1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 
  37 // Optimization - Graph Style
  38 
  39 // Check whether val is not-null-decoded compressed oop,
  40 // i.e. will grab into the base of the heap if it represents NULL.
  41 static bool accesses_heap_base_zone(Node *val) {
  42   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  43     if (val && val->is_Mach()) {
  44       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  45         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  46         // decode NULL to point to the heap base (Decode_NN).
  47         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  48           return true;
  49         }
  50       }
  51       // Must recognize load operation with Decode matched in memory operand.
  52       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  53       // returns true everywhere else. On PPC, no such memory operands
  54       // exist, therefore we did not yet implement a check for such operands.
  55       NOT_AIX(Unimplemented());
  56     }
  57   }
  58   return false;
  59 }
  60 
  61 static bool needs_explicit_null_check_for_read(Node *val) {
  62   // On some OSes (AIX) the page at address 0 is only write protected.
  63   // If so, only Store operations will trap.
  64   if (os::zero_page_read_protected()) {
  65     return false;  // Implicit null check will work.
  66   }
  67   // Also a read accessing the base of a heap-based compressed heap will trap.
  68   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  69       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  70     return false;
  71   }
  72 
  73   return true;
  74 }
  75 
  76 //------------------------------implicit_null_check----------------------------
  77 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  78 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  79 // I can generate a memory op if there is not one nearby.
  80 // The proj is the control projection for the not-null case.
  81 // The val is the pointer being checked for nullness or
  82 // decodeHeapOop_not_null node if it did not fold into address.
  83 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  84   // Assume if null check need for 0 offset then always needed
  85   // Intel solaris doesn't support any null checks yet and no
  86   // mechanism exists (yet) to set the switches at an os_cpu level
  87   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  88 
  89   // Make sure the ptr-is-null path appears to be uncommon!
  90   float f = block->end()->as_MachIf()->_prob;
  91   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  92   if( f > PROB_UNLIKELY_MAG(4) ) return;
  93 
  94   uint bidx = 0;                // Capture index of value into memop
  95   bool was_store;               // Memory op is a store op
  96 
  97   // Get the successor block for if the test ptr is non-null
  98   Block* not_null_block;  // this one goes with the proj
  99   Block* null_block;
 100   if (block->get_node(block->number_of_nodes()-1) == proj) {
 101     null_block     = block->_succs[0];
 102     not_null_block = block->_succs[1];
 103   } else {
 104     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 105     not_null_block = block->_succs[0];
 106     null_block     = block->_succs[1];
 107   }
 108   while (null_block->is_Empty() == Block::empty_with_goto) {
 109     null_block     = null_block->_succs[0];
 110   }
 111 
 112   // Search the exception block for an uncommon trap.
 113   // (See Parse::do_if and Parse::do_ifnull for the reason
 114   // we need an uncommon trap.  Briefly, we need a way to
 115   // detect failure of this optimization, as in 6366351.)
 116   {
 117     bool found_trap = false;
 118     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 119       Node* nn = null_block->get_node(i1);
 120       if (nn->is_MachCall() &&
 121           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 122         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 123         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 124           jint tr_con = trtype->is_int()->get_con();
 125           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 126           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 127           assert((int)reason < (int)BitsPerInt, "recode bit map");
 128           if (is_set_nth_bit(allowed_reasons, (int) reason)
 129               && action != Deoptimization::Action_none) {
 130             // This uncommon trap is sure to recompile, eventually.
 131             // When that happens, C->too_many_traps will prevent
 132             // this transformation from happening again.
 133             found_trap = true;
 134           }
 135         }
 136         break;
 137       }
 138     }
 139     if (!found_trap) {
 140       // We did not find an uncommon trap.
 141       return;
 142     }
 143   }
 144 
 145   // Check for decodeHeapOop_not_null node which did not fold into address
 146   bool is_decoden = ((intptr_t)val) & 1;
 147   val = (Node*)(((intptr_t)val) & ~1);
 148 
 149   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 150          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 151 
 152   // Search the successor block for a load or store who's base value is also
 153   // the tested value.  There may be several.
 154   Node_List *out = new Node_List(Thread::current()->resource_area());
 155   MachNode *best = NULL;        // Best found so far
 156   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 157     Node *m = val->out(i);
 158     if( !m->is_Mach() ) continue;
 159     MachNode *mach = m->as_Mach();
 160     was_store = false;
 161     int iop = mach->ideal_Opcode();
 162     switch( iop ) {
 163     case Op_LoadB:
 164     case Op_LoadUB:
 165     case Op_LoadUS:
 166     case Op_LoadD:
 167     case Op_LoadF:
 168     case Op_LoadI:
 169     case Op_LoadL:
 170     case Op_LoadP:
 171     case Op_LoadN:
 172     case Op_LoadS:
 173     case Op_LoadKlass:
 174     case Op_LoadNKlass:
 175     case Op_LoadRange:
 176     case Op_LoadD_unaligned:
 177     case Op_LoadL_unaligned:
 178       assert(mach->in(2) == val, "should be address");
 179       break;
 180     case Op_StoreB:
 181     case Op_StoreC:
 182     case Op_StoreCM:
 183     case Op_StoreD:
 184     case Op_StoreF:
 185     case Op_StoreI:
 186     case Op_StoreL:
 187     case Op_StoreP:
 188     case Op_StoreN:
 189     case Op_StoreNKlass:
 190       was_store = true;         // Memory op is a store op
 191       // Stores will have their address in slot 2 (memory in slot 1).
 192       // If the value being nul-checked is in another slot, it means we
 193       // are storing the checked value, which does NOT check the value!
 194       if( mach->in(2) != val ) continue;
 195       break;                    // Found a memory op?
 196     case Op_StrComp:
 197     case Op_StrEquals:
 198     case Op_StrIndexOf:
 199     case Op_StrIndexOfChar:
 200     case Op_AryEq:
 201     case Op_StrInflatedCopy:
 202     case Op_StrCompressedCopy:
 203     case Op_EncodeISOArray:
 204     case Op_HasNegatives:
 205       // Not a legit memory op for implicit null check regardless of
 206       // embedded loads
 207       continue;
 208     default:                    // Also check for embedded loads
 209       if( !mach->needs_anti_dependence_check() )
 210         continue;               // Not an memory op; skip it
 211       if( must_clone[iop] ) {
 212         // Do not move nodes which produce flags because
 213         // RA will try to clone it to place near branch and
 214         // it will cause recompilation, see clone_node().
 215         continue;
 216       }
 217       {
 218         // Check that value is used in memory address in
 219         // instructions with embedded load (CmpP val1,(val2+off)).
 220         Node* base;
 221         Node* index;
 222         const MachOper* oper = mach->memory_inputs(base, index);
 223         if (oper == NULL || oper == (MachOper*)-1) {
 224           continue;             // Not an memory op; skip it
 225         }
 226         if (val == base ||
 227             val == index && val->bottom_type()->isa_narrowoop()) {
 228           break;                // Found it
 229         } else {
 230           continue;             // Skip it
 231         }
 232       }
 233       break;
 234     }
 235 
 236     // On some OSes (AIX) the page at address 0 is only write protected.
 237     // If so, only Store operations will trap.
 238     // But a read accessing the base of a heap-based compressed heap will trap.
 239     if (!was_store && needs_explicit_null_check_for_read(val)) {
 240       continue;
 241     }
 242 
 243     // Check that node's control edge is not-null block's head or dominates it,
 244     // otherwise we can't hoist it because there are other control dependencies.
 245     Node* ctrl = mach->in(0);
 246     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 247         get_block_for_node(ctrl)->dominates(not_null_block))) {
 248       continue;
 249     }
 250 
 251     // check if the offset is not too high for implicit exception
 252     {
 253       intptr_t offset = 0;
 254       const TypePtr *adr_type = NULL;  // Do not need this return value here
 255       const Node* base = mach->get_base_and_disp(offset, adr_type);
 256       if (base == NULL || base == NodeSentinel) {
 257         // Narrow oop address doesn't have base, only index
 258         if (val->bottom_type()->isa_narrowoop() &&
 259             (MacroAssembler::needs_explicit_null_check(offset) ||
 260              !Universe::narrow_oop_use_implicit_null_checks()))
 261           continue;             // Give up if offset is beyond page size
 262         // cannot reason about it; is probably not implicit null exception
 263       } else {
 264         const TypePtr* tptr;
 265         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 266                                   Universe::narrow_klass_shift() == 0)) {
 267           // 32-bits narrow oop can be the base of address expressions
 268           tptr = base->get_ptr_type();
 269         } else {
 270           // only regular oops are expected here
 271           tptr = base->bottom_type()->is_ptr();
 272         }
 273         // Give up if offset is not a compile-time constant
 274         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 275           continue;
 276         offset += tptr->_offset; // correct if base is offseted
 277         if (MacroAssembler::needs_explicit_null_check(offset))
 278           continue;             // Give up is reference is beyond 4K page size
 279         // Access to non-protected heap base
 280         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 281             !Universe::narrow_oop_use_implicit_null_checks())
 282           continue;
 283       }
 284     }
 285 
 286     // Check ctrl input to see if the null-check dominates the memory op
 287     Block *cb = get_block_for_node(mach);
 288     cb = cb->_idom;             // Always hoist at least 1 block
 289     if( !was_store ) {          // Stores can be hoisted only one block
 290       while( cb->_dom_depth > (block->_dom_depth + 1))
 291         cb = cb->_idom;         // Hoist loads as far as we want
 292       // The non-null-block should dominate the memory op, too. Live
 293       // range spilling will insert a spill in the non-null-block if it is
 294       // needs to spill the memory op for an implicit null check.
 295       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 296         if (cb != not_null_block) continue;
 297         cb = cb->_idom;
 298       }
 299     }
 300     if( cb != block ) continue;
 301 
 302     // Found a memory user; see if it can be hoisted to check-block
 303     uint vidx = 0;              // Capture index of value into memop
 304     uint j;
 305     for( j = mach->req()-1; j > 0; j-- ) {
 306       if( mach->in(j) == val ) {
 307         vidx = j;
 308         // Ignore DecodeN val which could be hoisted to where needed.
 309         if( is_decoden ) continue;
 310       }
 311       // Block of memory-op input
 312       Block *inb = get_block_for_node(mach->in(j));
 313       Block *b = block;          // Start from nul check
 314       while( b != inb && b->_dom_depth > inb->_dom_depth )
 315         b = b->_idom;           // search upwards for input
 316       // See if input dominates null check
 317       if( b != inb )
 318         break;
 319     }
 320     if( j > 0 )
 321       continue;
 322     Block *mb = get_block_for_node(mach);
 323     // Hoisting stores requires more checks for the anti-dependence case.
 324     // Give up hoisting if we have to move the store past any load.
 325     if( was_store ) {
 326       Block *b = mb;            // Start searching here for a local load
 327       // mach use (faulting) trying to hoist
 328       // n might be blocker to hoisting
 329       while( b != block ) {
 330         uint k;
 331         for( k = 1; k < b->number_of_nodes(); k++ ) {
 332           Node *n = b->get_node(k);
 333           if( n->needs_anti_dependence_check() &&
 334               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 335             break;              // Found anti-dependent load
 336         }
 337         if( k < b->number_of_nodes() )
 338           break;                // Found anti-dependent load
 339         // Make sure control does not do a merge (would have to check allpaths)
 340         if( b->num_preds() != 2 ) break;
 341         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 342       }
 343       if( b != block ) continue;
 344     }
 345 
 346     // Make sure this memory op is not already being used for a NullCheck
 347     Node *e = mb->end();
 348     if( e->is_MachNullCheck() && e->in(1) == mach )
 349       continue;                 // Already being used as a NULL check
 350 
 351     // Found a candidate!  Pick one with least dom depth - the highest
 352     // in the dom tree should be closest to the null check.
 353     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 354       best = mach;
 355       bidx = vidx;
 356     }
 357   }
 358   // No candidate!
 359   if (best == NULL) {
 360     return;
 361   }
 362 
 363   // ---- Found an implicit null check
 364 #ifndef PRODUCT
 365   extern int implicit_null_checks;
 366   implicit_null_checks++;
 367 #endif
 368 
 369   if( is_decoden ) {
 370     // Check if we need to hoist decodeHeapOop_not_null first.
 371     Block *valb = get_block_for_node(val);
 372     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 373       // Hoist it up to the end of the test block.
 374       valb->find_remove(val);
 375       block->add_inst(val);
 376       map_node_to_block(val, block);
 377       // DecodeN on x86 may kill flags. Check for flag-killing projections
 378       // that also need to be hoisted.
 379       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 380         Node* n = val->fast_out(j);
 381         if( n->is_MachProj() ) {
 382           get_block_for_node(n)->find_remove(n);
 383           block->add_inst(n);
 384           map_node_to_block(n, block);
 385         }
 386       }
 387     }
 388   }
 389   // Hoist the memory candidate up to the end of the test block.
 390   Block *old_block = get_block_for_node(best);
 391   old_block->find_remove(best);
 392   block->add_inst(best);
 393   map_node_to_block(best, block);
 394 
 395   // Move the control dependence if it is pinned to not-null block.
 396   // Don't change it in other cases: NULL or dominating control.
 397   if (best->in(0) == not_null_block->head()) {
 398     // Set it to control edge of null check.
 399     best->set_req(0, proj->in(0)->in(0));
 400   }
 401 
 402   // Check for flag-killing projections that also need to be hoisted
 403   // Should be DU safe because no edge updates.
 404   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 405     Node* n = best->fast_out(j);
 406     if( n->is_MachProj() ) {
 407       get_block_for_node(n)->find_remove(n);
 408       block->add_inst(n);
 409       map_node_to_block(n, block);
 410     }
 411   }
 412 
 413   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 414   // One of two graph shapes got matched:
 415   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 416   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 417   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 418   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 419   // We need to flip the projections to keep the same semantics.
 420   if( proj->Opcode() == Op_IfTrue ) {
 421     // Swap order of projections in basic block to swap branch targets
 422     Node *tmp1 = block->get_node(block->end_idx()+1);
 423     Node *tmp2 = block->get_node(block->end_idx()+2);
 424     block->map_node(tmp2, block->end_idx()+1);
 425     block->map_node(tmp1, block->end_idx()+2);
 426     Node *tmp = new Node(C->top()); // Use not NULL input
 427     tmp1->replace_by(tmp);
 428     tmp2->replace_by(tmp1);
 429     tmp->replace_by(tmp2);
 430     tmp->destruct();
 431   }
 432 
 433   // Remove the existing null check; use a new implicit null check instead.
 434   // Since schedule-local needs precise def-use info, we need to correct
 435   // it as well.
 436   Node *old_tst = proj->in(0);
 437   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 438   block->map_node(nul_chk, block->end_idx());
 439   map_node_to_block(nul_chk, block);
 440   // Redirect users of old_test to nul_chk
 441   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 442     old_tst->last_out(i2)->set_req(0, nul_chk);
 443   // Clean-up any dead code
 444   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 445     Node* in = old_tst->in(i3);
 446     old_tst->set_req(i3, NULL);
 447     if (in->outcnt() == 0) {
 448       // Remove dead input node
 449       in->disconnect_inputs(NULL, C);
 450       block->find_remove(in);
 451     }
 452   }
 453 
 454   latency_from_uses(nul_chk);
 455   latency_from_uses(best);
 456 
 457   // insert anti-dependences to defs in this block
 458   if (! best->needs_anti_dependence_check()) {
 459     for (uint k = 1; k < block->number_of_nodes(); k++) {
 460       Node *n = block->get_node(k);
 461       if (n->needs_anti_dependence_check() &&
 462           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 463         // Found anti-dependent load
 464         insert_anti_dependences(block, n);
 465       }
 466     }
 467   }
 468 }
 469 
 470 
 471 //------------------------------select-----------------------------------------
 472 // Select a nice fellow from the worklist to schedule next. If there is only
 473 // one choice, then use it. Projections take top priority for correctness
 474 // reasons - if I see a projection, then it is next.  There are a number of
 475 // other special cases, for instructions that consume condition codes, et al.
 476 // These are chosen immediately. Some instructions are required to immediately
 477 // precede the last instruction in the block, and these are taken last. Of the
 478 // remaining cases (most), choose the instruction with the greatest latency
 479 // (that is, the most number of pseudo-cycles required to the end of the
 480 // routine). If there is a tie, choose the instruction with the most inputs.
 481 Node* PhaseCFG::select(
 482   Block* block,
 483   Node_List &worklist,
 484   GrowableArray<int> &ready_cnt,
 485   VectorSet &next_call,
 486   uint sched_slot,
 487   intptr_t* recalc_pressure_nodes) {
 488 
 489   // If only a single entry on the stack, use it
 490   uint cnt = worklist.size();
 491   if (cnt == 1) {
 492     Node *n = worklist[0];
 493     worklist.map(0,worklist.pop());
 494     return n;
 495   }
 496 
 497   uint choice  = 0; // Bigger is most important
 498   uint latency = 0; // Bigger is scheduled first
 499   uint score   = 0; // Bigger is better
 500   int idx = -1;     // Index in worklist
 501   int cand_cnt = 0; // Candidate count
 502   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 503 
 504   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 505     // Order in worklist is used to break ties.
 506     // See caller for how this is used to delay scheduling
 507     // of induction variable increments to after the other
 508     // uses of the phi are scheduled.
 509     Node *n = worklist[i];      // Get Node on worklist
 510 
 511     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 512     if( n->is_Proj() ||         // Projections always win
 513         n->Opcode()== Op_Con || // So does constant 'Top'
 514         iop == Op_CreateEx ||   // Create-exception must start block
 515         iop == Op_CheckCastPP
 516         ) {
 517       worklist.map(i,worklist.pop());
 518       return n;
 519     }
 520 
 521     // Final call in a block must be adjacent to 'catch'
 522     Node *e = block->end();
 523     if( e->is_Catch() && e->in(0)->in(0) == n )
 524       continue;
 525 
 526     // Memory op for an implicit null check has to be at the end of the block
 527     if( e->is_MachNullCheck() && e->in(1) == n )
 528       continue;
 529 
 530     // Schedule IV increment last.
 531     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 532       // Cmp might be matched into CountedLoopEnd node.
 533       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 534       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 535         continue;
 536       }
 537     }
 538 
 539     uint n_choice  = 2;
 540 
 541     // See if this instruction is consumed by a branch. If so, then (as the
 542     // branch is the last instruction in the basic block) force it to the
 543     // end of the basic block
 544     if ( must_clone[iop] ) {
 545       // See if any use is a branch
 546       bool found_machif = false;
 547 
 548       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 549         Node* use = n->fast_out(j);
 550 
 551         // The use is a conditional branch, make them adjacent
 552         if (use->is_MachIf() && get_block_for_node(use) == block) {
 553           found_machif = true;
 554           break;
 555         }
 556 
 557         // More than this instruction pending for successor to be ready,
 558         // don't choose this if other opportunities are ready
 559         if (ready_cnt.at(use->_idx) > 1)
 560           n_choice = 1;
 561       }
 562 
 563       // loop terminated, prefer not to use this instruction
 564       if (found_machif)
 565         continue;
 566     }
 567 
 568     // See if this has a predecessor that is "must_clone", i.e. sets the
 569     // condition code. If so, choose this first
 570     for (uint j = 0; j < n->req() ; j++) {
 571       Node *inn = n->in(j);
 572       if (inn) {
 573         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 574           n_choice = 3;
 575           break;
 576         }
 577       }
 578     }
 579 
 580     // MachTemps should be scheduled last so they are near their uses
 581     if (n->is_MachTemp()) {
 582       n_choice = 1;
 583     }
 584 
 585     uint n_latency = get_latency_for_node(n);
 586     uint n_score = n->req();   // Many inputs get high score to break ties
 587 
 588     if (OptoRegScheduling && block_size_threshold_ok) {
 589       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 590         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 591         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 592         // simulate the notion that we just picked this node to schedule
 593         n->add_flag(Node::Flag_is_scheduled);
 594         // now caculate its effect upon the graph if we did
 595         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 596         // return its state for finalize in case somebody else wins
 597         n->remove_flag(Node::Flag_is_scheduled);
 598         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 599         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 600         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 601         recalc_pressure_nodes[n->_idx] = int_pressure;
 602         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 603       }
 604 
 605       if (_scheduling_for_pressure) {
 606         latency = n_latency;
 607         if (n_choice != 3) {
 608           // Now evaluate each register pressure component based on threshold in the score.
 609           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 610           // on a single instruction, but we might see it shrink on both banks.
 611           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 612           // live ranges that terminate on this instruction.
 613           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 614             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 615             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 616           }
 617           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 618             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 619             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 620           }
 621         } else {
 622           // make sure we choose these candidates
 623           score = 0;
 624         }
 625       }
 626     }
 627 
 628     // Keep best latency found
 629     cand_cnt++;
 630     if (choice < n_choice ||
 631         (choice == n_choice &&
 632          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 633           (!StressLCM &&
 634            (latency < n_latency ||
 635             (latency == n_latency &&
 636              (score < n_score))))))) {
 637       choice  = n_choice;
 638       latency = n_latency;
 639       score   = n_score;
 640       idx     = i;               // Also keep index in worklist
 641     }
 642   } // End of for all ready nodes in worklist
 643 
 644   assert(idx >= 0, "index should be set");
 645   Node *n = worklist[(uint)idx];      // Get the winner
 646 
 647   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 648   return n;
 649 }
 650 
 651 //-------------------------adjust_register_pressure----------------------------
 652 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 653   PhaseLive* liveinfo = _regalloc->get_live();
 654   IndexSet* liveout = liveinfo->live(block);
 655   // first adjust the register pressure for the sources
 656   for (uint i = 1; i < n->req(); i++) {
 657     bool lrg_ends = false;
 658     Node *src_n = n->in(i);
 659     if (src_n == NULL) continue;
 660     if (!src_n->is_Mach()) continue;
 661     uint src = _regalloc->_lrg_map.find(src_n);
 662     if (src == 0) continue;
 663     LRG& lrg_src = _regalloc->lrgs(src);
 664     // detect if the live range ends or not
 665     if (liveout->member(src) == false) {
 666       lrg_ends = true;
 667       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 668         Node* m = src_n->fast_out(j); // Get user
 669         if (m == n) continue;
 670         if (!m->is_Mach()) continue;
 671         MachNode *mach = m->as_Mach();
 672         bool src_matches = false;
 673         int iop = mach->ideal_Opcode();
 674 
 675         switch (iop) {
 676         case Op_StoreB:
 677         case Op_StoreC:
 678         case Op_StoreCM:
 679         case Op_StoreD:
 680         case Op_StoreF:
 681         case Op_StoreI:
 682         case Op_StoreL:
 683         case Op_StoreP:
 684         case Op_StoreN:
 685         case Op_StoreVector:
 686         case Op_StoreNKlass:
 687           for (uint k = 1; k < m->req(); k++) {
 688             Node *in = m->in(k);
 689             if (in == src_n) {
 690               src_matches = true;
 691               break;
 692             }
 693           }
 694           break;
 695 
 696         default:
 697           src_matches = true;
 698           break;
 699         }
 700 
 701         // If we have a store as our use, ignore the non source operands
 702         if (src_matches == false) continue;
 703 
 704         // Mark every unscheduled use which is not n with a recalculation
 705         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 706           if (finalize_mode && !m->is_Phi()) {
 707             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 708           }
 709           lrg_ends = false;
 710         }
 711       }
 712     }
 713     // if none, this live range ends and we can adjust register pressure
 714     if (lrg_ends) {
 715       if (finalize_mode) {
 716         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 717       } else {
 718         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 719       }
 720     }
 721   }
 722 
 723   // now add the register pressure from the dest and evaluate which heuristic we should use:
 724   // 1.) The default, latency scheduling
 725   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 726   uint dst = _regalloc->_lrg_map.find(n);
 727   if (dst != 0) {
 728     LRG& lrg_dst = _regalloc->lrgs(dst);
 729     if (finalize_mode) {
 730       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 731       // check to see if we fall over the register pressure cliff here
 732       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 733         _scheduling_for_pressure = true;
 734       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 735         _scheduling_for_pressure = true;
 736       } else {
 737         // restore latency scheduling mode
 738         _scheduling_for_pressure = false;
 739       }
 740     } else {
 741       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 742     }
 743   }
 744 }
 745 
 746 //------------------------------set_next_call----------------------------------
 747 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 748   if( next_call.test_set(n->_idx) ) return;
 749   for( uint i=0; i<n->len(); i++ ) {
 750     Node *m = n->in(i);
 751     if( !m ) continue;  // must see all nodes in block that precede call
 752     if (get_block_for_node(m) == block) {
 753       set_next_call(block, m, next_call);
 754     }
 755   }
 756 }
 757 
 758 //------------------------------needed_for_next_call---------------------------
 759 // Set the flag 'next_call' for each Node that is needed for the next call to
 760 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 761 // next subroutine call get priority - basically it moves things NOT needed
 762 // for the next call till after the call.  This prevents me from trying to
 763 // carry lots of stuff live across a call.
 764 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 765   // Find the next control-defining Node in this block
 766   Node* call = NULL;
 767   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 768     Node* m = this_call->fast_out(i);
 769     if (get_block_for_node(m) == block && // Local-block user
 770         m != this_call &&       // Not self-start node
 771         m->is_MachCall()) {
 772       call = m;
 773       break;
 774     }
 775   }
 776   if (call == NULL)  return;    // No next call (e.g., block end is near)
 777   // Set next-call for all inputs to this call
 778   set_next_call(block, call, next_call);
 779 }
 780 
 781 //------------------------------add_call_kills-------------------------------------
 782 // helper function that adds caller save registers to MachProjNode
 783 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 784   // Fill in the kill mask for the call
 785   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 786     if( !regs.Member(r) ) {     // Not already defined by the call
 787       // Save-on-call register?
 788       if ((save_policy[r] == 'C') ||
 789           (save_policy[r] == 'A') ||
 790           ((save_policy[r] == 'E') && exclude_soe)) {
 791         proj->_rout.Insert(r);
 792       }
 793     }
 794   }
 795 }
 796 
 797 
 798 //------------------------------sched_call-------------------------------------
 799 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 800   RegMask regs;
 801 
 802   // Schedule all the users of the call right now.  All the users are
 803   // projection Nodes, so they must be scheduled next to the call.
 804   // Collect all the defined registers.
 805   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 806     Node* n = mcall->fast_out(i);
 807     assert( n->is_MachProj(), "" );
 808     int n_cnt = ready_cnt.at(n->_idx)-1;
 809     ready_cnt.at_put(n->_idx, n_cnt);
 810     assert( n_cnt == 0, "" );
 811     // Schedule next to call
 812     block->map_node(n, node_cnt++);
 813     // Collect defined registers
 814     regs.OR(n->out_RegMask());
 815     // Check for scheduling the next control-definer
 816     if( n->bottom_type() == Type::CONTROL )
 817       // Warm up next pile of heuristic bits
 818       needed_for_next_call(block, n, next_call);
 819 
 820     // Children of projections are now all ready
 821     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 822       Node* m = n->fast_out(j); // Get user
 823       if(get_block_for_node(m) != block) {
 824         continue;
 825       }
 826       if( m->is_Phi() ) continue;
 827       int m_cnt = ready_cnt.at(m->_idx) - 1;
 828       ready_cnt.at_put(m->_idx, m_cnt);
 829       if( m_cnt == 0 )
 830         worklist.push(m);
 831     }
 832 
 833   }
 834 
 835   // Act as if the call defines the Frame Pointer.
 836   // Certainly the FP is alive and well after the call.
 837   regs.Insert(_matcher.c_frame_pointer());
 838 
 839   // Set all registers killed and not already defined by the call.
 840   uint r_cnt = mcall->tf()->range()->cnt();
 841   int op = mcall->ideal_Opcode();
 842   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 843   map_node_to_block(proj, block);
 844   block->insert_node(proj, node_cnt++);
 845 
 846   // Select the right register save policy.
 847   const char *save_policy = NULL;
 848   switch (op) {
 849     case Op_CallRuntime:
 850     case Op_CallLeaf:
 851     case Op_CallLeafNoFP:
 852       // Calling C code so use C calling convention
 853       save_policy = _matcher._c_reg_save_policy;
 854       break;
 855 
 856     case Op_CallStaticJava:
 857     case Op_CallDynamicJava:
 858       // Calling Java code so use Java calling convention
 859       save_policy = _matcher._register_save_policy;
 860       break;
 861 
 862     default:
 863       ShouldNotReachHere();
 864   }
 865 
 866   // When using CallRuntime mark SOE registers as killed by the call
 867   // so values that could show up in the RegisterMap aren't live in a
 868   // callee saved register since the register wouldn't know where to
 869   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 870   // have debug info on them.  Strictly speaking this only needs to be
 871   // done for oops since idealreg2debugmask takes care of debug info
 872   // references but there no way to handle oops differently than other
 873   // pointers as far as the kill mask goes.
 874   bool exclude_soe = op == Op_CallRuntime;
 875 
 876   // If the call is a MethodHandle invoke, we need to exclude the
 877   // register which is used to save the SP value over MH invokes from
 878   // the mask.  Otherwise this register could be used for
 879   // deoptimization information.
 880   if (op == Op_CallStaticJava) {
 881     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 882     if (mcallstaticjava->_method_handle_invoke)
 883       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 884   }
 885 
 886   add_call_kills(proj, regs, save_policy, exclude_soe);
 887 
 888   return node_cnt;
 889 }
 890 
 891 
 892 //------------------------------schedule_local---------------------------------
 893 // Topological sort within a block.  Someday become a real scheduler.
 894 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 895   // Already "sorted" are the block start Node (as the first entry), and
 896   // the block-ending Node and any trailing control projections.  We leave
 897   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 898   // Node.  Everything else gets topo-sorted.
 899 
 900 #ifndef PRODUCT
 901     if (trace_opto_pipelining()) {
 902       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 903       for (uint i = 0;i < block->number_of_nodes(); i++) {
 904         tty->print("# ");
 905         block->get_node(i)->fast_dump();
 906       }
 907       tty->print_cr("#");
 908     }
 909 #endif
 910 
 911   // RootNode is already sorted
 912   if (block->number_of_nodes() == 1) {
 913     return true;
 914   }
 915 
 916   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 917 
 918   // We track the uses of local definitions as input dependences so that
 919   // we know when a given instruction is avialable to be scheduled.
 920   uint i;
 921   if (OptoRegScheduling && block_size_threshold_ok) {
 922     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 923       Node *n = block->get_node(i);
 924       n->remove_flag(Node::Flag_is_scheduled);
 925       if (!n->is_Phi()) {
 926         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 927       }
 928     }
 929   }
 930 
 931   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 932   uint node_cnt = block->end_idx();
 933   uint phi_cnt = 1;
 934   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 935     Node *n = block->get_node(i);
 936     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 937         (n->is_Proj()  && n->in(0) == block->head()) ) {
 938       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 939       block->map_node(block->get_node(phi_cnt), i);
 940       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 941       if (OptoRegScheduling && block_size_threshold_ok) {
 942         // mark n as scheduled
 943         n->add_flag(Node::Flag_is_scheduled);
 944       }
 945     } else {                    // All others
 946       // Count block-local inputs to 'n'
 947       uint cnt = n->len();      // Input count
 948       uint local = 0;
 949       for( uint j=0; j<cnt; j++ ) {
 950         Node *m = n->in(j);
 951         if( m && get_block_for_node(m) == block && !m->is_top() )
 952           local++;              // One more block-local input
 953       }
 954       ready_cnt.at_put(n->_idx, local); // Count em up
 955 
 956 #ifdef ASSERT
 957       if( UseConcMarkSweepGC || UseG1GC ) {
 958         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 959           // Check the precedence edges
 960           for (uint prec = n->req(); prec < n->len(); prec++) {
 961             Node* oop_store = n->in(prec);
 962             if (oop_store != NULL) {
 963               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 964             }
 965           }
 966         }
 967       }
 968 #endif
 969 
 970       // A few node types require changing a required edge to a precedence edge
 971       // before allocation.
 972       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 973           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 974            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 975         // MemBarAcquire could be created without Precedent edge.
 976         // del_req() replaces the specified edge with the last input edge
 977         // and then removes the last edge. If the specified edge > number of
 978         // edges the last edge will be moved outside of the input edges array
 979         // and the edge will be lost. This is why this code should be
 980         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 981         Node *x = n->in(TypeFunc::Parms);
 982         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
 983           // Old edge to node within same block will get removed, but no precedence
 984           // edge will get added because it already exists. Update ready count.
 985           int cnt = ready_cnt.at(n->_idx);
 986           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
 987           ready_cnt.at_put(n->_idx, cnt-1);
 988         }
 989         n->del_req(TypeFunc::Parms);
 990         n->add_prec(x);
 991       }
 992     }
 993   }
 994   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 995     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 996 
 997   // All the prescheduled guys do not hold back internal nodes
 998   uint i3;
 999   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1000     Node *n = block->get_node(i3);       // Get pre-scheduled
1001     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1002       Node* m = n->fast_out(j);
1003       if (get_block_for_node(m) == block) { // Local-block user
1004         int m_cnt = ready_cnt.at(m->_idx)-1;
1005         if (OptoRegScheduling && block_size_threshold_ok) {
1006           // mark m as scheduled
1007           if (m_cnt < 0) {
1008             m->add_flag(Node::Flag_is_scheduled);
1009           }
1010         }
1011         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1012       }
1013     }
1014   }
1015 
1016   Node_List delay;
1017   // Make a worklist
1018   Node_List worklist;
1019   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1020     Node *m = block->get_node(i4);
1021     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1022       if (m->is_iteratively_computed()) {
1023         // Push induction variable increments last to allow other uses
1024         // of the phi to be scheduled first. The select() method breaks
1025         // ties in scheduling by worklist order.
1026         delay.push(m);
1027       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1028         // Force the CreateEx to the top of the list so it's processed
1029         // first and ends up at the start of the block.
1030         worklist.insert(0, m);
1031       } else {
1032         worklist.push(m);         // Then on to worklist!
1033       }
1034     }
1035   }
1036   while (delay.size()) {
1037     Node* d = delay.pop();
1038     worklist.push(d);
1039   }
1040 
1041   if (OptoRegScheduling && block_size_threshold_ok) {
1042     // To stage register pressure calculations we need to examine the live set variables
1043     // breaking them up by register class to compartmentalize the calculations.
1044     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1045     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1046     _regalloc->_sched_float_pressure.init(float_pressure);
1047     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1048     _regalloc->_scratch_float_pressure.init(float_pressure);
1049 
1050     _regalloc->compute_entry_block_pressure(block);
1051   }
1052 
1053   // Warm up the 'next_call' heuristic bits
1054   needed_for_next_call(block, block->head(), next_call);
1055 
1056 #ifndef PRODUCT
1057     if (trace_opto_pipelining()) {
1058       for (uint j=0; j< block->number_of_nodes(); j++) {
1059         Node     *n = block->get_node(j);
1060         int     idx = n->_idx;
1061         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1062         tty->print("latency:%3d  ", get_latency_for_node(n));
1063         tty->print("%4d: %s\n", idx, n->Name());
1064       }
1065     }
1066 #endif
1067 
1068   uint max_idx = (uint)ready_cnt.length();
1069   // Pull from worklist and schedule
1070   while( worklist.size() ) {    // Worklist is not ready
1071 
1072 #ifndef PRODUCT
1073     if (trace_opto_pipelining()) {
1074       tty->print("#   ready list:");
1075       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1076         Node *n = worklist[i];      // Get Node on worklist
1077         tty->print(" %d", n->_idx);
1078       }
1079       tty->cr();
1080     }
1081 #endif
1082 
1083     // Select and pop a ready guy from worklist
1084     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1085     block->map_node(n, phi_cnt++);    // Schedule him next
1086 
1087     if (OptoRegScheduling && block_size_threshold_ok) {
1088       n->add_flag(Node::Flag_is_scheduled);
1089 
1090       // Now adjust the resister pressure with the node we selected
1091       if (!n->is_Phi()) {
1092         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1093       }
1094     }
1095 
1096 #ifndef PRODUCT
1097     if (trace_opto_pipelining()) {
1098       tty->print("#    select %d: %s", n->_idx, n->Name());
1099       tty->print(", latency:%d", get_latency_for_node(n));
1100       n->dump();
1101       if (Verbose) {
1102         tty->print("#   ready list:");
1103         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1104           Node *n = worklist[i];      // Get Node on worklist
1105           tty->print(" %d", n->_idx);
1106         }
1107         tty->cr();
1108       }
1109     }
1110 
1111 #endif
1112     if( n->is_MachCall() ) {
1113       MachCallNode *mcall = n->as_MachCall();
1114       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1115       continue;
1116     }
1117 
1118     if (n->is_Mach() && n->as_Mach()->has_call()) {
1119       RegMask regs;
1120       regs.Insert(_matcher.c_frame_pointer());
1121       regs.OR(n->out_RegMask());
1122 
1123       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1124       map_node_to_block(proj, block);
1125       block->insert_node(proj, phi_cnt++);
1126 
1127       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1128     }
1129 
1130     // Children are now all ready
1131     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1132       Node* m = n->fast_out(i5); // Get user
1133       if (get_block_for_node(m) != block) {
1134         continue;
1135       }
1136       if( m->is_Phi() ) continue;
1137       if (m->_idx >= max_idx) { // new node, skip it
1138         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1139         continue;
1140       }
1141       int m_cnt = ready_cnt.at(m->_idx) - 1;
1142       ready_cnt.at_put(m->_idx, m_cnt);
1143       if( m_cnt == 0 )
1144         worklist.push(m);
1145     }
1146   }
1147 
1148   if( phi_cnt != block->end_idx() ) {
1149     // did not schedule all.  Retry, Bailout, or Die
1150     if (C->subsume_loads() == true && !C->failing()) {
1151       // Retry with subsume_loads == false
1152       // If this is the first failure, the sentinel string will "stick"
1153       // to the Compile object, and the C2Compiler will see it and retry.
1154       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1155     } else {
1156       assert(false, "graph should be schedulable");
1157     }
1158     // assert( phi_cnt == end_idx(), "did not schedule all" );
1159     return false;
1160   }
1161 
1162   if (OptoRegScheduling && block_size_threshold_ok) {
1163     _regalloc->compute_exit_block_pressure(block);
1164     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1165     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1166   }
1167 
1168 #ifndef PRODUCT
1169   if (trace_opto_pipelining()) {
1170     tty->print_cr("#");
1171     tty->print_cr("# after schedule_local");
1172     for (uint i = 0;i < block->number_of_nodes();i++) {
1173       tty->print("# ");
1174       block->get_node(i)->fast_dump();
1175     }
1176     tty->print_cr("# ");
1177 
1178     if (OptoRegScheduling && block_size_threshold_ok) {
1179       tty->print_cr("# pressure info : %d", block->_pre_order);
1180       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1181       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1182     }
1183     tty->cr();
1184   }
1185 #endif
1186 
1187   return true;
1188 }
1189 
1190 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1191 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1192   for (uint l = 0; l < use->len(); l++) {
1193     if (use->in(l) == old_def) {
1194       if (l < use->req()) {
1195         use->set_req(l, new_def);
1196       } else {
1197         use->rm_prec(l);
1198         use->add_prec(new_def);
1199         l--;
1200       }
1201     }
1202   }
1203 }
1204 
1205 //------------------------------catch_cleanup_find_cloned_def------------------
1206 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1207   assert( use_blk != def_blk, "Inter-block cleanup only");
1208 
1209   // The use is some block below the Catch.  Find and return the clone of the def
1210   // that dominates the use. If there is no clone in a dominating block, then
1211   // create a phi for the def in a dominating block.
1212 
1213   // Find which successor block dominates this use.  The successor
1214   // blocks must all be single-entry (from the Catch only; I will have
1215   // split blocks to make this so), hence they all dominate.
1216   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1217     use_blk = use_blk->_idom;
1218 
1219   // Find the successor
1220   Node *fixup = NULL;
1221 
1222   uint j;
1223   for( j = 0; j < def_blk->_num_succs; j++ )
1224     if( use_blk == def_blk->_succs[j] )
1225       break;
1226 
1227   if( j == def_blk->_num_succs ) {
1228     // Block at same level in dom-tree is not a successor.  It needs a
1229     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1230     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1231     for(uint k = 1; k < use_blk->num_preds(); k++) {
1232       Block* block = get_block_for_node(use_blk->pred(k));
1233       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1234     }
1235 
1236     // Check to see if the use_blk already has an identical phi inserted.
1237     // If it exists, it will be at the first position since all uses of a
1238     // def are processed together.
1239     Node *phi = use_blk->get_node(1);
1240     if( phi->is_Phi() ) {
1241       fixup = phi;
1242       for (uint k = 1; k < use_blk->num_preds(); k++) {
1243         if (phi->in(k) != inputs[k]) {
1244           // Not a match
1245           fixup = NULL;
1246           break;
1247         }
1248       }
1249     }
1250 
1251     // If an existing PhiNode was not found, make a new one.
1252     if (fixup == NULL) {
1253       Node *new_phi = PhiNode::make(use_blk->head(), def);
1254       use_blk->insert_node(new_phi, 1);
1255       map_node_to_block(new_phi, use_blk);
1256       for (uint k = 1; k < use_blk->num_preds(); k++) {
1257         new_phi->set_req(k, inputs[k]);
1258       }
1259       fixup = new_phi;
1260     }
1261 
1262   } else {
1263     // Found the use just below the Catch.  Make it use the clone.
1264     fixup = use_blk->get_node(n_clone_idx);
1265   }
1266 
1267   return fixup;
1268 }
1269 
1270 //--------------------------catch_cleanup_intra_block--------------------------
1271 // Fix all input edges in use that reference "def".  The use is in the same
1272 // block as the def and both have been cloned in each successor block.
1273 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1274 
1275   // Both the use and def have been cloned. For each successor block,
1276   // get the clone of the use, and make its input the clone of the def
1277   // found in that block.
1278 
1279   uint use_idx = blk->find_node(use);
1280   uint offset_idx = use_idx - beg;
1281   for( uint k = 0; k < blk->_num_succs; k++ ) {
1282     // Get clone in each successor block
1283     Block *sb = blk->_succs[k];
1284     Node *clone = sb->get_node(offset_idx+1);
1285     assert( clone->Opcode() == use->Opcode(), "" );
1286 
1287     // Make use-clone reference the def-clone
1288     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1289   }
1290 }
1291 
1292 //------------------------------catch_cleanup_inter_block---------------------
1293 // Fix all input edges in use that reference "def".  The use is in a different
1294 // block than the def.
1295 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1296   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1297 
1298   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1299   catch_cleanup_fix_all_inputs(use, def, new_def);
1300 }
1301 
1302 //------------------------------call_catch_cleanup-----------------------------
1303 // If we inserted any instructions between a Call and his CatchNode,
1304 // clone the instructions on all paths below the Catch.
1305 void PhaseCFG::call_catch_cleanup(Block* block) {
1306 
1307   // End of region to clone
1308   uint end = block->end_idx();
1309   if( !block->get_node(end)->is_Catch() ) return;
1310   // Start of region to clone
1311   uint beg = end;
1312   while(!block->get_node(beg-1)->is_MachProj() ||
1313         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1314     beg--;
1315     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1316   }
1317   // Range of inserted instructions is [beg, end)
1318   if( beg == end ) return;
1319 
1320   // Clone along all Catch output paths.  Clone area between the 'beg' and
1321   // 'end' indices.
1322   for( uint i = 0; i < block->_num_succs; i++ ) {
1323     Block *sb = block->_succs[i];
1324     // Clone the entire area; ignoring the edge fixup for now.
1325     for( uint j = end; j > beg; j-- ) {
1326       Node *clone = block->get_node(j-1)->clone();
1327       sb->insert_node(clone, 1);
1328       map_node_to_block(clone, sb);
1329       if (clone->needs_anti_dependence_check()) {
1330         insert_anti_dependences(sb, clone);
1331       }
1332     }
1333   }
1334 
1335 
1336   // Fixup edges.  Check the def-use info per cloned Node
1337   for(uint i2 = beg; i2 < end; i2++ ) {
1338     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1339     Node *n = block->get_node(i2);        // Node that got cloned
1340     // Need DU safe iterator because of edge manipulation in calls.
1341     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1342     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1343       out->push(n->fast_out(j1));
1344     }
1345     uint max = out->size();
1346     for (uint j = 0; j < max; j++) {// For all users
1347       Node *use = out->pop();
1348       Block *buse = get_block_for_node(use);
1349       if( use->is_Phi() ) {
1350         for( uint k = 1; k < use->req(); k++ )
1351           if( use->in(k) == n ) {
1352             Block* b = get_block_for_node(buse->pred(k));
1353             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1354             use->set_req(k, fixup);
1355           }
1356       } else {
1357         if (block == buse) {
1358           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1359         } else {
1360           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1361         }
1362       }
1363     } // End for all users
1364 
1365   } // End of for all Nodes in cloned area
1366 
1367   // Remove the now-dead cloned ops
1368   for(uint i3 = beg; i3 < end; i3++ ) {
1369     block->get_node(beg)->disconnect_inputs(NULL, C);
1370     block->remove_node(beg);
1371   }
1372 
1373   // If the successor blocks have a CreateEx node, move it back to the top
1374   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1375     Block *sb = block->_succs[i4];
1376     uint new_cnt = end - beg;
1377     // Remove any newly created, but dead, nodes.
1378     for( uint j = new_cnt; j > 0; j-- ) {
1379       Node *n = sb->get_node(j);
1380       if (n->outcnt() == 0 &&
1381           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1382         n->disconnect_inputs(NULL, C);
1383         sb->remove_node(j);
1384         new_cnt--;
1385       }
1386     }
1387     // If any newly created nodes remain, move the CreateEx node to the top
1388     if (new_cnt > 0) {
1389       Node *cex = sb->get_node(1+new_cnt);
1390       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1391         sb->remove_node(1+new_cnt);
1392         sb->insert_node(cex, 1);
1393       }
1394     }
1395   }
1396 }