1 /*
   2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package java.lang;
  26 
  27 import java.io.ObjectStreamField;
  28 import java.io.UnsupportedEncodingException;
  29 import java.nio.charset.Charset;
  30 import java.util.ArrayList;
  31 import java.util.Arrays;
  32 import java.util.Comparator;
  33 import java.util.Formatter;
  34 import java.util.Locale;
  35 import java.util.regex.Matcher;
  36 import java.util.regex.Pattern;
  37 import java.util.regex.PatternSyntaxException;
  38 
  39 /**
  40  * The {@code String} class represents character strings. All
  41  * string literals in Java programs, such as {@code "abc"}, are
  42  * implemented as instances of this class.
  43  * <p>
  44  * Strings are constant; their values cannot be changed after they
  45  * are created. String buffers support mutable strings.
  46  * Because String objects are immutable they can be shared. For example:
  47  * <p><blockquote><pre>
  48  *     String str = "abc";
  49  * </pre></blockquote><p>
  50  * is equivalent to:
  51  * <p><blockquote><pre>
  52  *     char data[] = {'a', 'b', 'c'};
  53  *     String str = new String(data);
  54  * </pre></blockquote><p>
  55  * Here are some more examples of how strings can be used:
  56  * <p><blockquote><pre>
  57  *     System.out.println("abc");
  58  *     String cde = "cde";
  59  *     System.out.println("abc" + cde);
  60  *     String c = "abc".substring(2,3);
  61  *     String d = cde.substring(1, 2);
  62  * </pre></blockquote>
  63  * <p>
  64  * The class {@code String} includes methods for examining
  65  * individual characters of the sequence, for comparing strings, for
  66  * searching strings, for extracting substrings, and for creating a
  67  * copy of a string with all characters translated to uppercase or to
  68  * lowercase. Case mapping is based on the Unicode Standard version
  69  * specified by the {@link java.lang.Character Character} class.
  70  * <p>
  71  * The Java language provides special support for the string
  72  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  73  * other objects to strings. String concatenation is implemented
  74  * through the {@code StringBuilder}(or {@code StringBuffer})
  75  * class and its {@code append} method.
  76  * String conversions are implemented through the method
  77  * {@code toString}, defined by {@code Object} and
  78  * inherited by all classes in Java. For additional information on
  79  * string concatenation and conversion, see Gosling, Joy, and Steele,
  80  * <i>The Java Language Specification</i>.
  81  *
  82  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  83  * or method in this class will cause a {@link NullPointerException} to be
  84  * thrown.
  85  *
  86  * <p>A {@code String} represents a string in the UTF-16 format
  87  * in which <em>supplementary characters</em> are represented by <em>surrogate
  88  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  89  * Character Representations</a> in the {@code Character} class for
  90  * more information).
  91  * Index values refer to {@code char} code units, so a supplementary
  92  * character uses two positions in a {@code String}.
  93  * <p>The {@code String} class provides methods for dealing with
  94  * Unicode code points (i.e., characters), in addition to those for
  95  * dealing with Unicode code units (i.e., {@code char} values).
  96  *
  97  * @author  Lee Boynton
  98  * @author  Arthur van Hoff
  99  * @author  Martin Buchholz
 100  * @author  Ulf Zibis
 101  * @see     java.lang.Object#toString()
 102  * @see     java.lang.StringBuffer
 103  * @see     java.lang.StringBuilder
 104  * @see     java.nio.charset.Charset
 105  * @since   JDK1.0
 106  */
 107 public final class String
 108         implements java.io.Serializable, Comparable<String>, CharSequence {
 109 
 110     /** The value is used for character storage. */
 111     private final char value[];
 112 
 113     /** Cache the hash code for the string */
 114     private int hash; // Default to 0
 115 
 116     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 117     private static final long serialVersionUID = -6849794470754667710L;
 118 
 119     /**
 120      * Class String is special cased within the Serialization Stream Protocol.
 121      *
 122      * A String instance is written initially into an ObjectOutputStream in the
 123      * following format:
 124      * <pre>
 125      *      {@code TC_STRING} (utf String)
 126      * </pre>
 127      * The String is written by method {@code DataOutput.writeUTF}.
 128      * A new handle is generated to  refer to all future references to the
 129      * string instance within the stream.
 130      */
 131     private static final ObjectStreamField[] serialPersistentFields =
 132             new ObjectStreamField[0];
 133 
 134     /**
 135      * Initializes a newly created {@code String} object so that it represents
 136      * an empty character sequence.  Note that use of this constructor is
 137      * unnecessary since Strings are immutable.
 138      */
 139     public String() {
 140         this.value = new char[0];
 141     }
 142 
 143     /**
 144      * Initializes a newly created {@code String} object so that it represents
 145      * the same sequence of characters as the argument; in other words, the
 146      * newly created string is a copy of the argument string. Unless an
 147      * explicit copy of {@code original} is needed, use of this constructor is
 148      * unnecessary since Strings are immutable.
 149      *
 150      * @param  original
 151      *         A {@code String}
 152      */
 153     public String(String original) {
 154         this.value = original.value;
 155         this.hash = original.hash;
 156     }
 157 
 158     /**
 159      * Allocates a new {@code String} so that it represents the sequence of
 160      * characters currently contained in the character array argument. The
 161      * contents of the character array are copied; subsequent modification of
 162      * the character array does not affect the newly created string.
 163      *
 164      * @param  value
 165      *         The initial value of the string
 166      */
 167     public String(char value[]) {
 168         this.value = Arrays.copyOf(value, value.length);
 169     }
 170 
 171     /**
 172      * Allocates a new {@code String} that contains characters from a subarray
 173      * of the character array argument. The {@code offset} argument is the
 174      * index of the first character of the subarray and the {@code count}
 175      * argument specifies the length of the subarray. The contents of the
 176      * subarray are copied; subsequent modification of the character array does
 177      * not affect the newly created string.
 178      *
 179      * @param  value
 180      *         Array that is the source of characters
 181      *
 182      * @param  offset
 183      *         The initial offset
 184      *
 185      * @param  count
 186      *         The length
 187      *
 188      * @throws  IndexOutOfBoundsException
 189      *          If the {@code offset} and {@code count} arguments index
 190      *          characters outside the bounds of the {@code value} array
 191      */
 192     public String(char value[], int offset, int count) {
 193         if (offset < 0) {
 194             throw new StringIndexOutOfBoundsException(offset);
 195         }
 196         if (count < 0) {
 197             throw new StringIndexOutOfBoundsException(count);
 198         }
 199         // Note: offset or count might be near -1>>>1.
 200         if (offset > value.length - count) {
 201             throw new StringIndexOutOfBoundsException(offset + count);
 202         }
 203         this.value = Arrays.copyOfRange(value, offset, offset+count);
 204     }
 205 
 206     /**
 207      * Allocates a new {@code String} that contains characters from a subarray
 208      * of the <a href="Character.html#unicode">Unicode code point</a> array
 209      * argument.  The {@code offset} argument is the index of the first code
 210      * point of the subarray and the {@code count} argument specifies the
 211      * length of the subarray.  The contents of the subarray are converted to
 212      * {@code char}s; subsequent modification of the {@code int} array does not
 213      * affect the newly created string.
 214      *
 215      * @param  codePoints
 216      *         Array that is the source of Unicode code points
 217      *
 218      * @param  offset
 219      *         The initial offset
 220      *
 221      * @param  count
 222      *         The length
 223      *
 224      * @throws  IllegalArgumentException
 225      *          If any invalid Unicode code point is found in {@code
 226      *          codePoints}
 227      *
 228      * @throws  IndexOutOfBoundsException
 229      *          If the {@code offset} and {@code count} arguments index
 230      *          characters outside the bounds of the {@code codePoints} array
 231      *
 232      * @since  1.5
 233      */
 234     public String(int[] codePoints, int offset, int count) {
 235         if (offset < 0) {
 236             throw new StringIndexOutOfBoundsException(offset);
 237         }
 238         if (count < 0) {
 239             throw new StringIndexOutOfBoundsException(count);
 240         }
 241         // Note: offset or count might be near -1>>>1.
 242         if (offset > codePoints.length - count) {
 243             throw new StringIndexOutOfBoundsException(offset + count);
 244         }
 245 
 246         final int end = offset + count;
 247 
 248         // Pass 1: Compute precise size of char[]
 249         int n = count;
 250         for (int i = offset; i < end; i++) {
 251             int c = codePoints[i];
 252             if (Character.isBmpCodePoint(c))
 253                 continue;
 254             else if (Character.isValidCodePoint(c))
 255                 n++;
 256             else throw new IllegalArgumentException(Integer.toString(c));
 257         }
 258 
 259         // Pass 2: Allocate and fill in char[]
 260         final char[] v = new char[n];
 261 
 262         for (int i = offset, j = 0; i < end; i++, j++) {
 263             int c = codePoints[i];
 264             if (Character.isBmpCodePoint(c))
 265                 v[j] = (char)c;
 266             else
 267                 Character.toSurrogates(c, v, j++);
 268         }
 269 
 270         this.value = v;
 271     }
 272 
 273     /**
 274      * Allocates a new {@code String} constructed from a subarray of an array
 275      * of 8-bit integer values.
 276      *
 277      * <p> The {@code offset} argument is the index of the first byte of the
 278      * subarray, and the {@code count} argument specifies the length of the
 279      * subarray.
 280      *
 281      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 282      * specified in the method above.
 283      *
 284      * @deprecated This method does not properly convert bytes into characters.
 285      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 286      * {@code String} constructors that take a {@link
 287      * java.nio.charset.Charset}, charset name, or that use the platform's
 288      * default charset.
 289      *
 290      * @param  ascii
 291      *         The bytes to be converted to characters
 292      *
 293      * @param  hibyte
 294      *         The top 8 bits of each 16-bit Unicode code unit
 295      *
 296      * @param  offset
 297      *         The initial offset
 298      * @param  count
 299      *         The length
 300      *
 301      * @throws  IndexOutOfBoundsException
 302      *          If the {@code offset} or {@code count} argument is invalid
 303      *
 304      * @see  #String(byte[], int)
 305      * @see  #String(byte[], int, int, java.lang.String)
 306      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 307      * @see  #String(byte[], int, int)
 308      * @see  #String(byte[], java.lang.String)
 309      * @see  #String(byte[], java.nio.charset.Charset)
 310      * @see  #String(byte[])
 311      */
 312     @Deprecated
 313     public String(byte ascii[], int hibyte, int offset, int count) {
 314         checkBounds(ascii, offset, count);
 315         char value[] = new char[count];
 316 
 317         if (hibyte == 0) {
 318             for (int i = count; i-- > 0;) {
 319                 value[i] = (char)(ascii[i + offset] & 0xff);
 320             }
 321         } else {
 322             hibyte <<= 8;
 323             for (int i = count; i-- > 0;) {
 324                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 325             }
 326         }
 327         this.value = value;
 328     }
 329 
 330     /**
 331      * Allocates a new {@code String} containing characters constructed from
 332      * an array of 8-bit integer values. Each character <i>c</i>in the
 333      * resulting string is constructed from the corresponding component
 334      * <i>b</i> in the byte array such that:
 335      *
 336      * <blockquote><pre>
 337      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 338      *                         | (<b><i>b</i></b> &amp; 0xff))
 339      * </pre></blockquote>
 340      *
 341      * @deprecated  This method does not properly convert bytes into
 342      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 343      * {@code String} constructors that take a {@link
 344      * java.nio.charset.Charset}, charset name, or that use the platform's
 345      * default charset.
 346      *
 347      * @param  ascii
 348      *         The bytes to be converted to characters
 349      *
 350      * @param  hibyte
 351      *         The top 8 bits of each 16-bit Unicode code unit
 352      *
 353      * @see  #String(byte[], int, int, java.lang.String)
 354      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 355      * @see  #String(byte[], int, int)
 356      * @see  #String(byte[], java.lang.String)
 357      * @see  #String(byte[], java.nio.charset.Charset)
 358      * @see  #String(byte[])
 359      */
 360     @Deprecated
 361     public String(byte ascii[], int hibyte) {
 362         this(ascii, hibyte, 0, ascii.length);
 363     }
 364 
 365     /* Common private utility method used to bounds check the byte array
 366      * and requested offset & length values used by the String(byte[],..)
 367      * constructors.
 368      */
 369     private static void checkBounds(byte[] bytes, int offset, int length) {
 370         if (length < 0)
 371             throw new StringIndexOutOfBoundsException(length);
 372         if (offset < 0)
 373             throw new StringIndexOutOfBoundsException(offset);
 374         if (offset > bytes.length - length)
 375             throw new StringIndexOutOfBoundsException(offset + length);
 376     }
 377 
 378     /**
 379      * Constructs a new {@code String} by decoding the specified subarray of
 380      * bytes using the specified charset.  The length of the new {@code String}
 381      * is a function of the charset, and hence may not be equal to the length
 382      * of the subarray.
 383      *
 384      * <p> The behavior of this constructor when the given bytes are not valid
 385      * in the given charset is unspecified.  The {@link
 386      * java.nio.charset.CharsetDecoder} class should be used when more control
 387      * over the decoding process is required.
 388      *
 389      * @param  bytes
 390      *         The bytes to be decoded into characters
 391      *
 392      * @param  offset
 393      *         The index of the first byte to decode
 394      *
 395      * @param  length
 396      *         The number of bytes to decode
 397 
 398      * @param  charsetName
 399      *         The name of a supported {@linkplain java.nio.charset.Charset
 400      *         charset}
 401      *
 402      * @throws  UnsupportedEncodingException
 403      *          If the named charset is not supported
 404      *
 405      * @throws  IndexOutOfBoundsException
 406      *          If the {@code offset} and {@code length} arguments index
 407      *          characters outside the bounds of the {@code bytes} array
 408      *
 409      * @since  JDK1.1
 410      */
 411     public String(byte bytes[], int offset, int length, String charsetName)
 412             throws UnsupportedEncodingException {
 413         if (charsetName == null)
 414             throw new NullPointerException("charsetName");
 415         checkBounds(bytes, offset, length);
 416         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 417     }
 418 
 419     /**
 420      * Constructs a new {@code String} by decoding the specified subarray of
 421      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 422      * The length of the new {@code String} is a function of the charset, and
 423      * hence may not be equal to the length of the subarray.
 424      *
 425      * <p> This method always replaces malformed-input and unmappable-character
 426      * sequences with this charset's default replacement string.  The {@link
 427      * java.nio.charset.CharsetDecoder} class should be used when more control
 428      * over the decoding process is required.
 429      *
 430      * @param  bytes
 431      *         The bytes to be decoded into characters
 432      *
 433      * @param  offset
 434      *         The index of the first byte to decode
 435      *
 436      * @param  length
 437      *         The number of bytes to decode
 438      *
 439      * @param  charset
 440      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 441      *         decode the {@code bytes}
 442      *
 443      * @throws  IndexOutOfBoundsException
 444      *          If the {@code offset} and {@code length} arguments index
 445      *          characters outside the bounds of the {@code bytes} array
 446      *
 447      * @since  1.6
 448      */
 449     public String(byte bytes[], int offset, int length, Charset charset) {
 450         if (charset == null)
 451             throw new NullPointerException("charset");
 452         checkBounds(bytes, offset, length);
 453         this.value =  StringCoding.decode(charset, bytes, offset, length);
 454     }
 455 
 456     /**
 457      * Constructs a new {@code String} by decoding the specified array of bytes
 458      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 459      * length of the new {@code String} is a function of the charset, and hence
 460      * may not be equal to the length of the byte array.
 461      *
 462      * <p> The behavior of this constructor when the given bytes are not valid
 463      * in the given charset is unspecified.  The {@link
 464      * java.nio.charset.CharsetDecoder} class should be used when more control
 465      * over the decoding process is required.
 466      *
 467      * @param  bytes
 468      *         The bytes to be decoded into characters
 469      *
 470      * @param  charsetName
 471      *         The name of a supported {@linkplain java.nio.charset.Charset
 472      *         charset}
 473      *
 474      * @throws  UnsupportedEncodingException
 475      *          If the named charset is not supported
 476      *
 477      * @since  JDK1.1
 478      */
 479     public String(byte bytes[], String charsetName)
 480             throws UnsupportedEncodingException {
 481         this(bytes, 0, bytes.length, charsetName);
 482     }
 483 
 484     /**
 485      * Constructs a new {@code String} by decoding the specified array of
 486      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 487      * The length of the new {@code String} is a function of the charset, and
 488      * hence may not be equal to the length of the byte array.
 489      *
 490      * <p> This method always replaces malformed-input and unmappable-character
 491      * sequences with this charset's default replacement string.  The {@link
 492      * java.nio.charset.CharsetDecoder} class should be used when more control
 493      * over the decoding process is required.
 494      *
 495      * @param  bytes
 496      *         The bytes to be decoded into characters
 497      *
 498      * @param  charset
 499      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 500      *         decode the {@code bytes}
 501      *
 502      * @since  1.6
 503      */
 504     public String(byte bytes[], Charset charset) {
 505         this(bytes, 0, bytes.length, charset);
 506     }
 507 
 508     /**
 509      * Constructs a new {@code String} by decoding the specified subarray of
 510      * bytes using the platform's default charset.  The length of the new
 511      * {@code String} is a function of the charset, and hence may not be equal
 512      * to the length of the subarray.
 513      *
 514      * <p> The behavior of this constructor when the given bytes are not valid
 515      * in the default charset is unspecified.  The {@link
 516      * java.nio.charset.CharsetDecoder} class should be used when more control
 517      * over the decoding process is required.
 518      *
 519      * @param  bytes
 520      *         The bytes to be decoded into characters
 521      *
 522      * @param  offset
 523      *         The index of the first byte to decode
 524      *
 525      * @param  length
 526      *         The number of bytes to decode
 527      *
 528      * @throws  IndexOutOfBoundsException
 529      *          If the {@code offset} and the {@code length} arguments index
 530      *          characters outside the bounds of the {@code bytes} array
 531      *
 532      * @since  JDK1.1
 533      */
 534     public String(byte bytes[], int offset, int length) {
 535         checkBounds(bytes, offset, length);
 536         this.value = StringCoding.decode(bytes, offset, length);
 537     }
 538 
 539     /**
 540      * Constructs a new {@code String} by decoding the specified array of bytes
 541      * using the platform's default charset.  The length of the new {@code
 542      * String} is a function of the charset, and hence may not be equal to the
 543      * length of the byte array.
 544      *
 545      * <p> The behavior of this constructor when the given bytes are not valid
 546      * in the default charset is unspecified.  The {@link
 547      * java.nio.charset.CharsetDecoder} class should be used when more control
 548      * over the decoding process is required.
 549      *
 550      * @param  bytes
 551      *         The bytes to be decoded into characters
 552      *
 553      * @since  JDK1.1
 554      */
 555     public String(byte bytes[]) {
 556         this(bytes, 0, bytes.length);
 557     }
 558 
 559     /**
 560      * Allocates a new string that contains the sequence of characters
 561      * currently contained in the string buffer argument. The contents of the
 562      * string buffer are copied; subsequent modification of the string buffer
 563      * does not affect the newly created string.
 564      *
 565      * @param  buffer
 566      *         A {@code StringBuffer}
 567      */
 568     public String(StringBuffer buffer) {
 569         synchronized(buffer) {
 570             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 571         }
 572     }
 573 
 574     /**
 575      * Allocates a new string that contains the sequence of characters
 576      * currently contained in the string builder argument. The contents of the
 577      * string builder are copied; subsequent modification of the string builder
 578      * does not affect the newly created string.
 579      *
 580      * <p> This constructor is provided to ease migration to {@code
 581      * StringBuilder}. Obtaining a string from a string builder via the {@code
 582      * toString} method is likely to run faster and is generally preferred.
 583      *
 584      * @param   builder
 585      *          A {@code StringBuilder}
 586      *
 587      * @since  1.5
 588      */
 589     public String(StringBuilder builder) {
 590         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 591     }
 592 
 593     /*
 594     * Package private constructor which shares value array for speed.
 595     * this constructor is always expected to be called with share==true.
 596     * a separate constructor is needed because we already have a public
 597     * String(char[]) constructor that makes a copy of the given char[].
 598     */
 599     String(char[] value, boolean share) {
 600         // assert share : "unshared not supported";
 601         this.value = value;
 602     }
 603 
 604     /**
 605      * Package private constructor
 606      * 
 607      * @deprecated Use {@link #String(char[],int,int)} instead.
 608      */
 609     @Deprecated
 610     String(int offset, int count, char[] value) {
 611         this(value, offset, count);
 612     }
 613     
 614     /**
 615      * Returns the length of this string.
 616      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 617      * code units</a> in the string.
 618      *
 619      * @return  the length of the sequence of characters represented by this
 620      *          object.
 621      */
 622     public int length() {
 623         return value.length;
 624     }
 625 
 626     /**
 627      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
 628      *
 629      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
 630      * <tt>false</tt>
 631      *
 632      * @since 1.6
 633      */
 634     public boolean isEmpty() {
 635         return value.length == 0;
 636     }
 637 
 638     /**
 639      * Returns the {@code char} value at the
 640      * specified index. An index ranges from {@code 0} to
 641      * {@code length() - 1}. The first {@code char} value of the sequence
 642      * is at index {@code 0}, the next at index {@code 1},
 643      * and so on, as for array indexing.
 644      *
 645      * <p>If the {@code char} value specified by the index is a
 646      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 647      * value is returned.
 648      *
 649      * @param      index   the index of the {@code char} value.
 650      * @return     the {@code char} value at the specified index of this string.
 651      *             The first {@code char} value is at index {@code 0}.
 652      * @exception  IndexOutOfBoundsException  if the {@code index}
 653      *             argument is negative or not less than the length of this
 654      *             string.
 655      */
 656     public char charAt(int index) {
 657         if ((index < 0) || (index >= value.length)) {
 658             throw new StringIndexOutOfBoundsException(index);
 659         }
 660         return value[index];
 661     }
 662 
 663     /**
 664      * Returns the character (Unicode code point) at the specified
 665      * index. The index refers to {@code char} values
 666      * (Unicode code units) and ranges from {@code 0} to
 667      * {@link #length()}{@code  - 1}.
 668      *
 669      * <p> If the {@code char} value specified at the given index
 670      * is in the high-surrogate range, the following index is less
 671      * than the length of this {@code String}, and the
 672      * {@code char} value at the following index is in the
 673      * low-surrogate range, then the supplementary code point
 674      * corresponding to this surrogate pair is returned. Otherwise,
 675      * the {@code char} value at the given index is returned.
 676      *
 677      * @param      index the index to the {@code char} values
 678      * @return     the code point value of the character at the
 679      *             {@code index}
 680      * @exception  IndexOutOfBoundsException  if the {@code index}
 681      *             argument is negative or not less than the length of this
 682      *             string.
 683      * @since      1.5
 684      */
 685     public int codePointAt(int index) {
 686         if ((index < 0) || (index >= value.length)) {
 687             throw new StringIndexOutOfBoundsException(index);
 688         }
 689         return Character.codePointAtImpl(value, index, value.length);
 690     }
 691 
 692     /**
 693      * Returns the character (Unicode code point) before the specified
 694      * index. The index refers to {@code char} values
 695      * (Unicode code units) and ranges from {@code 1} to {@link
 696      * CharSequence#length() length}.
 697      *
 698      * <p> If the {@code char} value at {@code (index - 1)}
 699      * is in the low-surrogate range, {@code (index - 2)} is not
 700      * negative, and the {@code char} value at {@code (index -
 701      * 2)} is in the high-surrogate range, then the
 702      * supplementary code point value of the surrogate pair is
 703      * returned. If the {@code char} value at {@code index -
 704      * 1} is an unpaired low-surrogate or a high-surrogate, the
 705      * surrogate value is returned.
 706      *
 707      * @param     index the index following the code point that should be returned
 708      * @return    the Unicode code point value before the given index.
 709      * @exception IndexOutOfBoundsException if the {@code index}
 710      *            argument is less than 1 or greater than the length
 711      *            of this string.
 712      * @since     1.5
 713      */
 714     public int codePointBefore(int index) {
 715         int i = index - 1;
 716         if ((i < 0) || (i >= value.length)) {
 717             throw new StringIndexOutOfBoundsException(index);
 718         }
 719         return Character.codePointBeforeImpl(value, index, 0);
 720     }
 721 
 722     /**
 723      * Returns the number of Unicode code points in the specified text
 724      * range of this {@code String}. The text range begins at the
 725      * specified {@code beginIndex} and extends to the
 726      * {@code char} at index {@code endIndex - 1}. Thus the
 727      * length (in {@code char}s) of the text range is
 728      * {@code endIndex-beginIndex}. Unpaired surrogates within
 729      * the text range count as one code point each.
 730      *
 731      * @param beginIndex the index to the first {@code char} of
 732      * the text range.
 733      * @param endIndex the index after the last {@code char} of
 734      * the text range.
 735      * @return the number of Unicode code points in the specified text
 736      * range
 737      * @exception IndexOutOfBoundsException if the
 738      * {@code beginIndex} is negative, or {@code endIndex}
 739      * is larger than the length of this {@code String}, or
 740      * {@code beginIndex} is larger than {@code endIndex}.
 741      * @since  1.5
 742      */
 743     public int codePointCount(int beginIndex, int endIndex) {
 744         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 745             throw new IndexOutOfBoundsException();
 746         }
 747         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 748     }
 749 
 750     /**
 751      * Returns the index within this {@code String} that is
 752      * offset from the given {@code index} by
 753      * {@code codePointOffset} code points. Unpaired surrogates
 754      * within the text range given by {@code index} and
 755      * {@code codePointOffset} count as one code point each.
 756      *
 757      * @param index the index to be offset
 758      * @param codePointOffset the offset in code points
 759      * @return the index within this {@code String}
 760      * @exception IndexOutOfBoundsException if {@code index}
 761      *   is negative or larger then the length of this
 762      *   {@code String}, or if {@code codePointOffset} is positive
 763      *   and the substring starting with {@code index} has fewer
 764      *   than {@code codePointOffset} code points,
 765      *   or if {@code codePointOffset} is negative and the substring
 766      *   before {@code index} has fewer than the absolute value
 767      *   of {@code codePointOffset} code points.
 768      * @since 1.5
 769      */
 770     public int offsetByCodePoints(int index, int codePointOffset) {
 771         if (index < 0 || index > value.length) {
 772             throw new IndexOutOfBoundsException();
 773         }
 774         return Character.offsetByCodePointsImpl(value, 0, value.length,
 775                 index, codePointOffset);
 776     }
 777 
 778     /**
 779      * Copy characters from this string into dst starting at dstBegin.
 780      * This method doesn't perform any range checking.
 781      */
 782     void getChars(char dst[], int dstBegin) {
 783         System.arraycopy(value, 0, dst, dstBegin, value.length);
 784     }
 785 
 786     /**
 787      * Copies characters from this string into the destination character
 788      * array.
 789      * <p>
 790      * The first character to be copied is at index {@code srcBegin};
 791      * the last character to be copied is at index {@code srcEnd-1}
 792      * (thus the total number of characters to be copied is
 793      * {@code srcEnd-srcBegin}). The characters are copied into the
 794      * subarray of {@code dst} starting at index {@code dstBegin}
 795      * and ending at index:
 796      * <p><blockquote><pre>
 797      *     dstbegin + (srcEnd-srcBegin) - 1
 798      * </pre></blockquote>
 799      *
 800      * @param      srcBegin   index of the first character in the string
 801      *                        to copy.
 802      * @param      srcEnd     index after the last character in the string
 803      *                        to copy.
 804      * @param      dst        the destination array.
 805      * @param      dstBegin   the start offset in the destination array.
 806      * @exception IndexOutOfBoundsException If any of the following
 807      *            is true:
 808      *            <ul><li>{@code srcBegin} is negative.
 809      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 810      *            <li>{@code srcEnd} is greater than the length of this
 811      *                string
 812      *            <li>{@code dstBegin} is negative
 813      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 814      *                {@code dst.length}</ul>
 815      */
 816     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 817         if (srcBegin < 0) {
 818             throw new StringIndexOutOfBoundsException(srcBegin);
 819         }
 820         if (srcEnd > value.length) {
 821             throw new StringIndexOutOfBoundsException(srcEnd);
 822         }
 823         if (srcBegin > srcEnd) {
 824             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 825         }
 826         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 827     }
 828 
 829     /**
 830      * Copies characters from this string into the destination byte array. Each
 831      * byte receives the 8 low-order bits of the corresponding character. The
 832      * eight high-order bits of each character are not copied and do not
 833      * participate in the transfer in any way.
 834      *
 835      * <p> The first character to be copied is at index {@code srcBegin}; the
 836      * last character to be copied is at index {@code srcEnd-1}.  The total
 837      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 838      * characters, converted to bytes, are copied into the subarray of {@code
 839      * dst} starting at index {@code dstBegin} and ending at index:
 840      *
 841      * <blockquote><pre>
 842      *     dstbegin + (srcEnd-srcBegin) - 1
 843      * </pre></blockquote>
 844      *
 845      * @deprecated  This method does not properly convert characters into
 846      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 847      * {@link #getBytes()} method, which uses the platform's default charset.
 848      *
 849      * @param  srcBegin
 850      *         Index of the first character in the string to copy
 851      *
 852      * @param  srcEnd
 853      *         Index after the last character in the string to copy
 854      *
 855      * @param  dst
 856      *         The destination array
 857      *
 858      * @param  dstBegin
 859      *         The start offset in the destination array
 860      *
 861      * @throws  IndexOutOfBoundsException
 862      *          If any of the following is true:
 863      *          <ul>
 864      *            <li> {@code srcBegin} is negative
 865      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 866      *            <li> {@code srcEnd} is greater than the length of this String
 867      *            <li> {@code dstBegin} is negative
 868      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 869      *                 dst.length}
 870      *          </ul>
 871      */
 872     @Deprecated
 873     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 874         if (srcBegin < 0) {
 875             throw new StringIndexOutOfBoundsException(srcBegin);
 876         }
 877         if (srcEnd > value.length) {
 878             throw new StringIndexOutOfBoundsException(srcEnd);
 879         }
 880         if (srcBegin > srcEnd) {
 881             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 882         }
 883         int j = dstBegin;
 884         int n = srcEnd;
 885         int i = srcBegin;
 886         char[] val = value;   /* avoid getfield opcode */
 887 
 888         while (i < n) {
 889             dst[j++] = (byte)val[i++];
 890         }
 891     }
 892 
 893     /**
 894      * Encodes this {@code String} into a sequence of bytes using the named
 895      * charset, storing the result into a new byte array.
 896      *
 897      * <p> The behavior of this method when this string cannot be encoded in
 898      * the given charset is unspecified.  The {@link
 899      * java.nio.charset.CharsetEncoder} class should be used when more control
 900      * over the encoding process is required.
 901      *
 902      * @param  charsetName
 903      *         The name of a supported {@linkplain java.nio.charset.Charset
 904      *         charset}
 905      *
 906      * @return  The resultant byte array
 907      *
 908      * @throws  UnsupportedEncodingException
 909      *          If the named charset is not supported
 910      *
 911      * @since  JDK1.1
 912      */
 913     public byte[] getBytes(String charsetName)
 914             throws UnsupportedEncodingException {
 915         if (charsetName == null) throw new NullPointerException();
 916         return StringCoding.encode(charsetName, value, 0, value.length);
 917     }
 918 
 919     /**
 920      * Encodes this {@code String} into a sequence of bytes using the given
 921      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 922      * new byte array.
 923      *
 924      * <p> This method always replaces malformed-input and unmappable-character
 925      * sequences with this charset's default replacement byte array.  The
 926      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 927      * control over the encoding process is required.
 928      *
 929      * @param  charset
 930      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 931      *         the {@code String}
 932      *
 933      * @return  The resultant byte array
 934      *
 935      * @since  1.6
 936      */
 937     public byte[] getBytes(Charset charset) {
 938         if (charset == null) throw new NullPointerException();
 939         return StringCoding.encode(charset, value, 0, value.length);
 940     }
 941 
 942     /**
 943      * Encodes this {@code String} into a sequence of bytes using the
 944      * platform's default charset, storing the result into a new byte array.
 945      *
 946      * <p> The behavior of this method when this string cannot be encoded in
 947      * the default charset is unspecified.  The {@link
 948      * java.nio.charset.CharsetEncoder} class should be used when more control
 949      * over the encoding process is required.
 950      *
 951      * @return  The resultant byte array
 952      *
 953      * @since      JDK1.1
 954      */
 955     public byte[] getBytes() {
 956         return StringCoding.encode(value, 0, value.length);
 957     }
 958 
 959     /**
 960      * Compares this string to the specified object.  The result is {@code
 961      * true} if and only if the argument is not {@code null} and is a {@code
 962      * String} object that represents the same sequence of characters as this
 963      * object.
 964      *
 965      * @param  anObject
 966      *         The object to compare this {@code String} against
 967      *
 968      * @return  {@code true} if the given object represents a {@code String}
 969      *          equivalent to this string, {@code false} otherwise
 970      *
 971      * @see  #compareTo(String)
 972      * @see  #equalsIgnoreCase(String)
 973      */
 974     public boolean equals(Object anObject) {
 975         if (this == anObject) {
 976             return true;
 977         }
 978         if (anObject instanceof String) {
 979             String anotherString = (String) anObject;
 980             int n = value.length;
 981             if (n == anotherString.value.length) {
 982                 char v1[] = value;
 983                 char v2[] = anotherString.value;
 984                 int i = 0;
 985                 while (n-- != 0) {
 986                     if (v1[i] != v2[i])
 987                             return false;
 988                     i++;
 989                 }
 990                 return true;
 991             }
 992         }
 993         return false;
 994     }
 995 
 996     /**
 997      * Compares this string to the specified {@code StringBuffer}.  The result
 998      * is {@code true} if and only if this {@code String} represents the same
 999      * sequence of characters as the specified {@code StringBuffer}.
1000      *
1001      * @param  sb
1002      *         The {@code StringBuffer} to compare this {@code String} against
1003      *
1004      * @return  {@code true} if this {@code String} represents the same
1005      *          sequence of characters as the specified {@code StringBuffer},
1006      *          {@code false} otherwise
1007      *
1008      * @since  1.4
1009      */
1010     public boolean contentEquals(StringBuffer sb) {
1011         synchronized (sb) {
1012             return contentEquals((CharSequence) sb);
1013         }
1014     }
1015 
1016     /**
1017      * Compares this string to the specified {@code CharSequence}.  The result
1018      * is {@code true} if and only if this {@code String} represents the same
1019      * sequence of char values as the specified sequence.
1020      *
1021      * @param  cs
1022      *         The sequence to compare this {@code String} against
1023      *
1024      * @return  {@code true} if this {@code String} represents the same
1025      *          sequence of char values as the specified sequence, {@code
1026      *          false} otherwise
1027      *
1028      * @since  1.5
1029      */
1030     public boolean contentEquals(CharSequence cs) {
1031         if (value.length != cs.length())
1032             return false;
1033         // Argument is a StringBuffer, StringBuilder
1034         if (cs instanceof AbstractStringBuilder) {
1035             char v1[] = value;
1036             char v2[] = ((AbstractStringBuilder) cs).getValue();
1037             int i = 0;
1038             int n = value.length;
1039             while (n-- != 0) {
1040                 if (v1[i] != v2[i])
1041                     return false;
1042                 i++;
1043             }
1044             return true;
1045         }
1046         // Argument is a String
1047         if (cs.equals(this))
1048             return true;
1049         // Argument is a generic CharSequence
1050         char v1[] = value;
1051         int i = 0;
1052         int n = value.length;
1053         while (n-- != 0) {
1054             if (v1[i] != cs.charAt(i))
1055                 return false;
1056             i++;
1057         }
1058         return true;
1059     }
1060 
1061     /**
1062      * Compares this {@code String} to another {@code String}, ignoring case
1063      * considerations.  Two strings are considered equal ignoring case if they
1064      * are of the same length and corresponding characters in the two strings
1065      * are equal ignoring case.
1066      *
1067      * <p> Two characters {@code c1} and {@code c2} are considered the same
1068      * ignoring case if at least one of the following is true:
1069      * <ul>
1070      *   <li> The two characters are the same (as compared by the
1071      *        {@code ==} operator)
1072      *   <li> Applying the method {@link
1073      *        java.lang.Character#toUpperCase(char)} to each character
1074      *        produces the same result
1075      *   <li> Applying the method {@link
1076      *        java.lang.Character#toLowerCase(char)} to each character
1077      *        produces the same result
1078      * </ul>
1079      *
1080      * @param  anotherString
1081      *         The {@code String} to compare this {@code String} against
1082      *
1083      * @return  {@code true} if the argument is not {@code null} and it
1084      *          represents an equivalent {@code String} ignoring case; {@code
1085      *          false} otherwise
1086      *
1087      * @see  #equals(Object)
1088      */
1089     public boolean equalsIgnoreCase(String anotherString) {
1090         return (this == anotherString) ? true
1091                 : (anotherString != null)
1092                 && (anotherString.value.length == value.length)
1093                 && regionMatches(true, 0, anotherString, 0, value.length);
1094     }
1095 
1096     /**
1097      * Compares two strings lexicographically.
1098      * The comparison is based on the Unicode value of each character in
1099      * the strings. The character sequence represented by this
1100      * {@code String} object is compared lexicographically to the
1101      * character sequence represented by the argument string. The result is
1102      * a negative integer if this {@code String} object
1103      * lexicographically precedes the argument string. The result is a
1104      * positive integer if this {@code String} object lexicographically
1105      * follows the argument string. The result is zero if the strings
1106      * are equal; {@code compareTo} returns {@code 0} exactly when
1107      * the {@link #equals(Object)} method would return {@code true}.
1108      * <p>
1109      * This is the definition of lexicographic ordering. If two strings are
1110      * different, then either they have different characters at some index
1111      * that is a valid index for both strings, or their lengths are different,
1112      * or both. If they have different characters at one or more index
1113      * positions, let <i>k</i> be the smallest such index; then the string
1114      * whose character at position <i>k</i> has the smaller value, as
1115      * determined by using the &lt; operator, lexicographically precedes the
1116      * other string. In this case, {@code compareTo} returns the
1117      * difference of the two character values at position {@code k} in
1118      * the two string -- that is, the value:
1119      * <blockquote><pre>
1120      * this.charAt(k)-anotherString.charAt(k)
1121      * </pre></blockquote>
1122      * If there is no index position at which they differ, then the shorter
1123      * string lexicographically precedes the longer string. In this case,
1124      * {@code compareTo} returns the difference of the lengths of the
1125      * strings -- that is, the value:
1126      * <blockquote><pre>
1127      * this.length()-anotherString.length()
1128      * </pre></blockquote>
1129      *
1130      * @param   anotherString   the {@code String} to be compared.
1131      * @return  the value {@code 0} if the argument string is equal to
1132      *          this string; a value less than {@code 0} if this string
1133      *          is lexicographically less than the string argument; and a
1134      *          value greater than {@code 0} if this string is
1135      *          lexicographically greater than the string argument.
1136      */
1137     public int compareTo(String anotherString) {
1138         int len1 = value.length;
1139         int len2 = anotherString.value.length;
1140         int lim = Math.min(len1, len2);
1141         char v1[] = value;
1142         char v2[] = anotherString.value;
1143 
1144         int k = 0;
1145         while (k < lim) {
1146             char c1 = v1[k];
1147             char c2 = v2[k];
1148             if (c1 != c2) {
1149                 return c1 - c2;
1150             }
1151             k++;
1152         }
1153         return len1 - len2;
1154     }
1155 
1156     /**
1157      * A Comparator that orders {@code String} objects as by
1158      * {@code compareToIgnoreCase}. This comparator is serializable.
1159      * <p>
1160      * Note that this Comparator does <em>not</em> take locale into account,
1161      * and will result in an unsatisfactory ordering for certain locales.
1162      * The java.text package provides <em>Collators</em> to allow
1163      * locale-sensitive ordering.
1164      *
1165      * @see     java.text.Collator#compare(String, String)
1166      * @since   1.2
1167      */
1168     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1169                                          = new CaseInsensitiveComparator();
1170     private static class CaseInsensitiveComparator
1171             implements Comparator<String>, java.io.Serializable {
1172         // use serialVersionUID from JDK 1.2.2 for interoperability
1173         private static final long serialVersionUID = 8575799808933029326L;
1174 
1175         public int compare(String s1, String s2) {
1176             int n1 = s1.length();
1177             int n2 = s2.length();
1178             int min = Math.min(n1, n2);
1179             for (int i = 0; i < min; i++) {
1180                 char c1 = s1.charAt(i);
1181                 char c2 = s2.charAt(i);
1182                 if (c1 != c2) {
1183                     c1 = Character.toUpperCase(c1);
1184                     c2 = Character.toUpperCase(c2);
1185                     if (c1 != c2) {
1186                         c1 = Character.toLowerCase(c1);
1187                         c2 = Character.toLowerCase(c2);
1188                         if (c1 != c2) {
1189                             // No overflow because of numeric promotion
1190                             return c1 - c2;
1191                         }
1192                     }
1193                 }
1194             }
1195             return n1 - n2;
1196         }
1197 
1198         /** Replaces the de-serialized object. */
1199         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1200     }
1201 
1202     /**
1203      * Compares two strings lexicographically, ignoring case
1204      * differences. This method returns an integer whose sign is that of
1205      * calling {@code compareTo} with normalized versions of the strings
1206      * where case differences have been eliminated by calling
1207      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1208      * each character.
1209      * <p>
1210      * Note that this method does <em>not</em> take locale into account,
1211      * and will result in an unsatisfactory ordering for certain locales.
1212      * The java.text package provides <em>collators</em> to allow
1213      * locale-sensitive ordering.
1214      *
1215      * @param   str   the {@code String} to be compared.
1216      * @return  a negative integer, zero, or a positive integer as the
1217      *          specified String is greater than, equal to, or less
1218      *          than this String, ignoring case considerations.
1219      * @see     java.text.Collator#compare(String, String)
1220      * @since   1.2
1221      */
1222     public int compareToIgnoreCase(String str) {
1223         return CASE_INSENSITIVE_ORDER.compare(this, str);
1224     }
1225 
1226     /**
1227      * Tests if two string regions are equal.
1228      * <p>
1229      * A substring of this <tt>String</tt> object is compared to a substring
1230      * of the argument other. The result is true if these substrings
1231      * represent identical character sequences. The substring of this
1232      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
1233      * and has length <tt>len</tt>. The substring of other to be compared
1234      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
1235      * result is <tt>false</tt> if and only if at least one of the following
1236      * is true:
1237      * <ul><li><tt>toffset</tt> is negative.
1238      * <li><tt>ooffset</tt> is negative.
1239      * <li><tt>toffset+len</tt> is greater than the length of this
1240      * <tt>String</tt> object.
1241      * <li><tt>ooffset+len</tt> is greater than the length of the other
1242      * argument.
1243      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
1244      * such that:
1245      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
1246      * </ul>
1247      *
1248      * @param   toffset   the starting offset of the subregion in this string.
1249      * @param   other     the string argument.
1250      * @param   ooffset   the starting offset of the subregion in the string
1251      *                    argument.
1252      * @param   len       the number of characters to compare.
1253      * @return  {@code true} if the specified subregion of this string
1254      *          exactly matches the specified subregion of the string argument;
1255      *          {@code false} otherwise.
1256      */
1257     public boolean regionMatches(int toffset, String other, int ooffset,
1258             int len) {
1259         char ta[] = value;
1260         int to = toffset;
1261         char pa[] = other.value;
1262         int po = ooffset;
1263         // Note: toffset, ooffset, or len might be near -1>>>1.
1264         if ((ooffset < 0) || (toffset < 0)
1265                 || (toffset > (long)value.length - len)
1266                 || (ooffset > (long)other.value.length - len)) {
1267             return false;
1268         }
1269         while (len-- > 0) {
1270             if (ta[to++] != pa[po++]) {
1271                 return false;
1272             }
1273         }
1274         return true;
1275     }
1276 
1277     /**
1278      * Tests if two string regions are equal.
1279      * <p>
1280      * A substring of this <tt>String</tt> object is compared to a substring
1281      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
1282      * substrings represent character sequences that are the same, ignoring
1283      * case if and only if <tt>ignoreCase</tt> is true. The substring of
1284      * this <tt>String</tt> object to be compared begins at index
1285      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
1286      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
1287      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
1288      * at least one of the following is true:
1289      * <ul><li><tt>toffset</tt> is negative.
1290      * <li><tt>ooffset</tt> is negative.
1291      * <li><tt>toffset+len</tt> is greater than the length of this
1292      * <tt>String</tt> object.
1293      * <li><tt>ooffset+len</tt> is greater than the length of the other
1294      * argument.
1295      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
1296      * integer <i>k</i> less than <tt>len</tt> such that:
1297      * <blockquote><pre>
1298      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1299      * </pre></blockquote>
1300      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
1301      * integer <i>k</i> less than <tt>len</tt> such that:
1302      * <blockquote><pre>
1303      * Character.toLowerCase(this.charAt(toffset+k)) !=
1304      Character.toLowerCase(other.charAt(ooffset+k))
1305      * </pre></blockquote>
1306      * and:
1307      * <blockquote><pre>
1308      * Character.toUpperCase(this.charAt(toffset+k)) !=
1309      *         Character.toUpperCase(other.charAt(ooffset+k))
1310      * </pre></blockquote>
1311      * </ul>
1312      *
1313      * @param   ignoreCase   if {@code true}, ignore case when comparing
1314      *                       characters.
1315      * @param   toffset      the starting offset of the subregion in this
1316      *                       string.
1317      * @param   other        the string argument.
1318      * @param   ooffset      the starting offset of the subregion in the string
1319      *                       argument.
1320      * @param   len          the number of characters to compare.
1321      * @return  {@code true} if the specified subregion of this string
1322      *          matches the specified subregion of the string argument;
1323      *          {@code false} otherwise. Whether the matching is exact
1324      *          or case insensitive depends on the {@code ignoreCase}
1325      *          argument.
1326      */
1327     public boolean regionMatches(boolean ignoreCase, int toffset,
1328             String other, int ooffset, int len) {
1329         char ta[] = value;
1330         int to = toffset;
1331         char pa[] = other.value;
1332         int po = ooffset;
1333         // Note: toffset, ooffset, or len might be near -1>>>1.
1334         if ((ooffset < 0) || (toffset < 0)
1335                 || (toffset > (long)value.length - len)
1336                 || (ooffset > (long)other.value.length - len)) {
1337             return false;
1338         }
1339         while (len-- > 0) {
1340             char c1 = ta[to++];
1341             char c2 = pa[po++];
1342             if (c1 == c2) {
1343                 continue;
1344             }
1345             if (ignoreCase) {
1346                 // If characters don't match but case may be ignored,
1347                 // try converting both characters to uppercase.
1348                 // If the results match, then the comparison scan should
1349                 // continue.
1350                 char u1 = Character.toUpperCase(c1);
1351                 char u2 = Character.toUpperCase(c2);
1352                 if (u1 == u2) {
1353                     continue;
1354                 }
1355                 // Unfortunately, conversion to uppercase does not work properly
1356                 // for the Georgian alphabet, which has strange rules about case
1357                 // conversion.  So we need to make one last check before
1358                 // exiting.
1359                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1360                     continue;
1361                 }
1362             }
1363             return false;
1364         }
1365         return true;
1366     }
1367 
1368     /**
1369      * Tests if the substring of this string beginning at the
1370      * specified index starts with the specified prefix.
1371      *
1372      * @param   prefix    the prefix.
1373      * @param   toffset   where to begin looking in this string.
1374      * @return  {@code true} if the character sequence represented by the
1375      *          argument is a prefix of the substring of this object starting
1376      *          at index {@code toffset}; {@code false} otherwise.
1377      *          The result is {@code false} if {@code toffset} is
1378      *          negative or greater than the length of this
1379      *          {@code String} object; otherwise the result is the same
1380      *          as the result of the expression
1381      *          <pre>
1382      *          this.substring(toffset).startsWith(prefix)
1383      *          </pre>
1384      */
1385     public boolean startsWith(String prefix, int toffset) {
1386         char ta[] = value;
1387         int to = toffset;
1388         char pa[] = prefix.value;
1389         int po = 0;
1390         int pc = prefix.value.length;
1391         // Note: toffset might be near -1>>>1.
1392         if ((toffset < 0) || (toffset > value.length - pc)) {
1393             return false;
1394         }
1395         while (--pc >= 0) {
1396             if (ta[to++] != pa[po++]) {
1397                 return false;
1398             }
1399         }
1400         return true;
1401     }
1402 
1403     /**
1404      * Tests if this string starts with the specified prefix.
1405      *
1406      * @param   prefix   the prefix.
1407      * @return  {@code true} if the character sequence represented by the
1408      *          argument is a prefix of the character sequence represented by
1409      *          this string; {@code false} otherwise.
1410      *          Note also that {@code true} will be returned if the
1411      *          argument is an empty string or is equal to this
1412      *          {@code String} object as determined by the
1413      *          {@link #equals(Object)} method.
1414      * @since   1. 0
1415      */
1416     public boolean startsWith(String prefix) {
1417         return startsWith(prefix, 0);
1418     }
1419 
1420     /**
1421      * Tests if this string ends with the specified suffix.
1422      *
1423      * @param   suffix   the suffix.
1424      * @return  {@code true} if the character sequence represented by the
1425      *          argument is a suffix of the character sequence represented by
1426      *          this object; {@code false} otherwise. Note that the
1427      *          result will be {@code true} if the argument is the
1428      *          empty string or is equal to this {@code String} object
1429      *          as determined by the {@link #equals(Object)} method.
1430      */
1431     public boolean endsWith(String suffix) {
1432         return startsWith(suffix, value.length - suffix.value.length);
1433     }
1434 
1435     /**
1436      * Returns a hash code for this string. The hash code for a
1437      * {@code String} object is computed as
1438      * <blockquote><pre>
1439      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1440      * </pre></blockquote>
1441      * using {@code int} arithmetic, where {@code s[i]} is the
1442      * <i>i</i>th character of the string, {@code n} is the length of
1443      * the string, and {@code ^} indicates exponentiation.
1444      * (The hash value of the empty string is zero.)
1445      *
1446      * @return  a hash code value for this object.
1447      */
1448     public int hashCode() {
1449         int h = hash;
1450         if (h == 0 && value.length > 0) {
1451             char val[] = value;
1452 
1453             for (int i = 0; i < value.length; i++) {
1454                 h = 31 * h + val[i];
1455             }
1456             hash = h;
1457         }
1458         return h;
1459     }
1460 
1461     /**
1462      * Returns the index within this string of the first occurrence of
1463      * the specified character. If a character with value
1464      * {@code ch} occurs in the character sequence represented by
1465      * this {@code String} object, then the index (in Unicode
1466      * code units) of the first such occurrence is returned. For
1467      * values of {@code ch} in the range from 0 to 0xFFFF
1468      * (inclusive), this is the smallest value <i>k</i> such that:
1469      * <blockquote><pre>
1470      * this.charAt(<i>k</i>) == ch
1471      * </pre></blockquote>
1472      * is true. For other values of {@code ch}, it is the
1473      * smallest value <i>k</i> such that:
1474      * <blockquote><pre>
1475      * this.codePointAt(<i>k</i>) == ch
1476      * </pre></blockquote>
1477      * is true. In either case, if no such character occurs in this
1478      * string, then {@code -1} is returned.
1479      *
1480      * @param   ch   a character (Unicode code point).
1481      * @return  the index of the first occurrence of the character in the
1482      *          character sequence represented by this object, or
1483      *          {@code -1} if the character does not occur.
1484      */
1485     public int indexOf(int ch) {
1486         return indexOf(ch, 0);
1487     }
1488 
1489     /**
1490      * Returns the index within this string of the first occurrence of the
1491      * specified character, starting the search at the specified index.
1492      * <p>
1493      * If a character with value {@code ch} occurs in the
1494      * character sequence represented by this {@code String}
1495      * object at an index no smaller than {@code fromIndex}, then
1496      * the index of the first such occurrence is returned. For values
1497      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1498      * this is the smallest value <i>k</i> such that:
1499      * <blockquote><pre>
1500      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1501      * </pre></blockquote>
1502      * is true. For other values of {@code ch}, it is the
1503      * smallest value <i>k</i> such that:
1504      * <blockquote><pre>
1505      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1506      * </pre></blockquote>
1507      * is true. In either case, if no such character occurs in this
1508      * string at or after position {@code fromIndex}, then
1509      * {@code -1} is returned.
1510      *
1511      * <p>
1512      * There is no restriction on the value of {@code fromIndex}. If it
1513      * is negative, it has the same effect as if it were zero: this entire
1514      * string may be searched. If it is greater than the length of this
1515      * string, it has the same effect as if it were equal to the length of
1516      * this string: {@code -1} is returned.
1517      *
1518      * <p>All indices are specified in {@code char} values
1519      * (Unicode code units).
1520      *
1521      * @param   ch          a character (Unicode code point).
1522      * @param   fromIndex   the index to start the search from.
1523      * @return  the index of the first occurrence of the character in the
1524      *          character sequence represented by this object that is greater
1525      *          than or equal to {@code fromIndex}, or {@code -1}
1526      *          if the character does not occur.
1527      */
1528     public int indexOf(int ch, int fromIndex) {
1529         final int max = value.length;
1530         if (fromIndex < 0) {
1531             fromIndex = 0;
1532         } else if (fromIndex >= max) {
1533             // Note: fromIndex might be near -1>>>1.
1534             return -1;
1535         }
1536 
1537         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1538             // handle most cases here (ch is a BMP code point or a
1539             // negative value (invalid code point))
1540             final char[] value = this.value;
1541             for (int i = fromIndex; i < max; i++) {
1542                 if (value[i] == ch) {
1543                     return i;
1544                 }
1545             }
1546             return -1;
1547         } else {
1548             return indexOfSupplementary(ch, fromIndex);
1549         }
1550     }
1551 
1552     /**
1553      * Handles (rare) calls of indexOf with a supplementary character.
1554      */
1555     private int indexOfSupplementary(int ch, int fromIndex) {
1556         if (Character.isValidCodePoint(ch)) {
1557             final char[] value = this.value;
1558             final char hi = Character.highSurrogate(ch);
1559             final char lo = Character.lowSurrogate(ch);
1560             final int max = value.length - 1;
1561             for (int i = fromIndex; i < max; i++) {
1562                 if (value[i] == hi && value[i + 1] == lo) {
1563                     return i;
1564                 }
1565             }
1566         }
1567         return -1;
1568     }
1569 
1570     /**
1571      * Returns the index within this string of the last occurrence of
1572      * the specified character. For values of {@code ch} in the
1573      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1574      * units) returned is the largest value <i>k</i> such that:
1575      * <blockquote><pre>
1576      * this.charAt(<i>k</i>) == ch
1577      * </pre></blockquote>
1578      * is true. For other values of {@code ch}, it is the
1579      * largest value <i>k</i> such that:
1580      * <blockquote><pre>
1581      * this.codePointAt(<i>k</i>) == ch
1582      * </pre></blockquote>
1583      * is true.  In either case, if no such character occurs in this
1584      * string, then {@code -1} is returned.  The
1585      * {@code String} is searched backwards starting at the last
1586      * character.
1587      *
1588      * @param   ch   a character (Unicode code point).
1589      * @return  the index of the last occurrence of the character in the
1590      *          character sequence represented by this object, or
1591      *          {@code -1} if the character does not occur.
1592      */
1593     public int lastIndexOf(int ch) {
1594         return lastIndexOf(ch, value.length - 1);
1595     }
1596 
1597     /**
1598      * Returns the index within this string of the last occurrence of
1599      * the specified character, searching backward starting at the
1600      * specified index. For values of {@code ch} in the range
1601      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1602      * value <i>k</i> such that:
1603      * <blockquote><pre>
1604      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1605      * </pre></blockquote>
1606      * is true. For other values of {@code ch}, it is the
1607      * largest value <i>k</i> such that:
1608      * <blockquote><pre>
1609      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1610      * </pre></blockquote>
1611      * is true. In either case, if no such character occurs in this
1612      * string at or before position {@code fromIndex}, then
1613      * {@code -1} is returned.
1614      *
1615      * <p>All indices are specified in {@code char} values
1616      * (Unicode code units).
1617      *
1618      * @param   ch          a character (Unicode code point).
1619      * @param   fromIndex   the index to start the search from. There is no
1620      *          restriction on the value of {@code fromIndex}. If it is
1621      *          greater than or equal to the length of this string, it has
1622      *          the same effect as if it were equal to one less than the
1623      *          length of this string: this entire string may be searched.
1624      *          If it is negative, it has the same effect as if it were -1:
1625      *          -1 is returned.
1626      * @return  the index of the last occurrence of the character in the
1627      *          character sequence represented by this object that is less
1628      *          than or equal to {@code fromIndex}, or {@code -1}
1629      *          if the character does not occur before that point.
1630      */
1631     public int lastIndexOf(int ch, int fromIndex) {
1632         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1633             // handle most cases here (ch is a BMP code point or a
1634             // negative value (invalid code point))
1635             final char[] value = this.value;
1636             int i = Math.min(fromIndex, value.length - 1);
1637             for (; i >= 0; i--) {
1638                 if (value[i] == ch) {
1639                     return i;
1640                 }
1641             }
1642             return -1;
1643         } else {
1644             return lastIndexOfSupplementary(ch, fromIndex);
1645         }
1646     }
1647 
1648     /**
1649      * Handles (rare) calls of lastIndexOf with a supplementary character.
1650      */
1651     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1652         if (Character.isValidCodePoint(ch)) {
1653             final char[] value = this.value;
1654             char hi = Character.highSurrogate(ch);
1655             char lo = Character.lowSurrogate(ch);
1656             int i = Math.min(fromIndex, value.length - 2);
1657             for (; i >= 0; i--) {
1658                 if (value[i] == hi && value[i + 1] == lo) {
1659                     return i;
1660                 }
1661             }
1662         }
1663         return -1;
1664     }
1665 
1666     /**
1667      * Returns the index within this string of the first occurrence of the
1668      * specified substring.
1669      *
1670      * <p>The returned index is the smallest value <i>k</i> for which:
1671      * <blockquote><pre>
1672      * this.startsWith(str, <i>k</i>)
1673      * </pre></blockquote>
1674      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1675      *
1676      * @param   str   the substring to search for.
1677      * @return  the index of the first occurrence of the specified substring,
1678      *          or {@code -1} if there is no such occurrence.
1679      */
1680     public int indexOf(String str) {
1681         return indexOf(str, 0);
1682     }
1683 
1684     /**
1685      * Returns the index within this string of the first occurrence of the
1686      * specified substring, starting at the specified index.
1687      *
1688      * <p>The returned index is the smallest value <i>k</i> for which:
1689      * <blockquote><pre>
1690      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
1691      * </pre></blockquote>
1692      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1693      *
1694      * @param   str         the substring to search for.
1695      * @param   fromIndex   the index from which to start the search.
1696      * @return  the index of the first occurrence of the specified substring,
1697      *          starting at the specified index,
1698      *          or {@code -1} if there is no such occurrence.
1699      */
1700     public int indexOf(String str, int fromIndex) {
1701         return indexOf(value, 0, value.length,
1702                 str.value, 0, str.value.length, fromIndex);
1703     }
1704 
1705     /**
1706      * Code shared by String and StringBuffer to do searches. The
1707      * source is the character array being searched, and the target
1708      * is the string being searched for.
1709      *
1710      * @param   source       the characters being searched.
1711      * @param   sourceOffset offset of the source string.
1712      * @param   sourceCount  count of the source string.
1713      * @param   target       the characters being searched for.
1714      * @param   targetOffset offset of the target string.
1715      * @param   targetCount  count of the target string.
1716      * @param   fromIndex    the index to begin searching from.
1717      */
1718     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1719             char[] target, int targetOffset, int targetCount,
1720             int fromIndex) {
1721         if (fromIndex >= sourceCount) {
1722             return (targetCount == 0 ? sourceCount : -1);
1723         }
1724         if (fromIndex < 0) {
1725             fromIndex = 0;
1726         }
1727         if (targetCount == 0) {
1728             return fromIndex;
1729         }
1730 
1731         char first = target[targetOffset];
1732         int max = sourceOffset + (sourceCount - targetCount);
1733 
1734         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1735             /* Look for first character. */
1736             if (source[i] != first) {
1737                 while (++i <= max && source[i] != first);
1738             }
1739 
1740             /* Found first character, now look at the rest of v2 */
1741             if (i <= max) {
1742                 int j = i + 1;
1743                 int end = j + targetCount - 1;
1744                 for (int k = targetOffset + 1; j < end && source[j]
1745                         == target[k]; j++, k++);
1746 
1747                 if (j == end) {
1748                     /* Found whole string. */
1749                     return i - sourceOffset;
1750                 }
1751             }
1752         }
1753         return -1;
1754     }
1755 
1756     /**
1757      * Returns the index within this string of the last occurrence of the
1758      * specified substring.  The last occurrence of the empty string ""
1759      * is considered to occur at the index value {@code this.length()}.
1760      *
1761      * <p>The returned index is the largest value <i>k</i> for which:
1762      * <blockquote><pre>
1763      * this.startsWith(str, <i>k</i>)
1764      * </pre></blockquote>
1765      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1766      *
1767      * @param   str   the substring to search for.
1768      * @return  the index of the last occurrence of the specified substring,
1769      *          or {@code -1} if there is no such occurrence.
1770      */
1771     public int lastIndexOf(String str) {
1772         return lastIndexOf(str, value.length);
1773     }
1774 
1775     /**
1776      * Returns the index within this string of the last occurrence of the
1777      * specified substring, searching backward starting at the specified index.
1778      *
1779      * <p>The returned index is the largest value <i>k</i> for which:
1780      * <blockquote><pre>
1781      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
1782      * </pre></blockquote>
1783      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1784      *
1785      * @param   str         the substring to search for.
1786      * @param   fromIndex   the index to start the search from.
1787      * @return  the index of the last occurrence of the specified substring,
1788      *          searching backward from the specified index,
1789      *          or {@code -1} if there is no such occurrence.
1790      */
1791     public int lastIndexOf(String str, int fromIndex) {
1792         return lastIndexOf(value, 0, value.length,
1793                 str.value, 0, str.value.length, fromIndex);
1794     }
1795 
1796     /**
1797      * Code shared by String and StringBuffer to do searches. The
1798      * source is the character array being searched, and the target
1799      * is the string being searched for.
1800      *
1801      * @param   source       the characters being searched.
1802      * @param   sourceOffset offset of the source string.
1803      * @param   sourceCount  count of the source string.
1804      * @param   target       the characters being searched for.
1805      * @param   targetOffset offset of the target string.
1806      * @param   targetCount  count of the target string.
1807      * @param   fromIndex    the index to begin searching from.
1808      */
1809     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1810             char[] target, int targetOffset, int targetCount,
1811             int fromIndex) {
1812         /*
1813          * Check arguments; return immediately where possible. For
1814          * consistency, don't check for null str.
1815          */
1816         int rightIndex = sourceCount - targetCount;
1817         if (fromIndex < 0) {
1818             return -1;
1819         }
1820         if (fromIndex > rightIndex) {
1821             fromIndex = rightIndex;
1822         }
1823         /* Empty string always matches. */
1824         if (targetCount == 0) {
1825             return fromIndex;
1826         }
1827 
1828         int strLastIndex = targetOffset + targetCount - 1;
1829         char strLastChar = target[strLastIndex];
1830         int min = sourceOffset + targetCount - 1;
1831         int i = min + fromIndex;
1832 
1833         startSearchForLastChar:
1834         while (true) {
1835             while (i >= min && source[i] != strLastChar) {
1836                 i--;
1837             }
1838             if (i < min) {
1839                 return -1;
1840             }
1841             int j = i - 1;
1842             int start = j - (targetCount - 1);
1843             int k = strLastIndex - 1;
1844 
1845             while (j > start) {
1846                 if (source[j--] != target[k--]) {
1847                     i--;
1848                     continue startSearchForLastChar;
1849                 }
1850             }
1851             return start - sourceOffset + 1;
1852         }
1853     }
1854 
1855     /**
1856      * Returns a new string that is a substring of this string. The
1857      * substring begins with the character at the specified index and
1858      * extends to the end of this string. <p>
1859      * Examples:
1860      * <blockquote><pre>
1861      * "unhappy".substring(2) returns "happy"
1862      * "Harbison".substring(3) returns "bison"
1863      * "emptiness".substring(9) returns "" (an empty string)
1864      * </pre></blockquote>
1865      *
1866      * @param      beginIndex   the beginning index, inclusive.
1867      * @return     the specified substring.
1868      * @exception  IndexOutOfBoundsException  if
1869      *             {@code beginIndex} is negative or larger than the
1870      *             length of this {@code String} object.
1871      */
1872     public String substring(int beginIndex) {
1873         if (beginIndex < 0) {
1874             throw new StringIndexOutOfBoundsException(beginIndex);
1875         }
1876         int subLen = value.length - beginIndex;
1877         if (subLen < 0) {
1878             throw new StringIndexOutOfBoundsException(subLen);
1879         }
1880         return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
1881     }
1882 
1883     /**
1884      * Returns a new string that is a substring of this string. The
1885      * substring begins at the specified {@code beginIndex} and
1886      * extends to the character at index {@code endIndex - 1}.
1887      * Thus the length of the substring is {@code endIndex-beginIndex}.
1888      * <p>
1889      * Examples:
1890      * <blockquote><pre>
1891      * "hamburger".substring(4, 8) returns "urge"
1892      * "smiles".substring(1, 5) returns "mile"
1893      * </pre></blockquote>
1894      *
1895      * @param      beginIndex   the beginning index, inclusive.
1896      * @param      endIndex     the ending index, exclusive.
1897      * @return     the specified substring.
1898      * @exception  IndexOutOfBoundsException  if the
1899      *             {@code beginIndex} is negative, or
1900      *             {@code endIndex} is larger than the length of
1901      *             this {@code String} object, or
1902      *             {@code beginIndex} is larger than
1903      *             {@code endIndex}.
1904      */
1905     public String substring(int beginIndex, int endIndex) {
1906         if (beginIndex < 0) {
1907             throw new StringIndexOutOfBoundsException(beginIndex);
1908         }
1909         if (endIndex > value.length) {
1910             throw new StringIndexOutOfBoundsException(endIndex);
1911         }
1912         int subLen = endIndex - beginIndex;
1913         if (subLen < 0) {
1914             throw new StringIndexOutOfBoundsException(subLen);
1915         }
1916         return ((beginIndex == 0) && (endIndex == value.length)) ? this
1917                 : new String(value, beginIndex, subLen);
1918     }
1919 
1920     /**
1921      * Returns a new character sequence that is a subsequence of this sequence.
1922      *
1923      * <p> An invocation of this method of the form
1924      *
1925      * <blockquote><pre>
1926      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1927      *
1928      * behaves in exactly the same way as the invocation
1929      *
1930      * <blockquote><pre>
1931      * str.substring(begin,&nbsp;end)</pre></blockquote>
1932      *
1933      * This method is defined so that the <tt>String</tt> class can implement
1934      * the {@link CharSequence} interface. </p>
1935      *
1936      * @param      beginIndex   the begin index, inclusive.
1937      * @param      endIndex     the end index, exclusive.
1938      * @return     the specified subsequence.
1939      *
1940      * @throws  IndexOutOfBoundsException
1941      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
1942      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
1943      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
1944      *
1945      * @since 1.4
1946      * @spec JSR-51
1947      */
1948     public CharSequence subSequence(int beginIndex, int endIndex) {
1949         return this.substring(beginIndex, endIndex);
1950     }
1951 
1952     /**
1953      * Concatenates the specified string to the end of this string.
1954      * <p>
1955      * If the length of the argument string is {@code 0}, then this
1956      * {@code String} object is returned. Otherwise, a new
1957      * {@code String} object is created, representing a character
1958      * sequence that is the concatenation of the character sequence
1959      * represented by this {@code String} object and the character
1960      * sequence represented by the argument string.<p>
1961      * Examples:
1962      * <blockquote><pre>
1963      * "cares".concat("s") returns "caress"
1964      * "to".concat("get").concat("her") returns "together"
1965      * </pre></blockquote>
1966      *
1967      * @param   str   the {@code String} that is concatenated to the end
1968      *                of this {@code String}.
1969      * @return  a string that represents the concatenation of this object's
1970      *          characters followed by the string argument's characters.
1971      */
1972     public String concat(String str) {
1973         int otherLen = str.length();
1974         if (otherLen == 0) {
1975             return this;
1976         }
1977         int len = value.length;
1978         char buf[] = Arrays.copyOf(value, len + otherLen);
1979         str.getChars(buf, len);
1980         return new String(buf, true);
1981     }
1982 
1983     /**
1984      * Returns a new string resulting from replacing all occurrences of
1985      * {@code oldChar} in this string with {@code newChar}.
1986      * <p>
1987      * If the character {@code oldChar} does not occur in the
1988      * character sequence represented by this {@code String} object,
1989      * then a reference to this {@code String} object is returned.
1990      * Otherwise, a new {@code String} object is created that
1991      * represents a character sequence identical to the character sequence
1992      * represented by this {@code String} object, except that every
1993      * occurrence of {@code oldChar} is replaced by an occurrence
1994      * of {@code newChar}.
1995      * <p>
1996      * Examples:
1997      * <blockquote><pre>
1998      * "mesquite in your cellar".replace('e', 'o')
1999      *         returns "mosquito in your collar"
2000      * "the war of baronets".replace('r', 'y')
2001      *         returns "the way of bayonets"
2002      * "sparring with a purple porpoise".replace('p', 't')
2003      *         returns "starring with a turtle tortoise"
2004      * "JonL".replace('q', 'x') returns "JonL" (no change)
2005      * </pre></blockquote>
2006      *
2007      * @param   oldChar   the old character.
2008      * @param   newChar   the new character.
2009      * @return  a string derived from this string by replacing every
2010      *          occurrence of {@code oldChar} with {@code newChar}.
2011      */
2012     public String replace(char oldChar, char newChar) {
2013         if (oldChar != newChar) {
2014             int len = value.length;
2015             int i = -1;
2016             char[] val = value; /* avoid getfield opcode */
2017 
2018             while (++i < len) {
2019                 if (val[i] == oldChar) {
2020                     break;
2021                 }
2022             }
2023             if (i < len) {
2024                 char buf[] = new char[len];
2025                 for (int j = 0; j < i; j++) {
2026                     buf[j] = val[j];
2027                 }
2028                 while (i < len) {
2029                     char c = val[i];
2030                     buf[i] = (c == oldChar) ? newChar : c;
2031                     i++;
2032                 }
2033                 return new String(buf, true);
2034             }
2035         }
2036         return this;
2037     }
2038 
2039     /**
2040      * Tells whether or not this string matches the given <a
2041      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2042      *
2043      * <p> An invocation of this method of the form
2044      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
2045      * same result as the expression
2046      *
2047      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
2048      * java.util.regex.Pattern#matches(String,CharSequence)
2049      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
2050      *
2051      * @param   regex
2052      *          the regular expression to which this string is to be matched
2053      *
2054      * @return  <tt>true</tt> if, and only if, this string matches the
2055      *          given regular expression
2056      *
2057      * @throws  PatternSyntaxException
2058      *          if the regular expression's syntax is invalid
2059      *
2060      * @see java.util.regex.Pattern
2061      *
2062      * @since 1.4
2063      * @spec JSR-51
2064      */
2065     public boolean matches(String regex) {
2066         return Pattern.matches(regex, this);
2067     }
2068 
2069     /**
2070      * Returns true if and only if this string contains the specified
2071      * sequence of char values.
2072      *
2073      * @param s the sequence to search for
2074      * @return true if this string contains {@code s}, false otherwise
2075      * @throws NullPointerException if {@code s} is {@code null}
2076      * @since 1.5
2077      */
2078     public boolean contains(CharSequence s) {
2079         return indexOf(s.toString()) > -1;
2080     }
2081 
2082     /**
2083      * Replaces the first substring of this string that matches the given <a
2084      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2085      * given replacement.
2086      *
2087      * <p> An invocation of this method of the form
2088      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2089      * yields exactly the same result as the expression
2090      *
2091      * <blockquote><tt>
2092      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2093      * compile}(</tt><i>regex</i><tt>).{@link
2094      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2095      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
2096      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
2097      *
2098      *<p>
2099      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2100      * replacement string may cause the results to be different than if it were
2101      * being treated as a literal replacement string; see
2102      * {@link java.util.regex.Matcher#replaceFirst}.
2103      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2104      * meaning of these characters, if desired.
2105      *
2106      * @param   regex
2107      *          the regular expression to which this string is to be matched
2108      * @param   replacement
2109      *          the string to be substituted for the first match
2110      *
2111      * @return  The resulting <tt>String</tt>
2112      *
2113      * @throws  PatternSyntaxException
2114      *          if the regular expression's syntax is invalid
2115      *
2116      * @see java.util.regex.Pattern
2117      *
2118      * @since 1.4
2119      * @spec JSR-51
2120      */
2121     public String replaceFirst(String regex, String replacement) {
2122         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2123     }
2124 
2125     /**
2126      * Replaces each substring of this string that matches the given <a
2127      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2128      * given replacement.
2129      *
2130      * <p> An invocation of this method of the form
2131      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2132      * yields exactly the same result as the expression
2133      *
2134      * <blockquote><tt>
2135      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2136      * compile}(</tt><i>regex</i><tt>).{@link
2137      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2138      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
2139      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
2140      *
2141      *<p>
2142      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2143      * replacement string may cause the results to be different than if it were
2144      * being treated as a literal replacement string; see
2145      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2146      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2147      * meaning of these characters, if desired.
2148      *
2149      * @param   regex
2150      *          the regular expression to which this string is to be matched
2151      * @param   replacement
2152      *          the string to be substituted for each match
2153      *
2154      * @return  The resulting <tt>String</tt>
2155      *
2156      * @throws  PatternSyntaxException
2157      *          if the regular expression's syntax is invalid
2158      *
2159      * @see java.util.regex.Pattern
2160      *
2161      * @since 1.4
2162      * @spec JSR-51
2163      */
2164     public String replaceAll(String regex, String replacement) {
2165         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2166     }
2167 
2168     /**
2169      * Replaces each substring of this string that matches the literal target
2170      * sequence with the specified literal replacement sequence. The
2171      * replacement proceeds from the beginning of the string to the end, for
2172      * example, replacing "aa" with "b" in the string "aaa" will result in
2173      * "ba" rather than "ab".
2174      *
2175      * @param  target The sequence of char values to be replaced
2176      * @param  replacement The replacement sequence of char values
2177      * @return  The resulting string
2178      * @throws NullPointerException if {@code target} or
2179      *         {@code replacement} is {@code null}.
2180      * @since 1.5
2181      */
2182     public String replace(CharSequence target, CharSequence replacement) {
2183         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2184                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2185     }
2186 
2187     /**
2188      * Splits this string around matches of the given
2189      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2190      *
2191      * <p> The array returned by this method contains each substring of this
2192      * string that is terminated by another substring that matches the given
2193      * expression or is terminated by the end of the string.  The substrings in
2194      * the array are in the order in which they occur in this string.  If the
2195      * expression does not match any part of the input then the resulting array
2196      * has just one element, namely this string.
2197      *
2198      * <p> The <tt>limit</tt> parameter controls the number of times the
2199      * pattern is applied and therefore affects the length of the resulting
2200      * array.  If the limit <i>n</i> is greater than zero then the pattern
2201      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2202      * length will be no greater than <i>n</i>, and the array's last entry
2203      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2204      * is non-positive then the pattern will be applied as many times as
2205      * possible and the array can have any length.  If <i>n</i> is zero then
2206      * the pattern will be applied as many times as possible, the array can
2207      * have any length, and trailing empty strings will be discarded.
2208      *
2209      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
2210      * following results with these parameters:
2211      *
2212      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2213      * <tr>
2214      *     <th>Regex</th>
2215      *     <th>Limit</th>
2216      *     <th>Result</th>
2217      * </tr>
2218      * <tr><td align=center>:</td>
2219      *     <td align=center>2</td>
2220      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
2221      * <tr><td align=center>:</td>
2222      *     <td align=center>5</td>
2223      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2224      * <tr><td align=center>:</td>
2225      *     <td align=center>-2</td>
2226      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2227      * <tr><td align=center>o</td>
2228      *     <td align=center>5</td>
2229      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2230      * <tr><td align=center>o</td>
2231      *     <td align=center>-2</td>
2232      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2233      * <tr><td align=center>o</td>
2234      *     <td align=center>0</td>
2235      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2236      * </table></blockquote>
2237      *
2238      * <p> An invocation of this method of the form
2239      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2240      * yields the same result as the expression
2241      *
2242      * <blockquote>
2243      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2244      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
2245      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
2246      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2247      * </blockquote>
2248      *
2249      *
2250      * @param  regex
2251      *         the delimiting regular expression
2252      *
2253      * @param  limit
2254      *         the result threshold, as described above
2255      *
2256      * @return  the array of strings computed by splitting this string
2257      *          around matches of the given regular expression
2258      *
2259      * @throws  PatternSyntaxException
2260      *          if the regular expression's syntax is invalid
2261      *
2262      * @see java.util.regex.Pattern
2263      *
2264      * @since 1.4
2265      * @spec JSR-51
2266      */
2267     public String[] split(String regex, int limit) {
2268         /* fastpath if the regex is a
2269          (1)one-char String and this character is not one of the
2270             RegEx's meta characters ".$|()[{^?*+\\", or
2271          (2)two-char String and the first char is the backslash and
2272             the second is not the ascii digit or ascii letter.
2273          */
2274         char ch = 0;
2275         if (((regex.value.length == 1 &&
2276              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2277              (regex.length() == 2 &&
2278               regex.charAt(0) == '\\' &&
2279               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2280               ((ch-'a')|('z'-ch)) < 0 &&
2281               ((ch-'A')|('Z'-ch)) < 0)) &&
2282             (ch < Character.MIN_HIGH_SURROGATE ||
2283              ch > Character.MAX_LOW_SURROGATE))
2284         {
2285             int off = 0;
2286             int next = 0;
2287             boolean limited = limit > 0;
2288             ArrayList<String> list = new ArrayList<>();
2289             while ((next = indexOf(ch, off)) != -1) {
2290                 if (!limited || list.size() < limit - 1) {
2291                     list.add(substring(off, next));
2292                     off = next + 1;
2293                 } else {    // last one
2294                     //assert (list.size() == limit - 1);
2295                     list.add(substring(off, value.length));
2296                     off = value.length;
2297                     break;
2298                 }
2299             }
2300             // If no match was found, return this
2301             if (off == 0)
2302                 return new String[]{this};
2303 
2304             // Add remaining segment
2305             if (!limited || list.size() < limit)
2306                 list.add(substring(off, value.length));
2307 
2308             // Construct result
2309             int resultSize = list.size();
2310             if (limit == 0)
2311                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0)
2312                     resultSize--;
2313             String[] result = new String[resultSize];
2314             return list.subList(0, resultSize).toArray(result);
2315         }
2316         return Pattern.compile(regex).split(this, limit);
2317     }
2318 
2319     /**
2320      * Splits this string around matches of the given <a
2321      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2322      *
2323      * <p> This method works as if by invoking the two-argument {@link
2324      * #split(String, int) split} method with the given expression and a limit
2325      * argument of zero.  Trailing empty strings are therefore not included in
2326      * the resulting array.
2327      *
2328      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
2329      * results with these expressions:
2330      *
2331      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2332      * <tr>
2333      *  <th>Regex</th>
2334      *  <th>Result</th>
2335      * </tr>
2336      * <tr><td align=center>:</td>
2337      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2338      * <tr><td align=center>o</td>
2339      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2340      * </table></blockquote>
2341      *
2342      *
2343      * @param  regex
2344      *         the delimiting regular expression
2345      *
2346      * @return  the array of strings computed by splitting this string
2347      *          around matches of the given regular expression
2348      *
2349      * @throws  PatternSyntaxException
2350      *          if the regular expression's syntax is invalid
2351      *
2352      * @see java.util.regex.Pattern
2353      *
2354      * @since 1.4
2355      * @spec JSR-51
2356      */
2357     public String[] split(String regex) {
2358         return split(regex, 0);
2359     }
2360 
2361     /**
2362      * Converts all of the characters in this {@code String} to lower
2363      * case using the rules of the given {@code Locale}.  Case mapping is based
2364      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2365      * class. Since case mappings are not always 1:1 char mappings, the resulting
2366      * {@code String} may be a different length than the original {@code String}.
2367      * <p>
2368      * Examples of lowercase  mappings are in the following table:
2369      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2370      * <tr>
2371      *   <th>Language Code of Locale</th>
2372      *   <th>Upper Case</th>
2373      *   <th>Lower Case</th>
2374      *   <th>Description</th>
2375      * </tr>
2376      * <tr>
2377      *   <td>tr (Turkish)</td>
2378      *   <td>&#92;u0130</td>
2379      *   <td>&#92;u0069</td>
2380      *   <td>capital letter I with dot above -&gt; small letter i</td>
2381      * </tr>
2382      * <tr>
2383      *   <td>tr (Turkish)</td>
2384      *   <td>&#92;u0049</td>
2385      *   <td>&#92;u0131</td>
2386      *   <td>capital letter I -&gt; small letter dotless i </td>
2387      * </tr>
2388      * <tr>
2389      *   <td>(all)</td>
2390      *   <td>French Fries</td>
2391      *   <td>french fries</td>
2392      *   <td>lowercased all chars in String</td>
2393      * </tr>
2394      * <tr>
2395      *   <td>(all)</td>
2396      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2397      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2398      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2399      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2400      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2401      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2402      *   <td>lowercased all chars in String</td>
2403      * </tr>
2404      * </table>
2405      *
2406      * @param locale use the case transformation rules for this locale
2407      * @return the {@code String}, converted to lowercase.
2408      * @see     java.lang.String#toLowerCase()
2409      * @see     java.lang.String#toUpperCase()
2410      * @see     java.lang.String#toUpperCase(Locale)
2411      * @since   1.1
2412      */
2413     public String toLowerCase(Locale locale) {
2414         if (locale == null) {
2415             throw new NullPointerException();
2416         }
2417 
2418         int firstUpper;
2419         final int len = value.length;
2420 
2421         /* Now check if there are any characters that need to be changed. */
2422         scan: {
2423             for (firstUpper = 0 ; firstUpper < len; ) {
2424                 char c = value[firstUpper];
2425                 if ((c >= Character.MIN_HIGH_SURROGATE)
2426                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2427                     int supplChar = codePointAt(firstUpper);
2428                     if (supplChar != Character.toLowerCase(supplChar)) {
2429                         break scan;
2430                     }
2431                     firstUpper += Character.charCount(supplChar);
2432                 } else {
2433                     if (c != Character.toLowerCase(c)) {
2434                         break scan;
2435                     }
2436                     firstUpper++;
2437                 }
2438             }
2439             return this;
2440         }
2441 
2442         char[] result = new char[len];
2443         int resultOffset = 0;  /* result may grow, so i+resultOffset
2444                                 * is the write location in result */
2445 
2446         /* Just copy the first few lowerCase characters. */
2447         System.arraycopy(value, 0, result, 0, firstUpper);
2448 
2449         String lang = locale.getLanguage();
2450         boolean localeDependent =
2451                 (lang == "tr" || lang == "az" || lang == "lt");
2452         char[] lowerCharArray;
2453         int lowerChar;
2454         int srcChar;
2455         int srcCount;
2456         for (int i = firstUpper; i < len; i += srcCount) {
2457             srcChar = (int)value[i];
2458             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE
2459                     && (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2460                 srcChar = codePointAt(i);
2461                 srcCount = Character.charCount(srcChar);
2462             } else {
2463                 srcCount = 1;
2464             }
2465             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2466                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2467             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
2468                 lowerChar = Character.ERROR;
2469             } else {
2470                 lowerChar = Character.toLowerCase(srcChar);
2471             }
2472             if ((lowerChar == Character.ERROR)
2473                     || (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2474                 if (lowerChar == Character.ERROR) {
2475                     if (!localeDependent && srcChar == '\u0130') {
2476                         lowerCharArray =
2477                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
2478                     } else {
2479                         lowerCharArray =
2480                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2481                     }
2482                 } else if (srcCount == 2) {
2483                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
2484                     continue;
2485                 } else {
2486                     lowerCharArray = Character.toChars(lowerChar);
2487                 }
2488 
2489                 /* Grow result if needed */
2490                 int mapLen = lowerCharArray.length;
2491                 if (mapLen > srcCount) {
2492                     char[] result2 = new char[result.length + mapLen - srcCount];
2493                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2494                     result = result2;
2495                 }
2496                 for (int x = 0; x < mapLen; ++x) {
2497                     result[i + resultOffset + x] = lowerCharArray[x];
2498                 }
2499                 resultOffset += (mapLen - srcCount);
2500             } else {
2501                 result[i + resultOffset] = (char)lowerChar;
2502             }
2503         }
2504         return new String(result, 0, len + resultOffset);
2505     }
2506 
2507     /**
2508      * Converts all of the characters in this {@code String} to lower
2509      * case using the rules of the default locale. This is equivalent to calling
2510      * {@code toLowerCase(Locale.getDefault())}.
2511      * <p>
2512      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2513      * results if used for strings that are intended to be interpreted locale
2514      * independently.
2515      * Examples are programming language identifiers, protocol keys, and HTML
2516      * tags.
2517      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2518      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2519      * LATIN SMALL LETTER DOTLESS I character.
2520      * To obtain correct results for locale insensitive strings, use
2521      * {@code toLowerCase(Locale.ENGLISH)}.
2522      * <p>
2523      * @return  the {@code String}, converted to lowercase.
2524      * @see     java.lang.String#toLowerCase(Locale)
2525      */
2526     public String toLowerCase() {
2527         return toLowerCase(Locale.getDefault());
2528     }
2529 
2530     /**
2531      * Converts all of the characters in this {@code String} to upper
2532      * case using the rules of the given {@code Locale}. Case mapping is based
2533      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2534      * class. Since case mappings are not always 1:1 char mappings, the resulting
2535      * {@code String} may be a different length than the original {@code String}.
2536      * <p>
2537      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2538      * <p>
2539      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2540      * <tr>
2541      *   <th>Language Code of Locale</th>
2542      *   <th>Lower Case</th>
2543      *   <th>Upper Case</th>
2544      *   <th>Description</th>
2545      * </tr>
2546      * <tr>
2547      *   <td>tr (Turkish)</td>
2548      *   <td>&#92;u0069</td>
2549      *   <td>&#92;u0130</td>
2550      *   <td>small letter i -&gt; capital letter I with dot above</td>
2551      * </tr>
2552      * <tr>
2553      *   <td>tr (Turkish)</td>
2554      *   <td>&#92;u0131</td>
2555      *   <td>&#92;u0049</td>
2556      *   <td>small letter dotless i -&gt; capital letter I</td>
2557      * </tr>
2558      * <tr>
2559      *   <td>(all)</td>
2560      *   <td>&#92;u00df</td>
2561      *   <td>&#92;u0053 &#92;u0053</td>
2562      *   <td>small letter sharp s -&gt; two letters: SS</td>
2563      * </tr>
2564      * <tr>
2565      *   <td>(all)</td>
2566      *   <td>Fahrvergn&uuml;gen</td>
2567      *   <td>FAHRVERGN&Uuml;GEN</td>
2568      *   <td></td>
2569      * </tr>
2570      * </table>
2571      * @param locale use the case transformation rules for this locale
2572      * @return the {@code String}, converted to uppercase.
2573      * @see     java.lang.String#toUpperCase()
2574      * @see     java.lang.String#toLowerCase()
2575      * @see     java.lang.String#toLowerCase(Locale)
2576      * @since   1.1
2577      */
2578     public String toUpperCase(Locale locale) {
2579         if (locale == null) {
2580             throw new NullPointerException();
2581         }
2582 
2583         int firstLower;
2584         final int len = value.length;
2585 
2586         /* Now check if there are any characters that need to be changed. */
2587         scan: {
2588             for (firstLower = 0 ; firstLower < len; ) {
2589                 int c = (int)value[firstLower];
2590                 int srcCount;
2591                 if ((c >= Character.MIN_HIGH_SURROGATE)
2592                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2593                     c = codePointAt(firstLower);
2594                     srcCount = Character.charCount(c);
2595                 } else {
2596                     srcCount = 1;
2597                 }
2598                 int upperCaseChar = Character.toUpperCaseEx(c);
2599                 if ((upperCaseChar == Character.ERROR)
2600                         || (c != upperCaseChar)) {
2601                     break scan;
2602                 }
2603                 firstLower += srcCount;
2604             }
2605             return this;
2606         }
2607 
2608         char[] result = new char[len]; /* may grow */
2609         int resultOffset = 0;  /* result may grow, so i+resultOffset
2610          * is the write location in result */
2611 
2612         /* Just copy the first few upperCase characters. */
2613         System.arraycopy(value, 0, result, 0, firstLower);
2614 
2615         String lang = locale.getLanguage();
2616         boolean localeDependent =
2617                 (lang == "tr" || lang == "az" || lang == "lt");
2618         char[] upperCharArray;
2619         int upperChar;
2620         int srcChar;
2621         int srcCount;
2622         for (int i = firstLower; i < len; i += srcCount) {
2623             srcChar = (int)value[i];
2624             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
2625                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2626                 srcChar = codePointAt(i);
2627                 srcCount = Character.charCount(srcChar);
2628             } else {
2629                 srcCount = 1;
2630             }
2631             if (localeDependent) {
2632                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2633             } else {
2634                 upperChar = Character.toUpperCaseEx(srcChar);
2635             }
2636             if ((upperChar == Character.ERROR)
2637                     || (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2638                 if (upperChar == Character.ERROR) {
2639                     if (localeDependent) {
2640                         upperCharArray =
2641                                 ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2642                     } else {
2643                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2644                     }
2645                 } else if (srcCount == 2) {
2646                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
2647                     continue;
2648                 } else {
2649                     upperCharArray = Character.toChars(upperChar);
2650                 }
2651 
2652                 /* Grow result if needed */
2653                 int mapLen = upperCharArray.length;
2654                 if (mapLen > srcCount) {
2655                     char[] result2 = new char[result.length + mapLen - srcCount];
2656                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2657                     result = result2;
2658                 }
2659                 for (int x = 0; x < mapLen; ++x) {
2660                     result[i + resultOffset + x] = upperCharArray[x];
2661                 }
2662                 resultOffset += (mapLen - srcCount);
2663             } else {
2664                 result[i + resultOffset] = (char)upperChar;
2665             }
2666         }
2667         return new String(result, 0, len + resultOffset);
2668     }
2669 
2670     /**
2671      * Converts all of the characters in this {@code String} to upper
2672      * case using the rules of the default locale. This method is equivalent to
2673      * {@code toUpperCase(Locale.getDefault())}.
2674      * <p>
2675      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2676      * results if used for strings that are intended to be interpreted locale
2677      * independently.
2678      * Examples are programming language identifiers, protocol keys, and HTML
2679      * tags.
2680      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2681      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2682      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2683      * To obtain correct results for locale insensitive strings, use
2684      * {@code toUpperCase(Locale.ENGLISH)}.
2685      * <p>
2686      * @return  the {@code String}, converted to uppercase.
2687      * @see     java.lang.String#toUpperCase(Locale)
2688      */
2689     public String toUpperCase() {
2690         return toUpperCase(Locale.getDefault());
2691     }
2692 
2693     /**
2694      * Returns a copy of the string, with leading and trailing whitespace
2695      * omitted.
2696      * <p>
2697      * If this {@code String} object represents an empty character
2698      * sequence, or the first and last characters of character sequence
2699      * represented by this {@code String} object both have codes
2700      * greater than {@code '\u005Cu0020'} (the space character), then a
2701      * reference to this {@code String} object is returned.
2702      * <p>
2703      * Otherwise, if there is no character with a code greater than
2704      * {@code '\u005Cu0020'} in the string, then a new
2705      * {@code String} object representing an empty string is created
2706      * and returned.
2707      * <p>
2708      * Otherwise, let <i>k</i> be the index of the first character in the
2709      * string whose code is greater than {@code '\u005Cu0020'}, and let
2710      * <i>m</i> be the index of the last character in the string whose code
2711      * is greater than {@code '\u005Cu0020'}. A new {@code String}
2712      * object is created, representing the substring of this string that
2713      * begins with the character at index <i>k</i> and ends with the
2714      * character at index <i>m</i>-that is, the result of
2715      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
2716      * <p>
2717      * This method may be used to trim whitespace (as defined above) from
2718      * the beginning and end of a string.
2719      *
2720      * @return  A copy of this string with leading and trailing white
2721      *          space removed, or this string if it has no leading or
2722      *          trailing white space.
2723      */
2724     public String trim() {
2725         int len = value.length;
2726         int st = 0;
2727         char[] val = value;    /* avoid getfield opcode */
2728 
2729         while ((st < len) && (val[st] <= ' ')) {
2730             st++;
2731         }
2732         while ((st < len) && (val[len - 1] <= ' ')) {
2733             len--;
2734         }
2735         return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
2736     }
2737 
2738     /**
2739      * This object (which is already a string!) is itself returned.
2740      *
2741      * @return  the string itself.
2742      */
2743     public String toString() {
2744         return this;
2745     }
2746 
2747     /**
2748      * Converts this string to a new character array.
2749      *
2750      * @return  a newly allocated character array whose length is the length
2751      *          of this string and whose contents are initialized to contain
2752      *          the character sequence represented by this string.
2753      */
2754     public char[] toCharArray() {
2755         return Arrays.copyOf(value, value.length);
2756     }
2757 
2758     /**
2759      * Returns a formatted string using the specified format string and
2760      * arguments.
2761      *
2762      * <p> The locale always used is the one returned by {@link
2763      * java.util.Locale#getDefault() Locale.getDefault()}.
2764      *
2765      * @param  format
2766      *         A <a href="../util/Formatter.html#syntax">format string</a>
2767      *
2768      * @param  args
2769      *         Arguments referenced by the format specifiers in the format
2770      *         string.  If there are more arguments than format specifiers, the
2771      *         extra arguments are ignored.  The number of arguments is
2772      *         variable and may be zero.  The maximum number of arguments is
2773      *         limited by the maximum dimension of a Java array as defined by
2774      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2775      *         The behaviour on a
2776      *         <tt>null</tt> argument depends on the <a
2777      *         href="../util/Formatter.html#syntax">conversion</a>.
2778      *
2779      * @throws  IllegalFormatException
2780      *          If a format string contains an illegal syntax, a format
2781      *          specifier that is incompatible with the given arguments,
2782      *          insufficient arguments given the format string, or other
2783      *          illegal conditions.  For specification of all possible
2784      *          formatting errors, see the <a
2785      *          href="../util/Formatter.html#detail">Details</a> section of the
2786      *          formatter class specification.
2787      *
2788      * @throws  NullPointerException
2789      *          If the <tt>format</tt> is <tt>null</tt>
2790      *
2791      * @return  A formatted string
2792      *
2793      * @see  java.util.Formatter
2794      * @since  1.5
2795      */
2796     public static String format(String format, Object... args) {
2797         return new Formatter().format(format, args).toString();
2798     }
2799 
2800     /**
2801      * Returns a formatted string using the specified locale, format string,
2802      * and arguments.
2803      *
2804      * @param  l
2805      *         The {@linkplain java.util.Locale locale} to apply during
2806      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
2807      *         is applied.
2808      *
2809      * @param  format
2810      *         A <a href="../util/Formatter.html#syntax">format string</a>
2811      *
2812      * @param  args
2813      *         Arguments referenced by the format specifiers in the format
2814      *         string.  If there are more arguments than format specifiers, the
2815      *         extra arguments are ignored.  The number of arguments is
2816      *         variable and may be zero.  The maximum number of arguments is
2817      *         limited by the maximum dimension of a Java array as defined by
2818      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2819      *         The behaviour on a
2820      *         <tt>null</tt> argument depends on the <a
2821      *         href="../util/Formatter.html#syntax">conversion</a>.
2822      *
2823      * @throws  IllegalFormatException
2824      *          If a format string contains an illegal syntax, a format
2825      *          specifier that is incompatible with the given arguments,
2826      *          insufficient arguments given the format string, or other
2827      *          illegal conditions.  For specification of all possible
2828      *          formatting errors, see the <a
2829      *          href="../util/Formatter.html#detail">Details</a> section of the
2830      *          formatter class specification
2831      *
2832      * @throws  NullPointerException
2833      *          If the <tt>format</tt> is <tt>null</tt>
2834      *
2835      * @return  A formatted string
2836      *
2837      * @see  java.util.Formatter
2838      * @since  1.5
2839      */
2840     public static String format(Locale l, String format, Object... args) {
2841         return new Formatter(l).format(format, args).toString();
2842     }
2843 
2844     /**
2845      * Returns the string representation of the {@code Object} argument.
2846      *
2847      * @param   obj   an {@code Object}.
2848      * @return  if the argument is {@code null}, then a string equal to
2849      *          {@code "null"}; otherwise, the value of
2850      *          {@code obj.toString()} is returned.
2851      * @see     java.lang.Object#toString()
2852      */
2853     public static String valueOf(Object obj) {
2854         return (obj == null) ? "null" : obj.toString();
2855     }
2856 
2857     /**
2858      * Returns the string representation of the {@code char} array
2859      * argument. The contents of the character array are copied; subsequent
2860      * modification of the character array does not affect the newly
2861      * created string.
2862      *
2863      * @param   data   a {@code char} array.
2864      * @return  a newly allocated string representing the same sequence of
2865      *          characters contained in the character array argument.
2866      */
2867     public static String valueOf(char data[]) {
2868         return new String(data);
2869     }
2870 
2871     /**
2872      * Returns the string representation of a specific subarray of the
2873      * {@code char} array argument.
2874      * <p>
2875      * The {@code offset} argument is the index of the first
2876      * character of the subarray. The {@code count} argument
2877      * specifies the length of the subarray. The contents of the subarray
2878      * are copied; subsequent modification of the character array does not
2879      * affect the newly created string.
2880      *
2881      * @param   data     the character array.
2882      * @param   offset   the initial offset into the value of the
2883      *                  {@code String}.
2884      * @param   count    the length of the value of the {@code String}.
2885      * @return  a string representing the sequence of characters contained
2886      *          in the subarray of the character array argument.
2887      * @exception IndexOutOfBoundsException if {@code offset} is
2888      *          negative, or {@code count} is negative, or
2889      *          {@code offset+count} is larger than
2890      *          {@code data.length}.
2891      */
2892     public static String valueOf(char data[], int offset, int count) {
2893         return new String(data, offset, count);
2894     }
2895 
2896     /**
2897      * Returns a String that represents the character sequence in the
2898      * array specified.
2899      *
2900      * @param   data     the character array.
2901      * @param   offset   initial offset of the subarray.
2902      * @param   count    length of the subarray.
2903      * @return  a {@code String} that contains the characters of the
2904      *          specified subarray of the character array.
2905      */
2906     public static String copyValueOf(char data[], int offset, int count) {
2907         // All public String constructors now copy the data.
2908         return new String(data, offset, count);
2909     }
2910 
2911     /**
2912      * Returns a String that represents the character sequence in the
2913      * array specified.
2914      *
2915      * @param   data   the character array.
2916      * @return  a {@code String} that contains the characters of the
2917      *          character array.
2918      */
2919     public static String copyValueOf(char data[]) {
2920         return copyValueOf(data, 0, data.length);
2921     }
2922 
2923     /**
2924      * Returns the string representation of the {@code boolean} argument.
2925      *
2926      * @param   b   a {@code boolean}.
2927      * @return  if the argument is {@code true}, a string equal to
2928      *          {@code "true"} is returned; otherwise, a string equal to
2929      *          {@code "false"} is returned.
2930      */
2931     public static String valueOf(boolean b) {
2932         return b ? "true" : "false";
2933     }
2934 
2935     /**
2936      * Returns the string representation of the {@code char}
2937      * argument.
2938      *
2939      * @param   c   a {@code char}.
2940      * @return  a string of length {@code 1} containing
2941      *          as its single character the argument {@code c}.
2942      */
2943     public static String valueOf(char c) {
2944         char data[] = {c};
2945         return new String(data, true);
2946     }
2947 
2948     /**
2949      * Returns the string representation of the {@code int} argument.
2950      * <p>
2951      * The representation is exactly the one returned by the
2952      * {@code Integer.toString} method of one argument.
2953      *
2954      * @param   i   an {@code int}.
2955      * @return  a string representation of the {@code int} argument.
2956      * @see     java.lang.Integer#toString(int, int)
2957      */
2958     public static String valueOf(int i) {
2959         return Integer.toString(i);
2960     }
2961 
2962     /**
2963      * Returns the string representation of the {@code long} argument.
2964      * <p>
2965      * The representation is exactly the one returned by the
2966      * {@code Long.toString} method of one argument.
2967      *
2968      * @param   l   a {@code long}.
2969      * @return  a string representation of the {@code long} argument.
2970      * @see     java.lang.Long#toString(long)
2971      */
2972     public static String valueOf(long l) {
2973         return Long.toString(l);
2974     }
2975 
2976     /**
2977      * Returns the string representation of the {@code float} argument.
2978      * <p>
2979      * The representation is exactly the one returned by the
2980      * {@code Float.toString} method of one argument.
2981      *
2982      * @param   f   a {@code float}.
2983      * @return  a string representation of the {@code float} argument.
2984      * @see     java.lang.Float#toString(float)
2985      */
2986     public static String valueOf(float f) {
2987         return Float.toString(f);
2988     }
2989 
2990     /**
2991      * Returns the string representation of the {@code double} argument.
2992      * <p>
2993      * The representation is exactly the one returned by the
2994      * {@code Double.toString} method of one argument.
2995      *
2996      * @param   d   a {@code double}.
2997      * @return  a  string representation of the {@code double} argument.
2998      * @see     java.lang.Double#toString(double)
2999      */
3000     public static String valueOf(double d) {
3001         return Double.toString(d);
3002     }
3003 
3004     /**
3005      * Returns a canonical representation for the string object.
3006      * <p>
3007      * A pool of strings, initially empty, is maintained privately by the
3008      * class {@code String}.
3009      * <p>
3010      * When the intern method is invoked, if the pool already contains a
3011      * string equal to this {@code String} object as determined by
3012      * the {@link #equals(Object)} method, then the string from the pool is
3013      * returned. Otherwise, this {@code String} object is added to the
3014      * pool and a reference to this {@code String} object is returned.
3015      * <p>
3016      * It follows that for any two strings {@code s} and {@code t},
3017      * {@code s.intern() == t.intern()} is {@code true}
3018      * if and only if {@code s.equals(t)} is {@code true}.
3019      * <p>
3020      * All literal strings and string-valued constant expressions are
3021      * interned. String literals are defined in section 3.10.5 of the
3022      * <cite>The Java&trade; Language Specification</cite>.
3023      *
3024      * @return  a string that has the same contents as this string, but is
3025      *          guaranteed to be from a pool of unique strings.
3026      */
3027     public native String intern();
3028 }