1 /*
   2  * Copyright (c) 1994, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.Objects;
  37 import java.util.regex.Matcher;
  38 import java.util.regex.Pattern;
  39 import java.util.regex.PatternSyntaxException;
  40 
  41 /**
  42  * The {@code String} class represents character strings. All
  43  * string literals in Java programs, such as {@code "abc"}, are
  44  * implemented as instances of this class.
  45  * <p>
  46  * Strings are constant; their values cannot be changed after they
  47  * are created. String buffers support mutable strings.
  48  * Because String objects are immutable they can be shared. For example:
  49  * <p><blockquote><pre>
  50  *     String str = "abc";
  51  * </pre></blockquote><p>
  52  * is equivalent to:
  53  * <p><blockquote><pre>
  54  *     char data[] = {'a', 'b', 'c'};
  55  *     String str = new String(data);
  56  * </pre></blockquote><p>
  57  * Here are some more examples of how strings can be used:
  58  * <p><blockquote><pre>
  59  *     System.out.println("abc");
  60  *     String cde = "cde";
  61  *     System.out.println("abc" + cde);
  62  *     String c = "abc".substring(2,3);
  63  *     String d = cde.substring(1, 2);
  64  * </pre></blockquote>
  65  * <p>
  66  * The class {@code String} includes methods for examining
  67  * individual characters of the sequence, for comparing strings, for
  68  * searching strings, for extracting substrings, and for creating a
  69  * copy of a string with all characters translated to uppercase or to
  70  * lowercase. Case mapping is based on the Unicode Standard version
  71  * specified by the {@link java.lang.Character Character} class.
  72  * <p>
  73  * The Java language provides special support for the string
  74  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  75  * other objects to strings. String concatenation is implemented
  76  * through the {@code StringBuilder}(or {@code StringBuffer})
  77  * class and its {@code append} method.
  78  * String conversions are implemented through the method
  79  * {@code toString}, defined by {@code Object} and
  80  * inherited by all classes in Java. For additional information on
  81  * string concatenation and conversion, see Gosling, Joy, and Steele,
  82  * <i>The Java Language Specification</i>.
  83  *
  84  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  85  * or method in this class will cause a {@link NullPointerException} to be
  86  * thrown.
  87  *
  88  * <p>A {@code String} represents a string in the UTF-16 format
  89  * in which <em>supplementary characters</em> are represented by <em>surrogate
  90  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  91  * Character Representations</a> in the {@code Character} class for
  92  * more information).
  93  * Index values refer to {@code char} code units, so a supplementary
  94  * character uses two positions in a {@code String}.
  95  * <p>The {@code String} class provides methods for dealing with
  96  * Unicode code points (i.e., characters), in addition to those for
  97  * dealing with Unicode code units (i.e., {@code char} values).
  98  *
  99  * @author  Lee Boynton
 100  * @author  Arthur van Hoff
 101  * @author  Martin Buchholz
 102  * @author  Ulf Zibis
 103  * @see     java.lang.Object#toString()
 104  * @see     java.lang.StringBuffer
 105  * @see     java.lang.StringBuilder
 106  * @see     java.nio.charset.Charset
 107  * @since   JDK1.0
 108  */
 109 
 110 public final class String
 111     implements java.io.Serializable, Comparable<String>, CharSequence {
 112     /** The value is used for character storage. */
 113     private final char value[];
 114 
 115     /** Cache the hash code for the string */
 116     private int hash; // Default to 0
 117 
 118     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 119     private static final long serialVersionUID = -6849794470754667710L;
 120 
 121     /**
 122      * Class String is special cased within the Serialization Stream Protocol.
 123      *
 124      * A String instance is written initially into an ObjectOutputStream in the
 125      * following format:
 126      * <pre>
 127      *      {@code TC_STRING} (utf String)
 128      * </pre>
 129      * The String is written by method {@code DataOutput.writeUTF}.
 130      * A new handle is generated to  refer to all future references to the
 131      * string instance within the stream.
 132      */
 133     private static final ObjectStreamField[] serialPersistentFields =
 134             new ObjectStreamField[0];
 135 
 136     /**
 137      * Initializes a newly created {@code String} object so that it represents
 138      * an empty character sequence.  Note that use of this constructor is
 139      * unnecessary since Strings are immutable.
 140      */
 141     public String() {
 142         this.value = new char[0];
 143     }
 144 
 145     /**
 146      * Initializes a newly created {@code String} object so that it represents
 147      * the same sequence of characters as the argument; in other words, the
 148      * newly created string is a copy of the argument string. Unless an
 149      * explicit copy of {@code original} is needed, use of this constructor is
 150      * unnecessary since Strings are immutable.
 151      *
 152      * @param  original
 153      *         A {@code String}
 154      */
 155     public String(String original) {
 156         this.value = original.value;
 157         this.hash = original.hash;
 158     }
 159 
 160     /**
 161      * Allocates a new {@code String} so that it represents the sequence of
 162      * characters currently contained in the character array argument. The
 163      * contents of the character array are copied; subsequent modification of
 164      * the character array does not affect the newly created string.
 165      *
 166      * @param  value
 167      *         The initial value of the string
 168      */
 169     public String(char value[]) {
 170         this.value = Arrays.copyOf(value, value.length);
 171     }
 172 
 173     /**
 174      * Allocates a new {@code String} that contains characters from a subarray
 175      * of the character array argument. The {@code offset} argument is the
 176      * index of the first character of the subarray and the {@code count}
 177      * argument specifies the length of the subarray. The contents of the
 178      * subarray are copied; subsequent modification of the character array does
 179      * not affect the newly created string.
 180      *
 181      * @param  value
 182      *         Array that is the source of characters
 183      *
 184      * @param  offset
 185      *         The initial offset
 186      *
 187      * @param  count
 188      *         The length
 189      *
 190      * @throws  IndexOutOfBoundsException
 191      *          If the {@code offset} and {@code count} arguments index
 192      *          characters outside the bounds of the {@code value} array
 193      */
 194     public String(char value[], int offset, int count) {
 195         if (offset < 0) {
 196             throw new StringIndexOutOfBoundsException(offset);
 197         }
 198         if (count < 0) {
 199             throw new StringIndexOutOfBoundsException(count);
 200         }
 201         // Note: offset or count might be near -1>>>1.
 202         if (offset > value.length - count) {
 203             throw new StringIndexOutOfBoundsException(offset + count);
 204         }
 205         this.value = Arrays.copyOfRange(value, offset, offset+count);
 206     }
 207 
 208     /**
 209      * Allocates a new {@code String} that contains characters from a subarray
 210      * of the <a href="Character.html#unicode">Unicode code point</a> array
 211      * argument.  The {@code offset} argument is the index of the first code
 212      * point of the subarray and the {@code count} argument specifies the
 213      * length of the subarray.  The contents of the subarray are converted to
 214      * {@code char}s; subsequent modification of the {@code int} array does not
 215      * affect the newly created string.
 216      *
 217      * @param  codePoints
 218      *         Array that is the source of Unicode code points
 219      *
 220      * @param  offset
 221      *         The initial offset
 222      *
 223      * @param  count
 224      *         The length
 225      *
 226      * @throws  IllegalArgumentException
 227      *          If any invalid Unicode code point is found in {@code
 228      *          codePoints}
 229      *
 230      * @throws  IndexOutOfBoundsException
 231      *          If the {@code offset} and {@code count} arguments index
 232      *          characters outside the bounds of the {@code codePoints} array
 233      *
 234      * @since  1.5
 235      */
 236     public String(int[] codePoints, int offset, int count) {
 237         if (offset < 0) {
 238             throw new StringIndexOutOfBoundsException(offset);
 239         }
 240         if (count < 0) {
 241             throw new StringIndexOutOfBoundsException(count);
 242         }
 243         // Note: offset or count might be near -1>>>1.
 244         if (offset > codePoints.length - count) {
 245             throw new StringIndexOutOfBoundsException(offset + count);
 246         }
 247 
 248         final int end = offset + count;
 249 
 250         // Pass 1: Compute precise size of char[]
 251         int n = count;
 252         for (int i = offset; i < end; i++) {
 253             int c = codePoints[i];
 254             if (Character.isBmpCodePoint(c))
 255                 continue;
 256             else if (Character.isValidCodePoint(c))
 257                 n++;
 258             else throw new IllegalArgumentException(Integer.toString(c));
 259         }
 260 
 261         // Pass 2: Allocate and fill in char[]
 262         final char[] v = new char[n];
 263 
 264         for (int i = offset, j = 0; i < end; i++, j++) {
 265             int c = codePoints[i];
 266             if (Character.isBmpCodePoint(c))
 267                 v[j] = (char)c;
 268             else
 269                 Character.toSurrogates(c, v, j++);
 270         }
 271 
 272         this.value = v;
 273     }
 274 
 275     /**
 276      * Allocates a new {@code String} constructed from a subarray of an array
 277      * of 8-bit integer values.
 278      *
 279      * <p> The {@code offset} argument is the index of the first byte of the
 280      * subarray, and the {@code count} argument specifies the length of the
 281      * subarray.
 282      *
 283      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 284      * specified in the method above.
 285      *
 286      * @deprecated This method does not properly convert bytes into characters.
 287      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 288      * {@code String} constructors that take a {@link
 289      * java.nio.charset.Charset}, charset name, or that use the platform's
 290      * default charset.
 291      *
 292      * @param  ascii
 293      *         The bytes to be converted to characters
 294      *
 295      * @param  hibyte
 296      *         The top 8 bits of each 16-bit Unicode code unit
 297      *
 298      * @param  offset
 299      *         The initial offset
 300      * @param  count
 301      *         The length
 302      *
 303      * @throws  IndexOutOfBoundsException
 304      *          If the {@code offset} or {@code count} argument is invalid
 305      *
 306      * @see  #String(byte[], int)
 307      * @see  #String(byte[], int, int, java.lang.String)
 308      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 309      * @see  #String(byte[], int, int)
 310      * @see  #String(byte[], java.lang.String)
 311      * @see  #String(byte[], java.nio.charset.Charset)
 312      * @see  #String(byte[])
 313      */
 314     @Deprecated
 315     public String(byte ascii[], int hibyte, int offset, int count) {
 316         checkBounds(ascii, offset, count);
 317         char value[] = new char[count];
 318 
 319         if (hibyte == 0) {
 320             for (int i = count; i-- > 0;) {
 321                 value[i] = (char)(ascii[i + offset] & 0xff);
 322             }
 323         } else {
 324             hibyte <<= 8;
 325             for (int i = count; i-- > 0;) {
 326                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 327             }
 328         }
 329         this.value = value;
 330     }
 331 
 332     /**
 333      * Allocates a new {@code String} containing characters constructed from
 334      * an array of 8-bit integer values. Each character <i>c</i>in the
 335      * resulting string is constructed from the corresponding component
 336      * <i>b</i> in the byte array such that:
 337      *
 338      * <blockquote><pre>
 339      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 340      *                         | (<b><i>b</i></b> &amp; 0xff))
 341      * </pre></blockquote>
 342      *
 343      * @deprecated  This method does not properly convert bytes into
 344      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 345      * {@code String} constructors that take a {@link
 346      * java.nio.charset.Charset}, charset name, or that use the platform's
 347      * default charset.
 348      *
 349      * @param  ascii
 350      *         The bytes to be converted to characters
 351      *
 352      * @param  hibyte
 353      *         The top 8 bits of each 16-bit Unicode code unit
 354      *
 355      * @see  #String(byte[], int, int, java.lang.String)
 356      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 357      * @see  #String(byte[], int, int)
 358      * @see  #String(byte[], java.lang.String)
 359      * @see  #String(byte[], java.nio.charset.Charset)
 360      * @see  #String(byte[])
 361      */
 362     @Deprecated
 363     public String(byte ascii[], int hibyte) {
 364         this(ascii, hibyte, 0, ascii.length);
 365     }
 366 
 367     /* Common private utility method used to bounds check the byte array
 368      * and requested offset & length values used by the String(byte[],..)
 369      * constructors.
 370      */
 371     private static void checkBounds(byte[] bytes, int offset, int length) {
 372         if (length < 0)
 373             throw new StringIndexOutOfBoundsException(length);
 374         if (offset < 0)
 375             throw new StringIndexOutOfBoundsException(offset);
 376         if (offset > bytes.length - length)
 377             throw new StringIndexOutOfBoundsException(offset + length);
 378     }
 379 
 380     /**
 381      * Constructs a new {@code String} by decoding the specified subarray of
 382      * bytes using the specified charset.  The length of the new {@code String}
 383      * is a function of the charset, and hence may not be equal to the length
 384      * of the subarray.
 385      *
 386      * <p> The behavior of this constructor when the given bytes are not valid
 387      * in the given charset is unspecified.  The {@link
 388      * java.nio.charset.CharsetDecoder} class should be used when more control
 389      * over the decoding process is required.
 390      *
 391      * @param  bytes
 392      *         The bytes to be decoded into characters
 393      *
 394      * @param  offset
 395      *         The index of the first byte to decode
 396      *
 397      * @param  length
 398      *         The number of bytes to decode
 399 
 400      * @param  charsetName
 401      *         The name of a supported {@linkplain java.nio.charset.Charset
 402      *         charset}
 403      *
 404      * @throws  UnsupportedEncodingException
 405      *          If the named charset is not supported
 406      *
 407      * @throws  IndexOutOfBoundsException
 408      *          If the {@code offset} and {@code length} arguments index
 409      *          characters outside the bounds of the {@code bytes} array
 410      *
 411      * @since  JDK1.1
 412      */
 413     public String(byte bytes[], int offset, int length, String charsetName)
 414             throws UnsupportedEncodingException {
 415         if (charsetName == null)
 416             throw new NullPointerException("charsetName");
 417         checkBounds(bytes, offset, length);
 418         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 419     }
 420 
 421     /**
 422      * Constructs a new {@code String} by decoding the specified subarray of
 423      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 424      * The length of the new {@code String} is a function of the charset, and
 425      * hence may not be equal to the length of the subarray.
 426      *
 427      * <p> This method always replaces malformed-input and unmappable-character
 428      * sequences with this charset's default replacement string.  The {@link
 429      * java.nio.charset.CharsetDecoder} class should be used when more control
 430      * over the decoding process is required.
 431      *
 432      * @param  bytes
 433      *         The bytes to be decoded into characters
 434      *
 435      * @param  offset
 436      *         The index of the first byte to decode
 437      *
 438      * @param  length
 439      *         The number of bytes to decode
 440      *
 441      * @param  charset
 442      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 443      *         decode the {@code bytes}
 444      *
 445      * @throws  IndexOutOfBoundsException
 446      *          If the {@code offset} and {@code length} arguments index
 447      *          characters outside the bounds of the {@code bytes} array
 448      *
 449      * @since  1.6
 450      */
 451     public String(byte bytes[], int offset, int length, Charset charset) {
 452         if (charset == null)
 453             throw new NullPointerException("charset");
 454         checkBounds(bytes, offset, length);
 455         this.value =  StringCoding.decode(charset, bytes, offset, length);
 456     }
 457 
 458     /**
 459      * Constructs a new {@code String} by decoding the specified array of bytes
 460      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 461      * length of the new {@code String} is a function of the charset, and hence
 462      * may not be equal to the length of the byte array.
 463      *
 464      * <p> The behavior of this constructor when the given bytes are not valid
 465      * in the given charset is unspecified.  The {@link
 466      * java.nio.charset.CharsetDecoder} class should be used when more control
 467      * over the decoding process is required.
 468      *
 469      * @param  bytes
 470      *         The bytes to be decoded into characters
 471      *
 472      * @param  charsetName
 473      *         The name of a supported {@linkplain java.nio.charset.Charset
 474      *         charset}
 475      *
 476      * @throws  UnsupportedEncodingException
 477      *          If the named charset is not supported
 478      *
 479      * @since  JDK1.1
 480      */
 481     public String(byte bytes[], String charsetName)
 482             throws UnsupportedEncodingException {
 483         this(bytes, 0, bytes.length, charsetName);
 484     }
 485 
 486     /**
 487      * Constructs a new {@code String} by decoding the specified array of
 488      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 489      * The length of the new {@code String} is a function of the charset, and
 490      * hence may not be equal to the length of the byte array.
 491      *
 492      * <p> This method always replaces malformed-input and unmappable-character
 493      * sequences with this charset's default replacement string.  The {@link
 494      * java.nio.charset.CharsetDecoder} class should be used when more control
 495      * over the decoding process is required.
 496      *
 497      * @param  bytes
 498      *         The bytes to be decoded into characters
 499      *
 500      * @param  charset
 501      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 502      *         decode the {@code bytes}
 503      *
 504      * @since  1.6
 505      */
 506     public String(byte bytes[], Charset charset) {
 507         this(bytes, 0, bytes.length, charset);
 508     }
 509 
 510     /**
 511      * Constructs a new {@code String} by decoding the specified subarray of
 512      * bytes using the platform's default charset.  The length of the new
 513      * {@code String} is a function of the charset, and hence may not be equal
 514      * to the length of the subarray.
 515      *
 516      * <p> The behavior of this constructor when the given bytes are not valid
 517      * in the default charset is unspecified.  The {@link
 518      * java.nio.charset.CharsetDecoder} class should be used when more control
 519      * over the decoding process is required.
 520      *
 521      * @param  bytes
 522      *         The bytes to be decoded into characters
 523      *
 524      * @param  offset
 525      *         The index of the first byte to decode
 526      *
 527      * @param  length
 528      *         The number of bytes to decode
 529      *
 530      * @throws  IndexOutOfBoundsException
 531      *          If the {@code offset} and the {@code length} arguments index
 532      *          characters outside the bounds of the {@code bytes} array
 533      *
 534      * @since  JDK1.1
 535      */
 536     public String(byte bytes[], int offset, int length) {
 537         checkBounds(bytes, offset, length);
 538         this.value = StringCoding.decode(bytes, offset, length);
 539     }
 540 
 541     /**
 542      * Constructs a new {@code String} by decoding the specified array of bytes
 543      * using the platform's default charset.  The length of the new {@code
 544      * String} is a function of the charset, and hence may not be equal to the
 545      * length of the byte array.
 546      *
 547      * <p> The behavior of this constructor when the given bytes are not valid
 548      * in the default charset is unspecified.  The {@link
 549      * java.nio.charset.CharsetDecoder} class should be used when more control
 550      * over the decoding process is required.
 551      *
 552      * @param  bytes
 553      *         The bytes to be decoded into characters
 554      *
 555      * @since  JDK1.1
 556      */
 557     public String(byte bytes[]) {
 558         this(bytes, 0, bytes.length);
 559     }
 560 
 561     /**
 562      * Allocates a new string that contains the sequence of characters
 563      * currently contained in the string buffer argument. The contents of the
 564      * string buffer are copied; subsequent modification of the string buffer
 565      * does not affect the newly created string.
 566      *
 567      * @param  buffer
 568      *         A {@code StringBuffer}
 569      */
 570     public String(StringBuffer buffer) {
 571         synchronized(buffer) {
 572             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 573         }
 574     }
 575 
 576     /**
 577      * Allocates a new string that contains the sequence of characters
 578      * currently contained in the string builder argument. The contents of the
 579      * string builder are copied; subsequent modification of the string builder
 580      * does not affect the newly created string.
 581      *
 582      * <p> This constructor is provided to ease migration to {@code
 583      * StringBuilder}. Obtaining a string from a string builder via the {@code
 584      * toString} method is likely to run faster and is generally preferred.
 585      *
 586      * @param   builder
 587      *          A {@code StringBuilder}
 588      *
 589      * @since  1.5
 590      */
 591     public String(StringBuilder builder) {
 592         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 593     }
 594 
 595     /*
 596     * Package private constructor which shares value array for speed.
 597     * this constructor is always expected to be called with share==true.
 598     * a separate constructor is needed because we already have a public
 599     * String(char[]) constructor that makes a copy of the given char[].
 600     */
 601     String(char[] value, boolean share) {
 602         // assert share : "unshared not supported";
 603         this.value = value;
 604     }
 605 
 606     /**
 607      * Returns the length of this string.
 608      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 609      * code units</a> in the string.
 610      *
 611      * @return  the length of the sequence of characters represented by this
 612      *          object.
 613      */
 614     public int length() {
 615         return value.length;
 616     }
 617 
 618     /**
 619      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 620      *
 621      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 622      * {@code false}
 623      *
 624      * @since 1.6
 625      */
 626     public boolean isEmpty() {
 627         return value.length == 0;
 628     }
 629 
 630     /**
 631      * Returns the {@code char} value at the
 632      * specified index. An index ranges from {@code 0} to
 633      * {@code length() - 1}. The first {@code char} value of the sequence
 634      * is at index {@code 0}, the next at index {@code 1},
 635      * and so on, as for array indexing.
 636      *
 637      * <p>If the {@code char} value specified by the index is a
 638      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 639      * value is returned.
 640      *
 641      * @param      index   the index of the {@code char} value.
 642      * @return     the {@code char} value at the specified index of this string.
 643      *             The first {@code char} value is at index {@code 0}.
 644      * @exception  IndexOutOfBoundsException  if the {@code index}
 645      *             argument is negative or not less than the length of this
 646      *             string.
 647      */
 648     public char charAt(int index) {
 649         if ((index < 0) || (index >= value.length)) {
 650             throw new StringIndexOutOfBoundsException(index);
 651         }
 652         return value[index];
 653     }
 654 
 655     /**
 656      * Returns the character (Unicode code point) at the specified
 657      * index. The index refers to {@code char} values
 658      * (Unicode code units) and ranges from {@code 0} to
 659      * {@link #length()}{@code  - 1}.
 660      *
 661      * <p> If the {@code char} value specified at the given index
 662      * is in the high-surrogate range, the following index is less
 663      * than the length of this {@code String}, and the
 664      * {@code char} value at the following index is in the
 665      * low-surrogate range, then the supplementary code point
 666      * corresponding to this surrogate pair is returned. Otherwise,
 667      * the {@code char} value at the given index is returned.
 668      *
 669      * @param      index the index to the {@code char} values
 670      * @return     the code point value of the character at the
 671      *             {@code index}
 672      * @exception  IndexOutOfBoundsException  if the {@code index}
 673      *             argument is negative or not less than the length of this
 674      *             string.
 675      * @since      1.5
 676      */
 677     public int codePointAt(int index) {
 678         if ((index < 0) || (index >= value.length)) {
 679             throw new StringIndexOutOfBoundsException(index);
 680         }
 681         return Character.codePointAtImpl(value, index, value.length);
 682     }
 683 
 684     /**
 685      * Returns the character (Unicode code point) before the specified
 686      * index. The index refers to {@code char} values
 687      * (Unicode code units) and ranges from {@code 1} to {@link
 688      * CharSequence#length() length}.
 689      *
 690      * <p> If the {@code char} value at {@code (index - 1)}
 691      * is in the low-surrogate range, {@code (index - 2)} is not
 692      * negative, and the {@code char} value at {@code (index -
 693      * 2)} is in the high-surrogate range, then the
 694      * supplementary code point value of the surrogate pair is
 695      * returned. If the {@code char} value at {@code index -
 696      * 1} is an unpaired low-surrogate or a high-surrogate, the
 697      * surrogate value is returned.
 698      *
 699      * @param     index the index following the code point that should be returned
 700      * @return    the Unicode code point value before the given index.
 701      * @exception IndexOutOfBoundsException if the {@code index}
 702      *            argument is less than 1 or greater than the length
 703      *            of this string.
 704      * @since     1.5
 705      */
 706     public int codePointBefore(int index) {
 707         int i = index - 1;
 708         if ((i < 0) || (i >= value.length)) {
 709             throw new StringIndexOutOfBoundsException(index);
 710         }
 711         return Character.codePointBeforeImpl(value, index, 0);
 712     }
 713 
 714     /**
 715      * Returns the number of Unicode code points in the specified text
 716      * range of this {@code String}. The text range begins at the
 717      * specified {@code beginIndex} and extends to the
 718      * {@code char} at index {@code endIndex - 1}. Thus the
 719      * length (in {@code char}s) of the text range is
 720      * {@code endIndex-beginIndex}. Unpaired surrogates within
 721      * the text range count as one code point each.
 722      *
 723      * @param beginIndex the index to the first {@code char} of
 724      * the text range.
 725      * @param endIndex the index after the last {@code char} of
 726      * the text range.
 727      * @return the number of Unicode code points in the specified text
 728      * range
 729      * @exception IndexOutOfBoundsException if the
 730      * {@code beginIndex} is negative, or {@code endIndex}
 731      * is larger than the length of this {@code String}, or
 732      * {@code beginIndex} is larger than {@code endIndex}.
 733      * @since  1.5
 734      */
 735     public int codePointCount(int beginIndex, int endIndex) {
 736         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 737             throw new IndexOutOfBoundsException();
 738         }
 739         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 740     }
 741 
 742     /**
 743      * Returns the index within this {@code String} that is
 744      * offset from the given {@code index} by
 745      * {@code codePointOffset} code points. Unpaired surrogates
 746      * within the text range given by {@code index} and
 747      * {@code codePointOffset} count as one code point each.
 748      *
 749      * @param index the index to be offset
 750      * @param codePointOffset the offset in code points
 751      * @return the index within this {@code String}
 752      * @exception IndexOutOfBoundsException if {@code index}
 753      *   is negative or larger then the length of this
 754      *   {@code String}, or if {@code codePointOffset} is positive
 755      *   and the substring starting with {@code index} has fewer
 756      *   than {@code codePointOffset} code points,
 757      *   or if {@code codePointOffset} is negative and the substring
 758      *   before {@code index} has fewer than the absolute value
 759      *   of {@code codePointOffset} code points.
 760      * @since 1.5
 761      */
 762     public int offsetByCodePoints(int index, int codePointOffset) {
 763         if (index < 0 || index > value.length) {
 764             throw new IndexOutOfBoundsException();
 765         }
 766         return Character.offsetByCodePointsImpl(value, 0, value.length,
 767                 index, codePointOffset);
 768     }
 769 
 770     /**
 771      * Copy characters from this string into dst starting at dstBegin.
 772      * This method doesn't perform any range checking.
 773      */
 774     void getChars(char dst[], int dstBegin) {
 775         System.arraycopy(value, 0, dst, dstBegin, value.length);
 776     }
 777 
 778     /**
 779      * Copies characters from this string into the destination character
 780      * array.
 781      * <p>
 782      * The first character to be copied is at index {@code srcBegin};
 783      * the last character to be copied is at index {@code srcEnd-1}
 784      * (thus the total number of characters to be copied is
 785      * {@code srcEnd-srcBegin}). The characters are copied into the
 786      * subarray of {@code dst} starting at index {@code dstBegin}
 787      * and ending at index:
 788      * <p><blockquote><pre>
 789      *     dstbegin + (srcEnd-srcBegin) - 1
 790      * </pre></blockquote>
 791      *
 792      * @param      srcBegin   index of the first character in the string
 793      *                        to copy.
 794      * @param      srcEnd     index after the last character in the string
 795      *                        to copy.
 796      * @param      dst        the destination array.
 797      * @param      dstBegin   the start offset in the destination array.
 798      * @exception IndexOutOfBoundsException If any of the following
 799      *            is true:
 800      *            <ul><li>{@code srcBegin} is negative.
 801      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 802      *            <li>{@code srcEnd} is greater than the length of this
 803      *                string
 804      *            <li>{@code dstBegin} is negative
 805      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 806      *                {@code dst.length}</ul>
 807      */
 808     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 809         if (srcBegin < 0) {
 810             throw new StringIndexOutOfBoundsException(srcBegin);
 811         }
 812         if (srcEnd > value.length) {
 813             throw new StringIndexOutOfBoundsException(srcEnd);
 814         }
 815         if (srcBegin > srcEnd) {
 816             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 817         }
 818         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 819     }
 820 
 821     /**
 822      * Copies characters from this string into the destination byte array. Each
 823      * byte receives the 8 low-order bits of the corresponding character. The
 824      * eight high-order bits of each character are not copied and do not
 825      * participate in the transfer in any way.
 826      *
 827      * <p> The first character to be copied is at index {@code srcBegin}; the
 828      * last character to be copied is at index {@code srcEnd-1}.  The total
 829      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 830      * characters, converted to bytes, are copied into the subarray of {@code
 831      * dst} starting at index {@code dstBegin} and ending at index:
 832      *
 833      * <blockquote><pre>
 834      *     dstbegin + (srcEnd-srcBegin) - 1
 835      * </pre></blockquote>
 836      *
 837      * @deprecated  This method does not properly convert characters into
 838      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 839      * {@link #getBytes()} method, which uses the platform's default charset.
 840      *
 841      * @param  srcBegin
 842      *         Index of the first character in the string to copy
 843      *
 844      * @param  srcEnd
 845      *         Index after the last character in the string to copy
 846      *
 847      * @param  dst
 848      *         The destination array
 849      *
 850      * @param  dstBegin
 851      *         The start offset in the destination array
 852      *
 853      * @throws  IndexOutOfBoundsException
 854      *          If any of the following is true:
 855      *          <ul>
 856      *            <li> {@code srcBegin} is negative
 857      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 858      *            <li> {@code srcEnd} is greater than the length of this String
 859      *            <li> {@code dstBegin} is negative
 860      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 861      *                 dst.length}
 862      *          </ul>
 863      */
 864     @Deprecated
 865     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 866         if (srcBegin < 0) {
 867             throw new StringIndexOutOfBoundsException(srcBegin);
 868         }
 869         if (srcEnd > value.length) {
 870             throw new StringIndexOutOfBoundsException(srcEnd);
 871         }
 872         if (srcBegin > srcEnd) {
 873             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 874         }
 875         Objects.requireNonNull(dst);
 876 
 877         int j = dstBegin;
 878         int n = srcEnd;
 879         int i = srcBegin;
 880         char[] val = value;   /* avoid getfield opcode */
 881 
 882         while (i < n) {
 883             dst[j++] = (byte)val[i++];
 884         }
 885     }
 886 
 887     /**
 888      * Encodes this {@code String} into a sequence of bytes using the named
 889      * charset, storing the result into a new byte array.
 890      *
 891      * <p> The behavior of this method when this string cannot be encoded in
 892      * the given charset is unspecified.  The {@link
 893      * java.nio.charset.CharsetEncoder} class should be used when more control
 894      * over the encoding process is required.
 895      *
 896      * @param  charsetName
 897      *         The name of a supported {@linkplain java.nio.charset.Charset
 898      *         charset}
 899      *
 900      * @return  The resultant byte array
 901      *
 902      * @throws  UnsupportedEncodingException
 903      *          If the named charset is not supported
 904      *
 905      * @since  JDK1.1
 906      */
 907     public byte[] getBytes(String charsetName)
 908             throws UnsupportedEncodingException {
 909         if (charsetName == null) throw new NullPointerException();
 910         return StringCoding.encode(charsetName, value, 0, value.length);
 911     }
 912 
 913     /**
 914      * Encodes this {@code String} into a sequence of bytes using the given
 915      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 916      * new byte array.
 917      *
 918      * <p> This method always replaces malformed-input and unmappable-character
 919      * sequences with this charset's default replacement byte array.  The
 920      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 921      * control over the encoding process is required.
 922      *
 923      * @param  charset
 924      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 925      *         the {@code String}
 926      *
 927      * @return  The resultant byte array
 928      *
 929      * @since  1.6
 930      */
 931     public byte[] getBytes(Charset charset) {
 932         if (charset == null) throw new NullPointerException();
 933         return StringCoding.encode(charset, value, 0, value.length);
 934     }
 935 
 936     /**
 937      * Encodes this {@code String} into a sequence of bytes using the
 938      * platform's default charset, storing the result into a new byte array.
 939      *
 940      * <p> The behavior of this method when this string cannot be encoded in
 941      * the default charset is unspecified.  The {@link
 942      * java.nio.charset.CharsetEncoder} class should be used when more control
 943      * over the encoding process is required.
 944      *
 945      * @return  The resultant byte array
 946      *
 947      * @since      JDK1.1
 948      */
 949     public byte[] getBytes() {
 950         return StringCoding.encode(value, 0, value.length);
 951     }
 952 
 953     /**
 954      * Compares this string to the specified object.  The result is {@code
 955      * true} if and only if the argument is not {@code null} and is a {@code
 956      * String} object that represents the same sequence of characters as this
 957      * object.
 958      *
 959      * @param  anObject
 960      *         The object to compare this {@code String} against
 961      *
 962      * @return  {@code true} if the given object represents a {@code String}
 963      *          equivalent to this string, {@code false} otherwise
 964      *
 965      * @see  #compareTo(String)
 966      * @see  #equalsIgnoreCase(String)
 967      */
 968     public boolean equals(Object anObject) {
 969         if (this == anObject) {
 970             return true;
 971         }
 972         if (anObject instanceof String) {
 973             String anotherString = (String) anObject;
 974             int n = value.length;
 975             if (n == anotherString.value.length) {
 976                 char v1[] = value;
 977                 char v2[] = anotherString.value;
 978                 int i = 0;
 979                 while (n-- != 0) {
 980                     if (v1[i] != v2[i])
 981                             return false;
 982                     i++;
 983                 }
 984                 return true;
 985             }
 986         }
 987         return false;
 988     }
 989 
 990     /**
 991      * Compares this string to the specified {@code StringBuffer}.  The result
 992      * is {@code true} if and only if this {@code String} represents the same
 993      * sequence of characters as the specified {@code StringBuffer}. This method
 994      * synchronizes on the {@code StringBuffer}.
 995      *
 996      * @param  sb
 997      *         The {@code StringBuffer} to compare this {@code String} against
 998      *
 999      * @return  {@code true} if this {@code String} represents the same
1000      *          sequence of characters as the specified {@code StringBuffer},
1001      *          {@code false} otherwise
1002      *
1003      * @since  1.4
1004      */
1005     public boolean contentEquals(StringBuffer sb) {
1006         return contentEquals((CharSequence) sb);
1007     }
1008 
1009     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1010         char v1[] = value;
1011         char v2[] = sb.getValue();
1012         int i = 0;
1013         int n = value.length;
1014         while (n-- != 0) {
1015             if (v1[i] != v2[i]) {
1016                 return false;
1017             }
1018             i++;
1019         }
1020         return true;
1021     }
1022 
1023     /**
1024      * Compares this string to the specified {@code CharSequence}.  The
1025      * result is {@code true} if and only if this {@code String} represents the
1026      * same sequence of char values as the specified sequence. Note that if the
1027      * {@code CharSequence} is a {@code StringBuffer} then the method
1028      * synchronizes on it.
1029      *
1030      * @param  cs
1031      *         The sequence to compare this {@code String} against
1032      *
1033      * @return  {@code true} if this {@code String} represents the same
1034      *          sequence of char values as the specified sequence, {@code
1035      *          false} otherwise
1036      *
1037      * @since  1.5
1038      */
1039     public boolean contentEquals(CharSequence cs) {
1040         if (value.length != cs.length())
1041             return false;
1042         // Argument is a StringBuffer, StringBuilder
1043         if (cs instanceof AbstractStringBuilder) {
1044             if (cs instanceof StringBuffer) {
1045                 synchronized(cs) {
1046                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1047                 }
1048             } else {
1049                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1050             }
1051         }
1052         // Argument is a String
1053         if (cs.equals(this))
1054             return true;
1055         // Argument is a generic CharSequence
1056         char v1[] = value;
1057         int i = 0;
1058         int n = value.length;
1059         while (n-- != 0) {
1060             if (v1[i] != cs.charAt(i))
1061                 return false;
1062             i++;
1063         }
1064         return true;
1065     }
1066 
1067     /**
1068      * Compares this {@code String} to another {@code String}, ignoring case
1069      * considerations.  Two strings are considered equal ignoring case if they
1070      * are of the same length and corresponding characters in the two strings
1071      * are equal ignoring case.
1072      *
1073      * <p> Two characters {@code c1} and {@code c2} are considered the same
1074      * ignoring case if at least one of the following is true:
1075      * <ul>
1076      *   <li> The two characters are the same (as compared by the
1077      *        {@code ==} operator)
1078      *   <li> Applying the method {@link
1079      *        java.lang.Character#toUpperCase(char)} to each character
1080      *        produces the same result
1081      *   <li> Applying the method {@link
1082      *        java.lang.Character#toLowerCase(char)} to each character
1083      *        produces the same result
1084      * </ul>
1085      *
1086      * @param  anotherString
1087      *         The {@code String} to compare this {@code String} against
1088      *
1089      * @return  {@code true} if the argument is not {@code null} and it
1090      *          represents an equivalent {@code String} ignoring case; {@code
1091      *          false} otherwise
1092      *
1093      * @see  #equals(Object)
1094      */
1095     public boolean equalsIgnoreCase(String anotherString) {
1096         return (this == anotherString) ? true
1097                 : (anotherString != null)
1098                 && (anotherString.value.length == value.length)
1099                 && regionMatches(true, 0, anotherString, 0, value.length);
1100     }
1101 
1102     /**
1103      * Compares two strings lexicographically.
1104      * The comparison is based on the Unicode value of each character in
1105      * the strings. The character sequence represented by this
1106      * {@code String} object is compared lexicographically to the
1107      * character sequence represented by the argument string. The result is
1108      * a negative integer if this {@code String} object
1109      * lexicographically precedes the argument string. The result is a
1110      * positive integer if this {@code String} object lexicographically
1111      * follows the argument string. The result is zero if the strings
1112      * are equal; {@code compareTo} returns {@code 0} exactly when
1113      * the {@link #equals(Object)} method would return {@code true}.
1114      * <p>
1115      * This is the definition of lexicographic ordering. If two strings are
1116      * different, then either they have different characters at some index
1117      * that is a valid index for both strings, or their lengths are different,
1118      * or both. If they have different characters at one or more index
1119      * positions, let <i>k</i> be the smallest such index; then the string
1120      * whose character at position <i>k</i> has the smaller value, as
1121      * determined by using the &lt; operator, lexicographically precedes the
1122      * other string. In this case, {@code compareTo} returns the
1123      * difference of the two character values at position {@code k} in
1124      * the two string -- that is, the value:
1125      * <blockquote><pre>
1126      * this.charAt(k)-anotherString.charAt(k)
1127      * </pre></blockquote>
1128      * If there is no index position at which they differ, then the shorter
1129      * string lexicographically precedes the longer string. In this case,
1130      * {@code compareTo} returns the difference of the lengths of the
1131      * strings -- that is, the value:
1132      * <blockquote><pre>
1133      * this.length()-anotherString.length()
1134      * </pre></blockquote>
1135      *
1136      * @param   anotherString   the {@code String} to be compared.
1137      * @return  the value {@code 0} if the argument string is equal to
1138      *          this string; a value less than {@code 0} if this string
1139      *          is lexicographically less than the string argument; and a
1140      *          value greater than {@code 0} if this string is
1141      *          lexicographically greater than the string argument.
1142      */
1143     public int compareTo(String anotherString) {
1144         int len1 = value.length;
1145         int len2 = anotherString.value.length;
1146         int lim = Math.min(len1, len2);
1147         char v1[] = value;
1148         char v2[] = anotherString.value;
1149 
1150         int k = 0;
1151         while (k < lim) {
1152             char c1 = v1[k];
1153             char c2 = v2[k];
1154             if (c1 != c2) {
1155                 return c1 - c2;
1156             }
1157             k++;
1158         }
1159         return len1 - len2;
1160     }
1161 
1162     /**
1163      * A Comparator that orders {@code String} objects as by
1164      * {@code compareToIgnoreCase}. This comparator is serializable.
1165      * <p>
1166      * Note that this Comparator does <em>not</em> take locale into account,
1167      * and will result in an unsatisfactory ordering for certain locales.
1168      * The java.text package provides <em>Collators</em> to allow
1169      * locale-sensitive ordering.
1170      *
1171      * @see     java.text.Collator#compare(String, String)
1172      * @since   1.2
1173      */
1174     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1175                                          = new CaseInsensitiveComparator();
1176     private static class CaseInsensitiveComparator
1177             implements Comparator<String>, java.io.Serializable {
1178         // use serialVersionUID from JDK 1.2.2 for interoperability
1179         private static final long serialVersionUID = 8575799808933029326L;
1180 
1181         public int compare(String s1, String s2) {
1182             int n1 = s1.length();
1183             int n2 = s2.length();
1184             int min = Math.min(n1, n2);
1185             for (int i = 0; i < min; i++) {
1186                 char c1 = s1.charAt(i);
1187                 char c2 = s2.charAt(i);
1188                 if (c1 != c2) {
1189                     c1 = Character.toUpperCase(c1);
1190                     c2 = Character.toUpperCase(c2);
1191                     if (c1 != c2) {
1192                         c1 = Character.toLowerCase(c1);
1193                         c2 = Character.toLowerCase(c2);
1194                         if (c1 != c2) {
1195                             // No overflow because of numeric promotion
1196                             return c1 - c2;
1197                         }
1198                     }
1199                 }
1200             }
1201             return n1 - n2;
1202         }
1203 
1204         /** Replaces the de-serialized object. */
1205         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1206     }
1207 
1208     /**
1209      * Compares two strings lexicographically, ignoring case
1210      * differences. This method returns an integer whose sign is that of
1211      * calling {@code compareTo} with normalized versions of the strings
1212      * where case differences have been eliminated by calling
1213      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1214      * each character.
1215      * <p>
1216      * Note that this method does <em>not</em> take locale into account,
1217      * and will result in an unsatisfactory ordering for certain locales.
1218      * The java.text package provides <em>collators</em> to allow
1219      * locale-sensitive ordering.
1220      *
1221      * @param   str   the {@code String} to be compared.
1222      * @return  a negative integer, zero, or a positive integer as the
1223      *          specified String is greater than, equal to, or less
1224      *          than this String, ignoring case considerations.
1225      * @see     java.text.Collator#compare(String, String)
1226      * @since   1.2
1227      */
1228     public int compareToIgnoreCase(String str) {
1229         return CASE_INSENSITIVE_ORDER.compare(this, str);
1230     }
1231 
1232     /**
1233      * Tests if two string regions are equal.
1234      * <p>
1235      * A substring of this {@code String} object is compared to a substring
1236      * of the argument other. The result is true if these substrings
1237      * represent identical character sequences. The substring of this
1238      * {@code String} object to be compared begins at index {@code toffset}
1239      * and has length {@code len}. The substring of other to be compared
1240      * begins at index {@code ooffset} and has length {@code len}. The
1241      * result is {@code false} if and only if at least one of the following
1242      * is true:
1243      * <ul><li>{@code toffset} is negative.
1244      * <li>{@code ooffset} is negative.
1245      * <li>{@code toffset+len} is greater than the length of this
1246      * {@code String} object.
1247      * <li>{@code ooffset+len} is greater than the length of the other
1248      * argument.
1249      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1250      * such that:
1251      * <code>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</code>
1252      * </ul>
1253      *
1254      * @param   toffset   the starting offset of the subregion in this string.
1255      * @param   other     the string argument.
1256      * @param   ooffset   the starting offset of the subregion in the string
1257      *                    argument.
1258      * @param   len       the number of characters to compare.
1259      * @return  {@code true} if the specified subregion of this string
1260      *          exactly matches the specified subregion of the string argument;
1261      *          {@code false} otherwise.
1262      */
1263     public boolean regionMatches(int toffset, String other, int ooffset,
1264             int len) {
1265         char ta[] = value;
1266         int to = toffset;
1267         char pa[] = other.value;
1268         int po = ooffset;
1269         // Note: toffset, ooffset, or len might be near -1>>>1.
1270         if ((ooffset < 0) || (toffset < 0)
1271                 || (toffset > (long)value.length - len)
1272                 || (ooffset > (long)other.value.length - len)) {
1273             return false;
1274         }
1275         while (len-- > 0) {
1276             if (ta[to++] != pa[po++]) {
1277                 return false;
1278             }
1279         }
1280         return true;
1281     }
1282 
1283     /**
1284      * Tests if two string regions are equal.
1285      * <p>
1286      * A substring of this {@code String} object is compared to a substring
1287      * of the argument {@code other}. The result is {@code true} if these
1288      * substrings represent character sequences that are the same, ignoring
1289      * case if and only if {@code ignoreCase} is true. The substring of
1290      * this {@code String} object to be compared begins at index
1291      * {@code toffset} and has length {@code len}. The substring of
1292      * {@code other} to be compared begins at index {@code ooffset} and
1293      * has length {@code len}. The result is {@code false} if and only if
1294      * at least one of the following is true:
1295      * <ul><li>{@code toffset} is negative.
1296      * <li>{@code ooffset} is negative.
1297      * <li>{@code toffset+len} is greater than the length of this
1298      * {@code String} object.
1299      * <li>{@code ooffset+len} is greater than the length of the other
1300      * argument.
1301      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1302      * integer <i>k</i> less than {@code len} such that:
1303      * <blockquote><pre>
1304      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1305      * </pre></blockquote>
1306      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1307      * integer <i>k</i> less than {@code len} such that:
1308      * <blockquote><pre>
1309      * Character.toLowerCase(this.charAt(toffset+k)) !=
1310      Character.toLowerCase(other.charAt(ooffset+k))
1311      * </pre></blockquote>
1312      * and:
1313      * <blockquote><pre>
1314      * Character.toUpperCase(this.charAt(toffset+k)) !=
1315      *         Character.toUpperCase(other.charAt(ooffset+k))
1316      * </pre></blockquote>
1317      * </ul>
1318      *
1319      * @param   ignoreCase   if {@code true}, ignore case when comparing
1320      *                       characters.
1321      * @param   toffset      the starting offset of the subregion in this
1322      *                       string.
1323      * @param   other        the string argument.
1324      * @param   ooffset      the starting offset of the subregion in the string
1325      *                       argument.
1326      * @param   len          the number of characters to compare.
1327      * @return  {@code true} if the specified subregion of this string
1328      *          matches the specified subregion of the string argument;
1329      *          {@code false} otherwise. Whether the matching is exact
1330      *          or case insensitive depends on the {@code ignoreCase}
1331      *          argument.
1332      */
1333     public boolean regionMatches(boolean ignoreCase, int toffset,
1334             String other, int ooffset, int len) {
1335         char ta[] = value;
1336         int to = toffset;
1337         char pa[] = other.value;
1338         int po = ooffset;
1339         // Note: toffset, ooffset, or len might be near -1>>>1.
1340         if ((ooffset < 0) || (toffset < 0)
1341                 || (toffset > (long)value.length - len)
1342                 || (ooffset > (long)other.value.length - len)) {
1343             return false;
1344         }
1345         while (len-- > 0) {
1346             char c1 = ta[to++];
1347             char c2 = pa[po++];
1348             if (c1 == c2) {
1349                 continue;
1350             }
1351             if (ignoreCase) {
1352                 // If characters don't match but case may be ignored,
1353                 // try converting both characters to uppercase.
1354                 // If the results match, then the comparison scan should
1355                 // continue.
1356                 char u1 = Character.toUpperCase(c1);
1357                 char u2 = Character.toUpperCase(c2);
1358                 if (u1 == u2) {
1359                     continue;
1360                 }
1361                 // Unfortunately, conversion to uppercase does not work properly
1362                 // for the Georgian alphabet, which has strange rules about case
1363                 // conversion.  So we need to make one last check before
1364                 // exiting.
1365                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1366                     continue;
1367                 }
1368             }
1369             return false;
1370         }
1371         return true;
1372     }
1373 
1374     /**
1375      * Tests if the substring of this string beginning at the
1376      * specified index starts with the specified prefix.
1377      *
1378      * @param   prefix    the prefix.
1379      * @param   toffset   where to begin looking in this string.
1380      * @return  {@code true} if the character sequence represented by the
1381      *          argument is a prefix of the substring of this object starting
1382      *          at index {@code toffset}; {@code false} otherwise.
1383      *          The result is {@code false} if {@code toffset} is
1384      *          negative or greater than the length of this
1385      *          {@code String} object; otherwise the result is the same
1386      *          as the result of the expression
1387      *          <pre>
1388      *          this.substring(toffset).startsWith(prefix)
1389      *          </pre>
1390      */
1391     public boolean startsWith(String prefix, int toffset) {
1392         char ta[] = value;
1393         int to = toffset;
1394         char pa[] = prefix.value;
1395         int po = 0;
1396         int pc = prefix.value.length;
1397         // Note: toffset might be near -1>>>1.
1398         if ((toffset < 0) || (toffset > value.length - pc)) {
1399             return false;
1400         }
1401         while (--pc >= 0) {
1402             if (ta[to++] != pa[po++]) {
1403                 return false;
1404             }
1405         }
1406         return true;
1407     }
1408 
1409     /**
1410      * Tests if this string starts with the specified prefix.
1411      *
1412      * @param   prefix   the prefix.
1413      * @return  {@code true} if the character sequence represented by the
1414      *          argument is a prefix of the character sequence represented by
1415      *          this string; {@code false} otherwise.
1416      *          Note also that {@code true} will be returned if the
1417      *          argument is an empty string or is equal to this
1418      *          {@code String} object as determined by the
1419      *          {@link #equals(Object)} method.
1420      * @since   1. 0
1421      */
1422     public boolean startsWith(String prefix) {
1423         return startsWith(prefix, 0);
1424     }
1425 
1426     /**
1427      * Tests if this string ends with the specified suffix.
1428      *
1429      * @param   suffix   the suffix.
1430      * @return  {@code true} if the character sequence represented by the
1431      *          argument is a suffix of the character sequence represented by
1432      *          this object; {@code false} otherwise. Note that the
1433      *          result will be {@code true} if the argument is the
1434      *          empty string or is equal to this {@code String} object
1435      *          as determined by the {@link #equals(Object)} method.
1436      */
1437     public boolean endsWith(String suffix) {
1438         return startsWith(suffix, value.length - suffix.value.length);
1439     }
1440 
1441     /**
1442      * Returns a hash code for this string. The hash code for a
1443      * {@code String} object is computed as
1444      * <blockquote><pre>
1445      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1446      * </pre></blockquote>
1447      * using {@code int} arithmetic, where {@code s[i]} is the
1448      * <i>i</i>th character of the string, {@code n} is the length of
1449      * the string, and {@code ^} indicates exponentiation.
1450      * (The hash value of the empty string is zero.)
1451      *
1452      * @return  a hash code value for this object.
1453      */
1454     public int hashCode() {
1455         int h = hash;
1456         if (h == 0 && value.length > 0) {
1457             char val[] = value;
1458 
1459             for (int i = 0; i < value.length; i++) {
1460                 h = 31 * h + val[i];
1461             }
1462             hash = h;
1463         }
1464         return h;
1465     }
1466 
1467     /**
1468      * Returns the index within this string of the first occurrence of
1469      * the specified character. If a character with value
1470      * {@code ch} occurs in the character sequence represented by
1471      * this {@code String} object, then the index (in Unicode
1472      * code units) of the first such occurrence is returned. For
1473      * values of {@code ch} in the range from 0 to 0xFFFF
1474      * (inclusive), this is the smallest value <i>k</i> such that:
1475      * <blockquote><pre>
1476      * this.charAt(<i>k</i>) == ch
1477      * </pre></blockquote>
1478      * is true. For other values of {@code ch}, it is the
1479      * smallest value <i>k</i> such that:
1480      * <blockquote><pre>
1481      * this.codePointAt(<i>k</i>) == ch
1482      * </pre></blockquote>
1483      * is true. In either case, if no such character occurs in this
1484      * string, then {@code -1} is returned.
1485      *
1486      * @param   ch   a character (Unicode code point).
1487      * @return  the index of the first occurrence of the character in the
1488      *          character sequence represented by this object, or
1489      *          {@code -1} if the character does not occur.
1490      */
1491     public int indexOf(int ch) {
1492         return indexOf(ch, 0);
1493     }
1494 
1495     /**
1496      * Returns the index within this string of the first occurrence of the
1497      * specified character, starting the search at the specified index.
1498      * <p>
1499      * If a character with value {@code ch} occurs in the
1500      * character sequence represented by this {@code String}
1501      * object at an index no smaller than {@code fromIndex}, then
1502      * the index of the first such occurrence is returned. For values
1503      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1504      * this is the smallest value <i>k</i> such that:
1505      * <blockquote><pre>
1506      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1507      * </pre></blockquote>
1508      * is true. For other values of {@code ch}, it is the
1509      * smallest value <i>k</i> such that:
1510      * <blockquote><pre>
1511      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1512      * </pre></blockquote>
1513      * is true. In either case, if no such character occurs in this
1514      * string at or after position {@code fromIndex}, then
1515      * {@code -1} is returned.
1516      *
1517      * <p>
1518      * There is no restriction on the value of {@code fromIndex}. If it
1519      * is negative, it has the same effect as if it were zero: this entire
1520      * string may be searched. If it is greater than the length of this
1521      * string, it has the same effect as if it were equal to the length of
1522      * this string: {@code -1} is returned.
1523      *
1524      * <p>All indices are specified in {@code char} values
1525      * (Unicode code units).
1526      *
1527      * @param   ch          a character (Unicode code point).
1528      * @param   fromIndex   the index to start the search from.
1529      * @return  the index of the first occurrence of the character in the
1530      *          character sequence represented by this object that is greater
1531      *          than or equal to {@code fromIndex}, or {@code -1}
1532      *          if the character does not occur.
1533      */
1534     public int indexOf(int ch, int fromIndex) {
1535         final int max = value.length;
1536         if (fromIndex < 0) {
1537             fromIndex = 0;
1538         } else if (fromIndex >= max) {
1539             // Note: fromIndex might be near -1>>>1.
1540             return -1;
1541         }
1542 
1543         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1544             // handle most cases here (ch is a BMP code point or a
1545             // negative value (invalid code point))
1546             final char[] value = this.value;
1547             for (int i = fromIndex; i < max; i++) {
1548                 if (value[i] == ch) {
1549                     return i;
1550                 }
1551             }
1552             return -1;
1553         } else {
1554             return indexOfSupplementary(ch, fromIndex);
1555         }
1556     }
1557 
1558     /**
1559      * Handles (rare) calls of indexOf with a supplementary character.
1560      */
1561     private int indexOfSupplementary(int ch, int fromIndex) {
1562         if (Character.isValidCodePoint(ch)) {
1563             final char[] value = this.value;
1564             final char hi = Character.highSurrogate(ch);
1565             final char lo = Character.lowSurrogate(ch);
1566             final int max = value.length - 1;
1567             for (int i = fromIndex; i < max; i++) {
1568                 if (value[i] == hi && value[i + 1] == lo) {
1569                     return i;
1570                 }
1571             }
1572         }
1573         return -1;
1574     }
1575 
1576     /**
1577      * Returns the index within this string of the last occurrence of
1578      * the specified character. For values of {@code ch} in the
1579      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1580      * units) returned is the largest value <i>k</i> such that:
1581      * <blockquote><pre>
1582      * this.charAt(<i>k</i>) == ch
1583      * </pre></blockquote>
1584      * is true. For other values of {@code ch}, it is the
1585      * largest value <i>k</i> such that:
1586      * <blockquote><pre>
1587      * this.codePointAt(<i>k</i>) == ch
1588      * </pre></blockquote>
1589      * is true.  In either case, if no such character occurs in this
1590      * string, then {@code -1} is returned.  The
1591      * {@code String} is searched backwards starting at the last
1592      * character.
1593      *
1594      * @param   ch   a character (Unicode code point).
1595      * @return  the index of the last occurrence of the character in the
1596      *          character sequence represented by this object, or
1597      *          {@code -1} if the character does not occur.
1598      */
1599     public int lastIndexOf(int ch) {
1600         return lastIndexOf(ch, value.length - 1);
1601     }
1602 
1603     /**
1604      * Returns the index within this string of the last occurrence of
1605      * the specified character, searching backward starting at the
1606      * specified index. For values of {@code ch} in the range
1607      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1608      * value <i>k</i> such that:
1609      * <blockquote><pre>
1610      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1611      * </pre></blockquote>
1612      * is true. For other values of {@code ch}, it is the
1613      * largest value <i>k</i> such that:
1614      * <blockquote><pre>
1615      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1616      * </pre></blockquote>
1617      * is true. In either case, if no such character occurs in this
1618      * string at or before position {@code fromIndex}, then
1619      * {@code -1} is returned.
1620      *
1621      * <p>All indices are specified in {@code char} values
1622      * (Unicode code units).
1623      *
1624      * @param   ch          a character (Unicode code point).
1625      * @param   fromIndex   the index to start the search from. There is no
1626      *          restriction on the value of {@code fromIndex}. If it is
1627      *          greater than or equal to the length of this string, it has
1628      *          the same effect as if it were equal to one less than the
1629      *          length of this string: this entire string may be searched.
1630      *          If it is negative, it has the same effect as if it were -1:
1631      *          -1 is returned.
1632      * @return  the index of the last occurrence of the character in the
1633      *          character sequence represented by this object that is less
1634      *          than or equal to {@code fromIndex}, or {@code -1}
1635      *          if the character does not occur before that point.
1636      */
1637     public int lastIndexOf(int ch, int fromIndex) {
1638         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1639             // handle most cases here (ch is a BMP code point or a
1640             // negative value (invalid code point))
1641             final char[] value = this.value;
1642             int i = Math.min(fromIndex, value.length - 1);
1643             for (; i >= 0; i--) {
1644                 if (value[i] == ch) {
1645                     return i;
1646                 }
1647             }
1648             return -1;
1649         } else {
1650             return lastIndexOfSupplementary(ch, fromIndex);
1651         }
1652     }
1653 
1654     /**
1655      * Handles (rare) calls of lastIndexOf with a supplementary character.
1656      */
1657     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1658         if (Character.isValidCodePoint(ch)) {
1659             final char[] value = this.value;
1660             char hi = Character.highSurrogate(ch);
1661             char lo = Character.lowSurrogate(ch);
1662             int i = Math.min(fromIndex, value.length - 2);
1663             for (; i >= 0; i--) {
1664                 if (value[i] == hi && value[i + 1] == lo) {
1665                     return i;
1666                 }
1667             }
1668         }
1669         return -1;
1670     }
1671 
1672     /**
1673      * Returns the index within this string of the first occurrence of the
1674      * specified substring.
1675      *
1676      * <p>The returned index is the smallest value <i>k</i> for which:
1677      * <blockquote><pre>
1678      * this.startsWith(str, <i>k</i>)
1679      * </pre></blockquote>
1680      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1681      *
1682      * @param   str   the substring to search for.
1683      * @return  the index of the first occurrence of the specified substring,
1684      *          or {@code -1} if there is no such occurrence.
1685      */
1686     public int indexOf(String str) {
1687         return indexOf(str, 0);
1688     }
1689 
1690     /**
1691      * Returns the index within this string of the first occurrence of the
1692      * specified substring, starting at the specified index.
1693      *
1694      * <p>The returned index is the smallest value <i>k</i> for which:
1695      * <blockquote><pre>
1696      * <i>k</i> &gt;= fromIndex {@code &&} this.startsWith(str, <i>k</i>)
1697      * </pre></blockquote>
1698      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1699      *
1700      * @param   str         the substring to search for.
1701      * @param   fromIndex   the index from which to start the search.
1702      * @return  the index of the first occurrence of the specified substring,
1703      *          starting at the specified index,
1704      *          or {@code -1} if there is no such occurrence.
1705      */
1706     public int indexOf(String str, int fromIndex) {
1707         return indexOf(value, 0, value.length,
1708                 str.value, 0, str.value.length, fromIndex);
1709     }
1710 
1711     /**
1712      * Code shared by String and AbstractStringBuilder to do searches. The
1713      * source is the character array being searched, and the target
1714      * is the string being searched for.
1715      *
1716      * @param   source       the characters being searched.
1717      * @param   sourceOffset offset of the source string.
1718      * @param   sourceCount  count of the source string.
1719      * @param   target       the characters being searched for.
1720      * @param   fromIndex    the index to begin searching from.
1721      */
1722     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1723             String target, int fromIndex) {
1724         return indexOf(source, sourceOffset, sourceCount,
1725                        target.value, 0, target.value.length,
1726                        fromIndex);
1727     }
1728 
1729     /**
1730      * Code shared by String and StringBuffer to do searches. The
1731      * source is the character array being searched, and the target
1732      * is the string being searched for.
1733      *
1734      * @param   source       the characters being searched.
1735      * @param   sourceOffset offset of the source string.
1736      * @param   sourceCount  count of the source string.
1737      * @param   target       the characters being searched for.
1738      * @param   targetOffset offset of the target string.
1739      * @param   targetCount  count of the target string.
1740      * @param   fromIndex    the index to begin searching from.
1741      */
1742     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1743             char[] target, int targetOffset, int targetCount,
1744             int fromIndex) {
1745         if (fromIndex >= sourceCount) {
1746             return (targetCount == 0 ? sourceCount : -1);
1747         }
1748         if (fromIndex < 0) {
1749             fromIndex = 0;
1750         }
1751         if (targetCount == 0) {
1752             return fromIndex;
1753         }
1754 
1755         char first = target[targetOffset];
1756         int max = sourceOffset + (sourceCount - targetCount);
1757 
1758         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1759             /* Look for first character. */
1760             if (source[i] != first) {
1761                 while (++i <= max && source[i] != first);
1762             }
1763 
1764             /* Found first character, now look at the rest of v2 */
1765             if (i <= max) {
1766                 int j = i + 1;
1767                 int end = j + targetCount - 1;
1768                 for (int k = targetOffset + 1; j < end && source[j]
1769                         == target[k]; j++, k++);
1770 
1771                 if (j == end) {
1772                     /* Found whole string. */
1773                     return i - sourceOffset;
1774                 }
1775             }
1776         }
1777         return -1;
1778     }
1779 
1780     /**
1781      * Returns the index within this string of the last occurrence of the
1782      * specified substring.  The last occurrence of the empty string ""
1783      * is considered to occur at the index value {@code this.length()}.
1784      *
1785      * <p>The returned index is the largest value <i>k</i> for which:
1786      * <blockquote><pre>
1787      * this.startsWith(str, <i>k</i>)
1788      * </pre></blockquote>
1789      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1790      *
1791      * @param   str   the substring to search for.
1792      * @return  the index of the last occurrence of the specified substring,
1793      *          or {@code -1} if there is no such occurrence.
1794      */
1795     public int lastIndexOf(String str) {
1796         return lastIndexOf(str, value.length);
1797     }
1798 
1799     /**
1800      * Returns the index within this string of the last occurrence of the
1801      * specified substring, searching backward starting at the specified index.
1802      *
1803      * <p>The returned index is the largest value <i>k</i> for which:
1804      * <blockquote><pre>
1805      * <i>k</i> {@code <=} fromIndex {@code &&} this.startsWith(str, <i>k</i>)
1806      * </pre></blockquote>
1807      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1808      *
1809      * @param   str         the substring to search for.
1810      * @param   fromIndex   the index to start the search from.
1811      * @return  the index of the last occurrence of the specified substring,
1812      *          searching backward from the specified index,
1813      *          or {@code -1} if there is no such occurrence.
1814      */
1815     public int lastIndexOf(String str, int fromIndex) {
1816         return lastIndexOf(value, 0, value.length,
1817                 str.value, 0, str.value.length, fromIndex);
1818     }
1819 
1820     /**
1821      * Code shared by String and AbstractStringBuilder to do searches. The
1822      * source is the character array being searched, and the target
1823      * is the string being searched for.
1824      *
1825      * @param   source       the characters being searched.
1826      * @param   sourceOffset offset of the source string.
1827      * @param   sourceCount  count of the source string.
1828      * @param   target       the characters being searched for.
1829      * @param   fromIndex    the index to begin searching from.
1830      */
1831     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1832             String target, int fromIndex) {
1833         return lastIndexOf(source, sourceOffset, sourceCount,
1834                        target.value, 0, target.value.length,
1835                        fromIndex);
1836     }
1837 
1838     /**
1839      * Code shared by String and StringBuffer to do searches. The
1840      * source is the character array being searched, and the target
1841      * is the string being searched for.
1842      *
1843      * @param   source       the characters being searched.
1844      * @param   sourceOffset offset of the source string.
1845      * @param   sourceCount  count of the source string.
1846      * @param   target       the characters being searched for.
1847      * @param   targetOffset offset of the target string.
1848      * @param   targetCount  count of the target string.
1849      * @param   fromIndex    the index to begin searching from.
1850      */
1851     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1852             char[] target, int targetOffset, int targetCount,
1853             int fromIndex) {
1854         /*
1855          * Check arguments; return immediately where possible. For
1856          * consistency, don't check for null str.
1857          */
1858         int rightIndex = sourceCount - targetCount;
1859         if (fromIndex < 0) {
1860             return -1;
1861         }
1862         if (fromIndex > rightIndex) {
1863             fromIndex = rightIndex;
1864         }
1865         /* Empty string always matches. */
1866         if (targetCount == 0) {
1867             return fromIndex;
1868         }
1869 
1870         int strLastIndex = targetOffset + targetCount - 1;
1871         char strLastChar = target[strLastIndex];
1872         int min = sourceOffset + targetCount - 1;
1873         int i = min + fromIndex;
1874 
1875         startSearchForLastChar:
1876         while (true) {
1877             while (i >= min && source[i] != strLastChar) {
1878                 i--;
1879             }
1880             if (i < min) {
1881                 return -1;
1882             }
1883             int j = i - 1;
1884             int start = j - (targetCount - 1);
1885             int k = strLastIndex - 1;
1886 
1887             while (j > start) {
1888                 if (source[j--] != target[k--]) {
1889                     i--;
1890                     continue startSearchForLastChar;
1891                 }
1892             }
1893             return start - sourceOffset + 1;
1894         }
1895     }
1896 
1897     /**
1898      * Returns a new string that is a substring of this string. The
1899      * substring begins with the character at the specified index and
1900      * extends to the end of this string. <p>
1901      * Examples:
1902      * <blockquote><pre>
1903      * "unhappy".substring(2) returns "happy"
1904      * "Harbison".substring(3) returns "bison"
1905      * "emptiness".substring(9) returns "" (an empty string)
1906      * </pre></blockquote>
1907      *
1908      * @param      beginIndex   the beginning index, inclusive.
1909      * @return     the specified substring.
1910      * @exception  IndexOutOfBoundsException  if
1911      *             {@code beginIndex} is negative or larger than the
1912      *             length of this {@code String} object.
1913      */
1914     public String substring(int beginIndex) {
1915         if (beginIndex < 0) {
1916             throw new StringIndexOutOfBoundsException(beginIndex);
1917         }
1918         int subLen = value.length - beginIndex;
1919         if (subLen < 0) {
1920             throw new StringIndexOutOfBoundsException(subLen);
1921         }
1922         return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
1923     }
1924 
1925     /**
1926      * Returns a new string that is a substring of this string. The
1927      * substring begins at the specified {@code beginIndex} and
1928      * extends to the character at index {@code endIndex - 1}.
1929      * Thus the length of the substring is {@code endIndex-beginIndex}.
1930      * <p>
1931      * Examples:
1932      * <blockquote><pre>
1933      * "hamburger".substring(4, 8) returns "urge"
1934      * "smiles".substring(1, 5) returns "mile"
1935      * </pre></blockquote>
1936      *
1937      * @param      beginIndex   the beginning index, inclusive.
1938      * @param      endIndex     the ending index, exclusive.
1939      * @return     the specified substring.
1940      * @exception  IndexOutOfBoundsException  if the
1941      *             {@code beginIndex} is negative, or
1942      *             {@code endIndex} is larger than the length of
1943      *             this {@code String} object, or
1944      *             {@code beginIndex} is larger than
1945      *             {@code endIndex}.
1946      */
1947     public String substring(int beginIndex, int endIndex) {
1948         if (beginIndex < 0) {
1949             throw new StringIndexOutOfBoundsException(beginIndex);
1950         }
1951         if (endIndex > value.length) {
1952             throw new StringIndexOutOfBoundsException(endIndex);
1953         }
1954         int subLen = endIndex - beginIndex;
1955         if (subLen < 0) {
1956             throw new StringIndexOutOfBoundsException(subLen);
1957         }
1958         return ((beginIndex == 0) && (endIndex == value.length)) ? this
1959                 : new String(value, beginIndex, subLen);
1960     }
1961 
1962     /**
1963      * Returns a new character sequence that is a subsequence of this sequence.
1964      *
1965      * <p> An invocation of this method of the form
1966      *
1967      * <blockquote><pre>
1968      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1969      *
1970      * behaves in exactly the same way as the invocation
1971      *
1972      * <blockquote><pre>
1973      * str.substring(begin,&nbsp;end)</pre></blockquote>
1974      *
1975      * This method is defined so that the {@code String} class can implement
1976      * the {@link CharSequence} interface. </p>
1977      *
1978      * @param   beginIndex   the begin index, inclusive.
1979      * @param   endIndex     the end index, exclusive.
1980      * @return  the specified subsequence.
1981      *
1982      * @throws  IndexOutOfBoundsException
1983      *          if {@code beginIndex} or {@code endIndex} is negative,
1984      *          if {@code endIndex} is greater than {@code length()},
1985      *          or if {@code beginIndex} is greater than {@code endIndex}
1986      *
1987      * @since 1.4
1988      * @spec JSR-51
1989      */
1990     public CharSequence subSequence(int beginIndex, int endIndex) {
1991         return this.substring(beginIndex, endIndex);
1992     }
1993 
1994     /**
1995      * Concatenates the specified string to the end of this string.
1996      * <p>
1997      * If the length of the argument string is {@code 0}, then this
1998      * {@code String} object is returned. Otherwise, a new
1999      * {@code String} object is created, representing a character
2000      * sequence that is the concatenation of the character sequence
2001      * represented by this {@code String} object and the character
2002      * sequence represented by the argument string.<p>
2003      * Examples:
2004      * <blockquote><pre>
2005      * "cares".concat("s") returns "caress"
2006      * "to".concat("get").concat("her") returns "together"
2007      * </pre></blockquote>
2008      *
2009      * @param   str   the {@code String} that is concatenated to the end
2010      *                of this {@code String}.
2011      * @return  a string that represents the concatenation of this object's
2012      *          characters followed by the string argument's characters.
2013      */
2014     public String concat(String str) {
2015         int otherLen = str.length();
2016         if (otherLen == 0) {
2017             return this;
2018         }
2019         int len = value.length;
2020         char buf[] = Arrays.copyOf(value, len + otherLen);
2021         str.getChars(buf, len);
2022         return new String(buf, true);
2023     }
2024 
2025     /**
2026      * Returns a new string resulting from replacing all occurrences of
2027      * {@code oldChar} in this string with {@code newChar}.
2028      * <p>
2029      * If the character {@code oldChar} does not occur in the
2030      * character sequence represented by this {@code String} object,
2031      * then a reference to this {@code String} object is returned.
2032      * Otherwise, a new {@code String} object is created that
2033      * represents a character sequence identical to the character sequence
2034      * represented by this {@code String} object, except that every
2035      * occurrence of {@code oldChar} is replaced by an occurrence
2036      * of {@code newChar}.
2037      * <p>
2038      * Examples:
2039      * <blockquote><pre>
2040      * "mesquite in your cellar".replace('e', 'o')
2041      *         returns "mosquito in your collar"
2042      * "the war of baronets".replace('r', 'y')
2043      *         returns "the way of bayonets"
2044      * "sparring with a purple porpoise".replace('p', 't')
2045      *         returns "starring with a turtle tortoise"
2046      * "JonL".replace('q', 'x') returns "JonL" (no change)
2047      * </pre></blockquote>
2048      *
2049      * @param   oldChar   the old character.
2050      * @param   newChar   the new character.
2051      * @return  a string derived from this string by replacing every
2052      *          occurrence of {@code oldChar} with {@code newChar}.
2053      */
2054     public String replace(char oldChar, char newChar) {
2055         if (oldChar != newChar) {
2056             int len = value.length;
2057             int i = -1;
2058             char[] val = value; /* avoid getfield opcode */
2059 
2060             while (++i < len) {
2061                 if (val[i] == oldChar) {
2062                     break;
2063                 }
2064             }
2065             if (i < len) {
2066                 char buf[] = new char[len];
2067                 for (int j = 0; j < i; j++) {
2068                     buf[j] = val[j];
2069                 }
2070                 while (i < len) {
2071                     char c = val[i];
2072                     buf[i] = (c == oldChar) ? newChar : c;
2073                     i++;
2074                 }
2075                 return new String(buf, true);
2076             }
2077         }
2078         return this;
2079     }
2080 
2081     /**
2082      * Tells whether or not this string matches the given <a
2083      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2084      *
2085      * <p> An invocation of this method of the form
2086      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2087      * same result as the expression
2088      *
2089      * <blockquote>
2090      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2091      * matches(<i>regex</i>, <i>str</i>)}
2092      * </blockquote>
2093      *
2094      * @param   regex
2095      *          the regular expression to which this string is to be matched
2096      *
2097      * @return  {@code true} if, and only if, this string matches the
2098      *          given regular expression
2099      *
2100      * @throws  PatternSyntaxException
2101      *          if the regular expression's syntax is invalid
2102      *
2103      * @see java.util.regex.Pattern
2104      *
2105      * @since 1.4
2106      * @spec JSR-51
2107      */
2108     public boolean matches(String regex) {
2109         return Pattern.matches(regex, this);
2110     }
2111 
2112     /**
2113      * Returns true if and only if this string contains the specified
2114      * sequence of char values.
2115      *
2116      * @param s the sequence to search for
2117      * @return true if this string contains {@code s}, false otherwise
2118      * @since 1.5
2119      */
2120     public boolean contains(CharSequence s) {
2121         return indexOf(s.toString()) > -1;
2122     }
2123 
2124     /**
2125      * Replaces the first substring of this string that matches the given <a
2126      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2127      * given replacement.
2128      *
2129      * <p> An invocation of this method of the form
2130      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2131      * yields exactly the same result as the expression
2132      *
2133      * <blockquote>
2134      * <code>
2135      * {@link java.util.regex.Pattern}.{@link
2136      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2137      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2138      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2139      * </code>
2140      * </blockquote>
2141      *
2142      *<p>
2143      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2144      * replacement string may cause the results to be different than if it were
2145      * being treated as a literal replacement string; see
2146      * {@link java.util.regex.Matcher#replaceFirst}.
2147      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2148      * meaning of these characters, if desired.
2149      *
2150      * @param   regex
2151      *          the regular expression to which this string is to be matched
2152      * @param   replacement
2153      *          the string to be substituted for the first match
2154      *
2155      * @return  The resulting {@code String}
2156      *
2157      * @throws  PatternSyntaxException
2158      *          if the regular expression's syntax is invalid
2159      *
2160      * @see java.util.regex.Pattern
2161      *
2162      * @since 1.4
2163      * @spec JSR-51
2164      */
2165     public String replaceFirst(String regex, String replacement) {
2166         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2167     }
2168 
2169     /**
2170      * Replaces each substring of this string that matches the given <a
2171      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2172      * given replacement.
2173      *
2174      * <p> An invocation of this method of the form
2175      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2176      * yields exactly the same result as the expression
2177      *
2178      * <blockquote>
2179      * <code>
2180      * {@link java.util.regex.Pattern}.{@link
2181      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2182      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2183      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2184      * </code>
2185      * </blockquote>
2186      *
2187      *<p>
2188      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2189      * replacement string may cause the results to be different than if it were
2190      * being treated as a literal replacement string; see
2191      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2192      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2193      * meaning of these characters, if desired.
2194      *
2195      * @param   regex
2196      *          the regular expression to which this string is to be matched
2197      * @param   replacement
2198      *          the string to be substituted for each match
2199      *
2200      * @return  The resulting {@code String}
2201      *
2202      * @throws  PatternSyntaxException
2203      *          if the regular expression's syntax is invalid
2204      *
2205      * @see java.util.regex.Pattern
2206      *
2207      * @since 1.4
2208      * @spec JSR-51
2209      */
2210     public String replaceAll(String regex, String replacement) {
2211         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2212     }
2213 
2214     /**
2215      * Replaces each substring of this string that matches the literal target
2216      * sequence with the specified literal replacement sequence. The
2217      * replacement proceeds from the beginning of the string to the end, for
2218      * example, replacing "aa" with "b" in the string "aaa" will result in
2219      * "ba" rather than "ab".
2220      *
2221      * @param  target The sequence of char values to be replaced
2222      * @param  replacement The replacement sequence of char values
2223      * @return  The resulting string
2224      * @since 1.5
2225      */
2226     public String replace(CharSequence target, CharSequence replacement) {
2227         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2228                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2229     }
2230 
2231     /**
2232      * Splits this string around matches of the given
2233      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2234      *
2235      * <p> The array returned by this method contains each substring of this
2236      * string that is terminated by another substring that matches the given
2237      * expression or is terminated by the end of the string.  The substrings in
2238      * the array are in the order in which they occur in this string.  If the
2239      * expression does not match any part of the input then the resulting array
2240      * has just one element, namely this string.
2241      *
2242      * <p> The {@code limit} parameter controls the number of times the
2243      * pattern is applied and therefore affects the length of the resulting
2244      * array.  If the limit <i>n</i> is greater than zero then the pattern
2245      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2246      * length will be no greater than <i>n</i>, and the array's last entry
2247      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2248      * is non-positive then the pattern will be applied as many times as
2249      * possible and the array can have any length.  If <i>n</i> is zero then
2250      * the pattern will be applied as many times as possible, the array can
2251      * have any length, and trailing empty strings will be discarded.
2252      *
2253      * <p> The string {@code "boo:and:foo"}, for example, yields the
2254      * following results with these parameters:
2255      *
2256      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2257      * <tr>
2258      *     <th>Regex</th>
2259      *     <th>Limit</th>
2260      *     <th>Result</th>
2261      * </tr>
2262      * <tr><td align=center>:</td>
2263      *     <td align=center>2</td>
2264      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2265      * <tr><td align=center>:</td>
2266      *     <td align=center>5</td>
2267      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2268      * <tr><td align=center>:</td>
2269      *     <td align=center>-2</td>
2270      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2271      * <tr><td align=center>o</td>
2272      *     <td align=center>5</td>
2273      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2274      * <tr><td align=center>o</td>
2275      *     <td align=center>-2</td>
2276      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2277      * <tr><td align=center>o</td>
2278      *     <td align=center>0</td>
2279      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2280      * </table></blockquote>
2281      *
2282      * <p> An invocation of this method of the form
2283      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2284      * yields the same result as the expression
2285      *
2286      * <blockquote>
2287      * <code>
2288      * {@link java.util.regex.Pattern}.{@link
2289      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2290      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2291      * </code>
2292      * </blockquote>
2293      *
2294      *
2295      * @param  regex
2296      *         the delimiting regular expression
2297      *
2298      * @param  limit
2299      *         the result threshold, as described above
2300      *
2301      * @return  the array of strings computed by splitting this string
2302      *          around matches of the given regular expression
2303      *
2304      * @throws  PatternSyntaxException
2305      *          if the regular expression's syntax is invalid
2306      *
2307      * @see java.util.regex.Pattern
2308      *
2309      * @since 1.4
2310      * @spec JSR-51
2311      */
2312     public String[] split(String regex, int limit) {
2313         /* fastpath if the regex is a
2314          (1)one-char String and this character is not one of the
2315             RegEx's meta characters ".$|()[{^?*+\\", or
2316          (2)two-char String and the first char is the backslash and
2317             the second is not the ascii digit or ascii letter.
2318          */
2319         char ch = 0;
2320         if (((regex.value.length == 1 &&
2321              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2322              (regex.length() == 2 &&
2323               regex.charAt(0) == '\\' &&
2324               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2325               ((ch-'a')|('z'-ch)) < 0 &&
2326               ((ch-'A')|('Z'-ch)) < 0)) &&
2327             (ch < Character.MIN_HIGH_SURROGATE ||
2328              ch > Character.MAX_LOW_SURROGATE))
2329         {
2330             int off = 0;
2331             int next = 0;
2332             boolean limited = limit > 0;
2333             ArrayList<String> list = new ArrayList<>();
2334             while ((next = indexOf(ch, off)) != -1) {
2335                 if (!limited || list.size() < limit - 1) {
2336                     list.add(substring(off, next));
2337                     off = next + 1;
2338                 } else {    // last one
2339                     //assert (list.size() == limit - 1);
2340                     list.add(substring(off, value.length));
2341                     off = value.length;
2342                     break;
2343                 }
2344             }
2345             // If no match was found, return this
2346             if (off == 0)
2347                 return new String[]{this};
2348 
2349             // Add remaining segment
2350             if (!limited || list.size() < limit)
2351                 list.add(substring(off, value.length));
2352 
2353             // Construct result
2354             int resultSize = list.size();
2355             if (limit == 0)
2356                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0)
2357                     resultSize--;
2358             String[] result = new String[resultSize];
2359             return list.subList(0, resultSize).toArray(result);
2360         }
2361         return Pattern.compile(regex).split(this, limit);
2362     }
2363 
2364     /**
2365      * Splits this string around matches of the given <a
2366      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2367      *
2368      * <p> This method works as if by invoking the two-argument {@link
2369      * #split(String, int) split} method with the given expression and a limit
2370      * argument of zero.  Trailing empty strings are therefore not included in
2371      * the resulting array.
2372      *
2373      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2374      * results with these expressions:
2375      *
2376      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2377      * <tr>
2378      *  <th>Regex</th>
2379      *  <th>Result</th>
2380      * </tr>
2381      * <tr><td align=center>:</td>
2382      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2383      * <tr><td align=center>o</td>
2384      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2385      * </table></blockquote>
2386      *
2387      *
2388      * @param  regex
2389      *         the delimiting regular expression
2390      *
2391      * @return  the array of strings computed by splitting this string
2392      *          around matches of the given regular expression
2393      *
2394      * @throws  PatternSyntaxException
2395      *          if the regular expression's syntax is invalid
2396      *
2397      * @see java.util.regex.Pattern
2398      *
2399      * @since 1.4
2400      * @spec JSR-51
2401      */
2402     public String[] split(String regex) {
2403         return split(regex, 0);
2404     }
2405 
2406     /**
2407      * Converts all of the characters in this {@code String} to lower
2408      * case using the rules of the given {@code Locale}.  Case mapping is based
2409      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2410      * class. Since case mappings are not always 1:1 char mappings, the resulting
2411      * {@code String} may be a different length than the original {@code String}.
2412      * <p>
2413      * Examples of lowercase  mappings are in the following table:
2414      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2415      * <tr>
2416      *   <th>Language Code of Locale</th>
2417      *   <th>Upper Case</th>
2418      *   <th>Lower Case</th>
2419      *   <th>Description</th>
2420      * </tr>
2421      * <tr>
2422      *   <td>tr (Turkish)</td>
2423      *   <td>&#92;u0130</td>
2424      *   <td>&#92;u0069</td>
2425      *   <td>capital letter I with dot above -&gt; small letter i</td>
2426      * </tr>
2427      * <tr>
2428      *   <td>tr (Turkish)</td>
2429      *   <td>&#92;u0049</td>
2430      *   <td>&#92;u0131</td>
2431      *   <td>capital letter I -&gt; small letter dotless i </td>
2432      * </tr>
2433      * <tr>
2434      *   <td>(all)</td>
2435      *   <td>French Fries</td>
2436      *   <td>french fries</td>
2437      *   <td>lowercased all chars in String</td>
2438      * </tr>
2439      * <tr>
2440      *   <td>(all)</td>
2441      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2442      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2443      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2444      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2445      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2446      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2447      *   <td>lowercased all chars in String</td>
2448      * </tr>
2449      * </table>
2450      *
2451      * @param locale use the case transformation rules for this locale
2452      * @return the {@code String}, converted to lowercase.
2453      * @see     java.lang.String#toLowerCase()
2454      * @see     java.lang.String#toUpperCase()
2455      * @see     java.lang.String#toUpperCase(Locale)
2456      * @since   1.1
2457      */
2458     public String toLowerCase(Locale locale) {
2459         if (locale == null) {
2460             throw new NullPointerException();
2461         }
2462 
2463         int firstUpper;
2464         final int len = value.length;
2465 
2466         /* Now check if there are any characters that need to be changed. */
2467         scan: {
2468             for (firstUpper = 0 ; firstUpper < len; ) {
2469                 char c = value[firstUpper];
2470                 if ((c >= Character.MIN_HIGH_SURROGATE)
2471                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2472                     int supplChar = codePointAt(firstUpper);
2473                     if (supplChar != Character.toLowerCase(supplChar)) {
2474                         break scan;
2475                     }
2476                     firstUpper += Character.charCount(supplChar);
2477                 } else {
2478                     if (c != Character.toLowerCase(c)) {
2479                         break scan;
2480                     }
2481                     firstUpper++;
2482                 }
2483             }
2484             return this;
2485         }
2486 
2487         char[] result = new char[len];
2488         int resultOffset = 0;  /* result may grow, so i+resultOffset
2489                                 * is the write location in result */
2490 
2491         /* Just copy the first few lowerCase characters. */
2492         System.arraycopy(value, 0, result, 0, firstUpper);
2493 
2494         String lang = locale.getLanguage();
2495         boolean localeDependent =
2496                 (lang == "tr" || lang == "az" || lang == "lt");
2497         char[] lowerCharArray;
2498         int lowerChar;
2499         int srcChar;
2500         int srcCount;
2501         for (int i = firstUpper; i < len; i += srcCount) {
2502             srcChar = (int)value[i];
2503             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE
2504                     && (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2505                 srcChar = codePointAt(i);
2506                 srcCount = Character.charCount(srcChar);
2507             } else {
2508                 srcCount = 1;
2509             }
2510             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2511                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2512             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
2513                 lowerChar = Character.ERROR;
2514             } else {
2515                 lowerChar = Character.toLowerCase(srcChar);
2516             }
2517             if ((lowerChar == Character.ERROR)
2518                     || (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2519                 if (lowerChar == Character.ERROR) {
2520                     if (!localeDependent && srcChar == '\u0130') {
2521                         lowerCharArray =
2522                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
2523                     } else {
2524                         lowerCharArray =
2525                                 ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2526                     }
2527                 } else if (srcCount == 2) {
2528                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
2529                     continue;
2530                 } else {
2531                     lowerCharArray = Character.toChars(lowerChar);
2532                 }
2533 
2534                 /* Grow result if needed */
2535                 int mapLen = lowerCharArray.length;
2536                 if (mapLen > srcCount) {
2537                     char[] result2 = new char[result.length + mapLen - srcCount];
2538                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2539                     result = result2;
2540                 }
2541                 for (int x = 0; x < mapLen; ++x) {
2542                     result[i + resultOffset + x] = lowerCharArray[x];
2543                 }
2544                 resultOffset += (mapLen - srcCount);
2545             } else {
2546                 result[i + resultOffset] = (char)lowerChar;
2547             }
2548         }
2549         return new String(result, 0, len + resultOffset);
2550     }
2551 
2552     /**
2553      * Converts all of the characters in this {@code String} to lower
2554      * case using the rules of the default locale. This is equivalent to calling
2555      * {@code toLowerCase(Locale.getDefault())}.
2556      * <p>
2557      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2558      * results if used for strings that are intended to be interpreted locale
2559      * independently.
2560      * Examples are programming language identifiers, protocol keys, and HTML
2561      * tags.
2562      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2563      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2564      * LATIN SMALL LETTER DOTLESS I character.
2565      * To obtain correct results for locale insensitive strings, use
2566      * {@code toLowerCase(Locale.ENGLISH)}.
2567      * <p>
2568      * @return  the {@code String}, converted to lowercase.
2569      * @see     java.lang.String#toLowerCase(Locale)
2570      */
2571     public String toLowerCase() {
2572         return toLowerCase(Locale.getDefault());
2573     }
2574 
2575     /**
2576      * Converts all of the characters in this {@code String} to upper
2577      * case using the rules of the given {@code Locale}. Case mapping is based
2578      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2579      * class. Since case mappings are not always 1:1 char mappings, the resulting
2580      * {@code String} may be a different length than the original {@code String}.
2581      * <p>
2582      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2583      * <p>
2584      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2585      * <tr>
2586      *   <th>Language Code of Locale</th>
2587      *   <th>Lower Case</th>
2588      *   <th>Upper Case</th>
2589      *   <th>Description</th>
2590      * </tr>
2591      * <tr>
2592      *   <td>tr (Turkish)</td>
2593      *   <td>&#92;u0069</td>
2594      *   <td>&#92;u0130</td>
2595      *   <td>small letter i -&gt; capital letter I with dot above</td>
2596      * </tr>
2597      * <tr>
2598      *   <td>tr (Turkish)</td>
2599      *   <td>&#92;u0131</td>
2600      *   <td>&#92;u0049</td>
2601      *   <td>small letter dotless i -&gt; capital letter I</td>
2602      * </tr>
2603      * <tr>
2604      *   <td>(all)</td>
2605      *   <td>&#92;u00df</td>
2606      *   <td>&#92;u0053 &#92;u0053</td>
2607      *   <td>small letter sharp s -&gt; two letters: SS</td>
2608      * </tr>
2609      * <tr>
2610      *   <td>(all)</td>
2611      *   <td>Fahrvergn&uuml;gen</td>
2612      *   <td>FAHRVERGN&Uuml;GEN</td>
2613      *   <td></td>
2614      * </tr>
2615      * </table>
2616      * @param locale use the case transformation rules for this locale
2617      * @return the {@code String}, converted to uppercase.
2618      * @see     java.lang.String#toUpperCase()
2619      * @see     java.lang.String#toLowerCase()
2620      * @see     java.lang.String#toLowerCase(Locale)
2621      * @since   1.1
2622      */
2623     public String toUpperCase(Locale locale) {
2624         if (locale == null) {
2625             throw new NullPointerException();
2626         }
2627 
2628         int firstLower;
2629         final int len = value.length;
2630 
2631         /* Now check if there are any characters that need to be changed. */
2632         scan: {
2633             for (firstLower = 0 ; firstLower < len; ) {
2634                 int c = (int)value[firstLower];
2635                 int srcCount;
2636                 if ((c >= Character.MIN_HIGH_SURROGATE)
2637                         && (c <= Character.MAX_HIGH_SURROGATE)) {
2638                     c = codePointAt(firstLower);
2639                     srcCount = Character.charCount(c);
2640                 } else {
2641                     srcCount = 1;
2642                 }
2643                 int upperCaseChar = Character.toUpperCaseEx(c);
2644                 if ((upperCaseChar == Character.ERROR)
2645                         || (c != upperCaseChar)) {
2646                     break scan;
2647                 }
2648                 firstLower += srcCount;
2649             }
2650             return this;
2651         }
2652 
2653         char[] result = new char[len]; /* may grow */
2654         int resultOffset = 0;  /* result may grow, so i+resultOffset
2655          * is the write location in result */
2656 
2657         /* Just copy the first few upperCase characters. */
2658         System.arraycopy(value, 0, result, 0, firstLower);
2659 
2660         String lang = locale.getLanguage();
2661         boolean localeDependent =
2662                 (lang == "tr" || lang == "az" || lang == "lt");
2663         char[] upperCharArray;
2664         int upperChar;
2665         int srcChar;
2666         int srcCount;
2667         for (int i = firstLower; i < len; i += srcCount) {
2668             srcChar = (int)value[i];
2669             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
2670                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2671                 srcChar = codePointAt(i);
2672                 srcCount = Character.charCount(srcChar);
2673             } else {
2674                 srcCount = 1;
2675             }
2676             if (localeDependent) {
2677                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2678             } else {
2679                 upperChar = Character.toUpperCaseEx(srcChar);
2680             }
2681             if ((upperChar == Character.ERROR)
2682                     || (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2683                 if (upperChar == Character.ERROR) {
2684                     if (localeDependent) {
2685                         upperCharArray =
2686                                 ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2687                     } else {
2688                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2689                     }
2690                 } else if (srcCount == 2) {
2691                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
2692                     continue;
2693                 } else {
2694                     upperCharArray = Character.toChars(upperChar);
2695                 }
2696 
2697                 /* Grow result if needed */
2698                 int mapLen = upperCharArray.length;
2699                 if (mapLen > srcCount) {
2700                     char[] result2 = new char[result.length + mapLen - srcCount];
2701                     System.arraycopy(result, 0, result2, 0, i + resultOffset);
2702                     result = result2;
2703                 }
2704                 for (int x = 0; x < mapLen; ++x) {
2705                     result[i + resultOffset + x] = upperCharArray[x];
2706                 }
2707                 resultOffset += (mapLen - srcCount);
2708             } else {
2709                 result[i + resultOffset] = (char)upperChar;
2710             }
2711         }
2712         return new String(result, 0, len + resultOffset);
2713     }
2714 
2715     /**
2716      * Converts all of the characters in this {@code String} to upper
2717      * case using the rules of the default locale. This method is equivalent to
2718      * {@code toUpperCase(Locale.getDefault())}.
2719      * <p>
2720      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2721      * results if used for strings that are intended to be interpreted locale
2722      * independently.
2723      * Examples are programming language identifiers, protocol keys, and HTML
2724      * tags.
2725      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2726      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2727      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2728      * To obtain correct results for locale insensitive strings, use
2729      * {@code toUpperCase(Locale.ENGLISH)}.
2730      * <p>
2731      * @return  the {@code String}, converted to uppercase.
2732      * @see     java.lang.String#toUpperCase(Locale)
2733      */
2734     public String toUpperCase() {
2735         return toUpperCase(Locale.getDefault());
2736     }
2737 
2738     /**
2739      * Returns a copy of the string, with leading and trailing whitespace
2740      * omitted.
2741      * <p>
2742      * If this {@code String} object represents an empty character
2743      * sequence, or the first and last characters of character sequence
2744      * represented by this {@code String} object both have codes
2745      * greater than {@code '\u005Cu0020'} (the space character), then a
2746      * reference to this {@code String} object is returned.
2747      * <p>
2748      * Otherwise, if there is no character with a code greater than
2749      * {@code '\u005Cu0020'} in the string, then a new
2750      * {@code String} object representing an empty string is created
2751      * and returned.
2752      * <p>
2753      * Otherwise, let <i>k</i> be the index of the first character in the
2754      * string whose code is greater than {@code '\u005Cu0020'}, and let
2755      * <i>m</i> be the index of the last character in the string whose code
2756      * is greater than {@code '\u005Cu0020'}. A new {@code String}
2757      * object is created, representing the substring of this string that
2758      * begins with the character at index <i>k</i> and ends with the
2759      * character at index <i>m</i>-that is, the result of
2760      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
2761      * <p>
2762      * This method may be used to trim whitespace (as defined above) from
2763      * the beginning and end of a string.
2764      *
2765      * @return  A copy of this string with leading and trailing white
2766      *          space removed, or this string if it has no leading or
2767      *          trailing white space.
2768      */
2769     public String trim() {
2770         int len = value.length;
2771         int st = 0;
2772         char[] val = value;    /* avoid getfield opcode */
2773 
2774         while ((st < len) && (val[st] <= ' ')) {
2775             st++;
2776         }
2777         while ((st < len) && (val[len - 1] <= ' ')) {
2778             len--;
2779         }
2780         return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
2781     }
2782 
2783     /**
2784      * This object (which is already a string!) is itself returned.
2785      *
2786      * @return  the string itself.
2787      */
2788     public String toString() {
2789         return this;
2790     }
2791 
2792     /**
2793      * Converts this string to a new character array.
2794      *
2795      * @return  a newly allocated character array whose length is the length
2796      *          of this string and whose contents are initialized to contain
2797      *          the character sequence represented by this string.
2798      */
2799     public char[] toCharArray() {
2800         // Cannot use Arrays.copyOf because of class initialization order issues
2801         char result[] = new char[value.length];
2802         System.arraycopy(value, 0, result, 0, value.length);
2803         return result;
2804     }
2805 
2806     /**
2807      * Returns a formatted string using the specified format string and
2808      * arguments.
2809      *
2810      * <p> The locale always used is the one returned by {@link
2811      * java.util.Locale#getDefault() Locale.getDefault()}.
2812      *
2813      * @param  format
2814      *         A <a href="../util/Formatter.html#syntax">format string</a>
2815      *
2816      * @param  args
2817      *         Arguments referenced by the format specifiers in the format
2818      *         string.  If there are more arguments than format specifiers, the
2819      *         extra arguments are ignored.  The number of arguments is
2820      *         variable and may be zero.  The maximum number of arguments is
2821      *         limited by the maximum dimension of a Java array as defined by
2822      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2823      *         The behaviour on a
2824      *         {@code null} argument depends on the <a
2825      *         href="../util/Formatter.html#syntax">conversion</a>.
2826      *
2827      * @throws  java.util.IllegalFormatException
2828      *          If a format string contains an illegal syntax, a format
2829      *          specifier that is incompatible with the given arguments,
2830      *          insufficient arguments given the format string, or other
2831      *          illegal conditions.  For specification of all possible
2832      *          formatting errors, see the <a
2833      *          href="../util/Formatter.html#detail">Details</a> section of the
2834      *          formatter class specification.
2835      *
2836      * @return  A formatted string
2837      *
2838      * @see  java.util.Formatter
2839      * @since  1.5
2840      */
2841     public static String format(String format, Object... args) {
2842         return new Formatter().format(format, args).toString();
2843     }
2844 
2845     /**
2846      * Returns a formatted string using the specified locale, format string,
2847      * and arguments.
2848      *
2849      * @param  l
2850      *         The {@linkplain java.util.Locale locale} to apply during
2851      *         formatting.  If {@code l} is {@code null} then no localization
2852      *         is applied.
2853      *
2854      * @param  format
2855      *         A <a href="../util/Formatter.html#syntax">format string</a>
2856      *
2857      * @param  args
2858      *         Arguments referenced by the format specifiers in the format
2859      *         string.  If there are more arguments than format specifiers, the
2860      *         extra arguments are ignored.  The number of arguments is
2861      *         variable and may be zero.  The maximum number of arguments is
2862      *         limited by the maximum dimension of a Java array as defined by
2863      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2864      *         The behaviour on a
2865      *         {@code null} argument depends on the
2866      *         <a href="../util/Formatter.html#syntax">conversion</a>.
2867      *
2868      * @throws  java.util.IllegalFormatException
2869      *          If a format string contains an illegal syntax, a format
2870      *          specifier that is incompatible with the given arguments,
2871      *          insufficient arguments given the format string, or other
2872      *          illegal conditions.  For specification of all possible
2873      *          formatting errors, see the <a
2874      *          href="../util/Formatter.html#detail">Details</a> section of the
2875      *          formatter class specification
2876      *
2877      * @return  A formatted string
2878      *
2879      * @see  java.util.Formatter
2880      * @since  1.5
2881      */
2882     public static String format(Locale l, String format, Object... args) {
2883         return new Formatter(l).format(format, args).toString();
2884     }
2885 
2886     /**
2887      * Returns the string representation of the {@code Object} argument.
2888      *
2889      * @param   obj   an {@code Object}.
2890      * @return  if the argument is {@code null}, then a string equal to
2891      *          {@code "null"}; otherwise, the value of
2892      *          {@code obj.toString()} is returned.
2893      * @see     java.lang.Object#toString()
2894      */
2895     public static String valueOf(Object obj) {
2896         return (obj == null) ? "null" : obj.toString();
2897     }
2898 
2899     /**
2900      * Returns the string representation of the {@code char} array
2901      * argument. The contents of the character array are copied; subsequent
2902      * modification of the character array does not affect the newly
2903      * created string.
2904      *
2905      * @param   data   a {@code char} array.
2906      * @return  a newly allocated string representing the same sequence of
2907      *          characters contained in the character array argument.
2908      */
2909     public static String valueOf(char data[]) {
2910         return new String(data);
2911     }
2912 
2913     /**
2914      * Returns the string representation of a specific subarray of the
2915      * {@code char} array argument.
2916      * <p>
2917      * The {@code offset} argument is the index of the first
2918      * character of the subarray. The {@code count} argument
2919      * specifies the length of the subarray. The contents of the subarray
2920      * are copied; subsequent modification of the character array does not
2921      * affect the newly created string.
2922      *
2923      * @param   data     the character array.
2924      * @param   offset   the initial offset into the value of the
2925      *                  {@code String}.
2926      * @param   count    the length of the value of the {@code String}.
2927      * @return  a string representing the sequence of characters contained
2928      *          in the subarray of the character array argument.
2929      * @exception IndexOutOfBoundsException if {@code offset} is
2930      *          negative, or {@code count} is negative, or
2931      *          {@code offset+count} is larger than
2932      *          {@code data.length}.
2933      */
2934     public static String valueOf(char data[], int offset, int count) {
2935         return new String(data, offset, count);
2936     }
2937 
2938     /**
2939      * Returns a String that represents the character sequence in the
2940      * array specified.
2941      *
2942      * @param   data     the character array.
2943      * @param   offset   initial offset of the subarray.
2944      * @param   count    length of the subarray.
2945      * @return  a {@code String} that contains the characters of the
2946      *          specified subarray of the character array.
2947      */
2948     public static String copyValueOf(char data[], int offset, int count) {
2949         // All public String constructors now copy the data.
2950         return new String(data, offset, count);
2951     }
2952 
2953     /**
2954      * Returns a String that represents the character sequence in the
2955      * array specified.
2956      *
2957      * @param   data   the character array.
2958      * @return  a {@code String} that contains the characters of the
2959      *          character array.
2960      */
2961     public static String copyValueOf(char data[]) {
2962         return new String(data);
2963     }
2964 
2965     /**
2966      * Returns the string representation of the {@code boolean} argument.
2967      *
2968      * @param   b   a {@code boolean}.
2969      * @return  if the argument is {@code true}, a string equal to
2970      *          {@code "true"} is returned; otherwise, a string equal to
2971      *          {@code "false"} is returned.
2972      */
2973     public static String valueOf(boolean b) {
2974         return b ? "true" : "false";
2975     }
2976 
2977     /**
2978      * Returns the string representation of the {@code char}
2979      * argument.
2980      *
2981      * @param   c   a {@code char}.
2982      * @return  a string of length {@code 1} containing
2983      *          as its single character the argument {@code c}.
2984      */
2985     public static String valueOf(char c) {
2986         char data[] = {c};
2987         return new String(data, true);
2988     }
2989 
2990     /**
2991      * Returns the string representation of the {@code int} argument.
2992      * <p>
2993      * The representation is exactly the one returned by the
2994      * {@code Integer.toString} method of one argument.
2995      *
2996      * @param   i   an {@code int}.
2997      * @return  a string representation of the {@code int} argument.
2998      * @see     java.lang.Integer#toString(int, int)
2999      */
3000     public static String valueOf(int i) {
3001         return Integer.toString(i);
3002     }
3003 
3004     /**
3005      * Returns the string representation of the {@code long} argument.
3006      * <p>
3007      * The representation is exactly the one returned by the
3008      * {@code Long.toString} method of one argument.
3009      *
3010      * @param   l   a {@code long}.
3011      * @return  a string representation of the {@code long} argument.
3012      * @see     java.lang.Long#toString(long)
3013      */
3014     public static String valueOf(long l) {
3015         return Long.toString(l);
3016     }
3017 
3018     /**
3019      * Returns the string representation of the {@code float} argument.
3020      * <p>
3021      * The representation is exactly the one returned by the
3022      * {@code Float.toString} method of one argument.
3023      *
3024      * @param   f   a {@code float}.
3025      * @return  a string representation of the {@code float} argument.
3026      * @see     java.lang.Float#toString(float)
3027      */
3028     public static String valueOf(float f) {
3029         return Float.toString(f);
3030     }
3031 
3032     /**
3033      * Returns the string representation of the {@code double} argument.
3034      * <p>
3035      * The representation is exactly the one returned by the
3036      * {@code Double.toString} method of one argument.
3037      *
3038      * @param   d   a {@code double}.
3039      * @return  a  string representation of the {@code double} argument.
3040      * @see     java.lang.Double#toString(double)
3041      */
3042     public static String valueOf(double d) {
3043         return Double.toString(d);
3044     }
3045 
3046     /**
3047      * Returns a canonical representation for the string object.
3048      * <p>
3049      * A pool of strings, initially empty, is maintained privately by the
3050      * class {@code String}.
3051      * <p>
3052      * When the intern method is invoked, if the pool already contains a
3053      * string equal to this {@code String} object as determined by
3054      * the {@link #equals(Object)} method, then the string from the pool is
3055      * returned. Otherwise, this {@code String} object is added to the
3056      * pool and a reference to this {@code String} object is returned.
3057      * <p>
3058      * It follows that for any two strings {@code s} and {@code t},
3059      * {@code s.intern() == t.intern()} is {@code true}
3060      * if and only if {@code s.equals(t)} is {@code true}.
3061      * <p>
3062      * All literal strings and string-valued constant expressions are
3063      * interned. String literals are defined in section 3.10.5 of the
3064      * <cite>The Java&trade; Language Specification</cite>.
3065      *
3066      * @return  a string that has the same contents as this string, but is
3067      *          guaranteed to be from a pool of unique strings.
3068      */
3069     public native String intern();
3070 
3071     /**
3072      * Seed value used for each alternative hash calculated.
3073      */
3074     private static final int HASHING_SEED;
3075 
3076     static {
3077         long nanos = System.nanoTime();
3078         long now = System.currentTimeMillis();
3079         int SEED_MATERIAL[] = {
3080                 System.identityHashCode(String.class),
3081                 System.identityHashCode(System.class),
3082                 (int) (nanos >>> 32),
3083                 (int) nanos,
3084                 (int) (now >>> 32),
3085                 (int) now,
3086                 (int) (System.nanoTime() >>> 2)
3087         };
3088 
3089         // Use murmur3 to scramble the seeding material.
3090         // Inline implementation to avoid loading classes
3091         int h1 = 0;
3092 
3093         // body
3094         for(int k1 : SEED_MATERIAL) {
3095             k1 *= 0xcc9e2d51;
3096             k1 = (k1 << 15) | (k1 >>> 17);
3097             k1 *= 0x1b873593;
3098 
3099             h1 ^= k1;
3100             h1 = (h1 << 13) | (h1 >>> 19);
3101             h1 = h1 * 5 + 0xe6546b64;
3102         }
3103 
3104         // tail (always empty, as body is always 32-bit chunks)
3105 
3106         // finalization
3107 
3108         h1 ^= SEED_MATERIAL.length * 4;
3109 
3110         // finalization mix force all bits of a hash block to avalanche
3111         h1 ^= h1 >>> 16;
3112         h1 *= 0x85ebca6b;
3113         h1 ^= h1 >>> 13;
3114         h1 *= 0xc2b2ae35;
3115         h1 ^= h1 >>> 16;
3116 
3117         HASHING_SEED = h1;
3118     }
3119 
3120     /**
3121      * Cached value of the hashing algorithm result
3122      */
3123     private transient int hash32 = 0;
3124 
3125     /**
3126     * Return a 32-bit hash code value for this object.
3127     * <p>
3128     * The general contract of {@code hash32} is:
3129     * <ul>
3130     * <li>Whenever it is invoked on the same object more than once during
3131     *     an execution of a Java application, the {@code hash32} method
3132     *     must consistently return the same integer, provided no information
3133     *     used in {@code equals} comparisons on the object is modified.
3134     *     This integer need not remain consistent from one execution of an
3135     *     application to another execution of the same application.
3136     * <li>If two objects are equal according to the {@code equals(Object)}
3137     *     method, then calling the {@code hash32} method on each of
3138     *     the two objects must produce the same integer result.
3139     * <li>It is <em>not</em> required that if two objects are unequal
3140     *     according to the {@link java.lang.Object#equals(java.lang.Object)}
3141     *     method, then calling the {@code hash32} method on each of the
3142     *     two objects must produce distinct integer results.  However, the
3143     *     programmer should be aware that producing distinct integer results
3144     *     for unequal objects may improve the performance of hash tables.
3145     * </ul>
3146     * </p>
3147      * The hash value will never be zero.
3148     *
3149     * @return  a hash code value for this object.
3150     * @see     java.lang.Object#equals(java.lang.Object)
3151     */
3152     public int hash32() {
3153         int h = hash32;
3154         if (0 == h) {
3155            // harmless data race on hash32 here.
3156            h = sun.misc.Hashing.murmur3_32(HASHING_SEED, value, 0, value.length);
3157 
3158            // ensure result is not zero to avoid recalcing
3159            h = (0 != h) ? h : 1;
3160 
3161            hash32 = h;
3162         }
3163 
3164         return h;
3165     }
3166 
3167 }