1 /*
   2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.*;
  28 
  29 /**
  30  * This class implements a hash table, which maps keys to values. Any
  31  * non-<code>null</code> object can be used as a key or as a value. <p>
  32  *
  33  * To successfully store and retrieve objects from a hashtable, the
  34  * objects used as keys must implement the <code>hashCode</code>
  35  * method and the <code>equals</code> method. <p>
  36  *
  37  * An instance of <code>Hashtable</code> has two parameters that affect its
  38  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  39  * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
  40  * <i>initial capacity</i> is simply the capacity at the time the hash table
  41  * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
  42  * collision", a single bucket stores multiple entries, which must be searched
  43  * sequentially.  The <i>load factor</i> is a measure of how full the hash
  44  * table is allowed to get before its capacity is automatically increased.
  45  * The initial capacity and load factor parameters are merely hints to
  46  * the implementation.  The exact details as to when and whether the rehash
  47  * method is invoked are implementation-dependent.<p>
  48  *
  49  * Generally, the default load factor (.75) offers a good tradeoff between
  50  * time and space costs.  Higher values decrease the space overhead but
  51  * increase the time cost to look up an entry (which is reflected in most
  52  * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
  53  *
  54  * The initial capacity controls a tradeoff between wasted space and the
  55  * need for <code>rehash</code> operations, which are time-consuming.
  56  * No <code>rehash</code> operations will <i>ever</i> occur if the initial
  57  * capacity is greater than the maximum number of entries the
  58  * <tt>Hashtable</tt> will contain divided by its load factor.  However,
  59  * setting the initial capacity too high can waste space.<p>
  60  *
  61  * If many entries are to be made into a <code>Hashtable</code>,
  62  * creating it with a sufficiently large capacity may allow the
  63  * entries to be inserted more efficiently than letting it perform
  64  * automatic rehashing as needed to grow the table. <p>
  65  *
  66  * This example creates a hashtable of numbers. It uses the names of
  67  * the numbers as keys:
  68  * <pre>   {@code
  69  *   Hashtable<String, Integer> numbers
  70  *     = new Hashtable<String, Integer>();
  71  *   numbers.put("one", 1);
  72  *   numbers.put("two", 2);
  73  *   numbers.put("three", 3);}</pre>
  74  *
  75  * <p>To retrieve a number, use the following code:
  76  * <pre>   {@code
  77  *   Integer n = numbers.get("two");
  78  *   if (n != null) {
  79  *     System.out.println("two = " + n);
  80  *   }}</pre>
  81  *
  82  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
  83  * returned by all of this class's "collection view methods" are
  84  * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
  85  * after the iterator is created, in any way except through the iterator's own
  86  * <tt>remove</tt> method, the iterator will throw a {@link
  87  * ConcurrentModificationException}.  Thus, in the face of concurrent
  88  * modification, the iterator fails quickly and cleanly, rather than risking
  89  * arbitrary, non-deterministic behavior at an undetermined time in the future.
  90  * The Enumerations returned by Hashtable's keys and elements methods are
  91  * <em>not</em> fail-fast.
  92  *
  93  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  94  * as it is, generally speaking, impossible to make any hard guarantees in the
  95  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  96  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
  97  * Therefore, it would be wrong to write a program that depended on this
  98  * exception for its correctness: <i>the fail-fast behavior of iterators
  99  * should be used only to detect bugs.</i>
 100  *
 101  * <p>As of the Java 2 platform v1.2, this class was retrofitted to
 102  * implement the {@link Map} interface, making it a member of the
 103  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 104  *
 105  * Java Collections Framework</a>.  Unlike the new collection
 106  * implementations, {@code Hashtable} is synchronized.  If a
 107  * thread-safe implementation is not needed, it is recommended to use
 108  * {@link HashMap} in place of {@code Hashtable}.  If a thread-safe
 109  * highly-concurrent implementation is desired, then it is recommended
 110  * to use {@link java.util.concurrent.ConcurrentHashMap} in place of
 111  * {@code Hashtable}.
 112  *
 113  * @author  Arthur van Hoff
 114  * @author  Josh Bloch
 115  * @author  Neal Gafter
 116  * @see     Object#equals(java.lang.Object)
 117  * @see     Object#hashCode()
 118  * @see     Hashtable#rehash()
 119  * @see     Collection
 120  * @see     Map
 121  * @see     HashMap
 122  * @see     TreeMap
 123  * @since JDK1.0
 124  */
 125 public class Hashtable<K,V>
 126     extends Dictionary<K,V>
 127     implements Map<K,V>, Cloneable, java.io.Serializable {
 128 
 129     /**
 130      * The hash table data.
 131      */
 132     private transient Entry<K,V>[] table;
 133 
 134     /**
 135      * The total number of entries in the hash table.
 136      */
 137     private transient int count;
 138 
 139     /**
 140      * The table is rehashed when its size exceeds this threshold.  (The
 141      * value of this field is (int)(capacity * loadFactor).)
 142      *
 143      * @serial
 144      */
 145     private int threshold;
 146 
 147     /**
 148      * The load factor for the hashtable.
 149      *
 150      * @serial
 151      */
 152     private float loadFactor;
 153 
 154     /**
 155      * The number of times this Hashtable has been structurally modified
 156      * Structural modifications are those that change the number of entries in
 157      * the Hashtable or otherwise modify its internal structure (e.g.,
 158      * rehash).  This field is used to make iterators on Collection-views of
 159      * the Hashtable fail-fast.  (See ConcurrentModificationException).
 160      */
 161     private transient int modCount = 0;
 162 
 163     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 164     private static final long serialVersionUID = 1421746759512286392L;
 165 
 166     /**
 167      * The default threshold of map capacity above which alternative hashing is
 168      * used for String keys. Alternative hashing reduces the incidence of
 169      * collisions due to weak hash code calculation for String keys.
 170      * <p>
 171      * This value may be overridden by defining the system property
 172      * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
 173      * forces alternative hashing to be used at all times whereas
 174      * {@code -1} value ensures that alternative hashing is never used.
 175      */
 176     static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
 177 
 178     /**
 179      * holds values which can't be initialized until after VM is booted.
 180      */
 181     private static class Holder {
 182 
 183         /**
 184          * Table capacity above which to switch to use alternative hashing.
 185          */
 186         static final int ALTERNATIVE_HASHING_THRESHOLD;
 187 
 188         static {
 189             String altThreshold = java.security.AccessController.doPrivileged(
 190                 new sun.security.action.GetPropertyAction(
 191                     "jdk.map.althashing.threshold"));
 192 
 193             int threshold;
 194             try {
 195                 threshold = (null != altThreshold)
 196                         ? Integer.parseInt(altThreshold)
 197                         : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
 198 
 199                 // disable alternative hashing if -1
 200                 if (threshold == -1) {
 201                     threshold = Integer.MAX_VALUE;
 202                 }
 203 
 204                 if (threshold < 0) {
 205                     throw new IllegalArgumentException("value must be positive integer.");
 206                 }
 207             } catch(IllegalArgumentException failed) {
 208                 throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
 209             }
 210 
 211             ALTERNATIVE_HASHING_THRESHOLD = threshold;
 212         }
 213     }
 214 
 215     /**
 216      * A randomizing value associated with this instance that is applied to
 217      * hash code of keys to make hash collisions harder to find.
 218      */
 219     transient int hashSeed;
 220 
 221     /**
 222      * Initialize the hashing mask value.
 223      */
 224     final boolean initHashSeedAsNeeded(int capacity) {
 225         boolean currentAltHashing = hashSeed != 0;
 226         boolean useAltHashing = sun.misc.VM.isBooted() &&
 227                 (capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
 228         boolean switching = currentAltHashing ^ useAltHashing;
 229         if (switching) {
 230             hashSeed = useAltHashing
 231                 ? sun.misc.Hashing.randomHashSeed(this)
 232                 : 0;
 233         }
 234         return switching;
 235     }
 236 
 237     private int hash(Object k) {
 238         // hashSeed will be zero if alternative hashing is disabled.
 239         return hashSeed ^ k.hashCode();
 240     }
 241 
 242     /**
 243      * Constructs a new, empty hashtable with the specified initial
 244      * capacity and the specified load factor.
 245      *
 246      * @param      initialCapacity   the initial capacity of the hashtable.
 247      * @param      loadFactor        the load factor of the hashtable.
 248      * @exception  IllegalArgumentException  if the initial capacity is less
 249      *             than zero, or if the load factor is nonpositive.
 250      */
 251     public Hashtable(int initialCapacity, float loadFactor) {
 252         if (initialCapacity < 0)
 253             throw new IllegalArgumentException("Illegal Capacity: "+
 254                                                initialCapacity);
 255         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 256             throw new IllegalArgumentException("Illegal Load: "+loadFactor);
 257 
 258         if (initialCapacity==0)
 259             initialCapacity = 1;
 260         this.loadFactor = loadFactor;
 261         table = new Entry[initialCapacity];
 262         threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 263         initHashSeedAsNeeded(initialCapacity);
 264     }
 265 
 266     /**
 267      * Constructs a new, empty hashtable with the specified initial capacity
 268      * and default load factor (0.75).
 269      *
 270      * @param     initialCapacity   the initial capacity of the hashtable.
 271      * @exception IllegalArgumentException if the initial capacity is less
 272      *              than zero.
 273      */
 274     public Hashtable(int initialCapacity) {
 275         this(initialCapacity, 0.75f);
 276     }
 277 
 278     /**
 279      * Constructs a new, empty hashtable with a default initial capacity (11)
 280      * and load factor (0.75).
 281      */
 282     public Hashtable() {
 283         this(11, 0.75f);
 284     }
 285 
 286     /**
 287      * Constructs a new hashtable with the same mappings as the given
 288      * Map.  The hashtable is created with an initial capacity sufficient to
 289      * hold the mappings in the given Map and a default load factor (0.75).
 290      *
 291      * @param t the map whose mappings are to be placed in this map.
 292      * @throws NullPointerException if the specified map is null.
 293      * @since   1.2
 294      */
 295     public Hashtable(Map<? extends K, ? extends V> t) {
 296         this(Math.max(2*t.size(), 11), 0.75f);
 297         putAll(t);
 298     }
 299 
 300     /**
 301      * Returns the number of keys in this hashtable.
 302      *
 303      * @return  the number of keys in this hashtable.
 304      */
 305     public synchronized int size() {
 306         return count;
 307     }
 308 
 309     /**
 310      * Tests if this hashtable maps no keys to values.
 311      *
 312      * @return  <code>true</code> if this hashtable maps no keys to values;
 313      *          <code>false</code> otherwise.
 314      */
 315     public synchronized boolean isEmpty() {
 316         return count == 0;
 317     }
 318 
 319     /**
 320      * Returns an enumeration of the keys in this hashtable.
 321      *
 322      * @return  an enumeration of the keys in this hashtable.
 323      * @see     Enumeration
 324      * @see     #elements()
 325      * @see     #keySet()
 326      * @see     Map
 327      */
 328     public synchronized Enumeration<K> keys() {
 329         return this.<K>getEnumeration(KEYS);
 330     }
 331 
 332     /**
 333      * Returns an enumeration of the values in this hashtable.
 334      * Use the Enumeration methods on the returned object to fetch the elements
 335      * sequentially.
 336      *
 337      * @return  an enumeration of the values in this hashtable.
 338      * @see     java.util.Enumeration
 339      * @see     #keys()
 340      * @see     #values()
 341      * @see     Map
 342      */
 343     public synchronized Enumeration<V> elements() {
 344         return this.<V>getEnumeration(VALUES);
 345     }
 346 
 347     /**
 348      * Tests if some key maps into the specified value in this hashtable.
 349      * This operation is more expensive than the {@link #containsKey
 350      * containsKey} method.
 351      *
 352      * <p>Note that this method is identical in functionality to
 353      * {@link #containsValue containsValue}, (which is part of the
 354      * {@link Map} interface in the collections framework).
 355      *
 356      * @param      value   a value to search for
 357      * @return     <code>true</code> if and only if some key maps to the
 358      *             <code>value</code> argument in this hashtable as
 359      *             determined by the <tt>equals</tt> method;
 360      *             <code>false</code> otherwise.
 361      * @exception  NullPointerException  if the value is <code>null</code>
 362      */
 363     public synchronized boolean contains(Object value) {
 364         if (value == null) {
 365             throw new NullPointerException();
 366         }
 367 
 368         Entry tab[] = table;
 369         for (int i = tab.length ; i-- > 0 ;) {
 370             for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
 371                 if (e.value.equals(value)) {
 372                     return true;
 373                 }
 374             }
 375         }
 376         return false;
 377     }
 378 
 379     /**
 380      * Returns true if this hashtable maps one or more keys to this value.
 381      *
 382      * <p>Note that this method is identical in functionality to {@link
 383      * #contains contains} (which predates the {@link Map} interface).
 384      *
 385      * @param value value whose presence in this hashtable is to be tested
 386      * @return <tt>true</tt> if this map maps one or more keys to the
 387      *         specified value
 388      * @throws NullPointerException  if the value is <code>null</code>
 389      * @since 1.2
 390      */
 391     public boolean containsValue(Object value) {
 392         return contains(value);
 393     }
 394 
 395     /**
 396      * Tests if the specified object is a key in this hashtable.
 397      *
 398      * @param   key   possible key
 399      * @return  <code>true</code> if and only if the specified object
 400      *          is a key in this hashtable, as determined by the
 401      *          <tt>equals</tt> method; <code>false</code> otherwise.
 402      * @throws  NullPointerException  if the key is <code>null</code>
 403      * @see     #contains(Object)
 404      */
 405     public synchronized boolean containsKey(Object key) {
 406         Entry tab[] = table;
 407         int hash = hash(key);
 408         int index = (hash & 0x7FFFFFFF) % tab.length;
 409         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 410             if ((e.hash == hash) && e.key.equals(key)) {
 411                 return true;
 412             }
 413         }
 414         return false;
 415     }
 416 
 417     /**
 418      * Returns the value to which the specified key is mapped,
 419      * or {@code null} if this map contains no mapping for the key.
 420      *
 421      * <p>More formally, if this map contains a mapping from a key
 422      * {@code k} to a value {@code v} such that {@code (key.equals(k))},
 423      * then this method returns {@code v}; otherwise it returns
 424      * {@code null}.  (There can be at most one such mapping.)
 425      *
 426      * @param key the key whose associated value is to be returned
 427      * @return the value to which the specified key is mapped, or
 428      *         {@code null} if this map contains no mapping for the key
 429      * @throws NullPointerException if the specified key is null
 430      * @see     #put(Object, Object)
 431      */
 432     public synchronized V get(Object key) {
 433         Entry tab[] = table;
 434         int hash = hash(key);
 435         int index = (hash & 0x7FFFFFFF) % tab.length;
 436         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 437             if ((e.hash == hash) && e.key.equals(key)) {
 438                 return e.value;
 439             }
 440         }
 441         return null;
 442     }
 443 
 444     /**
 445      * The maximum size of array to allocate.
 446      * Some VMs reserve some header words in an array.
 447      * Attempts to allocate larger arrays may result in
 448      * OutOfMemoryError: Requested array size exceeds VM limit
 449      */
 450     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 451 
 452     /**
 453      * Increases the capacity of and internally reorganizes this
 454      * hashtable, in order to accommodate and access its entries more
 455      * efficiently.  This method is called automatically when the
 456      * number of keys in the hashtable exceeds this hashtable's capacity
 457      * and load factor.
 458      */
 459     protected void rehash() {
 460         int oldCapacity = table.length;
 461         Entry<K,V>[] oldMap = table;
 462 
 463         // overflow-conscious code
 464         int newCapacity = (oldCapacity << 1) + 1;
 465         if (newCapacity - MAX_ARRAY_SIZE > 0) {
 466             if (oldCapacity == MAX_ARRAY_SIZE)
 467                 // Keep running with MAX_ARRAY_SIZE buckets
 468                 return;
 469             newCapacity = MAX_ARRAY_SIZE;
 470         }
 471         Entry<K,V>[] newMap = new Entry[newCapacity];
 472 
 473         modCount++;
 474         threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 475         boolean rehash = initHashSeedAsNeeded(newCapacity);
 476 
 477         table = newMap;
 478 
 479         for (int i = oldCapacity ; i-- > 0 ;) {
 480             for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
 481                 Entry<K,V> e = old;
 482                 old = old.next;
 483 
 484                 if (rehash) {
 485                     e.hash = hash(e.key);
 486                 }
 487                 int index = (e.hash & 0x7FFFFFFF) % newCapacity;
 488                 e.next = newMap[index];
 489                 newMap[index] = e;
 490             }
 491         }
 492     }
 493 
 494     /**
 495      * Maps the specified <code>key</code> to the specified
 496      * <code>value</code> in this hashtable. Neither the key nor the
 497      * value can be <code>null</code>. <p>
 498      *
 499      * The value can be retrieved by calling the <code>get</code> method
 500      * with a key that is equal to the original key.
 501      *
 502      * @param      key     the hashtable key
 503      * @param      value   the value
 504      * @return     the previous value of the specified key in this hashtable,
 505      *             or <code>null</code> if it did not have one
 506      * @exception  NullPointerException  if the key or value is
 507      *               <code>null</code>
 508      * @see     Object#equals(Object)
 509      * @see     #get(Object)
 510      */
 511     public synchronized V put(K key, V value) {
 512         // Make sure the value is not null
 513         if (value == null) {
 514             throw new NullPointerException();
 515         }
 516 
 517         // Makes sure the key is not already in the hashtable.
 518         Entry tab[] = table;
 519         int hash = hash(key);
 520         int index = (hash & 0x7FFFFFFF) % tab.length;
 521         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 522             if ((e.hash == hash) && e.key.equals(key)) {
 523                 V old = e.value;
 524                 e.value = value;
 525                 return old;
 526             }
 527         }
 528 
 529         modCount++;
 530         if (count >= threshold) {
 531             // Rehash the table if the threshold is exceeded
 532             rehash();
 533 
 534             tab = table;
 535             hash = hash(key);
 536             index = (hash & 0x7FFFFFFF) % tab.length;
 537         }
 538 
 539         // Creates the new entry.
 540         Entry<K,V> e = tab[index];
 541         tab[index] = new Entry<>(hash, key, value, e);
 542         count++;
 543         return null;
 544     }
 545 
 546     /**
 547      * Removes the key (and its corresponding value) from this
 548      * hashtable. This method does nothing if the key is not in the hashtable.
 549      *
 550      * @param   key   the key that needs to be removed
 551      * @return  the value to which the key had been mapped in this hashtable,
 552      *          or <code>null</code> if the key did not have a mapping
 553      * @throws  NullPointerException  if the key is <code>null</code>
 554      */
 555     public synchronized V remove(Object key) {
 556         Entry tab[] = table;
 557         int hash = hash(key);
 558         int index = (hash & 0x7FFFFFFF) % tab.length;
 559         for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
 560             if ((e.hash == hash) && e.key.equals(key)) {
 561                 modCount++;
 562                 if (prev != null) {
 563                     prev.next = e.next;
 564                 } else {
 565                     tab[index] = e.next;
 566                 }
 567                 count--;
 568                 V oldValue = e.value;
 569                 e.value = null;
 570                 return oldValue;
 571             }
 572         }
 573         return null;
 574     }
 575 
 576     /**
 577      * Copies all of the mappings from the specified map to this hashtable.
 578      * These mappings will replace any mappings that this hashtable had for any
 579      * of the keys currently in the specified map.
 580      *
 581      * @param t mappings to be stored in this map
 582      * @throws NullPointerException if the specified map is null
 583      * @since 1.2
 584      */
 585     public synchronized void putAll(Map<? extends K, ? extends V> t) {
 586         for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
 587             put(e.getKey(), e.getValue());
 588     }
 589 
 590     /**
 591      * Clears this hashtable so that it contains no keys.
 592      */
 593     public synchronized void clear() {
 594         Entry tab[] = table;
 595         modCount++;
 596         for (int index = tab.length; --index >= 0; )
 597             tab[index] = null;
 598         count = 0;
 599     }
 600 
 601     /**
 602      * Creates a shallow copy of this hashtable. All the structure of the
 603      * hashtable itself is copied, but the keys and values are not cloned.
 604      * This is a relatively expensive operation.
 605      *
 606      * @return  a clone of the hashtable
 607      */
 608     public synchronized Object clone() {
 609         try {
 610             Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
 611             t.table = new Entry[table.length];
 612             for (int i = table.length ; i-- > 0 ; ) {
 613                 t.table[i] = (table[i] != null)
 614                     ? (Entry<K,V>) table[i].clone() : null;
 615             }
 616             t.keySet = null;
 617             t.entrySet = null;
 618             t.values = null;
 619             t.modCount = 0;
 620             return t;
 621         } catch (CloneNotSupportedException e) {
 622             // this shouldn't happen, since we are Cloneable
 623             throw new InternalError();
 624         }
 625     }
 626 
 627     /**
 628      * Returns a string representation of this <tt>Hashtable</tt> object
 629      * in the form of a set of entries, enclosed in braces and separated
 630      * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
 631      * entry is rendered as the key, an equals sign <tt>=</tt>, and the
 632      * associated element, where the <tt>toString</tt> method is used to
 633      * convert the key and element to strings.
 634      *
 635      * @return  a string representation of this hashtable
 636      */
 637     public synchronized String toString() {
 638         int max = size() - 1;
 639         if (max == -1)
 640             return "{}";
 641 
 642         StringBuilder sb = new StringBuilder();
 643         Iterator<Map.Entry<K,V>> it = entrySet().iterator();
 644 
 645         sb.append('{');
 646         for (int i = 0; ; i++) {
 647             Map.Entry<K,V> e = it.next();
 648             K key = e.getKey();
 649             V value = e.getValue();
 650             sb.append(key   == this ? "(this Map)" : key.toString());
 651             sb.append('=');
 652             sb.append(value == this ? "(this Map)" : value.toString());
 653 
 654             if (i == max)
 655                 return sb.append('}').toString();
 656             sb.append(", ");
 657         }
 658     }
 659 
 660 
 661     private <T> Enumeration<T> getEnumeration(int type) {
 662         if (count == 0) {
 663             return Collections.emptyEnumeration();
 664         } else {
 665             return new Enumerator<>(type, false);
 666         }
 667     }
 668 
 669     private <T> Iterator<T> getIterator(int type) {
 670         if (count == 0) {
 671             return Collections.emptyIterator();
 672         } else {
 673             return new Enumerator<>(type, true);
 674         }
 675     }
 676 
 677     // Views
 678 
 679     /**
 680      * Each of these fields are initialized to contain an instance of the
 681      * appropriate view the first time this view is requested.  The views are
 682      * stateless, so there's no reason to create more than one of each.
 683      */
 684     private transient volatile Set<K> keySet = null;
 685     private transient volatile Set<Map.Entry<K,V>> entrySet = null;
 686     private transient volatile Collection<V> values = null;
 687 
 688     /**
 689      * Returns a {@link Set} view of the keys contained in this map.
 690      * The set is backed by the map, so changes to the map are
 691      * reflected in the set, and vice-versa.  If the map is modified
 692      * while an iteration over the set is in progress (except through
 693      * the iterator's own <tt>remove</tt> operation), the results of
 694      * the iteration are undefined.  The set supports element removal,
 695      * which removes the corresponding mapping from the map, via the
 696      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 697      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 698      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 699      * operations.
 700      *
 701      * @since 1.2
 702      */
 703     public Set<K> keySet() {
 704         if (keySet == null)
 705             keySet = Collections.synchronizedSet(new KeySet(), this);
 706         return keySet;
 707     }
 708 
 709     private class KeySet extends AbstractSet<K> {
 710         public Iterator<K> iterator() {
 711             return getIterator(KEYS);
 712         }
 713         public int size() {
 714             return count;
 715         }
 716         public boolean contains(Object o) {
 717             return containsKey(o);
 718         }
 719         public boolean remove(Object o) {
 720             return Hashtable.this.remove(o) != null;
 721         }
 722         public void clear() {
 723             Hashtable.this.clear();
 724         }
 725     }
 726 
 727     /**
 728      * Returns a {@link Set} view of the mappings contained in this map.
 729      * The set is backed by the map, so changes to the map are
 730      * reflected in the set, and vice-versa.  If the map is modified
 731      * while an iteration over the set is in progress (except through
 732      * the iterator's own <tt>remove</tt> operation, or through the
 733      * <tt>setValue</tt> operation on a map entry returned by the
 734      * iterator) the results of the iteration are undefined.  The set
 735      * supports element removal, which removes the corresponding
 736      * mapping from the map, via the <tt>Iterator.remove</tt>,
 737      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 738      * <tt>clear</tt> operations.  It does not support the
 739      * <tt>add</tt> or <tt>addAll</tt> operations.
 740      *
 741      * @since 1.2
 742      */
 743     public Set<Map.Entry<K,V>> entrySet() {
 744         if (entrySet==null)
 745             entrySet = Collections.synchronizedSet(new EntrySet(), this);
 746         return entrySet;
 747     }
 748 
 749     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 750         public Iterator<Map.Entry<K,V>> iterator() {
 751             return getIterator(ENTRIES);
 752         }
 753 
 754         public boolean add(Map.Entry<K,V> o) {
 755             return super.add(o);
 756         }
 757 
 758         public boolean contains(Object o) {
 759             if (!(o instanceof Map.Entry))
 760                 return false;
 761             Map.Entry entry = (Map.Entry)o;
 762             Object key = entry.getKey();
 763             Entry[] tab = table;
 764             int hash = hash(key);
 765             int index = (hash & 0x7FFFFFFF) % tab.length;
 766 
 767             for (Entry e = tab[index]; e != null; e = e.next)
 768                 if (e.hash==hash && e.equals(entry))
 769                     return true;
 770             return false;
 771         }
 772 
 773         public boolean remove(Object o) {
 774             if (!(o instanceof Map.Entry))
 775                 return false;
 776             Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 777             K key = entry.getKey();
 778             Entry[] tab = table;
 779             int hash = hash(key);
 780             int index = (hash & 0x7FFFFFFF) % tab.length;
 781 
 782             for (Entry<K,V> e = tab[index], prev = null; e != null;
 783                  prev = e, e = e.next) {
 784                 if (e.hash==hash && e.equals(entry)) {
 785                     modCount++;
 786                     if (prev != null)
 787                         prev.next = e.next;
 788                     else
 789                         tab[index] = e.next;
 790 
 791                     count--;
 792                     e.value = null;
 793                     return true;
 794                 }
 795             }
 796             return false;
 797         }
 798 
 799         public int size() {
 800             return count;
 801         }
 802 
 803         public void clear() {
 804             Hashtable.this.clear();
 805         }
 806     }
 807 
 808     /**
 809      * Returns a {@link Collection} view of the values contained in this map.
 810      * The collection is backed by the map, so changes to the map are
 811      * reflected in the collection, and vice-versa.  If the map is
 812      * modified while an iteration over the collection is in progress
 813      * (except through the iterator's own <tt>remove</tt> operation),
 814      * the results of the iteration are undefined.  The collection
 815      * supports element removal, which removes the corresponding
 816      * mapping from the map, via the <tt>Iterator.remove</tt>,
 817      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 818      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 819      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 820      *
 821      * @since 1.2
 822      */
 823     public Collection<V> values() {
 824         if (values==null)
 825             values = Collections.synchronizedCollection(new ValueCollection(),
 826                                                         this);
 827         return values;
 828     }
 829 
 830     private class ValueCollection extends AbstractCollection<V> {
 831         public Iterator<V> iterator() {
 832             return getIterator(VALUES);
 833         }
 834         public int size() {
 835             return count;
 836         }
 837         public boolean contains(Object o) {
 838             return containsValue(o);
 839         }
 840         public void clear() {
 841             Hashtable.this.clear();
 842         }
 843     }
 844 
 845     // Comparison and hashing
 846 
 847     /**
 848      * Compares the specified Object with this Map for equality,
 849      * as per the definition in the Map interface.
 850      *
 851      * @param  o object to be compared for equality with this hashtable
 852      * @return true if the specified Object is equal to this Map
 853      * @see Map#equals(Object)
 854      * @since 1.2
 855      */
 856     public synchronized boolean equals(Object o) {
 857         if (o == this)
 858             return true;
 859 
 860         if (!(o instanceof Map))
 861             return false;
 862         Map<K,V> t = (Map<K,V>) o;
 863         if (t.size() != size())
 864             return false;
 865 
 866         try {
 867             Iterator<Map.Entry<K,V>> i = entrySet().iterator();
 868             while (i.hasNext()) {
 869                 Map.Entry<K,V> e = i.next();
 870                 K key = e.getKey();
 871                 V value = e.getValue();
 872                 if (value == null) {
 873                     if (!(t.get(key)==null && t.containsKey(key)))
 874                         return false;
 875                 } else {
 876                     if (!value.equals(t.get(key)))
 877                         return false;
 878                 }
 879             }
 880         } catch (ClassCastException unused)   {
 881             return false;
 882         } catch (NullPointerException unused) {
 883             return false;
 884         }
 885 
 886         return true;
 887     }
 888 
 889     /**
 890      * Returns the hash code value for this Map as per the definition in the
 891      * Map interface.
 892      *
 893      * @see Map#hashCode()
 894      * @since 1.2
 895      */
 896     public synchronized int hashCode() {
 897         /*
 898          * This code detects the recursion caused by computing the hash code
 899          * of a self-referential hash table and prevents the stack overflow
 900          * that would otherwise result.  This allows certain 1.1-era
 901          * applets with self-referential hash tables to work.  This code
 902          * abuses the loadFactor field to do double-duty as a hashCode
 903          * in progress flag, so as not to worsen the space performance.
 904          * A negative load factor indicates that hash code computation is
 905          * in progress.
 906          */
 907         int h = 0;
 908         if (count == 0 || loadFactor < 0)
 909             return h;  // Returns zero
 910 
 911         loadFactor = -loadFactor;  // Mark hashCode computation in progress
 912         Entry[] tab = table;
 913         for (Entry<K,V> entry : tab)
 914             while (entry != null) {
 915                 h += entry.hashCode();
 916                 entry = entry.next;
 917             }
 918         loadFactor = -loadFactor;  // Mark hashCode computation complete
 919 
 920         return h;
 921     }
 922 
 923     /**
 924      * Save the state of the Hashtable to a stream (i.e., serialize it).
 925      *
 926      * @serialData The <i>capacity</i> of the Hashtable (the length of the
 927      *             bucket array) is emitted (int), followed by the
 928      *             <i>size</i> of the Hashtable (the number of key-value
 929      *             mappings), followed by the key (Object) and value (Object)
 930      *             for each key-value mapping represented by the Hashtable
 931      *             The key-value mappings are emitted in no particular order.
 932      */
 933     private void writeObject(java.io.ObjectOutputStream s)
 934             throws IOException {
 935         Entry<K, V> entryStack = null;
 936 
 937         synchronized (this) {
 938             // Write out the length, threshold, loadfactor
 939             s.defaultWriteObject();
 940 
 941             // Write out length, count of elements
 942             s.writeInt(table.length);
 943             s.writeInt(count);
 944 
 945             // Stack copies of the entries in the table
 946             for (int index = 0; index < table.length; index++) {
 947                 Entry<K,V> entry = table[index];
 948 
 949                 while (entry != null) {
 950                     entryStack =
 951                         new Entry<>(0, entry.key, entry.value, entryStack);
 952                     entry = entry.next;
 953                 }
 954             }
 955         }
 956 
 957         // Write out the key/value objects from the stacked entries
 958         while (entryStack != null) {
 959             s.writeObject(entryStack.key);
 960             s.writeObject(entryStack.value);
 961             entryStack = entryStack.next;
 962         }
 963     }
 964 
 965     /**
 966      * Reconstitute the Hashtable from a stream (i.e., deserialize it).
 967      */
 968     private void readObject(java.io.ObjectInputStream s)
 969          throws IOException, ClassNotFoundException
 970     {
 971         // Read in the length, threshold, and loadfactor
 972         s.defaultReadObject();
 973 
 974         // Read the original length of the array and number of elements
 975         int origlength = s.readInt();
 976         int elements = s.readInt();
 977 
 978         // Compute new size with a bit of room 5% to grow but
 979         // no larger than the original size.  Make the length
 980         // odd if it's large enough, this helps distribute the entries.
 981         // Guard against the length ending up zero, that's not valid.
 982         int length = (int)(elements * loadFactor) + (elements / 20) + 3;
 983         if (length > elements && (length & 1) == 0)
 984             length--;
 985         if (origlength > 0 && length > origlength)
 986             length = origlength;
 987 
 988         Entry<K,V>[] newTable = new Entry[length];
 989         threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
 990         count = 0;
 991         initHashSeedAsNeeded(length);
 992 
 993         // Read the number of elements and then all the key/value objects
 994         for (; elements > 0; elements--) {
 995             K key = (K)s.readObject();
 996             V value = (V)s.readObject();
 997             // synch could be eliminated for performance
 998             reconstitutionPut(newTable, key, value);
 999         }
1000         this.table = newTable;
1001     }
1002 
1003     /**
1004      * The put method used by readObject. This is provided because put
1005      * is overridable and should not be called in readObject since the
1006      * subclass will not yet be initialized.
1007      *
1008      * <p>This differs from the regular put method in several ways. No
1009      * checking for rehashing is necessary since the number of elements
1010      * initially in the table is known. The modCount is not incremented
1011      * because we are creating a new instance. Also, no return value
1012      * is needed.
1013      */
1014     private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
1015         throws StreamCorruptedException
1016     {
1017         if (value == null) {
1018             throw new java.io.StreamCorruptedException();
1019         }
1020         // Makes sure the key is not already in the hashtable.
1021         // This should not happen in deserialized version.
1022         int hash = hash(key);
1023         int index = (hash & 0x7FFFFFFF) % tab.length;
1024         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
1025             if ((e.hash == hash) && e.key.equals(key)) {
1026                 throw new java.io.StreamCorruptedException();
1027             }
1028         }
1029         // Creates the new entry.
1030         Entry<K,V> e = tab[index];
1031         tab[index] = new Entry<>(hash, key, value, e);
1032         count++;
1033     }
1034 
1035     /**
1036      * Hashtable bucket collision list entry
1037      */
1038     private static class Entry<K,V> implements Map.Entry<K,V> {
1039         int hash;
1040         final K key;
1041         V value;
1042         Entry<K,V> next;
1043 
1044         protected Entry(int hash, K key, V value, Entry<K,V> next) {
1045             this.hash = hash;
1046             this.key =  key;
1047             this.value = value;
1048             this.next = next;
1049         }
1050 
1051         protected Object clone() {
1052             return new Entry<>(hash, key, value,
1053                                   (next==null ? null : (Entry<K,V>) next.clone()));
1054         }
1055 
1056         // Map.Entry Ops
1057 
1058         public K getKey() {
1059             return key;
1060         }
1061 
1062         public V getValue() {
1063             return value;
1064         }
1065 
1066         public V setValue(V value) {
1067             if (value == null)
1068                 throw new NullPointerException();
1069 
1070             V oldValue = this.value;
1071             this.value = value;
1072             return oldValue;
1073         }
1074 
1075         public boolean equals(Object o) {
1076             if (!(o instanceof Map.Entry))
1077                 return false;
1078             Map.Entry<?,?> e = (Map.Entry)o;
1079 
1080             return key.equals(e.getKey()) && value.equals(e.getValue());
1081         }
1082 
1083         public int hashCode() {
1084             return (Objects.hashCode(key) ^ Objects.hashCode(value));
1085         }
1086 
1087         public String toString() {
1088             return key.toString()+"="+value.toString();
1089         }
1090     }
1091 
1092     // Types of Enumerations/Iterations
1093     private static final int KEYS = 0;
1094     private static final int VALUES = 1;
1095     private static final int ENTRIES = 2;
1096 
1097     /**
1098      * A hashtable enumerator class.  This class implements both the
1099      * Enumeration and Iterator interfaces, but individual instances
1100      * can be created with the Iterator methods disabled.  This is necessary
1101      * to avoid unintentionally increasing the capabilities granted a user
1102      * by passing an Enumeration.
1103      */
1104     private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
1105         Entry[] table = Hashtable.this.table;
1106         int index = table.length;
1107         Entry<K,V> entry = null;
1108         Entry<K,V> lastReturned = null;
1109         int type;
1110 
1111         /**
1112          * Indicates whether this Enumerator is serving as an Iterator
1113          * or an Enumeration.  (true -> Iterator).
1114          */
1115         boolean iterator;
1116 
1117         /**
1118          * The modCount value that the iterator believes that the backing
1119          * Hashtable should have.  If this expectation is violated, the iterator
1120          * has detected concurrent modification.
1121          */
1122         protected int expectedModCount = modCount;
1123 
1124         Enumerator(int type, boolean iterator) {
1125             this.type = type;
1126             this.iterator = iterator;
1127         }
1128 
1129         public boolean hasMoreElements() {
1130             Entry<K,V> e = entry;
1131             int i = index;
1132             Entry[] t = table;
1133             /* Use locals for faster loop iteration */
1134             while (e == null && i > 0) {
1135                 e = t[--i];
1136             }
1137             entry = e;
1138             index = i;
1139             return e != null;
1140         }
1141 
1142         public T nextElement() {
1143             Entry<K,V> et = entry;
1144             int i = index;
1145             Entry[] t = table;
1146             /* Use locals for faster loop iteration */
1147             while (et == null && i > 0) {
1148                 et = t[--i];
1149             }
1150             entry = et;
1151             index = i;
1152             if (et != null) {
1153                 Entry<K,V> e = lastReturned = entry;
1154                 entry = e.next;
1155                 return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
1156             }
1157             throw new NoSuchElementException("Hashtable Enumerator");
1158         }
1159 
1160         // Iterator methods
1161         public boolean hasNext() {
1162             return hasMoreElements();
1163         }
1164 
1165         public T next() {
1166             if (modCount != expectedModCount)
1167                 throw new ConcurrentModificationException();
1168             return nextElement();
1169         }
1170 
1171         public void remove() {
1172             if (!iterator)
1173                 throw new UnsupportedOperationException();
1174             if (lastReturned == null)
1175                 throw new IllegalStateException("Hashtable Enumerator");
1176             if (modCount != expectedModCount)
1177                 throw new ConcurrentModificationException();
1178 
1179             synchronized(Hashtable.this) {
1180                 Entry[] tab = Hashtable.this.table;
1181                 int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
1182 
1183                 for (Entry<K,V> e = tab[index], prev = null; e != null;
1184                      prev = e, e = e.next) {
1185                     if (e == lastReturned) {
1186                         modCount++;
1187                         expectedModCount++;
1188                         if (prev == null)
1189                             tab[index] = e.next;
1190                         else
1191                             prev.next = e.next;
1192                         count--;
1193                         lastReturned = null;
1194                         return;
1195                     }
1196                 }
1197                 throw new ConcurrentModificationException();
1198             }
1199         }
1200     }
1201 }