, in_bytes(JavaThread::poll_address_offset()), R16_thread); Unimplemented(); } else { __ load_const_optimized(polling_page, (long)(address) os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page() } // Restore return pc relative to callers' sp. __ ld(return_pc, _abi(lr), R1_SP); // Move return pc to LR. __ mtlr(return_pc); if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { __ reserved_stack_check(return_pc); } // We need to mark the code position where the load from the safepoint // polling page was emitted as relocInfo::poll_return_type here. __ relocate(relocInfo::poll_return_type); __ load_from_polling_page(polling_page); // Return. __ blr(); } int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { if (LoadPollAddressFromThread) { const Register poll_addr = tmp->as_register(); // TODO: PPC port __ ld(poll_addr, in_bytes(JavaThread::poll_address_offset()), R16_thread); Unimplemented(); __ relocate(relocInfo::poll_type); // XXX guarantee(info != NULL, "Shouldn't be NULL"); int offset = __ offset(); add_debug_info_for_branch(info); __ load_from_polling_page(poll_addr); return offset; } __ load_const_optimized(tmp->as_register(), (intptr_t)os::get_polling_page(), R0); // TODO: PPC port: get_standard_polling_page() if (info != NULL) { add_debug_info_for_branch(info); } int offset = __ offset(); __ relocate(relocInfo::poll_type); __ load_from_polling_page(tmp->as_register()); return offset; } void LIR_Assembler::emit_static_call_stub() { address call_pc = __ pc(); address stub = __ start_a_stub(static_call_stub_size()); if (stub == NULL) { bailout("static call stub overflow"); return; } // For java_to_interp stubs we use R11_scratch1 as scratch register // and in call trampoline stubs we use R12_scratch2. This way we // can distinguish them (see is_NativeCallTrampolineStub_at()). const Register reg_scratch = R11_scratch1; // Create a static stub relocation which relates this stub // with the call instruction at insts_call_instruction_offset in the // instructions code-section. int start = __ offset(); __ relocate(static_stub_Relocation::spec(call_pc)); // Now, create the stub's code: // - load the TOC // - load the inline cache oop from the constant pool // - load the call target from the constant pool // - call __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); AddressLiteral ic = __ allocate_metadata_address((Metadata *)NULL); bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); if (ReoptimizeCallSequences) { __ b64_patchable((address)-1, relocInfo::none); } else { AddressLiteral a((address)-1); success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); __ mtctr(reg_scratch); __ bctr(); } if (!success) { bailout("const section overflow"); return; } assert(__ offset() - start <= static_call_stub_size(), "stub too big"); __ end_a_stub(); } void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); if (opr1->is_single_fpu()) { __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); } else if (opr1->is_double_fpu()) { __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); } else if (opr1->is_single_cpu()) { if (opr2->is_constant()) { switch (opr2->as_constant_ptr()->type()) { case T_INT: { jint con = opr2->as_constant_ptr()->as_jint(); if (unsigned_comp) { if (Assembler::is_uimm(con, 16)) { __ cmplwi(BOOL_RESULT, opr1->as_register(), con); } else { __ load_const_optimized(R0, con); __ cmplw(BOOL_RESULT, opr1->as_register(), R0); } } else { if (Assembler::is_simm(con, 16)) { __ cmpwi(BOOL_RESULT, opr1->as_register(), con); } else { __ load_const_optimized(R0, con); __ cmpw(BOOL_RESULT, opr1->as_register(), R0); } } } break; case T_OBJECT: // There are only equal/notequal comparisons on objects. { assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); jobject con = opr2->as_constant_ptr()->as_jobject(); if (con == NULL) { __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); } else { jobject2reg(con, R0); __ cmpd(BOOL_RESULT, opr1->as_register(), R0); } } break; default: ShouldNotReachHere(); break; } } else { if (opr2->is_address()) { DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment. LIR_Address *addr = opr2->as_address_ptr(); BasicType type = addr->type(); if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); } else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); } __ cmpd(BOOL_RESULT, opr1->as_register(), R0); } else { if (unsigned_comp) { __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); } else { __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); } } } } else if (opr1->is_double_cpu()) { if (opr2->is_constant()) { jlong con = opr2->as_constant_ptr()->as_jlong(); if (unsigned_comp) { if (Assembler::is_uimm(con, 16)) { __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); } else { __ load_const_optimized(R0, con); __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); } } else { if (Assembler::is_simm(con, 16)) { __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); } else { __ load_const_optimized(R0, con); __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); } } } else if (opr2->is_register()) { if (unsigned_comp) { __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); } else { __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); } } else { ShouldNotReachHere(); } } else if (opr1->is_address()) { DEBUG_ONLY( Unimplemented(); ) // Seems to be unused at the moment. LIR_Address * addr = opr1->as_address_ptr(); BasicType type = addr->type(); assert (opr2->is_constant(), "Checking"); if (type == T_OBJECT) { __ ld(R0, index_or_disp(addr), addr->base()->as_register()); } else { __ lwa(R0, index_or_disp(addr), addr->base()->as_register()); } __ cmpdi(BOOL_RESULT, R0, opr2->as_constant_ptr()->as_jint()); } else { ShouldNotReachHere(); } } void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ const Register Rdst = dst->as_register(); Label done; if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { bool is_unordered_less = (code == lir_ucmp_fd2i); if (left->is_single_fpu()) { __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg()); } else if (left->is_double_fpu()) { __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg()); } else { ShouldNotReachHere(); } __ li(Rdst, is_unordered_less ? -1 : 1); __ bso(CCR0, done); } else if (code == lir_cmp_l2i) { __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo()); } else { ShouldNotReachHere(); } __ mfcr(R0); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01 __ srwi(Rdst, R0, 30); __ srawi(R0, R0, 31); __ orr(Rdst, R0, Rdst); // set result as follows: <: -1, =: 0, >: 1 __ bind(done); } inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { if (src->is_constant()) { lasm->const2reg(src, dst, lir_patch_none, NULL); } else if (src->is_register()) { lasm->reg2reg(src, dst); } else if (src->is_stack()) { lasm->stack2reg(src, dst, dst->type()); } else { ShouldNotReachHere(); } } void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { load_to_reg(this, opr1, result); // Condition doesn't matter. return; } bool positive = false; Assembler::Condition cond = Assembler::equal; switch (condition) { case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; case lir_cond_less: positive = true ; cond = Assembler::less ; break; case lir_cond_belowEqual: case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; case lir_cond_greater: positive = true ; cond = Assembler::greater; break; case lir_cond_aboveEqual: case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; default: ShouldNotReachHere(); } // Try to use isel on >=Power7. if (VM_Version::has_isel() && result->is_cpu_register()) { bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); // We can use result_reg to load one operand if not already in register. Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; if (first != second) { if (!o1_is_reg) { load_to_reg(this, opr1, result); } if (!o2_is_reg) { load_to_reg(this, opr2, result); } __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); return; } } // isel load_to_reg(this, opr1, result); Label skip; int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; int bi = Assembler::bi0(BOOL_RESULT, cond); __ bc(bo, bi, skip); load_to_reg(this, opr2, result); __ bind(skip); } void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { assert(info == NULL, "unused on this code path"); assert(left->is_register(), "wrong items state"); assert(dest->is_register(), "wrong items state"); if (right->is_register()) { if (dest->is_float_kind()) { FloatRegister lreg, rreg, res; if (right->is_single_fpu()) { lreg = left->as_float_reg(); rreg = right->as_float_reg(); res = dest->as_float_reg(); switch (code) { case lir_add: __ fadds(res, lreg, rreg); break; case lir_sub: __ fsubs(res, lreg, rreg); break; case lir_mul: // fall through case lir_mul_strictfp: __ fmuls(res, lreg, rreg); break; case lir_div: // fall through case lir_div_strictfp: __ fdivs(res, lreg, rreg); break; default: ShouldNotReachHere(); } } else { lreg = left->as_double_reg(); rreg = right->as_double_reg(); res = dest->as_double_reg(); switch (code) { case lir_add: __ fadd(res, lreg, rreg); break; case lir_sub: __ fsub(res, lreg, rreg); break; case lir_mul: // fall through case lir_mul_strictfp: __ fmul(res, lreg, rreg); break; case lir_div: // fall through case lir_div_strictfp: __ fdiv(res, lreg, rreg); break; default: ShouldNotReachHere(); } } } else if (dest->is_double_cpu()) { Register dst_lo = dest->as_register_lo(); Register op1_lo = left->as_pointer_register(); Register op2_lo = right->as_pointer_register(); switch (code) { case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; default: ShouldNotReachHere(); } } else { assert (right->is_single_cpu(), "Just Checking"); Register lreg = left->as_register(); Register res = dest->as_register(); Register rreg = right->as_register(); switch (code) { case lir_add: __ add (res, lreg, rreg); break; case lir_sub: __ sub (res, lreg, rreg); break; case lir_mul: __ mullw(res, lreg, rreg); break; default: ShouldNotReachHere(); } } } else { assert (right->is_constant(), "must be constant"); if (dest->is_single_cpu()) { Register lreg = left->as_register(); Register res = dest->as_register(); int simm16 = right->as_constant_ptr()->as_jint(); switch (code) { case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int simm16 = -simm16; case lir_add: if (res == lreg && simm16 == 0) break; __ addi(res, lreg, simm16); break; case lir_mul: if (res == lreg && simm16 == 1) break; __ mulli(res, lreg, simm16); break; default: ShouldNotReachHere(); } } else { Register lreg = left->as_pointer_register(); Register res = dest->as_register_lo(); long con = right->as_constant_ptr()->as_jlong(); assert(Assembler::is_simm16(con), "must be simm16"); switch (code) { case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long con = -con; case lir_add: if (res == lreg && con == 0) break; __ addi(res, lreg, (int)con); break; case lir_mul: if (res == lreg && con == 1) break; __ mulli(res, lreg, (int)con); break; default: ShouldNotReachHere(); } } } } void LIR_Assembler::fpop() { Unimplemented(); // do nothing } void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { switch (code) { case lir_sqrt: { __ fsqrt(dest->as_double_reg(), value->as_double_reg()); break; } case lir_abs: { __ fabs(dest->as_double_reg(), value->as_double_reg()); break; } default: { ShouldNotReachHere(); break; } } } void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { if (right->is_constant()) { // see do_LogicOp long uimm; Register d, l; if (dest->is_single_cpu()) { uimm = right->as_constant_ptr()->as_jint(); d = dest->as_register(); l = left->as_register(); } else { uimm = right->as_constant_ptr()->as_jlong(); d = dest->as_register_lo(); l = left->as_register_lo(); } long uimms = (unsigned long)uimm >> 16, uimmss = (unsigned long)uimm >> 32; switch (code) { case lir_logic_and: if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2_long(uimm)) { __ andi(d, l, uimm); // special cases } else if (uimms != 0) { __ andis_(d, l, uimms); } else { __ andi_(d, l, uimm); } break; case lir_logic_or: if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } else { __ ori(d, l, uimm); } break; case lir_logic_xor: if (uimm == -1) { __ nand(d, l, l); } // special case else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } else { __ xori(d, l, uimm); } break; default: ShouldNotReachHere(); } } else { assert(right->is_register(), "right should be in register"); if (dest->is_single_cpu()) { switch (code) { case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; default: ShouldNotReachHere(); } } else { Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : left->as_register_lo(); Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : right->as_register_lo(); switch (code) { case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; default: ShouldNotReachHere(); } } } } int LIR_Assembler::shift_amount(BasicType t) { int elem_size = type2aelembytes(t); switch (elem_size) { case 1 : return 0; case 2 : return 1; case 4 : return 2; case 8 : return 3; } ShouldNotReachHere(); return -1; } void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { info->add_register_oop(exceptionOop); // Reuse the debug info from the safepoint poll for the throw op itself. address pc_for_athrow = __ pc(); int pc_for_athrow_offset = __ offset(); //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); //__ relocate(rspec); //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); add_call_info(pc_for_athrow_offset, info); // for exception handler address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id : Runtime1::handle_exception_nofpu_id); //__ load_const_optimized(R0, stub); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); __ mtctr(R0); __ bctr(); } void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { // Note: Not used with EnableDebuggingOnDemand. assert(exceptionOop->as_register() == R3, "should match"); __ b(_unwind_handler_entry); } void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { Register src = op->src()->as_register(); Register dst = op->dst()->as_register(); Register src_pos = op->src_pos()->as_register(); Register dst_pos = op->dst_pos()->as_register(); Register length = op->length()->as_register(); Register tmp = op->tmp()->as_register(); Register tmp2 = R0; int flags = op->flags(); ciArrayKlass* default_type = op->expected_type(); BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; if (basic_type == T_ARRAY) basic_type = T_OBJECT; // Set up the arraycopy stub information. ArrayCopyStub* stub = op->stub(); const int frame_resize = frame::abi_reg_args_size - sizeof(frame::jit_abi); // C calls need larger frame. // Always do stub if no type information is available. It's ok if // the known type isn't loaded since the code sanity checks // in debug mode and the type isn't required when we know the exact type // also check that the type is an array type. if (op->expected_type() == NULL) { assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && length->is_nonvolatile(), "must preserve"); // 3 parms are int. Convert to long. __ mr(R3_ARG1, src); __ extsw(R4_ARG2, src_pos); __ mr(R5_ARG3, dst); __ extsw(R6_ARG4, dst_pos); __ extsw(R7_ARG5, length); address copyfunc_addr = StubRoutines::generic_arraycopy(); if (copyfunc_addr == NULL) { // Use C version if stub was not generated. address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy); __ call_c_with_frame_resize(entry, frame_resize); } else { #ifndef PRODUCT if (PrintC1Statistics) { address counter = (address)&Runtime1::_generic_arraycopystub_cnt; int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); __ lwz(R11_scratch1, simm16_offs, tmp); __ addi(R11_scratch1, R11_scratch1, 1); __ stw(R11_scratch1, simm16_offs, tmp); } #endif __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); __ nand(tmp, R3_RET, R3_RET); __ subf(length, tmp, length); __ add(src_pos, tmp, src_pos); __ add(dst_pos, tmp, dst_pos); } __ cmpwi(CCR0, R3_RET, 0); __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry()); __ bind(*stub->continuation()); return; } assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point"); Label cont, slow, copyfunc; bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | LIR_OpArrayCopy::dst_null_check | LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check); // Use only one conditional branch for simple checks. if (simple_check_flag_set) { ConditionRegister combined_check = CCR1, tmp_check = CCR1; // Make sure src and dst are non-null. if (flags & LIR_OpArrayCopy::src_null_check) { __ cmpdi(combined_check, src, 0); tmp_check = CCR0; } if (flags & LIR_OpArrayCopy::dst_null_check) { __ cmpdi(tmp_check, dst, 0); if (tmp_check != combined_check) { __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); } tmp_check = CCR0; } // Clear combined_check.eq if not already used. if (tmp_check == combined_check) { __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); tmp_check = CCR0; } if (flags & LIR_OpArrayCopy::src_pos_positive_check) { // Test src_pos register. __ cmpwi(tmp_check, src_pos, 0); __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); } if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { // Test dst_pos register. __ cmpwi(tmp_check, dst_pos, 0); __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); } if (flags & LIR_OpArrayCopy::length_positive_check) { // Make sure length isn't negative. __ cmpwi(tmp_check, length, 0); __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); } __ beq(combined_check, slow); } // If the compiler was not able to prove that exact type of the source or the destination // of the arraycopy is an array type, check at runtime if the source or the destination is // an instance type. if (flags & LIR_OpArrayCopy::type_check) { if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); __ bge(CCR0, slow); } if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); __ bge(CCR0, slow); } } // Higher 32bits must be null. __ extsw(length, length); __ extsw(src_pos, src_pos); if (flags & LIR_OpArrayCopy::src_range_check) { __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); __ add(tmp, length, src_pos); __ cmpld(CCR0, tmp2, tmp); __ ble(CCR0, slow); } __ extsw(dst_pos, dst_pos); if (flags & LIR_OpArrayCopy::dst_range_check) { __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); __ add(tmp, length, dst_pos); __ cmpld(CCR0, tmp2, tmp); __ ble(CCR0, slow); } int shift = shift_amount(basic_type); if (!(flags & LIR_OpArrayCopy::type_check)) { __ b(cont); } else { // We don't know the array types are compatible. if (basic_type != T_OBJECT) { // Simple test for basic type arrays. if (UseCompressedClassPointers) { // We don't need decode because we just need to compare. __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src); __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); __ cmpw(CCR0, tmp, tmp2); } else { __ ld(tmp, oopDesc::klass_offset_in_bytes(), src); __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); __ cmpd(CCR0, tmp, tmp2); } __ beq(CCR0, cont); } else { // For object arrays, if src is a sub class of dst then we can // safely do the copy. address copyfunc_addr = StubRoutines::checkcast_arraycopy(); const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf assert_different_registers(tmp, tmp2, sub_klass, super_klass); __ load_klass(sub_klass, src); __ load_klass(super_klass, dst); __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, &cont, copyfunc_addr != NULL ? ©func : &slow, NULL); address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id); //__ load_const_optimized(tmp, slow_stc, tmp2); __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); __ mtctr(tmp); __ bctrl(); // sets CR0 __ beq(CCR0, cont); if (copyfunc_addr != NULL) { // Use stub if available. __ bind(copyfunc); // Src is not a sub class of dst so we have to do a // per-element check. int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; if ((flags & mask) != mask) { assert(flags & mask, "one of the two should be known to be an object array"); if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); } __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ load_const_optimized(tmp, objArray_lh); __ cmpw(CCR0, tmp, tmp2); __ bne(CCR0, slow); } Register src_ptr = R3_ARG1; Register dst_ptr = R4_ARG2; Register len = R5_ARG3; Register chk_off = R6_ARG4; Register super_k = R7_ARG5; __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); if (shift == 0) { __ add(src_ptr, src_pos, src_ptr); __ add(dst_ptr, dst_pos, dst_ptr); } else { __ sldi(tmp, src_pos, shift); __ sldi(tmp2, dst_pos, shift); __ add(src_ptr, tmp, src_ptr); __ add(dst_ptr, tmp2, dst_ptr); } __ load_klass(tmp, dst); __ mr(len, length); int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); __ ld(super_k, ek_offset, tmp); int sco_offset = in_bytes(Klass::super_check_offset_offset()); __ lwz(chk_off, sco_offset, super_k); __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); #ifndef PRODUCT if (PrintC1Statistics) { Label failed; __ cmpwi(CCR0, R3_RET, 0); __ bne(CCR0, failed); address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); __ lwz(R11_scratch1, simm16_offs, tmp); __ addi(R11_scratch1, R11_scratch1, 1); __ stw(R11_scratch1, simm16_offs, tmp); __ bind(failed); } #endif __ nand(tmp, R3_RET, R3_RET); __ cmpwi(CCR0, R3_RET, 0); __ beq(CCR0, *stub->continuation()); #ifndef PRODUCT if (PrintC1Statistics) { address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); __ lwz(R11_scratch1, simm16_offs, tmp); __ addi(R11_scratch1, R11_scratch1, 1); __ stw(R11_scratch1, simm16_offs, tmp); } #endif __ subf(length, tmp, length); __ add(src_pos, tmp, src_pos); __ add(dst_pos, tmp, dst_pos); } } } __ bind(slow); __ b(*stub->entry()); __ bind(cont); #ifdef ASSERT if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { // Sanity check the known type with the incoming class. For the // primitive case the types must match exactly with src.klass and // dst.klass each exactly matching the default type. For the // object array case, if no type check is needed then either the // dst type is exactly the expected type and the src type is a // subtype which we can't check or src is the same array as dst // but not necessarily exactly of type default_type. Label known_ok, halt; metadata2reg(op->expected_type()->constant_encoding(), tmp); if (UseCompressedClassPointers) { // Tmp holds the default type. It currently comes uncompressed after the // load of a constant, so encode it. __ encode_klass_not_null(tmp); // Load the raw value of the dst klass, since we will be comparing // uncompressed values directly. __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); __ cmpw(CCR0, tmp, tmp2); if (basic_type != T_OBJECT) { __ bne(CCR0, halt); // Load the raw value of the src klass. __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src); __ cmpw(CCR0, tmp, tmp2); __ beq(CCR0, known_ok); } else { __ beq(CCR0, known_ok); __ cmpw(CCR0, src, dst); __ beq(CCR0, known_ok); } } else { __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); __ cmpd(CCR0, tmp, tmp2); if (basic_type != T_OBJECT) { __ bne(CCR0, halt); // Load the raw value of the src klass. __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src); __ cmpd(CCR0, tmp, tmp2); __ beq(CCR0, known_ok); } else { __ beq(CCR0, known_ok); __ cmpd(CCR0, src, dst); __ beq(CCR0, known_ok); } } __ bind(halt); __ stop("incorrect type information in arraycopy"); __ bind(known_ok); } #endif #ifndef PRODUCT if (PrintC1Statistics) { address counter = Runtime1::arraycopy_count_address(basic_type); int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); __ lwz(R11_scratch1, simm16_offs, tmp); __ addi(R11_scratch1, R11_scratch1, 1); __ stw(R11_scratch1, simm16_offs, tmp); } #endif Register src_ptr = R3_ARG1; Register dst_ptr = R4_ARG2; Register len = R5_ARG3; __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); if (shift == 0) { __ add(src_ptr, src_pos, src_ptr); __ add(dst_ptr, dst_pos, dst_ptr); } else { __ sldi(tmp, src_pos, shift); __ sldi(tmp2, dst_pos, shift); __ add(src_ptr, tmp, src_ptr); __ add(dst_ptr, tmp2, dst_ptr); } bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; const char *name; address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); // Arraycopy stubs takes a length in number of elements, so don't scale it. __ mr(len, length); __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0); __ bind(*stub->continuation()); } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { if (dest->is_single_cpu()) { __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); #ifdef _LP64 if (left->type() == T_OBJECT) { switch (code) { case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; default: ShouldNotReachHere(); } } else #endif switch (code) { case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; default: ShouldNotReachHere(); } } else { __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); switch (code) { case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; default: ShouldNotReachHere(); } } } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { #ifdef _LP64 if (left->type() == T_OBJECT) { count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } else { switch (code) { case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; default: ShouldNotReachHere(); } } return; } #endif if (dest->is_single_cpu()) { count = count & 0x1F; // Java spec if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } else { switch (code) { case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; default: ShouldNotReachHere(); } } } else if (dest->is_double_cpu()) { count = count & 63; // Java spec if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } else { switch (code) { case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; default: ShouldNotReachHere(); } } } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { if (op->init_check()) { if (!os::zero_page_read_protected() || !ImplicitNullChecks) { explicit_null_check(op->klass()->as_register(), op->stub()->info()); } else { add_debug_info_for_null_check_here(op->stub()->info()); } __ lbz(op->tmp1()->as_register(), in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry()); } __ allocate_object(op->obj()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), op->header_size(), op->object_size(), op->klass()->as_register(), *op->stub()->entry()); __ bind(*op->stub()->continuation()); __ verify_oop(op->obj()->as_register()); } void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) if (UseSlowPath || (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { __ b(*op->stub()->entry()); } else { __ allocate_array(op->obj()->as_register(), op->len()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), arrayOopDesc::header_size(op->type()), type2aelembytes(op->type()), op->klass()->as_register(), *op->stub()->entry()); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, ciMethodData *md, ciProfileData *data, Register recv, Register tmp1, Label* update_done) { uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; // See if the receiver is receiver[n]. __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); __ verify_klass_ptr(tmp1); __ cmpd(CCR0, recv, tmp1); __ bne(CCR0, next_test); __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); __ b(*update_done); __ bind(next_test); } // Didn't find receiver; find next empty slot and fill it in. for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); __ cmpdi(CCR0, tmp1, 0); __ bne(CCR0, next_test); __ li(tmp1, DataLayout::counter_increment); __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); __ b(*update_done); __ bind(next_test); } } void LIR_Assembler::setup_md_access(ciMethod* method, int bci, ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for checkcast"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { // The offset is large so bias the mdo by the base of the slot so // that the ld can use simm16s to reference the slots of the data. mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); } } void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { Register obj = op->object()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register Rtmp1 = op->tmp3()->as_register(); Register dst = op->result_opr()->as_register(); ciKlass* k = op->klass(); bool should_profile = op->should_profile(); bool move_obj_to_dst = (op->code() == lir_checkcast); // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. bool reg_conflict = (obj == k_RInfo || obj == klass_RInfo || obj == Rtmp1); bool restore_obj = move_obj_to_dst && reg_conflict; __ cmpdi(CCR0, obj, 0); if (move_obj_to_dst || reg_conflict) { __ mr_if_needed(dst, obj); if (reg_conflict) { obj = dst; } } ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; if (should_profile) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); Register mdo = k_RInfo; Register data_val = Rtmp1; Label not_null; __ bne(CCR0, not_null); metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); __ ori(data_val, data_val, BitData::null_seen_byte_constant()); __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); __ b(*obj_is_null); __ bind(not_null); } else { __ beq(CCR0, *obj_is_null); } // get object class __ load_klass(klass_RInfo, obj); if (k->is_loaded()) { metadata2reg(k->constant_encoding(), k_RInfo); } else { klass2reg_with_patching(k_RInfo, op->info_for_patch()); } Label profile_cast_failure, failure_restore_obj, profile_cast_success; Label *failure_target = should_profile ? &profile_cast_failure : failure; Label *success_target = should_profile ? &profile_cast_success : success; if (op->fast_check()) { assert_different_registers(klass_RInfo, k_RInfo); __ cmpd(CCR0, k_RInfo, klass_RInfo); if (should_profile) { __ bne(CCR0, *failure_target); // Fall through to success case. } else { __ beq(CCR0, *success); // Fall through to failure case. } } else { bool need_slow_path = true; if (k->is_loaded()) { if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { need_slow_path = false; } // Perform the fast part of the checking logic. __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : NULL), failure_target, NULL, RegisterOrConstant(k->super_check_offset())); } else { // Perform the fast part of the checking logic. __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target); } if (!need_slow_path) { if (!should_profile) { __ b(*success); } } else { // Call out-of-line instance of __ check_klass_subtype_slow_path(...): address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id); //__ load_const_optimized(Rtmp1, entry, R0); __ calculate_address_from_global_toc(Rtmp1, entry, true, true, false); __ mtctr(Rtmp1); __ bctrl(); // sets CR0 if (should_profile) { __ bne(CCR0, *failure_target); // Fall through to success case. } else { __ beq(CCR0, *success); // Fall through to failure case. } } } if (should_profile) { Register mdo = k_RInfo, recv = klass_RInfo; assert_different_registers(mdo, recv, Rtmp1); __ bind(profile_cast_success); metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success); __ b(*success); // Cast failure case. __ bind(profile_cast_failure); metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment); __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); } __ bind(*failure); if (restore_obj) { __ mr(op->object()->as_register(), dst); // Fall through to failure case. } } void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { LIR_Code code = op->code(); if (code == lir_store_check) { Register value = op->object()->as_register(); Register array = op->array()->as_register(); Register k_RInfo = op->tmp1()->as_register(); Register klass_RInfo = op->tmp2()->as_register(); Register Rtmp1 = op->tmp3()->as_register(); bool should_profile = op->should_profile(); __ verify_oop(value); CodeStub* stub = op->stub(); // Check if it needs to be profiled. ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; if (should_profile) { ciMethod* method = op->profiled_method(); assert(method != NULL, "Should have method"); setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); } Label profile_cast_success, failure, done; Label *success_target = should_profile ? &profile_cast_success : &done; __ cmpdi(CCR0, value, 0); if (should_profile) { Label not_null; __ bne(CCR0, not_null); Register mdo = k_RInfo; Register data_val = Rtmp1; metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); __ ori(data_val, data_val, BitData::null_seen_byte_constant()); __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); __ b(done); __ bind(not_null); } else { __ beq(CCR0, done); } if (!os::zero_page_read_protected() || !ImplicitNullChecks) { explicit_null_check(array, op->info_for_exception()); } else { add_debug_info_for_null_check_here(op->info_for_exception()); } __ load_klass(k_RInfo, array); __ load_klass(klass_RInfo, value); // Get instance klass. __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); // Perform the fast part of the checking logic. __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, NULL); // Call out-of-line instance of __ check_klass_subtype_slow_path(...): const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id); //__ load_const_optimized(R0, slow_path); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); __ mtctr(R0); __ bctrl(); // sets CR0 if (!should_profile) { __ beq(CCR0, done); __ bind(failure); } else { __ bne(CCR0, failure); // Fall through to the success case. Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; assert_different_registers(value, mdo, recv, tmp1); __ bind(profile_cast_success); metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); __ load_klass(recv, value); type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done); __ b(done); // Cast failure case. __ bind(failure); metadata2reg(md->constant_encoding(), mdo); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, -DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); } __ b(*stub->entry()); __ bind(done); } else if (code == lir_checkcast) { Label success, failure; emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); // Moves obj to dst. __ b(*op->stub()->entry()); __ align(32, 12); __ bind(success); } else if (code == lir_instanceof) { Register dst = op->result_opr()->as_register(); Label success, failure, done; emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); __ li(dst, 0); __ b(done); __ align(32, 12); __ bind(success); __ li(dst, 1); __ bind(done); } else { ShouldNotReachHere(); } } void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { Register addr = op->addr()->as_pointer_register(); Register cmp_value = noreg, new_value = noreg; bool is_64bit = false; if (op->code() == lir_cas_long) { cmp_value = op->cmp_value()->as_register_lo(); new_value = op->new_value()->as_register_lo(); is_64bit = true; } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { cmp_value = op->cmp_value()->as_register(); new_value = op->new_value()->as_register(); if (op->code() == lir_cas_obj) { if (UseCompressedOops) { Register t1 = op->tmp1()->as_register(); Register t2 = op->tmp2()->as_register(); cmp_value = __ encode_heap_oop(t1, cmp_value); new_value = __ encode_heap_oop(t2, new_value); } else { is_64bit = true; } } } else { Unimplemented(); } if (is_64bit) { __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(), noreg, NULL, /*check without ldarx first*/true); } else { __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, MacroAssembler::MemBarNone, MacroAssembler::cmpxchgx_hint_atomic_update(), noreg, /*check without ldarx first*/true); } if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ isync(); } else { __ sync(); } } void LIR_Assembler::set_24bit_FPU() { Unimplemented(); } void LIR_Assembler::reset_FPU() { Unimplemented(); } void LIR_Assembler::breakpoint() { __ illtrap(); } void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); Register dst = dst_opr->as_register(); Register reg = mon_addr.base(); int offset = mon_addr.disp(); // Compute pointer to BasicLock. __ add_const_optimized(dst, reg, offset); } void LIR_Assembler::emit_lock(LIR_OpLock* op) { Register obj = op->obj_opr()->as_register(); Register hdr = op->hdr_opr()->as_register(); Register lock = op->lock_opr()->as_register(); // Obj may not be an oop. if (op->code() == lir_lock) { MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); if (UseFastLocking) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); // Add debug info for NullPointerException only if one is possible. if (op->info() != NULL) { if (!os::zero_page_read_protected() || !ImplicitNullChecks) { explicit_null_check(obj, op->info()); } else { add_debug_info_for_null_check_here(op->info()); } } __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); } else { // always do slow locking // note: The slow locking code could be inlined here, however if we use // slow locking, speed doesn't matter anyway and this solution is // simpler and requires less duplicated code - additionally, the // slow locking code is the same in either case which simplifies // debugging. __ b(*op->stub()->entry()); } } else { assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); if (UseFastLocking) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); __ unlock_object(hdr, obj, lock, *op->stub()->entry()); } else { // always do slow unlocking // note: The slow unlocking code could be inlined here, however if we use // slow unlocking, speed doesn't matter anyway and this solution is // simpler and requires less duplicated code - additionally, the // slow unlocking code is the same in either case which simplifies // debugging. __ b(*op->stub()->entry()); } } __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { ciMethod* method = op->profiled_method(); int bci = op->profiled_bci(); ciMethod* callee = op->profiled_callee(); // Update counter for all call types. ciMethodData* md = method->method_data_or_null(); assert(md != NULL, "Sanity"); ciProfileData* data = md->bci_to_data(bci); assert(data->is_CounterData(), "need CounterData for calls"); assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); Register mdo = op->mdo()->as_register(); #ifdef _LP64 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_register_lo(); #else assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_register(); #endif metadata2reg(md->constant_encoding(), mdo); int mdo_offset_bias = 0; if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes())) { // The offset is large so bias the mdo by the base of the slot so // that the ld can use simm16s to reference the slots of the data. mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); } Bytecodes::Code bc = method->java_code_at_bci(bci); const bool callee_is_static = callee->is_loaded() && callee->is_static(); // Perform additional virtual call profiling for invokevirtual and // invokeinterface bytecodes. if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && !callee_is_static && // Required for optimized MH invokes. C1ProfileVirtualCalls) { assert(op->recv()->is_single_cpu(), "recv must be allocated"); Register recv = op->recv()->as_register(); assert_different_registers(mdo, tmp1, recv); assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); ciKlass* known_klass = op->known_holder(); if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { // We know the type that will be seen at this call site; we can // statically update the MethodData* rather than needing to do // dynamic tests on the receiver type. // NOTE: we should probably put a lock around this search to // avoid collisions by concurrent compilations. ciVirtualCallData* vc_data = (ciVirtualCallData*) data; uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (known_klass->equals(receiver)) { __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); return; } } // Receiver type not found in profile data; select an empty slot. // Note that this is less efficient than it should be because it // always does a write to the receiver part of the // VirtualCallData rather than just the first time. for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (receiver == NULL) { metadata2reg(known_klass->constant_encoding(), tmp1); __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); return; } } } else { __ load_klass(recv, recv); Label update_done; type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); __ bind(update_done); } } else { // Static call __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); __ addi(tmp1, tmp1, DataLayout::counter_increment); __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); } } void LIR_Assembler::align_backward_branch_target() { __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. } void LIR_Assembler::emit_delay(LIR_OpDelay* op) { Unimplemented(); } void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { assert(left->is_register(), "can only handle registers"); if (left->is_single_cpu()) { __ neg(dest->as_register(), left->as_register()); } else if (left->is_single_fpu()) { __ fneg(dest->as_float_reg(), left->as_float_reg()); } else if (left->is_double_fpu()) { __ fneg(dest->as_double_reg(), left->as_double_reg()); } else { assert (left->is_double_cpu(), "Must be a long"); __ neg(dest->as_register_lo(), left->as_register_lo()); } } void LIR_Assembler::fxch(int i) { Unimplemented(); } void LIR_Assembler::fld(int i) { Unimplemented(); } void LIR_Assembler::ffree(int i) { Unimplemented(); } void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { // Stubs: Called via rt_call, but dest is a stub address (no function descriptor). if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) || dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) { //__ load_const_optimized(R0, dest); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); __ mtctr(R0); __ bctrl(); assert(info != NULL, "sanity"); add_call_info_here(info); return; } __ call_c_with_frame_resize(dest, /*no resizing*/ 0); if (info != NULL) { add_call_info_here(info); } } void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { ShouldNotReachHere(); // Not needed on _LP64. } void LIR_Assembler::membar() { __ fence(); } void LIR_Assembler::membar_acquire() { __ acquire(); } void LIR_Assembler::membar_release() { __ release(); } void LIR_Assembler::membar_loadload() { __ membar(Assembler::LoadLoad); } void LIR_Assembler::membar_storestore() { __ membar(Assembler::StoreStore); } void LIR_Assembler::membar_loadstore() { __ membar(Assembler::LoadStore); } void LIR_Assembler::membar_storeload() { __ membar(Assembler::StoreLoad); } void LIR_Assembler::on_spin_wait() { Unimplemented(); } void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) { LIR_Address* addr = addr_opr->as_address_ptr(); assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); if (addr->index()->is_illegal()) { __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); } else { assert(addr->disp() == 0, "can't have both: index and disp"); __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); } } void LIR_Assembler::get_thread(LIR_Opr result_reg) { ShouldNotReachHere(); } #ifdef ASSERT // Emit run-time assertion. void LIR_Assembler::emit_assert(LIR_OpAssert* op) { Unimplemented(); } #endif void LIR_Assembler::peephole(LIR_List* lir) { // Optimize instruction pairs before emitting. LIR_OpList* inst = lir->instructions_list(); for (int i = 1; i < inst->length(); i++) { LIR_Op* op = inst->at(i); // 2 register-register-moves if (op->code() == lir_move) { LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), res2 = ((LIR_Op1*)op)->result_opr(); if (in2->is_register() && res2->is_register()) { LIR_Op* prev = inst->at(i - 1); if (prev && prev->code() == lir_move) { LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), res1 = ((LIR_Op1*)prev)->result_opr(); if (in1->is_same_register(res2) && in2->is_same_register(res1)) { inst->remove_at(i); } } } } } return; } void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { const Register Rptr = src->as_pointer_register(), Rtmp = tmp->as_register(); Register Rco = noreg; if (UseCompressedOops && data->is_oop()) { Rco = __ encode_heap_oop(Rtmp, data->as_register()); } Label Lretry; __ bind(Lretry); if (data->type() == T_INT) { const Register Rold = dest->as_register(), Rsrc = data->as_register(); assert_different_registers(Rptr, Rtmp, Rold, Rsrc); __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); if (code == lir_xadd) { __ add(Rtmp, Rsrc, Rold); __ stwcx_(Rtmp, Rptr); } else { __ stwcx_(Rsrc, Rptr); } } else if (data->is_oop()) { assert(code == lir_xchg, "xadd for oops"); const Register Rold = dest->as_register(); if (UseCompressedOops) { assert_different_registers(Rptr, Rold, Rco); __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); __ stwcx_(Rco, Rptr); } else { const Register Robj = data->as_register(); assert_different_registers(Rptr, Rold, Robj); __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); __ stdcx_(Robj, Rptr); } } else if (data->type() == T_LONG) { const Register Rold = dest->as_register_lo(), Rsrc = data->as_register_lo(); assert_different_registers(Rptr, Rtmp, Rold, Rsrc); __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); if (code == lir_xadd) { __ add(Rtmp, Rsrc, Rold); __ stdcx_(Rtmp, Rptr); } else { __ stdcx_(Rsrc, Rptr); } } else { ShouldNotReachHere(); } if (UseStaticBranchPredictionInCompareAndSwapPPC64) { __ bne_predict_not_taken(CCR0, Lretry); } else { __ bne( CCR0, Lretry); } if (UseCompressedOops && data->is_oop()) { __ decode_heap_oop(dest->as_register()); } } void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { Register obj = op->obj()->as_register(); Register tmp = op->tmp()->as_pointer_register(); LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); ciKlass* exact_klass = op->exact_klass(); intptr_t current_klass = op->current_klass(); bool not_null = op->not_null(); bool no_conflict = op->no_conflict(); Label Lupdate, Ldo_update, Ldone; bool do_null = !not_null; bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; assert(do_null || do_update, "why are we here?"); assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); __ verify_oop(obj); if (do_null) { if (!TypeEntries::was_null_seen(current_klass)) { __ cmpdi(CCR0, obj, 0); __ bne(CCR0, Lupdate); __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); __ ori(R0, R0, TypeEntries::null_seen); if (do_update) { __ b(Ldo_update); } else { __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); } } else { if (do_update) { __ cmpdi(CCR0, obj, 0); __ beq(CCR0, Ldone); } } #ifdef ASSERT } else { __ cmpdi(CCR0, obj, 0); __ bne(CCR0, Lupdate); __ stop("unexpect null obj", 0x9652); #endif } __ bind(Lupdate); if (do_update) { Label Lnext; const Register klass = R29_TOC; // kill and reload bool klass_reg_used = false; #ifdef ASSERT if (exact_klass != NULL) { Label ok; klass_reg_used = true; __ load_klass(klass, obj); metadata2reg(exact_klass->constant_encoding(), R0); __ cmpd(CCR0, klass, R0); __ beq(CCR0, ok); __ stop("exact klass and actual klass differ", 0x8564); __ bind(ok); } #endif if (!no_conflict) { if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) { klass_reg_used = true; if (exact_klass != NULL) { __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); metadata2reg(exact_klass->constant_encoding(), klass); } else { __ load_klass(klass, obj); __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj } // Like InterpreterMacroAssembler::profile_obj_type __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); __ cmpd(CCR1, R0, klass); // Klass seen before, nothing to do (regardless of unknown bit). //beq(CCR1, do_nothing); __ andi_(R0, klass, TypeEntries::type_unknown); // Already unknown. Nothing to do anymore. //bne(CCR0, do_nothing); __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne __ beq(CCR0, Lnext); if (TypeEntries::is_type_none(current_klass)) { __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). __ beq(CCR0, Ldo_update); // First time here. Set profile type. } } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); __ andi_(R0, tmp, TypeEntries::type_unknown); // Already unknown. Nothing to do anymore. __ bne(CCR0, Lnext); } // Different than before. Cannot keep accurate profile. __ ori(R0, tmp, TypeEntries::type_unknown); } else { // There's a single possible klass at this profile point assert(exact_klass != NULL, "should be"); __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); if (TypeEntries::is_type_none(current_klass)) { klass_reg_used = true; metadata2reg(exact_klass->constant_encoding(), klass); __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); __ cmpd(CCR1, R0, klass); // Klass seen before, nothing to do (regardless of unknown bit). __ beq(CCR1, Lnext); #ifdef ASSERT { Label ok; __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); __ beq(CCR0, ok); // First time here. __ stop("unexpected profiling mismatch", 0x7865); __ bind(ok); } #endif // First time here. Set profile type. __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). } else { assert(ciTypeEntries::valid_ciklass(current_klass) != NULL && ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); // Already unknown. Nothing to do anymore. __ andi_(R0, tmp, TypeEntries::type_unknown); __ bne(CCR0, Lnext); // Different than before. Cannot keep accurate profile. __ ori(R0, tmp, TypeEntries::type_unknown); } } __ bind(Ldo_update); __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); __ bind(Lnext); if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit } __ bind(Ldone); } void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { assert(op->crc()->is_single_cpu(), "crc must be register"); assert(op->val()->is_single_cpu(), "byte value must be register"); assert(op->result_opr()->is_single_cpu(), "result must be register"); Register crc = op->crc()->as_register(); Register val = op->val()->as_register(); Register res = op->result_opr()->as_register(); assert_different_registers(val, crc, res); __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); __ nand(crc, crc, crc); // ~crc __ update_byte_crc32(crc, val, res); __ nand(res, crc, crc); // ~crc } #undef __