1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 #ifndef ATTRIBUTE_ALIGNED
  43 #define ATTRIBUTE_ALIGNED(x)
  44 #endif
  45 
  46 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  47 // capabilities. Choices should be led by a tradeoff between
  48 // code size and improved supportability.
  49 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  50 // to have a fallback in case hsdis is not available.
  51 #if defined(PRODUCT)
  52   #define SUPPORT_ABSTRACT_ASSEMBLY
  53   #define SUPPORT_ASSEMBLY
  54   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  55   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  56 #else
  57   #define SUPPORT_ABSTRACT_ASSEMBLY
  58   #define SUPPORT_ASSEMBLY
  59   #define SUPPORT_OPTO_ASSEMBLY
  60   #define SUPPORT_DATA_STRUCTS
  61 #endif
  62 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  63   #define SUPPORT_ABSTRACT_ASSEMBLY
  64 #endif
  65 
  66 // This file holds all globally used constants & types, class (forward)
  67 // declarations and a few frequently used utility functions.
  68 
  69 //----------------------------------------------------------------------------------------------------
  70 // Printf-style formatters for fixed- and variable-width types as pointers and
  71 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  72 // doesn't provide appropriate definitions, they should be provided in
  73 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  74 
  75 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  76 
  77 // Format 32-bit quantities.
  78 #define INT32_FORMAT           "%" PRId32
  79 #define UINT32_FORMAT          "%" PRIu32
  80 #define INT32_FORMAT_W(width)  "%" #width PRId32
  81 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  82 
  83 #define PTR32_FORMAT           "0x%08" PRIx32
  84 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  85 
  86 // Format 64-bit quantities.
  87 #define INT64_FORMAT           "%" PRId64
  88 #define UINT64_FORMAT          "%" PRIu64
  89 #define UINT64_FORMAT_X        "%" PRIx64
  90 #define INT64_FORMAT_W(width)  "%" #width PRId64
  91 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  92 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
  93 
  94 #define PTR64_FORMAT           "0x%016" PRIx64
  95 
  96 // Format jlong, if necessary
  97 #ifndef JLONG_FORMAT
  98 #define JLONG_FORMAT           INT64_FORMAT
  99 #endif
 100 #ifndef JLONG_FORMAT_W
 101 #define JLONG_FORMAT_W(width)  INT64_FORMAT_W(width)
 102 #endif
 103 #ifndef JULONG_FORMAT
 104 #define JULONG_FORMAT          UINT64_FORMAT
 105 #endif
 106 #ifndef JULONG_FORMAT_X
 107 #define JULONG_FORMAT_X        UINT64_FORMAT_X
 108 #endif
 109 
 110 // Format pointers which change size between 32- and 64-bit.
 111 #ifdef  _LP64
 112 #define INTPTR_FORMAT "0x%016" PRIxPTR
 113 #define PTR_FORMAT    "0x%016" PRIxPTR
 114 #else   // !_LP64
 115 #define INTPTR_FORMAT "0x%08"  PRIxPTR
 116 #define PTR_FORMAT    "0x%08"  PRIxPTR
 117 #endif  // _LP64
 118 
 119 // Format pointers without leading zeros
 120 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
 121 
 122 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
 123 
 124 #define SSIZE_FORMAT             "%"   PRIdPTR
 125 #define SIZE_FORMAT              "%"   PRIuPTR
 126 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
 127 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 128 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 129 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 130 
 131 #define INTX_FORMAT           "%" PRIdPTR
 132 #define UINTX_FORMAT          "%" PRIuPTR
 133 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 134 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 135 
 136 //----------------------------------------------------------------------------------------------------
 137 // Constants
 138 
 139 const int LogBytesPerShort   = 1;
 140 const int LogBytesPerInt     = 2;
 141 #ifdef _LP64
 142 const int LogBytesPerWord    = 3;
 143 #else
 144 const int LogBytesPerWord    = 2;
 145 #endif
 146 const int LogBytesPerLong    = 3;
 147 
 148 const int BytesPerShort      = 1 << LogBytesPerShort;
 149 const int BytesPerInt        = 1 << LogBytesPerInt;
 150 const int BytesPerWord       = 1 << LogBytesPerWord;
 151 const int BytesPerLong       = 1 << LogBytesPerLong;
 152 
 153 const int LogBitsPerByte     = 3;
 154 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 155 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 156 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 157 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 158 
 159 const int BitsPerByte        = 1 << LogBitsPerByte;
 160 const int BitsPerShort       = 1 << LogBitsPerShort;
 161 const int BitsPerInt         = 1 << LogBitsPerInt;
 162 const int BitsPerWord        = 1 << LogBitsPerWord;
 163 const int BitsPerLong        = 1 << LogBitsPerLong;
 164 
 165 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 166 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 167 
 168 const int WordsPerLong       = 2;       // Number of stack entries for longs
 169 
 170 const int oopSize            = sizeof(char*); // Full-width oop
 171 extern int heapOopSize;                       // Oop within a java object
 172 const int wordSize           = sizeof(char*);
 173 const int longSize           = sizeof(jlong);
 174 const int jintSize           = sizeof(jint);
 175 const int size_tSize         = sizeof(size_t);
 176 
 177 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 178 
 179 extern int LogBytesPerHeapOop;                // Oop within a java object
 180 extern int LogBitsPerHeapOop;
 181 extern int BytesPerHeapOop;
 182 extern int BitsPerHeapOop;
 183 
 184 const int BitsPerJavaInteger = 32;
 185 const int BitsPerJavaLong    = 64;
 186 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 187 
 188 // Size of a char[] needed to represent a jint as a string in decimal.
 189 const int jintAsStringSize = 12;
 190 
 191 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 192 // We require that object sizes be measured in units of heap words (e.g.
 193 // pointer-sized values), so that given HeapWord* hw,
 194 //   hw += oop(hw)->foo();
 195 // works, where foo is a method (like size or scavenge) that returns the
 196 // object size.
 197 class HeapWordImpl;             // Opaque, never defined.
 198 typedef HeapWordImpl* HeapWord;
 199 
 200 // Analogous opaque struct for metadata allocated from metaspaces.
 201 class MetaWordImpl;             // Opaque, never defined.
 202 typedef MetaWordImpl* MetaWord;
 203 
 204 // HeapWordSize must be 2^LogHeapWordSize.
 205 const int HeapWordSize        = sizeof(HeapWord);
 206 #ifdef _LP64
 207 const int LogHeapWordSize     = 3;
 208 #else
 209 const int LogHeapWordSize     = 2;
 210 #endif
 211 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 212 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 213 
 214 // The minimum number of native machine words necessary to contain "byte_size"
 215 // bytes.
 216 inline size_t heap_word_size(size_t byte_size) {
 217   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 218 }
 219 
 220 //-------------------------------------------
 221 // Constant for jlong (standardized by C++11)
 222 
 223 // Build a 64bit integer constant
 224 #define CONST64(x)  (x ## LL)
 225 #define UCONST64(x) (x ## ULL)
 226 
 227 const jlong min_jlong = CONST64(0x8000000000000000);
 228 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 229 
 230 const size_t K                  = 1024;
 231 const size_t M                  = K*K;
 232 const size_t G                  = M*K;
 233 const size_t HWperKB            = K / sizeof(HeapWord);
 234 
 235 // Constants for converting from a base unit to milli-base units.  For
 236 // example from seconds to milliseconds and microseconds
 237 
 238 const int MILLIUNITS    = 1000;         // milli units per base unit
 239 const int MICROUNITS    = 1000000;      // micro units per base unit
 240 const int NANOUNITS     = 1000000000;   // nano units per base unit
 241 
 242 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 243 const jint  NANOSECS_PER_MILLISEC = 1000000;
 244 
 245 // Proper units routines try to maintain at least three significant digits.
 246 // In worst case, it would print five significant digits with lower prefix.
 247 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 248 // and therefore we need to be careful.
 249 
 250 inline const char* proper_unit_for_byte_size(size_t s) {
 251 #ifdef _LP64
 252   if (s >= 100*G) {
 253     return "G";
 254   }
 255 #endif
 256   if (s >= 100*M) {
 257     return "M";
 258   } else if (s >= 100*K) {
 259     return "K";
 260   } else {
 261     return "B";
 262   }
 263 }
 264 
 265 template <class T>
 266 inline T byte_size_in_proper_unit(T s) {
 267 #ifdef _LP64
 268   if (s >= 100*G) {
 269     return (T)(s/G);
 270   }
 271 #endif
 272   if (s >= 100*M) {
 273     return (T)(s/M);
 274   } else if (s >= 100*K) {
 275     return (T)(s/K);
 276   } else {
 277     return s;
 278   }
 279 }
 280 
 281 inline const char* exact_unit_for_byte_size(size_t s) {
 282 #ifdef _LP64
 283   if (s >= G && (s % G) == 0) {
 284     return "G";
 285   }
 286 #endif
 287   if (s >= M && (s % M) == 0) {
 288     return "M";
 289   }
 290   if (s >= K && (s % K) == 0) {
 291     return "K";
 292   }
 293   return "B";
 294 }
 295 
 296 inline size_t byte_size_in_exact_unit(size_t s) {
 297 #ifdef _LP64
 298   if (s >= G && (s % G) == 0) {
 299     return s / G;
 300   }
 301 #endif
 302   if (s >= M && (s % M) == 0) {
 303     return s / M;
 304   }
 305   if (s >= K && (s % K) == 0) {
 306     return s / K;
 307   }
 308   return s;
 309 }
 310 
 311 // Memory size transition formatting.
 312 
 313 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 314 
 315 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 316   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 317 
 318 //----------------------------------------------------------------------------------------------------
 319 // VM type definitions
 320 
 321 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 322 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 323 
 324 typedef intptr_t  intx;
 325 typedef uintptr_t uintx;
 326 
 327 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 328 const intx  max_intx  = (uintx)min_intx - 1;
 329 const uintx max_uintx = (uintx)-1;
 330 
 331 // Table of values:
 332 //      sizeof intx         4               8
 333 // min_intx             0x80000000      0x8000000000000000
 334 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 335 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 336 
 337 typedef unsigned int uint;   NEEDS_CLEANUP
 338 
 339 
 340 //----------------------------------------------------------------------------------------------------
 341 // Java type definitions
 342 
 343 // All kinds of 'plain' byte addresses
 344 typedef   signed char s_char;
 345 typedef unsigned char u_char;
 346 typedef u_char*       address;
 347 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 348                                     // except for some implementations of a C++
 349                                     // linkage pointer to function. Should never
 350                                     // need one of those to be placed in this
 351                                     // type anyway.
 352 
 353 //  Utility functions to "portably" (?) bit twiddle pointers
 354 //  Where portable means keep ANSI C++ compilers quiet
 355 
 356 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 357 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 358 
 359 //  Utility functions to "portably" make cast to/from function pointers.
 360 
 361 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 362 inline address_word  castable_address(address x)              { return address_word(x) ; }
 363 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 364 
 365 // Pointer subtraction.
 366 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 367 // the range we might need to find differences from one end of the heap
 368 // to the other.
 369 // A typical use might be:
 370 //     if (pointer_delta(end(), top()) >= size) {
 371 //       // enough room for an object of size
 372 //       ...
 373 // and then additions like
 374 //       ... top() + size ...
 375 // are safe because we know that top() is at least size below end().
 376 inline size_t pointer_delta(const volatile void* left,
 377                             const volatile void* right,
 378                             size_t element_size) {
 379   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 380 }
 381 
 382 // A version specialized for HeapWord*'s.
 383 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 384   return pointer_delta(left, right, sizeof(HeapWord));
 385 }
 386 // A version specialized for MetaWord*'s.
 387 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 388   return pointer_delta(left, right, sizeof(MetaWord));
 389 }
 390 
 391 //
 392 // ANSI C++ does not allow casting from one pointer type to a function pointer
 393 // directly without at best a warning. This macro accomplishes it silently
 394 // In every case that is present at this point the value be cast is a pointer
 395 // to a C linkage function. In some case the type used for the cast reflects
 396 // that linkage and a picky compiler would not complain. In other cases because
 397 // there is no convenient place to place a typedef with extern C linkage (i.e
 398 // a platform dependent header file) it doesn't. At this point no compiler seems
 399 // picky enough to catch these instances (which are few). It is possible that
 400 // using templates could fix these for all cases. This use of templates is likely
 401 // so far from the middle of the road that it is likely to be problematic in
 402 // many C++ compilers.
 403 //
 404 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 405 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 406 
 407 // Unsigned byte types for os and stream.hpp
 408 
 409 // Unsigned one, two, four and eigth byte quantities used for describing
 410 // the .class file format. See JVM book chapter 4.
 411 
 412 typedef jubyte  u1;
 413 typedef jushort u2;
 414 typedef juint   u4;
 415 typedef julong  u8;
 416 
 417 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 418 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 419 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 420 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 421 
 422 typedef jbyte  s1;
 423 typedef jshort s2;
 424 typedef jint   s4;
 425 typedef jlong  s8;
 426 
 427 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 428 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 429 const jshort min_jshort = -(1 << 15);    // smallest jshort
 430 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 431 
 432 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 433 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 434 
 435 //----------------------------------------------------------------------------------------------------
 436 // JVM spec restrictions
 437 
 438 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 439 
 440 //----------------------------------------------------------------------------------------------------
 441 // Object alignment, in units of HeapWords.
 442 //
 443 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 444 // reference fields can be naturally aligned.
 445 
 446 extern int MinObjAlignment;
 447 extern int MinObjAlignmentInBytes;
 448 extern int MinObjAlignmentInBytesMask;
 449 
 450 extern int LogMinObjAlignment;
 451 extern int LogMinObjAlignmentInBytes;
 452 
 453 const int LogKlassAlignmentInBytes = 3;
 454 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 455 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 456 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 457 
 458 // Maximal size of heap where unscaled compression can be used. Also upper bound
 459 // for heap placement: 4GB.
 460 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 461 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 462 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 463 extern uint64_t OopEncodingHeapMax;
 464 
 465 // Maximal size of compressed class space. Above this limit compression is not possible.
 466 // Also upper bound for placement of zero based class space. (Class space is further limited
 467 // to be < 3G, see arguments.cpp.)
 468 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 469 
 470 // Machine dependent stuff
 471 
 472 // The maximum size of the code cache.  Can be overridden by targets.
 473 #define CODE_CACHE_SIZE_LIMIT (2*G)
 474 // Allow targets to reduce the default size of the code cache.
 475 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 476 
 477 #include CPU_HEADER(globalDefinitions)
 478 
 479 // To assure the IRIW property on processors that are not multiple copy
 480 // atomic, sync instructions must be issued between volatile reads to
 481 // assure their ordering, instead of after volatile stores.
 482 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 483 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 484 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 485 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 486 #else
 487 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 488 #endif
 489 
 490 // The expected size in bytes of a cache line, used to pad data structures.
 491 #ifndef DEFAULT_CACHE_LINE_SIZE
 492   #define DEFAULT_CACHE_LINE_SIZE 64
 493 #endif
 494 
 495 
 496 //----------------------------------------------------------------------------------------------------
 497 // Utility macros for compilers
 498 // used to silence compiler warnings
 499 
 500 #define Unused_Variable(var) var
 501 
 502 
 503 //----------------------------------------------------------------------------------------------------
 504 // Miscellaneous
 505 
 506 // 6302670 Eliminate Hotspot __fabsf dependency
 507 // All fabs() callers should call this function instead, which will implicitly
 508 // convert the operand to double, avoiding a dependency on __fabsf which
 509 // doesn't exist in early versions of Solaris 8.
 510 inline double fabsd(double value) {
 511   return fabs(value);
 512 }
 513 
 514 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 515 // is zero, return 0.0.
 516 template<typename T>
 517 inline double percent_of(T numerator, T denominator) {
 518   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 519 }
 520 
 521 //----------------------------------------------------------------------------------------------------
 522 // Special casts
 523 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 524 typedef union {
 525   jfloat f;
 526   jint i;
 527 } FloatIntConv;
 528 
 529 typedef union {
 530   jdouble d;
 531   jlong l;
 532   julong ul;
 533 } DoubleLongConv;
 534 
 535 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 536 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 537 
 538 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 539 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 540 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 541 
 542 inline jint low (jlong value)                    { return jint(value); }
 543 inline jint high(jlong value)                    { return jint(value >> 32); }
 544 
 545 // the fancy casts are a hopefully portable way
 546 // to do unsigned 32 to 64 bit type conversion
 547 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 548                                                    *value |= (jlong)(julong)(juint)low; }
 549 
 550 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 551                                                    *value |= (jlong)high       << 32; }
 552 
 553 inline jlong jlong_from(jint h, jint l) {
 554   jlong result = 0; // initialization to avoid warning
 555   set_high(&result, h);
 556   set_low(&result,  l);
 557   return result;
 558 }
 559 
 560 union jlong_accessor {
 561   jint  words[2];
 562   jlong long_value;
 563 };
 564 
 565 void basic_types_init(); // cannot define here; uses assert
 566 
 567 
 568 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 569 enum BasicType {
 570   T_BOOLEAN     =  4,
 571   T_CHAR        =  5,
 572   T_FLOAT       =  6,
 573   T_DOUBLE      =  7,
 574   T_BYTE        =  8,
 575   T_SHORT       =  9,
 576   T_INT         = 10,
 577   T_LONG        = 11,
 578   T_OBJECT      = 12,
 579   T_ARRAY       = 13,
 580   T_VOID        = 14,
 581   T_ADDRESS     = 15,
 582   T_NARROWOOP   = 16,
 583   T_METADATA    = 17,
 584   T_NARROWKLASS = 18,
 585   T_CONFLICT    = 19, // for stack value type with conflicting contents
 586   T_ILLEGAL     = 99
 587 };
 588 
 589 inline bool is_java_primitive(BasicType t) {
 590   return T_BOOLEAN <= t && t <= T_LONG;
 591 }
 592 
 593 inline bool is_subword_type(BasicType t) {
 594   // these guys are processed exactly like T_INT in calling sequences:
 595   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 596 }
 597 
 598 inline bool is_signed_subword_type(BasicType t) {
 599   return (t == T_BYTE || t == T_SHORT);
 600 }
 601 
 602 inline bool is_reference_type(BasicType t) {
 603   return (t == T_OBJECT || t == T_ARRAY);
 604 }
 605 
 606 // Convert a char from a classfile signature to a BasicType
 607 inline BasicType char2type(char c) {
 608   switch( c ) {
 609   case 'B': return T_BYTE;
 610   case 'C': return T_CHAR;
 611   case 'D': return T_DOUBLE;
 612   case 'F': return T_FLOAT;
 613   case 'I': return T_INT;
 614   case 'J': return T_LONG;
 615   case 'S': return T_SHORT;
 616   case 'Z': return T_BOOLEAN;
 617   case 'V': return T_VOID;
 618   case 'L': return T_OBJECT;
 619   case '[': return T_ARRAY;
 620   }
 621   return T_ILLEGAL;
 622 }
 623 
 624 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 625 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 626 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 627 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 628 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 629 extern BasicType name2type(const char* name);
 630 
 631 // Auxiliary math routines
 632 // least common multiple
 633 extern size_t lcm(size_t a, size_t b);
 634 
 635 
 636 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 637 enum BasicTypeSize {
 638   T_BOOLEAN_size     = 1,
 639   T_CHAR_size        = 1,
 640   T_FLOAT_size       = 1,
 641   T_DOUBLE_size      = 2,
 642   T_BYTE_size        = 1,
 643   T_SHORT_size       = 1,
 644   T_INT_size         = 1,
 645   T_LONG_size        = 2,
 646   T_OBJECT_size      = 1,
 647   T_ARRAY_size       = 1,
 648   T_NARROWOOP_size   = 1,
 649   T_NARROWKLASS_size = 1,
 650   T_VOID_size        = 0
 651 };
 652 
 653 
 654 // maps a BasicType to its instance field storage type:
 655 // all sub-word integral types are widened to T_INT
 656 extern BasicType type2field[T_CONFLICT+1];
 657 extern BasicType type2wfield[T_CONFLICT+1];
 658 
 659 
 660 // size in bytes
 661 enum ArrayElementSize {
 662   T_BOOLEAN_aelem_bytes     = 1,
 663   T_CHAR_aelem_bytes        = 2,
 664   T_FLOAT_aelem_bytes       = 4,
 665   T_DOUBLE_aelem_bytes      = 8,
 666   T_BYTE_aelem_bytes        = 1,
 667   T_SHORT_aelem_bytes       = 2,
 668   T_INT_aelem_bytes         = 4,
 669   T_LONG_aelem_bytes        = 8,
 670 #ifdef _LP64
 671   T_OBJECT_aelem_bytes      = 8,
 672   T_ARRAY_aelem_bytes       = 8,
 673 #else
 674   T_OBJECT_aelem_bytes      = 4,
 675   T_ARRAY_aelem_bytes       = 4,
 676 #endif
 677   T_NARROWOOP_aelem_bytes   = 4,
 678   T_NARROWKLASS_aelem_bytes = 4,
 679   T_VOID_aelem_bytes        = 0
 680 };
 681 
 682 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 683 #ifdef ASSERT
 684 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 685 #else
 686 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 687 #endif
 688 
 689 
 690 // JavaValue serves as a container for arbitrary Java values.
 691 
 692 class JavaValue {
 693 
 694  public:
 695   typedef union JavaCallValue {
 696     jfloat   f;
 697     jdouble  d;
 698     jint     i;
 699     jlong    l;
 700     jobject  h;
 701   } JavaCallValue;
 702 
 703  private:
 704   BasicType _type;
 705   JavaCallValue _value;
 706 
 707  public:
 708   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 709 
 710   JavaValue(jfloat value) {
 711     _type    = T_FLOAT;
 712     _value.f = value;
 713   }
 714 
 715   JavaValue(jdouble value) {
 716     _type    = T_DOUBLE;
 717     _value.d = value;
 718   }
 719 
 720  jfloat get_jfloat() const { return _value.f; }
 721  jdouble get_jdouble() const { return _value.d; }
 722  jint get_jint() const { return _value.i; }
 723  jlong get_jlong() const { return _value.l; }
 724  jobject get_jobject() const { return _value.h; }
 725  JavaCallValue* get_value_addr() { return &_value; }
 726  BasicType get_type() const { return _type; }
 727 
 728  void set_jfloat(jfloat f) { _value.f = f;}
 729  void set_jdouble(jdouble d) { _value.d = d;}
 730  void set_jint(jint i) { _value.i = i;}
 731  void set_jlong(jlong l) { _value.l = l;}
 732  void set_jobject(jobject h) { _value.h = h;}
 733  void set_type(BasicType t) { _type = t; }
 734 
 735  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 736  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 737  jchar get_jchar() const { return (jchar) (_value.i);}
 738  jshort get_jshort() const { return (jshort) (_value.i);}
 739 
 740 };
 741 
 742 
 743 #define STACK_BIAS      0
 744 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 745 // in order to extend the reach of the stack pointer.
 746 #if defined(SPARC) && defined(_LP64)
 747 #undef STACK_BIAS
 748 #define STACK_BIAS      0x7ff
 749 #endif
 750 
 751 
 752 // TosState describes the top-of-stack state before and after the execution of
 753 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 754 // registers. The TosState corresponds to the 'machine representation' of this cached
 755 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 756 // as well as a 5th state in case the top-of-stack value is actually on the top
 757 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 758 // state when it comes to machine representation but is used separately for (oop)
 759 // type specific operations (e.g. verification code).
 760 
 761 enum TosState {         // describes the tos cache contents
 762   btos = 0,             // byte, bool tos cached
 763   ztos = 1,             // byte, bool tos cached
 764   ctos = 2,             // char tos cached
 765   stos = 3,             // short tos cached
 766   itos = 4,             // int tos cached
 767   ltos = 5,             // long tos cached
 768   ftos = 6,             // float tos cached
 769   dtos = 7,             // double tos cached
 770   atos = 8,             // object cached
 771   vtos = 9,             // tos not cached
 772   number_of_states,
 773   ilgl                  // illegal state: should not occur
 774 };
 775 
 776 
 777 inline TosState as_TosState(BasicType type) {
 778   switch (type) {
 779     case T_BYTE   : return btos;
 780     case T_BOOLEAN: return ztos;
 781     case T_CHAR   : return ctos;
 782     case T_SHORT  : return stos;
 783     case T_INT    : return itos;
 784     case T_LONG   : return ltos;
 785     case T_FLOAT  : return ftos;
 786     case T_DOUBLE : return dtos;
 787     case T_VOID   : return vtos;
 788     case T_ARRAY  : // fall through
 789     case T_OBJECT : return atos;
 790     default       : return ilgl;
 791   }
 792 }
 793 
 794 inline BasicType as_BasicType(TosState state) {
 795   switch (state) {
 796     case btos : return T_BYTE;
 797     case ztos : return T_BOOLEAN;
 798     case ctos : return T_CHAR;
 799     case stos : return T_SHORT;
 800     case itos : return T_INT;
 801     case ltos : return T_LONG;
 802     case ftos : return T_FLOAT;
 803     case dtos : return T_DOUBLE;
 804     case atos : return T_OBJECT;
 805     case vtos : return T_VOID;
 806     default   : return T_ILLEGAL;
 807   }
 808 }
 809 
 810 
 811 // Helper function to convert BasicType info into TosState
 812 // Note: Cannot define here as it uses global constant at the time being.
 813 TosState as_TosState(BasicType type);
 814 
 815 
 816 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 817 // information is needed by the safepoint code.
 818 //
 819 // There are 4 essential states:
 820 //
 821 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 822 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 823 //  _thread_in_vm       : Executing in the vm
 824 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 825 //
 826 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 827 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 828 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 829 //
 830 // Given a state, the xxxx_trans state can always be found by adding 1.
 831 //
 832 enum JavaThreadState {
 833   _thread_uninitialized     =  0, // should never happen (missing initialization)
 834   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 835   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 836   _thread_in_native         =  4, // running in native code
 837   _thread_in_native_trans   =  5, // corresponding transition state
 838   _thread_in_vm             =  6, // running in VM
 839   _thread_in_vm_trans       =  7, // corresponding transition state
 840   _thread_in_Java           =  8, // running in Java or in stub code
 841   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 842   _thread_blocked           = 10, // blocked in vm
 843   _thread_blocked_trans     = 11, // corresponding transition state
 844   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 845 };
 846 
 847 //----------------------------------------------------------------------------------------------------
 848 // Special constants for debugging
 849 
 850 const jint     badInt           = -3;                       // generic "bad int" value
 851 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
 852 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
 853 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
 854 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
 855 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
 856 const int      badResourceValue = 0xAB;                     // value used to zap resource area
 857 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
 858 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
 859 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
 860 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
 861 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
 862 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
 863 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
 864 
 865 
 866 // (These must be implemented as #defines because C++ compilers are
 867 // not obligated to inline non-integral constants!)
 868 #define       badAddress        ((address)::badAddressVal)
 869 #define       badOop            (cast_to_oop(::badOopVal))
 870 #define       badHeapWord       (::badHeapWordVal)
 871 
 872 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
 873 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
 874 
 875 //----------------------------------------------------------------------------------------------------
 876 // Utility functions for bitfield manipulations
 877 
 878 const intptr_t AllBits    = ~0; // all bits set in a word
 879 const intptr_t NoBits     =  0; // no bits set in a word
 880 const jlong    NoLongBits =  0; // no bits set in a long
 881 const intptr_t OneBit     =  1; // only right_most bit set in a word
 882 
 883 // get a word with the n.th or the right-most or left-most n bits set
 884 // (note: #define used only so that they can be used in enum constant definitions)
 885 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
 886 #define right_n_bits(n)   (nth_bit(n) - 1)
 887 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
 888 
 889 // bit-operations using a mask m
 890 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
 891 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
 892 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
 893 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
 894 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
 895 
 896 // bit-operations using the n.th bit
 897 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
 898 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
 899 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
 900 
 901 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
 902 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
 903   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
 904 }
 905 
 906 
 907 //----------------------------------------------------------------------------------------------------
 908 // Utility functions for integers
 909 
 910 // Avoid use of global min/max macros which may cause unwanted double
 911 // evaluation of arguments.
 912 #ifdef max
 913 #undef max
 914 #endif
 915 
 916 #ifdef min
 917 #undef min
 918 #endif
 919 
 920 // It is necessary to use templates here. Having normal overloaded
 921 // functions does not work because it is necessary to provide both 32-
 922 // and 64-bit overloaded functions, which does not work, and having
 923 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
 924 // will be even more error-prone than macros.
 925 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
 926 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
 927 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
 928 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
 929 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
 930 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
 931 
 932 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
 933 
 934 // true if x is a power of 2, false otherwise
 935 inline bool is_power_of_2(intptr_t x) {
 936   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
 937 }
 938 
 939 // long version of is_power_of_2
 940 inline bool is_power_of_2_long(jlong x) {
 941   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
 942 }
 943 
 944 // Returns largest i such that 2^i <= x.
 945 // If x == 0, the function returns -1.
 946 inline int log2_intptr(uintptr_t x) {
 947   int i = -1;
 948   uintptr_t p = 1;
 949   while (p != 0 && p <= x) {
 950     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 951     i++; p *= 2;
 952   }
 953   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 954   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
 955   return i;
 956 }
 957 
 958 //* largest i such that 2^i <= x
 959 inline int log2_long(julong x) {
 960   int i = -1;
 961   julong p =  1;
 962   while (p != 0 && p <= x) {
 963     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
 964     i++; p *= 2;
 965   }
 966   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
 967   // (if p = 0 then overflow occurred and i = 63)
 968   return i;
 969 }
 970 
 971 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
 972 inline int log2_intptr(intptr_t x) {
 973   return log2_intptr((uintptr_t)x);
 974 }
 975 
 976 inline int log2_int(int x) {
 977   STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
 978   return log2_intptr((uintptr_t)x);
 979 }
 980 
 981 inline int log2_jint(jint x) {
 982   STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
 983   return log2_intptr((uintptr_t)x);
 984 }
 985 
 986 inline int log2_uint(uint x) {
 987   STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
 988   return log2_intptr((uintptr_t)x);
 989 }
 990 
 991 //  A negative value of 'x' will return '63'
 992 inline int log2_jlong(jlong x) {
 993   STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
 994   return log2_long((julong)x);
 995 }
 996 
 997 //* the argument must be exactly a power of 2
 998 inline int exact_log2(intptr_t x) {
 999   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1000   return log2_intptr(x);
1001 }
1002 
1003 //* the argument must be exactly a power of 2
1004 inline int exact_log2_long(jlong x) {
1005   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1006   return log2_long(x);
1007 }
1008 
1009 inline bool is_odd (intx x) { return x & 1;      }
1010 inline bool is_even(intx x) { return !is_odd(x); }
1011 
1012 // abs methods which cannot overflow and so are well-defined across
1013 // the entire domain of integer types.
1014 static inline unsigned int uabs(unsigned int n) {
1015   union {
1016     unsigned int result;
1017     int value;
1018   };
1019   result = n;
1020   if (value < 0) result = 0-result;
1021   return result;
1022 }
1023 static inline julong uabs(julong n) {
1024   union {
1025     julong result;
1026     jlong value;
1027   };
1028   result = n;
1029   if (value < 0) result = 0-result;
1030   return result;
1031 }
1032 static inline julong uabs(jlong n) { return uabs((julong)n); }
1033 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1034 
1035 // "to" should be greater than "from."
1036 inline intx byte_size(void* from, void* to) {
1037   return (address)to - (address)from;
1038 }
1039 
1040 
1041 // Pack and extract shorts to/from ints:
1042 
1043 inline int extract_low_short_from_int(jint x) {
1044   return x & 0xffff;
1045 }
1046 
1047 inline int extract_high_short_from_int(jint x) {
1048   return (x >> 16) & 0xffff;
1049 }
1050 
1051 inline int build_int_from_shorts( jushort low, jushort high ) {
1052   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1053 }
1054 
1055 // Convert pointer to intptr_t, for use in printing pointers.
1056 inline intptr_t p2i(const void * p) {
1057   return (intptr_t) p;
1058 }
1059 
1060 // swap a & b
1061 template<class T> static void swap(T& a, T& b) {
1062   T tmp = a;
1063   a = b;
1064   b = tmp;
1065 }
1066 
1067 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1068 
1069 //----------------------------------------------------------------------------------------------------
1070 // Sum and product which can never overflow: they wrap, just like the
1071 // Java operations.  Note that we don't intend these to be used for
1072 // general-purpose arithmetic: their purpose is to emulate Java
1073 // operations.
1074 
1075 // The goal of this code to avoid undefined or implementation-defined
1076 // behavior.  The use of an lvalue to reference cast is explicitly
1077 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1078 // 15 in C++03]
1079 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1080 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1081   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1082   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1083   return reinterpret_cast<TYPE&>(ures);                 \
1084 }
1085 
1086 JAVA_INTEGER_OP(+, java_add, jint, juint)
1087 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1088 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1089 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1090 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1091 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1092 
1093 #undef JAVA_INTEGER_OP
1094 
1095 //----------------------------------------------------------------------------------------------------
1096 // The goal of this code is to provide saturating operations for int/uint.
1097 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1098 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1099 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1100   jlong res = static_cast<jlong>(in1);               \
1101   res OP ## = static_cast<jlong>(in2);               \
1102   if (res > max_jint) {                              \
1103     res = max_jint;                                  \
1104   } else if (res < min_jint) {                       \
1105     res = min_jint;                                  \
1106   }                                                  \
1107   return static_cast<int>(res);                      \
1108 }
1109 
1110 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1111 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1112 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1113 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1114 
1115 #undef SATURATED_INTEGER_OP
1116 
1117 // Dereference vptr
1118 // All C++ compilers that we know of have the vtbl pointer in the first
1119 // word.  If there are exceptions, this function needs to be made compiler
1120 // specific.
1121 static inline void* dereference_vptr(const void* addr) {
1122   return *(void**)addr;
1123 }
1124 
1125 //----------------------------------------------------------------------------------------------------
1126 // String type aliases used by command line flag declarations and
1127 // processing utilities.
1128 
1129 typedef const char* ccstr;
1130 typedef const char* ccstrlist;   // represents string arguments which accumulate
1131 
1132 //----------------------------------------------------------------------------------------------------
1133 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1134 
1135 template<typename K> unsigned primitive_hash(const K& k) {
1136   unsigned hash = (unsigned)((uintptr_t)k);
1137   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1138 }
1139 
1140 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1141   return k0 == k1;
1142 }
1143 
1144 
1145 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP