1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 
  37 // Optimization - Graph Style
  38 
  39 // Check whether val is not-null-decoded compressed oop,
  40 // i.e. will grab into the base of the heap if it represents NULL.
  41 static bool accesses_heap_base_zone(Node *val) {
  42   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  43     if (val && val->is_Mach()) {
  44       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  45         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  46         // decode NULL to point to the heap base (Decode_NN).
  47         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  48           return true;
  49         }
  50       }
  51       // Must recognize load operation with Decode matched in memory operand.
  52       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  53       // returns true everywhere else. On PPC, no such memory operands
  54       // exist, therefore we did not yet implement a check for such operands.
  55       NOT_AIX(Unimplemented());
  56     }
  57   }
  58   return false;
  59 }
  60 
  61 static bool needs_explicit_null_check_for_read(Node *val) {
  62   // On some OSes (AIX) the page at address 0 is only write protected.
  63   // If so, only Store operations will trap.
  64   if (os::zero_page_read_protected()) {
  65     return false;  // Implicit null check will work.
  66   }
  67   // Also a read accessing the base of a heap-based compressed heap will trap.
  68   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  69       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  70     return false;
  71   }
  72 
  73   return true;
  74 }
  75 
  76 //------------------------------implicit_null_check----------------------------
  77 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  78 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  79 // I can generate a memory op if there is not one nearby.
  80 // The proj is the control projection for the not-null case.
  81 // The val is the pointer being checked for nullness or
  82 // decodeHeapOop_not_null node if it did not fold into address.
  83 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  84   // Assume if null check need for 0 offset then always needed
  85   // Intel solaris doesn't support any null checks yet and no
  86   // mechanism exists (yet) to set the switches at an os_cpu level
  87   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  88 
  89   // Make sure the ptr-is-null path appears to be uncommon!
  90   float f = block->end()->as_MachIf()->_prob;
  91   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  92   if( f > PROB_UNLIKELY_MAG(4) ) return;
  93 
  94   uint bidx = 0;                // Capture index of value into memop
  95   bool was_store;               // Memory op is a store op
  96 
  97   // Get the successor block for if the test ptr is non-null
  98   Block* not_null_block;  // this one goes with the proj
  99   Block* null_block;
 100   if (block->get_node(block->number_of_nodes()-1) == proj) {
 101     null_block     = block->_succs[0];
 102     not_null_block = block->_succs[1];
 103   } else {
 104     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 105     not_null_block = block->_succs[0];
 106     null_block     = block->_succs[1];
 107   }
 108   while (null_block->is_Empty() == Block::empty_with_goto) {
 109     null_block     = null_block->_succs[0];
 110   }
 111 
 112   // Search the exception block for an uncommon trap.
 113   // (See Parse::do_if and Parse::do_ifnull for the reason
 114   // we need an uncommon trap.  Briefly, we need a way to
 115   // detect failure of this optimization, as in 6366351.)
 116   {
 117     bool found_trap = false;
 118     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 119       Node* nn = null_block->get_node(i1);
 120       if (nn->is_MachCall() &&
 121           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 122         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 123         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 124           jint tr_con = trtype->is_int()->get_con();
 125           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 126           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 127           assert((int)reason < (int)BitsPerInt, "recode bit map");
 128           if (is_set_nth_bit(allowed_reasons, (int) reason)
 129               && action != Deoptimization::Action_none) {
 130             // This uncommon trap is sure to recompile, eventually.
 131             // When that happens, C->too_many_traps will prevent
 132             // this transformation from happening again.
 133             found_trap = true;
 134           }
 135         }
 136         break;
 137       }
 138     }
 139     if (!found_trap) {
 140       // We did not find an uncommon trap.
 141       return;
 142     }
 143   }
 144 
 145   // Check for decodeHeapOop_not_null node which did not fold into address
 146   bool is_decoden = ((intptr_t)val) & 1;
 147   val = (Node*)(((intptr_t)val) & ~1);
 148 
 149   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 150          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 151 
 152   // Search the successor block for a load or store who's base value is also
 153   // the tested value.  There may be several.
 154   Node_List *out = new Node_List(Thread::current()->resource_area());
 155   MachNode *best = NULL;        // Best found so far
 156   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 157     Node *m = val->out(i);
 158     if( !m->is_Mach() ) continue;
 159     MachNode *mach = m->as_Mach();
 160     was_store = false;
 161     int iop = mach->ideal_Opcode();
 162     switch( iop ) {
 163     case Op_LoadB:
 164     case Op_LoadUB:
 165     case Op_LoadUS:
 166     case Op_LoadD:
 167     case Op_LoadF:
 168     case Op_LoadI:
 169     case Op_LoadL:
 170     case Op_LoadP:
 171     case Op_LoadN:
 172     case Op_LoadS:
 173     case Op_LoadKlass:
 174     case Op_LoadNKlass:
 175     case Op_LoadRange:
 176     case Op_LoadD_unaligned:
 177     case Op_LoadL_unaligned:
 178       assert(mach->in(2) == val, "should be address");
 179       break;
 180     case Op_StoreB:
 181     case Op_StoreC:
 182     case Op_StoreCM:
 183     case Op_StoreD:
 184     case Op_StoreF:
 185     case Op_StoreI:
 186     case Op_StoreL:
 187     case Op_StoreP:
 188     case Op_StoreN:
 189     case Op_StoreNKlass:
 190       was_store = true;         // Memory op is a store op
 191       // Stores will have their address in slot 2 (memory in slot 1).
 192       // If the value being nul-checked is in another slot, it means we
 193       // are storing the checked value, which does NOT check the value!
 194       if( mach->in(2) != val ) continue;
 195       break;                    // Found a memory op?
 196     case Op_StrComp:
 197     case Op_StrEquals:
 198     case Op_StrIndexOf:
 199     case Op_StrIndexOfChar:
 200     case Op_AryEq:
 201     case Op_StrInflatedCopy:
 202     case Op_StrCompressedCopy:
 203     case Op_EncodeISOArray:
 204     case Op_HasNegatives:
 205       // Not a legit memory op for implicit null check regardless of
 206       // embedded loads
 207       continue;
 208     default:                    // Also check for embedded loads
 209       if( !mach->needs_anti_dependence_check() )
 210         continue;               // Not an memory op; skip it
 211       if( must_clone[iop] ) {
 212         // Do not move nodes which produce flags because
 213         // RA will try to clone it to place near branch and
 214         // it will cause recompilation, see clone_node().
 215         continue;
 216       }
 217       {
 218         // Check that value is used in memory address in
 219         // instructions with embedded load (CmpP val1,(val2+off)).
 220         Node* base;
 221         Node* index;
 222         const MachOper* oper = mach->memory_inputs(base, index);
 223         if (oper == NULL || oper == (MachOper*)-1) {
 224           continue;             // Not an memory op; skip it
 225         }
 226         if (val == base ||
 227             val == index && val->bottom_type()->isa_narrowoop()) {
 228           break;                // Found it
 229         } else {
 230           continue;             // Skip it
 231         }
 232       }
 233       break;
 234     }
 235 
 236     // On some OSes (AIX) the page at address 0 is only write protected.
 237     // If so, only Store operations will trap.
 238     // But a read accessing the base of a heap-based compressed heap will trap.
 239     if (!was_store && needs_explicit_null_check_for_read(val)) {
 240       continue;
 241     }
 242 
 243     // Check that node's control edge is not-null block's head or dominates it,
 244     // otherwise we can't hoist it because there are other control dependencies.
 245     Node* ctrl = mach->in(0);
 246     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 247         get_block_for_node(ctrl)->dominates(not_null_block))) {
 248       continue;
 249     }
 250 
 251     // check if the offset is not too high for implicit exception
 252     {
 253       intptr_t offset = 0;
 254       const TypePtr *adr_type = NULL;  // Do not need this return value here
 255       const Node* base = mach->get_base_and_disp(offset, adr_type);
 256       if (base == NULL || base == NodeSentinel) {
 257         // Narrow oop address doesn't have base, only index
 258         if( val->bottom_type()->isa_narrowoop() &&
 259             MacroAssembler::needs_explicit_null_check(offset) )
 260           continue;             // Give up if offset is beyond page size
 261         // cannot reason about it; is probably not implicit null exception
 262       } else {
 263         const TypePtr* tptr;
 264         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 265                                   Universe::narrow_klass_shift() == 0)) {
 266           // 32-bits narrow oop can be the base of address expressions
 267           tptr = base->get_ptr_type();
 268         } else {
 269           // only regular oops are expected here
 270           tptr = base->bottom_type()->is_ptr();
 271         }
 272         // Give up if offset is not a compile-time constant
 273         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 274           continue;
 275         offset += tptr->_offset; // correct if base is offseted
 276         if( MacroAssembler::needs_explicit_null_check(offset) )
 277           continue;             // Give up is reference is beyond 4K page size
 278       }
 279     }
 280 
 281     // Check ctrl input to see if the null-check dominates the memory op
 282     Block *cb = get_block_for_node(mach);
 283     cb = cb->_idom;             // Always hoist at least 1 block
 284     if( !was_store ) {          // Stores can be hoisted only one block
 285       while( cb->_dom_depth > (block->_dom_depth + 1))
 286         cb = cb->_idom;         // Hoist loads as far as we want
 287       // The non-null-block should dominate the memory op, too. Live
 288       // range spilling will insert a spill in the non-null-block if it is
 289       // needs to spill the memory op for an implicit null check.
 290       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 291         if (cb != not_null_block) continue;
 292         cb = cb->_idom;
 293       }
 294     }
 295     if( cb != block ) continue;
 296 
 297     // Found a memory user; see if it can be hoisted to check-block
 298     uint vidx = 0;              // Capture index of value into memop
 299     uint j;
 300     for( j = mach->req()-1; j > 0; j-- ) {
 301       if( mach->in(j) == val ) {
 302         vidx = j;
 303         // Ignore DecodeN val which could be hoisted to where needed.
 304         if( is_decoden ) continue;
 305       }
 306       // Block of memory-op input
 307       Block *inb = get_block_for_node(mach->in(j));
 308       Block *b = block;          // Start from nul check
 309       while( b != inb && b->_dom_depth > inb->_dom_depth )
 310         b = b->_idom;           // search upwards for input
 311       // See if input dominates null check
 312       if( b != inb )
 313         break;
 314     }
 315     if( j > 0 )
 316       continue;
 317     Block *mb = get_block_for_node(mach);
 318     // Hoisting stores requires more checks for the anti-dependence case.
 319     // Give up hoisting if we have to move the store past any load.
 320     if( was_store ) {
 321       Block *b = mb;            // Start searching here for a local load
 322       // mach use (faulting) trying to hoist
 323       // n might be blocker to hoisting
 324       while( b != block ) {
 325         uint k;
 326         for( k = 1; k < b->number_of_nodes(); k++ ) {
 327           Node *n = b->get_node(k);
 328           if( n->needs_anti_dependence_check() &&
 329               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 330             break;              // Found anti-dependent load
 331         }
 332         if( k < b->number_of_nodes() )
 333           break;                // Found anti-dependent load
 334         // Make sure control does not do a merge (would have to check allpaths)
 335         if( b->num_preds() != 2 ) break;
 336         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 337       }
 338       if( b != block ) continue;
 339     }
 340 
 341     // Make sure this memory op is not already being used for a NullCheck
 342     Node *e = mb->end();
 343     if( e->is_MachNullCheck() && e->in(1) == mach )
 344       continue;                 // Already being used as a NULL check
 345 
 346     // Found a candidate!  Pick one with least dom depth - the highest
 347     // in the dom tree should be closest to the null check.
 348     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 349       best = mach;
 350       bidx = vidx;
 351     }
 352   }
 353   // No candidate!
 354   if (best == NULL) {
 355     return;
 356   }
 357 
 358   // ---- Found an implicit null check
 359 #ifndef PRODUCT
 360   extern int implicit_null_checks;
 361   implicit_null_checks++;
 362 #endif
 363 
 364   if( is_decoden ) {
 365     // Check if we need to hoist decodeHeapOop_not_null first.
 366     Block *valb = get_block_for_node(val);
 367     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 368       // Hoist it up to the end of the test block.
 369       valb->find_remove(val);
 370       block->add_inst(val);
 371       map_node_to_block(val, block);
 372       // DecodeN on x86 may kill flags. Check for flag-killing projections
 373       // that also need to be hoisted.
 374       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 375         Node* n = val->fast_out(j);
 376         if( n->is_MachProj() ) {
 377           get_block_for_node(n)->find_remove(n);
 378           block->add_inst(n);
 379           map_node_to_block(n, block);
 380         }
 381       }
 382     }
 383   }
 384   // Hoist the memory candidate up to the end of the test block.
 385   Block *old_block = get_block_for_node(best);
 386   old_block->find_remove(best);
 387   block->add_inst(best);
 388   map_node_to_block(best, block);
 389 
 390   // Move the control dependence if it is pinned to not-null block.
 391   // Don't change it in other cases: NULL or dominating control.
 392   if (best->in(0) == not_null_block->head()) {
 393     // Set it to control edge of null check.
 394     best->set_req(0, proj->in(0)->in(0));
 395   }
 396 
 397   // Check for flag-killing projections that also need to be hoisted
 398   // Should be DU safe because no edge updates.
 399   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 400     Node* n = best->fast_out(j);
 401     if( n->is_MachProj() ) {
 402       get_block_for_node(n)->find_remove(n);
 403       block->add_inst(n);
 404       map_node_to_block(n, block);
 405     }
 406   }
 407 
 408   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 409   // One of two graph shapes got matched:
 410   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 411   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 412   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 413   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 414   // We need to flip the projections to keep the same semantics.
 415   if( proj->Opcode() == Op_IfTrue ) {
 416     // Swap order of projections in basic block to swap branch targets
 417     Node *tmp1 = block->get_node(block->end_idx()+1);
 418     Node *tmp2 = block->get_node(block->end_idx()+2);
 419     block->map_node(tmp2, block->end_idx()+1);
 420     block->map_node(tmp1, block->end_idx()+2);
 421     Node *tmp = new Node(C->top()); // Use not NULL input
 422     tmp1->replace_by(tmp);
 423     tmp2->replace_by(tmp1);
 424     tmp->replace_by(tmp2);
 425     tmp->destruct();
 426   }
 427 
 428   // Remove the existing null check; use a new implicit null check instead.
 429   // Since schedule-local needs precise def-use info, we need to correct
 430   // it as well.
 431   Node *old_tst = proj->in(0);
 432   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 433   block->map_node(nul_chk, block->end_idx());
 434   map_node_to_block(nul_chk, block);
 435   // Redirect users of old_test to nul_chk
 436   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 437     old_tst->last_out(i2)->set_req(0, nul_chk);
 438   // Clean-up any dead code
 439   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 440     Node* in = old_tst->in(i3);
 441     old_tst->set_req(i3, NULL);
 442     if (in->outcnt() == 0) {
 443       // Remove dead input node
 444       in->disconnect_inputs(NULL, C);
 445       block->find_remove(in);
 446     }
 447   }
 448 
 449   latency_from_uses(nul_chk);
 450   latency_from_uses(best);
 451 
 452   // insert anti-dependences to defs in this block
 453   if (! best->needs_anti_dependence_check()) {
 454     for (uint k = 1; k < block->number_of_nodes(); k++) {
 455       Node *n = block->get_node(k);
 456       if (n->needs_anti_dependence_check() &&
 457           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 458         // Found anti-dependent load
 459         insert_anti_dependences(block, n);
 460       }
 461     }
 462   }
 463 }
 464 
 465 
 466 //------------------------------select-----------------------------------------
 467 // Select a nice fellow from the worklist to schedule next. If there is only
 468 // one choice, then use it. Projections take top priority for correctness
 469 // reasons - if I see a projection, then it is next.  There are a number of
 470 // other special cases, for instructions that consume condition codes, et al.
 471 // These are chosen immediately. Some instructions are required to immediately
 472 // precede the last instruction in the block, and these are taken last. Of the
 473 // remaining cases (most), choose the instruction with the greatest latency
 474 // (that is, the most number of pseudo-cycles required to the end of the
 475 // routine). If there is a tie, choose the instruction with the most inputs.
 476 Node* PhaseCFG::select(
 477   Block* block,
 478   Node_List &worklist,
 479   GrowableArray<int> &ready_cnt,
 480   VectorSet &next_call,
 481   uint sched_slot,
 482   intptr_t* recalc_pressure_nodes) {
 483 
 484   // If only a single entry on the stack, use it
 485   uint cnt = worklist.size();
 486   if (cnt == 1) {
 487     Node *n = worklist[0];
 488     worklist.map(0,worklist.pop());
 489     return n;
 490   }
 491 
 492   uint choice  = 0; // Bigger is most important
 493   uint latency = 0; // Bigger is scheduled first
 494   uint score   = 0; // Bigger is better
 495   int idx = -1;     // Index in worklist
 496   int cand_cnt = 0; // Candidate count
 497   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 498 
 499   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 500     // Order in worklist is used to break ties.
 501     // See caller for how this is used to delay scheduling
 502     // of induction variable increments to after the other
 503     // uses of the phi are scheduled.
 504     Node *n = worklist[i];      // Get Node on worklist
 505 
 506     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 507     if( n->is_Proj() ||         // Projections always win
 508         n->Opcode()== Op_Con || // So does constant 'Top'
 509         iop == Op_CreateEx ||   // Create-exception must start block
 510         iop == Op_CheckCastPP
 511         ) {
 512       worklist.map(i,worklist.pop());
 513       return n;
 514     }
 515 
 516     // Final call in a block must be adjacent to 'catch'
 517     Node *e = block->end();
 518     if( e->is_Catch() && e->in(0)->in(0) == n )
 519       continue;
 520 
 521     // Memory op for an implicit null check has to be at the end of the block
 522     if( e->is_MachNullCheck() && e->in(1) == n )
 523       continue;
 524 
 525     // Schedule IV increment last.
 526     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 527       // Cmp might be matched into CountedLoopEnd node.
 528       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 529       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 530         continue;
 531       }
 532     }
 533 
 534     uint n_choice  = 2;
 535 
 536     // See if this instruction is consumed by a branch. If so, then (as the
 537     // branch is the last instruction in the basic block) force it to the
 538     // end of the basic block
 539     if ( must_clone[iop] ) {
 540       // See if any use is a branch
 541       bool found_machif = false;
 542 
 543       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 544         Node* use = n->fast_out(j);
 545 
 546         // The use is a conditional branch, make them adjacent
 547         if (use->is_MachIf() && get_block_for_node(use) == block) {
 548           found_machif = true;
 549           break;
 550         }
 551 
 552         // More than this instruction pending for successor to be ready,
 553         // don't choose this if other opportunities are ready
 554         if (ready_cnt.at(use->_idx) > 1)
 555           n_choice = 1;
 556       }
 557 
 558       // loop terminated, prefer not to use this instruction
 559       if (found_machif)
 560         continue;
 561     }
 562 
 563     // See if this has a predecessor that is "must_clone", i.e. sets the
 564     // condition code. If so, choose this first
 565     for (uint j = 0; j < n->req() ; j++) {
 566       Node *inn = n->in(j);
 567       if (inn) {
 568         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 569           n_choice = 3;
 570           break;
 571         }
 572       }
 573     }
 574 
 575     // MachTemps should be scheduled last so they are near their uses
 576     if (n->is_MachTemp()) {
 577       n_choice = 1;
 578     }
 579 
 580     uint n_latency = get_latency_for_node(n);
 581     uint n_score = n->req();   // Many inputs get high score to break ties
 582 
 583     if (OptoRegScheduling && block_size_threshold_ok) {
 584       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 585         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 586         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 587         // simulate the notion that we just picked this node to schedule
 588         n->add_flag(Node::Flag_is_scheduled);
 589         // now caculate its effect upon the graph if we did
 590         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 591         // return its state for finalize in case somebody else wins
 592         n->remove_flag(Node::Flag_is_scheduled);
 593         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 594         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 595         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 596         recalc_pressure_nodes[n->_idx] = int_pressure;
 597         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 598       }
 599 
 600       if (_scheduling_for_pressure) {
 601         latency = n_latency;
 602         if (n_choice != 3) {
 603           // Now evaluate each register pressure component based on threshold in the score.
 604           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 605           // on a single instruction, but we might see it shrink on both banks.
 606           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 607           // live ranges that terminate on this instruction.
 608           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 609             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 610             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 611           }
 612           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 613             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 614             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 615           }
 616         } else {
 617           // make sure we choose these candidates
 618           score = 0;
 619         }
 620       }
 621     }
 622 
 623     // Keep best latency found
 624     cand_cnt++;
 625     if (choice < n_choice ||
 626         (choice == n_choice &&
 627          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 628           (!StressLCM &&
 629            (latency < n_latency ||
 630             (latency == n_latency &&
 631              (score < n_score))))))) {
 632       choice  = n_choice;
 633       latency = n_latency;
 634       score   = n_score;
 635       idx     = i;               // Also keep index in worklist
 636     }
 637   } // End of for all ready nodes in worklist
 638 
 639   assert(idx >= 0, "index should be set");
 640   Node *n = worklist[(uint)idx];      // Get the winner
 641 
 642   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 643   return n;
 644 }
 645 
 646 //-------------------------adjust_register_pressure----------------------------
 647 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 648   PhaseLive* liveinfo = _regalloc->get_live();
 649   IndexSet* liveout = liveinfo->live(block);
 650   // first adjust the register pressure for the sources
 651   for (uint i = 1; i < n->req(); i++) {
 652     bool lrg_ends = false;
 653     Node *src_n = n->in(i);
 654     if (src_n == NULL) continue;
 655     if (!src_n->is_Mach()) continue;
 656     uint src = _regalloc->_lrg_map.find(src_n);
 657     if (src == 0) continue;
 658     LRG& lrg_src = _regalloc->lrgs(src);
 659     // detect if the live range ends or not
 660     if (liveout->member(src) == false) {
 661       lrg_ends = true;
 662       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 663         Node* m = src_n->fast_out(j); // Get user
 664         if (m == n) continue;
 665         if (!m->is_Mach()) continue;
 666         MachNode *mach = m->as_Mach();
 667         bool src_matches = false;
 668         int iop = mach->ideal_Opcode();
 669 
 670         switch (iop) {
 671         case Op_StoreB:
 672         case Op_StoreC:
 673         case Op_StoreCM:
 674         case Op_StoreD:
 675         case Op_StoreF:
 676         case Op_StoreI:
 677         case Op_StoreL:
 678         case Op_StoreP:
 679         case Op_StoreN:
 680         case Op_StoreVector:
 681         case Op_StoreNKlass:
 682           for (uint k = 1; k < m->req(); k++) {
 683             Node *in = m->in(k);
 684             if (in == src_n) {
 685               src_matches = true;
 686               break;
 687             }
 688           }
 689           break;
 690 
 691         default:
 692           src_matches = true;
 693           break;
 694         }
 695 
 696         // If we have a store as our use, ignore the non source operands
 697         if (src_matches == false) continue;
 698 
 699         // Mark every unscheduled use which is not n with a recalculation
 700         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 701           if (finalize_mode && !m->is_Phi()) {
 702             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 703           }
 704           lrg_ends = false;
 705         }
 706       }
 707     }
 708     // if none, this live range ends and we can adjust register pressure
 709     if (lrg_ends) {
 710       if (finalize_mode) {
 711         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 712       } else {
 713         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 714       }
 715     }
 716   }
 717 
 718   // now add the register pressure from the dest and evaluate which heuristic we should use:
 719   // 1.) The default, latency scheduling
 720   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 721   uint dst = _regalloc->_lrg_map.find(n);
 722   if (dst != 0) {
 723     LRG& lrg_dst = _regalloc->lrgs(dst);
 724     if (finalize_mode) {
 725       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 726       // check to see if we fall over the register pressure cliff here
 727       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 728         _scheduling_for_pressure = true;
 729       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 730         _scheduling_for_pressure = true;
 731       } else {
 732         // restore latency scheduling mode
 733         _scheduling_for_pressure = false;
 734       }
 735     } else {
 736       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 737     }
 738   }
 739 }
 740 
 741 //------------------------------set_next_call----------------------------------
 742 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 743   if( next_call.test_set(n->_idx) ) return;
 744   for( uint i=0; i<n->len(); i++ ) {
 745     Node *m = n->in(i);
 746     if( !m ) continue;  // must see all nodes in block that precede call
 747     if (get_block_for_node(m) == block) {
 748       set_next_call(block, m, next_call);
 749     }
 750   }
 751 }
 752 
 753 //------------------------------needed_for_next_call---------------------------
 754 // Set the flag 'next_call' for each Node that is needed for the next call to
 755 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 756 // next subroutine call get priority - basically it moves things NOT needed
 757 // for the next call till after the call.  This prevents me from trying to
 758 // carry lots of stuff live across a call.
 759 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 760   // Find the next control-defining Node in this block
 761   Node* call = NULL;
 762   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 763     Node* m = this_call->fast_out(i);
 764     if (get_block_for_node(m) == block && // Local-block user
 765         m != this_call &&       // Not self-start node
 766         m->is_MachCall()) {
 767       call = m;
 768       break;
 769     }
 770   }
 771   if (call == NULL)  return;    // No next call (e.g., block end is near)
 772   // Set next-call for all inputs to this call
 773   set_next_call(block, call, next_call);
 774 }
 775 
 776 //------------------------------add_call_kills-------------------------------------
 777 // helper function that adds caller save registers to MachProjNode
 778 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 779   // Fill in the kill mask for the call
 780   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 781     if( !regs.Member(r) ) {     // Not already defined by the call
 782       // Save-on-call register?
 783       if ((save_policy[r] == 'C') ||
 784           (save_policy[r] == 'A') ||
 785           ((save_policy[r] == 'E') && exclude_soe)) {
 786         proj->_rout.Insert(r);
 787       }
 788     }
 789   }
 790 }
 791 
 792 
 793 //------------------------------sched_call-------------------------------------
 794 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 795   RegMask regs;
 796 
 797   // Schedule all the users of the call right now.  All the users are
 798   // projection Nodes, so they must be scheduled next to the call.
 799   // Collect all the defined registers.
 800   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 801     Node* n = mcall->fast_out(i);
 802     assert( n->is_MachProj(), "" );
 803     int n_cnt = ready_cnt.at(n->_idx)-1;
 804     ready_cnt.at_put(n->_idx, n_cnt);
 805     assert( n_cnt == 0, "" );
 806     // Schedule next to call
 807     block->map_node(n, node_cnt++);
 808     // Collect defined registers
 809     regs.OR(n->out_RegMask());
 810     // Check for scheduling the next control-definer
 811     if( n->bottom_type() == Type::CONTROL )
 812       // Warm up next pile of heuristic bits
 813       needed_for_next_call(block, n, next_call);
 814 
 815     // Children of projections are now all ready
 816     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 817       Node* m = n->fast_out(j); // Get user
 818       if(get_block_for_node(m) != block) {
 819         continue;
 820       }
 821       if( m->is_Phi() ) continue;
 822       int m_cnt = ready_cnt.at(m->_idx) - 1;
 823       ready_cnt.at_put(m->_idx, m_cnt);
 824       if( m_cnt == 0 )
 825         worklist.push(m);
 826     }
 827 
 828   }
 829 
 830   // Act as if the call defines the Frame Pointer.
 831   // Certainly the FP is alive and well after the call.
 832   regs.Insert(_matcher.c_frame_pointer());
 833 
 834   // Set all registers killed and not already defined by the call.
 835   uint r_cnt = mcall->tf()->range()->cnt();
 836   int op = mcall->ideal_Opcode();
 837   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 838   map_node_to_block(proj, block);
 839   block->insert_node(proj, node_cnt++);
 840 
 841   // Select the right register save policy.
 842   const char *save_policy = NULL;
 843   switch (op) {
 844     case Op_CallRuntime:
 845     case Op_CallLeaf:
 846     case Op_CallLeafNoFP:
 847       // Calling C code so use C calling convention
 848       save_policy = _matcher._c_reg_save_policy;
 849       break;
 850 
 851     case Op_CallStaticJava:
 852     case Op_CallDynamicJava:
 853       // Calling Java code so use Java calling convention
 854       save_policy = _matcher._register_save_policy;
 855       break;
 856 
 857     default:
 858       ShouldNotReachHere();
 859   }
 860 
 861   // When using CallRuntime mark SOE registers as killed by the call
 862   // so values that could show up in the RegisterMap aren't live in a
 863   // callee saved register since the register wouldn't know where to
 864   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 865   // have debug info on them.  Strictly speaking this only needs to be
 866   // done for oops since idealreg2debugmask takes care of debug info
 867   // references but there no way to handle oops differently than other
 868   // pointers as far as the kill mask goes.
 869   bool exclude_soe = op == Op_CallRuntime;
 870 
 871   // If the call is a MethodHandle invoke, we need to exclude the
 872   // register which is used to save the SP value over MH invokes from
 873   // the mask.  Otherwise this register could be used for
 874   // deoptimization information.
 875   if (op == Op_CallStaticJava) {
 876     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 877     if (mcallstaticjava->_method_handle_invoke)
 878       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 879   }
 880 
 881   add_call_kills(proj, regs, save_policy, exclude_soe);
 882 
 883   return node_cnt;
 884 }
 885 
 886 
 887 //------------------------------schedule_local---------------------------------
 888 // Topological sort within a block.  Someday become a real scheduler.
 889 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 890   // Already "sorted" are the block start Node (as the first entry), and
 891   // the block-ending Node and any trailing control projections.  We leave
 892   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 893   // Node.  Everything else gets topo-sorted.
 894 
 895 #ifndef PRODUCT
 896     if (trace_opto_pipelining()) {
 897       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 898       for (uint i = 0;i < block->number_of_nodes(); i++) {
 899         tty->print("# ");
 900         block->get_node(i)->fast_dump();
 901       }
 902       tty->print_cr("#");
 903     }
 904 #endif
 905 
 906   // RootNode is already sorted
 907   if (block->number_of_nodes() == 1) {
 908     return true;
 909   }
 910 
 911   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 912 
 913   // We track the uses of local definitions as input dependences so that
 914   // we know when a given instruction is avialable to be scheduled.
 915   uint i;
 916   if (OptoRegScheduling && block_size_threshold_ok) {
 917     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 918       Node *n = block->get_node(i);
 919       n->remove_flag(Node::Flag_is_scheduled);
 920       if (!n->is_Phi()) {
 921         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 922       }
 923     }
 924   }
 925 
 926   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 927   uint node_cnt = block->end_idx();
 928   uint phi_cnt = 1;
 929   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 930     Node *n = block->get_node(i);
 931     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 932         (n->is_Proj()  && n->in(0) == block->head()) ) {
 933       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 934       block->map_node(block->get_node(phi_cnt), i);
 935       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 936       if (OptoRegScheduling && block_size_threshold_ok) {
 937         // mark n as scheduled
 938         n->add_flag(Node::Flag_is_scheduled);
 939       }
 940     } else {                    // All others
 941       // Count block-local inputs to 'n'
 942       uint cnt = n->len();      // Input count
 943       uint local = 0;
 944       for( uint j=0; j<cnt; j++ ) {
 945         Node *m = n->in(j);
 946         if( m && get_block_for_node(m) == block && !m->is_top() )
 947           local++;              // One more block-local input
 948       }
 949       ready_cnt.at_put(n->_idx, local); // Count em up
 950 
 951 #ifdef ASSERT
 952       if( UseConcMarkSweepGC || UseG1GC ) {
 953         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 954           // Check the precedence edges
 955           for (uint prec = n->req(); prec < n->len(); prec++) {
 956             Node* oop_store = n->in(prec);
 957             if (oop_store != NULL) {
 958               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 959             }
 960           }
 961         }
 962       }
 963 #endif
 964 
 965       // A few node types require changing a required edge to a precedence edge
 966       // before allocation.
 967       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 968           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 969            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 970         // MemBarAcquire could be created without Precedent edge.
 971         // del_req() replaces the specified edge with the last input edge
 972         // and then removes the last edge. If the specified edge > number of
 973         // edges the last edge will be moved outside of the input edges array
 974         // and the edge will be lost. This is why this code should be
 975         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 976         Node *x = n->in(TypeFunc::Parms);
 977         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
 978           // Old edge to node within same block will get removed, but no precedence
 979           // edge will get added because it already exists. Update ready count.
 980           int cnt = ready_cnt.at(n->_idx);
 981           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
 982           ready_cnt.at_put(n->_idx, cnt-1);
 983         }
 984         n->del_req(TypeFunc::Parms);
 985         n->add_prec(x);
 986       }
 987     }
 988   }
 989   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 990     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 991 
 992   // All the prescheduled guys do not hold back internal nodes
 993   uint i3;
 994   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
 995     Node *n = block->get_node(i3);       // Get pre-scheduled
 996     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 997       Node* m = n->fast_out(j);
 998       if (get_block_for_node(m) == block) { // Local-block user
 999         int m_cnt = ready_cnt.at(m->_idx)-1;
1000         if (OptoRegScheduling && block_size_threshold_ok) {
1001           // mark m as scheduled
1002           if (m_cnt < 0) {
1003             m->add_flag(Node::Flag_is_scheduled);
1004           }
1005         }
1006         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1007       }
1008     }
1009   }
1010 
1011   Node_List delay;
1012   // Make a worklist
1013   Node_List worklist;
1014   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1015     Node *m = block->get_node(i4);
1016     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1017       if (m->is_iteratively_computed()) {
1018         // Push induction variable increments last to allow other uses
1019         // of the phi to be scheduled first. The select() method breaks
1020         // ties in scheduling by worklist order.
1021         delay.push(m);
1022       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1023         // Force the CreateEx to the top of the list so it's processed
1024         // first and ends up at the start of the block.
1025         worklist.insert(0, m);
1026       } else {
1027         worklist.push(m);         // Then on to worklist!
1028       }
1029     }
1030   }
1031   while (delay.size()) {
1032     Node* d = delay.pop();
1033     worklist.push(d);
1034   }
1035 
1036   if (OptoRegScheduling && block_size_threshold_ok) {
1037     // To stage register pressure calculations we need to examine the live set variables
1038     // breaking them up by register class to compartmentalize the calculations.
1039     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1040     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1041     _regalloc->_sched_float_pressure.init(float_pressure);
1042     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1043     _regalloc->_scratch_float_pressure.init(float_pressure);
1044 
1045     _regalloc->compute_entry_block_pressure(block);
1046   }
1047 
1048   // Warm up the 'next_call' heuristic bits
1049   needed_for_next_call(block, block->head(), next_call);
1050 
1051 #ifndef PRODUCT
1052     if (trace_opto_pipelining()) {
1053       for (uint j=0; j< block->number_of_nodes(); j++) {
1054         Node     *n = block->get_node(j);
1055         int     idx = n->_idx;
1056         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1057         tty->print("latency:%3d  ", get_latency_for_node(n));
1058         tty->print("%4d: %s\n", idx, n->Name());
1059       }
1060     }
1061 #endif
1062 
1063   uint max_idx = (uint)ready_cnt.length();
1064   // Pull from worklist and schedule
1065   while( worklist.size() ) {    // Worklist is not ready
1066 
1067 #ifndef PRODUCT
1068     if (trace_opto_pipelining()) {
1069       tty->print("#   ready list:");
1070       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1071         Node *n = worklist[i];      // Get Node on worklist
1072         tty->print(" %d", n->_idx);
1073       }
1074       tty->cr();
1075     }
1076 #endif
1077 
1078     // Select and pop a ready guy from worklist
1079     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1080     block->map_node(n, phi_cnt++);    // Schedule him next
1081 
1082     if (OptoRegScheduling && block_size_threshold_ok) {
1083       n->add_flag(Node::Flag_is_scheduled);
1084 
1085       // Now adjust the resister pressure with the node we selected
1086       if (!n->is_Phi()) {
1087         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1088       }
1089     }
1090 
1091 #ifndef PRODUCT
1092     if (trace_opto_pipelining()) {
1093       tty->print("#    select %d: %s", n->_idx, n->Name());
1094       tty->print(", latency:%d", get_latency_for_node(n));
1095       n->dump();
1096       if (Verbose) {
1097         tty->print("#   ready list:");
1098         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1099           Node *n = worklist[i];      // Get Node on worklist
1100           tty->print(" %d", n->_idx);
1101         }
1102         tty->cr();
1103       }
1104     }
1105 
1106 #endif
1107     if( n->is_MachCall() ) {
1108       MachCallNode *mcall = n->as_MachCall();
1109       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1110       continue;
1111     }
1112 
1113     if (n->is_Mach() && n->as_Mach()->has_call()) {
1114       RegMask regs;
1115       regs.Insert(_matcher.c_frame_pointer());
1116       regs.OR(n->out_RegMask());
1117 
1118       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1119       map_node_to_block(proj, block);
1120       block->insert_node(proj, phi_cnt++);
1121 
1122       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1123     }
1124 
1125     // Children are now all ready
1126     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1127       Node* m = n->fast_out(i5); // Get user
1128       if (get_block_for_node(m) != block) {
1129         continue;
1130       }
1131       if( m->is_Phi() ) continue;
1132       if (m->_idx >= max_idx) { // new node, skip it
1133         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1134         continue;
1135       }
1136       int m_cnt = ready_cnt.at(m->_idx) - 1;
1137       ready_cnt.at_put(m->_idx, m_cnt);
1138       if( m_cnt == 0 )
1139         worklist.push(m);
1140     }
1141   }
1142 
1143   if( phi_cnt != block->end_idx() ) {
1144     // did not schedule all.  Retry, Bailout, or Die
1145     if (C->subsume_loads() == true && !C->failing()) {
1146       // Retry with subsume_loads == false
1147       // If this is the first failure, the sentinel string will "stick"
1148       // to the Compile object, and the C2Compiler will see it and retry.
1149       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1150     } else {
1151       assert(false, "graph should be schedulable");
1152     }
1153     // assert( phi_cnt == end_idx(), "did not schedule all" );
1154     return false;
1155   }
1156 
1157   if (OptoRegScheduling && block_size_threshold_ok) {
1158     _regalloc->compute_exit_block_pressure(block);
1159     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1160     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1161   }
1162 
1163 #ifndef PRODUCT
1164   if (trace_opto_pipelining()) {
1165     tty->print_cr("#");
1166     tty->print_cr("# after schedule_local");
1167     for (uint i = 0;i < block->number_of_nodes();i++) {
1168       tty->print("# ");
1169       block->get_node(i)->fast_dump();
1170     }
1171     tty->print_cr("# ");
1172 
1173     if (OptoRegScheduling && block_size_threshold_ok) {
1174       tty->print_cr("# pressure info : %d", block->_pre_order);
1175       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1176       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1177     }
1178     tty->cr();
1179   }
1180 #endif
1181 
1182   return true;
1183 }
1184 
1185 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1186 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1187   for (uint l = 0; l < use->len(); l++) {
1188     if (use->in(l) == old_def) {
1189       if (l < use->req()) {
1190         use->set_req(l, new_def);
1191       } else {
1192         use->rm_prec(l);
1193         use->add_prec(new_def);
1194         l--;
1195       }
1196     }
1197   }
1198 }
1199 
1200 //------------------------------catch_cleanup_find_cloned_def------------------
1201 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1202   assert( use_blk != def_blk, "Inter-block cleanup only");
1203 
1204   // The use is some block below the Catch.  Find and return the clone of the def
1205   // that dominates the use. If there is no clone in a dominating block, then
1206   // create a phi for the def in a dominating block.
1207 
1208   // Find which successor block dominates this use.  The successor
1209   // blocks must all be single-entry (from the Catch only; I will have
1210   // split blocks to make this so), hence they all dominate.
1211   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1212     use_blk = use_blk->_idom;
1213 
1214   // Find the successor
1215   Node *fixup = NULL;
1216 
1217   uint j;
1218   for( j = 0; j < def_blk->_num_succs; j++ )
1219     if( use_blk == def_blk->_succs[j] )
1220       break;
1221 
1222   if( j == def_blk->_num_succs ) {
1223     // Block at same level in dom-tree is not a successor.  It needs a
1224     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1225     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1226     for(uint k = 1; k < use_blk->num_preds(); k++) {
1227       Block* block = get_block_for_node(use_blk->pred(k));
1228       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1229     }
1230 
1231     // Check to see if the use_blk already has an identical phi inserted.
1232     // If it exists, it will be at the first position since all uses of a
1233     // def are processed together.
1234     Node *phi = use_blk->get_node(1);
1235     if( phi->is_Phi() ) {
1236       fixup = phi;
1237       for (uint k = 1; k < use_blk->num_preds(); k++) {
1238         if (phi->in(k) != inputs[k]) {
1239           // Not a match
1240           fixup = NULL;
1241           break;
1242         }
1243       }
1244     }
1245 
1246     // If an existing PhiNode was not found, make a new one.
1247     if (fixup == NULL) {
1248       Node *new_phi = PhiNode::make(use_blk->head(), def);
1249       use_blk->insert_node(new_phi, 1);
1250       map_node_to_block(new_phi, use_blk);
1251       for (uint k = 1; k < use_blk->num_preds(); k++) {
1252         new_phi->set_req(k, inputs[k]);
1253       }
1254       fixup = new_phi;
1255     }
1256 
1257   } else {
1258     // Found the use just below the Catch.  Make it use the clone.
1259     fixup = use_blk->get_node(n_clone_idx);
1260   }
1261 
1262   return fixup;
1263 }
1264 
1265 //--------------------------catch_cleanup_intra_block--------------------------
1266 // Fix all input edges in use that reference "def".  The use is in the same
1267 // block as the def and both have been cloned in each successor block.
1268 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1269 
1270   // Both the use and def have been cloned. For each successor block,
1271   // get the clone of the use, and make its input the clone of the def
1272   // found in that block.
1273 
1274   uint use_idx = blk->find_node(use);
1275   uint offset_idx = use_idx - beg;
1276   for( uint k = 0; k < blk->_num_succs; k++ ) {
1277     // Get clone in each successor block
1278     Block *sb = blk->_succs[k];
1279     Node *clone = sb->get_node(offset_idx+1);
1280     assert( clone->Opcode() == use->Opcode(), "" );
1281 
1282     // Make use-clone reference the def-clone
1283     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1284   }
1285 }
1286 
1287 //------------------------------catch_cleanup_inter_block---------------------
1288 // Fix all input edges in use that reference "def".  The use is in a different
1289 // block than the def.
1290 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1291   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1292 
1293   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1294   catch_cleanup_fix_all_inputs(use, def, new_def);
1295 }
1296 
1297 //------------------------------call_catch_cleanup-----------------------------
1298 // If we inserted any instructions between a Call and his CatchNode,
1299 // clone the instructions on all paths below the Catch.
1300 void PhaseCFG::call_catch_cleanup(Block* block) {
1301 
1302   // End of region to clone
1303   uint end = block->end_idx();
1304   if( !block->get_node(end)->is_Catch() ) return;
1305   // Start of region to clone
1306   uint beg = end;
1307   while(!block->get_node(beg-1)->is_MachProj() ||
1308         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1309     beg--;
1310     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1311   }
1312   // Range of inserted instructions is [beg, end)
1313   if( beg == end ) return;
1314 
1315   // Clone along all Catch output paths.  Clone area between the 'beg' and
1316   // 'end' indices.
1317   for( uint i = 0; i < block->_num_succs; i++ ) {
1318     Block *sb = block->_succs[i];
1319     // Clone the entire area; ignoring the edge fixup for now.
1320     for( uint j = end; j > beg; j-- ) {
1321       Node *clone = block->get_node(j-1)->clone();
1322       sb->insert_node(clone, 1);
1323       map_node_to_block(clone, sb);
1324       if (clone->needs_anti_dependence_check()) {
1325         insert_anti_dependences(sb, clone);
1326       }
1327     }
1328   }
1329 
1330 
1331   // Fixup edges.  Check the def-use info per cloned Node
1332   for(uint i2 = beg; i2 < end; i2++ ) {
1333     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1334     Node *n = block->get_node(i2);        // Node that got cloned
1335     // Need DU safe iterator because of edge manipulation in calls.
1336     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1337     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1338       out->push(n->fast_out(j1));
1339     }
1340     uint max = out->size();
1341     for (uint j = 0; j < max; j++) {// For all users
1342       Node *use = out->pop();
1343       Block *buse = get_block_for_node(use);
1344       if( use->is_Phi() ) {
1345         for( uint k = 1; k < use->req(); k++ )
1346           if( use->in(k) == n ) {
1347             Block* b = get_block_for_node(buse->pred(k));
1348             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1349             use->set_req(k, fixup);
1350           }
1351       } else {
1352         if (block == buse) {
1353           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1354         } else {
1355           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1356         }
1357       }
1358     } // End for all users
1359 
1360   } // End of for all Nodes in cloned area
1361 
1362   // Remove the now-dead cloned ops
1363   for(uint i3 = beg; i3 < end; i3++ ) {
1364     block->get_node(beg)->disconnect_inputs(NULL, C);
1365     block->remove_node(beg);
1366   }
1367 
1368   // If the successor blocks have a CreateEx node, move it back to the top
1369   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1370     Block *sb = block->_succs[i4];
1371     uint new_cnt = end - beg;
1372     // Remove any newly created, but dead, nodes.
1373     for( uint j = new_cnt; j > 0; j-- ) {
1374       Node *n = sb->get_node(j);
1375       if (n->outcnt() == 0 &&
1376           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1377         n->disconnect_inputs(NULL, C);
1378         sb->remove_node(j);
1379         new_cnt--;
1380       }
1381     }
1382     // If any newly created nodes remain, move the CreateEx node to the top
1383     if (new_cnt > 0) {
1384       Node *cex = sb->get_node(1+new_cnt);
1385       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1386         sb->remove_node(1+new_cnt);
1387         sb->insert_node(cex, 1);
1388       }
1389     }
1390   }
1391 }